
Chapter 6
Demand-Side Management and Demand
Response for Smart Grid
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Abstract Demand-side management (DSM) and a market mechanism involving
demand response (DR) receive significant attention. The DSM is an emerging ini-
tiative which is one of the key elements of restructured power systems. An objective
of any DSM program could be peak load clipping instead of adding generation sup-
ply, by simply shifting timing from the peak load period to off-peak period. The
DR seeks to adjust load demand instead of adjusting generation supply. Different
types of load shaping objectives, such as peak clipping, valley filling, load shifting,
produce the DR. A compensation for the DR is triggered by diverse policies, market
mechanism and implementation models. The integration of DR resources in electric
power system becomes worldwide due to advent of communication technologies and
metering infrastructure.With the evolving restructured electricitymarket, aggregator
as a mediator between market operator and end-user customers. This chapter dis-
cusses six major DSM aspects: (1) the DR resources, (2) possible DR program mod-
els, (3) enabler technology framework and policy, (4) role of DR exchange (DRX)
market, (5) optimization algorithms used and (6) a few implementation issues like
end-users engagement, privacy preservation, and DR rebounding. An optimization
algorithm for specific DRX market structures and how the market participants inter-
act is described in detail.
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6.1 Introduction

The continuous depletion of fossil fuel-based energy accelerates renewable supply
growth in the power industry throughout the world [1]. The renewable supply of pri-
marily solar and wind with its inherent variability poses some substantial challenges
for a reliable operation of the smart electricity grids. The different measures to deal
with the variability lead to higher volatility in wholesale electricity price [2]. Fur-
ther, the price trend spikes at the evening peak demand period, or hot summer days.
When supply deficits enormous, the price even jumps several thousand times than
usual cases. In this regard, flexibility and controllability from demand-side known
as demand-side management (DSM) can play a significant role to reduce the price
spike. The DSM is capable of balancing between supply and demand in almost all
planning and operational timescale. It refers to varieties of load control activities and
programs by engaging end-user customers. The customers change electricity usage
behaviour in response to economic signals.

In contrast to investment in supply-side resources, coordination of demand-side
resources like demand response (DR) , distributed energy resources (DER) and vir-
tual power plant (VPP) makes the smart electricity grid smarter [3]. The emerging
aggregator of the distribution side may be engaged for coordination purpose. In one
hand, aggregator induces the end-user customer to modify their consumption and,
on the other hand, reports to the market operator if the required DR is achieved. The
operator updates the modified load demand at each network node and seeks supply
offers from the conventional generation companies (GenCos) and large-scale renew-
able firms. The renewable suppliers are assumed to bid ex-ante based on the expected
profile and adjust over- or underestimated power output in real-time operation. The
operator determines the supply share of the generation companies and market price
using merit order dispatch. When renewable picks up, DR would be adjusted to min-
imize overall operation cost. Locational marginal prices (LMPs)-based approach is
usually used to evaluate electricity generation and consumption price, where LMP
at each network node is found as a by-product in transmission constraint optimum
power flow (OPF) model [4, 5].

The energy management scheduler (EMS) interfaced with the advanced metering
infrastructure (AMI) is a key enabler to implement the DR [6]. Common ways of
engaging customers in the DR programs include offering such a retail electricity rate
which reflects the dynamic nature ofwholesale electricity price or provides incentives
to reduce load at critical peak load demand periods. The DR alleviates the neces-
sity of generation from expensive peaking plants and defers network infrastructure
expansion [7]. It reduces emissions of generating plants, improves the environmental
impacts, and ensures efficient utilization of existing electricity grid capacity. Emerg-
ing applications ofDRprograms can improve power system’s reliability by providing
ancillary services. Overall, the generation, transmission and distribution companies
get benefitted from a better ability to manage supply and demand. The end-users get
benefitted from monetary incentives they receive as load adjustment.
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With reference to the above introductory Sect. 6.1, the remaining sections are
organized as follows. Sections 6.2 and 6.3 provide necessary background information
aboutDRandDSMstatus in themajor electricitymarkets.Avariety of resources used
are discussed in Sect. 6.4. The DR programs are reviewed in Sect. 6.5. A transactive
approach for DR is introduced in Sect. 6.7. The enabler framework and pricing policy
are discussed in Sects. 6.8 and 6.9, respectively. An abstract DR exchange market
mechanism is provided in Sect. 6.10. Different types of DR model reported in the
literature are explained in Sect. 6.11, followed by a chapter summary in Sect. 6.13.

6.2 Demand Response (DR)

DR refers to incentivized programs to reduce consumption during periods of peak
demand or in response to dynamic price indications in return formonetary compensa-
tion [8]. According to [9], the DR can be defined as “changes in electric usage by the
end-user from their usual consumption patterns in response to change in the price of
electricity over time, or to incentive payments designed to induce lower electricity use
at times of high wholesale market prices or when system reliability is jeopardized”
[9]. It seems to adjust load demand instead of adjusting generation supply. Market
operator signals load demand reduction requests through the AMI installed in end-
user’s premises. The signals are a variation of the price level. Figure 6.1 illustrates
that DR consists of the area between optimized consumption and usual consumption.
The DR may comprise of peak clipping (load is reduced at peak demand periods)
and/or valley filling (load is activated to consume more at off-peak demand periods).

The load–duration curve (LDC) shown in Fig. 6.2 illustrates changes in yearly
load demand. In LDC, the hourly load demand throughout the year is sorted largest
to the smallest. The base, intermediate and peak load demands are separated by the
horizontal dashed lines. With a higher share of RES, supply from the conventional
generation reduces in the same hour, while peak load demand significantly increases.
As seen, a higher share of variable RES though pushes overall LDC downwards,
however, with a significant increase in peak consumption hours with a higher step.

Fig. 6.1 Visualization of the
DR which is the area
between optimized
consumption and usual
consumption. Optimization
clip peaks and fills valley in
relation to electricity
consumption, Reprinted by
permission from Nature, Nat.
Clim. Chang, “People power
to the rescue”, S. van
Renssen © 2014
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Fig. 6.2 Typical load
duration curve. The peak
demand data points in a year
move over to the left and all
the rest of the demand are on
the right

Usually, peaking generations are the most expensive units in the system. A recent
study shows that at least 10% of supply costs require to provide just 1% of hours of
year [6]. This is a challenge for power system engineer and academic. The challenge
can be dealt in a cost-effective way by engaging demand-side management.

6.3 Demand-Side Management

The DSM is considered to be one of the key elements of restructured power systems
[10]. For electricity market operator (EMO), the coordination of DSM programs is a
critical concern. The coordination is further intensified by the addition of distributed
renewable energy firms from the supply side. Demand-side participation benefit from
pricing point of view is illustrated in Fig. 6.3. The supply curve (SC) depends on
marginal operation costs of the generation which usually increases with the gener-
ation levels. The position of the demand curve (DC) varies in accordance with the
consumption level [11]. The projection of demand and supply curve (the point where
both the curves intersect) on the price axis determines the market clearing price.

Let us consider two scenarios of demand by using the demand curve DC1 and
DC2 for higher and lower demand, respectively. For the demand curve DC2, the price
is determined to be λP

1 . If the end-users have flexibility in their electricity usage and
reduce their consumption from D1 to D2, the price reduces to λP

2 from the previous
price λP

1 . The total welfare gains from the DR are indicated by the shaded area
BC1C2. It is interesting to see that a small amount of DR (�D) results in a large
reduction in the generation cost. The generation cost shifted from the point C1 to C2.
Thereby spike of the market clearing price reduces.

The size of DR benefit crucially depends on the flexibility of the end-user. It can
be represented by the slope of the load demand curve [12]. A horizontal demand
curve (zero slope) refers to inelastic demand which means no change in the demand
due to a unit change in the pool price. The more the slope of the demand curve,
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Fig. 6.3 Illustration of DR
from supply–demand curve
point of view

more the flexibility, means to change a larger amount of load in response to a smaller
amount of price.

In case of renewable, the supply price curve moves to the right. In turn, the price
reduces. The opposite could happen; when renewable power generation decreases,
the price becomes higher. The DR mechanism by shifting the consumption to other
periods deals the supply shortfall.

6.4 Demand Response Resources

A variety of load shaping objectives, such as peak clipping, valley filling and load
shifting are presented in Fig. 6.4. The peak clipping and valley filling activities
rearrange the load usages without overall demand reduction. In this case, loads differ
from peak demand periods to off-peak periods [13]. Compared to the options shown
in Fig. 6.4a, b, the load shifting option in Fig. 6.4c is relatively convenient to shape
the load to follow generation as close as possible. Examples of user’s load shifting
include charging battery storage of electric vehicles (EV), space heating system and
so forth. The first two DR options decrease the amount of generation supply needed
to fulfil the demand, while the third one is not. However, all the options reduce power
generation cost and increase the load factor. The load factor is defined as the average
load divided by the peak load in a specified time.

Amarket operator sends a load demand reduction request throughAMI installed in
end-user’s premises. The DRmechanism involving load/appliances needs to be auto-
mated and aided with communication technology. The end-users may have equipped
with the EMS which enables ON/OFF for the DR-capable appliances. The EMS
adjusts the temperature set-point of thermostatically controlled loads. The end-users
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Fig. 6.4 Illustration of DR concept in relation to energy consumption flexibility. The DR activities
include: a peak clipping; b valley filling; and c load shifting (both the peak clipping and valley
filling)

have some sort of temporary inconvenience due to the load adjustment. In the EMS,
users can calibrate their inconvenience based on the appliance type. The DR-capable
load used by the residential customer can be categorized in the following forms:

6.4.1 Category-1: Deferrable and Interruptible Appliances

This type of appliances operates within a user’s defined time window. Its operation
is interruptible in the sense that it can be stopped during an operation. Also, the
starting time within a preferred time window can vary. An example is the charg-
ing/discharging of the energy storage in the EV [14]. The charging tasks can be done
within the user-defined time interval; further, it can be temporally interrupted with
the intention of resuming at later to avoid peak period electricity price.

6.4.2 Category-2: Deferrable but Non-interruptible
Appliances

This category includes washing machine, dishwasher which requires a pre-specified
operation time. The interruption of the operation is not expected. However, the oper-
ation can be moved keeping its cycle throughout the day to receive a better compen-
sation [15].
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6.4.3 Category-3: Non-deferrable and Non-interruptible
Appliances

These refer to thermostatically controlled loads (TCLs) such as heating ventilation
air cooling (HVAC) systems, water heaters (WH), refrigerators. These devices have
the most potential DR capability among the different types of residential loads used.
A commercial HVAC heater/chiller may be well positioned to provide the DR by
adjusting their temperature set-point. Adjusting variable speed drive of the air han-
dling units of the fan in HVAC is another way to get the DR.

6.4.4 Onsite Generation (OG)

The rooftop solar photovoltaic (PV) systems, small-scale wind turbines, backup
generators can be identified as onsite generation (OG) resources. Industry can reuse
thermal energy that would usually be wasted and convert it into electrical power
locally. This option can significantly backup its own electricity need during times of
peak demand.

6.4.5 Energy Storage (ES)

Energy storage (ES)-capable loads can be plug-in to avoid the peak period electricity
price. The battery storage in the EV, for instance, can be used to backup for the
rooftop solar PV. The ES can be charged during off-peak night time when vehicles
are usually parked in. It can be discharged out at the peak hours. Excess solar energy
stored around the noon hours can be utilized at evening peak demand period when
grid electricity price is usually higher. The enabler control systemwith a bidirectional
communication system is used to coordinate the charging/discharging.

6.5 DR Programs

Providing some monetary incentives or adopting some dynamic tariff, the DR pro-
grams usually change the users’ electricity load pattern. The DR programs can be
categorized into the following three types: (1) indirect load control (ILC), (2) direct
load control (DLC) and (3) transactive load control (TLC).
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6.5.1 Indirect Load Control (ILC)

Indirect load control (ILC) also known as price-based DR. The end-users change
their electricity consumption pattern in response to different types of time-varying
pricing mechanism. The pricing mechanism is also called tariff [16]. In dynamic
pricing, cost of electricity varies throughout the day.

Different dynamic pricing mechanism like time of use (ToU), critical peak (CP)
and real-time pricing (RTP) indirectly induce users to change the consumption.
Unlike a usual flat electricity price rate, the operator wants to change customer
consumption behaviour indirectly by sending a wholesale level dynamic price caps
integrated with the retail rate. The end-user reduces consumption at peak demand
hourswhen prices are high; at the end, the users get benefited from reduced electricity
consumption cost. The different time-based tariff options are as follows:

• Time of use pricing (ToU)
In ToU, the usage charges vary at different time slots in a day, or different seasons
of a year usually named as peak, shoulder and off-peak tariff. Generally, the ToU
rate keeps unaltered for a long term.

• Critical peak pricing (CPP)
The usual peak price rate replaced with much higher rate is called critical peak
pricing (CPP).

• Inclined block rate (IBR)
If hourly consumption rate changes after exceeding a certain threshold level, it is
recognized as inclined block rate (IBR).

• Real-time pricing (RTP)
RTP refers to the electricity charges when it varies at sub-hour interval [17].
Among the pricing options discussed, RTP has been found most popular, though
it requires intensive communication infrastructure.

6.5.2 Direct Load Control (DLC)

Direct load control (DLC) allows the operator to turn off until a defined ending time;
it would be turned on again. Similarly, to operate a task for a few cycles with minimal
consumption does not substantially affect performance. In the DLC program, large
customers like industries curtail some of the electricity usages and emulate as a
virtual spinning reserve. In contrast to ILC, the amount of load reduction in DLC is
more specific, since the control action is done from the operator side. The users are
committed to response.

Several threatening issues may raise in the DLC programs, for instance, customer
right, user’s preference and privacy. Also, there is a penalty which may be applied
due to non-compliance. However, some recent study shows, the customer should
have the right to override the ability of the operator to remotely control the loads. In
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that case, users agree to sacrifice some of the compensation users receive. The users
having HVAC loads can easily involve in the DLC [18].

Generally, the DLC as ancillary service can be used to keep system voltage and
frequency at reliable level so that electricity moves from generating sources to loads.
Such a frequency and voltage regulation maintain a balance between the supply
and the demand. Authors in [19] proposed a stochastic scheduling method for the
controllable TCLs to provide frequency regulation services. In general, during the
occurrence of any disturbances, when it is necessary to response within minutes or
even shorter interval, the DLC can be a useful resource to bring back the system in
the reliable state.

6.6 DR for Industrial Customers

This section aims to discuss the existing practice and idea on the industrial DR. Non-
residential especially industrial customers require intense energy consumption with
normal loads of hundreds of MWs. They have substantial potential to provide flexi-
bility for power system grids. Compared to the residential users, who can reschedule
their loads even near real time, in many industrial cases; however, to implement
DR would be complex due to the reliability of the interdependent industrial process
being difficult to isolate [20]. A disruption of the process may stop production or
disregard the key operational constraints. In [21], a DR from the industrial facilities
is investigated. The study found, when the dynamic price is above what is usual,
the industry decreases its electricity consumption and uses the local OG and ES to
recover the deficit.

The works in [22, 23] suggested a DR option for refrigerated warehouses. The
study showed how a DR minimizes energy consumption cost for the industrial cus-
tomers and thereby balances the electricity supply and demand. Those investigations,
however, collectively left any specific DR algorithm for the interdependent industrial
process.

The authors in [24] and [23] proposed a technique for production scheduling
based on state task network (STN) to minimize electricity consumption cost. The
STN consists of task nodes and state nodes, where the task refers operation process-
ing while the state for input feeds, transitional and final products [25]. Also in [26]
and in [20], a scheduling algorithm based on resource-task network (RTN) to min-
imize makespan of the operational units is suggested. The works in [26] suggested
scheduling problem of the steel melting plant under energy constraints to minimize
total electricity cost. The novel aspect of this model is to incorporate penalties in
objective function so that deviations from a precontracted electricity load can be
taken into consideration. The large manufacturing industry can use its operational
shifting flexibility by altering electricity usage from on-peak to off-peak demand
periods [27, 28].

In summary, these works [27, 20] consider practical scheduling constraints of the
industry during DR. The DR programs for industrial facilities have helped to reduce
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the peak load demand for many years. The loadmanagement for the irrigation pumps
in the agricultural sector is still largely untapped. Irrigation is well suited for DR
because the involving pumps can be shut off even for the peak periods, which can
last for several hours.

6.7 Transactive Approach for DR and DER

6.7.1 What Is Transactive Approach?

Transactive approach refers to the emerging market-based coordination for DR,
DERs and storages at large scale to manage bulk-level intermittent renewable gener-
ation within an intelligent power system grid. The term “transactive” arises because
operation decisions are made considering value-based economic information [29].
According to [30], transactive energy refers “A system of economic and control
mechanisms that allow the dynamic balance of supply and load demand across the
entire electrical infrastructure using value as a key operational parameter”.

6.7.2 How Does Transactive Approach Work?

The transactive approach integrates flexible demand-side resources into smart grids.
The enabler platform is strongly interdisciplinary, requires power systems, eco-
nomics, and controls engineering knowledge. A large customer can directly take
part in the market, while small end-users require a DR service provider aggregator.
The transactive interaction between the end-users, aggregators and operator requires
intelligent communication and automation deployment. Themain principle is to com-
bine economic and control techniques to improve smart grid reliability, efficiency
and economic transparency.

6.8 DR Enabler Framework

The underlying enabler to implement DR is compatible communication infrastruc-
ture with the supported protocol. DR system requires energy management scheduler
interfaced with the AMI, as detailed in the following sections.
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6.8.1 Energy Management Scheduler

The EMS includes in-home displays, home area networks, programmable thermostat
and smart plugs as part of the EMS system. The automation of those components
provides significant functional platforms to enable the DR facilities. Consumption
scheduling problem is operated by optimization model coded in the EMS [11]. Some
of the optimization models are discussed in this chapter. In one hand, every EMS is
remotely connected byworld area network to the utility through theAMI; on the other
hand, the DR-capable loads exchange its status with the EMS. A ZigBee network is
used for this purpose which acts as a communicating gateway to connect appliances
available in the home. The ZigBee is a technology based on IEEE 802.15.4 standard,
consists of low-power wireless sensor and controls technology into the EMS.

The users have a choice of taking flat price or dynamic tariff. Being instructed
by the operator; aggregators request to the affiliated users. The user responses to the
request and reschedules the energy consumption. In general, the flexibility of DR
considers the following three aspects, (1) overall disutility cost, (2) scheduling timing
preference and (3) climatic comfort constraint such as temperature set-points [31].
The optimal scheduling decisions are either ON/OFF time of the DR-capable loads
or charging/discharging of energy storage. The optimal scheduling decisions are
taken while respecting the aforementioned aspect of the cost of energy consumption,
timing and flexibility constraints.

6.8.2 Advance Smart Metering System

TheAMI is another key technical driver for incorporating theDR into the smart grids.
It is an integrated system of smart meters and bidirectional communications network
with a customizedprotocol. The protocol enables interactive communication between
utilities and end-user customers. It records time-based energy consumption data and
communicates those data to the utility operator. Smart meters can receive execution
commands from the aggregator [29] and send DR outcomes after communicating
through the EMS.

6.9 DSM Pricing Policy

The DR valuation is activated by different sets of policies, market mechanism and
implementation frameworks [32]. In the PJM electricity market of USA, the fed-
eral energy regulatory commission (FERC) advocates for the DR. A FERC order
745 empowers DR service provider such as large customers, independent third-party
mediator on behalf of end-users to offer DR in aggregate. The DR provider must be
compensated for reducing electricity load at the same rates as if theymet that demand
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with generated electricity. The acceptance of the order 745 by US Supreme Court
enhances a larger integration ofDR.A significant economic impact is released in both
the wholesale and retail levels [33]. The DR participates in organized wholesale mar-
kets and now gets remunerated for the service it provides at the LMP [34]. According
to [35], the “LMP is the marginal cost of supplying, at least cost, the next increment
of electric demand at a specific location (node) on the electric power network, taking
into account both supply (generation/import) bids and demand (load/export) offers
and the physical aspects of the transmission system including transmission and other
operational constraints”. This approach for compensating the DR removes barriers
to the participation of DR resources. Competitive participation is realized from a
variety of DSM providers, from a traditional DR to aggregated battery storage, the
solar energy from the rooftop solar PV and electric vehicles.

The DR compensation rate is different in different electricity markets. For
instance, leading California Independent System Operator (CAISO) and Pennsyl-
vania New Jersey Maryland (PJM) both have a significant number of DR programs
under the FERC pricing policy. The New England ISO’s plan is on track for 2018
integration. In contrast to FERC order, a conceptual DR pricing policy is shown in
Fig. 6.5.

The aggregator knows end-users expected baseline consumption. The end-user
pays the retailer for their meter recorded consumption. The energy provided by
the retailer is purchased from the wholesale market. The retailers purchase DR
from demand response exchange (DRX) . The aggregators whereas sell the demand
response in the DRX. The aggregator compensates end-user for the level of DR
which is the difference between the customers’ actual electricity consumption and
predicted baseline consumption. The DR amount and cost settle in the DRX market
which are reported to the EMO to consider it for the wholesale market.

Fig. 6.5 Conceptual DR
pricing and compensation for
the market participants in
different levels without
FERC order 745 [36]
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6.10 DR Exchange (DRX) Market

ADRX-integratedmarket model is presented in Fig. 6.6. Since introduced by authors
in [14, 15], the DRX model is extended and modified to implement various market
mechanisms. Authors in [37] discussed pool-based DR exchange in the day-ahead
(DA) scheduling.TheDRparticipantswere expected to submit a sellingor purchasing
curtailment offers in separate DRXmarkets. The benefits of those models achieve in
terms of reduced peak-hour LMP, lower power system operation and congestion cost.
In the pool-based DRX model, the market participants are coordinated by a demand
response exchange operator (DRXO). The participants require forming its bidding
strategy to either sell or purchase the DR product directly from the DRX pool [14].
It is reported that such a pool-based DRX is cost-effective, reliable and improves
economic transparency in DSM.

The DRX customers are divided into two groups. The first group includes load-
serving entities (LSEs), electricity service providers, retailers, even the EMO who
purchases the DR to provide ancillary services [38]. The DR purchaser buys DR
resources to enhance power system reliability, managing network congestion and
avoiding price volatility spikes [34]. The second group includes DR sellers who
offer DR resources in the DRX to get economic rewards. The DR sellers may be
industrial, commercial and residential end-user. However, due to limited negotiation
power, the residential users participate in DRX by aggregators. In the proposed
market framework, aggregator serves as the agents who receive DR requests from

Fig. 6.6 Proposed DRX market and the role of aggregator for a smart electricity markets
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DRXO, LSEs and electricity service providers [37]. The optimal DR pricing and
the amount to be traded is determined in the DRX market. Such a pool-based DRX
mechanism does not significantly modify the functionalities of participants in the
organized wholesale markets. In the following section, role of different DRXmarket
players is presented.

6.10.1 Role of EMO

The market operator places its DR requirement and seeks participation from the
aggregators. The aggregator wants to value the flexibility of the end-users DR capa-
bility. Based on the wholesale forecasted price, the aggregator updates its bidding
strategy and evaluates the end-user’s responses.

6.10.2 Role of Aggregator

Due to limited negotiation power, end-user customers enjoin aggregator-provided
DR service. The aggregator communicates with the end-users through local EMS
unit which allows users to choose their consumption and compensation preference.
The EMS is required to know the consumption pattern and relevant operating char-
acteristics of the appliances. The aggregators offer compensation to the end-users
and change it until the DR requirement achieves. The end-users must reveal their
baseline consumption to get the compensation.

6.10.3 Baseline Demand Estimation

The end-users i participating in DR require their baseline electricity consumption to
bemeasured. The baseline consumption indicates the quantity a user would normally
use without DR as shown in Fig. 6.7. Aggregator measures the baseline consumption
to entail the DR benefit for the load curtailment. Assuming Dbaseline for baseline
demand and Dactual for actual demand, the DR quantity (x) is defined by

x �: Dbaseline − Dactual. (6.1)

Further, consider an individual DR supply quantity vector xki at each hour, k ∈ T .
There exist Na appliances index by a ∈ Na . The DR supply is defined by

xki �:
[
xki1, xki2, . . . , xki Na

]
. (6.2)
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Fig. 6.7 Verifying DR dispatch by a customer [39], Figure, Courtesy of D. T. Nguyen, “Demand
Response Exchange in a Deregulated Environment” © 2012

The aggregated DR over the trading period of interest from the Ni number of
users can be expressed as

X �
∑

i∈Ni

∑

i∈T
xki . (6.3)

To calculate the baseline demand, several methods like day matching and regres-
sion analysis are used as discussed in [40]. Historical consumption behaviour is also
used for this purpose. The authors in [41] investigated a forecasting tool to determine
baseline demand.

The load demand forecasting of the end-users having solar PV and other dis-
tributed resources is difficult to predict due to their inherent intermittency. The esti-
mation relies heavily on the meteorological variables over in time and space. For
a given site, if historical data are available, simple time series model provides an
accurate estimation of the load even though meteorological conditions are unknown.

Toobtain a realistic consumptionwhile preserving end-user’s privacy, it is required
to estimate their consumption and refer it back to the aggregator. However, there is a
challenge to get truthful data as the user may lie on purpose. The users may declare
overestimated baseline consumption to claim increasing monetary compensation.
This can be dealt with adopting a game theoretic optimization model. A game theo-
retic model guarantees that the users attain maximum DR benefit if they reveal true
baseline consumption. No users could attain a higher benefit by reporting a baseline
consumption different from its true value. Thereby, users avoid false reporting of their
consumption. The AMI is being installed on the end-user’s premises which records
the consumption history. Those historical data are compared with the consumption
in real time to calculate the compensation portfolio. Since the AMI technologies
have been evolved, these are utilized for DR measurement and verification by the
utilities. Figure 6.8 explains a scheduling horizon of DR-integrated market frame-
work. The DSM can be arranged in almost all time scales of planning and operation.
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Fig. 6.8 Short-term planning to real-time operation window with activities for DR-integrated elec-
tricity markets [43]

Planning on the horizon of interest like long-term investment decision to operation
level involving scheduling in DA can be performed. The required adjustment is made
in near real time to deal over- and underestimation of the resources realized. The DA
market usually settles on an hourly basis. The generation is scheduled over the oper-
ating horizon for actual dispatch on the following day, based on the hourly day-ahead
forecasted demand [42]. The GenCos need to submit ex-ante operational scheduling
for power generation. The EMO usually closes the DAmarket at 11.00 pm. The loca-
tional marginal price and generation share are set by running a security constraint
economic dispatch program.

The GenCos communicate with balancing responsible party (BRP). The BRP
settles imbalance (if any) in real-time net from the DA commitment. Such a market
mechanism is better demonstrated in [14, 15, 37], by introducing a demand response
exchange (DRX) market. To provide the committed DR quantity in the DRXmarket,
the aggregator is required to communicate with the end-user. The aggregator acts
as a mediator between DRXO and end-user customers. In the intraday market, the
aggregator updates their compensation strategy until the DR requirement is achieved.
The intraday market closes before few hours ahead of delivery.

The imbalance settlement is executed in real time. The estimated renewable energy
amount committed in day-ahead and the probable imbalance is fixed up. A penalty
is imposed due to over- or underestimated power generation. Following section dis-
cusses a few DR market mechanism models which are used to implement different
types of DSM program.
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6.11 Mathematical Models for DR in Smart Grids

The mathematical models for DR in DSM can be framed in a different perspective
and from different point of views. The models differ in objective functions, solution
methods, scalability, multiple appliance support, pricing scheme, communication
requirement and so forth. Some of the important models that have to allow to model
DSM programs are discussed below.

6.11.1 End-User Aggregated Cost Minimization

Let us study a simple DRmechanism as reported in [44]. In this study, each end-user
is assumed to submit a single bid reflecting a willingness to change consumption
over the period k. Being aware of end-user’s preference, the aggregator solves the
following energy consumption cost problem given by (6.4).

minimize
(d1,...,dNu )

Nu∑

i�1

Cr

(
Tk∑

k�1

dr,k

)

, ∀s,∀k.

subject to
Nu∑

i�1

dr,k � Gk, ∀k

− Lr,k ≤ dr,k ≤ Dr,k, ∀r. (6.4)

wheredrk is theDRprovided byuser r at time k, dr :�
[
dr1, . . . , drTk

]
, and Drk ≤ 0

is maximum load quantity user could change at k. It is reported user’s disutility due
to changing load demand depends only on its total load demand adjustment, dr . The
term Gk is for the total amount of supply to meet the demand for all users. The rth
user’s load adjustment must lie in the interval [−Lr , Dr ]. The cost function Cr (dr )
in (6.4) is of the following form [44]

Cr (dr ) �
{
Urdr , if dr ≤ D′

r .

Ur D′
r + Hr (dr − D′

r ), otherwise.
(6.5)

where D
′
r denotes for the maximum quantity of load change that the user can manage

over the period Tk , with a specified deadline. Here, theUr > 0 is for user’s marginal
disutility which appears due to deferring a task. The term Hr (·) replicates disutility
if the task is not complete before its deadline.
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6.11.2 Peak-to-Average Load Ratio Minimization

Another type of optimization problem is to minimize system peak-to-average ratio
(PAR), a significant parameter to quantify DR [45]. The appliances having higher
consumption rate can be activated during off-peak hours to decrease the PAR value.
Let us consider r ∈ Rm end-user having flexible appliance set s ∈ Aa . Energy con-
sumption scheduling vector of appliance s ∈ Aa is defined as drs � [

d1
rs, . . . , dTk

rs

]
,

where dk
rs denotes hourly consumption by user r at hour k. The total load of user r

can be expressed as lkr � ∑

a∈Aa

dk
rs, k ∈ Tk . The daily peak and average load levels

are calculated as

Lpeak � max∀k Lk (6.6)

Lavg � 1

Tk

∑

∀k
Lk (6.7)

Therefore, the PAR in load demand is expressed as (6.8)

PAR � Lpeak

Lavg
� Tkmax∀k Lk∑

∀k Lk
. (6.8)

The total energy consumed by all appliances in the system over 24 h is equal to
the sum of the daily energy consumption of all loads/appliances.

minimize
Tk max∀k

(∑
r∈Rm

∑
s∈Aa

dk
r,s

)

∑
r∈Rm

∑
s∈Aa

Ers
, ∀r,∀s,∀k. (6.9)

However, the problem (6.9) is still difficult to solve in its current form due to
the max term in the objective function. This can be resolved by introducing a new
auxiliary variable � and rewriting the problem in the following form

minimize �

subject to � ≥
∑

r∈Rm

∑

s∈Aa

dk
r,s, ∀r,∀r,∀k

γmin
r,s ≤ xkr,sγ

max
r,s . (6.10)

We define the minimum standby power level γmin
r,s and the maximum power level

γmax
r,s for each appliance s ∈ Aa for each user r ∈ Rm . Standby power refers to
the electric power consumed by each appliance while it is switched off or it is
in a standby mode. It is considered the LSE has complete knowledge about this
information. An energy consumption scheduling problem can also be devised in
terms of minimizing the energy consumption costs to all users. The task of ECS is
optimized in the function (6.11) to find the optimal choice of consumption vector drs
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for each appliance at every hour. Given an hourly energy cost function, Ck , denoting
the cost of distributing electricity, can be formulated tominimize energy consumption
costs to the end-users

minimize
n∈Xn,n∈Nn

≥
∑

∀k
Ck

∑

n∈N

∑

s∈As

dk
r,s . (6.11)

The cost function is assumed to be strictly convex, and the minimization problem
in (6.10) has an optimal solution, given the coefficients of the cost functions [29].
The difference between the minimization of PAR and energy consumption cost is
that the latter could have multiple optimal solutions. A game theoretic approach is
used in [45] to solve both the problems (6.10) and (6.11).

6.11.3 Risk-Constrained Optimization Model

There exists a specific type optimization which can measure risk arising from the
uncertainty of the involving decision variables. Bear upon this uncertainty, let us
consider f (xD, w) be the profit function associated with a ‘xD’ a choice variable.
The D in suffix denotes for demand response. The ‘w’ represents a random variable
arising from renewable (such as wind and PV firm) uncertainty. The profit–loss not
beyond a threshold margin, α, is expressed by (6.12)

�(xD, α) �
∫

f (xD ,w)≤α

πw dw. (6.12)

As a function of α and for a decision xD , � is the collective spreading for the
lower profit link to the xD . The (6.12) is continuous increasing function of α. Given
a probability β, a value-at-risk (β-VaR) and conditional value-at-risk (β–CVaR),
pertaining to the xD, is given by the following form, respectively [46]

αβ(xD) � min{ α:�(xD, α) ≥ β}, (6.13)

ρβ (xD) � 1

1 − β

∑

f (xD ,w)≥αβ (xD )

f (xD, w)πw dw. (6.14)

To reduce the profit–loss due to xD decision, (6.15) is convex and piecewise linear
[7].

min
(xD ,α)

(

α +
1

Nw(1 − β)

Nw∑

w�1

πw[ f (xD, w) − α]

)

. (6.15)
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The (6.15) denotes the existence of derivative and convexity for the critical values
of α in the interval (1−β). When a β–CVaR is found, the β–VaR can be calculated
easily. Optimization of (6.15) provides the risk margin of profit–loss in uncertainty.
The model (6.15) can be further modified by announcing a new supplementary vari-
able ϑw ≥0 for all probable scenarios as expressed by

min
(xD ,α)

(

α +
1

Nw(1 − β)

Nw∑

w�1

πwϑw

)

(6.16)

The aforementioned formulation is an operative risk control tool discussed in
[47]. This risk metric is cast-off to optimize the probable profit and different types
of uncertainties. Such a risk measurement tool is used for different market players,
for instance, by the retailer [48], storage aggregator [38], GenCos [49] and virtual
power plants [50]. Next section discusses a generation supply offer for economic
market clearing problem.

6.11.4 DR-Integrated MCM from Network Perspective

The modelling of generation supply offer in economic market clearing problem
(MCM) has been investigated by authors in [51–56]. In MCM, the generation offer
bids are accepted and dispatched in merit order. A competition-driven supply-side
bidding-based MCM is reported in [57–59]. In the majority of the cases, the objec-
tive was to minimize operation cost. A bulk-level demand bidding applied by large
consumers was investigated [44, 60, 61]. However, the idea of demand bidding is
debatable; rather a DR-integrated demand bidding is more practical. Since the later
bidding allows the aggregator to observe the load status closely from a control per-
spective.

6.11.4.1 Operation Cost Minimization

Assuming a power system with N b buses and N l transmission lines; Suppose N b

and N l denote sets of the system bus and line, respectively. Further define N g :�
{1, 2, …, Ng} for the GenCos [62]. The following optimization task is solved in
day-ahead for each of the kth trading periods [63].

Minimize
�nk (Pg,Pw)

∑

∀n∈Ng

cn
(
Pgnk

)
Pgnk +

∑

∀m∈Nr

λd
mkdmk (6.17)

subject to:
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∑

∀n∈Ng

Pgnk +
∑

∀i∈Nb

(1 − χw)Dik �
∑

∀(i, j)∈Nl

Bb(ϑik − ϑ jk) (6.18)

B f (ϑik − ϑ jk) ≤ Fi j , ∀(i, j) ∈ Nl ,∀k (6.19)

Fmin
i j ≤ Fi j ≤ Fmax

i j , ∀(i, j) ∈ Nb (6.20)

Pmin
gnk ≤ Pgnk ≤ Pmax

gnk , ∀n ∈ Ng,∀k (6.21)

Rdn
n ≤ Pgnk − Pgnk−1 ≤ Rup

n ,∀k, ∀n ∈ Ng,∀k (6.22)

Rdn
n ≤ Pwnk − Pwnk−1 ≤ Rup

n ,∀k, ∀n ∈ Nw,∀k (6.23)

ϑmin
i ≤ ϑ ≤ ϑmax

i , ϑi�1 � 0, ∀i (6.24)

0 < Dik, χw ∈ R, ∀k,∀i ∈ Nb (6.25)

The first part of the objective (6.17) includes generation offer cost. The second
part refers demand reduction price of the flexible loads. The supply–demand balance
equality constraint is given in (6.18). The second term in this expression is the
wind variability adjustment parameter. In the nodal power injection term, the Bb

is a matrix of dimension Nb ×Nb for the power system bus admittance. The term
(θ ik–θ jk) is for the voltage phase angles. The power flow through the transmission
lines ∀(i,j)∈N l is provided in (6.19). The line and generation capacities limits are
expressed by (6.20) and (6.21), respectively. The constraints (6.22) and (6.23) are
for ramp rate. The constraint (6.24) enforces the lower and upper bounds the phase
angles. The constraints in (6.25) are some decision variables obtained by solving the
DRX problem.

6.11.4.2 Social Welfare Maximization

A social welfare maximization is another class of problem where the sum of utility
functions of the end-user minus generation cost of the supplier is maximized [54,
58, 64, 65]. This type of problem involves a utility function Bjrs(pjrs) of energy usage
that allows load adjustment as follows [66].

Maximize
(Pgnk pkjrs )

Na∑

j�1

∑

r∈Rj

∑

s∈Sjr

B jrs(p jrs)−
Tk∑

k�1

Ng∑

n�1

cn(Pgnk ) (6.26)

subject to : Constraints in (6.25)−(6.34) (6.27)

p jrs ∈ P jrs, r ∈ Rj, s ∈ Sj (6.28)

where p jrs belongs to the polyhedron Pjrs describing a set of linear inequalities and
equalities. The Pjrs simply takes the following form

P jrs �
{
p jrs |pmin

jrs ≤ pkjrs ≤ pmax
jrs

}
, if kstjrs, . . . , k

end
jrs , p

k
jrs � 0, otherwise.

(6.29)
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The constraint (6.29) denotes the appliances/loads operate within a user’s defined
time window. The starting time within a time window can vary. Also, the operation
is interruptible in the sense that the appliance can be stopped during operation. The
load category defined in Sect. 6.4.1 includes the constraint (6.29). An example is the
charging of energy storage in EV.

6.11.5 Bi-Level Optimization

A bi-level optimization is a mathematical program, where an optimization problem
contains another optimization problem as a constraint [67]. Let us start with a simple
example involving payoffmaximizationGenCos in the electricitymarket. The payoff
is the difference of revenue earned by selling electricity and generation cost. How-
ever, the selling price is determined by EMO who solve MCM aiming to minimize
operation cost and obtained market clearing price. In bi-level setting GenCos, payoff
maximization is referred to an upper level and EMO’s market clearing is referred to
a lower-level problem. The bi-level optimization deals with a hierarchic decision-
making between two independent and conflicting decision-makers [68]. Defining the
upper-level decision vector by x and the lower-level decision vector by y, the bi-level
programming problem can be provided as follows

Minimize F(x, y(x)) (6.30)

subject to: Gi (x, y(x)) ≤ 0 (6.31)

Hj (x, y(x)) � 0 (6.32)

and subject to:

{

y(x) ∈ arg Minimize f (x, y) (6.33)

gi (x, y) ≤ 0 (6.34)

h j (x, y) � 0 (6.35)

x ∈ X, y ∈ Y

}

(6.36)

The upper level deals minimization of the objective function G(x, y(x)), and the
lower-level dealsminimization of the objective function f (x, y). Both subproblems are
subject to a set of constraint. The two problems are inter-reliant because the upper-
level objective (6.31) and constraints (6.32)–(6.33) depend on the decision of the
lower-level variables y. Similarly, the objective (6.33) and the constraints of the lower-
level problem (6.34)–(6.36) depend on the upper-level variable x. The,G(x, y(x)) and
H(x, y(x)) denote for an inequality and equality constraint functions in the upper-
level problem, respectively. The, g(x, y) and h(x, y), respectively, denote inequality
and equality constraints functions in the lower-level problem. Eq. (6.36) refers to
a variable bound. Clearly, the lower-level problem is resolved assuming a fixed
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decision in the upper level. The main difference between the aforementioned bi-level
optimization model (6.30)–(6.36) and a general optimization model (6.49)–(6.51) is
the enforcement of the associated conditions set (6.33)–(6.36) which appears as
constraints.

Figure 6.9 presents a bi-level optimization model. The upper level considers secu-
rity constraint optimal power flow model. The lower level involves two optimization
problems. The lower-level problem consists of two problems. The problem#1 rep-
resents a social welfare optimization in the DRX. The problem#2 represents an
appliance scheduling model in the EMS. Consider as problem#2 in the lower level
of the bi-level programming setup. In most of the cases, mixed integer linear pro-
gramming (MILP) is used to solve the problem#2 due to a binary nature involved
decision variables.

Fig. 6.9 Bi-level
optimization model. There
exist multi-objective versions
of the bi-level optimization
problems accommodating
multiple objectives at one or
both levels. The lower-level
model consists of problem#1
and problem#2
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A significant number of study consider the bi-level optimization model, for
instance, offering strategy of bulk storage units [69]; supply-side capacity exten-
sion problems [70, 71]; demand bidding of big customers [72, 73]; wind energy
firm integration without DR [74] and with DR [75, 76]; electricity trading model
considering flexible demand-side resources [77–79] and so forth.

Assuming a Karush–Kuhn–Tucker (KKT) conditions are necessary optimality
in the lower-level follower problem. Considering the KKK conditions, the bi-level
optimization model can be modified to make equivalent single-level mathematical
problem with equilibrium constraint (MPEC) as follows

Minimize F(x, y(x)) (6.37)

subject to: Gi (x, y(x)) ≤ 0 (6.38)

Hj (x, y(x)) � 0 (6.39)

∇y f (x, y) +
m∑

i�1

μi∇ygi (x, y) +
p∑

j�1

λ j∇yh j (x, y) � 0 (6.40)

gi (x, y) ≤ 0 ∀i � 1, 2, . . . ,m (6.41)

h j (x, y) � 0 ∀ j � 1, 2, . . . , p (6.42)

μi ≥ 0 ∀i � 1, 2, . . . ,m (6.43)

μi gi (x, y) � 0 ∀i � 1, 2, . . . ,m. (6.44)

where λ and μ, respectively, denote the dual variables related to constraints g(x,
y)≤0 and h(x, y)�0, the lower-level problem (6.33)–(6.36).

The benefit of above single-level devising is the replacement of the lower-level
problemwith the set KKT constraints in (6.37)–(6.44), which results in a single-level
optimization problem that fits the general formulation (6.49)–(6.51). However, note
that solving a single-level program is far from trivial. This is because the comple-
mentarity KKT conditions in (6.44) are non-convex and nonlinear.

Differentmethods to solveMPEChave been suggested, and the one in [3] iswidely
acceptable because of its simplicity. A complementarity condition (6.44) of the form
0≤λ⊥ g(x, y)≥0 can be substituted by the following set of linear constraints:

λi ≥ 0; gi (x, y) ≥ 0 ∀i � 1, 2, . . . ,m (6.45)

λi ≤ (1 − ui )M2i ∀i � 1, 2, . . . ,m. (6.46)

gi (x, y) ≤ ui M1i ∀i � 1, 2, . . . ,m. (6.47)

whereMi ∈ R++ is sufficiently large positive constant and ui {0, 1} is binary variables.
Despite linearization of those constraints, added computational efforts may be

required because of the existence of nonlinear cost function. However, the nonlinear
terms can be approximated by a piecewise linear function. The usual practice is to
submit generation blocks, q>0, ∀q∈{1, 2, …, Q}; supplier wants to sell at the price
and constitutes segmented linear price-quota curves given by
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cn
(
Pgnq

) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

an1
(
Pgn − Pgn1

)
+ bn1, Pgn ≤ Pgn1

anq−1
(
Pgn − Pgnq−1

)
+ bnq−1, Pgn1 < Pgn ≤ Pgnq−1

...
...

ank
(
Pgn − Pgnq

)
+ bnq , Pgnq < PgnQ .

(6.48)

Each of the segments is discreetly linear and characterized by a slope and bnq
intercept. The coefficients are taken from [71]. The number of blocks and its size
depends on individual capacities of the GenCos. In this paper, the block quantity
index q is replaced by k to quantify changing generation profile at kth time step.

6.12 Some Key Implementation Issues

DSMshould be coordinatedwith the end-users temporal order of activities and sched-
ules. Primarily, the residential end-users have some crucial factors should be duly
considered. Deferring household activities and appliances rescheduling sometime
affect dependent activities. Thereby, we should deal with practicality of adopting
such a beneficial technology in smart grid carefully to improve its functionality [80].
To participate in DR programs, users must reveal their willingness, preference, in-
home activity data and so forth which may breach privacy [81]. Some of the critical
implementation issues are as follows:

6.12.1 Privacy Preservation

Privacy and contextual integrity are one of the vital human rights. The DLC-based
DR activities and behaviour by mining time-based consumption data in a smart grid
at sub-hourly intervals may jeopardize customer privacy. The DR programs provide
detailed interval electricity consumption data in real-time nature. Such data having
occupants’ activities have interest in access and may be reused or misused by the
third party; hence, require some privacy protection measures.

6.12.2 End-User’s Engagement

Usually, end-users have very little practical knowledge about their flexibility and
usually unaware of their usage patterns and behaviour. Hence, participants in DR
programs usually show lower response than expected levels. Aggregators require
analysing the flexibility, passing financial benefits of dynamic electricity pricing and
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advertise properly to engage more end-users actively. The aggregator categorizes
the end-users into different groups based on interval energy consumption and usage
characteristics, such as the type of appliances used and its DR flexibility. The level
of involvement of DER and ES is also a concern which is needed to be taken into
consideration.

6.12.3 DR Rebounding

DR rebounding in DSM is a secondary peak demand scenario after mitigating the
primary one, which usually appears due to quick activation of those loads which
were inactive or partially active in DR events. Figure 6.10 illustrates the phenomena.
According to [82], the DR rebounding could be improved by coordinating the onsite
DER, rational energy pricing model and last but not least by behavioural change of
energy consumption.

6.13 Summary and Conclusions

This chapter presented different aspects of the DSM for the smart electricity grids.
Techno-economic management of the DR in emerging power system is crucially
important and has a lot of financial benefits. Varieties of DR resources have been
categorized, DR programs practised are discussed, and how automated DR system
work is explained. The DR implication model comprises smart meters, and energy
management scheduler is outlined. The key DR enabler such as the AMI and the

Fig. 6.10 Illustration of DR rebounding, appear due to quick activation of those loads which were
inactive or partially active in DR events [83], Reprinted by permission from IEEE Transactions on
Industrial Informatics, “DemandSideManagement:DemandResponse, Intelligent EnergySystems,
and Smart Loads”, Peter Palensky et al. © 2014
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EMS rapidly rollout in different power systems over the world is discussed. The
emerging transactive approach of electricity market models both for the wholesale
and retail levels are briefly outlined. The importance of the DRXmarket mechanism
and the role of EMO, aggregator and end-user are explained. A few reported DR
mechanism models and applications are compared.

The DR programs are divided into three classes: (1) indirect load control (2) direct
load control, and (3) transactive approach, respectively. For the indirect load control,
different price-based tariffs have been reviewed. In a majority of the case, dynamic
RTP-based programs in the direct load control are found popular. The transactive
approach of electricity market models, both for the wholesale and retail levels, are
discussed. With this approach, DR trading decisions are made based on a monetary
value while respect power system and individual resources constraint. Details on
bi-level optimization models and the solution methods are discussed. Also, some
examples are provided to illustrate the realistic DR market mechanism. The DR
optimization objectives with strength and weakness are reported. Some implication
issue like DR rebounding, privacy breaching may raise in DR are outlined at the end.

6.14 Further Reading

Readers interested in a wide-ranging synopsis of the strategic DR initiatives under-
taken in North America and European electricity markets are referred to [9, 84, 85].
Further on the DSM mechanism and pricing policy can be communicated with [36].
An equivalent thermal model of HVAC for a commercial facility is presented in [86].
Supplementary reading on DR model for industrial customers is referred to [20, 23,
26, 27]. A practical transactive DR model can be referred to [87]. The optimization
models presented in Sect. 6.11.5 are based on techniques of bi-level programming
and complementarity modelling [56, 67, 88, 89]. The reader interested in applica-
tions of the complimentary modelling to electricity markets is advised to read [90].
The Appendix is referred to revisit basic of optimization formulation and solution
approach, while several textbooks [91, 92] discussing the topic at a tertiary stage.
For a comprehensive overviewonCVaR-based stochastic optimization, the interested
readers are referred to [47].

Appendix: Optimization Methods Revisit

Optimization is a method to obtain the optimal variables that suggest minimum cost
or maximum welfare of an objective function. The variables in the optimization
problem are subject to a set of constraints [40]. The variables may be scheduling
consequences of the physical process. Constraints can be categorized as a hard
or soft constraint. The first constraint is the condition that must be satisfied. The
latter has some degree of flexibility to select the variable. It can penalize objective
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if the conditions set of variables are not satisfied [93]. Further, the optimization
can be characterized based on polynomial nature of the objective function. If at
least one of the objective function is nonlinear, the optimization is said to be a
nonlinear optimization, otherwise linear one. If some of the variables are integers,
the optimization is said to be a mixed integer optimization. The integer variables
take care of yes/no decision on the concerned variable. Additionally, the variables in
a problem may be deterministic or the stochastic. Accordingly, the optimization can
be categorized into deterministic and stochastic optimization problems. A constraint
optimization model involving the equality and inequality constraints is provided in
the next section followed by a step by step solution process.

Formulation of an Optimization Problem

An optimization problem in general form is given by [88].

Minimize f (x) (6.49)

Subject to : gi (x) ≤ 0, i � 1, 2, . . . , m (6.50)

h j (x) � 0, i � 1, 2, . . . , p (6.51)

where x ∈ R
n is a vector including n optimization variable. The objective function

f (x) : Rn → R is differentiable convex functions. The f (x) maps the variable x
close to a real value depicting the desirability of a solution to the decision-maker.
Usually, the f (x) represents a cost function in minimization problem and a payoff
in maximization problem. The gi (x) : Rn → R and h j (x) : Rn → R, respectively,
represent inequality and equality constraint of the problem. There are suchm number
of equality and p number of inequality constraints exist in the optimization. The
simplest form of an optimization model is a linear programming problem. This is
obtained when the objective functions (9.49) and the constraints (6.50) and (6.51)
are linear. A linear programming problem can be reformulated as

Minimize cTx (6.52)

Subject to : AI x ≤ bI (6.53)

AEx � bE (6.54)

xl ≤ x ≤ xu (6.55)

It is worthy to note that functions f (·), g(·) and h(·) are affine expressions involving
b vectors and matrices A. In (6.52), the term c ∈ R

n is the cost coefficient of the
optimization variable, x. The inequality matrix, AI ∈ R

p×n , and bI ∈ R
m define the

m linear inequality constraints (6.53). The equality matrix, AE ∈ R
p×n , and bE ∈ R

p

define the p equality constraints (6.54). The constraint (6.55) denotes the variable
bonds within lower xl and upper xl limits. The linear programming deals with a
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wide variety of practical problems including economic dispatch, unit commitments,
supply and demand-side bidding and so forth.

Duality in Linear Programming

Defining a new set ofm variables μ ∈ R
m for inequality (6.53) and set of p variables

λ ∈ R
p for equality (6.54), one for each constraint, there is a corresponding dual

problem associated with the primal problem (6.56)–(6.58) discussed earlier given
by:

Maximize bTI μ + bTEλ (6.56)

subject to : AT
I μ + AT

I μ � c (6.57)

λ ≥ 0. (6.58)

The dual problem in (6.56)–(6.58) is a transposed form of the primal problem.
Note that, the primal and dual are through deals objective function minimization.
However, it holds for objective function maximization, by minimizing its negative.

Lagrangian Function

Assumingm�p=0, the problem is said to be unconstrained and the optimal solution
of f (x) simply occurs at a point x∗ if ∇ f (x∗) � 0, i.e. at those x∗, where the first
derivative of the objective vanishes. This is called first-order necessary conditions
[93]. In a constrained optimization, the decision variable x ∈ R

n is said to be feasible,
if it satisfies the bound constraints (6.53), (6.54) and (6.55). Additionally, amid the set
of possible variables, the one produces the minimum value of the function (6.52) is
said to be optimal. In this case, first-order necessary conditions for optimality written
by adding weighted sum of the constraints to the objective give the Lagrangian in
the following form [93, 88].

L(x, α, β) � f (x) +
m∑

i�1

μi gi (x) +
p∑

j�1

λ j h j (x) (6.59)

The weighting elements of μ ∈ R
m and λ ∈ R

p are collectively named as dual
variables of Lagrangian function.
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Karush–Kuhn–Tucker (KKT) Conditions

Assuming some regularity conditions for problem (6.52)–(6.55), if the optimal x∗ �
(x∗

1 , x
∗
2 , . . . , x

∗
n ) minimize objective f (x) in (6.52), subject to the constraints (6.53)

and (6.54) then there exist some dual optimal μ∗ � (μ1, μ2, . . . , μm) ≥ 0 and
λ∗ � (

λ∗
1, λ∗

2, . . . , λ∗
p

) ≥ 0 such that

∇ f (x∗) +
m∑

i�1

μi∇gi (x) +
p∑

j�1

λ j∇h j (x) � 0 (6.60)

gi (x
∗) ≤ 0 ∀i � 1, 2, . . . , m (6.61)

h j (x
∗) � 0 ∀ j � 1, 2, . . . , p (6.62)

μi ≥ 0 ∀i � 1, 2, . . . , m (6.63)

μi gi (x
∗) � 0 ∀i � 1, 2, . . . , m (6.64)

The first set of KKT in (6.60) is known as stationarity condition found by differen-
tiating the Lagrangian (6.59) concerning the relevant variables and then equating to
zero. Constraints (6.61) and (6.62) enforce feasibility of the primal variables, while
the constraint in (6.63) is feasibility of the Lagrangian multipliers. The constraint in
(6.64) enforces complementary slackness which is also known as KKT complemen-
tarity. Complementary slackness can be rewritten in many equivalent ways. One way
is the pair of conditions given by

μ∗
i > 0 ⇒ gi (x

∗) � 0, ∀i � 1, 2, . . . , m (6.65)

gi (x
∗) < 0 ⇒ μ∗

i � 0, ∀i � 1, 2, . . . , m (6.66)

Another way, the notion in (6.65), (6.66) can be compacted in the following form
given by (6.67)

0 ≤ μ∗
i ⊥gi (x

∗) ≥ 0, ∀i � 1, 2, . . . , m (6.67)

The orthogonality sign ⊥ in (6.67) of the form 0 ≤ μ∗
i ⊥gi (x∗) ≥ 0 indicates,

at most one between the dual, μ ∈ R
m or the constraint, g associated with the dual

μ ∈ R
m can take a strictly nonzero value [93].

Economic Interpretation of the Dual Variables

It is worthy to mention that the dual variables μ ∈ R
m and λ ∈ R

p have key
to an economic explanation. In economics, it refers to a marginal worth of any
resources [88]. These are also known as shadowprice. Indeed, shadowprice penalizes
objective functionmarginally for unit variation in the variable value. In minimization
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problem, dual variable non-negative μ ≥0; while for a maximization problem, it is
negative,μ ≥0. In fact, a marginal change of any component of the inequality vector
bI ∈ R

m would yield a narrower solution space, thereby achieve an inferior value of
the objective function.
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