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Chapter 7
Microglia in the CNS and Neuropathic 
Pain

Makoto Tsuda

Abstract  Neuropathic pain occurring after peripheral nerve injury is not simply a 
consequence of temporal continuity of acute nociceptive signals, but rather of mal-
adaptive nervous system function. Over the past decades, a body of literature has 
provided evidence for the necessity and sufficiency of microglia, the tissue-resident 
macrophages of the central nervous system, for nerve injury-induced alterations in 
synaptic function. Recent studies have also revealed active roles for microglia in 
brain regions important for emotion and memory. In this chapter, I highlight recent 
advances in our understanding of the mechanisms that underlie the role of spinal 
and brain microglia in neuropathic pain, with a focus on how microglia are activated 
and alter synaptic function. I also discuss the therapeutic potential of microglia from 
recent advances in the development of new drugs targeting microglia, which may 
facilitate translation from the bench to bedside.
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7.1  �Introduction

Injury to the nervous system as a consequence of cancer, diabetes, infection, auto-
immune disease, chemotherapy, and trauma often causes debilitating chronic pain 
syndrome (neuropathic pain). Its symptoms include spontaneous pain, hyperalgesia 
(increased pain by a stimulus that normally provokes pain), and allodynia (pain due 
to a stimulus that does not normally provoke pain). Neuropathic pain does not 
resolve even after the overt tissue damage has already healed and can persist for 
long periods of time, indicating that the pain is not simply a temporal continuum of 
acute nociceptive pain, but rather due to pathologically altered nervous system func-
tion [5, 58, 79, 105]. Such pathological alterations have been extensively studied 

M. Tsuda (*) 
Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu 
University, Fukuoka, Japan
e-mail: tsuda@phar.kyushu-u.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1756-9_7&domain=pdf
https://doi.org/10.1007/978-981-13-1756-9_7
mailto:tsuda@phar.kyushu-u.ac.jp


78

using rodent models of neuropathic pain, for example, models developed by periph-
eral nerve injury (PNI). Accumulating evidence indicates that PNI causes a variety 
of plastic modifications in neuronal synapses, connections, and networks at the 
molecular and cellular levels. These modifications shift the balance between synap-
tic excitation and inhibition in lamina I projection neurons toward excitation, which 
may account for development and maintenance of pain hypersensitivity [5, 58, 79, 
105]. These alterations were long thought to be a consequence simply of changes in 
neurons, but mounting evidence indicates the important role of non-neuronal cells 
of the nervous system, including monocytes, macrophages, T cells, and glial cells 
[43, 45]. Microglial cells, which are known as the tissue-resident macrophages of 
the central nervous system (CNS) and constitute 5–10% of total cells in the adult 
CNS, have received much attention. In the late 1970s, it was found that non-neuronal 
cells (which were later identified as microglia) are increased in the spinal dorsal 
horn (SDH) after PNI [27, 28]. About 30 years later, a causal role of spinal microg-
lia in neuropathic pain was first reported [46, 97]. Currently, numerous microglia-
selective molecules (approximately 40) implicated in PNI-induced pain have been 
identified, providing compelling evidence that microglia are the key cell type for 
pathogenesis of neuropathic pain. In this chapter, we highlight recent advances in 
understanding of the role of CNS microglia in neuropathic pain.

7.2  �Microglia

Microglia were originally described by Pio del Rio-Hortega in 1919 [19] and pro-
posed to have a mesodermal origin [51]. In fate mapping studies enabling cell mark-
ing and gene regulation at the developmental stage, prenatal hematopoietic precursor 
cells were identified as the origin of microglia [29, 30, 52]. Microglia arise from yolk 
sac precursors genetically labelled as runt-related transcription factor 1 (Runx1)-
expressing cells. Erythromyeloid progenitors in the yolk sac develop into microglia 
progenitors via an immature and more mature stage. The progenitors then leave the 
yolk sac, migrate to the brain through blood vessels, appear in the neuroepithelium 
with an amoeboid morphology, and finally take on a ramified. The development of 
microglia is independent of transcription factors required for development of other 
myeloid cell populations [52, 83]. As microglia have a unique molecular signature 
compared with other myeloid and immune cells [7, 25, 31, 37], this indicates a dis-
tinct developmental program of microglia from other myeloid cell types. The microg-
lial development program is regulated by interleukin-34 (IL-34) signaling via CSF1R 
[29, 103]. Promoting terminal differentiation and acquiring adult microglia proper-
ties require TGF-β1 as a key factor [7]. In the healthy adult CNS, microglia remain 
throughout life and are maintained by self-renewal [88] with little contribution from 
bone marrow-derived circulating monocytes [2]. For maintaining microglia in adults, 
CSF1R signaling might have an ongoing role since pharmacological inhibition of 
CSF1R eliminates microglia in the adult brain [21]. In adults, microglia represent a 
morphologically unique type of cell, which, under normal conditions, has a small 
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soma bearing thin and branched processes. Two photon in vivo imaging studies have 
revealed that microglia processes are highly dynamic [17, 18, 73]. The processes of 
microglia rapidly move toward the site of injury [18, 34]. Furthermore, microglia 
directly appose synaptic regions (presynaptic terminals and dendritic spines) and, in 
response to neuronal activity, steer their processes toward active synapses, which 
facilitates contact with highly active neurons [102]. Now, microglia in the CNS are 
increasingly recognized as being crucial for sculpting the structure of the CNS, refin-
ing neuronal circuitry and network connectivity, and contributing to plasticity.

7.3  �Microgliosis After PNI

As seen in the initial reports in the late 1970s [27, 28], PNI increases the number of 
microglia in the SDH. Such microgliosis is considered to occur through two mecha-
nisms. First is proliferation of resident microglia because SDH microglia are immu-
nohistochemically labelled by proliferation markers [26, 42]. Second is infiltration 
of bone marrow-derived circulating monocytes into SDH, which differentiate into 
microglia-like cells [106]. However, the latter was only observed in bone marrow 
chimeric mice receiving a high dose of irradiation [87], a treatment that can produce 
toxic effects including disruption of the blood-brain/spinal cord barrier [59]. Recent 
studies demonstrated no contribution of circulating monocytes to the PNI-induced 
microgliosis in the SDH, using parabiosis mice (a model in which two mice are 
surgically joined and share circulating blood in order to generate a chimera without 
irradiation and transplantation) [87] and transgenic mice enabling distinct visualiza-
tion of resident microglia and circulating monocytes [32]. Therefore, local expan-
sion of resident microglia by proliferation is the primary cellular mechanism for 
SDH microgliosis after PNI [32, 87]. Nonetheless, it should be noted that monocyte 
infiltration might be dependent on the neuropathic pain model. For example, in 
experimental autoimmune encephalomyelitis (a model of multiple sclerosis, with 
chronic pain being a common symptom), massive monocyte infiltration is observed 
in the spinal cord with demyelinating lesions [1]. However, these monocytes do not 
permanently contribute to the resident microglia pool.

SDH microgliosis seems to be a crucial step in neuropathic pain because inter-
rupting this process suppresses PNI-induced pain hypersensitivity [32]. What trig-
gers microgliosis? There are currently many reports showing that gene knockout 
reduces PNI-induced microgliosis [43]. Among them, neuregulin-1 might be one 
candidate. This is expressed in dorsal root ganglion (DRG) neurons, and its receptor 
ErbB2 is activated in spinal microglia after PNI [8]. Inhibition of neuregulin-1/
ErbB2 signaling suppresses the PNI-induced microgliosis. Another potential candi-
date factor recently identified is colony-stimulating factor 1 (CSF1). CSF1 is rap-
idly induced in injured DRG neurons [33, 77] presumably by IL-1β signaling from 
surrounding satellite glia [61]. By contrast, IL-34 expression was not changed in 
DRG neurons [77]. The PNI-induced microglial proliferation and mechanical 
hypersensitivity were reduced by conditional knockout of CSF1 in DRG neurons 
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[33] and intrathecal administration of a CSF1R inhibitor [77]. Conversely, intrathe-
cal CSF1 administration to normal mice induced proliferation and pain [33]. These 
findings suggest that CSF1 in injured DRG neurons activates CSF1R in microglia 
and induces proliferation. DNAX-activation protein 12 (DAP12) is a putative mol-
ecule downstream of CSF1R signaling, but the PNI-induced microglial prolifera-
tion might underlie a DAP12-independent mechanism because DAP12-deficient 
mice had no effect on the proliferation [33]. However, DAP12-deficient mice do not 
show PNI-induced pain [33, 55] or increased microglial number [55]. Thus, it is 
conceivable that DAP12-dependent signaling might presumably be involved in 
microglial migration from surrounding areas or changes in survival [55]. In addi-
tion, it should be noted that the upregulation of CSF1 and CSF1R persists until a 
few weeks after PNI [33, 77], when microglial proliferation has already terminated 
[32], suggesting a distinct role for CSF1-CSF1R signaling at this later phase, such 
as the control of the expression of microglial genes.

7.4  �Molecularly Activated Microglia After PNI

SDH microglia are in an activated state following PNI through a change in their 
gene expression. For this process, one of the key regulators is interferon regulatory 
factor 8 (IRF8), a member of the IRF family [85]. Within the SDH, IRF8 is upregu-
lated exclusively in microglia after PNI [66]. IRF8 regulates microglial genes 
including cell surface responses such as purinergic P2 receptors (P2X4R and 
P2Y12R), toll-like receptor 2 (TLR2), and C-X3-C motif chemokine receptor 1 
(CX3CR1) and diffusible factors (IL-1β, cathepsin S (CatS), and brain-derived neu-
rotrophic factor (BDNF)). The mechanism underlying IRF8 expression remains to 
be determined, but microglial IRF8 in the SDH has been shown to be upregulated 
by intrathecal administration of CSF1 or an activator of triggering receptor expressed 
on myeloid cells 2 (Trem2) [33, 55]. IRF8 also directly regulates transcription of 
IRF1 and IRF5 [63, 64]. It was found that IRF5 binds to the P2X4R promoter and 
induces its expression [64]. Loss of IRF5 suppresses the PNI-induced spinal P2X4R 
upregulation and pain hypersensitivity. Thus, the IRF8–IRF5 transcription cascade 
would be a core mechanism for producing P2X4R-expressing microglia after PNI 
and neuropathic pain. Microglial P2X4R upregulation also involves factors released 
from damaged DRG neurons such as CSF1 [33] and cysteine-cysteine chemokine 
ligand 21 (CCL21) [3] and by other extra- and intracellular factors [95, 96, 98, 99]. 
Pharmacological blockade and genetic knockout of P2X4R suppress the PNI-
induced mechanical hypersensitivity [94, 97, 100]. Intrathecal administration of 
P2X4R-stimulated cultured microglia to normal rats induces allodynia, indicating 
that P2X4R-expressing microglia are not only necessary but sufficient to produce 
pain hypersensitivity [92, 97]. For activating P2X4Rs, extracellular ATP is required. 
ATP is known to be released from primary afferents [71], SDH neurons [47], and 
glia [6, 22, 41], but it was recently found that SDH neurons that express vesicular 
nucleotide transporter (VNUT [82], also known as SLC17A9; a secretory vesicle 
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protein responsible for storage and release of ATP) are a crucial source of the ATP 
that causes pain hypersensitivity [65]. Following stimulation of P2X4R, microglia 
release BDNF [16, 91]. BDNF activates tyrosine receptor kinase B (TrkB), in lam-
ina I neurons, and induces an altered transmembrane anion gradient by downregu-
lating KCC2, which caused changes in GABA- and glycine-evoked responses from 
inhibitory to excitatory and mechanical hypersensitivity [16] (Fig. 7.1). This change 
also potentiates their glutamatergic excitation via N-methyl-D-aspartate receptors 
(NMDAR) [38]. The crucial role of microglial BDNF was demonstrated by the find-
ing that microglia-selective BDNF deficiency reduces PNI-induced pain [84]. By 
contrast, the conditional knockout of BDNF in primary afferent neurons has no 
effect [107]. These studies identifying the microglial P2X4–BDNF–KCC2 pathway 
provide evidence for the causal role of microglia-to-SDH neuronal signaling in neu-
ropathic pain (Fig. 7.1).

Fig. 7.1  Role of P2X4R-expressing spinal microglia in neuropathic pain. After PNI, microglia in 
the SDH become activated. The activated microglia upregulate P2X4R expression. P2X4R-
stimulated microglia releases the signaling molecules BDNF. BDNF downregulates KCC2 in SDH 
pain transmission neurons, via TrkB, which causes an increase in intracellular Cl− and leads to a 
depolarizing shift in the anion reversal potential. Under these conditions, GABA or glycine 
released as a result of innocuous stimulation induces neuronal depolarization. TrkB signaling also 
potentiates glutamatergic excitation via glutamate receptors. The resulting hyperexcitability of 
pain transmission in neurons contributes to neuropathic pain

7  Microglia in the CNS and Neuropathic Pain



82

Another microglial signaling to SDH neurons for neuropathic pain involves 
inflammatory factors. In particular, IL-1β and tumor necrosis factor-α (TNFα) have 
been extensively studied [43]. Important microglial receptors for producing and 
releasing these proinflammatory cytokines might be P2X7R and TLRs [10, 53, 54, 
86]. In the SDH, P2X7R is required for ATP-induced IL-1β release from TLR4-
primed microglia [13]. PNI-induced IL-1β transcription in the spinal cord involves 
TLR2 [53] and TLR4 [86]. At a posttranscription level, the Nod-like receptor fam-
ily, pyrin domain containing-3 protein (NLRP3) inflammasomes activate pro-
caspase-1, which promotes pro-IL-1β processing and secretion of mature IL-1β 
[35]. P2X7R is one of the most potent activators of the NLRP3 inflammasome [20]. 
IL-1β has been shown to phosphorylate NMDARs [101] and to enhance excitatory 
synaptic transmission [11, 50, 80]. IL-1β also decreases GABA- and glycine-
mediated synaptic inhibition [50]. In addition, microglial IL-18, which can also be 
produced via NLRP3 inflammasomes, signals to astrocytes and contributes to neu-
ropathic pain [69]. SDH astrocytes also become activated after PNI and contribute 
to maintenance of pain hypersensitivity [56, 93, 110], suggesting a crucial role of 
microglia-astrocyte signaling in chronicity of neuropathic pain.

TNFα is also a potent neuromodulator contributing to neuropathic pain. 
Expression of this cytokine in the SDH is exclusively increased in microglia after 
PNI via p38 mitogen-activated protein kinase (p38MAPK) [48]. TNF receptors 
(TNFR) in the SDH are found in multiple cell types [48]. In SDH neurons, TNFα 
rapidly increases excitatory responses evoked by activation of NMDARs and 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in 
SDH neurons [50]. TNFα has recently been shown to contribute to a form of synap-
tic plasticity for pain amplification in the SDH [57]. TNFR expressed at presynaptic 
terminals of primary afferents modulates glutamate release [78]. Furthermore, 
microglia, astrocytes, and endothelial cells in the SDH also express TNFR [48]. 
Microglial TNFR activation increases expression of BDNF, which leads to an 
increase in dendritic structural remodeling and synaptic connectivity strength in 
lamina I SDH neurons [62]. TNFα acts on astrocytes and enhances expression of 
chemokines, which rapidly increase excitatory synaptic transmission [9, 24]. In 
endothelial cells, TNFR upregulates cyclooxygenease-2 (COX-2) and prostaglan-
din I2 synthase (PGIS) [48]. Pharmacological inhibition of COX-2 and prostaglan-
din I2 (IP) receptors reduces pain hypersensitivity. Since IP receptors are localized 
in SDH neurons [48] and primary afferents [76], microglial TNFα can activate neu-
rovascular communication and produce pain [48]. Collectively, TNFα modulates 
synaptic structure and strength in SDH neurons by multiple mechanisms involving 
direct and indirect effects.

CatS is a lysosomal cysteine protease that is also a crucial microglial molecule 
for a communication to SDH neurons and for neuropathic pain [14]. CatS expres-
sion is upregulated in microglia in the SDH after PNI. Microglial CatS is released 
in response to P2X7R activation via p38MAPK and then cleaves membrane-bound 
fractalkine expressed on SDH neurons and astrocytes [12]. The cleaved fractalkine 
is considered to act on microglia again because the fractalkine receptor CX3CR1 is 
found exclusively in microglia [32, 109]. Activation of the P2X7R–p38MAPK–
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CatS–fractalkine–CX3CR1 pathway leads to IL-1β secretion from microglia [11], 
which in turn modulates synaptic excitation and inhibition, as described above.

7.5  �Brain Microglia and Neuropathic Pain

Recent studies have shown that PNI also activates microglia in several brain regions. 
These include the thalamus, amygdala, ventral tegmental area (VTA), nucleus 
accumbens (NAc), ACC, bed nucleus of stria terminalis, hippocampus, and periaq-
ueductal gray [62, 68, 72, 89, 90]. Although the mechanism underlying microglia 
activation in the brain after PNI remains unknown, the role of brain microglia in 
neuropathic pain has recently been shown. It was found that inhibition of VTA 
microglia activation suppresses the PNI-induced reduction of dopamine release in 
the NAc and altered reward behavior [89], suggesting that activated microglia con-
tribute to impairment of the VTA–NAc mesolimbic dopamine system after PNI. In 
the hippocampal CA1 region, dendritic structural complexity (including spine den-
sity), functional synaptic connectivity and BDNF levels were all reduced in PNI 
mice [62]. Microglial ablation and TNFR deficiency also prevented pain hypersen-
sitivity and memory deficits after PNI. These findings provide evidence indicating 
that PNI activates brain microglia, which contributes to structural and functional 
synaptic alterations and pain hypersensitivity, as well as reward and memory defi-
cits of PNI. It was also found that PNI also causes infiltration of circulating mono-
cytes selectively in the central nucleus of the amygdala about 1 month later [81]. 
The infiltrated cells expressed IL-1β, and blocking the IL-1β signal reversed anxiety 
but not mechanical hypersensitivity. Because information about the aversive nature 
of the pain experience is thought to be processed in the central nucleus of the amyg-
dala [4], ongoing signaling derived from infiltrated monocytes might also be crucial 
for the emotional component of neuropathic pain.

7.6  �Therapeutic Implications

The mounting findings from studies using preclinical models described above pro-
vide much interest in microglia as a promising target for treating neuropathic pain. 
There are so far no clinically approved drugs that selectively target microglial mol-
ecules, but drug discovery efforts are currently in progress. A recent study identified 
NP-1815-PX as a novel P2X4R antagonist with a potent inhibition to rodent and 
human P2X4Rs [67]. Intrathecal administration of this compound to pathological 
pain models produces an anti-allodynic effect. Unfortunately, NP-1815-PX had 
poor CNS penetration, but the pharmaceutical company Nippon Chemiphar suc-
cessfully developed a more potent and specific P2X4R antagonist with CNS-
penetrating properties (NC-2600), which has been tested in phase I trials in Japan. 
Furthermore, the first-generation bisphosphonate clodronate was identified as a 
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potent and selective allosteric inhibitor for VNUT. Clodronate has shown to impair 
vesicular ATP release from neurons and to attenuate neuropathic pain [49]. Thus, 
these compounds can inhibit the activation of the P2X4R–BDNF–TrkB–KCC2 sig-
naling pathway. P2X7R antagonists [44] and CatS inhibitor [36] could target the 
P2X7–CatS–fractalkine–CX3CR1–p38 MAPK–IL-1β pathway.

An alternative therapeutic potential of microglia for treating pain might be to 
increase the usefulness of opioids. Recent studies have revealed a crucial role of 
spinal and brain microglia in these side effects of opioids. Chronic morphine treat-
ment activates microglia in the SDH and some brain regions [40]. Analgesic toler-
ance to opioids is suppressed by depleting spinal microglia [60] and by inhibiting 
microglial molecules [39, 60, 104, 108]. However, spinal microglia have little role 
in already established tolerance [23], suggesting that spinal microglia contribute to 
the development, but not maintenance, of morphine analgesic tolerance. Furthermore, 
morphine is known to produce a paradoxical increase in pain sensitivity. This side 
effect seems to be dependent on microglial P2X4R signaling in the SDH [23]. 
Moreover, it was also recently found that spinal microglia depletion also attenuates 
the behavioral sequela of withdrawal from chronic morphine [6]. Microglia acti-
vated by chronic morphine treatment release ATP via pannexin 1 that has interacted 
with P2X7R, and inhibition of microglial ATP release attenuates withdrawal behav-
ior and long-term synaptic facilitation [6]. These findings suggest that targeting 
spinal microglia might selectively prevent the undesirable side effects caused by 
chronic opioid use without reducing their pain-relieving effect. However, whether 
opioids act directly on μ-opioid receptors (MOR) expressed by microglia remains 
controversial. Some studies showed that opioids upregulate microglial molecules 
(like P2X4R, P2X7R, and pannexin 1) in cultured microglial cells in  vitro via 
microglial MOR, but a recent study reported that MOR is undetectable in spinal 
microglia isolated from adult mice. The latter study also showed that a conditional 
loss of MOR in primary afferent nociceptors eliminates morphine-induced toler-
ance and hyperalgesia without suppressing activation of spinal microglia [15]. 
Further investigation is needed to clarify this issue.

Several studies have recently established methods for generating human microg-
lia through the differentiation of induced pluripotent stem (iPS) cells to erythromy-
eloid progenitor-like cells [70], which may provide a major step forward to 
understanding an alteration in microglial functions in neuropathic pain patients. If 
circulating monocytes recruited to the brain also contribute to neuropathic pain 
[81], a technique for developing induced microglia-like (iMG) cells from human 
blood monocytes [75] would be useful. It was recently found that iMG cells of 
fibromyalgia patients display a TNFα-releasing inflammatory phenotype, and inter-
estingly the ability of iMG cells to release this cytokine correlates with the pain 
severity of patients [74]. Thus, it is possible that iMG cells may be used to study the 
mechanisms of neuropathic pain and also as biomarkers for diagnosis and therapeu-
tics. However, it should be noted that there are dramatic differences between cul-
tured microglia and microglia in vivo [7], and thus further studies are needed to 
examine whether human microglia derived from iPS cells and human iMG derived 
from monocytes are indeed useful for translation.
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7.7  �Conclusions

An accumulating body of literature has not only provided compelling evidence for 
the necessity and sufficiency of microglia in neuropathic pain but also greatly 
advanced our understanding of the molecular and cellular mechanisms of this con-
tribution. The recent identification of microglia-selective genes [7, 25, 31, 37] will 
accelerate investigations. Furthermore, recent work has revealed a crucial role for 
brain microglia in sensory and/or emotional aspects of neuropathic pain, although 
the underlying mechanism(s) remain unknown. Because pharmacological, molecu-
lar, and genetic manipulations of the function or expression of microglial molecules 
substantially influence chronic pain behaviors and have no effect on acute physio-
logical pain under normal conditions, glial cells and their expressing molecules 
might be good targets for treating chronic pain. Indeed, potent and selective antago-
nists and/or inhibitors targeting microglial molecules have been developed and 
exhibit therapeutic effects on neuropathic pain hypersensitivity in preclinical mod-
els. Structure-based drug discovery together with technological advances in estab-
lishing human microglia from iPS cells and iMG from circulating monocytes from 
patients will help us to establish a strategy to effectively suppress activated microg-
lia and to diagnose neuropathic pain.
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