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Chapter 3
Involvement of TRPV1-ANO1 Interactions 
in Pain-Enhancing Mechanisms

Y. Takayama and Makoto Tominaga

Abstract Primary sensory neurons detect potentially dangerous environmental 
situations via many “sensor” proteins located on the plasma membrane. Although 
receptor-type cation channels are thought to be the major sensors in sensory neu-
rons, anion channels are also important players in the peripheral nervous system. 
Recently, we showed that transient receptor potential vanilloid 1 (TRPV1) interacts 
with anoctamin 1 (ANO1, also called TMEM16A) in primary sensory neurons and 
that this interaction enhanced TRPV1-mediated pain sensation. In that study, we 
induced ANO1 currents by application of capsaicin to small DRG neurons and 
showed that ANO1-dependent depolarization following TRPV1 activation could 
evoke more action potentials. Furthermore, capsaicin-evoked pain-related behaviors 
in mice were strongly inhibited by a selective ANO1 blocker. Together these find-
ings indicate that selective ANO1 inhibition can reduce pain sensation. We also 
investigated non-specific inhibitory effects on ion channel activities to control ion 
dynamics via the TRPV1-ANO1 complex. We found that 4-isopropylcyclohexanol 
(4-iPr-CyH-OH) had an analgesic effect on burning pain sensations through its inhi-
bition of TRPV1 and ANO1 together. Additionally, 4-iPr-CyH-OH did not have 
clear agonistic effects on TRPV1, TRPA1, and ANO1 activity individually. These 
results indicate that 4-iPr-CyH-OH could function globally to mediate TRP-ANO1 
complex functions to reduce skin hypersensitivity and could form the basis for 
novel analgesic agents.
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3.1  Introduction

Transient receptor potential (TRP) channels are involved in a diverse range of phys-
iological functions, including pain sensation. TRP channels expressed in primary 
sensory neurons can be activated by several different physical and chemical stimuli, 
including temperature changes and irritants [34]. However, the output phenotypes 
produced by these stimuli are not solely dependent on TRP channel activities. As is 
well known, almost all TRP channels have high calcium permeability [9]. This cal-
cium influx could affect other calcium-dependent proteins located within a microm-
eter range of the channel pore [22]. Anoctamin (ANO) is one of the calcium-dependent 
proteins [1, 26, 37]. We recently showed that the calcium-activated chloride channel 
ANO1 (also known as TMEM16A) can be strongly activated by calcium influx 
through TRPV1 activation and that TRPV1-ANO1 interaction is involved in pain 
enhancement [30]. This chapter reviews the recent findings concerning TRP interac-
tions in sensory systems and potential strategies for pharmacological control of the 
ion dynamics.

3.2  TRPV1: ANO1 Interaction

Both TRPV1 and ANO1 are expressed in primary sensory neurons and are involved 
in acute pain sensation [30]. TRPV1 is activated by various natural ligands, includ-
ing capsaicin, resiniferatoxin, bivalent tarantula toxin, acid, and noxious heat [13]. 
Rat TRPV1 is phosphorylated at Ser502 and Ser800 by protein kinase C epsilon 
(PKCε) activated in response to signaling by G protein-coupled receptors (GPCR), 
including the bradykinin receptor and P2Y receptor [32, 38]. This PKCε phosphor-
ylation is mediated by A-kinase anchoring proteins [38]. Because phosphorylation 
reduces the threshold for TRPV1 activation, phosphorylated TRPV1 can be acti-
vated at temperatures lower than core body temperature [32]. This characteristic is 
thought to be involved in molecular mechanisms that cause inflammatory pain. 
Therefore, TRPV1 is a primary target for pain therapy. However, the chloride chan-
nel ANO1 is also thought to play a major role in generating pain signals in primary 
sensory neurons due to its heat sensitivity and immediate activation following 
GPCR activation [3, 18]. ANO1 directly interacts with the IP3 receptor on the endo-
plasmic reticulum (ER) membrane [11]. Interestingly, TRPV1 and ANO1 are also 
co-expressed in small dorsal root ganglia (DRG) neurons [2]. We previously dem-
onstrated an interaction between TRPV4 and ANO1  in choroid plexus epithelial 
cells [29]. Similar to TRPV1, TRPV4 has high calcium permeability 
(Na+:Ca2+ = 1:10). Therefore, calcium entering the cell rapidly induces ANO1 acti-
vation followed by secretion of fluids such as cerebrospinal fluid, saliva, and tears 
[6, 29]. We thus investigated whether TRPV1-ANO1 interaction occurs in DRG 
neurons and the physiological relevance of this interaction.
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Typically, we began by conducting an electrophysiological analysis using whole- 
cell patch-clamp recording in HEK293T cells expressing TRP channels and ANO1. 
The main composition of the bath and pipette solutions in these assays is N-methyl- 
D-glutamine chloride (NMDG-Cl), and the free calcium in the pipette solution was 
maintained at 100  nM using 5  mM O,O′-Bis (2-aminophenyl)ethyleneglycol- 
N,N,N′,N′-tetraacetic acid (BAPTA). To study TRPV1-ANO1 interactions, we acti-
vated TRPV1 by applying 300  nM capsaicin, which is approximately the half 
effective concentration, although in DRG neurons the concentration is 1 μM [15]. 
Under these conditions, large chloride currents that could induce cell shrinkage at 
−60 mV holding potential were observed in cells expressing TRPV1 and ANO1, but 
not cells expressing TRPV1 or ANO1 alone. Moreover, these currents were abol-
ished in a calcium-free bath solution and a reversal potential shift occurred in 
NMDG-aspartate bath solution. These results clearly suggest that calcium influx 
through TRPV1 activation strongly induces ANO1 activation. Furthermore, immu-
noprecipitation results indicated that TRPV1 and ANO1 directly interact. Thus, 
TRPV1 directly and functionally interacts with ANO1 although ANO1 alone could 
be activated by global calcium increases depending on ER calcium stores and 
voltage- gated calcium channels on plasma membrane [12].

3.3  Pain-Enhancing Mechanisms in DRG Neurons

The physiological activity of ANO1 is dependent on concentration differences in 
extracellular and intracellular chloride. Interestingly, in many DRG neurons, the 
intracellular chloride concentration is reportedly higher than in other neurons, such 
as those in the central nervous system [20]. The equivalent potential in DRG neu-
rons containing high chloride can reach −20 mV, and the resting potential is approx-
imately −60 mV. Therefore, ANO1 activation should induce depolarization due to 
chloride efflux and neuronal excitations. To examine this possibility, we performed 
the same experiments as those for HEK293T cells using isolated small DRG neu-
rons. In whole-cell patch-clamp recordings, capsaicin-induced currents decreased 
by half following application of the selective ANO1 inhibitor T16Ainh-A01 with a 
physiological ion concentration in the bath solution (NaCl base solution containing 
2 mM CaCl2). The capsaicin-induced current is composed of cations and chloride 
movements, even though capsaicin-mediated neuronal excitation in DRG neurons 
was thought to depend only on TRPV1 function. Moreover, action potentials evoked 
by capsaicin applications were almost completely inhibited by T16Ainh-A01. 
Together, these results indicate that a TRPV1 and ANO1 interaction should also 
occur in DRG neurons in the presence of high intracellular chloride 
concentrations.

However, the efficacy of this interaction remained unclear because some DRG 
neurons have low concentrations of intracellular chloride. In these neurons, ANO1 
could induce hyperpolarization with TRPV1 activation. To clarify whether ANO1 
activation following TRPV1 activation is involved in pain generation but not pain 
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reduction, we analyzed the effect of T16Ainh-A01 on capsaicin-induced pain- 
related behaviors in mice. We found that pain-related behaviors were significantly 
ameliorated by concomitant administration of T16Ainh-A01. Thus, the TRPV1 and 
ANO1 interaction appears to be involved in pain enhancement, and TRPV1 and 
ANO1 behave as irritant detector and signal amplifier, respectively, although ANO1 
could act as a suppressor in some DRG neurons (Fig. 3.1).

3.4  Analgesic Agents to Target TRPV1-ANO1 Interactions

The specificity of channel antagonists might not always be an important property in 
pain reduction because selective drugs often have strong side effects that discourage 
their use in vivo. Moreover, complete reduction of pain is not always desirable in 
clinical applications because pain pathways can have a protective effect in certain 
situations, such as avoiding bone destruction in Candida infection [21]. An alterna-
tive strategy would be to identify an agent that can inhibit several ion channels 
involved in pain sensation in peripheral regions. For instance, TRPV4 is also thought 
to be involved in pain sensation, and the weak-specific antagonist, compound 16-8, 
is more effective at reducing pain than the TRPV4-specific antagonist GSK205 
[14]. While investigating the interaction between TRPM8 and ANO1, we fortu-
itously found that menthol inhibits ANO1 [31]. Although in that study we were 
unable to characterize the physiological role of the TRPM8-ANO1 interaction, the 
menthol-related findings were nonetheless interesting because menthol can also 

Fig. 3.1 Schematic model of interactions between TRPV1 and ANO1. TRPV1 interacts with 
ANO1 on both free nerve endings and synapses of DRG neurons. TRPV1 is initially activated and 
ANO1 is also immediately activated in calcium nano-domains. The ANO1 activation enhances 
action potential generation (ΔΨ). TRPV1 also interacts with ANO1 on the central side, and the 
depolarization activates voltage-gated calcium channels. These two pathways are involved in neu-
rotransmitter release from presynaptic regions in secondary neurons of the spinal cord
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inhibit the TRPV1 activation [28]. However, the ability of menthol to inhibit both 
ANO1 and TRPV1 is puzzling given the differences in the structures of these chan-
nels. TRPV1 and ANO1 have six and ten transmembrane regions, respectively, and 
TRPV1 is a tetramer, whereas ANO1 is a dimer [5, 17, 23]. We first assessed the 
effects of other menthol analogues, including menthone, 1,4-cineole, and 1,8- cineole, 
on ANO1 currents. In whole-cell patch-clamp recordings of HEK293T cells 
expressing ANO1, only 1,8-cineole lacked a strong inhibitory effect on the ANO1 
current induced by high free calcium concentration. Because the chemical structure 
of 1,8-cinaole is the most divergent among the three analogues tested, we surmised 
that potential menthol-based agents should contain a critical minimum structure. 
Therefore, we next investigated the separate moieties comprising menthol. From 
these studies we showed that isopropylcyclohexane is the core structure needed to 
completely inhibit ANO1 currents. Since the kinetics of current reduction by iso-
propylcyclohexane were slower than that for menthol, we focused on 
4- isopropylcyclohexanol (4-iPr-CyH-OH), which has greater hydrophilicity, which 
could be valuable if the affinity site lies in the intracellular domain of the ion chan-
nel. According to our expectations, 4-iPr-CyH-OH showed rapid inhibition that was 
similar to that of menthol. Interestingly, 4-iPr-CyH-OH also inhibits TRPV1, 
TRPA1, TRPV4, and TRPM8 activity. Thus, 4-iPr-CyH-OH could have inhibitory 
effects on many different irritation pathways. The half inhibition concentration 
(IC50) of 4-iPr-CyH-OH for mouse TRPA1, TRPV1, and ANO1 was 0.23, 0.73, and 
1.09 mM, respectively (Fig. 3.2). IC50 of 4-iPr-CyH-OH in TRPV1 current induced 
by 100 nM capsaicin was lower than that of ANO1 current. However, the capsaicin 
at the concentration does not fully activate TRPV1, whereas 500 nM intracellular 
free calcium strongly activates ANO1 in our experiments. Three hundred microm-
eter allyl isothiocyanate (AITC) also induces the almost saturated TRPA1 activa-
tion. Thus, 4-iPr-CyH-OH could have a lower inhibitory effect toward TRPV1. 
Furthermore, we investigated the effects of 4-iPr-CyH-OH on capsaicin-evoked 
action potential in isolated small DRG neurons and capsaicin-induced pain-related 
behaviors in mice. In these experiments, 4-iPr-CyH-OH completely inhibited 
capsaicin- evoked action potentials with strong suppression of depolarization, and 

Fig. 3.2 Dose-response curves of 4-isopropylcyclohexanol (4-iPr-CyH-OH) at −60 mV. Mouse 
TRPA1, TRPV1, and ANO1 expressed in HEK293T cells were activated by 300  μM AITC, 
100 nM capsaicin, and 500 nM free calcium, respectively
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pain-related behaviors were significantly diminished with concomitant administra-
tion of 4-iPr-CyH-OH.

Although 4-iPr-CyH-OH is currently used as a food additive in Japan, the phar-
macological understanding of its effects beyond those we found for pain sensation 
is limited [10, 19]. Thus, 4-iPr-CyH-OH could have potential as a basis for the 
development of novel drugs that target ion channels, particularly ANO1 and TRP 
channels.

3.5  Conclusion

TRP-ANO1 interactions are involved in several physiological mechanisms. For 
instance, TRPC2-ANO1 interaction could be involved in iodide homeostasis in thy-
roid cells and vomeronasal transduction [7, 33], and TRPC6-ANO1 interaction 
reportedly enhances vasoconstriction [35]. In addition, our findings indicated that 
ANO1 activation could generate sufficient depolarization to induce exocytosis in 
synapses between primary sensory neurons and secondary neurons in the spinal 
cord (Fig. 3.1). In fact, ANO1-dependent membrane potential changes could accel-
erate insulin secretion from pancreatic β-cells [4, 36]. Not only ANO1, targeting 
TRP-ANO interactions could be also a promising approach because ANOs are 
expressed in the whole body [8, 16, 25, 27], and ANOs have three functions, includ-
ing chloride channel, scramblase, and internalization [24, 27]. Thus, additional 
physiological phenomena could be better explained by future investigations that 
focus on TRP-ANO interactions.
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