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Abstract Blind source separation (BSS) is one of the most interesting research
problems in signal processing. There are different methods for BSS such as princi-
pal component analysis (PCA), independent component analysis (ICA), and singular
value decomposition (SVD). ICA is a generative model of determining a linear trans-
formation of the observed random vector to another vector in which the transformed
components are statistically independent. Computationally, ICA is formulated as an
optimization problem of contrast function, and different algorithms for ICA differ
among themselves on the way the contrast function is modeled. Several optimization
techniques such as gradient descent and variants, fixed-point iterative methods are
employed to optimize the contrast function which is nonlinear, and hence, determin-
ing global optimizing point is most often impractical. In this paper, we propose a
novel gradient-based particle swarm optimization (PSO) method for ICA in which
the gradient information along with the traditional velocity in swarm search is com-
bined to optimize the contrast function. We show empirically that, in this process,
we achieve better BSS. The paper focuses on the extraction of one by one source
signal like deflation process.
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1 Introduction

The independent component analysis (ICA) is one of the most prominent methods of
data analysis and has been widely used in signal processing, pattern recognition, and
machine learning. In signal processing, ICA is essentially viewed as a computational
method for separating multivariate signals into additive components and has been
applied in many contexts. ICA is extensively used in pattern recognition and image
analysis mainly in applications like face recognition, object recognition, image filter-
ing, embedding in feature space. ICA is similar to PCA in many respect, but unlike
PCA, ICA attempts to determine which are independent. The inherent advantage of
ICA is its ability to recover source (or unobserved signal) from observed mixture.
ICA is also popularly known as a method of blind source separation (BSS). It is
called blind because we do not have information about the source signals or the mix-
ing method. For BSS, it is assumed that signals from source can be mixed linearly
or nonlinearly. ICA attempts to separate source by some simple assumptions of their
statistical properties. In ICA, data are represented by the random vector x and the
components as the random vector s. It is to determine a transformation that maps
observed data x into maximally independent components s for some measure of
independence. The transformation is usually assumed to be linear, and the measure
of independence can be a measure of non-Gaussianity.

Let us consider an observed M-dimensional discrete time signal where the nth
sample is denoted by the column vector x(n). The observed signal is the mixture of
unknown N -dimensional source vector s(n) given by

x(n) = As(n) (1)

where A is a linear mixing matrix. The input components are usually statistically
dependent due to the mixing process, whereas the sources are not. If one succeeds
in finding a matrix W that yields statistically independent output components y(n),
given by

y(n) = Wx(n) = W As(n) (2)

one can recover the original sources up to a permutation and constant scaling of the
sources. W is called the demixing matrix, and finding the matrix is referred to as
independent component analysis (ICA).

ICA computation involves determining the matrixW by a process of optimization
of a non-convex optimization, and thewidely adopted gradient descent algorithms [1]
usually converge to a local optimizing point and seldom find the global optimizing
point. As no global solution is guaranteed, most of ICA techniques exhibit random
behavior yielding different results for different initial conditions and initial values of
parameters. There are different approaches of estimatingW.Maximization algorithm
based on singular value decomposition (SVD) [2], gradient optimization of kurtosis
function [3], and iterative method [5] of approximating W . In this paper, we are
particularly examining the deflation-based source separation.
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In this paper, a particle swarm optimization (PSO)-based ICA algorithm is pre-
sented to overcome the above problem. As an evolutionary computation technique
and general global optimization tool, PSO was first proposed by Kennedy and Eber-
hart [4] which simulates the simplified social life models. Since PSO has many
advantages over other heuristic techniques such as it can be easily implemented and
has a great capability of escaping local optimal solutions [5], PSO has been applied
successfully in many computer science and engineering problems. Another draw-
back of gradient-based methods [9, 14] is slow speed of convergence. PSO search
is preferred over gradient search when the nonlinear objective function is multi-
modal and there are a large number of local optimizing solutions. In such a situation,
gradient-based search gets stuck at a local optimizing point where as population
based technique search through a broader area ensuring t possibility of reaching
global optimizing solution. So an obvious question is whether one can combine
gradient information of search direction together with the velocity computed by
local/global best solution to enhance the search. Taking advantages of both gradient
search and population based search, we propose a method which blends gradient
search with PSO. We show empirically that by this process, we can have an efficient
method of ICA computation.

The rest of the paper is organized as follows. In Sect. 2, we briefly review the
cumulants, reference signal, contrast function. Section3 discusses the optimization
technique and iterative procedure for ICA. A brief introduction about particle swarm
optimization (PSO) is given in Sect. 4. Section5 describes our proposed methods
termed as PSOAS for ICA. Experimental analysis of the proposedmethod is reported
in Sect. 6. Finally, Sect. 7 concludes and indicates several issues for future work.

2 Cumulant-Based Contrast Optimization

A contrast function is any nonlinear function which is invariant to permutation and
scaling matrices and attains its minimum value in correspondence of the mutual
independence among the output components. Many contrast functions for ICA has
been proposed in the literature, mainly based on information theoretical principles
such as maximum likelihood, mutual information, marginal entropy, and negentropy,
as well as related non-Gaussianity measures. Among them, the kurtosis (normalized
fourth-order marginal cumulant) is arguably themost common statistics used in ICA,
even if skewness has also been proposed.

Statistical properties of the output dataset can be described by its moments or,
more conveniently, by its cumulants. Since the data have zero mean, the sample
cumulants up to order four can be written in the following way.
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with < · > indicating the mean over all data points.
Cumulants of a given order form a tensor. The diagonal elements characterize

the distribution of single component and the fourth-order autocumulant, C (y)
i i i i is kur-

tosis of yi . The cross-cumulants characterize the statistical dependencies between
components. Thus, if and only if, all components are statistically independent, the
off-diagonal elements (or the cross-cumulants) vanish. ICA is equivalent to find-
ing an unmixing matrix W that diagonalizes the cumulant tensors of the output
data at least approximately. Though it is easy and trivial to achieve diagonaliza-
tion of first- and second-order cumulants, there is no obvious way of diagonalizing
higher-order cumulant tensors. The diagonalization of these tensors can only be done
approximately, and we need to define an optimization criterion for this approximate
diagonalization

The approximate diagonalization of the cumulant tensors of order three and order
four is achieved by minimizing an objective function which is the sum of the squared
third- and fourth-order off-diagonal elements. Since the sum of square of all ele-
ments of a cumulant tensor is preserved under any orthogonal transformation of the
underlying data, one can equivalently maximize the sum over the diagonal elements
instead ofminimizing the sum over the off-diagonal elements. This is a contrast func-
tion as defined in [6]. Thus, the process can be viewed as an optimization problem
with the following objective function.

J (y) = 1

μ

∑

α

(C (y)
ααα)

2,+1

τ

∑

α

(C (y)
αααα)

2, (3)

The objective function J is kurtosis [7, 8] and can be rewritten as a function
of an orthogonal matrix U which is to be determined through the optimization pro-
cess. Expressing the above criterion function in terms ofU is not straightforward, and
hence, another cumulant-based contrast function is defined as follows. This definition
uses cumulant of order four only. Recently, reference-based contrast functions are
proposed based on cross-statistics or cross-cumulants between the estimated outputs
and reference signals. Reference signals are nothing but artificially introduced signals
for facilitating the maximization of the contrast function. Due to the indirect involve-
ment of reference signals in the iterative optimization process, these reference-based
contrast functions have an appealing feature in common: The corresponding opti-
mization algorithms are quadratic with respect to the searched parameters.

Cz{y} � Cum{y, y, z, z}
= E{y2z2} − E{y2}E{z2} − 2E2{yz} (4)
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where E{·}, denotes the expectation value and z is the reference signal. We con-
sider another(reference) separation matrix V and z(n) = V x(n). We now define the
contrast function explicitly in terms of W and V as follows.

I (W, V ) =
∣∣∣∣

Cz{y}
E{(y)2}E{(z)2}

∣∣∣∣
2

(5)

where y(n) = Wx(n) and z(n) = V x(n).

3 Optimization Method

There have been a umpteen number of proposals to optimize the contrast function
defined previously. In order to avoid an exhaustive search in the whole space of
orthogonal matrices, a gradient ascent on J (U ) is normally used. The gradient of a
function is the vector of its partial derivatives. It gives a direction of the maximum
increase in the function leading to an update rule for U that looks like

U (k + 1) ← U (k) + λ(k)∇ J |U (k) (6)

where ∇ J |U (k) denotes either the natural, or relative gradient of J with respect toU ,
evaluated at U = U (k).

Gradient ascent and its variants start with a random seed point and move from
one point to another in the gradient direction. The performance of all gradient-based
approach depends on a factor such as step size λ and initial seed point U (0). The
rate of convergence highly depends on the selection of step size, and an improper
step size may lead to the poor performance and stability of the algorithm.

Use of a gradient-based maximization supposes that the algorithm will not be
trapped in a spurious maximum, leading to U ∗, that does not correspond to a satis-
factory solution for the BSS problem (still mixing). Various authors such as [9, 10]
have noted that the usual ICA contrast functions may have such spurious maxima
if several source distributions are multimodal. For instance, Cardoso in [11] shows
this phenomenon for the likelihood-based contrast function. More recently, Vrins
et al. [12] have given an intuitive justification regarding the existence of spurious
maxima when the opposite of the output marginal entropies is used for the contrast
function.

A simple gradient search algorithm for the maximization of kurtosis-based con-
trast J is given in Algorithm 1. It is shown in [3] that Algorithm 1 may diverge
unacceptably leading to a numerical overflow if a great number of iterations are
required by the algorithm.
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Algorithm 1:
input : x(n): Observed signal
output: v: Separation vector

Initialize randomly U0
for k = 0, 1, . . . , kmax − 1 do

dk = ∇ I (Uk ,Uk)

αk = argmax
α

I (Uk + αdk ,Uk)

Uk+1 ← Uk + αkdk
end

The separating property is not affected by a scaling factor, because of unavoid-
able scaling ambiguity in BSS [3]. It is common in BSS to impose the unit-power
constraint E{|y(n)|2} = 1. It is known that the unit-power constraint is equivalent
to a unit-norm constrain on the separating vector v. A modified algorithm to avoid
the drawback of Algorithm 1 is proposed in [3] by normalization of the separating
vector v after every gradient iteration update. The points found after renormalizing
the above algorithm belong to unit sphere. The main flow of the modified algorithm
can be found in Algorithm 2. We use this method in our comparative studies in the
later section.

The output obtained after the maximization process should be closer to the source
signal rather than the reference one. With this aim, a modification is proposed in [9]
where the reference vector is updated after each iteration by the output signal com-
puted in the previous iteration.

Algorithm 2:
input : x(n): Observed signal
output: v: Separation vector

Initialize U0 .
for k = 0, 1, . . . , kmax − 1 do

dk = ∇1 I (Uk ,Uk)

αk = argmax
α

I (Uk + αdk ,Uk)

Ũk+1 ← Uk + αkdk

Ũk+1 ← Ũk+1

(E{|{Ũk+1}x(n)|2})
1
2

Uk+1 ← Ũk+1
end
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4 Particle Swarm Optimization

Particle swarm optimization (PSO) is a well-known population-based search. The
PSO algorithm works by simultaneously maintaining several candidate solutions in
the search space to find the global optimum, where themovement is influenced by the
social component and the cognitive component of the particle. Themost characteristic
feature of PSO and its variants is that the search trajectory is influenced by the best
solutions (local best and global best) obtained so far in the search to determine the
next solution. Each individual particle has a velocity vector vi , a position vector xi ,
personal best pbi that the particle encountered so far and neighborhoodbest lbi means
the best position that all particles have encountered so far among the neighborhood
Ni of particle i . The position and velocity of each particle are updated as follows.

vt+1
i = vti + c1r1(pb

t
i − xti ) + c2r2(lb

t
i − xti )

xt+1
i = xti + vt+1

i

where c1, c2 are acceleration coefficient and r1, r2 ∈ [0, 1] are uniformly distributed
random numbers.

PSO is particularly attractive for its ability to yield global optimizing point with
the fast converging rate. However, it does not use the gradient information which is
very crucial for optimization.

5 PSOAS: The Proposed Method

In this section, we discuss the method of blending swarm search with gradient-
based optimization for ICA. Unlike PSO, in the proposed algorithms, the velocity
component of the particle is updated in every iteration with gradient direction along
with the social influence. The search direction of the particle is a combination of
gradient direction and the direction of global best. There have been some earlier
proposals which use PSO to solve the ICA problem [6, 13, 14]. In the literature,
many variants of gradient-based PSO exist [15–17]. Some researchers has combined
a gradient factor with search direction computed by personal best and global best
whereas in [18] terminates gradient search is initiated after termination of PSO.

Algorithm 3 describe the detail procedure related to applicability of PSO on
Algorithm 1.
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Algorithm 3: Gradient-based PSO
input : x(n): Observed signal, S: Swarm size and δ: Trade-off parameter
output: Ubest : Separation vector

Initialize U0 and the corresponding reference signal z p0 (n) = U p
0 x(n), ∀1 ≤ p ≤ S.

for k = 0, 1, . . . , kmax − 1 do
Ip = I (U p

k ,U
p
k ),∀1 ≤ p ≤ S

best = argmax
p

Ip

d p
k = ∇ I (U p

k ,U
p
k )

αp = argmax
α

I (U p
k + αd p

k ,U
p
k )

Ũ p
k+1 ← U p

k + αp(δd p
k + (1 − δ)(Ubest −U p

k ))

Ũ p
k+1 ← Ũ p

k+1

(E{|Ũ p
k+1x(n)|2})

1
2

U p
k+1 ← Ũ p

k+1
end

WemodifyAlgorithm3with iterative updates to get another alternative,Algorithm
4 as follows.

Algorithm 4: Gradient-based PSO with Fixed-point update
input : x(n): Observed signal, S: Swarm size and δ: Trade-off parameter
output: Ubest : Separation vector

Initialize U0 and the corresponding reference signal z p0 (n) = U p
0 x(n), ∀1 ≤ p ≤ S.

for k = 0, 1, . . . , kmax − 1 do
Ũ p
0 = U p

k , ∀1 ≤ p ≤ S
for l = 0, 1, . . . , lmax − 1 do

Ip = I (Ũ p
l ,U

p
k ),∀1 ≤ p ≤ S

best = argmax
p

Ip

d̃ p
l = ∇1 I (Ũ

p
l ,U

p
k )

α̃p = argmax
α

I (Ũ p
l + αd̃ p

k ,U
p
k )

Ũ p
l+1 ← Ũ p

l + αp(δd̃ p
l + (1 − δ)(Ubest − Ũ p

l ))

Ũ p
l+1 ← Ũ p

l+1

(E{|{Ũ p
l+1}x(n)|2})

1
2

end
U p
k+1 ← Ũ p

lmax

end

6 Simulation

This section discusses the experimental setup and reports the results. We con-
ducted experiments on a variety of synthetic datasets. Complex-valued, independent,
and identically distributed (i.i.d) QAM4 has been generated taking their values in
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Table 1 Experimental results of each comparing algorithm in terms of average and median MSE

Parameters Number of samples

500 1000 5000 10000

kmax lmax PSOAS GAS PSOAS GAS PSOAS GA PSOAS GAS

Average MSE 1000 1 0.0066 0.0114 0.0007 0.0047 0.0003 0.0039 0.0003 0.0043

200 5 0.0005 0.0046 0.0316 0.0214 0.0007 0.0038 0.0007 0.0049

100 10 0.0161 0.0098 0.0006 0.0049 0.0008 0.0044 0.0005 0.0034

50 20 0.0010 0.0050 0.0236 0.0301 0.0005 0.0049 0.0007 0.0048

25 40 0.0171 0.0109 0.0006 0.0065 0.0004 0.0035 0.0005 0.0047

10 100 0.0010 0.0035 0.0342 0.0407 0.0004 0.0045 0.0005 0.0040

8 125 0.0271 0.0099 0.0005 0.0061 0.0007 0.0051 0.0004 0.0043

5 200 0.0007 0.0038 0.2894 0.3538 0.0004 0.0053 0.0004 0.0045

Median MSE 1000 1 0.0001 0.0009 0.0001 0.0005 0.0000 0.0006 0.0000 0.0006

200 5 0.0000 0.0008 0.0002 0.0010 0.0000 0.0006 0.0000 0.0007

100 10 0.0002 0.0009 0.0001 0.0007 0.0000 0.0005 0.0000 0.0005

50 20 0.0001 0.0007 0.0002 0.0012 0.0000 0.0006 0.0000 0.0006

25 40 0.0002 0.0006 0.0001 0.0008 0.0000 0.0005 0.0000 0.0006

10 100 0.0001 0.0004 0.0003 0.0018 0.0000 0.0006 0.0000 0.0006

8 125 0.0002 0.0006 0.0001 0.0010 0.0000 0.0007 0.0000 0.0006

5 200 0.0001 0.0006 0.1834 0.2570 0.0000 0.0006 0.0000 0.0006

{eiπ/4, e−iπ/4, e+i3π/4, e−i3π/4} with equal probability 1
4 . For a different number of

sample, a set of N = 3 mutually independent and temporally i.i.d source has been
generated. They have been mixed by a QL finite impulse response (FIR) filter with
randomly driven coefficients of length 3 and with Q = 4 sensors. The separating
FIR separator has been searched with length D = N (L − 1) = 6.

To measure the performance of different algorithms, we have employed mean
squared error (MSE) as an evaluation metric popularly used in blind source separa-
tion [3].We report the equalization performance of the proposed method by taking
the average and median values of MSE of 1000 trials. We compare our proposed
methods with two well-known algorithms: Algorithm 1 and Algorithm 2 [3] with
our Algorithm 3 and Algorithm 4, respectively.

Table1 gives the comparative analysis of proposed method against state-of-the-
art algorithms on different datasets. The best results among all comparing algorithm
are highlighted in boldface. The row corresponding to value of kmax = 1000 and
lmax = 1 reports the results provided by Algorithm 1 [3] and Algorithm 3 proposed
in the present work. The remaining rows show the results provided by Algorithm
2 [3] and Algorithm 4 proposed in the present work. It can be seen from the Table1
that the proposed method achieves better performance consistently than other com-
paring algorithms in terms of each evaluation metric. The following tables denote the
algorithms, Algorithm 1 andAlgorithm 2 of [3], as general algorithms (GAS) and our
proposed algorithms, Algorithm 3 and Algorithm 4, as PSO algorithms (PSOAS).
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7 Conclusion

In this paper, two new algorithms have been developed with PSO-based search for
the purpose of maximizing the kurtosis contrast function. Particularly, Algorithm
4 allows two parameters to improve performance for practical purpose. The work
also opens for future works with respect to genetic algorithm and source separation
of complex-valued signals based on nonlinear autocorrelation. One can use genetic
algorithm to see its practical purpose. As well as PSO may use in the scenario of
nonlinear autocorrelation.
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