
Schatten-p Norm Based Linear Regression
Discriminant Analysis for Face Recognition

Lijiang Chen, Wentao Dou, and Xia Mao(&)

School of Electronic and Information Engineering, Beihang University,
Beijing 100191, China

moukyou@buaa.edu.cn

Abstract. Locality-regularized linear regression classification (LLRC) shows
good performance on face recognition. However, it sorely performs on the
original space, which results in degraded classification efficiency. To solve this
problem, we propose a dimensionality reduction algorithm named schatten-p
norm based linear regression discriminant analysis (SPLRDA) for image feature
extraction. First, it defines intra-class and inter-class scatters based on schatten-p
norm, which improves the capability to deal with illumination changes. Then the
objective function which incorporates discriminant analysis is derived from the
minimization of intra-class compactness and the maximization of inter-class
separability. Experiments carried on some typical databases validate the effec-
tiveness and robustness of our method.
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1 Introduction

Dimensionality reduction has played a key role in many fields such as machine
learning, face recognition and data mining. It devotes to excavate the low dimensional
features from high dimensional data while preserving the intrinsic information existed
in data.

During the past few decades, a lot of dimensionality reduction algorithms using for
feature extraction has been proposed. Principal component analysis (PCA) [1] and
linear discriminant analysis (LDA) [2] are two typical methods. As an unsupervised
approach, PCA projects high dimensional data onto a variance preserving subspace. In
contrast, LDA, as a supervised method, aims to minimize within-class scatter and
maximize between-class scatter to extract more discriminative features using labeled
class information. However, it often suffers from small sample size (sss) [4] problem
resulting from the singularity of within-class scatter. However, the above linear algo-
rithms do not have the capabilities to capture the nonlinear structure embedded in
image matrix. A lot of nonlinear feature extraction algorithms have been proposed to
excavate the manifold structure of data, such as isometric mapping (ISOMAP) [5],
Laplacian eigenmaps (LE) [6] and locally linear embedding (LLE) [7]. ISOMAP
extends multidimensional scaling by incorporating the geodesic distances imposed by a
weighted graph. LE finds the low-dimensional manifold structure by building a graph,
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whose node and connectivity are data points and proximity of neighboring points. LLE
determines the low-dimensional representations of data by focusing on how to pre-
serves the locally linear structure and minimizes the linear reconstruction error.
However, the so called out-of-sample problem often occurs in those nonlinear algo-
rithms. To solve the out-of-sample problem, locality preserving projection (LPP) [8]
was proposed. LPP minimizes the local reconstruction error to preserve local structure
and obtain the optimal projection matrix.

After feature extraction, data classification is another step for face recognition.
Many classification methods have been proposed, such as nearest neighbor classifier
(NNC) [9] and linear regression classification (LRC) [10]. More recently, Brown et al.
proposed a locality-regularized linear regression classification (LLRC) [11] method
using a specific class as the neighbor of a training sample to classify and improve the
accuracy of classification.

Although the above feature extraction and classification methods obtain great
performances, each of them are designed independently. Therefore, they may be not fit
each other perfectly. Using the rule of LRC, Chen et al. proposed reconstructive
discriminant analysis (RDA) [12]. In 2018, Locality-regularized linear regression
discriminant analysis (LLRDA) [13] deriving from LLRC was proposed to extract
features. LLRDA ameliorates the LLRC by performing intra-class and inter-class
scatter in the feature subspace, which brings more appropriate features for LLRC.
However, in the feature subspace, LLRDA measures the reconstruction error utilizing
L2 norm, which causes the strong sensitiveness to illumination changes and outliers.
To alleviate the deficiency of L2 norm based methods, many algorithms basing on
schatten-p norm have been developed. To improve the robustness to illumination
changes and outliers, two-dimensional principal component analysis based on schatten-
p norm (2DPCA-SP) [14] was presented using shatten-p norm to measure the recon-
struction error. Incorporating the discriminant analysis and schatten-p norm to extract
discriminative and robust features, two-dimensional discriminant analysis based on
schatten-p norm (2DDA-SP) [15] was proposed. In 2018, Shi et al. proposed robust
principal component analysis via optimal mean by joint 2, 1 and schatten p-norms
minimization (RPOM) [16] imposing an schatten-p norm based regularized term to
suppress the singular values of reconstructed data. Motivated by the above methods, we
propose an LLRC based feature extraction method named schatten-p Norm based linear
regression discriminant analysis (SPLRDA) utilizing schatten-p norm to improve the
robustness to illumination changes. The main advantages of out algorithm are listed
below: (1) Features are directly extracted from matrix rather than vectors reshaped from
original image; (2) A specific class is assumed to be the neighborhood of a training
sample instead of selecting from all samples when calculating the reconstruction vector
b; (3) Discriminant analysis is incorporated to obtain discriminative features; (4) In the
feature subspace, we measure the similarity distances by schatten-p norm whose
parameter p is adjustable, which is more robust to illumination changes and outliers.

The rest parts of this paper are organized as follows. Sect. 2 briefly reviews the
background knowledge of LRC and LLRC. The presented SPLRDA method is
introduced in Sect. 3. The experimental results and analysis are arranged in Sect. 4.
Finally, Sect. 5 concludes this paper.
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2 Related Work

Suppose X ¼ x1; x2; . . .; xn½ � be a set of n training images of C classes. Given the
number of images in ith class is ni, therefore, we have

PC
i¼1 ni ¼ n. xi denotes the ith

reshaped image whose dimension N is the product of the row and column numbers of
original ith image. In this section, LRC and LLRC are reviewed briefly.

2.1 LRC

LRC [10] is based on the assumption that a sample can be represented as a linear
combination of samples from same class. The task of LRC is finding which class the
testing sample y belongs to. Let y be a test sample from the ith class, then it can be
reconstructed approximately by:

y ¼ Xibi ð1Þ

where bi 2 Rni�1 is the reconstruction coefficient vector with respect to training image
set of class i. bi is calculated by least square estimation (LSE) method as:

bi ¼ XT
i Xi

� ��1
XT
i y ð2Þ

Utilizing the estimated bi, y can be reconstructed as:

ŷi ¼ Xi X
T
i Xi

� ��1
XT
i y ð3Þ

Since ŷi should approximate to y, the reconstruction error based on Euclidean norm
is defined as:

l yð Þ ¼ min
i

y� ŷik k2

¼min
i

y� Xi X
T
i Xi

� ��1
XT
i y

��� ���2 ð4Þ

where l yð Þ represents the class label of y.

2.2 LLRC

Different from LRC, LLRC [11] pays more attention to the local linearity of each
sample and considers it to be more important than global linearity. Therefore, images
from a specific class instead of all samples are supposed to be the neighborhood of a
image sample based on this principle, Brown et al. presented an constraint of locality
regularization on LRC by sorely involving k closest images to the query image based
on Euclidean distance measure.

The k nearest neighbors set of testing sample y in class i is denoted by
~Xi ¼ xi1; xi2; . . .; xik½ � 2 RN�k. Similar to the LRC, the label of y is computed by
minimizing the reconstruction error as below:
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l yð Þ ¼ min
i

y� ~Xi ~XT
i
~Xi

� ��1~XT
i y

��� ���2 ð5Þ

3 Our Method

3.1 Problem Formulation

Suppose x ji 2 Ra�b be the jth training sample of ith class, then its intra-class and inter-
class reconstruction error are defined respectively as:

X
i;j

e ji ¼
X
i;j

x ji � ~X j
i
~b j
i

�� ��p
sp ð6Þ

X
i;j;m

e jim ¼
X
i;j;m

x ji � ~X j
im
~b j
im

�� ��p
sp ð7Þ

where ~X j
i and ~X j

im denote the k nearest neighbors set of x ji in class i and class m
respectively. Class m is one of the K nearest heterogeneous subspaces of x ji . The intra-
class scatter characterizes the compactness of each training samples class, while the
inter-class scatter describes the separability between different classes. �k ksp denotes the
schatten-p norm. Since we know that the singular value decomposition of x is
defined as:

1

2

min( , )

( )
0 ... 0

0 ... 0

... ... ... ...

0 ... ...

T

m n

U V SVD x
σ

σ

σ

=⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ð8Þ

The schatten-p norm can be represented by [15]:

xk ksp ¼
Xminðm;nÞ

i¼1

rpi

 !1
p

¼ Tr xxT
� �p

2

h i1
p ð9Þ

where ri is the ith singular value of x. If the parameter p was set to be 1, the schatten-p
norm becomes the nuclear norm, which is famous for its capability for solving illu-
mination changes. In the experiments, we can adjust p to the value that attains best
performance for face recognition. Suppose the optimal projection matrix be denoted by
A 2 Rb�s s\ bð Þ. In the feature subspace, the corresponding data can be replaced by:
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y ji ¼ x ji A ð10aÞ

Y j
i ¼ ~Xj 1ð Þ

i A; ~Xj 2ð Þ
i A; . . .; ~Xj kð Þ

i A
h i

ð10bÞ

Y j
im ¼ ~Xj 1ð Þ

im A; ~Xj 2ð Þ
im A; . . .; ~Xj kð Þ

im A
h i

ð10cÞ

where y ji 2 Ra�s, Y j
i 2 Ra�ks and Y j

im 2 Ra�ks. Therefore, to find an optimal pro-
jection matrix which projects the original data into feature subspace, the function
performed in the feature subspace should be maximized:

f Að Þ ¼
X
i;j;m

y ji � Y j
im
~b j
im

�� ��p
sp �

X
i;j

y ji � Y j
i
~b j
i

�� ��p
sp

" #
s:t: ATA ¼ Is ð11Þ

3.2 Problem Solving

As analyzed in the last subsection, the optimization problem can be formulated and
simplified as:

argmax
A

f Að Þ ¼ argmax
A

X
i;j;m

y ji � Y j
im
~b j
im

�� ��p
sp �

X
i;j

y ji � Y j
i
~b j
i

�� ��p
sp

" #

¼ argmax
A

X
i;j;m

x ji A� ~X j
im
~b j
imA

�� ���X
i;j

x ji A� ~X j
i
~b j
i A

�� ��p
sp

" #

¼ argmax
A

X
i;j;m

Tr Bm
ij AA

T Bm
ij

� �T� �p
2

�
X
i;j

Tr WijAA
T Wij
� �Th ip

2

( )

s:t:ATA ¼ Is

ð12Þ

where Bm
ij ¼ x ji � ~X j

im
~b j
im and Wij ¼ x ji � ~X j

i
~b j
i . Based on the objective function, the

Lagrangian function can be built as:

L A; Kð Þ ¼
X
i;j;m

Tr Bm
ij AA

T Bm
ij

� �T� �p
2

�
X
i;j

Tr WijAA
T Wij
� �Th ip

2 � Tr K ATA� Is
� �	 


ð13Þ

Taking the derivative of L with respect to A, we have:

@L
@A

¼ 2
X
i;j;m

Bm
ij

� �T
Dm

ij B
m
ij A� 2

X
i;j

Wij
� �T

HijWijA� 2KA ð14Þ
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where Dm
ij ¼ p

2 Bm
ij AA

T Bm
ij

� �T� �p�2
2

and Hij ¼ p
2 WijAAT Wij

� �Th ip�2
2
. K 2 Rs�s is the

symmetric Lagrangian multiplier matrix. To look for the maximum point of objective
function, (14) is set to be zero, then the Eq. (14) is changed to:

Sb � Swð ÞA ¼ AK ð15Þ

where Sb ¼
P

i;j;m Bm
ij

� �T
Dm

ij B
m
ij and Sw ¼Pi;j Wij

� �T
HijWij. Both Sb and Sw rely on A.

If Sb � Swð Þ is a known constant matrix and considering the orthogonal constraint
ATA ¼ Is, the optimal projection matrix A can be calculated by solving the eigen value
decomposition problem as below:

AT Sb � Swð ÞA ¼ K ð16Þ

According to (15), since Sb � Swð Þ is symmetric and each element in the diagonal
of K is an eigen value of Sb � Swð Þ, A is formed by the s eigen vectors corresponding to
s largest eigen values of Sb � Swð Þ. Since the objective function is bounded by ATA ¼
Is and it increases after each iteration, the convergence of this algorithm can be realized.
Based on these analyses, we propose an iterative algorithm to obtain the optimal
projection matrix. The algorithm is concluded in Algorithm 1.

Algorithm 1. An efficient iterative algorithm for solving the Eq. (12) 

Input: N training image matrices { } ,  1, ..., , 1, ...,j

ix i C j l= = ( l denotes the

number of training samples per individual); Values of k, K, p , ε ; Initialize A

such that T

sA A I= ; Set 0t = . 
While not converge: 

1. Compute m
ijB , ijW , m

ijD , ijH , bS and wS ; 

2. Perform eigen value decomposition of ( )b wS S− , A is formed by the s eigen 

vectors corresponding to s the largest eigen values of ( )b wS S− ; 

3. Check the convergence situation 1t tA A ε+ − < ;  

4. 1t t= + . 
End while
Output: the optimal projection matrix tA A= . 
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4 Experiments

In this section, extensive experiments are conducted on ORL [17] and CMU PIE [18]
databases to testify the effectiveness of our method in the condition that p = 1/4, 1/2,
3/4 respectively. Meanwhile, we compare SPLRDA with other state-of-art feature
extraction methods such as PCA [1], LDA [2], LPP [8] and RDA [12]. Different
classifiers are adopted to measure the performance of each method. All the algorithms
have been run for five times independently to obtain average recognition rates. We only
exhibit the highest results for comparison and analysis.

4.1 Experiments on ORL Database

The ORL face database includes 400 face images belonging to 40 individuals. Each
person has 10 images distinct from view direction, facial expression (mouth opened or
closed, laughing or calm), facial details (with or without glasses) and illumination.
Each image has been normalized to the size of 112 � 92 with 256 gray levels.

Ten samples of one individual are displayed in Fig. 1. In our experiments, we
cropped each image manually and resized it to 32 � 32 pixels. l (l = 4, 5) images per
person are randomly selected for training while the remainders for testing. Note that k
ranges from 1 to l − 1 and K ranges from 1 to C − 1. To observe the effect of k, K is
fixed to C=2b cþ 1 and k is varied from 1 to l − 1.

Figure 2 shows the recognition rates of SPLRDA plus LLRC with varied k. The
results indicate that out method achieves best performances when k = 2 and k = 3
associating with l = 5 and l = 4, which demonstrates the effectiveness of exploiting
neighborhood structure. Therefore, to detect the effect of K, we fixed k to 3 and 2
corresponding to l = 4 and l = 5 respectively, and varied K from 3 to C − 1 in
increments of 4. Figure 3 displays the recognition rates of SPLRDA plus LLRC with
varied K. From Fig. 3, it can be seen that parameter K does affect the performance of
our method and they all gain best recognition rates when K achieves highest value.
Average recognition rates of all methods are displayed in Table 1. In the experiments,
we tested these feature extraction methods under three different classifiers. Experi-
mental results verify that classifier matters the performance of face recognition and our
method fits LLRC better than other related methods. From Table 1, we can see that
when l = 4 and l = 5, SPLRDA achieves best recognition rates in the condition that
p = 1/4, which demonstrates the effectiveness of our method.

Fig. 1. Ten samples of one individual in ORL database
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(c) p =1/2, l=4 (d) p =1/2, l=5

(e) p =3/4, l=4 (f) p =3/4, l=5

(a) p =1/4, l=4 (b) p =1/4, l=5

Fig. 2. Recognition rates of SPLRDA plus LLRC with varied k
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(a) p =1/4 (b) p =1/2 

(c) p =3/4 

Fig. 3. Recognition rates of SPLRDA plus LLRC with varied K

Table 1. Recognition accuracy of each method in ORL database

PCA LDA LPP RDA SPLRDA
(p = 1/4)

SPLRDA
(p = 1/2)

SPLRDA
(p = 3/4)

l = 4 NNC 0.8892 0.9125 0.8489 0.9050 0.9050 0.8991 0.8808
LRC 0.8892 0.9000 0.9000 0.9175 0.9333 0.9300 0.9175
LLRC 0.8925 0.9083 0.8925 0.9192 0.9458 0.9333 0.9300

l = 5 NNC 0.9300 0.9250 0.8808 0.9400 0.9350 0.9300 0.9240
LRC 0.9500 0.9200 0.9200 0.9500 0.9500 0.9400 0.9410
LLRC 0.9500 0.9333 0.9200 0.9400 0.9583 0.9500 0.9440
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4.2 Experiments on CMU PIE Database

The CMU PIE face database contains 68 different individuals with more than 40,000
face images. Each image of an individual differs from others in poses, illumination and
expression. This database is stipulated that 4 different expressions, 43 different illu-
mination changes and 13 different poses should be satisfied for images of an individual.
This database includes five near-frontal poses (C05, C07, C09, C27 and C29). We
choose C05 subset for our experiments. The subset contains 1632 images of 68 indi-
viduals. In the experiments, all the images were cropped and resized to 64 � 64 pixels.
Figure 4 shows ten samples of one individual in CMU PIE database.

In the experiments, we randomly choose l (6, 7, 8) images per person for training
and the remainders for testing. Table 2 reports the recognition rates with different
classifiers. From Table 2, some observations are concluded as follow: (1) unsupervised
methods (PCA and LPP) perform worse than other supervised methods because labeled
information are not be exploited; (2) Although RDA plus LRC gains high recognition
rate, it performs worse than SPLRDA plus LLRC since neighborhood structure of data
is not utilized; (3) SPLRDA achieves better performance than other methods, which
verifies that our method is better than other related methods.

Fig. 4. Ten samples of one individual in CMU PIE database

Table 2. Recognition accuracy of each method in CMU PIE database

PCA LDA LPP RDA SPLRDA
(p = 1/4)

SPLRDA
(p = 1/2)

SPLRDA
(p = 3/4)

l = 6 NNC 0.3302 0.5497 0.4166 0.5229 0.5987 0.6012 0.5997
LRC 0.5231 0.7116 0.5602 0.7211 0.7271 0.7285 0.7255
LLRC 0.5044 0.6895 0.5379 0.7071 0.7419 0.7426 0.7408

l = 7 NNC 0.3837 0.5988 0.4612 0.4533 0.5687 0.5672 0.5683
LRC 0.6058 0.7532 0.6168 0.8426 0.8345 0.8357 0.8339
LLRC 0.6113 0.7791 0.6174 0.8391 0.8627 0.8581 0.8576

l = 8 NNC 0.4912 0.7527 0.5713 0.5947 0.5969 0.5955 0.5937
LRC 0.7645 0.8504 0.7792 0.9215 0.9224 0.9207 0.9194
LLRC 0.7539 0.8583 0.7825 0.9203 0.9298 0.9226 0.9226
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5 Conclusion

In this paper, a novel feature extraction method named schatten-p norm based linear
regression discriminant analysis (SPLRDA) has been proposed. It not only incorporates
schatten-p norm reducing the interference of illumination changes but also exploits
neighborhood structure, which fits LLRC well. Experiments has demonstrated the
reliability and effectiveness of our method. It performs better than other related
methods.
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