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Abstract. Visual tracking is a fundamental problem in computer vision.
Recently, some methods have been developed to utilize features learned from a
deep convolutional neural network for visual tracking and achieve record-
breaking performances. However, deep trackers suffer from efficiency. In this
paper, we propose an object tracking method combining the single-layer con-
volutional features with correlation filter to locate and speed up. Meanwhile
accurate scale prediction and high-confidence model update strategy are adopted
to solve the scale variation and similarity interfere problems. Extensive exper-
iments on large scale benchmarks demonstrate the effectiveness of the proposed
algorithm against state-of-the-art trackers.
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1 Introduction

Visual tracking addresses the problem of identifying and localizing an unknown target
in a video given the target specified by a bounding box in the first frame. It has attracted
increasing interest in the past decades due to its importance in numerous applications,
such as intelligent video surveillance, vehicle navigation, and human-computer inter-
action. Despite the significant effort that has been made to develop algorithms [1–4]
and benchmark evaluations [5, 6] for visual tracking, it is still a challenging task owing
to complicated interfering factors like heavy illumination changes, shape deformation,
partial and full occlusion, large scale variations, to name a few.

Owing to the high complexity of deep learning, most deep trackers suffer from low
tracking speed, and thus are impractical in many real-world applications. Some new
deep trackers with smaller network structure achieve high efficiency while at the cost of
significant decrease on precision. In Fig. 1, we display the relationship between
tracking speed and accuracy of some deep state-of-the-art trackers [1–4, 7–12]. For
better illustration, only those trackers with accuracy higher than 0.82 are reported.
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Obviously, SANet [2], MDNet [3] and BranchOut [4] utilizing robust deep features for
appearance representation obtain highest accuracies than 0.9, but the speeds are around
1 fps; ECO [1] introduces factorized convolution operator to reduce the number of
model’s parameters but only gets slight increase in speed; CF2 [11] combines the
hierarchical features from VGG-19 [13] network with fast shallow tracker based on
correlation filters, and achieves high accuracy but 11 fps in speed which is far from
practical; PTAV [10] runs in real-time and the performances are barely satisfactory.

Though afore mentioned progresses in either accuracy or speed, real-time and
robust trackers remain rare. In this paper, we consider the problems mentioned above
and propose an algorithm based on single-layer convolutional features and accurate
scale estimation to seek a trade-off between speed and accuracy. The main contribu-
tions of our work can be summarized below:

• We decrease the hierarchical layers and adopt a single-layer convolutional features
to speed up.

• We change the Gaussian distribution of the samples to match the selected layer by
tinkering with the Gaussian bandwidth of label function for training samples.

• We introduce an accurate scale estimation method to predict the scale variation of
the object, expecting to further improve the performance.

• We utilize the high-confidence model update strategy, which is beneficial to pre-
cision improvement, to prevent our proposed model from drifting due to serious
occlusion or interference of similar objects.

The framework of our tracker is shown in Fig. 2, which consists of translation
prediction and scale estimation.
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Fig. 1. Speed and accuracy plot of deep state-of-the-art visual tracking on OTB100
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2 Related Work

CNN Based Trackers. Visual representations play a very important role in object
tracking. Numbers of hand-crafted features used to represent the target appearance such
as Histogram of Oriented Gradient (HOG) and Color Names (CN) achieve great
success. Since 2013, deep-learning methods spur in the field of visual tracking and
exceed hand-crafted methods gradually. Wang et al. [14] propose a deep learning
tracker (DLT) using a multi-layer auto-encoder network for the first time and solve the
problem of insufficient training data through the idea of “offline pre-training and online
fine tuning”. Hong et al. [15] learn target-specific saliency map using a pre-trained
CNN. On the other hand, Wang et al. [16] use feature maps for target tracking from a
two-layer neural network, whose earlier and last hierarchical features are comple-
mentary in semantic and spatial information. Held et al. [17] make full use of labeled
videos and images to train a completely offline universal target tracker and achieve
pleasant speed of 100 frames per second, while the precision is notoriously ineffective.
Nam et al. [3] design the shallow “shared layers + domain-specific layers” framework
for the acquisition of target representation and classification respectively, recom-
mending with the introduction of hard negative mining and bounding box regression
approaches. Therefore, they historically obtain the high accuracy, but regretfully only 1
frame per second in speed.

Correlation Filters Based Trackers. Correlation filters for visual tracking have
attracted considerable attention due to the high computational efficiency with fast
Fourier transforms (FFT). Bolme et al. [18] learn a Minimum Output Sum of Squared
Error filter over luminance channel for fast visual tracking. Henriques et al. [19]
propose CSK algorithm based on correlation filter by introducing kernel methods and
employing ridge regression, but the simplicity of gray features for learning and training
makes it lower accuracy. Subsequently they put forward the Kernelized Correlation
Filters (KCF) [20], extending the input features from single channel to multiple
channels namely HOG, but there is no ideal effect when faced with challenges of multi-
scale and fast motion. Xiong et al. [21] propose a kernelized correlation filters tracking
based on adaptive feature fusion, which combines global CN features and local HOG
features, solving the problem of tracking failure caused by simple feature due to
deformation and illumination. Danelljan et al. [22] figure out the fast scale estimation
problem by learning separate filters for translation and scale estimation. Ma et al. [11]
adaptively learn correlation filters on three convolutional layers to encode the target
appearance and hierarchically infer the maximum response of each layer to locate
targets. Wang et al. [23] propose to transfer the features of image classification to
visual tracking domain via convolutional channel reductions, which significantly
increases the tracking speed to real-time performances. Chi et al. [9] integrate the
hierarchical feature maps in different layers with an edge detector, and update it with
stochastic and periodic methods. Wang et al. [24] make full use of the strong dis-
criminative ability of structured SVM and advantage of correlation filter in speed,
combining with multimodal target detection and high-confidence update strategy to
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improve the speed and accuracy effectively. Danelljan et al. [1] introduce a factorized
convolution operator to reduce dimensions of features and propose a compact gener-
ative model to better the diversity of training samples, which effectively prevents the
samples from being contaminated by backgrounds and wrong targets.

3 Correlation Filters

A correlation filter based algorithm learns a discriminative classifier and estimates the
translation of the target by searching the maximum value of correlation response map
in the search window. Here, we denote x as the feature vector of size M � N � D,
where M, N and D indicate the width, height and the number of channels, respectively.
Algorithms based on correlation filters use cyclic offset to generate numbers of training
samples xm;n ¼ f0; 1; � � � ; M � 1g � f0; 1; � � � ; N � 1g, where m; n indicate shifted
position of the samples in the directions of width and height. The core problem of
correlation filters is to minimize the square error of the regression function f ðxÞ ¼ wtx,
that is to solve the following problem:

w� ¼ argmin
X

m;n

w � xm;n � yðm; nÞ�� ��2 þ k wk k22; ð1Þ

where wt is classifier parameter of frame t, w� is classifier parameter when the error is
minimized, w is classifier parameter, � is the inner product which is induced by a linear
kernel in the Hilbert space, y is Gaussian labeled function of training samples and k is a
regularization parameter. According to [19], we obtain the closed-loop solution quickly
in the Fourier domain by sampling the circulant matrix with shifting so can get the
classifier parameters of data’s filter on the d-th channel:

Wd ¼ Y � XdPD
d�1 Xd � Xd þ k

; ð2Þ

where Y is the Fourier transformation of the Gaussian labeled function y, the bar
indicates complex conjugation and d is the dimension. The operator � means Hada-
mard product.

Given a new image patch, we note zd as the convolutional feature. Therefore the
response for its Fourier transformation Zd and the classifier parameter Wd can be
computed by

f ¼ F
�1ð

XD

d¼1

Wd � ZdÞ ð3Þ

The operator F�1 denotes the inverse FFT. And therefore the target location can be
estimated by searching for the maximum value of the correlation response map f .
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4 Robust and Real-Time Visual Tracking Based on Single-
Layer Convolutional Features and Accurate Scale
Estimation

4.1 Single-Layer Convolutional Features and Bandwidth Adjustment
Strategy

According to [11], the last convolutional layer encode the semantic information and
such representations are robust to significant appearance variations; in contrast, earlier
layers provide precise localization but are less invariant to appearance changes. So it
encodes the object appearance with features extracted from multiple layers (C3-4, C4-4
and C5-4). But redundant features and amounts of computation make the tracking
speed rather poor, which is a big trouble for practical application. Therefore, we
propose to decrease to a single layer to speed up.

Along with the VGG-19 forward propagation, the semantic discrimination between
objects from different categories is strengthened, as well as a gradual reduction of
spatial resolution for precise localization. While in visual tracking task, we need fea-
tures extracted not only possess abundant semantic information to better adapt to
appearance variations, but also retain spatial information so as to localize targets. Thus,
compared with C3-4 which has better resolution while poor semantic information and
C5-4 which is in verse, we take layers before or after C4-4 into account, namely C4-3,
C4-4, C5-1, C5-2, C5-3 (more semantic information for appearance variations).

The VGG-19 network is trained by large-scale classification databases. But the
difference between classification and tracking lies in the former regarding the similar
objects as a category, while the other sorting out representations in all angles and
directions of an object from other objects. Therefore, there exist serious interferences
from backgrounds when applying the network to tracking. So we take the distribution
of training samples into account to increase their diversity to better the discriminative
ability for interferences.

(a)Image (b)Visualization   (c) C4-3  C4-4 C5-1 C5-2 C5-3

σ 0.15    

0.2    

0.1    

Fig. 3. Visualization of convolutional layers’ features with different r. (a) Image from
Basketball sequence and ground truth foreground mask. (b) Visualization of the input image
patch. (c) Feature map extracted from layers C4-3, C4-4, C5-1, C5-2, C5-3 with different
bandwidths of the Gaussian labeled function of training samples.
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For each shifted sample, there exists a Gaussian labeled function

yðm; nÞ ¼ expð� ðm�M=2Þ2 þðn� N=2Þ2
2r2

Þ;

where r (generally set to 0.1) is the Gaussian kernel bandwidth, determining the pixels’
classification. The lager bandwidth is, the more diversely the sample distributes, which
makes the classification of pixels more prominent (target or background) and is of
benefit to tracker. Figure 3 shows the relationship between the bandwidth r and the
layers in feature extraction of the input image. When increase the bandwidth r of
Gaussian labeled function to change the degree of concentration of the target and
backgrounds, the diversity of training samples will be changed and match the required
need of different layers. And thus we increase the value of r with the interval 0.05 and
find the layer C5-2 with bandwidth r ¼ 0:2 performs excellently. Therefore, we only
extract features for tracking task from a single layer.

4.2 High-Confidence Model Update

Most existed trackers update at each frame without considering whether the detection is
accurate or not. The ideal response map should have only one sharp peak and be
smooth in all other areas when the detected target is extremely matched to the correct
target as shown on the right in Fig. 4. However, the unimodal detection will regard the
highest peak as the target leading to false detection especially faced with interference of
similar object as shown in the middle. To guarantee the robustness, we exploit the high-
confidence model update [24] to tackle the challenging problems of occlusion and
interference of similar object. We define the average peak-to-correlation energy
(APCE) measure, which indicates the fluctuated degree of response maps and the
confidence level of the detected target, as

APCE ¼ fmax � fminj j2
meanðP

w;h
ðfw;h�fminÞ2Þ

; ð4Þ

target

interference

Fig. 4. Illustration for interference of similar object in sequence Girl2. The red bounding box
indicates the correct location of target while the yellow is interference. Apparently, the response
of the target is weaker. (Color figure online)
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where fmax, fmin and fw;h denote the maximum, minimum response score of the response
map and the w-th row h-th column elements of f .

When there are occlusion, interference and target missing, APCE will significantly
decrease. While when fmax and APCE are both greater than their respective historical
average values with certain ratios q1; q2, the tracking result in the current frame is
considered high confidence and then the proposed tracker will be updated online using
a moving average:

Ad
t ¼ ð1� gÞAd

t�1 þ gY � �Xd
t ;

Bd
t ¼ ð1� gÞBd

t�1 þ g
PD

i¼1
Xt � �Xt;

Wd
t ¼ Ad

t

Bd
t þ k

;

ð5Þ

where g is the learning rate and Wd
t is the correlation filter of t-th frame and d-th

dimension of the features.

4.3 Accurate Scale Prediction

To better accommodate useful features of the target in different scales, the accurate
scale estimation on a scale pyramid [22] is adopted. In visual tracking scenarios, the
scale difference between two frames is typically smaller compared to the translation
filter. Therefore, we first apply the translation filter Wd given a new frame. According
to the scale pyramid which is constructed the size of the target at its estimated scale,
each image patch is zoomed into the appropriate scale. Let w � h donate the target size
in the current frame and S be the size of the scale filter. For each i 2 f� S�1

2 ; . . .; S�1
2 g,

we exact an image patch Ji of size sdw � sdh, where sd [ 1 denotes the scale factor
between feature layers, centered around the target position predicted by the translation
filter. Afterwards, the scale filter Ws is applied at the new target location. An example x
computed by extracting features using variable patch size centered around the target is
extracted from this location. By maximizing the correlation output (4) between Ws and
x, we obtain the scale difference. That is

s ¼ argmaxðmaxðf1Þ; maxðf2Þ; � � � ; maxðfiÞÞ; ð6Þ

where fi is response map of scale filter. In addition, to obtain a robust approximation,
(5) is used to update the scale filter with the new sample x.

5 Experiments

We implement out algorithm in Matlab R2015b underlying Ubuntu 16.04 system, and
utilize the MatConvNet toolbox in this work. Our implementation runs at 29.4 frames
per second on a computer with an Intel I5-4590K 4.00 GHz CPU, 8 GB RAM, and a
GeForce GTX1070 GPU card. All the following experiments are carried out with the
fixed parameters: the tradeoff parameter is set to k ¼ 0.0001; the learning rate is set to
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g ¼ 0:01; the Gaussian kernel bandwidth for translation filter is 0.2, while S ¼ 33
number of scales with a scale factor of sd ¼ 1:02 with kernel bandwidth 0.1. We set
value of q1, q2 in high-confidence model update 0.3 and 0.6 respectively.

We compare our algorithm with 11 recent state-of-the-art trackers: MEEM [25],
DLSSVM [26], KCF [20], SRDCF [27], SAMF [28], Staple [29], DSST [22], CF2
[11], MSDAT [23], CNN-SVM [15], HDT [12]. Among them, MEEM is developed
based regression and multiple tracker, DLSSVM is structured SVM based method,
KCF, SRDCF, SAMF, Staple, DSST are CF based methods, these above are designed
with conventional hand-crafted features, while CF2, MSDAT, CNN-SVM, HDT are
based on CNN features.

Comparison with State-of-the-Art Trackers
To fully assess our method, we use one-pass evaluation (OPE) metric on a large object
tracking benchmark dataset OTB100 which contains 100 image sequences. For com-
pleteness, we also report the results on the benchmark OTB2013 [5], which is a subset
of benchmark OTB100 [6].

To verify the contribution of each component in our algorithm, we implement and
evaluate three additional variations of our tracking algorithm on OTB100—Ours with
the Gaussian bandwidth r ¼ 0:1 (r ¼ 0:1); Ours without APCE model update strategy
(noapce) and Ours without APCE model update strategy and scale estimation (noap-
cescale). The performance of all the variations are not as good as our full algorithm
(Ours) and each component in our tracking algorithm is helpful to improve perfor-
mance. The detailed results are illustrated in Fig. 6.

(a) Evaluation results on OTB2013          (b) Evaluation results on OTB100
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Fig. 5. Average precision plots and success plots over 50 and the entire 100 benchmark sequences
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Quantitative Evaluation. We evaluate the proposed algorithm with comparisons to
11 state-of-the-art trackers. Figure 5 illustrates the precision plots and success plots
under OPE metric. Obviously, the proposed algorithm performs favorably against the
state-of-the-art methods. Moreover, we present the quantitative comparisons of average
distance precision rate (DPR), average overlap success rate (OSR) and average center
location error (CLE) on two benchmarks [3, 4] in Table 1. The first, second and third
best values are highlighted in color. Among the trackers, ours achieves the best results
and obtains the lower CLE of 21.3 pixels over 100 video sequences compared to the
baseline CF2 with 22.8 pixels.

Attribute-Based Evaluation. To thoroughly evaluate the robustness of the proposed
algorithm in various scenes, we summarize the performances based on OTB100
dataset, where all videos are annotated with 11 different attributes, namely: illumination
variation (IV), out-of-plane rotation (OPR), scale variation (SV), occlusion (OCC),
deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-
of-view (OV), background cluttered (BC) and low resolution (LR). For clarity, we
report the results in Table 2. Our tracking algorithm achieves the best performances
under 9 out of 11 attributes in terms of DPR and obtains 10 out of 11 when it comes to
OSR but doesn’t perform well in handling fast motion and low resolution, which can be
explained that features from a single layer can’t contain rich spatial details from earlier
layers and semantics from last layer simultaneously. Overall, compared with other
state-of-the-art tracking algorithms, ours can better locate the target object.

Qualitative Evaluation. We present some tracking results of the top performing
tracking methods in Fig. 7: DSST [21], Staple [29], CF2 [11], MSDAT [23], KCF [20]
and the proposed algorithm on 12 challenging sequences. KCF learns a kernelized
correlation filter over HOG features. It doesn’t perform well in deformations (Couple,
Girl2, Skiing, Bolt2), motion blur and fast motion (BlurCar2). DSST performs well in
sequences with scale variations (Shaking, Lemming), but fails when there are in-plane
rotation (Diving, MotorRolling) and background clusters (DragonBaby, Freeman4,
Couple and Bolt2) occur. Staple combines a correlation filter (using HOG features)
with a global color histogram and thus achieves excellent performance to challenging

Table 1. Comparisons of average DPR, OSR and CLE with state-of-the-art trackers on
OTB2013 and OTB100.
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Table 2. Average DPR and OSR of our tracker and other top five trackers on different attributes.
The first and second highest values are highlighted by bold and underline.

Attributes DPR (%) on eleven attributes OSR (%) on eleven attributes

Ours HDT CF2 MSDAT CNN-
SVM

SRDCF Ours HDT CF2 MSDAT CNN-
SVM

SRDCF

IV 86.7 82.0 81.7 82.5 79.5 79.2 78.2 60.8 61.6 63.5 61.5 74.7

OPR 84.7 80.5 80.7 79.7 79.8 74.2 74.2 62.7 62.9 63.6 64.9 66.4

SV 82.8 80.8 79.9 77.1 78.7 74.5 71.1 51.4 51.9 50.8 52.9 66.7

OCC 79.4 77.4 76.7 74.0 73.0 73.5 70.2 61.1 60.6 59.7 60.6 68.4

DEF 83.1 82.1 79.1 79.2 79.3 73.4 71.7 61.8 60.3 60.4 63.4 66.7

MB 81.5 78.9 80.4 76.1 75.1 76.7 77.7 68.9 69.8 65.9 71.5 72.9

FM 79.9 81.7 81.5 74.4 74.7 76.9 73.9 66.4 66.8 63.4 64.9 71.7

IPR 87.8 84.4 85.4 85.4 81.3 74.5 76.0 65.7 66.2 67.6 65.7 66.2

OV 71.5 66.3 67.7 62.7 65.0 59.7 61.6 54.7 54.0 56.0 59.1 55.8

BC 86.6 84.4 84.3 83.3 77.6 77.5 77.8 71.3 72.1 72.5 68.1 70.1

LR 83.3 88.7 84.7 85.0 92.5 76.5 52.9 35.4 32.7 35.9 29.3 66.8
Overall 86.8 84.8 83.7 82.1 81.4 78.9 77.6 65.7 65.5 65.5 65.1 72.8

Proposed      DSST      Staple      CF2      MSDAT      KCF         

Fig. 7. Qualitative evaluation of the proposed algorithm and other five state-of-the-art trackers
on twelve challenging sequences (from left to right and top to bottom are Sylvester, DragonBaby,
BlurCar2, MotorRolliing, Bolt2, Shaking, Couple, Diving, Skiing, Freeman4, Girl2, Lemming)
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situations exhibiting motion blur (BlurCar2, DragonBaby) but notoriously sensitive to
deformation (Diving, Girl2, MotorRolling, Skiing) as hand-crafted features are not
effective in accounting for large appearance changes. CF2 is the baseline of MSDAT
and Ours. Both of the two use deep features to represent object appearance so that they
could fully exploit the semantic and fine-gained information as we do and can deal with
these cases to some degree. Nevertheless, they still fail when heavy occlusion happens
with other situations such as deformation and fast motion (BlurCar2, Girl2). Compared
with these trackers, our approach accurately estimates the target scale and translation
despite the mentioned factors.

6 Conclusions

In this paper, we propose an object tracking method combining the CNNs features with
correlation filter. Hence the proposed algorithm absorbs the powerful representation
ability from convolutional features and speeds up by correlation filter algorithm sig-
nificantly. The accurate scale prediction and high-confidence model update strategy are
adopted to improve the precision. It is worth to emphasize that our proposed algorithm
not only performs superiorly, but also runs at a speed of 29.4 which is sufficient for
real-time applications.
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