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Foreword

Is aging a disease? Are age-related diseases distinct from aging? Is aging a bad 
thing? Is aging a solvable medical problem?

These questions are highly divisive. To most people, it is extraordinary that the 
questions would even be asked, because the answers are so self-evident – but, of 
course, that is true both of people whose answers would be “yes” and of those 
whose answers would be “no.” And that, itself, is unequivocally a problem – a BIG 
problem.

It turns out, furthermore, that the tenor of the debate around these questions var-
ies considerably according to culture. I have lived most of my life in England, but 
now I live in California, where I find that there is far more agreement with my own 
answers to the above questions (which are “no,” “no,” “yes,” and “yes,” in case you 
were wondering) than elsewhere. Conversely, I find that the consensus in Asian 
countries is extraordinarily opposed to this way of thinking and wedded instead to 
the view that aging is a natural, inevitable, and welcome process that is utterly off- 
limits to medicine. This attitude to aging has something of a silver lining, in that it 
also underpins the deep-seated respect for the elderly of which Asian cultures are 
legitimately proud: the far better integration of the elderly in society, the encourage-
ment to remain active late in life, and so on. But in the long run, it is a huge problem. 
It prevents Asian countries from contributing, to the extent that they could, to medi-
cal research efforts directed at keeping the elderly truly healthy, let alone achieving 
the ultimate goal of restoring them to genuinely youthful mental and physical 
performance.

I will lay my cards on the table here: I believe that this is the wrong kind of 
respect for the elderly. Even in the West, and though things are gradually improving, 
a seriously problematic level of ambivalence persists with regard to these ques-
tions – a degree of doubt as to the wisdom or practicality of efforts to bring aging 
under medical control  – that powerfully limits access to funding for such work, 
thereby slowing it and thereby costing vast numbers of lives in the future. But this 
lack of enlightenment in Asia is far more severe.

This volume has the potential to help change that. The research teams that have 
authored these chapters are mostly based in Asia (I’m going to count Turkey as Asia 
for this purpose!) or originate from there, and as a result I expect (and hope) that the 
book will attract a strong audience in that part of the world, though without doubt it 
will also appeal to a worldwide audience. By providing scientists and interested 
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laypeople with authoritative, up-to-date information concerning the status and prog-
ress of research into aging, this book will raise the quality of debate around the 
questions with which I began this foreword. And there can only be one outcome of 
that: a broader and more crystallized understanding that aging is indeed a solvable 
medical problem and one to which all nations and cultures have the opportunity, and 
the humanitarian duty, to contribute.

 Aubrey D. N. J. de GreyChief Science Officer, SENS Research Foundation
Mountain View, CA, USA
VP New Technology Discovery, AgeX Therapeutics
Alameda, CA, USA
Editor in Chief, Rejuvenation Research
New York, NY, USA

Foreword
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Preface

Since the dawn of civilization, man has always been fascinated by the thought of 
living longer. Every system of medicine around the world has tried to provide some 
intervention for a longer life-span. The ancient Indian text, Rigveda (> 1000 BC), 
mentions a drink “amrita” which can bestow immortality. However, until 1950s, 
scientists had little understanding of aging, which is evident from the lecture of Sir 
Peter Medawar delivered at University College London in 1951, entitled “An 
Unsolved Problem in Biology.”

The last few decades have seen tremendous advances in the understanding of 
molecular events which underline the process of aging. It is indeed a big achieve-
ment of science that we now have a better view of the hallmarks of aging. This 
understanding has provided gerontologists with “targets” which can be exploited 
for possible anti-aging interventions.

Finding an anti-aging intervention is far more difficult than finding a cure to any 
disease. Aging per se is not a disease; however, with age, the body becomes predis-
posed to a host of ailments affecting different organs, which culminate into loss of 
function and ultimately death. Interestingly, while the rate of aging for a given spe-
cies remains the same, the aging process is highly heterochronic.

Intervening into aging is the next frontier in contemporary medicine and will 
remain to be of increasing importance over time as other sources of poor health are 
addressed more and more successfully. Aging being a highly complex event throws 
up a huge array of scientific explanations, all of which provide, to some extent, 
convincing arguments. In the light of such variation in possible theories which 
explain the process of aging, the strategies being experimented for anti-aging inter-
ventions are also highly diverse.

Literature is scattered for possible anti-aging interventions. Moreover the plural-
ity of the events which constitute the aging mechanism makes it extremely challeng-
ing to find an intervention which may be considered “anti-aging” in a holistic sense. 
Despite the complexities, new scientific evidence emerging with continuous 
research continues to present interesting targets for devising anti-aging strategies. 
This book is an attempt to provide a compact source of emerging anti-aging inter-
ventions which offer hope for a longer healthspan, based on our current understand-
ing of the aging process.

A huge array of literature exists which espouses the role of dietary antioxidants 
as possible anti-aging agents. Although this presumption is largely due to the role of 
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polyphenols in counteracting oxidative damages which accompany aging, several 
large-scale clinical trials have failed to come up with concurring results. We how-
ever feel that the dietary efficacy of antioxidants may have cultural/geographical 
differences. Regions where the diet is largely deficient in antioxidants may benefit 
from an intervention strategy based on dietary polyphenols. Keeping this aspect in 
view, this book offers three chapters (Chaps. 15, 18, and 21) which provide a 
detailed overview of the role of polyphenols in aging.

Chapters 2, 3, and 4 highlight approaches that include noncoding RNAs, stem 
cell reprogramming, and tissue engineering, which have potential to provide anti- 
aging strategies based on highly specialized techniques. Senescent cells are known 
to contribute to disease onset and progression through complex cell and non-cell- 
autonomous effects; as a result, cellular senescence is being increasingly associated 
with aging. Chapters 5 and 6 deal with senotherapeutics.

The understanding of the signaling pathways has provided molecular targets 
which can be targeted for anti-aging effects. Chapters 9 and 10 are focused on 
mTOR inhibition and sirtuin modulation. Age-related diseases and frailty syn-
dromes share some common features which converge on inflammation. Chapters 8 
and 23 provide an insight into the role of inflammation in aging and anti-aging 
interventions based anti-inflammatory approaches.

Important topics providing anti-aging approaches based on telomerase activity, 
intermittent fasting, melatonin, and phytochemicals have been included in Chaps. 7, 
13, 14, and 17. The activation of plasma membrane redox system (PMRS) has been 
suggested as a novel strategy for anti-aging intervention (Chap. 19). An interesting 
approach involves the use of computational methods (Chap. 12). Interventions 
against sarcopenia (Chap. 20) and brain injury-induced aging (Chap. 22) are also 
included in our book.

We would like to thank all our contributors who provided us with excellent chap-
ters making possible the compilation of this book.

Allahabad, Uttar Pradesh, India Syed Ibrahim Rizvi
Istanbul, Turkey Ufuk Çakatay

Preface
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1Aging Principles and Perspectives 
for Intervention

Suresh I. S. Rattan

Abstract
The evolutionary and the biological principles of aging are now well established, 
and these show that aging is not determined by any specific gerontogenes. 
Instead, it is the imperfect maintenance and repair systems that lead to a progres-
sive failure of homeodynamics, aging and eventual death. Gene therapy, stem 
cell therapy, hormonal replenishment and nutritional supplementations, tested 
mostly in experimental model systems, have achieved limited success for 
humans. The complex trait of aging requires wholistic approaches for maintain-
ing or improving health in old age. A promising approach for health maintenance 
and improvement is that of mild stress-induced physiological hormesis. Physical 
and mental exercise, various non-nutritional food components, such as polyphe-
nols, flavonoids and terpenoids in spices, oils and other formulations are horme-
tins, which have health beneficial effects through physiological hormesis. The 
future scenarios for aging intervention include intelligent redesigning and trans- 
humanistic enhancements through robots and cyborgs combining both organic 
and biomechatronic body parts.
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1.1  Introduction

Improving health, preventing aging and extending lifespan is one of the longest run-
ning dreams of human beings. While searching for an elixir for eternal life may still 
occupy the minds of some, modern biogerontology has shifted the focus towards 
developing and utilizing more realistic, rational and evidence-based approaches. 
Therefore, in order to fully appreciate and evaluate such approaches, it is important 
to have an overview and understanding of the current status of aging research, 
 especially that of the study of the biological basis of aging. The aim of this article is 
threefold: (1) to provide a general review of the evolutionary, cellular and molecular 
bases of aging, (2) to discuss homeodynamics of survival and (3) to present a critical 
appraisal of various approaches towards modulating aging, including its  prevention 
or reversion, enhancement of health and extension of healthspan.

It is now generally accepted that the biological basis of aging are well understood 
(Holliday 2006; Hayflick 2007a). As a result of this achievement of biogerontology, 
a conceptual framework and general principles of aging and longevity have been 
formulated. The three main biological principles of aging and longevity are sum-
marized in Table 1.1.

In accordance with the above principles, aging is an epigenetic, emergent and a 
meta-phenomenon, which is affected by numerous factors. While no tissue, organ or 
system becomes functionally exhausted even in very old organisms, it is their col-
lective interaction and interdependence at all levels that is decisive of overall health 
and survival. The contribution of genes to the lifespan of an individual is considered 
to be about 25%, as calculated from the longevity-correlation analyses performed 
on the data for the lifespan variance among siblings and monozygotic and dizygotic 
twins (Herskind et al. 1996). This means that non-genetic, epigenetic and environ-
mental factors, including lifestyle, have much larger influence in determining the 
health, quality and the length of lifespan of an individual. This also implies that 
aging, healthspan and lifespan are not predetermined and can be affected by various 
methods of intervention.

Table 1.1 Principles of biological aging and longevity

1. Aging starts after essential lifespan: Biological aging is a progressive loss of physical 
function and fitness, which occurs during the extended period of survival beyond the natural 
lifespan of a species, termed “essential lifespan” (ELS) (Rattan 2000a, b; Rattan and Clark 
2005)
2. Aging is a post-genetic emergent phenomenon: Aging phenotype is an emergent 
phenomenon observed in highly protected environments allowing survival beyond ELS. There 
is no genetic programme for determining the exact duration of survival of an individual; and 
there are no gerontogenes whose evolutionary function is to cause aging and limit the lifespan 
(Rattan 1995; Holliday and Rattan 2010)
3. Heterogeneity of the aging phenotype: The rate of progression and phenotype of aging are 
different in different species, in organisms within a species, in organs and tissues within an 
individual, in cell types within a tissue, in subcellular compartments within a cell type and in 
macromolecules within a cell (Rattan 2012a, 2016b)

S. I. S. Rattan
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1.2  Basis of Survival: Homeostasis Versus Homeodynamics

What makes living systems different from the inorganic and nonliving systems is 
their intrinsic ability to respond, to counteract and to adapt to the external and inter-
nal sources of disturbance. The traditional term to describe this ability is homeosta-
sis, which, however, is not totally correct. The main reason for the incompleteness 
of the homeostasis model is its notion of “stability through constancy”, which does 
not take into account the dynamic nature of information and interaction networks 
that underlie the complexity of the biological systems. Therefore, the term homeo-
dynamics encompasses the fact that, unlike machines, the internal conditions of 
biological systems are not permanently fixed, are not at equilibrium and are under 
constant dynamic regulation and interaction among various levels of organization 
(Yates 1994).

The property of homeodynamics of the living systems is founded in a wide range 
of maintenance and repair processes at all levels of organization (Table 1.2). All 
these processes are governed by hundreds of survival-assurance genes, which give 
rise to a “homeodynamic space”, as the ultimate determinant of an individual’s 
chance and ability to survive and maintain health (Rattan 2006, 2012a). Aging, 
 age-related diseases and eventual death are the result of a failure of homeodynam-
ics. This fact is also reflected in the definition of aging as a progressive shrinkage of 
the homeodynamic space (Rattan 2006, 2012a).

1.3  Genetics and Epigenetics of Aging

Since all molecular processes in living systems are based in and regulated by  
genes and gene products, discovering genes for aging has been an important theme 
in biogerontology. However, evolutionary theories of aging and longevity discount 
the notions of any specific genes for aging (Kowald and Kirkwood 2016). 

Table 1.2 Main maintenance and repair pathways in biological systems arranged from molecular 
to whole body level

Nuclear and mitochondrial DNA repair
Anti-oxidative enzymes and free radical scavengers
Degradation of damaged DNA and RNA
Protein repair
Degradation of damaged proteins
Degradation of damaged organelles
Programmed cell death – apoptosis
Intracellular stress responses
Detoxification of harmful chemicals and metabolites
Immune responses
Wound healing and tissue regeneration
Other higher-order defences, thermal regulation, neuroendocrine balance and circadian 
rhythms

1 Aging Principles and Perspectives for Intervention
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Furthermore, the strong heterogeneity of the aging phenotype is indicative of the 
fact that the progression of aging is neither programmed nor deterministic but 
mostly mediated by stochastic events (Holliday 2007, 2009). On the other hand, 
aging does appear to have a genetic component, and the role of genes in aging is 
indicated by (1) an apparent limit to lifespan within a species (Carnes et al. 2003; 
Dong et al. 2016), (2) some heritability of lifespan as evident from studies on twins 
(Tan et al. 2013), (3) presence of human genetic mutants of premature aging syn-
dromes (Kipling et al. 2004; Martin et al. 2007) and (4) association of some gene 
polymorphisms with extreme longevity (de Magalhaes 2014b).

In order to resolve the paradox of stochastic nature of the progression of the 
aging and the genetic aspects of longevity, a novel view about the nature of aging 
genes, termed gerontogenes, has been put forward, and a modified term “virtual 
gerontogenes” has been suggested implying the altered state of survival genes as 
giving the appearance of being the real aging genes (Rattan 1985, 1995). This notion 
of virtual genes also applies to several so-called disease-causing genes. For exam-
ple, the Werner gene, which is considered to “cause” the premature aging syndrome, 
is in reality a DNA helicase gene whose normal role in DNA replication and repair 
prevents the emergence of the Werner’s syndrome, and it is only when this gene is 
altered by mutation that the disease phenotype emerges (Goldstein et al. 1990). The 
same applies to most of the so-called oncogenes, which are cancer- causing only 
when they are mutated and cannot perform their normal function (Tacutu et  al. 
2011).

The nature of virtual gerontogenes is considered to be of two types: (1) genes with 
mutations already present at the time of fertilization and birth and that manifest any 
deleterious effects after the period of growth, development and maturation (Partridge 
2001; de Magalhaes 2012) and (2) the antagonistic pleiotropic genes, which were 
selected for survival benefits during early development but which can have poten-
tially harmful effects in post-reproductive life when they are no longer under the 
force of natural selection (Kirkwood and Rose 1991; Holliday and Rattan 2010).

There is a large body of evidence showing that the genes involved in the mainte-
nance and repair pathways are the main determinants of species’ longevity (Rattan 
2015a). Experimental extension of lifespan of various organisms and comparative 
studies of species with widely varying lifespans provide such evidence. Such genes 
are commonly known as the longevity assurance genes (LAG) or vitagenes that 
determine the ELS of a species (Rattan 2007). These longevity assurance genetic 
pathways include the efficiency of deoxyribonucleic acid (DNA) repair (Rattan 
1989; Park et al. 2011), the fidelity of genetic information transfer (Kirkwood et al. 
1984), the efficiency of protein degradation (Schmidt and Finley 2013), cellular 
responsiveness to stress (Kapahi et al. 1999) and the capacity to protect from free 
radical- and oxidation-induced molecular damage (Jones 2015). A very important 
understanding to emerge from the above studies is that the diversity of genes associ-
ated with aging and longevity of different organisms implies that there is no single 
and universal pathway affecting these phenotypes. It seems that whereas from an 
evolutionary point of view the genes involved in repair and maintenance pathways 
are important as the LAG, each species has also evolved additional species-specific 

S. I. S. Rattan
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pathways of aging. Such genetic pathways have been termed as public and private 
pathways, respectively (Martin 2007).

In addition to the genetic aspects of aging and longevity, there is a lot of interest 
in understanding the epigenetic aspects of aging (Pal and Tyler 2016; Sen et  al. 
2016). Methylated cytosines, oxidatively modified nucleotides, alternatively spliced 
RNAs and post-translationally modified proteins, including protein folding, com-
prise the main intracellular epigenetic markers (Lund and van Lohuizen 2004). 
Since the full spectrum of epigenetics of aging is yet to be unraveled, it is one of the 
most attractive and challenging areas of research in biogerontology (Johnson et al. 
2012; Heyn et al. 2012; Hannum et al. 2013). A major reason for the apparent dif-
ficulties in fully understanding the epigenetics of aging is the existence of several 
orders higher complexity and diversity of the constituting components, such as 
physical, chemical, biological and environmental factors, including psychological 
factors in human beings. Furthermore, a lot of epigenetic modifications can occur 
reversibly on a daily basis, depending on several lifestyle factors (Gensous et al. 
2017; Chaleckis et al. 2016).

1.4  Molecular Mechanisms of Aging

The theories of the molecular mechanisms of aging are mostly centred on the occur-
rence and accumulation of damage (Yin and Chen 2005; Rattan 2006, 2008b). 
Although other views, such as continuous growth leading to a kind of quasi- 
programme (Blagosklonny 2012), and progressive increase in entropy (Hayflick 
2007b) are also discussed as the mechanisms of aging, the occurrence and accumu-
lation of molecular damage are the most studied aspects of molecular gerontology.

There are three main types of sources for the origin of macromolecular 
damage:

 1. Chemical species (e.g. reactive oxygen species (ROS) and other free radicals 
(FR)) formed due to external inducers of oxidative damage and as a consequence 
of cellular metabolism involving oxygen, metals and other metabolites (Forman 
2016).

 2. Nutritional glucose and its metabolites and their biochemical interactions with 
ROS and FR (Nedic et al. 2015; Tanase et al. 2016).

 3. Spontaneous errors in biochemical processes, such as DNA duplication, tran-
scription, post-transcriptional processing, translation and post-translational 
modifications (Nyström 2002).

An age-related increase in the levels of various types of macromolecular dam-
age, including DNA, RNA, protein, carbohydrates and lipid damage, is well docu-
mented (Holliday 2007; Rattan 2006, 2012a). Often, the mechanistic theories of 
biological aging have focused on a single category of damage inducers as a univer-
sal explanation. For example, the free radical theory of aging (FRTA), proposed by 
Denham Harman in 1954, is based on the premise that a single biochemical process 
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of FR-induced damage may be responsible for the aging and death of all living 
beings (for an update, see Harman 2006). In support of this idea, there is a signifi-
cant amount of evidence that shows that ROS and other FR are indeed involved in 
the occurrence of damage and can lead to structural and functional disorders, dis-
eases and death. However, a lack of incorporation of the essential role of FR in the 
normal functioning and survival of biological systems has raised several points of 
criticism about FRTA (Gruber et  al. 2008; Halliwell 2009). Furthermore, FRTA 
presents FR as the ultimate cause of damage while ignoring the fact that there are 
large differences in the range of FR-counteracting mechanisms in different species 
(Vina et al. 2013; Jones 2015). In addition, contrary and/or lack of beneficial results 
of antioxidant and FR-scavenging therapies as predicted by FRTA have restricted 
FRTA to being only a partial explanation of aging (Le Bourg and Fournier 2004; Le 
Bourg 2005; Howes 2006).

The biological consequences of increased levels of molecular damage are wide- 
ranging and include mutations, altered gene expression, cell cycle arrest, cell death, 
loss of intercellular communication, disorganization of the tissues, dysfunctioning 
of the organs, reduced stress tolerance and reduced ability to adapt (Rattan 2008b): 
Each of these biological consequences has, historically, been used as the basis of 
developing other so-called theories of aging, such as pineal gland theory, neuroen-
docrine theory, immunological theory, replicative senescence theory, etc. However, 
at present, the occurrence and accumulation of molecular damage as the basis of 
age-related failure of homeodynamics are considered as a unified explanation for 
biological aging (Rattan 2006, 2008b).

1.5  Aging Interventions: Treatment, Prevention or 
Management

One’s approach towards intervention in aging can be influenced by one’s under-
standing of aging either being a disease that needs to be treated or being a condition 
emerging from the basic life processes, which can be modulated to some extent. 
Since aging is an emergent phenotype due to the failure of homeodynamics and not 
due to the action of any life-limiting and death-causing mechanisms, it changes 
aging interventional approach from “anti-aging” to “healthy aging”. Aging occurs 
in spite of the presence of complex pathways of maintenance, repair and defence, 
and there is no “enemy within” that needs to be eliminated. Even the diseases of old 
age, such as Alzheimer, Parkinson, type 2 diabetes and cancers, have no simple 
causative agents except for the life processes themselves.

Table 1.3 presents the rationale behind the present and future strategies for aging 
interventions, which are briefly discussed below.
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1.5.1  Piecemeal Remedies

One of the most common and prevalent biomedical approaches to aging interven-
tion is the so-called piecemeal remedies. The basic logic behind this approach is to 
“fix what is broke”; and it ranges from cosmetics to the tissue/organ repair or trans-
plantation, targeted treatments with stem cells, and rejuvenation with young blood/
plasma transfusion (Goodell and Rando 2015; Rebo et al. 2016; Castellano et al. 
2015). More recently, elimination of senescent cells by potential senolytic com-
pounds is becoming an increasingly appealing approach (Naylor et al. 2013; Cortese 
and Santostasi 2016; He and Sharpless 2017; de Keizer 2017). Although such inter-
ventions often have life-saving effects in acute situations, these benefits are often 
transient, limited and require recurring interventions (Kyriazis 2014).

1.5.2  Replenishment and Supplementation

One of the most widely used aging interventional strategies, tested mostly in animal 
model systems, is that of replenishing the loss. However, the naïve premise of this 
approach is that age-related decline in the levels of hormones, enzymes and other 
metabolites is always harmful and that these declined levels should be brought back 
to the youthful levels. This view almost totally ignores the biogerontological under-
standing that many changes occurring during aging are often the sign of remodel-
ling and adaptation for survival and health (Davies 2016; Martin et al. 2015). For 
example, a reduction in the levels of various hormones and their intermediates and 
receptors seems to be a co-requirement for the extension of lifespan of organisms, 
as determined by genetic and non-genetic interventions (Rattan and Sharma 2017). 
Similarly, unexpectedly long-living naked mole rats and bats generally have much 
lower levels of hormones than short-lived species (Gorbunova et  al. 2014;  
Brunet-Rossinni and Austad 2004). Furthermore, some claims have been made  
that the increased longevity of eunuchs and castrated men could be due to their  
low levels of growth hormone and sex steroids (Min et  al. 2012). Therefore,  

Table 1.3 The present and future strategies for aging intervention

Strategy Interventions
Piecemeal remedy – “fix 
what is broken”

Cosmetics, tissue and organ repair, organ transplantation, 
senescent cell removal, young blood/plasma transfusion, stem 
cells

Replenishment and 
supplementation

Hormones, nutritional supplements with synthetic and natural 
molecules including antioxidants, vitamins and phytochemicals

Strengthening the 
homeodynamics

Hormesis through nutritional hormetins, food physical activity, 
immunological challenge and social and cognitive engagement

Gene therapy and 
intelligent redesigning

Gene therapy, genetic and bodily enhancements, trans-humanistic 
cyborgs and robotics

1 Aging Principles and Perspectives for Intervention
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several biogerontologists have cautioned that hormonal and nutritional supplemen-
tation as replenishments may have little, none or even harmful effects in normal 
healthy situations (Le Bourg 2005; Rizvi and Jha 2011; Sadowska-Bartosz and 
Bartosz 2014; Conti et al. 2016; Vaiserman et al. 2016).

1.5.3  Strengthening the Homeodynamics

Biogerontologists are increasingly realizing that “single-molecule, single-target” 
oriented approaches for aging intervention are severely limited because these 
neglect the highly dynamic, interactive and networking nature of life. Therefore, 
whole body level holistic or more accurately “wholistic” (in order to distinguish 
science-based approaches from the “everything goes” holistic claims) approaches 
are being tested and developed as promising aging interventions. Food, physical 
activity and mental engagement come under such wholistic interventions, which 
strengthen the homeodynamics (Rattan 2015b, 2017). One such wholistic interven-
tionary approach is that of hormesis.

Physiological hormesis in health maintenance and improvement is defined as 
the life-supporting beneficial effects resulting from the cellular and organismic 
responses to repeated and transient exposure to mild stress (Le Bourg and Rattan 
2008; Mattson and Calabrese 2010; Rattan 2014). Moderate physical exercise is 
the paradigm for stress-induced physiological hormesis (Sen et al. 2000; Radak 
et al. 2005; Williamson and Pahor 2010). Other stress inducers which have been 
shown to affect aging of cells and animals include acetaldehyde, alcohols, dietary 
restriction, flavonoids, heat shock, heavy metals, hypergravity, intermittent fasting, 
infections, irradiation, pro-oxidants, polyphenols and terpenoids (Le Bourg and 
Rattan 2008; Mattson and Calabrese 2010; Rattan 2014; Weis et  al. 2017). An 
important observation in studies of physiological hormesis is that a single stressor, 
such as heat shock or exercise, can strengthen the overall homeodynamics and 
enhance other abilities, such as adaptability, cognition, immune response, memory, 
resilience and overall robustness. These systemic and wholistic effects are gener-
ally achieved by initiating a cascade of processes that result in a biological ampli-
fication of effects.

All such conditions, which bring about health beneficial effects by initially caus-
ing low-level stress, are termed as hormetins (Rattan and Demirovic 2009, 2010a, 
b). Hormetins can be further categorized as (1) physical hormetins, such as heat, 
radiation and physical exercise; (2) nutritional hormetins, such as phytochemicals in 
spices, micronutrients and other natural and synthetic food components; and (3) 
psychological or mental hormetins, such as brain exercise through cognitive games 
and challenges, including solving puzzles, social engagement, focused attention and 
meditation (Brewer et al. 2011; Stark 2012; Duraimani et al. 2015).

The molecular basis of hormesis lies in the activation of stress response path-
ways on exposure to single or multiple rounds of mild stress (Rattan 2008a; 
Demirovic et al. 2014). Whereas severe and chronic stress results in the weakening 
of homeodynamics and can lead to functional impairments, diseases and death, 
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transient and mild stress strengthens the homeodynamic ability of a biological sys-
tem (Demirovic and Rattan 2013). It is important to recount that although the mea-
surable effects after a single round of mild stress exposure are usually small, a 
repeated exposure results in the biological consequences which are cumulative, 
amplified and physiologically significant, as exemplified by the health beneficial 
effects of repeated moderate exercise.

It should also be pointed out that several so-called antioxidants, including numer-
ous plant components, some vitamins and micronutrients, are actually stress- 
inducing hormetins and that their biological effects as being antioxidants are not 
due to the compounds themselves being direct antioxidants (Panossian 2017; Qi 
et al. 2017; Linnane et al. 2007; Mocchegiani et al. 2011; Martucci et al. 2017; Li 
et al. 2017; Camandola and Mattson 2017; Pallauf et al. 2016). Discovering novel 
hormetins is a developing area of research, which is also drawing significant atten-
tion of the aesthetic, healthcare and food industry (Rattan 2012b; Rattan et al. 2013).

Some possibilities of discovering novel hormetins by activating different SR 
pathways are food-restriction mimetics and other inducers of autophagy (Ingram 
and Roth 2015; Darzynkiewicz et al. 2014), antidiabetic drug metformin (Barzilai 
et al. 2012; Campbell et al. 2017), DNA repair response inducers (Darzynkiewicz 
et  al. 2014), resveratrol and its analogues as inducers of sirtuin stress response, 
inducers of Nrf2-mediated oxidative stress response (Kumar et  al. 2014) and 
NF-kB-mediated anti-inflammatory response (Haas 2009; Martucci et  al. 2017). 
Diet-microbiota interactions may also involve stress response-mediated hormesis 
for their health beneficial effects (Sonnenburg and Backhed 2016). A detailed data-
base for aging-related drugs has also been developed (Barardo et al. 2017).

1.5.4  Gene Therapy and Intelligent Redesigning

Biogerontologists have identified hundreds of putative gerontogenes as potential 
targets for gene therapy against aging (for the latest information on such genes, refer 
to various online databases, such as http://genomics.senescence.info/genes/) (de 
Magalhaes 2014b). However, it is important to realize that in almost all such stud-
ies, the extension of lifespan by gene therapy was observed when a significant 
reduction or total inhibition of the activity of one or more genes was achieved. For 
example, one of the earliest experimental studies performed on the nematode C. 
elegans demonstrated that a chemically induced mutation in a single gene age-1 
resulted in a significant increase in the lifespan of the mutated worms (Friedman 
and Johnson 1988a, b). Other examples of such “loss of function” gene therapies 
associated with extended period of survival are (1) nutrition and hormonal sensing 
and signalling including insulin/insulin-like growth factor-1 and its target forkhead 
transcription factor (FOXO), (2) energy generation and utilization in mitochondrial 
respiratory chain and (3) translational interference through target of rapamycin 
(TOR) (North and Sinclair 2007; Chen et al. 2005; Kenyon 2001, 2005; Hipkiss 
2007, 2008; Vellai et al. 2003). Similarly, several mutant mice strains with defects 
in growth hormone (GH) pathways in terms of deficiencies of GH levels and GH 
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receptor have extended lifespans (Napoli et  al. 2003; Purdom and Chen 2003; 
Longo and Finch 2003). Application of RNAi technology, together with the role of 
circulating RNAs, and small noncoding RNAs, has also identified numerous genes 
whose normal levels of activities are lifespan restricting and can be a target for gene 
therapy (de Magalhaes 2014b).

In contrast to the above studies on the longevity-promoting effects of the lost or 
reduced activities of various genes, studies have also been performed on testing the 
effects of adding one or multiple copies of some genes on aging and longevity of 
model systems. These include the addition of gene(s) for one of the protein elonga-
tion factors (Shepherd et  al. 1989), antioxidant genes superoxide dismutase and 
catalase (Orr and Sohal 1994; Sun et  al. 2004; Parkes et  al. 1998; Schriner and 
Linford 2006), sirtuin (Rogina and Helfand 2004), FOXO (Giannakou et al. 2004), 
heat shock proteins (Yokohama et al. 2002; Morrow et al. 2004; Walker and Lithgow 
2003), heat shock factor, (Hsu et al. 2003; Morley and Morimoto 2004), protein 
repair methyltransferase (Chavous et al. 2001) and klotho, which is an inhibitor of 
insulin and IGF-1 signalling (Kurosu et al. 2005).

One of the challenges for these gene therapy-oriented aging interventions is that 
very little is known about the physiological price paid for inactivating or overstimu-
lating genes whose normal function is a part of the general metabolism and signal-
ling (Rincon et al. 2004; Van Voorhies et al. 2006). For example, laboratory-protected 
longevity mutants in C. elegans have reduced Darwinian fitness when competing 
with the wild-type worms under nutritionally challenging conditions (Walker et al. 
2000; Chen et al. 2007; Van Voorhies 2003). Similarly, extension of murine lifespan 
by the addition of klotho gene induces insulin resistance and disruption of insulin/
IGF-1 signalling pathway (Rincon et al. 2004; Van Voorhies et al. 2006; UNGER 
2006; Wang and Sun 2009).

Another experimental model system used for testing potential gene-based aging 
interventions is the Hayflick system of limited proliferative lifespan of normal dip-
loid differentiated cells in culture (Rattan and Hayflick 2016). Most of these inter-
ventions are mediated by transient or permanent transfection and ectopic expression 
of different genes and have focused on extending the replicative lifespan of cells by 
bypassing the cell cycle checkpoints (Campisi and D’Adda Di Fagagna 2007; 
Itahana et al. 2004; Collado et al. 2007). The ectopic expression of telomerase is one 
such widely used genetic intervention (Simonsen et  al. 2002; Davis and Kipling 
2005). However, these studies have raised an important point of caution that con-
tinuous proliferation of such genetically modified non-aging cells often leads to 
their genomic instability, transformation and carcinogenic activity (Wang et  al. 
2000; Serakinci et al. 2004). Similarly, in the case of animals, although telomerase- 
negative mice had reduced lifespan and several other abnormalities, overexpression 
of telomerase in their skin increased myc-induced hyperplasia (Lansdorp 1997; 
Flores et al. 2006).

In the case of humans, although several single gene mutations are known which 
lead to accelerated aging and significantly reduced lifespan (Martin 2005; Martin 
et al. 2007), no gene mutations have yet been identified which increase the human 
lifespan. A strategy that has been used extensively to identify potential longevity 
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genes is by gene association analysis of genetic polymorphisms with human lon-
gevity (Singh et al. 2007). The full list of genes associated with human longevity, 
generally identified by both single nucleotide polymorphism (SNP) analysis or by 
genome-wide association studies (GWAS), can be retrieved from http://genomics.
senescence.info/genes/. To what extent this information can be used to develop 
gene-based aging interventions in humans is not yet clear.

Some future scenarios for aging interventions include intelligent redesigning 
either by the so-called strategies for engineered negligible senescence (SENS) (De 
Grey 2006) or by post-humanistic or trans-humanistic enhancements through robots 
and cyborgs combining both organic and biomechatronic body parts (Palese 2012). 
Such interventions, if successful, raise several ethical issues such as the social and 
environmental consequences of extreme longevity and the basic understanding of 
what it means to be human (Chan 2008; Seppet et al. 2011).

1.6  Recapitulation

The principles of aging and longevity, as described in Table 1.1, indicate that the 
occurrence of aging in the period beyond ELS of the species is inevitable owing to 
the imperfections of the survival mechanisms. Aging in itself is not a disease but is 
the universal cause of age-related diseases. Therefore, whereas optimal treatment of 
each and every disease, irrespective of age, is a social and moral necessity, main-
taining health and improving the quality of human life in old age require a shift in 
approach from aging as a disease to aging as a life condition that can be 
modulated.

Although “aging is a disease” label may have some role to play in attracting the 
attention of big business and investors (de Magalhaes et al. 2017), it totally disre-
gards the scientific history and understanding of the biological basis of aging. If 
aging is a disease, then it is our own fault – we breathe, we eat food, and we have 
complex but imperfect biochemistry (Rattan 2016a). The so-called war against 
aging and any other similar rhetoric are totally misplaced, because there is no enemy 
within or without. Aging must be approached as a stage in life history of an indi-
vidual, which is served best by biomedical, technological and social interventions, 
which could diminish the severity of age-related frailty, along with a possible exten-
sion of healthspan and lifespan.

Biogerontologists are beginning to narrow down the potential aging pathways, 
including insulin/IGF-1 growth axis, mTOR activity and stress resistance, which 
could be amenable to manipulation (de Magalhaes 2014a, b). There is evidence that 
those and other metabolic pathways can be effectively modulated by lifestyle altera-
tions, such as intermittent food restriction, exercise and nutritional and pharmaco-
logical interventions (Vaiserman et al. 2016). However, one major challenge still is 
to translate the information gathered from studies performed on experimental model 
systems of insects, nematodes, rodents and others to human beings. After all, human 
are perhaps our ultimate target for such interventions!

1 Aging Principles and Perspectives for Intervention

http://genomics.senescence.info/genes/
http://genomics.senescence.info/genes/


12

Another challenge for biogerontologists trying to develop effective means of 
aging intervention is to come out of the reductionistic mode of doing experiments. 
The three pillars of health – food, physical activity, and mental and social engage-
ment – require a change in the way the experiments are designed and performed. 
The history of aging intervention research has shown that taking this or that single 
compound of natural or synthetic origin, force-feeding it to some experimental 
model system and analysing one or few molecular targets have, so far, not led to any 
really useful practical interventions for human beings – whatever the hype by the 
media or the cosmetic industry.

Furthermore, if we want to curtail the mushroomic growth of self-proclaimed 
specialists and longevity gurus making false promises, muddling the thinking and 
promoting impractical and even harmful interventions, then cross-disciplinary col-
laborations among biologists, engineers, sociologists, philosophers and other schol-
ars from humanities and sciences must be developed (Le Bourg 2013). We also need 
to ask ourselves as to what is the ultimate aim of aging research: is it to eliminate 
aging and death forever? And even more importantly, could we, would we and 
should we do that?
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Abstract
Neurodegenerative diseases (NDs) are debilitating disorders affecting a signifi-
cant portion of the world’s rapidly growing aging population. Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), Huntington disease (HD), and amyotrophic 
lateral sclerosis (ALS) are the most common NDs. These diseases constitute a 
group of disorders, wherein aggregation of misfolded proteins, mitochondrial 
function, disruption of cellular signaling, and neuronal cell death occurs. The 
exact etiology is still unknown, and hence a complete cure to these diseases is yet 
to be found, partly because these diseases are multifactorial in nature and a single 
factor responsible for cause and progression of these ailments is not known to 
exist. Recent studies indicate that non-coding RNAs (particularly miRNAs and 
circRNAs) are possibly involved in progression of various neurodegenerative 
diseases. Precisely, miRNAs are highly expressed in the neurons of central ner-
vous system where they play pivotal role during neuronal differentiation and 
neuronal plasticity. The nature of miRNAs to regulate hundreds of genes, thereby 
multiple pathways simultaneously, makes it possible that any common miRNA 
may trigger multiple pathways associated with NDs. The ability of circRNAs to 
regulate the function of miRNAs by sponging has emerged as interesting possi-
bility, thus being explored as biomarker and as potential novel target for thera-
peutic intervention against these ailments. Here, we provide an overview on the 
potential target of non-coding RNAs (miRNAs and circRNAs) in various NDs.
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2.1  Introduction

Age-associated neurodegenerative diseases (NDs) are a major public health chal-
lenge to researchers and healthcare providers because a complete cure to these ail-
ments does not exist. The available drugs only provide symptomatic relief leading 
to worsening of the conditions over a longer period. The characteristic features of 
NDs include accumulation of misfolded proteins inside and outside of neurons in 
the major brain regions. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are 
the most pervasive among the various NDs reported till date. Over the previous 
decades, genetic studies have provided clues toward the role of non-coding RNAs in 
progression of various disease conditions. With recent studies within the field of 
RNA biology, a class of non-coding RNA, miRNAs, and circular RNAs (circRNA) 
has emerged as major RNA regulatory molecules. miRNAs regulate gene expres-
sion by recognizing untranslated region (UTR) of mRNAs and suppress their func-
tion either by inhibition or degradation of mRNA translation. The circRNA 
molecules are known to be formed by scrambling of exons during splicing and regu-
late gene expression by sponging miRNAs. The ability of non-coding RNA (par-
ticularly miRNAs and circRNA) toward regulating complex gene networks and 
their specificity has made these molecules immensely interesting toward being 
explored as novel targets for potential therapeutic intercessions in many disease 
conditions including NDs. This chapter endeavors to highlight certain critical 
aspects of non-coding RNAs as potential early diagnostic markers and as possible 
therapeutic targets; their limitations in such use are also discussed.

2.2  Neurodegenerative Diseases

Age-associated neurodegenerative diseases (NDs) are emerging as a major social 
problem and are posing huge cost to the healthcare providers and caregivers due to 
increased life expectancy and associated changes. NDs are characterized by pro-
gressive loss of neurons and synapses in the nervous system. These diseases are 
multifactorial in nature ranging from environmental, genetic, endogenous factors to 
age of the organism. The prominent hallmark of neurodegenerative diseases is age- 
related accumulation of disease-specific misfolded proteins, for example, Aβ and 
tau in case of Alzheimer’s disease (AD), α-synuclein in Parkinson’s disease (PD), 
huntingtin in Huntington disease (HD), and superoxide dismutase in amyotrophic 
lateral sclerosis (ALS) (Croese and Furlan 2017). More than 600 neurological dis-
orders have been reported, and the most common among them are AD, PD, HD, 
ALS, prion disease, and schizophrenia. In India approximately 30 million people 
are affected from neurological disorders (Gourie-Devi 2014).
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2.2.1  Alzheimer’s Disease

Alzheimer’s disease (AD) is the most widely recognized neurodegenerative ail-
ment, ranked as the sixth driving cause of death in the United States, characterized 
by decline in memory and thinking skill. German physician Dr. Alois Alzheimer, 
who first time described the symptoms of focal symptoms, progressive cognitive 
impairment, hallucinations, delusions, and psychosocial incompetence on 4 
November 1906 at the 37th Conference of South-West German Psychiatrists in 
Tübingen. The cause of AD depends upon geography, age, and even ethnicity. 
Worldwide incidence of AD was 44 million in 2016, and it is expected that it will be 
reached 65 million by 2030. The worldwide cost of Alzheimer’s is assessed to be 
$605 billion, which is equal to 1% of the entire world’s gross production (https://
www.alz.org/documents_custom/2016-facts-and-figures.pdfs).

In AD beta-amyloid plaques aggregate outside, while neurofibrillary tangles are 
formed inside neurons. Beta-amyloid plaques are made up of 40–42 amino acid 
fragments, which are derived from membranes spanning amyloid precursor protein 
(APP). These fragments are formed by sequential proteolytic cleavage of β and γ 
secretase. Initially, α-secretase and β- secretase compete with each other for cleav-
ing APP. If APP is cleaved by α-secretase, then there is no formation of Aβ plaque, 
but if APP is cleaved by β-secretase, then it is further cleaved by γ-secretase result-
ing into formation of soluble Aβ-40 and insoluble Aβ-42 fragment. Aβ-42 fragment 
is chemically stickier than the other lengths and therefore gets accumulated into 
clumps or plaques.

Tau is a microtubule-associated protein which contains more than 80 potential 
sites for phosphorylation. Optimal level of phosphorylation of tau proteins is 
required for microtubule binding. Abnormal hyperphosphorylation of tau leads to 
self-association rather than binding microtubule, resulting in production of paired 
helical structure and neurofibrillary tangles (NFTs). Due to accumulation of these 
plaques and tangles, the communication between neurons as well as transportation 
of nutrients is hampered, resulting in degeneration of neuronal cells (Schonrock 
et al. 2012; Brandt and Leschik 2004).

2.2.2  Parkinson’s Disease

PD is the second most common NDs after AD, which was first reported in great 
details by an English physician named James Parkinson in “An Essay on the Shaking 
Palsy” in 1817. The pathological hallmark of the PD was first described by Frederic 
Lewy. A loss of function of the basal ganglial neurons of substantia nigra pars com-
pacta which leads to depletion of dopamine in the striatum which controls a per-
son’s body movement is being reported in Parkinson’s patients (Lees 2007). PD is 
characterized clinically by motor symptoms like tremor, bradykinesia, and rigidity 
as well as non-motor symptoms like depression, cognitive decline, anxiety, diffi-
culty in memorizing, and sleep disturbances (Massano and Bhatia 2012). PD like 
other NDs is caused by improper folding of a protein, namely, α-Syn which gets 
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aggregated and leads to neuronal toxicity and formation of inclusions. These inclu-
sions are termed as Lewy bodies whose major component is α-syn in its misfolded 
state (Dikiy and Eliezer 2012). Environmental toxins, oxidative stress, and aging 
play an important role in the case of sporadic PD.  Around 20% cases is due to 
genetic mutation of Parkinson’s-related genes explicitly PARK1/PARK4 
(α-synuclein), PARK2 (Parkin), PARK6 (PINK1), PARK7 (DJ-1), PARK8 
(LRRK2), and PARK9 (ATP13A2) (Coppede 2012).

As indicated by Parkinson’s Disease Foundation, more than ten million individu-
als worldwide are living with Parkinson’s ailment till now, and this number is 
expected to get doubled by 2030. Frequency of Parkinson’s increases with age, but 
an estimated 4% of individuals with PD are diagnosed before the age of 50. The 
estimated cost of Parkinson’s is nearly $25 billion per year in the United States 
alone which includes both direct and indirect cost (http://www.parkinson.org/
Understanding-Parkinsons/Causes-and-Statistics/Statistics).

2.3  Challenges in Treating the Neurodegenerative Diseases

The exact mechanisms behind the age-related neurodegeneration of AD and PD are 
still unknown, and hence a complete cure to these diseases is yet to be found. The 
discovery of an effective therapy against these diseases is quite challenging due to 
complex etiology, multifactorial nature, and blood-brain barrier:

 1. Complex etiology of the disease: Researcher across the world is trying to under-
stand the actual cause of AD and PD. The exact etiology of AD and PD is still 
unknown, although over the last three decades there has been great progress with 
respect to understanding the molecular mechanisms behind the initiation and 
progression of AD and PD. Nonetheless, the inability to interlink the group of 
abnormalities under a primary pathogenic mechanism of NDs still exists.

 2. Multifactorial nature of the disease: The main challenge for drug discovery of 
AD and PD is to choose the right biochemical target. It is known that multiple 
factor is associated in the development and progression of these diseases. These 
disease conditions present with aggregated proteins, reduced neurotransmitter 
levels, elevated reactive oxygen species levels, and neuronal cell death. All of 
them or any of these may contribute to the development of these ailments, so we 
require a drug that could interact with several molecular targets of the cascade. 
All the drugs which are prescribed to patients provide only symptomatic relief, 
yet none of them inhibits disease progression and hence remains ineffective.

 3. Blood-Brain Barrier: Healthy human brain has 100 billion neurons, which are 
connected to each other via process called synapses. Our body provides addi-
tional protection of the brain by creating a selective semipermeable membrane 
barrier called blood-brain barrier. Blood-brain barriers help to maintain the 
integrity and microenvironment of the brain by inhibiting the entry of almost 
every molecule except the entry of essential nutrients like glucose, some amino 
acid, insulin, and other precursor molecules. Although blood-brain barriers play 
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pivotal role to protect the brain from most pathogen and other fluctuation of ions 
in the blood, they also create problem for delivering the new drugs into the brain 
to cure neurological disorder.

2.4  Treatments Available

Till now, there is no complete cure for neurodegenerative diseases (particularly AD 
and PD). However FDA-approved drugs are prescribed by doctors to AD and PD 
patients; these drugs provide only symptomatic relief, and their effectiveness varies 
from person to person (Table 2.1).

Table 2.1 List of drugs approved for AD and PD

Drug name Brand name Function For
Donepezil Aricept Cholinesterase inhibitor AD
Galantamine Razadyne Cholinesterase inhibitor AD
Memantine Namenda NMDA (N-methyl-D aspartate) receptor 

antagonist
AD

Rivastigmine Exelon Cholinesterase inhibitor AD
Donepezil and memantine Namzaric Cholinesterase inhibitor + NMDA 

(N-methyl-D aspartate) receptor antagonist
AD

Levodopa Sinemet Natural chemical that is converted to 
dopamine in the brain

PD

Carbidopa-levodopa Duopa Levodopa is changed over to dopamine in 
the brain. Carbidopa keeps the breakdown 
of levodopa before it can reach the brain 
and induce its effect

PD

Dopamine 
agonists

Pramipexole Mirapex Dopamine agonists actually mimic the 
effects of dopamine without having to be 
converted

PD
Ropinirole Requip
Rotigotine Neupro
Apomorphine Apokyn

Glutamate antagonist 
(amantadine)

Symmetrel The exact function is unknown; it is given 
along with other drugs of PD

PD

MAO-B 
inhibitors

Selegiline Eldepryl, 
Zelapar

They keep the breakdown of brain 
dopamine by deactivating the brain enzyme 
monoamine oxidase B (MAO-B)

PD

Rasagiline Azilect
Anticholinergics 
(benztropine)

Cogentin Reduce symptoms of tremor in people PD

COMT inhibitors 
(entacapone)

Comtan They mildly prolong the impact of 
levodopa by inhibiting an enzyme that 
breaks down dopamine

PD

Pimavanserin Nuplazid They reduce hallucinations and delusions 
associated with Parkinson’s disease 
psychosis by acting as an inverse agonist 
and antagonist of serotonin 5-HT2A 
receptors

PD
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2.5  Junk DNA Hypothesis

A major portion of human genome is transcribed but less than 1.5% of genes encode 
proteins. In ancient day it was believed that the portion of genomic DNA which was 
not translated to any protein is the junk DNA and has no role in the survival of the 
cell. But now the next generation of geneticists revealed that some pieces of junk 
DNA play important role to our survival as our more familiar genes. Many of them 
may transcribe into molecule that participates in development and other biological 
process. If these pieces of junk DNA become damaged, we may suffer devastating 
consequences like cancer, brain damage, and neurodegenerative disease depending 
on what pieces are affected. Genetic studies have provided clues toward the role of 
non-coding RNA (ncRNA) in various processes of cell survival and different dis-
eases conditions including NDs.

2.6  Non-coding RNAs

Non-coding RNAs are the major class of regulatory RNAs, known to play key role 
in gene regulation at the posttranscriptional and transcriptional level. MicroRNAs 
(miRNAs) are endogenous 20–23 nt long, non-coding RNAs, found along the taxa. 
miRNAs are known to involve in important regulatory functions in course of gene 
expression. miRNAs recognize untranslated region (UTR) of mRNAs and block 
their function either by cleavage or inhibiting the translation of mRNA.  Mature 
miRNAs are generated either by canonical or noncanonical pathways (Meza-Sosa 
et al. 2012).

2.7  History of miRNA

Lin-4 was the first miRNA to be described in a model system Caenorhabditis ele-
gans (C. elegans) by Victor Ambros’ group in 1993 (Lee et al. 1993). Lin-4 function 
as a regulator of lin-14 genes, a nuclear factor that negatively regulates the transition 
to larval stage. Thus lin-4 miRNA controls the embryonic cell lineage patterns by 
decreasing the expression of lin-14 mRNA (Wightman et al. 1993). In 2000, a sec-
ond miRNA named let-7 was discovered by two separate groups, which play impor-
tant roles in the development of a later larval stage to adult in C. elegans (Reinhart 
et al. 2000; Slack et al. 2000).

2.8  Role of Non-coding RNAs in Various Disease 
Progressions

Expression of non-coding RNAs (particularly miRNAs) greatly varies from organ 
to organ, and also their expression levels have been changed in normal and disease 
condition (Liang et  al. 2007). Brains of vertebrates have a greater number of 
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miRNAs than any other organ. Alterations in miRNAs expression level have been 
seen in the brain of neurodegenerative disease patients (Adlakha and Saini 2014). 
Recent studies suggest that miRNA-regulating pathways may be playing a central 
role in the development of various disease progressions including Alzheimer’s, 
Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis.

2.9  Non-coding RNAs and Alzheimer’s Disease

The pathological hallmarks of AD are the accumulation of extracellular amyloid 
plaque and intracellular neurofibrillary tangles. The etiology of the AD is still poorly 
understood, and complete treatment is unavailable till now. Over the past decade, 
non-coding RNA (including miRNA) has arisen as a major class of regulatory mol-
ecules which participated in various physiological processes and disease condition. 
Growing evidences suggest that alteration of non-coding RNA network could con-
tribute to risks for the development of AD (Weinberg and Wood 2009). Among all 
non-coding RNAs, miRNAs are extensively studied. A number of specific miRNAs 
are dysregulated in AD and cerebral spinal fluid (CSF). A study reported that miR- 
124a, miR-125b, miR-128, miR-132, and miR-219 were abundantly altered in AD 
brain (Kumar et al. 2017). Subsequently, many groups have showed that expression 
of miR-29 family which included miR-29a, miR-29b, and miR-29c changed in 
brains of AD patients. As compared to normal elder-age levels, miR-34a and 181b 
are significantly upregulated in AD subjects. As miR-29a and miR-29b-1 were 
found to regulate the expression of BACE1 mRNA, the miR-29a/b-1 cluster was 
significantly declined in AD patients showing strangely high BACE1 protein levels 
(Hebert et al. 2008). miR-124 and miR-9 could control endogenous tau exon 10 
splicing in neuronal cells by regulating specific splicing factors (Hebert et al. 2012). 
miR-103 and miR-107 repressed the translation of cofilin mRNA (Yao et al. 2010). 
Cofilin forms Hirano bodies which are also present in AD brain patients in addition 
to amyloid plaques and neurofibrillary tangles (Hirano 1994). miR-107 regulates 
beta-amyloid precursor protein cleavage enzyme (BACE1), and it is found that post-
mortem AD human brain has low levels of miR-107 (Wang et al. 2008a).

BACE1 antisense transcript (BACE1-AS), an lncRNA, transcribed by the anti-
sense strand of BACE1, could control BACE1 expression, and BACE1-AS concen-
trations were elevated in APP transgenic mouse (Modarresi et al. 2011). Another 
lncRNA BC200 level was increased in those areas in parallel with the progression 
of AD (Mus et al. 2007). Other ncRNAs are little known in the role of AD, such as 
17A siRNA, which was embedded in the GABA B receptor and deregulated in brain 
tissue in AD patients. Furthermore, 17A promoted Aß secretion and increase the 
accumulation of Aß (Massone et al. 2011).
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2.10  Non-coding RNAs and Parkinson’s Disease

Selective degeneration of dopaminergic neurons and accumulation of α-synuclein 
in substantia nigra lead to Parkinson’s disease. α-Synuclein is controlled posttran-
scriptionally by miR-7 and miR-153 (Doxakis 2010). A single-nucleotide polymor-
phism in the promoter region of fibroblast growth factor 20 (FGF20) disrupts the 
binding of miR-433, resulted increase the expression of FGF20. Increased expres-
sion of FGF20 protein correlated with increased expression of α-synuclein protein 
(Wang et al. 2008b). LRRK2, the most affected gene in PD functions in the dopa-
minergic neurons, negatively regulates let-7 and mir-184, and silencing of let-7 
leads to neuroprotection through reducing α-synuclein aggregation (Gehrke et al. 
2010; Shamsuzzama et al. 2017). Expression of miR-133b is observed in the mid-
brain dopaminergic neurons, and decreased expression of mir-133b may play a neu-
roprotective role (Wang et  al. 2008b). Scientist reported that lncRNAs and their 
expression levels have been increased in neurodegenerative disease, for example, 
increased level of RP11-462G22.1 and RP11-79P5.3. lncRNA has been seen in PD 
(Soreq et al. 2014). Recently, C. Carrieri et al. identified AS Uchl1 as an antisense 
to the mouse ubiquitin carboxy-terminal hydrolase L1 (AS Uchl1). Mutation of AS 
Uchl1 gene has been reported in early-onset familiar PD.  Also, loss of UCHL1 
activity has been accounted in numerous neurodegenerative disorders (Carrieri et al. 
2015).

2.11  Non-coding RNAs and Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominant neurological disorder, caused 
by mutation in the gene that encodes huntingtin protein (HTT) (Bilen et al. 2006). 
Recent studies suggest that posttranscriptional regulations of genes by miRNAs are 
also altered in HD. Expression of neuronal miRNAs, namely, mir-132, mir-124, and 
mir-9/9*, is downregulated in mouse models and human HD patients (Johnson and 
Buckley 2009). Downregulation of miRNAs let-7a, let-7c, let-7d, and let 7e was 
observed in HD and upregulation of miR-30a, miR-30b, miR-30c, and miR-30e in 
HD (Marti et al. 2010). A few miRNAs, for example, miR-9, miR-29b, miR-29a, 
miR-129a, miR-132, miR-330, miR-17, miR-196, miR-222, miR-485, and miR- 
486 are affected in HD, and in addition, previous reports suggest that MiR-34b is 
elevated in plasma of Huntington’s disease patients (Conaco et  al. 2006; Packer 
et  al. 2008). lncRNAs have important roles in progression of diseases; TUG1, 
LINC00341, RPS20P22, and NEAT1 lncRNAs are upregulated, and MEG3, 
DGCR5, LINC00342, and DGCR5 lncRNAs were downregulated in HD (Johnson 
et al. 2009; Smeenk et al. 2011).
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2.12  Non-coding RNAs and Amyotrophic Lateral Sclerosis 
(ALS)

The much related to non-coding RNAs is not explored yet in ALS. The importance 
of miRNAs in ALS was observed through synapses, neurofilaments, neurogenesis, 
and neuroinflammation. In synapses miR-206, miR-29a, miR-29b, miR-455, and 
miR-338-3p were upregulated, and miR-149, miR-328, miR-451, miR-583, miR- 
638, miR-665, and miR-1275 were downregulated (Toivonen et al. 2014; Williams 
et al. 2009; Valdez et al. 2014; Russell et al. 2013). miR-146a, miR-524-5p, miR-1, 
and miR-582-3p were found upregulated, and miR-9, miR-124a, miR-134, and 
miR-125 were downregulated in neurogenesis (Zhang et al. 2013; Marcuzzo et al. 
2014; Zhou et al. 2013; Nolan et al. 2014). In case of neuroinflammation, miR-155, 
let-7, miR-223, and miR-365 were found upregulated, and miR-148b-5p, miR-577, 
miR133b, and miR-140-3p were downregulated (Koval et  al. 2013; Parisi et  al. 
2013).

2.13  miRNAs and circRNAs as Potential Targets 
for Neurodegenerative Diseases

Regulatory function of miRNAs and circRNAs have significant role in neuronal 
development, differentiation, and maturation. Dysregulations of miRNAs and cir-
cRNA expression are known to involve in the development of neurodegenerative 
Alzheimer’s and Parkinson’s disease (Gehrke et  al. 2010; Hoss et  al. 2016; 
Femminella et al. 2015; Kumar et al. 2016).

circRNAs are normally expressed in the mammalian cells, and it is estimated that 
their expressions were modulated in disease conditions. circRNAs might have piv-
otal roles in the development and progression of numerous human diseases includ-
ing NDs. In NDs the various functions of circRNAs are proposed, but precise 
mechanistic understanding is not yet explored. Researchers across the world give a 
vision about the involvement of miRNA and circRNA in neurological ailments like 
AD and PD. It is known that miR-7 miRNA regulates the expression of α-synuclein 
protein (Junn et al. 2009). ciRS-7/CDR1, a circRNA, acts as a regulator of miR-7, 
which may provide strong evidence toward the association of ciRS-7/CDR1-AS in 
PD. Different miRNAs such as let-7, miR-34a/b, and miR-153 are likewise observed 
to be reduced in PD (Doxakis 2010; Minones-Moyano et al. 2011), which provide a 
clue that there are possibilities of association of other unknown circRNAs in the 
progression of PD.

Alzheimer’s disease, the most common NDs aggregation of β-amyloid protein, 
leads the main cause of disease (Ambros 2004) and has been accounted for to be 
related with miRNAs like let-7i, miR-9, miR-15, miR-146b, miR-181c, miR-210, 
miR-338, and miR-451. These miRNAs are recorded as downregulated in patients 
suffering from AD (Hebert et al. 2008; Maes et al. 2008). The age-related studies 
reported that expression of miR-34 was likewise observed to be decreased (Dimmeler 
and Nicotera 2013). Increased expressions of circRNAs have been seen in neuronal 
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tissue at the time of development and during CNS aging. In Drosophila, it has been 
found that expressions of circRNAs increase with the increment of age. Increasing 
the accumulation of circRNAs with age provides a clue for the establishment of 
circRNA molecules as biomarker of aging (Westholm et al. 2014). Huge numbers of 
circRNAs are described in neuronal tissues (Ashwal-Fluss et al. 2014). Moreover, a 
large number of circRNAs was identified as part of mammalian brains (Rybak-Wolf 
et al. 2015). Expressions of circRNAs are stage specific, and it has been reported 
that circRNAs were upregulated constantly during development (You et al. 2015). 
Involvements of miRNAs are also seen in the progression and development of 
Huntington’s disease, multiple sclerosis, and amyotrophic lateral sclerosis (ALS). 
Recent study suggests that there is a plausibility that expression of these miRNAs 
may get blocked by some unidentified circRNAs which makes circRNAs a novel 
target for the treatment of neurological disorder.

2.14  Progress Being Made

Till date there is hardly any disease in which expression of miRNAs is not known to 
have any role in the progression and development of disease. The huge associations 
of miRNAs across human diseases have shown that miRNA can be used as new 
therapeutic strategies. To date there are two approaches that have been used for 
developing miRNA-based therapeutics: miRNA antagonist and miRNA mimics. 
miRNA antagonist was generally used to create loss of miRNA function. In this 
strategy, a highly modified miRNA passenger strand is introduced that binds with 
the active miRNA strand. The binding of miRNA with antagomir is irreversible, so 
that miRNA duplex is unable to be processed by RISC which resulted in degrada-
tion by dicer enzyme. miRNA mimics, also known as miRNA replacement therapy, 
are used for gaining of miRNA function. Introduction of miRNA mimics leads to a 
reactivation of pathways that are needed for normal biological process and blocks 
those protein synthesis that leads to disease (Pereira et al. 2017; Bader et al. 2010; 
Kota et al. 2009; Wiggins et al. 2010).

Dysregulation of miRNAs and circRNAs has been reported in a variety of dis-
eases. Very little is known about the function of individual circRNAs and the bio-
logical implications in progression of NDs. With the identification of miRNAs 
biomarkers in serum or plasma, the clinical development of pharmaceutical drugs 
based on miRNA might be possible in the near future. miRNA as new biomarkers 
for complex neurodegenerative Alzheimer’s and Parkinson’s might be used as early 
diagnostic tools and prediction of drug response and side effects.

2.15  Strategies Ahead

There are many challenges faced for targeted delivery of molecule; many of them 
include half-life of miRNA mimics/inhibitor and its potential off-target effects. 
However, in 2011, Alvarez-Erviti et al. reported that by using exosome, siRNA and 
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protein can deliver into the brain of mice when it was injected intravenously 
(Alvarez-Erviti et  al. 2011). Despite many challenges, several miRNA molecule 
mimics/antagomirs have progressed into product and clinical development. 
According to previous report, the most advanced miRNA, which are used as thera-
peutics candidates, are shown in Table 2.2 (Lages et al. 2012).

2.16  Advent of Non-coding RNAs as an Early Diagnostic Tool

The circulatory nature of miRNAs in the blood and its regulatory function to regu-
late hundreds of genes simultaneously make it a potential early diagnostic tool and 
therapeutic target for neurodegenerative diseases. For example, Wang et al. reported 
that miR-146 can be use as biomarker for the early diagnosis of AD, because it can 
be detected in human blood monocytes. And the upregulatory effect of miR-146 can 
be reduced by using therapeutic potential of miRNA, i.e., anti-miR-146a (Wang 
et  al. 2012). Another separate study, which was conducted in a transgenic mice 
model of AD (Tg-19959), demonstrated that the aggregation of soluble beta- amyloid 
was significantly decreased by using LNA-modified siRNA targeting BACE1 and 
BACE-1-AS (Modarresi et al. 2011). Large number of miRNAs like miR-7, let-7, 
miR-153, miR-133b, miR184, and miR-433 might be associated with the patho-
physiology of PD, which suggests a novel therapeutic target (Harraz et al. 2011). In 
general, literature survey recommends that different non-coding RNAs particularly 
miRNAs could serve as early diagnostic biomarkers and therapeutic targets for neu-
rological diseases.

2.17  C. elegans as Model Organism to Study the Role of Non- 
coding RNAs for Neurodegenerative Diseases

C. elegans is good genetic model system to exploring the function of non-coding 
RNAs. It has conserved pathways with powerful molecular and genetic tools that 
enable cost-effective discovery of new non-coding RNAs. Deep-sequencing tech-
nologies such as next-generation sequencing (NGS) provide a great opportunity in 
accelerating the rate of novel miRNAs discovery. Till now miRNAs database, miR-
Base- 22, illustrated that C. elegans genome has 253  miRNAs precursor and 
437 mature miRNAs, although this number might be higher (Coppede 2012).

Table 2.2 Therapeutic potential of miRNAs

miRNA Diseases Status of development
miR-122 (antagonist) Hepatitis C virus Phase 2 clinical trials
miR-208/499 
(antagonist)

Chronic heart failure Preclinical development

miR-195 (antagonist) Post-myocardial infarction remodeling Preclinical development
miR-34 (mimic) Cancer Preclinical development
Let-7 (mimic) Cancer Preclinical development
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Cortes-Lopez et al. reported that 1166 circRNAs are accumulated in C. elegans 
during aging. These circRNAs are derived from 797 genes that have diverse func-
tion (Cortes-Lopez et al. 2018).

2.18  Future Directions

From the past few years, the interest in the contribution of ncRNAs to the develop-
ment and progression of neurodegenerative disease is booming, but much effort is 
wanted toward determination of the full extent of this contribution and the mecha-
nism by which ncRNAs may exert their pathological effects. The emerging genomic, 
epigenomic, and bioinformatic approached will be crucial in this context. The 
important challenge is to identify and characterize their mechanism to all ncRNAs 
encoded in the human genome. The nature of ncRNAs especially miRNAs to regu-
late hundreds of genes simultaneously thereby it could regulate multiple pathways 
simultaneously, that make it possible that any common miRNA may trigger multi-
ple pathways associated with neurological disorders. The ability of miRNA mole-
cules to regulate complex gene networks and specificity of miRNA sequences led 
these molecules to be regarded as exciting novel targets for potential therapeutic 
interventions in disease conditions.
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Abstract
Aging is a natural process defined as a progressive decline in physiological func-
tions which lead to increased risk of diseases and death. Recent advances in 
antiaging intervention have focused on stem cell-based therapies and cell repro-
gramming. The development of stem cell reprogramming to fight the aging pro-
cess has recently become important issue in antiaging strategies. Stem cell-based 
therapies and cell reprogramming have provided various strategies to alter 
somatic cell identity into induced-pluripotent stem cell. Stem cells are defined as 
pluripotent cells that possess both the abilities of self-renewal and differentiation 
toward numerous cell types. Cell reprogramming is simply composed of deleting 
cell memory and rewriting new identity of somatic cell. Stem cell reprogram-
ming has provided enormous insight on regenerative medicine for antiaging. 
This chapter has focused on potential role of stem cell reprogramming to slow 
down aging process.

Keywords
Stem cell reprogramming · Stem cell therapy · Antiaging · Induced-pluripotent 
stem cells · Transcriptional factors

3.1  Stem Cells and Aging

Stem cells are functionally undifferentiated biological cells that can be transformed 
into different types of cells during embryonic and adult period (Jeevani 2011). 
These cells have a role in the repair and renewal of various tissues and organs and 
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have the ability to self-renew to produce more stem cells (Avasthi et al. 2008). A 
stem cell has two different roles. One of them is to provide new stem cells for the 
stability of stem cell reserves. The other is to differentiate into cells with a special 
function, such as muscle, bone, brain, or red blood cells, in case of deficiency 
(Bindu and Srilatha 2011).

Stem cells are classified into five main classes according to their ability to trans-
form into different cell types (Table 3.1). These five main classes are totipotent, 
pluripotent, multipotent, oligopotent, and unipotent (Kalra and Tomar 2014). 
Totipotent stem cells have the potential to differentiate into all cells in the body. 
These cells occur after the fertilization of the sperm and the egg and include the 
cells formed after the first few divisions of the fertilized egg (zygote). The fertilized 
egg is the only stem cell known for its totipotent property (Blau et  al. 2001). 
Pluripotent stem cells can be transformed into nearly all cell types, but these cells 
are not competent to constitute the all organism. Pluripotent stem cells can generate 
all differentiated cell types that are derived from the mesoderm, endoderm, and 
ectoderm germ layers in the body and also have the potential to self-renew (Gardner 
2002). Multipotent stem cells are found in adult tissues, but only those of a closely 
related family of cells. These stem cells can only be transformed into a limited num-
ber of cell types. Multipotent stem cells can only form into cells of the organ from 
which they originate. For example, a blood multipotent stem cell can be differenti-
ated into all kinds of blood cells, but not a brain or skin cell (Verfaillie et al. 2002). 
Oligopotent stem cells are differentiated into only a few cell groups. For example, 
vascular stem cells, which have the ability to differentiate into both endothelial and 
smooth muscle cells, depending on the requirement, are oligopotent stem cells 
(Majo et al. 2008). Unipotent stem cells are only capable of differentiating into a 
single cell type. Muscle stem cells are example for unipotent cells, which are also 
known as precursor cells. Unipotent stem cells are distinguished from non-stem 
cells by their ability to self-renew (Blanpain et al. 2007).

Stem cells based on their sources are embryonal and adult stem cells (Snykers 
et  al. 2009) (Table  3.1). Embryonic stem cells (ESC) are pluripotent stem cells 
derived from the inner cell mass of the blastocyst, which occurs immediately after 
fertilization of eggs and sperm in oviduct. In the early stages of embryonic develop-
ment, the cells remain partially undifferentiated and have the ability to become 
almost any tissue in the body. Human embryonic stem cells are derived from 
embryos that are typically 4 or 5 days and consist of approximately 100–200 cells. 
Embryonic stem cells derived from early embryos have two important characteris-
tics: self-renewal and pluripotency (Smith 2001). Adult stem cells are multipotent 
and often produce cell types of the tissue which they are present. There are also 
pluripotent adult stem cells with fewer numbers and are found in various tissues, 
including umbilical cord blood. These cells are undifferentiated cells, and they can 
self-renew indefinitely, have the potential to transform into specialized cells of other 
tissues, and provide continuity and repair of tissue (Young and Black 2004). When 
recent studies were examined, it was found that the tissues reported to contain stem 
cells are increasing. These tissues can be briefly described as: bone marrow, periph-
eral blood, brain, spinal cord, dental pulp, blood vessels, skeletal muscle, 
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epithelium of the skin and digestive system, cornea, retina, liver, and pancreas 
(Valarmathi and Fuseler 2011).

Aging is a disease that occurs in tissues and organs, depending on time, with 
genetic and environmental factors, and continues throughout the process, from birth 
to death (Carmona and Michan 2016). Primary aging is disruption of the molecular 
mechanism of structural and functional integrity of cells and tissues by genetic fac-
tors. Secondary aging is observed by the effects of diseases and environmental fac-
tors. Aging is a very complicated phenomenon, which is affected by many molecular 
mechanisms. Based on the studies in recent years, the mechanisms of aging can be 
categorized as follows: telomere hypothesis, premature aging syndromes, epigene-
tic factors, oxidative stress and mitochondrial damage, growth hormone deficiency, 
and somatic mutations (Collins et al. 2007; Dykstra et al. 2011; Bernet et al. 2014; 
Cosgrove et al. 2014). In the last decades, it is clear that aging of an organ is linked 
to regression associated with aging in somatic stem cell function in various animal 
models (Akanuru and Geiger 2016). Studies have shown that the reduction of num-
bers of mammalian adult stem cells and the loss of function are closely related to 
aging (Oh et al. 2014). Loss of stem cells play a major role in age-related diseases 
such as osteoporosis, Alzheimer’s, atherosclerosis, progressive Parkinson’s disease, 
type 2 diabetes, anemia, and cancer (Vilchez et al. 2013). Many important physio-
logical, functional, and molecular parameters are involved in stem cell senescence. 
These parameters can be briefly summarized as follows: typical Hayflick 

Table 3.1 Types and classifications of stem cells

Types and classification of stem cells

Potency Description Example
Totipotent Differentiate into all 

possible cell types
Morula stage cell

Pluripotent Differentiate into almost all 
cell types

Inner mass cell

Multipotent Differentiate into a closely 
related family of cells

Adipose tissue cell

Oligopotent Differentiate into a few 
cells

Corneal epithelium cell

Unipotent Only produce cells of their 
own type

Muscle stem cell

Sources Embryonic 
stem cells

Form any differentiated cell 
of the body

Blastocyst stage cells

Fetal stem cells Primitive cell types found 
in fetus

Cord blood stem cell

Adult stem 
cells

Undifferentiated cells 
which maintain and repair 
the tissue that are found

Hematopoietic Mesenchymal
Myeloid stem 
cell

Bone marrow 
stromal stem cell

Lymphoid stem 
cell

Induced 
pluripotent 
stem cells

Reprogrammed somatic 
cells

All possible types of specialized 
cells

3 The Potential Role of Stem Cell Reprogramming in Antiaging



38

phenomenon of cellular aging, decrease of proliferation potential, shortening telo-
meres, DNA damage, epigenetic changes, increased oxidative stress, and mitochon-
drial dysfunction (Vilchez et al. 2013; Noda et al. 2009).

3.2  Recent Advances in Cellular Reprogramming Era

In the beginning, stem cells could only be taken in the embryonic stage, but as seen 
in recent studies, mature cells were converted into primitive cells by a process called 
reprogramming, which made it possible to transform into all kinds of cells in the 
human body. In 2006, Takahashi and Yamanaka identified induced pluripotent stem 
cells (iPSCs) to be used in stem cell research and treatments (Takahashi and 
Yamanaka 2006). They have shown that in the study, stem cells can be obtained by 
reprogramming differentiated fibroblast cells from an adult mouse. The same study 
also showed that these cells transformed from fibroblast cells when injected into 
mouse embryos and differentiated into many cells other than post-growth fibro-
blasts. The reprogramming of these fibroblast cells to acquire stem cell character-
ization has been achieved using four transcription factors (Octamer-binding 
transcription factor 4 (Oct4), sex determining region Y-box 2 (Sox2), Kruppel-like 
factor 4 (Klf-4) and cMyc) (Takahashi et al. 2007; Aoi et al. 2008). From the iPSCs 
obtained by reprogramming, highly differentiated cells with different roles and 
characteristics such as cardiovascular, retina, and macrophage were produced in 
different cell culture medium (Narazaki et al. 2008; Hirami et al. 2009; Senju et al. 
2009). Reprogramming can be induced not only by Oct3/4, Sox2, Klf4, and c-Myc 
but also by combinations of other genes that provide transcriptional control of stem 
cells such as Nanog, Lin28, ESRRB, and NR5A2 (Ichida et al. 2009; Yu et al. 2007). 
Recent studies have shown that adult somatic cells can be transformed into special-
ized cell types using various transcription factors (Table 3.2). Because of their self- 
renewal and pluripotency capacities, human iPSCs have been shown to be used in 
many disease models such as osteoporosis, Alzheimer’s, progressive Parkinson’s 
disease, type 2 diabetes, and cancer (Yang et al. 2016; Hallett et al. 2015; Qi et al. 
2016; Kudva et  al. 2012; Griscelli et  al. 2017; Jones et  al. 2017; Toustrup et  al. 
2017; Heman-Ackah et al. 2017).

3.3  Molecular Mechanism of Stem Cell Reprogramming

Aging is related to the disruption of the homeostatic mechanisms that support the 
structure and function of adult tissues. The growing number of mutations due to 
aging causes increased possibility of cellular apoptosis, senescence, and malig-
nancy, and thus, aging is a risk factor for many diseases (Rando and Chang 2012).

The discovery of reprogramming mechanisms that redefine the transcriptional 
program in adult cells, not only with regard to potential but also telomere mainte-
nance, oxidative damage, and senescence signaling, has made it easier to maintain 
the viability of adult stem cells in culture and to protect these cells in vivo (Boyette 
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and Tuan 2014). Particularly in mouse embryonic stem cells, the regulation of stem 
cell pluripotency and differentiation has been studied both transcriptionally and epi-
genetically. Nowadays, highly efficient sequencing techniques are used to charac-
terize the regulatory networks in all embryonic stem cells. In determining the fate of 
stem cells, the roles of regulatory networks, including the function of microRNAs 
and epigenetic markers, are analyzed thoroughly.

Regulatory networks in the reprogrammed cells are also investigated through 
analytical processes involving the whole genome. Studies on induced pluripotent 
stem cells have shown that many diseases related to aging can be treated (Hallett 
et al. 2015; Qi et al. 2016; Kudva et al. 2012; Griscelli et al. 2017). However, it 
has also been observed in studies that the resistance of cells against reprogram-
ming by classic Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc) increases in 
parallel with the age of individuals (Kasper et  al. 2009). There are seven Sir2 
homologues in mammalian cells, which are SIRT1 to SIRT7 and act on many cel-
lular metabolic pathways (Lavu et al. 2008; Donmez and Guarente 2010). Sirtuin 
6, or SIRT6, which has been identified as a critical regulator of transcription, 
genomic stability, and telomere integrity, was shown to upregulate transcription in 
an adult stem cell reprogramming process. Although SIRT1 has been shown to be 
the most effective sirtuin for aging, it has been shown not to extend the life span 
of transgenic mice which overexpressed SIRT1. On the other hand, studies on 

Table 3.2 Cellular reprogramming with transcription factor expression 

Cell source Induced cells Transcription factors References
In vivo 
studies

Exocrine cells β-cells Pdx1, Neurog3, Mafa Zhou et al. 
(2008)

Cardiofibroblasts Cardiomyocytes Gata4, Mef2c, Tbx5 Qian et al. 
(2012)

Astrocytes Neurons Ascl1, Brn2, Myt1l Torper et al. 
(2013)

Astrocytes Neuroblast Sox2 Niu et al. 
(2015)

Myofibroblasts Hepatocytes Foxa3, Gata4, Hnf1a, 
Hnf4a

Song et al. 
(2016)

Myofibroblasts Hepatocytes Foxa1, Foxa2, Foxa3, 
Gata4, Hnf1a, Hnf4a

Rezvani et al. 
(2016)

Granulosa and 
theca cells

Sertoli and Leydig 
cells

Foxl2 Uhlenhaut 
et al. (2009)

In vitro 
studies

B cells, T cells, 
fibroblasts

Macrophage-like 
cells

C/EBPα, PU1 Feng et al. 
(2008)

Fibroblasts Neuron-like cells Ascı1, Brn2, Myt1l Ieda et al. 
(2010)

B cells Macrophages, T 
cells

Pax5 Vierbuchen 
et al. (2010)

Fibroblasts Neurons Ascı1, Brn2, Myt1l Pfisterer et al. 
(2011)

B cells, T cells, 
fibroblasts

Macrophage-like 
cells

C/EBPα, PU1 Xie et al. 
(2004)
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male mice have shown that SIRT6 extends life span (Hall et al. 2013). Therefore, 
SIRT6 can indicate the relationship between aging, rejuvenation, and epigenetics 
in the reprogramming processes (Sharma et al. 2013). Studies have shown that 
SIRT7 deacetylates p53 and promotes transcription of RNA polymerase; also in 
SIRT7 knockout mice it has been shown to shorten life span with aging-related 
diseases (Vakhrusheva et al. 2008).

Determining the transcriptional networks and epigenetic profiles between cells 
of different ages and species will help to reveal the general characteristics of aging. 
As with the relationship between the pluripotent and differentiated state, these tran-
scriptional networks and epigenetic profiles make it possible to directly test whether 
it is possible to program a cell to be young or old. In conclusion, it can be said that 
cell aging, which is a cellular recycling process, is characterized by progressive 
epigenetics rather than permanent genetic mutations (Rando and Chang 2012).

3.4  Antiaging Strategy with In Vivo and In Vitro Stem Cell 
Reprogramming

Diseases that increase with aging are a major factor in the shortening of human life 
span. Therefore, scientists are looking for various ways to delay aging. One of these 
is the reprogramming of the cells. Any dividing cells in the body could be repro-
grammed into iPSCs. Therefore, iPSCs-based therapies have become popular in 
recent years as tools that shed light on the field antiaging medicine. In this regard, 
some studies have revealed that iPSCs from elderly people have been reprogrammed 
to treat age-related disease (Ohmine et  al. 2012; Somers et  al. 2010; Yagi et  al. 
2012). For this purpose, human keratinocytes derived from 56 to 78 years old indi-
viduals were reprogrammed using Oct4, Sox2, Klf4, and c-Myc. According to 
results of this study, reprogrammed human keratinocytes demonstrated states asso-
ciated with antiaging such as morphological changes, induction of pluripotency 
genes, telomere elongation, and downregulation of senescence and apoptotic genes 
(Ohmine et al. 2012). Somers et al. (2010) reported that the use of humanized ver-
sion of a single lentiviral “stem cell cassette” vector for reprogramming fibroblasts 
obtained from humans may be utilized for regenerative medicine applications. In 
another study, fibroblasts obtained from centenarian donors (106 and 109 years old) 
were reprogrammed via Yamanaka factors and then it was found that obtained 
iPSCs showed exceptional longevity with no serious disease risk factors (Yagi et al. 
2012). It has been shown that senescent fibroblasts from 74-year-old donor can be 
reprogrammed using reprogramming cocktail and thus some aspects of aging are 
rejuvenated by cellular reprogramming (Lapasset et al. 2011).

Additionally, some in  vitro studies have indicated that reprogramming by 
Yamanaka factors can reset epigenetic signs associated with cellular damage, stress, 
and senescence (Liu et al. 2011; Zhang et al. 2011). In the light of the results obtained 
from these in  vitro studies, short-term induction with Yamanaka factors (2  days) 
in vivo ameliorates aging marks and promotes tissue regeneration, and thus extends 
life span of mice (Ocampo et al. 2016). Furthermore, regenerative capacity of β-cells 
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or skeletal muscle after pancreatic or muscle injury improved in short- term Yamanaka 
factors-induced old-aged mice (Taguchi and Yamada 2017). Recently, in vivo cell 
reprogramming with Yamanaka factors provided benefits in acceleration of drug 
development and clinical human trials for treated diseases (Fig. 3.1).

3.5  Therapeutic Approaches of Aging

The growing knowledge of stem cell biology and the ability to regulate the ex vivo 
and in vivo differentiation capacities of stem cells are promising for the regenera-
tion of damaged tissues and organs (Barrilleaux et al. 2006). The fact that many 
aging diseases are due to the exhaustion of adult stem cells has led to the necessity 
of repairing adult stem cell function for regeneration and healing of aged tissues 
(Kasper et al. 2009). Adult stem cell transplantation in humans has responded posi-
tively to the treatment of many diseases such as ischemic heart diseases, rejuvena-
tion for the aging brain, vascular system disorders, erectile dysfunction, and stroke 
(Behfar et al. 2007; Qiu et al. 2012; McGuckin et al. 2013; Lopez-Leon et al. 2017). 
The appearance of these diseases in the elderly and loss of function in stem cells 
depending on age make the treatment process difficult (Lepperdinger et al. 2008). In 
order to demonstrate age-related changes in the functional behavior of mesenchy-
mal stem cells, migration rates, differentiation, and proliferation capacities of cells 
from young and old donors were compared. Researchers concluded that depending 
on age the migration capacity decreased and senescence rate increased in mesen-
chymal stem cells (Kasper et al. 2009).

Fig. 3.1 Summary of potential antiaging therapies based on stem cell reprogramming
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Transplantation of adult stem cells or endogenous regulation of adult stem cells 
in vivo with specific growth factors has allowed the development of new stem cell- 
based therapeutic approaches for regenerative medicine. Two main findings of mes-
enchymal stem cell senescence are reduced defense against reactive oxygen species 
and impaired actin dynamics (Kasper et al. 2009; Yagi et al. 2013).

Researchers have been able to improve stem cell function and thus increase ther-
apeutic capacity by using various antioxidants and growth factors to increase the 
resistance of stem cells to reactive oxygen species. Regulation of the balance 
between the stability and division of adult stem cells is provided through the activa-
tion of various developmental signals (Mimeault et al. 2007). Hormones, fibroblast 
growth factor, epidermal growth factor, sonic hedgehog, Wnt/β-catenin, Notch, and 
bone morphogenic proteins may upregulate the self-renewal and differentiation 
capacities of adult stem cells under certain physiological and pathological condi-
tions (Moore and Lemischka 2006).

3.6  Conclusion

Although there are many studies on the relationship of stem cells to aging, there are 
many other important questions and technical difficulties. In 2006, reprogramming 
mouse somatic cells with a small number of transcription factors led to accelerated 
stem cell studies (Takahashi and Yamanaka 2006). Induced pluripotent stem cells 
obtained as a result of this study have enabled the use of induced pluripotent stem cells 
in the identification of age-related human diseases and have encouraged studies in this 
regard. Recently, studies have been conducted to convert somatic body cells into stem 
cells in vivo and in vitro. Reprogramming with the use of lineage- specific transcription 
factors in vivo has become an advantage for regenerative medicine. In vivo program-
ming is more useful because of many reasons such as genetic changes that can occur in 
long-term in vitro culture. All these developments in cellular reprogramming allow the 
development of a therapeutic model for human diseases by using the relevant human 
cell types. Despite in recent studies, there are still difficulties in reprogramming stem 
cells in age-related diseases. More research is needed on the mechanisms described to 
identify the barriers to somatic cell reprogramming during aging. However, these tech-
nologies offer exciting new potential approaches to many human diseases.
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Abstract
Aging is a natural and progressive process which is manifested by structural and 
functional damage to various body organs. Tissue engineering and regenerative 
medicine are considered as one of the most advanced modern strategies to under-
stand the complexity of aging and restore the functionalities of organ systems 
which worsen due to aging. The scope of such an advanced biomedical technol-
ogy was unearthed several decades ago, and even drastic progress has been 
achieved in the field of graft development for the skin, bone, cartilage, etc. to 
regenerate damaged/diseased tissue/organ. Tissue engineering involves fabrica-
tion of biomimetic graft which recruits stem cells, allowing them to proliferate or 
populate the graft to facilitate integration with surrounding tissues and regener-
ate damaged/diseased tissue. Currently, tissue engineering-based approaches for 
the treatment of various diseases caused by deterioration of tissues/organ through 
aging are in either preclinical or initial clinical stages for the development of 
alternative commercial medical product. This chapter covers various appropriate 
tissue engineering and regenerative medicinal approaches adopted to develop 
functional graft and potential stem cell therapy to restore damaged or diseased 
tissue/organ to address the issues of aging.
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4.1  Introduction

Various theories has been proposed to understand aging mechanism at cellular level 
and its advancement from microscopic failure of cells to macroscopic failure of tis-
sues and finally failure of organ followed by death. Aging is a progressive phenom-
enon and reported to be governed by various factors such as malfunctioning of 
cellular macromolecular factories, which further cascades from molecular level to 
the cellular level. The major hallmarks associated with the aging are genomic insta-
bility, stem cell exhaustion, mitochondrial dysfunction, loss of proteostasis, epigen-
etic alteration, and cellular senescence (López-Otín et al. 2013). These hallmarks 
alone or in association lead to the malfunctioning of cellular activities, which may 
propagate from cell to cell at varying degree, and complete tissue/organ. Damages 
at genetic level including loss of integrity and stability of genetic material or defects 
in nuclear lamina are due to exogenous factors such as physical, chemical, and bio-
logical agent, endogenous error in DNA replication, and occurrence of hydrolytic 
reaction, and generation of reactive oxygen species may lead to genetic instability 
(Hoeijmakers 2009; Dechat et al. 2008). Also, mutations in mitochondrial DNA are 
due to error, while DNA replication in adult or aged cells causes respiratory dys-
function in various tissues (Ameur et al. 2011). Furthermore, all cells and tissues 
involve alterations in DNA methylation patterns and remodeling of chromatin and 
posttranslational modification of histones throughout the life and thereby lead to 
epigenetic alteration with aging (Talens et  al. 2012; López-Otín et  al. 2013). 
However, gradual accumulation of such genetic damages with advancement of age 
leads to aging through cascade effect from microscopic level to macroscopic level. 
Apart from genetic instability, imbalanced protein homeostasis leads to failure of 
maintaining structural and functional property of misfolded protein, and thereby 
accumulation of such misfolded protein gradually increases with aging, and thus, 
age-related diseases such as Alzimer’s, Parkinson’s, and cataracts occur (Powers 
et al. 2009). Impaired cells due to genetic instability and epigenetic alteration and 
impaired proteome homeostasis are regularly cleaned through well-known mecha-
nism of cellular senescence. However, with aging rate, accumulation of senescent 
cells increases, and rate of clearance decreases. This might be due to impaired 
regenerative potential or stem cell exhaustion, and thus, tissue damages are aggra-
vated with aging (López-Otín et al. 2013; Cerletti et al. 2012).

Stem cells or regenerative cells are located in various tissues, which play distinc-
tive role in tissue repair, remodeling, and regeneration. Tissue-specific stem cells 
possess higher potential to proliferate and generate tissue-specific precursor cells in 
order to replace damaged cells through lineage-specific terminal differentiations. 
Thereby, stem cells maintain appropriate balance between cellular senescence and 
proliferative activity of tissues (Oh et al. 2014). Moreover, stem cells are also prone 
to undergo aging, and thereby with aging tissue, reparative potential diminishes. 
Thereby, stem cells isolated at young stage such as cord blood-derived stem cells 
were reported to be a much more attractive source for regenerative medicine due to 
its higher stemness, multilineage differentiation potential, and immunomodulatory 
potential as compared to adult stem cells (Nagamura-Inoue and He 2014). Thus, 
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stem cells provide an alternative route to treat various aging-associated or degenera-
tive diseases. Stem cells could be used as cell therapy or in combination with artifi-
cial extracellular matrix to regenerate damaged/diseased tissues. Regenerative 
medicine or tissue engineering technology offers an innovative approach to generate 
artificial tissues/organ for patients suffering from injuries or aging-associated organ 
failure. At present mostly patients are treated with donor organ; however, scarcity of 
donor organ remains a great challenge. To overcome such challenges, various 
researchers have been involved in the generation of functional tissue-engineered 
construct using stem cells, biomaterials, and implant fabrication technology such as 
bioprinting, freeze drying, freeze gelation, gas foaming, electrospinning, etc. to 
replace or repair damaged/diseased tissues/organ. In the last few decades, various 
tissue-engineered products for treatment of damaged/diseased tissues are approved 
by the Food and Drug Administration (FDA) for commercial applications. Such 
tissue-engineered products loaded and cultured with specific cell type to generate 
tissue-engineered construct such as Carticel are available in the market for com-
mercial applications in case of articular cartilage defects (Dewan et al. 2014). Also, 
various tissue-engineered products are available for the regeneration of diseased or 
damaged skin and bone tissues. Furthermore, yet a long way need to be cover in the 
feild of tissue engineering and regenerative medicine to generate a functional com-
plex organ for the treatment of patients suffering from end-stage organ failure and 
to meet the need for lack of donor organ supplies.

4.2  Stem Cells, Sources, and Its Therapeutic Potential

Autologous cells from patients are more preferable to generate tissue-engineered 
construct. However, due to aging adult cells are less susceptible to proliferate and 
populate. Thereby, the use of stem cells due to its higher proliferation and differen-
tiation potential is considered as a major choice for cell therapy and generation of 
artificial tissue-engineered construct. Stem cells are undifferentiated cells having 
significantly higher self-renewal potential to differentiate into both non-renewing 
progenitor cells and terminally differentiated effector cells of all the three germ lay-
ers (Watt and Hogan 2000). Stem cells derived from inner cell mass of blastocysts 
are pluripotent embryonic stem cells, and stem cells derived from organs such as 
bone marrow, dental pulp, etc. are multipotent adult stem cells (Fig. 4.1) (Odorico 
et al. 2001).

Moreover, human stem cells are further categorized as human hematopoietic 
stem cells (hHSCs) capable to proliferate and differentiate into nonadherent blood 
cells and human mesenchymal stem cells (hMSCs) capable to proliferate and dif-
ferentiate in various adherent cells. Human mesenchymal stem cells are reported to 
be isolated and propagated from stroma of various sources (Fig. 4.1) such as bone 
marrow, dental pulp, umbilical cord, adipose tissue, peripheral blood, etc. 
Furthermore, hMSCs are having the potential to differentiate under suitable condi-
tions into various cell types such as chondrocytes, osteoblasts, adipocytes, neurons, 
cardiomyocytes, other mesodermal cell types, etc. (Kassem 2006). Among various 
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stem cells depending upon their sources, embryonic stem cells are confirmed to be 
the most potential stem cells with highest stemness and ability to differentiate into 
all types of cells. However, in spite of superior therapeutic potential due to ethical 
restriction, embryonic stem cells are not considered for cell therapy. Therefore, 
bone marrow-derived mesenchymal stem cells (BM-MSCs) and umbilical cord 
blood-derived mesenchymal stem cells (UC-MSCs) are more preferable choices for 
stem cell therapy. However, limited numbers of autologous hMSCs and poor growth 
and differentiation potential due to aging limit the clinical application of BM-MSCs. 
Therefore, limitations associated with both embryonic stem cells and BM-MSCs 
have led to design more potential and clinically significant alternative source of 
stem cells. UC-MSCs show closer gene expression profile as of embryonic stem 
cells and thus exhibit superior self-renewal potential in comparison with BM-MSCs 
(Hsieh et al. 2010; Fong et al. 2011). Thereby, UC-MSCs are more preferable as 
compared to other sources, and this has led to significant rise in the healthcare sector 
such as cord blood banking for medical application as regenerative medicine. As 
discussed earlier, stem cell technology possesses the potential to generate a large 
number of tissue-specific cells in standardized condition, and this could be useful to 
treat various age-associated diseases. Also, aging-related Parkinson disease due to 
progressive loss or changes in motor function including bradykinesia, rigidity, and 
gait disorder may be treated with stem cell-derived dopaminergic neurons. However, 
stem cell-derived dopaminergic neurons should release host-specific dopamine, 
able to reverse the changes in motor function, able to survive for long term in human 
putamen, possess ability to establish a dense network across the striatum, and should 
functionally integrate with host neural circuitries (Lindvall et al. 2004). Researchers 

Fig. 4.1 Stem cells and progenitor cell sources considered for cell isolation and its cultivation for 
cellular therapy and generation of tissue-engineered construct
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reported the formation of stem cell-derived dopaminergic neurons; few of them 
observed glial response and failed to detect neurogenesis following dopaminergic 
lesions (Lindvall et al. 2004). Thus, stem cell-based cellular therapy might be useful 
to treat aging-associated Parkinson disease; however, still detailed clinical investi-
gation is required to be performed before developing a potential stem cell-based 
therapy in the future. Apart from neurodegenerative diseases, stem cell-based ther-
apy may prevent or even reverse progression of heart failure. Obstruction of coro-
nary arteries and high blood pressure leads to gradual loss of cardiomyocytes and 
thereby causes heart failure. Cardiac transplantation is the only standard therapy for 
heart failure and provides solution to address loss of cardiomyocyte. However, stem 
cell technology might be a potential option to overcome the lack of cardiac trans-
plant availability as stem cells possess superior potential to regenerate the myocar-
dium (Segers and Lee 2008). Thus, stem cells from various sources show enormous 
potential to generate various cell types under specific culture condition and provide 
alternative approach toward the treatment of various diseases or aging-associated 
disorders.

4.3  Tissue Engineering for Aging-Associated Disorder

Aging is an unavoidable condition and imposes difficulty in maintaining homeosta-
sis, leading to dysfunction and defects in a number of everyday life functions. Tissue 
engineering looks out for an alternative way to provide permanent solution to vari-
ous aging-associated chronic diseases and defects in the tissue and organs of indi-
viduals. Although tissue engineering is a relatively newly conceived technology, 
however, it holds great therapeutic potential. When talking about tissue engineering, 
the first and foremost concept is to develop a bioengineered matrix (scaffold) 
inspired from the natural extracellular matrix (ECM) using suitable biomaterials. 
The desired physicochemical and biological properties of the developed matrix may 
be as follows:

• Biocompatibility
• The most important property of a scaffold is its biocompatibility. It should facili-

tate cell adherence, proliferation, and migration through the scaffold, and eventu-
ally cell proliferation should take place that ultimately leads to the deposition of 
a regenerated natural matrix. Also, it should not elicit any detrimental immuno-
logical reaction that leads to the rejection of the scaffold.

• Biodegradability
• Scaffolds are not intended to be used as permanent implants, and thus they should 

degrade over time, while the body’s cells must replace the implanted scaffold 
with natural ECM. During degradation, the scaffold should not produce any by- 
products which are toxic to the body.

• Mechanical Properties
• The scaffold should be optimized for its mechanical strength according to the 

site of insertion and should be robust enough for surgical handling (Hutmacher 
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2000). For bone and cartilage tissue regeneration, the scaffold should have suf-
ficient mechanical strength, which is a challenge in the field of orthopedic tissue 
engineering.

• Scaffold Architecture
• Scaffold architecture is one of the important parameters considered when deal-

ing with the development of tissue-engineered products. The scaffold should 
have highly porous structure, and the pores should be interconnected, which is 
important for mainly two reasons. Firstly, porous structures allow diffusion of 
nutrients to the cells present in core of the scaffold. Secondly, they allow the 
removal of the degraded or waste products out of the scaffold while tissue regen-
eration phenomenon occurs. The mean pore size of a scaffold is an important 
criterion for successful scaffold fabrication, where the optimal pore size of a 
scaffold varies with the type of tissue being engineered.

• Manufacturing Technology
• One should aim to use the technology for the manufacturing (freeze drying, 

freeze gelation, phase separation, electrospinning, and bioprinting) of scaffolds 
which can be scaled up for industrial production or mass production of tissue- 
engineered products.

Apart from the abovementioned criteria, selection of suitable biomaterial for the 
fabrication of scaffold plays a critical role in tissue regeneration.

4.4  Biomaterials

The European Society for Biomaterials (ESB) in 1976 defined biomaterial as “a 
nonviable material used in a medical device and intended to interact with biological 
systems,” while the current definition is “a material intended to interface with bio-
logical systems to evaluate, treat, augment or replace any tissue, organ or function 
of the body.” The role of biomaterials has changed drastically from just interacting 
with the body toward making tissue regeneration possible. In tissue engineering for 
the fabrication of scaffolds, mostly three types of biomaterials are used: ceramics, 
synthetic polymers, and natural polymers (Table 4.1).

• Ceramic has been widely used for bone tissue regeneration application because 
of its good mechanical strength, biocompatibility, and structural similarity to the 
mineral phase of the bone. Also, it helps the osteoblast cell or hMSCs to differ-
entiate and proliferate (Chen et al. 2002). However, their main disadvantage is 
brittleness, low elasticity, and difficulties in providing desired shape to the 
implants. Hydroxyapatite (HA), a bioceramic, is the main constituent of the 
bone, but it faces some problems in bone tissue engineering because of its poor 
degradation rate.

• Synthetic polymers have numerous advantages like controlled degradation kinet-
ics, can be easily fabricated into various shapes, and provide high mechanical 
strength to the scaffold (Lu et  al. 2000). Synthetic biopolymers which don’t 
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release toxic by-products on degradation are mostly preferred for scaffold fabri-
cation. The main disadvantage associated with using synthetic polymers is either 
low bioactivity or no bioactivity which leads to poor tissue integration potential 
of the scaffold.

• The most suitable biomaterial for tissue engineering applications is natural poly-
mers. Natural polymers are mainly biodegradable, which doesn’t produce toxic 
by-products, and over the time replaced by host cells and natural ECM. The main 
disadvantage of using natural polymer is its poor mechanical strength.

All the materials mentioned above when used in a single phase have one or other 
problem associated with them; hence the research is shifted toward developing 
composite scaffolds. Composite scaffolds are scaffolds containing a number of 
phases and containing different compositions of ceramic, synthetic, or natural poly-
mers amalgamated together having a synergistic effect on the scaffold. Overall, tis-
sue engineering aims to generate potential therapeutic approaches using regenerative 
cells and artificial extracellular matrix (scaffold) for various defects and diseases. 
Applications of tissue engineering in the regeneration of some of the aged or dis-
eased tissues are discussed for following cases:

• Hepatic disorder
• Cardiac defects
• Orthopedic defects
• Dental defects

Table 4.1 Classification of 
biomaterial commonly used 
for generation of artificial 
extracellular matrix (scaffold)

Materials Examples
Ceramic Hydroxyapatite

Tricalcium phosphate
Bioglass

Synthetic 
polymer

Polystyrene
Poly-l-lactic acid (plla)
Polyglycolic acid (pga)
Poly (dl-lactic-co-glycolic) acid 
(plga)
Polycaprolactone(PCL)

Natural polymer Collagen
Alginate-based substrates
Chitosan
Various proteoglycans
Glycosaminoglycans
Silk fibroin
Gelatin
Elastin
Hyaluronic acid
Chitin
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4.5  Tissue Engineering Strategies for Aging-Associated 
Liver Disorders

The liver mainly consists of parenchymal cells such as Kupffer cells, epithelial 
cells, sinusoidal epithelial cells, biliary epithelial cells, hepatocytes, hepatocyte pre-
cursor cells, and fibroblasts (Arias et al. 2011). About 70% of cellular population is 
of hepatocytes, which play an important role in metabolic functions of the hepatic 
tissues (Oertel and Shafritz 2008). The hepatic structure and function of liver cells 
alter slowly with aging, and the aged population is susceptible to diseases like cir-
rhosis. For the last-stage patients of chronic liver disease, liver transplantation is 
mostly preferred to save the life of a patient, but the shortage of donor remains a 
problem. Moreover, hepatic tissue engineering is the best alternative therapeutic 
strategy using an appropriate tissue-engineered construct with which one can deal 
with the shortage of hepatic donors.

Different biomaterials, such as hydrogels, porous scaffolds, microcapsules, and 
hollow fibers, have been explored by various researchers across the globe to mimic 
higher levels of liver-specific functions and mechanical stability (Underhill et al. 
2007; Sullivan et al. 2007). Natural polymers such as collagen, fibronectin, gelatin, 
and Matrigel used for fabrication of scaffolds have been used in many studies for 
hepatogenic differentiation of stem cells (Ong et al. 2006; Schwartz et al. 2002). 
The following are some of the natural polymers used in hepatic tissue engineering:

• Chitosan has reactive amino and hydroxyl groups similar to glycosaminoglycans 
(GAGs), such as chondroitin sulfate and keratin sulfate (main liver ECM compo-
nent), making it the most suitable natural polymer for hepatic tissue engineering 
(Jiankang et al. 2009; Yamane et al. 2005; Chen et al. 2008).

• Gelatin, the partially hydrolyzed form of collagen, is another biomaterial having 
superior cell attachment property used in hepatocyte tissue engineering (Jiankang 
et al. 2009). Normal physiology of hepatocyte is maintained for a period of about 
2 months in a chitosan-gelatin scaffold (Yan et al. 2005).

• Type I collagen is used for fabricating scaffolds for soft tissues and organs, which 
helps in cell proliferation in hepatic tissue engineering (Nehrer et al. 1997).

• Hyaluronic acid provides viscoelasticity, biodegradability, and biocompatibility 
to the scaffold. It is the first molecule to be secreted in tissue repair along with 
collagen. Hyaluronic acid enhances cell division of fibroblasts (one of the con-
stituents of liver cells) (Lin and Liu 2007).

Scaffolds made from only natural polymers are bioactive but have poor mechani-
cal strength and are difficult to handle (Badylak et al. 2009). Researchers to curb the 
disadvantages of natural polymers went ahead with synthetic polymers for fabrica-
tion of scaffolds which provided optimal manipulative mechanical properties and 
degradation rate.
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• Polyethylene glycol (PEG) is a nontoxic and non-immunogenic synthetic poly-
mer, and through specific surface modification, one can overcome its inability of 
cell adhesion. It can be easily modified with functional groups, and therefore 
PEG hydrogels are used extensively for 3D cultures (Zhu 2010; DeVolder and 
Kong 2012; Nuttelman et  al. 2005). It has been reported that PEG hydrogels 
favor the growth and functioning of hepatocytes and hepatoblasts (Underhill 
et al. 2007; Itle et al. 2005).

• Poly-l-lactic acid (PLLA) and poly(lactic-co-glycolic acid) (PLGA) are the 
widely used biocompatible and biodegradable aliphatic polyesters for hepatic 
tissue engineering (Mooney et al. 1995). When combined with poly (vinyl alco-
hol), primary rat hepatocyte seeding on the scaffold was reported to be enhanced 
(Mooney et al. 1995).

Synthetic polymers despite having a number of advantages lack bioactivity and 
cell recognition signals which create hurdles for generation of functional tissue- 
engineered construct. Therefore, the focus has shifted toward the development of 
hybrid and composite scaffold, integrating the advantages of both natural and syn-
thetic polymers (Zhang et al. 2005; Venugopal et al. 2005).

The design architecture for hepatic tissue depends on the following:

• Material properties: The material used must be stiff enough to support the fibro-
blast cell to differentiate into myoblasts and porous enough to facilitate optimal 
mass transfer activities.

• Biofunctionalization: Surface modification of developed scaffold with bioactive 
proteins such as RGD, LGPA, or YIGSR enhances cellular adhesions through 
interaction between hepatocyte and functional moieties over matrix (Park et al. 
2005; Patel et al. 2005).

• Architecture: The liver is made up of functional hepatic lobules having central 
vein and portal triads. Hepatocytes are present between central vein and portal 
triads in a platelike structure. The liver has a complex 3D structure, and for suc-
cessful development of hepatic tissue-engineered construct, an appropriate 3D 
scaffold needs to be developed which mimics natural tissue architecture and pro-
vides superior cell-cell interaction, cell- ECM interaction, and macroscale 
arrangement in essential (Fig. 4.2).

Hepatocytes are known to function better in their three-dimensional aggregates or 
spheroids than in monolayer culture (Glicklis et al. 2000; Hamamoto et al. 1998). 
Hepatocytes grown in aggregation have more cell to cell contact and thereby support 
the formation of gap junctions and bile canaliculi reinforcing phenotype of the hepa-
tocytes (Landry et al. 1985; Abu-Absi et al. 2002). Thus, through advanced tissue 
engineering technology, we can develop artificial 3D functional hepatic construct to 
restore the function of aging-associated damaged/diseased hepatic tissue or organ.
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4.6  Tissue Engineering Strategies for Aging-Associated 
Cardiovascular Disorders

With the advent of aging, cardiovascular problems such as heart valve diseases/
dysfunction are the major causes of casualties in the Western world. Bioprosthetic, 
mechanical heart valves, and cryopreserved homograft valves are widely used in 
valve replacement (Schoen 2011), which has a number of limitations associated 
with them. Bioprosthetic valves are antithrombogenic but are not durable, while 
mechanical valves have good durability, but lifelong anticoagulation treatment is 
required to restore the functionality. Both of these valves are susceptible to infec-
tions and thereby prone to further replacement surgery as the complication arises. 
These limitations can be overcome by engineering biomimetic functional tissue 
valves facilitating superior cell adhesion, growth, maintenance of tissue homeosta-
sis, and nonobstructive and non-thrombogenic advantages. Heart valve tissue 

Fig. 4.2 This figure shows generation of hepatic tissue-engineered construct platforms inspired 
from functional unit of liver tissue. Lobule is the functional unit of the liver, which is composed of 
a central vein connected to the portal triads including hepatic artery, portal vein, and bile duct. 
Non-parenchymal cells and hepatocytes are between portal triad and central vein. The functional 
lobule inspires generation of functional tissue-engineered hepatic construct
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engineering mainly focus on designing a tubular valve with leaflets using synthetic 
polymeric scaffold, and cells are seeded to generate tissue-engineered construct 
before implantation. The use of natural valve material such as decellularized valve 
or the use of fabricated ECM is also in practice. For successful heart valve engineer-
ing, conditions like scaffold material, cell source, in vitro manipulation, and clinical 
evaluation using appropriate animal models must be met (Hjortnaes et al. 2009).

A number of synthetic polymers like poly(lactic acid) (PLA), poly(glycolic acid) 
(PGA), and poly(lactic-co-glycolic acid) (PLGA) have been reported to be useful in 
engineering artificial heart valves (Hoerstrup et al. 2000; Zund et al. 1997). In the 
use of PLA, PGA scaffolds lacked mechanical strength, and addition of poly-4- 
hydroxybutyrate (P4HB) shows enhanced structural molding of the valve (Sodian 
et al. 2000). However, there is a great need of performing clinical trial of polymeric 
scaffold for successful tissue-engineered heart valve generation (Schaefermeier 
et al. 2009).

• An alternative to creating three-dimensional scaffolds is the use of decellularized 
biological-based scaffold. Decellularization of allogenic or xenogenic valves are 
done through using mainly four techniques such as enzymatic cell removal, 
freeze drying, osmotic gradients, and their combinations to engineer heart valve. 
During decellularization, it must be made sure that all the cells and genetic mate-
rials are removed to avoid any immunogenic response or zoonotic disease trans-
fer after implantation and the process should retain the structural component of 
the ECM. The decellularized valve can then be reseeded inside a bioreactor and 
then implanted inside the patient, or the valve can be directly put inside the 
patient’s body which itself acts as a bioreactor (Fig. 4.3) (Cheung et al. 2015). 
This should support growth of the cells and should guide cell to cell interaction 
leading to the formation of required tissue.

4.7  Tissue Engineering Strategies for Aging-Associated 
Orthopedic Defects

Aging has a major effect on bone tissue both at macroscopic and microscopic level. 
With aging, the population is prone to diseases like osteoporosis and arthritis, which 
is expected to continuously rises worldwide in the future (Dall et al. 2013). Currently, 
clinical treatments for orthopedic reconstructive surgery mainly include uses of 
autografts, allografts, and xenografts to restore or repair the diseased/damaged tis-
sues (Bauer and Muschler 2000; Popat et al. 2007). However, these treatments have 
certain limitations such as limited availability, immunogenicity, and zoonotic dis-
ease transfer, which are major concerns and lead to the development of an alterna-
tive translational medicine through bone tissue engineering applications (Oryan 
et al. 2014; Manivasagam et al. 2010). Tissue engineering mainly involves in the 
development of bioactive, biodegradable, biocompatible, and biomimetic artificial 
ECM to replace, repair, and restore damaged tissues. Bone ECM is mostly com-
posed of organic component mainly collagen and mineralized inorganic component 
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(carbonated apatite) (Weiner and Wagner 1998), and thereby scaffold engineered 
for bone tissue engineering applications should mimic the natural ECM of bone tis-
sues mainly with respect to its composition, physicochemical properties, structural 
architecture, and biological properties. The materials considered for the develop-
ment of bone tissue construct should be the following:

• Osteoinductive: Able to promote the differentiation of progenitor cells
• Osteoconductive: Able to support bone growth and osteoblasts are able to migrate 

and adhere to the scaffold
• Osseointegration: Able to integrate with the surrounding bone

In bone tissue engineering, the tissue regeneration strategy involves the develop-
ment of 3D porous composite scaffolds with similar composition to the bone 
ECM. The materials mainly used for scaffold fabrication of bone tissue engineering 
are the following:

• Bioactive inorganic materials: Mineral phase of the bone is mimicked by a range 
of bioactive inorganic materials like tricalcium phosphate, hydroxyapatite (HA), 
and bioactive glass (bioglass) (Hench and Polak 2002; Zijderveld et al. 2005). 
When bioactive glass is immersed in a biological fluid, the bioglass produces 
carbonated hydroxyapatite layer which promotes integration of scaffold with the 
adjoining bones leading to cell differentiation and osteogenesis (Jell and Stevens 
2006; Tsigkou et al. 2007). Moreover, bioactive inorganic materials cannot be 
used alone, because of its brittle nature and difficulties in fabrication of scaffold 

Fig. 4.3 Herein heart valve (1) is extracted from a donor tissue, and it is then decellularized (2), 
using various techniques, and then the recellularization of heart valve can be done by using a bio-
reactor (3) or implanted inside the patient where the patient’s body act as a bioreactor
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with complex architecture. Thus, polymeric composite using bioceramic pro-
vides an appropriate biomaterial for bone tissue-engineered construct 
development.

• Natural polymers like collagen, hyaluronic acid, chitosan, silk fibroin, cellulose 
and its derivatives, and gelatine are suitable materials for the development of 
bone scaffold, providing cell adhesion, spreading, and proliferation properties.

• Synthetic polymers polylactic acid (PLA), polyglycolic acid (PGA), and poly-
caprolactone (PCL) can help in the fabrication of scaffold with enhanced 
mechanical strength.

It is important to develop manufacturing processes that guarantee automated 
bone production (Marcacci et al. 2007; Dalby et al. 2007), where bioreactors and 
computer modeling are utilized. Apart from bone tissue regeneration, orthopedic 
tissue engineering also involves in the development of scaffold for regeneration of 
damaged cartilage as cartilage tissues are nonvascularized and possess poor regen-
erative potential; thus tissue engineering play a distinctive role in treatment of vari-
ous aging-associated diseases such as osteoarthritis (OA), relapsing polychondritis, 
costochondritis, chondrosarcoma, ochronosis, traumatic rupture of the cartilage, 
etc. The cartilage is a connective tissue which is generally found in the joint of the 
bones, rib cage, ear, nose, etc. It is not as hard and rigid as the bone, but is stiffer and 
less flexible than muscle. Articular cartilage is a complex avascular tissue which 
consists of cells called chondrocytes suspended in a collagenous matrix (Fig. 4.4). 
Aging associated with the knee joints includes joint stiffness, loss of cartilage, loss 
of joint contour, angular deformities, loss of hyaline cartilage, decreased water con-
tent with increased calcium salts, etc. With aging collagen fibers which show 
increased fiber size similar to that seen in OA, articular cartilage ECM changes in 
entire quantity and structure and goes through proteolysis and other posttransla-
tional modifications. Chondrocytes provide support, structure, and flexibility in the 
adult and show reduced functional activity with aging.

4.8  Clinical Aspects Toward Cartilage Tissue Regeneration

Cartilage tissue contains a specialized cells named as chondrocytes producing a 
large amount of extracellular matrix composed of collagen fibers, abundant ground 
substance rich in proteoglycan, and elastin fibers containing no blood vessels. There 
are various aging-related problems that occur in cartilage tissue like joint pain, ten-
derness, swelling, stiffness, reduced motion, ligament injury, etc. The problems 
were identified as imaging tests like X-ray, MRI, arthroscopy, and laboratory tests 
include joint fluid and blood analysis. Tissue engineering scaffold for cartilage 
defect is more suitable than metal implant in the current scenario. In the present 
situation, natural and synthetic scaffold materials such as ceramics, polymers, etc. 
are being used, which are being further used to cellularize with stem cells and autol-
ogous chondrocytes. Various studies reported that human umbilical cord MSCs, a 
primitive source of chondrocytes, showing superior pluripotency (OCT4 and 
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NANOG) gene activity have greater proliferation and differentiation capabilities 
(Toh et al. 2016). Induced pluripotent stem cells (iPSCs) are also reported to be a 
potential cell source with significant self-regeneration ability and the potential to 
differentiate into ecto-, meso-, and endodermal origin (Driessen et al. 2017). IPSCs 
are appropriate tools for modeling soft tissue development and disease and corre-
spond to promising specific cell source for the regeneration of articular cartilage 
(Guzzo and Drissi 2015). Current cartilage repair technology is based on three types 
of surgery techniques like marrow stimulation, osteochondral autografts, and autol-
ogous chondrocyte implantation. Stem cell cartilage regeneration therapy is one of 
the most effective treatments for osteoarthritis damage in knee joint. Advanced 
technologies and regenerative medicine lead to the development of “cartilage auto-
graft implantation system”; in this process patients own healthy cartilage obtained 
from a low weight-bearing region for surgical treatment (Engelhart et al. 2012; Kon 
et al. 2012). Arthro Kinetics AG developed an advanced technique for regenerating 
joint mobility called as “CaReS®” (cartilage regeneration system), which includes 
collagen type I matrix colonized with autologous cartilage (chondroblast and 

Fig. 4.4 Pathogenesis pathways in established osteoarthritis
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chondrocyte) cells and used for the regeneration of articular cartilage defects. 
CellGenix established “CartiGro ACT” product for autologous chondrocyte trans-
plantation, and the outcomes are really well. Genzyme Biosurgery introduced a 
product recently, “Carticel ACI.” ProChon Biotech is also an autologous cartilage 
regeneration system which uses a variant of fibroblast growth factor to expand 
dedifferentiated cartilage cells. 3D printing-based platform technology can be effec-
tively exploited for regeneration of various heterogeneous tissues as well as osteo-
chondral tissue (Shim et al. 2016). Nanofibrous hollow microspheres are an excellent 
injectable cell carrier for cartilage regeneration (Liu et al. 2011). Some of the FDA- 
approved orthopedic products developed and intended to use for the repair of dis-
eased or defected tissues associated with skeletal system of human being are listed 
in Table 4.2 (Hellman 2008). Thus tremendous work is going on in the field of tissue 
engineering to develop potential product to repair diseased/damaged cartilage 
tissues.

4.9  Tissue Engineering Application in Dental Problems

Tissue engineering dealing with regeneration of lost or damaged tissue can also be 
used for solving dental problems associated with aging population. Tooth engineer-
ing with tools like stem cells seeded on scaffolds is the novel approach to restore the 
damaged tissue with bioengineered tooth. Two different tissues are involved in the 

Table 4.2 FDA-approved tissue-engineered products for orthopedic applications

Orthopedic products Sponsors Intended application
GEM 21STM (growth factor and 
synthetic beta-tricalcium phosphate- 
enriched matrix)

Biomimetic Suitable for treatment of 
periodontally related defects such 
as intrabony, gingival recession 
associated with periodontal and 
furcation defects

Pharmaceuticals, 
Inc.

OP-1 putty (type-1 bovine bone 
collagen matrix loaded with 
recombinant human osteogenic 
protein used with putty additive like 
carboxymethyl cellulose sodium)

Stryker Biotech Suitable for posterolateral lumbar 
spinal fusion

Infuse bone graft/LT-cage Medtronic Suitable for spinal fusion in case 
of degenerative disk diseaseLumbar tapered fusion

Device (type-1 bovine bone collagen 
matrix loaded with recombinant 
human bone morphogenetic protein-2, 
titanium alloy cage)
Carticel (autologous cultured 
chondrocytes)

Genzyme 
Corporation

Suitable for regeneration of 
femoral condyle

OP-1 implant (type-1 bovine bone 
collagen matrix loaded with 
recombinant human osteogenic 
protein)

Stryker Biotech Used for treatment of long bone 
non-union defects
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formation of the tooth; the fabrication of tissue-engineered tooth requires dental 
mesenchymal and epithelial cells (Fig. 4.5) (Amar et al. 1989; Yoshiba et al. 1998). 
Mesenchymal cells and epithelial cells on a drop of collagen gel were seeded and 
placed in the tooth cavity of the mouse [63]. This bioengineered tooth germ was 
seen to form well-structured tooth when implanted in the jawbone (Nakao et  al. 
2007). Another strategy could be the development of a bioengineered tooth in vitro 
and transplanting the tooth in place of the missing one (Ikeda et al. 2009).

Three main points to be considered for dental tissue engineering are the cells 
used, the scaffolding biomaterial, and the growth factors.

Latest clinical trials in humans have demonstrated that cells attached on collagen 
helped in the regeneration of the bone in the lower jaw. Dental tissue engineering is 
promising for the patients who have dental diseases and defects.

4.10  Conclusion

Great expectations are there from regenerative medicine or tissue engineering, even 
when human clinical trials are very few. Like successful dermal implants for treat-
ing skin defects, tissue engineering of organs like the liver and pancreas have not 

Fig. 4.5 Articular cartilage stratification zones correlate to the cell differentiation stages
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been easy, because hepatocytes or pancreatic cell cultures are more difficult than 
keratinocytes, and likewise it is difficult to engineer whole complex structure of an 
organ. And therefore tissue engineering, started during the late 1980s, fails to pro-
duce many tissue-engineered products to the market. The delay of clinical trials 
might be because of the gap in communication between the tissue engineer, the 
researcher of academic institutions, and the surgeon who conduct implantation. 
Collaboration between different groups from different fields is a major requirement 
for successful operation of tissue engineering. Thus in spite of recent achievements 
and advances in tissue engineering, tissue engineering has yet much to deliver.
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Abstract
Aging brings about many risks factors that can lead to age-related chronic disor-
ders such as atherosclerosis, osteoporosis, and neurodegenerative diseases. 
Implicated in aging and age-related pathologies, the accumulation of senescent 
cells can prevent tissue repair and regeneration, leading to loss of physiological 
function. Cellular senescence is an age-related process in which cells cease to 
divide permanently, resist apoptosis, and can secrete harmful substances to adja-
cent cells. Senescent cells exert a larger degenerative effect on neighboring cells 
by acquiring senescence-associated secretory phenotypes (SASP) that release 
inflammatory cytokines, growth factors, and proteases. Studies in model organ-
isms have shown that the clearance of senescent cells in model organisms lead to 
an increase in healthy lifespan as measured by delays in the onset of age-related 
dysfunctions and pathologies. Senolytics are a class of senotherapies that use 
molecular compounds to selectively and efficiently induce cell death in senes-
cent cells. In some cases, senolytics targeting pro-survival networks including 
p53/p21, Bcl-2, PI3K/Akt, and serpin pathways have shown promising results in 
in  vivo mouse studies such as extended health span and restoration of tissue 
function. In this chapter, we will discuss the development of senolytic strategies, 
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specifically therapeutic agents that target cellular senescence and pro-survival 
pathways as well as offer insights into strategy improvements and alternatives.

Keywords
Senolytic · Senescence · SASP · Senotherapies · Biomarkers

Abbreviations

3MR Trimodal reporter protein
Akt Protein kinase B
ASK1 Apoptosis signaling regulating kinase 1
CDKN2A Cyclin-dependent kinase inhibitor 2A
DRI D-retro-inverso
EFNB1 Ephrin B1 protein
EFNB3 Ephrin B3 protein
FOXO4 Forkhead box protein O4
HSP90 Heat shock protein 90
HSV-TK Herpes simplex virus 1 (HSV-1) thymidine kinase
HUVE Human umbilical vein endothelial cell line
IL-6 Interleukin-6
IMR90 Human lung IMR90 cell line
LUC Renilla luciferase
mRFP Monomeric red fluorescent protein
PAI-1 Plasminogen activator inhibitor 1
p-Akt Phosphorylated protein kinase B
PDK1 3′-Phosphoinositide-dependent kinase 1
PH Pleckstrin homology
PI3K Phosphatidylinositol-3 kinases
PIP2 Phosphatidylinositol-4,5-bisphosphate
PIP3 Phosphatidylinositol-3,4,5-trisphosphate
PTEN Phosphatase and tensin homologue
ROS Reactive-oxygen species
SASP Senescence-associated secretory phenotype
SA-β-gal Senescence-associated β-galactosidase
SH2 Src homology 2
siRNA Small interfering ribonucleic acid, silencing ribonucleic acid
TM Transmembrane
WI-38 Human fetal lung cell line
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5.1  Introduction

Senescence is defined as the gradual deterioration of function leading to increased 
mortality from disease and injury, also referred to as “biological aging.” Although 
the concept of death may seem as an inevitability, reducing the rate of senescence 
has shown the possibility of delaying death or promoting regeneration. For exam-
ple, as early as 1934, rats undergoing dietary restriction have shown to increase their 
lifespan by 14–45% (Swindell 2012). Alternatively, some fish, turtles, and inverte-
brates achieve a state of “negligible senescence,” which occurs when there is no 
measurable decline in function or reproductive capabilities with age (Guerin 2004). 
In humans, changes to senescence come in the form of diseases that hijack natural 
senescent processes, such as the rare accelerated aging syndrome (Dreesen and 
Stewart 2011) or “Syndrome X,” a disease in which a person remains physically and 
mentally an infant throughout their life (Walker et al. 2015). Since age is the major 
risk factor for prevalent diseases in the developed world (e.g., cancer, cardiovascu-
lar disease, and neurodegeneration), as well as the fact that the aging process can be 
hijacked, the possibility of reversing the aging process through manipulating cellu-
lar senescence pathways is an area of active research.

Cellular senescence, which leads to organismal senescence, specifically refers to 
the irreversible arrest of cell proliferation that starts due to stressful stimuli (Campisi 
and D’Adda Di Fagagna 2007). These can include DNA damage, dysfunctional 
telomeres, disrupted chromatin, or oncogenesis (Campisi et al. 2001; Serrano and 
Blasco 2001). Not only are senescent cells irreversibly arrested, but they also secrete 
an assortment of cytokines, chemokines, growth factors, and proteinases that are 
collectively termed the senescence-associated secretory phenotype (SASP) 
(Campisi 2013). The SASP act as paracrine signals that produce a myriad of effects 
depending on the physiological context. With age, the number of senescent cells 
increases and consequently leads to an accumulation of SASP cytokines and pro-
teins which in turn can accelerate pathology. This condition in cells is thought to be 
irreversible due to the absence of any known physiological conditions that can 
reverse senescence. However, biological manipulations targeting cellular senes-
cence pathways have shown a renewal of proliferative function. For example, inac-
tivation of the p53 gene in senescent fibroblasts caused a return to robust growth 
(Beausejour et al. 2003). This finding is one of many that attempt to uncover thera-
peutic strategies for age-related diseases by selectively eliminating the disease- 
causing features of senescent cells, collectively termed senotherapies. Senolytics 
are a class of senotherapies that uses molecular compounds to selectively and effi-
ciently induce cell death in senescent cells. For example, Baker et al. (2011) showed 
that the removal of p16(Ink4a)-positive senescent cells in mice delayed age- 
associated diseases such as osteoporosis. In this chapter, we review the literature 
contributing to the development of senolytic strategies, specifically therapeutic 
agents that target cellular senescence pathways.
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5.2  Senolytics Targeting Pro-survival Networks

Cellular senescence is described as having a double-edged influence on cellular 
proliferation. On the one hand, senescence can be seen as an anticancer response 
that turns potentially cancerous cells into benign tumors. On the other hand, senes-
cence of healthy cells or large amounts of cells can reduce the ability for tissue to 
regenerate and repair itself. Thus, most senolytic agents are currently being devel-
oped to target pro-survival networks due to the observation that cellular senescence 
is preceded by some form of tumorigenic stress such as DNA damage. Although 
harboring DNA damage and being immersed in local SASP, senescent cells have the 
remarkable ability to withstand stress. Common markers of cellular senescence 
include decreased cellular proliferation and increased cell size and volume 
(Fuhrmann-Stroissnigg et  al. 2017). Senescent cells also tend to have increased 
expression of cell cycle inhibitors (e.g., p21(Cip1) and p16(Ink4a)) and the SASP 
factor interleukin-6 (IL-6) (Fuhrmann-Stroissnigg et al. 2017). Consequently, it is 
hypothesized that they have upregulated pro-survival/anti-apoptotic networks. 
Senolytics targeting pro-survival networks have shown efficacy against atheroscle-
rosis, osteoporosis, cancer, and other age-related disorders (Campisi and D’Adda Di 
Fagagna 2007). The major pro-survival/anti-apoptotic pathways to be discussed in 
this chapter include p53/p21, Bcl-2/Bcl-xL, PI3K/Akt, and serpin pathways 
(Fig. 5.1).

Fig. 5.1 The p53/p21, Bcl-2, and PI3K/Akt pathways all have regulatory roles in cell survival. 
Although it is known that PAI-1 upregulates p53/p21 activity, the mechanism of the serpin path-
way still remains unknown
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5.3  p53/p21 Pathway: FOXO4-Interacting Peptide

Permanent growth arrest is initiated with the p53/p21 pathway. Activated p53 leads 
to the induction of p21, which in turn inhibits the cyclin/cyclin-dependent kinase 
complexes involved in cell cycle progression (Harris and Levine 2005). Activation 
of p53 also leads to cell death as p53 is translocated to the mitochondria, which is 
important in the release of cytochrome c and protease activation (Harris and Levine 
2005). However, in senescent cells, while cyclin/cyclin-dependent kinase activity is 
inhibited, cells do not undergo apoptosis.

In a study with human IMR90 fibroblast cells, despite elevated levels of pro- 
apoptotic initiators and reduced levels of anti-apoptotic factors, cells resisted death 
(Baar et al. 2017). The group also observed that senescent cells had elevated mRNA 
and protein expression of FOXO4, a protein that had not been previously linked to 
senescent cell death.

Interestingly, FOXO4 was able to induce IMR90 cells to senesce rather than 
apoptose, despite the high levels of pro-apoptotic and low levels of anti-apoptotic 
factors priming the cells. FOXO4’s mechanism involves its association with p53 in 
the nucleus, preventing nuclear exclusion and p53-mediated apoptosis. By inhibit-
ing FOXO4, there was release of cytochrome c and caspase activity in pre-senescent 
cells, while there was decreased cell viability and density in senescent cell 
cultures.

In response, Baar et  al. (2017) aimed to disrupt the FOXO4-p53 interaction, 
designing a D-retro-inverso (DRI)-modified peptide containing part of the p53- 
interaction region found in FOXO4 which they called FOXO4-DRI. DRI-modified 
peptides can increase peptide potency in vitro and in vivo (Borsello et al. 2003). 
FOXO4-DRI was capable of binding to p53 with higher affinity than FOXO4, 
enabling p53 nuclear exclusion and translocation to the mitochondria where it 
induced apoptosis. In fast-aging mice, FOXO4-DRI treatment reduced the effects of 
doxorubicin-induced senescence, counteracted hair loss, improved renal function, 
and improved fitness such as increased voluntary running wheel activity.

5.4  Bcl-2/Bcl-xL Pathway Inhibitors

The B-cell lymphoma-2 (Bcl-2)-related family constitutes important apoptosis- 
regulatory genes that usually act on the mitochondrial and nuclear membrane and 
endoplasmic reticulum due to a carboxy-terminal transmembrane (TM) region lim-
iting their subcellular distribution (Muchmore et al. 1996; Wang et al. 2001). While 
most Bcl-2 proteins are death-inhibiting (e.g., Bcl-2, Bcl-xL, Bcl-w, Mcl-1, 
Bfl1/A-1, Bcl-B), containing all four Bcl-2 homology domains, there are also Bcl-2 
homologues that comprise of death-inducers, subdivided into proteins containing 
Bcl-2 homology 1–3 domains (e.g., Bax, Bak, Bok) (Wolter et al. 1997; Chittenden 
et al. 1995; Hsu et al. 1997) and proteins containing only the BH3 domain (e.g., Bid, 
Bim, Bad) (Oltersdorf et al. 2005; O’Connor et al. 1998; Yang et al. 1995). Notably, 
the ratio of pro- and anti-apoptotic Bcl-2 family proteins influences the fate of a cell. 
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When the expression of anti-apoptotic Bcl-2 proteins overwhelms the levels of pro- 
apoptotic Bcl-2 proteins, the cell can escape apoptosis, thus resisting drugs and 
therapeutic agents (Del Poeta et al. 2003; Minn et al. 1995).

Constitutively high levels of the pro-survival Bcl-2 proteins have been associated 
with aggressive malignancies, drug resistance toward chemotherapeutic agents, and 
cellular senescence (Reed 2008; Davis et al. 2003). Hence, there has been a signifi-
cant effort in targeting Bcl-2 family proteins with senolytic agents, such as TW-37, 
which is a nonpeptide Bcl-2 inhibitor (Zhu et  al. 2016); Navitoclax (ABT-263), 
which has shown preferential elimination of senescent cells by inducing apoptosis 
via caspase 3 and 7 activation (Zhu et al. 2016); and ABT-737, a Bcl-2/Bcl-w/Bcl-xL 
inhibitor, which has shown in vivo preferential elimination of senescent cells and 
increased hair-follicle stem cell proliferation in the epidermis (Yosef et al. 2016).

However, the effectiveness of Bcl-2 inhibitors is cell-type dependent. For 
instance, Navitoclax (ABT-263) has shown to selectively induce apoptosis in 
radiation- induced senescent human umbilical vein endothelial cells (HUVECs) and 
IMR90 cells, whereas TW-37 has no senolytic activity in these cell types (Zhu et al. 
2017). Another issue posed by inhibitors like ABT-263 and ABT-737 is their cause 
of severe thrombocytopenia (Schoenwaelder et  al. 2011; Schoenwaelder and 
Jackson 2012).

5.5  PI3K/Akt Pathway: HSP90 Inhibitors and Fisetin

Phosphatidylinositol-3 kinases, PI3Ks, are lipid kinases capable of phosphorylating 
inositol ring 3’-OH group found in inositol phospholipids (Fruman et  al. 1998). 
Through one of their SH2 domains in the adaptor subunit, PI3Ks are recruited to the 
membrane, binding to phosphotyrosine residues on growth factor receptors/adaptor 
proteins. Activation of PI3K leads to the conversion of phosphatidylinositol- 4,5- 
bisphosphate (PIP2) to the second messenger phosphatidylinositol-3,4,5- 
trisphosphate (PIP3), in which PIP3 recruits signaling proteins with the pleckstrin 
homology (PH) domains to the inner membrane such as PDK1 and Akt (Pawson 
and Nash 2000). PDK1 (3′-phosphoinositide-dependent kinase 1) is thought to be a 
constitutively active protein that phosphorylates Akt at T308, enabling stabilization 
of phosphorylated Akt (p-Akt) (Alessi et al. 1996). Through several mechanisms, 
active p-Akt activates and inhibits several substrates involved in regulating cell sur-
vival, cell cycle progression, and cell growth (Fresno Vara et al. 2004). The PI3K/
Akt pathway has been associated with inducing an apoptosis-resistant phenotype 
and senescence in several cell types (Lorenzini et al. 2002; Astle et al. 2012).

It has been suggested that heat shock protein 90 (HSP90) binds to p-Akt and 
apoptosis signaling regulating kinase 1 (ASK1) which stabilize p-Akt, encouraging 
cellular survival and senescence. This binding prevents ASK1 from forming an 
interaction with p38 to induce signaling for apoptosis (Watanabe et al. 2015; Zhang 
et al. 2005). It has also been suggested that HSP90 and Akt need to function together 
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in order to inhibit ASK1-p38 signaling. With that being said, disruption of the 
HSP90-Akt interaction would lead to destabilization of active/phosphorylated Akt 
and subsequent apoptosis.

Several HSP90 inhibitors have been identified as potential senolytics including 
tanespimycin (17-AAG), geldanamycin, and 17-DMAG (Fuhrmann-Stroissnigg 
et al. 2017).The group considered chemical compounds to have senolytic potential 
if they significantly reduced senescent cells. In the same study, 17-DMAG was able 
to downregulate the level of p-Akt in senescent Ercc1−/−mouse embryonic fibroblast 
(MEF) cells in vitro, while another HSP90 inhibitor, namely, ganetespib, showed 
senolytic activity specifically in HUVECs. This illustrates that not all HSP90 inhibi-
tors work in a similar fashion on all cell types.

Using a human progeroid syndrome mice model, Fuhrmann-Stroissnigg et al. 
(2017) found that 17-DMAG extended health span by assessing reduction in age- 
related symptoms such as kyphosis, dystonia, tremor, loss of forelimb grip strength, 
coat condition, ataxia, gait disorder, and body condition.

Another chemical that functions through the PI3K/Akt pathway specifically is a 
naturally occurring flavone called fisetin (3,3′,4′,7-tetrahydroxyflavone), which is 
found in high concentrations in strawberries (160 μg/g) (Khan et al. 2013). Fisetin 
is a hydrophobic molecule that accumulates in cells and has shown selective apop-
tosis induction of human breast cancer MCF-7 cells via caspases 7, 8, and 9 (Yang 
et al. 2012). In both in vitro and in vivo studies, fisetin demonstrated senolytic activ-
ity in HUVECs, but not IMR90 and primary human preadipocytes, as shown by 
caspase 3 and 7 activity assays (Zhu et al. 2017). Fisetin is a widely available nutri-
tional supplement and has very little known side effects, demonstrating its potential 
to act as an orally administered senolytic agent (Zhu et al. 2017).

5.6  Serpin Pathway Inhibitors

Serpin genes encode for serine protease inhibitor (serpin) superfamily proteins that 
include serpin B2 (PAI-2), serpin E1 (PAI-1), and serpin E2 (Potempa et al. 1994; 
Kortlever et al. 2006). Among these, there has been considerable interest in plas-
minogen activator inhibitor 1 (PAI-1) as it has been identified as a senescence- 
associated gene given its increased expression in senescent cells (Kortlever et al. 
2006; Suzuki et al. 2001; Dimri et al. 2000; Elzi et al. 2012). There has been increas-
ing evidence to support that PAI-1 is not only a biomarker but also a mediator of 
cellular senescence (Perez et al. 2010; Eren et al. 2014a, b; Ghosh et al. 2016). In rat 
idiopathic pulmonary fibrosis (IPF) alveolar type II (ATII) cells, treatment with 
bleomycin caused an increase in PAI-1, as well as other senescence biomarkers p53, 
p21, and senescence-associated beta-galactosidase (SA-β-gal) (Jiang et al. 2017). 
On the other hand, silencing PAI-1 using siRNA reduced p53 and p21 expressions 
(Jiang et al. 2017). This suggests that PAI-1 positively regulates p53 and p21 levels 
in the p53-p21 pathway. However, the mechanism PAI-1 uses to regulate p53 activ-
ity is still unknown.
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5.7  Screening for Senolytic Agents

5.7.1  β-Galactosidase Assay

The β-galactosidase assay is a widely used screening platform to identify senothera-
peutic drugs in vitro and in vivo due to its simplistic method and apparent specificity 
toward senescent cells (Krishnamurthy et al. 2004; Cao et al. 2003; Castro et al. 
2003; Itahana et al. 2007). The assay measures the expression levels of senescence- 
associated β-galactosidase activity (SA-β-gal) which is expressed predominantly by 
senescent cells, occurring at higher frequency in older tissues (Dimri et al. 1995). 
SA-β-gal is detectable by colorimetric X-gal (5-bromo-4-chloro-3-indolyl-β-D- 
galactopyranoside) staining at pH 6.0 and/or by using the fluorescent substrate 
C12FDG (5-dodecanoylaminofluorescein-di-b-D-galactopyranoside) staining 
(Dimri et al. 1995). There are, however, a few criticisms of using SA-β-gal as a sur-
rogate marker of senescent cells. It is important to consider that SA-β-gal has also 
been highly expressed in non-senescent states (Severino et al. 2000; Untergasser 
et  al. 2003) and in confluent cultures maintained for prolonged periods in  vitro 
(Dimri et  al. 1995). Additionally, despite mRNA knockdown of the gene GLB1, 
which codes for SA-β-gal expression, cells still entered senescence (Lee et  al. 
2006). This suggests that SA-β-gal is not required for senescence. Hence, measur-
ing SA-β-gal is sometimes coupled with measuring other biomarkers of senescence 
such as p16 gene products and the SASP inflammatory cytokine IL-6 (Kuilman 
et al. 2008; Capparelli et al. 2012; Marcoux et al. 2013).

5.8  Animal Models for Senescent Studies

Engineered by Demaria et al. (2014), the p16-3MR mouse model allows observa-
tion and manipulation of senescent cells in vivo. Using their p16-3MR model, the 
group demonstrated that although senescent cells have mostly inflammatory and 
detrimental effects through SASP, the total elimination of senescent cells can hinder 
wound healing and tissue differentiation (Demaria et al. 2014).The p16-3MR mouse 
strain expresses a trimodal reporter protein (3MR) that is under control by the 
p16(Ink4a) promoter and contains the functional domains of a synthetic Renilla 
luciferase (LUC), monomeric red fluorescent protein (mRFP), and truncated herpes 
simplex virus 1 (HSV-1) thymidine kinase (HSV-TK) (Demaria et al. 2014; Ray 
et al. 2004).Senescent cells, both in vivo and in vitro, often express p16(Ink4a), a 
cyclin-dependent kinase inhibitor that is also known as CDKN2A. Expression of 
p16(Ink4a) causes the growth arrest associated with irreversible senescence (Coppe 
et al. 2011; Baker et al. 2011). Hence, the amount of p16 gene products and the 
SASP (the most common cytokine being IL-6) would reflect the number of senes-
cent cells. Cells were also engineered to be fluorescent via mRFP to allow easy 
identification of senescent cells from tissue samples and to be bioluminescent via 
LUC to allow traceability in vivo (Chang et al. 2016). HSV-TK converts the ganci-
clovir prodrug into a toxic form that subsequently induces apoptosis (Laberge et al. 
2013; Gao et al. 1999).
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5.9  Assessing Current Senolytic Agents

Developing drugs for targeted senolytics is currently being researched as a viable 
treatment modality to alleviate disease symptoms. Markers of drug effectiveness 
include expression levels of survival gene networks together with apoptotic resis-
tance. Small molecule drugs would significantly inform current medicinal 
approaches aimed to relieve the harmful effects of aging diseases as senolytics 
drugs have the capacity to selectively target and kill senescent cells. Common target 
genes converge through various pathways to cell cycle inhibitors such as p21, which 
in turn inhibits cyclins/cyclin-dependent kinases eventually leading to senescence.

One key pathway that current tested drugs target for senescence are the ephrin- 
dependent receptor ligands, called EFNB1 or EFNB3 (Hwang et al. 2018). These 
are the largest receptor tyrosine kinases and coordinate cell survival during develop-
ment. Like other ligand-receptor interactions, the ephrin receptors can interact with 
ligands on adjacent cells to stimulate downstream cell signaling. Specifically, 
EFNB3 has been known to induce the SASP when the gene is overexpressed 
(Hwang et al. 2018). Table 5.1 highlights the pro-survival pathways together with 
their targeted senolytics for reference.

In vitro testing of drugs targets gene products that protect senescent cells. Both 
dasatinib and quercetin are two drugs that are known to clear senescent cells (Hwang 
et al. 2018). The drug, dasatinib, is an inhibitor of multiple tyrosine kinases which 
was originally used for treating cancers. Specifically, it is known to inhibit the sup-
pression of apoptosis in human fat cell progenitors. Similarly, quercetin inhibits 
another class of kinases called PI3K and serpins. This drug was particularly effec-
tive against heart and umbilical vein endothelial cells (HUVEC). This presents evi-
dence for cell-specific targeted therapy. In addition, combinations of both drugs 
showed the selective killing of both senescent fat cell progenitors as well as 
HUVECs.

Post in vitro testing, the drugs were tested in reducing the viability of senescent 
murine cells. The murine cells specifically tested were mouse embryonic fibroblasts 
(MEFs) which showed a significant reduction in number post treatment with both 
dasatinib and quercetin (Demaria et  al. 2014). In these mice, when the 

Table 5.1 Mapping drugs to potential targeted pathways

Potential 
pathway Targeted senolytics References
p53/p21 Quercetin, dasatinib + quercetin, 

piperlongumine, FOXO4-related peptide
Hwang et al. (2018), Wang et al. 
(2016), and Baar et al. (2017)

Bcl-2/
Bcl-xL

Quercetin, Navitoclax (ABT-263), 
ABT-737, piperlongumine, A1331852, 
A1155463

Hwang et al. (2018), Wang et al. 
(2016), Baar et al. (2017), and Zhu 
et al. (2017)

PI3K/Akt Quercetin, fisetin, geldanamycin, 
tanespimycin, ganetespib

Hwang et al. (2018), Khan et al. 
(2013), and Fuhrmann-Stroissnigg 
et al. (2017)

Serpin Quercetin, dasatinib + quercetin Hwang et al. (2018)
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cardiovascular function was tested, there was substantial impairment in vascular 
reactivity seen in aged mice. This further uncovered a link between senescent cells 
and cardiovascular dysfunction in humans.

However, not all formulations were successful in drug testing. For example, a 
selective prodrug in targeting senescent cells is the quercetin derivative quercetin 
3D galactoside (Q3G; hyperoside). Hyperoside is a natural derivative of quercetin 
and structurally identical except that it contains a cleavable galactoside group. 
However, it was found to be ineffective in targeting senescent endothelial cells 
in vitro (Hwang et al. 2018).

Navitoclax, a Bcl-2 inhibitor, was similar in action to quercetin and dasatinib and 
also eliminated cells via apoptosis in similar human and mouse cell types (Zhu et al. 
2017). In addition to targeting multiple Bcl-2 family target proteins, Navitoclax 
acted non-specifically. To illustrate, administration of Navitoclax mice led to the 
effective depletion of senescent bone marrow hematopoietic stem cells (HSCs) as 
well as senescent muscle stem cells (MuSCs) (Chang et al. 2016). Similarly, Bcl-xL 
inhibitors, namely, A1331852 and A1155463, were found to be senolytic in 
HUVECs and IMR90 cells, but not preadipocytes (Zhu et al. 2017). This activity 
occurred through apoptosis as tested by caspase 3/7 activity in vitro.

Piperlongumine is a natural product, isolated from the genus Piper and demon-
strated to have senolytic properties (Wang et al. 2016). Piperlongumine was shown 
to selectively kill human WI-38 fibroblasts by several means: reducing viability in 
IR-induced as well as Ras-induced WI-38 senescent cells. It was uncovered that the 
selective killing occurred by apoptosis through a reactive-oxygen species (ROS)-
independent mechanism. Further, a synergistic effect of piperlongumine was seen 
when administered together with Navitoclax.

Other drugs on the market such as metformin, rapamycin, and ruxolitinib have 
shown promising effects to suppress SASP, specifically alleviating symptoms of 
age-related disorders causing metabolic dysfunction (Huffman et  al. 2016). For 
example, ruxolitinib, a JAK 1/2 inhibitor, alleviates insulin resistance and tissue 
dysfunction (Xu et  al. 2015). The intermittent administration of these drugs has 
been shown to mitigate effects of cellular senescence. However, since the specific 
mechanism of action remains unknown, it is difficult to identify exactly how these 
SASP inhibitors function. Moreover, administering them in conjunction with the 
pathway-specific drugs described above may prove a difficult, if not impossible, 
task.

5.10  Future Direction of Senolytics

Although the potential to translate senolytics into clinical treatments shows prom-
ise, there are some concerns moving forward. Perhaps the biggest challenge lies in 
the fact that cellular senescence has a dual nature, and creating anti-aging treat-
ments may not be as simple as accentuating or attenuating core senescence path-
ways. The inhibition of growth, for example, acts as a natural anticancer mechanism 
that prevents tumors from progressing past benign stages. Given that tumorigenic 
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effects largely begin by mutations in the genome, removing the senescence capabili-
ties of rapidly dividing cells altogether would simultaneously increase the chances 
of developing tumors. This is a major risk with regard to “off-target” effects of 
senolytic drugs. On the other hand, the benefits of removing senescent cells in ani-
mal models have clearly shown promise. For example, the removal of p16(Ink4a)-
positive senescent cells in mice delays age-associated diseases such as osteoporosis 
(Baker et  al. 2011). One strategy to approach dealing with issues regarding the 
duality of senescent effects is to engineer therapies to target specific cellular con-
texts. A recent innovative approach involved using engineered proteins expressed in 
cells to target senescent cells releasing IL-6 cytokines (Fig. 5.2) (Qudrat et al. 2017).

Understanding the specific contexts of harmful senescence states and targeting 
therapeutics to that context may provide a better approach to selectively remove 
harmful senescent cells. This cellular-based approach to senotherapies involves the 
creation of a stable cell line expressing a synthetic chimeric receptor for a SASP 
cytokine and calcium-activated RhoA (CaRQ) to enable migration toward SASP 
sources (Qudrat et al. 2017). In Qudrat et al. (2017), IL-6 targeting cells were engi-
neered to express a chimeric receptor called IL6Rchi, which is comprised of the 
extracellular portion of the IL-6 receptor to bind to the SASP cytokine IL-6, and the 
transmembrane and cytoplasmic domains of VEGFR2 to generate calcium signals. 
The calcium signals generated by IL-6 binding to IL6Rchi activate CaRQ-mediated 
cell migration, enabling the IL-6 targeting cell to migrate toward areas/sources of 
high IL-6 expression (i.e., senescent cells expressing the SASP). Once at the tar-
geted SASP site, the HSV-TK system can be used to convert ganciclovir into its 
toxic form to induce apoptosis (Gao et al. 1999; Qudrat et al. 2017). The results 
have been promising in  vitro in targeting directed SASP engineered cells. 
Additionally, through the use of antibody components in the chimeric receptors, cell 
migration can be rewired to nearly any SASP cytokine (Qudrat and Truong 2018).

Although the potential to translate senolytics into clinical treatments is present, 
there are clear obstacles. For one, the main difficulty is in determining potential 
endpoints in clinical trials (Kirkland and Tchkonia 2017). Further, treatments that 

Fig. 5.2 Concept of IL-6 targeting cells responding and migrating toward IL-6 sources (e.g., 
senescent cells)
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appear effective in mice may prove altogether ineffective in humans. This is particu-
larly true when attempting to translate from genetically induced mice models to 
humans. And since not all senescent cells are harmful as they play an important role 
in wound healing and tissue repair, the need for targeted therapeutics is ever present 
to eliminate harmful effects and maintain beneficial effects of cellular senescence. 
On the contrary, generating targeted therapeutics to remove senescent cells may 
have decreased rates of drug resistance and recurrence since these cells no longer 
divide (Kirkland and Tchkonia 2017).

Looking ahead, there are many questions that still need to be addressed before 
senolytics find their way to the market. First, there is a need for characterizing 
potential drug side effects, in addition to delays in wound healing, as well as off- 
target effects (Demaria et al. 2014). Secondly, to optimize the frequency of drug 
administration, rates of senescent cell re-accumulation need to be explored. Thirdly, 
the additive and synergistic effects of drugs, specifically in conjunction with SASP 
inhibitors, need to be uncovered. Fourthly, definitive studies need to be performed 
to expound the realized effect of senolytics on lifespan. Lastly, a multiplex approach 
needs to be evaluated coupling drug delivery and cell-based therapeutics to maxi-
mize proficiency.

5.11  Conclusion

Age is a condition associated with decreasing physiological and psychological 
capabilities in humans. This deterioration gives rise to vulnerability to a host of 
diseases as well as a lower quality of life. Over the past century, decreased mortality 
rates and increased life expectancy has been a major advancement of the human 
condition, followed closely however by a domination of age-related diseases. The 
discovery of cellular senescence pathways and their link to aging and the develop-
ment of animal models that show little signs of accelerated aging have been a major 
step to a potential treatment for aging conditions. Understanding that cellular senes-
cence can be a beneficial mechanism for cancer protection has also deepened our 
understanding of the benefits of aging and the complexity of human physiology. 
Senolytic therapies have attempted to reduce age-related pathologies by the removal 
of harmful senescent cells. Senolytics targeting pro-survival networks have shown 
efficacy against atherosclerosis, osteoporosis, cancer, and other age-related disor-
ders in cell and animal-based studies. Developing targeted approaches to remove 
harmful senescence while maintaining the body’s natural defense against uncon-
trolled proliferation may be the next major challenge. Greater testing in clinical 
trials and well-defined outcomes are also needed, but nevertheless, the current out-
look in senolytics seems bright. The past century has seen a decrease in mortality 
rates and increased life expectancy, and although more research is needed, signifi-
cant steps are being made toward understanding the complexity of aging to move 
forward into the next century.
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Abstract
Aging is an inevitable, physiologically irreversible, and progressive process. It 
involves various detrimental changes in the ability to maintain cellular homeosta-
sis. During the aging period, senescent cells are accumulated. Due to the signifi-
cant medical advances in the treatment of various life-threatening diseases, life 
expectancy is rising day by day. Thus, higher speed of population aging brings 
enhanced prevalence of age-related disorders. Increasing mid-life quality and 
extending the life span of aging individuals seem possible by decreasing the rate 
of aging process with the help of various pharmacologically active substances 
called as geroprotective or senolytic drugs. Several numbers of naturally found 
and synthetic substances may provide a source of therapeutic drugs which are 
proposed to have some geroprotective or senolytic effects, reducing the rate of 
aging and extending the life span. These therapeutic drugs have some beneficial 
effects on cellular metabolism such as antioxidant, free radical scavenger, immu-
nomodulator, and metal chelator activities. Some of the aforementioned drugs are 
called as smart molecules because of their pluripotency effects. Attributed to their 
properties, these drugs may overcome impaired cellular metabolic homeostasis. 
This chapter aimed to classify geroprotective and senolytic drugs via their struc-
tural properties and pharmacological mechanisms.
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6.1  Dawn of Geroprotective Drugs

Global aging and increasing prevalence of age-related disorders attract the 
attention of researchers worldwide. Finally, gerontology as a discipline in scien-
tific field is proposed by Russian and French biologist Ilya Mechnikov (Moskalev 
et al. 2017).

Gerontologists dedicated themselves to slow down degenerative outcomes of 
aging process. More than 300 theories have been proposed, and aforementioned 
theories interrelated with each other (Medvedev 1990). It is currently not impossi-
ble to slow down detrimental outcomes of aging process because of the discovery of 
more than 200 substances as geroprotective drugs (Moskalev et  al. 2016). 
Geroprotective drugs may affect the root cause of aging and age-related pathologies 
via preventing or delaying onset or progress of age-related disorders (Moskalev 
et al. 2016; Ito et al. 2012). Many of the aforementioned drugs are called as “smart 
molecules” because of their pluripotency effects.

6.2  Definition of Geroprotective Drugs

Geroprotective drugs need to have some of the following selection criteria:

 – Having the ability to increase life span.
 – Diminish rate of the progression of age-related disorders.
 – Have maximum benefit and accessible toxicity.
 – Should enhance health quality of elderly life.
 – Action mechanisms or their targets should evolutionarily be preserved.
 – Enhance the organism resistance to adverse environmental factors (Moskalev 

et al. 2017).

6.3  Classification of Geroprotective Drugs

It can be suggested that classification of geroprotective drugs may be divided into 
two major groups, their chemical structure and action mechanism.

6.3.1  Classification of Geroprotective Drugs According to Their 
Chemical Structure

Classification of geroprotective drugs according to chemical structure is given in 
Table 6.1.
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6.3.2  Classification of Geroprotective Drugs According to Action 
Mechanism

Even though various candidate substances that ameliorate the higher rate of age-
related degenerative changes have been currently proposed, there is still no global 
consensus of classification issue of these substances in current literature.

Recently extended classification of geroprotectors:

 – Mitochondria-targeted antioxidants
 – Advanced glycation end product (AGE) and advanced lipid peroxidation end 

product (ALE) inhibitors
 – Mimetics of caloric restriction
 – Epigenetic modulators
 – Immunomodulators
 – Hormones and hormonelike substances

6.3.2.1  Mitochondria-Targeted Antioxidants
Various theories have been proposed to clarify homeostatic regulation mechanisms 
of aging, including mitochondrial and free radical theories (Loenen 2010). 
Antioxidant supplementation draws attention to overcome excessive free radical 
formation and age-related degenerative pathologies (Fusco et  al. 2007; Erdoğan 
et  al. 2017). Supplemented antioxidants mainly act as free radical scavengers 
depending on their dosage. They play important role in direct or indirect neutraliza-
tion of free radicals, reducing the peroxide concentration and repairing oxidized cell 
membranes, quenching iron to decrease free radical production (Berger 2005). 

Table 6.1 Classifications of geroprotective drugs according to chemical structure

Chemical 
structure Example of geroprotective drugs

Chemical 
structure

Example of 
geroprotective drugs

Amines D-Glucosamine, spermidine Minerals Magnesium, cooper, 
selenium, zinc

Amino acid 
derivatives

N-Acetyl L-cysteine, 
S-adenosylmethionine, carnosine, 
histidyl hydrazine, methionine

Vitamins Ascorbic acid, 
tocopherol, vitamin B3, 
vitamin B5, vitamin B6, 
vitamin D, alpha lipoic 
acid

Sugar and 
sugar 
derivatives

Trehalose, 2-deoxy-D-glucose, 
mannoheptulose

Polyphenol Resveratrol, quercetin, 
gallic acid, catechin, 
ellagic acid, curcumin, 
caffeic acid

Hormones Melatonin, 
dehydroepiandrostenedione, 
estrogen, testosterone

Peptides Carnosine, glutathione

Organic acids Alpha-ketoglutarate, malate, fumarate
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At high levels, antioxidants not only failed to ameliorate age-related pathologies, 
but they may also cause adverse events due to their prooxidant activity (Howes 
2006; Kayali et al. 2007) (Fig. 6.1).

Antioxidant targeted therapy is based on two main strategies; one of them is 
conjugation to lipophilic cations as triphenylphosphonium (TPP+) (Murphy 2008) 
and the other is incorporation into mitochondria-targeted peptides as Szeto-Schiller 
(SS) peptides.

Geroprotectors as mitochondria-targeted antioxidants are given in Table 6.2.

Fig 6.1 Effects of 
substances depend on their 
dosage: at high 
concentration substances 
lose their antioxidant 
abilities and represent 
opposite effect as 
prooxidant. The black and 
white areas symbolize 
prooxidant and 
ameliorative effects of 
substances called as 
antioxidant depending on 
their dosage

Table 6.2 Summary of mitochondria-targeted antioxidants and their geroprotective properties

Mitochondria-targeted 
antioxidants Geroprotective properties
Nitroxides Superoxide radical scavengers
Lipoic acid Metal chelator activities, AGE inhibitor, anti-inflammatory
Plastoquinone Free radical scavenger, antibacterial activity
Mitoquinone Free radical scavenger, anti-inflammatory, antihypoxic activity
MitoVitE Mitochondrial redox regulator
Ebselen Mimics glutathione peroxidase activity, ALE inhibitor
Latrepirdine Antihistaminic, neuroprotector, monoamine oxidase inhibitor, 

acetylcholine esterase inhibitor
Szeto-Schiller peptides Free radical scavenger, ALE inhibitor
N-Acetyl cysteine Antioxidant, anti-inflammatory, ALE inhibitor

AGEs advanced glycation end products, ALEs advanced lipid end products
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Lipoic Acid
Lipoic acid (LA) is an amphipathic, sulfur-containing metabolic antioxidant molecule 
which acts as a metal chelator and glycation inhibitor (Muellenbach et  al. 2008; 
Packer et al. 1995). It is also synthesized endogenously by LA synthase in mitochon-
dria and also it is supplied nutritionally. Atukeren et al. showed metal chelator activi-
ties of both LA and its reduced form dihydrolipoic acid (DHLA) on free radical-induced 
human albumin oxidation at in vitro conditions (Atukeren et al. 2010).

Szeto-Schiller Peptides
Szeto-Schiller (SS) peptides are synthesized from basic and aromatic amino acids; 
thus, they are called as aromatic-cationic peptides (Zhao et al. 2004). SS peptides are 
comprised of four alternating aromatic/basic D-amino acids in the first or second 
position of their rings with three positive charges at physiological pH. Despite three 
positive charges, their structure allows SS peptides to freely penetrate aging cells. 
Uptake of these peptides occurs in energy-independent, dose-dependent, non-satura-
ble manner (Zhao et al. 2003). The presence of a D-amino acid in either the first or 
second position of the sequence provides them resistance against aminopeptidase 
activity, and amidation of the C-terminus reduces hydrolysis from the C-terminus. 
Four different SS peptides identified (Zhao et al. 2004). These peptides are called as 
SS-01 (H-Tyr-D-Arg-Phe-Lys-NH2), SS-02 (H-Dmt-D-Arg-Phe-Lys-NH2), SS-31 
(H-D-Arg-Dmt-Lys-Phe-NH2), and SS-20 (H-Phe-D-Arg-Phe-Lys-NH2). SS pep-
tides act as free radical scavengers as H2O2 and ONOO−. These peptides inhibit lipid 
peroxidation via the inhibition of oxidative modification of linoleic acid and low-
density lipoprotein (LDL). Their scavenging action can be attributed to the tyrosine 
or mainly dimethyltyrosine residues (Zhao et al. 2004).

N-Acetyl Cysteine
N-Acetyl cysteine is the acetylated form of cysteine and serves as a hydrophilic 
antioxidant, free radical scavenger and anti-inflammatory, glutamate-modulating 
agent (Avantaggiato et al. 2014; Oliver et al. 2015). Its antioxidant activity appears 
against hypochlorous acid, OH. radicals, and H2O2 via its thiol (-SH) groups 
(Aruoma et al. 1989; Avantaggiato et al. 2014). N-Acetyl cysteine increases the 
intracellular levels of -SH groups of cysteine. Cysteine is the primary amino acid 
of glutathione synthesis and necessary to ensure optimum cellular reduced gluta-
thione levels (Oliver et  al. 2015). Glutathione reacts with peroxynitrite to form 
S-nitrosothiols. S-Nitrosothiols protect the accumulation of excessive amount of 
peroxynitrites and prevent adverse effects of nitrosative stress (Loscalzo 2001). 
N-Acetyl cysteine inhibits protein and lipid peroxidation (Negre-Salvayre et  al. 
2008; Arakawa et al. 2007); ameliorates deteriorated membrane integrity, cellular 
dysfunction, and apoptosis; and ensures restoration of excess amount of malondi-
aldehyde (MDA), acetylcholine esterase, choline acetyltransferase, and acetylcholine 
to physiological levels (Fu et al. 2006).
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6.3.2.2  Advanced Glycation End Product and Advanced Lipid End 
Product Inhibitors

Advanced glycation end products (AGEs) are very heterogenous compounds which 
are formed by Maillard reaction. Protein turnover rate is one of the limiting factors 
of AGE accumulation. Excessive AGE accumulation is seen most prominently in 
long half-life of proteins such as crystalline (Nowotny et  al. 2015; Dalle-Donne 
et al. 2003). Not only protein turnover rate but also accumulation of glycating agent 
and glyoxidative stress may form AGEs (Nowotny et  al. 2015). The steady-state 
level of systemic AGEs is determined by the function of a balance between their 
formation and removal. AGE inhibitors may serve as relatively nonspecific nucleo-
philes. Their nucleophilic features give them an advantage in affecting ALE forma-
tion (Onorato et al. 2000). Considerable evidence suggests that ALE inhibitors may 
be considered as useful markers to evaluate initiation and progression of age-related 
disorders (Aronson 2003). Currently, various ALE and AGE inhibitors have been 
used for prevention of related disorders (Table 6.3). These inhibitors inhibit related 
pathways in different steps (Fig. 6.2).

Angiotensin-Converting Enzyme Inhibitors
Angiotensin-converting enzyme (ACE) inhibitors exhibit various protective effects: 
inhibit LDL oxidation and the formation of MDA and 4-HNE (Kornatowski et al. 
2006; Saeidnia and Abdollahi 2013). It was reported that captopril, a thiol-contain-
ing ACE inhibitor, was able to significantly decrease the oxidative modification of 
LDL particles via scavenging hypochlorous acid (Van Antwerpen et al. 2006).

Carnosine
A natural product, carnosine (β-alanyl-L-histidine), increases the chronological life 
span of human fibroblast cells and effectively postpones cellular senescence (McFarland 
and Holliday 1994). AGE and ALE inhibitors generally considered as antiaging com-
pounds (Hipkiss 2017) form adducts with various aldehydes and ketones (Vistoli et al. 
2009). Carnosine has also metal chelator free radical scavenger activities and affects 
gene expression (Fontana et al. 2002; Boldyrev et al. 1994; Hipkiss 2017).

Table 6.3 Summary of geroprotectors that act as AGE and ALE inhibitors and their geroprotec-
tive properties

AGE and ALE inhibitors Geroprotective properties
Aminoguanidine Prevents against AGE and lipid peroxidation products 

production
Pyridoxamine Inhibits LDL oxidation and AGE formation
Angiotensin-converting enzyme 
inhibitors

Inhibits 4-HNE and MDA formation, free radical 
scavenger

Carnosine AGE and ALE inhibitor, free radical scavenger, metal 
chelator

Cortagen ALE inhibitor, activation of antioxidant defense system

AGE advanced glycation end product, ALE advanced lipid end product, HNE hydroxynonenal, 
MDA malondialdehyde
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6.3.2.3  Caloric Restriction Mimetics
The caloric restriction (CR) theory of aging was proposed by Professor David 
Sinclair (Sinclair 2005). Expected CRM characteristics are proposed by Ingram 
et al. as follows:

 – Imitates the metabolic, hormonal, and physiological effects of CR
 – Activates stress response pathways noticed in CR and increases stress 

protection
 – Reduces the incidence of age-related disorders and maintains more healthful life 

span (López-Lluch and Navas 2016)

Proposed strategies of caloric restriction mimetics are shown (Table 6.4):

 – Inhibits glycolytic pathway (Ingram and Roth 2011)
 – Activates silent information regulator 2 (SIR2) gene (Chen and Guarente 2007), 

induces sirtuins (Guarente 2013)

Fig. 6.2 Effects of AGE and ALE inhibitors. Reactive oxygen radicals affect polyunsaturated 
fatty acids and lead to lipid peroxidation. This pathway is called as ALE pathway. On the other 
hand, increased oxidative stress leads to structural protein modification and impaired function of 
protein. Reaction between high concentration of reducing sugar and protein results in Schiff base 
formation and further reactions. Amadori products are formed and finally advanced glycation end 
products are formed. AGE and ALE inhibitors such as carnosine, aminoguanidine, pyridoxamine, 
angiotensin-converting enzyme inhibitors, and cortagen block ALE and AGE formation at differ-
ent steps
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 – Inhibits serine threonine kinase pathway known as nutrient-sensing mammalian 
target of rapamycin (mTOR) (Ma et al. 2015)

 – Reduces mitochondrial free radical formation and improved antioxidant system 
activity (López-Lluch and Navas 2016)

 – Inhibits AMP-activated protein kinase (AMPK) activity (To et al. 2007)

Biguanide (Metformin)
Metformin enhances the sensitivity of insulin receptors and antioxidant defense and 
activates genes that inhibit gluconeogenesis. It induces glycolysis in hepatocytes, 
thus reducing the risk of nonenzymatic glycation of structural proteins, cellular 
macromolecules, and other age-related disorders (Dhahbi et  al. 2005; Schramm 
et al. 2011).

Resveratrol
Resveratrol is a polyphenol stilbene and synthesized naturally by several edible 
fruits (Mohar and Malik 2012). Resveratrol activates SIRT-2, and the associated 
improvement in energy utilization and insulin sensitivity closely resembles the ben-
efits of CR (Mohar and Malik 2012; Lam et al. 2013). In vitro application of resve-
ratrol prevents deleterious effects of oxidative damage in erythrocytes from human 
donors of all ages (Pandey and Rizvi 2014).

Rapamycin
The Food and Drug Administration-approved compound rapamycin was the first 
pharmacological agent shown to extend maximal life span in mammalians (Ehninger 
et al. 2014).Rapamycin acts on mTOR pathway, which is a nutrient-sensing protein 
that modulates the response to starvation. Rapamycin inhibits mTOR, by AMPK-
dependent and AMPK-independent pathways, inhibits translation, and stimulates 
autophagy like CR. This process leads to the extension of life span (Magon et al. 
2012). Its use prevents new tumor formation and leads to regression of already 
existing tumors. Rapamycin also reduces progression of atherosclerosis but causes 
hyperlipidemia (Magon et al. 2012).

Table 6.4 Summary of geroprotective drugs acting as caloric restriction mimetics

Geroprotectors acting as caloric restriction 
mimetics Geroprotective properties
2-Deoxy-D-glucose Glycolytic inhibitor
Mannoheptulose Glycolytic inhibitor
Metformin Enhances antioxidant defense system, mimics 

CR
Resveratrol Activates SIRT-2
Rapamycin mTOR inhibitor
Methionine Inhibits ROS formation, mimics CR

CR caloric restriction, SIRT2 silent mating type information regulation-2 homolog, mTOR mam-
malian target of rapamycin, ROS reactive oxygen species
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6.3.2.4  Epigenetic Regulators

Histone Deacetylase Inhibitors
Histone deacetylase (HDAC) inhibitors are classified into four groups as classes I, 
II, III, and IV. Class I and class III are related with aging process (Ferguson and 
McKinsey 2015). Histone deacetylase inhibitors are able to restore redox homeosta-
sis. Administration of valproic acid as a weak albeit selective inhibitor of class I 
HDACs inhibits cardiac hypertrophy and fibrosis, which is associated with reduced 
levels of reactive oxygen species (ROS) and pro-inflammatory cytokines (Fass et al. 
2010). Valproic acid-mediated lowering of ROS levels may be explained as dimin-
ished expression of a component of the superoxide-generating NADPH oxidase 
complex (Wang et al. 2010). Class I HDAC inhibitor, MS-275, is related to increased 
expression of the mitochondrial ROS scavengers such as superoxide dismutase 
(Mn-SOD) and catalase (CAT) in myocardial tissue (Aune et al. 2014).

S-Adenosylmethionine
S-Adenosylmethionine is a sulfur-containing molecule. It is eminent as the methyl 
donor for the majority of methyl transferases that modify macro- and micromole-
cules including toxic metals, such as arsenic (Loenen 2010). It also acts as an inhibi-
tor of 4-HNE adduct formation (Valentovic et al. 2004).

6.3.2.5  Immunomodulators
According to immunologic theory of aging, immune function impairs with advanc-
ing age. Impairment of immune function may lead to increased risk of infections 
and tumor progression and also tendency of autoimmune disease (Anisimov 2001).

Thymoquinone
Thymoquinone (TQ) is known as active pharmacological constituent of Nigella 
sativa seeds. It has potent anti-inflammatory, immunomodulator, anti-histaminic, 
antimicrobial, and anti-tumor effects (Darakhshan et  al. 2015; Khader and Eckl 
2014; Woo et al. 2012; Farkhondeh et al. 2017; Bargi et al. 2017). TQ inhibits pro-
liferation and migration via decreased nuclear factor kappa B (NfκB) and thus 
decreased tumor necrosis factor- alpha (TNF-α) and interleukin-8 (IL-8) levels and 
also decreases matrix metalloproteinases 2 and 9 (Farkhondeh et  al. 2017). 
Additionally, thymoquinone acts as ALE inhibitor and enhances expressions and 
activities of antioxidant enzymes such as glutathione reductase, glutathione peroxi-
dase, CAT, and SOD (Bargi et al. 2017). TQ also normalizes age-related dysregula-
tions in angiotensin system (Idris-Khodja and Schini-Kerth 2012).

Peptides and Polypeptides
A polypeptide complex epithalamin is able to decrease the threshold of hypotha-
lamic estrogen sensitivity and restores regular estrous cycles in elderly animals 
(Khavinson et  al. 2013). It increases melatonin production, improves immuno-
logical parameters, and also exhibits anticarcinogenic effects. Administration of 
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epithalamin may suppress the formation of early lipid peroxidation products such 
as diene conjugates. Epithalamin administration causes reliable increase in the 
activity of blood total antioxidant status (Khavinson et al. 2013).

Delta-sleep-inducing peptide exhibits a wide range of positive regulator proper-
ties on aging and represents antioxidant, immunomodulator, and antistressor effects 
(Odin et al. 2004; Aggarwal and Razvi 2013).

6.3.2.6  Hormones and Hormonelike Substances
Endocrinological variations occur during aging period (Aggarwal and Razvi 2013; 
Jonas et al. 2015; Diamanti-Kandarakis et al. 2017). Hormonal variations may be 
associated with oxidative and nitrosative damage (Diamanti-Kandarakis et  al. 
2017).

Melatonin
It has been well known that melatonin and its metabolites are able to represent 
antioxidant effects via their free radical scavenger and immunomodulator activ-
ities (Korkmaz et  al. 2012; Diamanti-Kandarakis et  al. 2017; Karaaslan and 
Suzen 2015).

Protective actions of melatonin ensure maintenance of electron flux and diminish 
electron leakage and structural integrity of the mitochondria (Hardeland et al. 2015).

Thyroid Hormones
Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), regulate cellular dif-
ferentiation and maintain metabolic homeostasis. Impaired metabolic homeostasis 
may cause increased tendency of neurodegenerative disorders (Fu et  al. 2014). 
Thyroid dysfunction is commonly seen in elderly individuals especially in females 
(Aggarwal and Razvi 2013). As serum thyroid-stimulating hormones, free T4 and 
T3 levels change with aging. Selenium plays an essential role in thyroid function 
and resistance to oxidative stress. Selenium depletion is seen in aging period 
(Diamanti-Kandarakis et al. 2017). Thyroxine administration significantly increases 
the levels of choline acetyltransferase, nerve growth factor, SOD, CAT, and gluta-
thione peroxidase activities (Fu et al. 2014).

Sex Hormones
One of the milestones of antiaging therapy is sex hormone replacement therapy, in 
both male and female elderly individuals (Samaras et al. 2014). It was previously 
shown that dehydroepiandrosterone (DHEA) inhibits DNA synthesis and produc-
tion of superoxides in aging tissues, decreases body weight, and represents consid-
erably antiatherogenic, antidiabetic, and antiautoimmune properties (Valenti 1997).

Estriol is a widely used antiaging drug. It is a weak estrogen and potentially safer 
in terms of breast cancer (Samaras et al. 2014).

Testosterone biosynthesis gradually diminished with advancing age. Testosterone 
replacement therapy has been studied in aging populations regarding age-related 
disorders (Kenny et al. 2001; Storer et al. 2008; Yanar et al. 2015)
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6.4  Conclusion

Chronological aging includes many complicated mechanisms. Gerontologists have 
suggested many heterogenous groups of therapeutics with different molecular 
mechanisms. Currently used geroprotectors have aimed to reduce the rate of aging, 
postpone onset of age-related disorders, and extend the healthy life span. However, 
they have some adverse effects depending on their usage, dosage, and application 
intervals. Further investigations need to focus on antiaging therapeutic strategies 
and alleviate the degenerative changes during aging period.
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Abstract
Telomeres are DNA sequence that are repeated at the end of the linear chromo-
somes  and ensure chromosome stability during replication. Telomere length 
shortened each cell division and during oxidative stress. When telomeres lose 
their length critically, cell division can no longer occur which causes cells to 
enter senescence. Besides, telomeres are sensitive to oxidative stress which can 
cause telomere shortening. Telomerase, which consists of a structural RNA and 
two proteins, is a cellular reverse transcriptase. This reverse transcriptase adds 
new DNA onto the telomeres and thus it is responsible for telomere length. There 
is no telomerase activity in human somatic cells due to the lack of the human 
telomerase reverse transcriptase (hTERT) expression; because of this situation, 
telomeres progressively shortened and finally exhausted with aging process. 
Telomerase activation is a potentially helpful technique for anti-aging strategy 
and to combat age-related diseases. Telomerase activators that are chemical mol-
ecules activate telomerase, or hTERT is used as an antiaging supplement that is 
a new era of antiaging nutritional science. This chapter has discussed antiaging 
strategies based on telomerase activity to combat the aging process.
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7.1  Telomere and Telomerase Activity

7.1.1  Telomere

Telomeres are defined as dynamic nucleoprotein complexes that are located at the 
ends of the linear chromosome. They shield chrosomal ends from biodegredation, 
DNA damage response initiation, chromosomal fusions, and chromosomal instabil-
ity (Blackburn 1991). Telomeres consist of G-rich nucleotide (TTAGGG) repeats 
associated with a multiprotein complex called shelterin (Palm and de Lange 2008). 
Shelterin is comprised of six proteins, telomeric repeat binding factors 1 and 2 
(TRF1 and TRF2), protection of telomere protein 1 (POT1), TRF1-interacting pro-
tein 2 (TIN2), TIN2- and POT1-interacting protein (TPP1), and repressor/activator 
protein 1 (RAP1) (De Lange 2005). While TRF1 and TRF2 are directly bound to 
telomeric double-stranded DNA, POT1 is bound the telomeric single-stranded DNA 
(van Steensel and de Lange 1997). TRF 1 promotes telomeric replication and pre-
vents telomere fusions (Sfeir et al. 2009). TRF2 plays an important role in theprot-
ection of chromosomal ends (van Steensel et al. 1998) and also helps form T-loops 
which are known as higher telomeric structures (Griffith et al. 1999). TIN2, another 
protein that constitutes shelterin, is a key constituent of the shelterin complex, bind-
ing TRF1 and TRF2 simultaneously and assuring structural integrity of the complex 
(Kim et al. 1999). POT1, which interacts directly with TPP1 protein, and TPP1 are 
responsible for the protection of the single-stranded tract of the telomere 
(Hockemeyer et al. 2007). RAP1, which is also known as TRF2-interacting protein, 
is a stabilizing protein that interacts with TRF2 (Celli and de Lange 2005). The 
shelterin complex performs two important functions, which are the prevention of 
recognition of the chromosomal ends by the DNA damage machinery and recruit-
ment of telomerase (Palm and de Lange 2008).

7.1.2  Telomerase Activity

Telomerase, also termed as telomere terminal transferase, is an enzyme that uses 
RNA template to synthesize single-stranded TTAGGG sequence of telomere 
(Blackburn 1990). Telomerase comprised of two major components, which are a 
telomerase reverse transcriptase (TERT) protein and a noncoding telomerase RNA 
component (TERC). Although telomerase activity in extracts from the ciliate 
Tetrahymena was discovered in 1985 by Greider and Blackburn, TERT, the catalytic 
subunit of the enzyme, was not identified until 1997 (Greider and Blackburn 1985). 
Apart from TERC and TERT component of telomerase, it consists of the accessory 
protein like dyskerins, TCAB1, NHP2, NOP10, and GAR1, which are required for 
telomerase biogenesis and localization activity (Cohen et al. 2007).Telomerase is 
responsible for adding G-rich nucleotide (TTAGGG) sequence to preserve the 
lenghts of telomeres,  thus compensating for the continuous telomere attrition at 
each cell division (Blackburn and Collins 2011). Telomere replication is a multistep 
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process which consists of three stages: telomere binding, polymerization, and trans-
location. In the first step of telomere replication, telomerase binds to 3′ overhang of 
telomere, mediated by the TPP1-TERT interaction, which is complementary to the 
telomerase RNA. The second step of telomere replication is polymerization or telo-
mere stretching  that continues  to the 5′ terminus of the template region  of 
DNA. When the elongation of telomere repeat is complete, telomerase can be dis-
placed to start synthesis of another  telomere repeat sequence (Harley and 
Villeponteau 1995).

Telomerase gene is expressed during early development, and its expression in 
adults is limited to cells with highly proliferating capacity such as germ cells, hemo-
topoietic stem cells, and progenitor/stem cells (Weng et  al. 1997). In addition, 
telomerase activity is also high in embryonic stem cells (ESC) to avoid significant 
telomere shortening and to enhance self-renewal of ESC (Yang et  al. 2008). 
Telomerase is also upregulated in immortalized cells and many tumor cells (Kim 
et al. 1994). It is known that the amount of telomerase activity is not adequate to 
overcome the continuous renewal in adult stem cell, and therefore, telomeres shorten 
with aging (Batista 2014).

The regulation of telomerase and its activity occurs in cells with various ways, 
which are transcriptional control of TERT, alternative splicing variant of TERT, sex 
and growth hormones such as estrogen, androgens, proteins that are found in telo-
mere and associated with telomerase complex, and other factors involving in the 
phosphorylation and assembly of telomerase or transporting its complex subunits 
(Bayne et al. 2008; Gonzalez-Suarez et al. 2005; Liu et al. 2001; Villa et al. 2001; 
Xin et al. 2007). TERT is a primary factor in the regulation of telomerase activity at 
various levels, including both direct and indirect regulation of gene expression, 
alternative splicing, protein tertiary folding, and posttranslational modification (Liu 
et al. 2010). Alternative splicing variants are also important factors for telomerase 
action, for instance, many cells have different TERT variants from each other, and 
this allows the cells to have various life spans (Yi et  al. 2000). Posttranslational 
modification of telomerase occurs through phosphorylation of serine/threonine or 
tyrosine residues, a specific region of catalytic subunit of TERT (Cong et al. 2002). 
Shelterin proteins are closely related with action of telomerase with increased 
telomerase activity associated with interactive relation between TPP1 and the TEN 
domain of TERT (Xin et al. 2007). Other proteins are required for the telomerase 
activity as well, like chaperone proteins p23 and hsp90 which are associated with 
effective assembly of the telomerase holoenzyme (Holt et al. 1999).

Another mechanism to regulate the activity of telomerase is intracellular traffick-
ing into the Cajal bodies providing the nuclear location for the enzyme to assem-
ble  and/or maturate the telomerase holoenzyme (Jady et  al. 2006). TERC 
accumulation in Cajal bodies requires the association of TCAB1 to CAB box, which 
is a short sequence motif of TERC (Cristofari et al. 2007). It has been reported that 
once telomerase enzyme is functional, Cajal bodies coexist with telomeres during S 
phase of cell cycle (Venteicher et al. 2009).
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7.2  The Hayflick Limit

Telomeres shortened at each cell division and become dysfunctional with age as 
they lack the telomerase activity  in human somatic cells (Aubert and Lansdorp 
2008). When telomeres lose their length critically, a cellular response is triggered, 
and cell division can no longer occur which causes cells to exit the cell cycle and 
enter senescence or programmed cell death. The fact,  known as Hayflick limit, 
pointed out that the cells reach their maximum proliferative capacity (Hayflick 
1965). In 1961, Leonard Hayflick and Paul Sidney Moorhead discovered the cul-
tured fetal human fibroblasts have restricted capacity to divide in the cultured condi-
tion (Hayflick and Moorhead 1961). In 1965, Hayflick suggested that the life of a 
cell consisted of three phases. According to his study, phase one is started with 
healthy cell division, and then, cell division become slow in the phase two. Finally, 
cells reach phase three where cell division stops and senescence begins (Hayflick 
1965). Research on Hayflick limit helps scientist understand cellular aging and pre-
vent cell senescence. In the early 1970s, it was found that the replication of linear 
DNA by DNA polymerase resulted in the loss of terminal sequences of chromo-
some, termed as telomere. DNA polymerase cannot extend the 3′ end of linear 
DNA due to lagging strand synthesis and this is called as end-replication problem 
(Olovnikov 1973). This end-replication problem is improved by telomerase and 
shelterin complex of telomere (Greider and Blackburn 1987). However, telomerase 
is inactive in all human cells except for stem cell niches and germ cells (Shay and 
Wright 2010). Eventually, the end-replication problem causes telomeres to shorten 
in human cells with aging (Harley et al. 1990).

7.3  Telomerase and Aging

Telomere shortening is sufficient to provoke age-related disease such as cardiovas-
cular disease, liver cirrhosis, atherosclerosis (Minamino and Komuro 2007), diabe-
tes (Sone and Kagawa 2005), infectious diseases, and Alzheimer’s disease (Fig. 7.1) 
(Cawthon et al. 2003; Mattson 2000). Moreover, telomere shortening is regarding to 
the premature aging syndrome, bone marrow failure syndrome, and human chronic 
diseases like hypertension (Serrano and Andres 2004). A connection between short-
ening of telomeres and cellular senescence or aging was reported by Harley et al. 
(1990). Studies have shown that telomere shortening during aging in human somatic 
cells occurs by reason of absence of telomerase activity. Studies carried out with 
telomerase knockout (mTERC−/−) mice indicate that a generation-dependent telo-
mere shortening leads to cell cycle arrest and apoptosis (Blasco et  al. 1997). 
Although telomerase is highly expressed and found in embryonic stem cells, germ 
cells, hematopoietic cells, and epithelial cells like the skin, liver, and spleen that 
possess highly regenerative features (Counter et  al. 1995; Hiyama et  al. 1995; 
Wright et al. 1996), it is repressed in many somatic cells to reduce the probability of 
cancer (Harley et al. 1994). The telomerase repression process is accomplished by 
tightly regulating the expression of TERT, which results in the absence of activators 
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rather than the presence of repressors (Djojosubroto et al. 2003). The high expres-
sion and activity of telomerase enzyme  is found in most of human cancers. 
Telomerase activity may be required for normal cells to be transformed cancer cells 
and is essential for cellular immortalization in human cells (Kim et al. 1994). Being 
transformed cancer cells are accomplished by not only telomerase activity, but also 
coupled with deactivating tumor supressor genes or activating oncogenes (Stewart 
and Bertuch 2010). Tumor growth is suppressed and programmed cell death is 
increased in cancer cells in which telomerase activity is inhibited (Hahn et al. 1999).

Reactive oxygen species (ROS) causing oxidative stress are responsible for both 
the induction and maintenance of cellular senescence. Several studies have demon-
strated that ROS can expedite telomere shortening in vivo and in vitro and can also 
damage DNA directly, especially telomere structure (Chen et al. 1995; Ren et al. 
2001; Rubio et al. 2004). Many studies have shown that several diseases are associ-
ated with ROS-mediated telomere shortening such as Fanconi anemia, respiratory 
chain disorder, Leber hereditary optic neuropathy (LHON), and mitochondrial 
myopathy, encephalopathy, lactic acidosis, and stroke (MELAS) syndrome 
(Adelfalk et al. 2001; Oexle and Zwirner 1997). Moreover, it is known that ROS- 
mediated oxidative stress triggers nuclear export and mitochondrial import of 
telomerase, which causes shortened telomere (Haendeler et al. 2003).

On the contrary, telomere length positively correlates with longevity (Njajou 
et al. 2009). Thus, the approach to enhance telomere length via increasing telomer-
ase activity is very important for antiaging strategies (Tomas-Loba et  al. 2008). 
Several studies showed that aging process can be reversed by telomerase activity in 
mice and rats (Bernardes de Jesus et  al. 2012). One study showed that telomer-
ase activation with overexpression of TERT in various tissues brought about a pro-
longed lifespan  up to 10% when compared to wild-type mice (Gonzalez-Suarez 
et  al. 2005).Another study indicated that increased TERT expression in cancer- 
resistant mice delayed aging and extend longevity by 40% (Tomas-Loba et  al. 
2008). Reactivated telomerase by using adenoviruses extends life span up to 24% in 

Fig. 7.1 Telomere shortening in aging
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1-year-old mice and up to 13% in 2-year-old mice without cancer risk (Bernardes de 
Jesus et al. 2012). In addition, telomerase reactivation in telomerase-deficient mice 
results in the extension of telomeres, reduction of DNA damage signaling and 
related cellular checkpoint responses, and reversion of degenerative phenotypes 
including the testes, spleen, intestines, neuronal progenitors, newborn neurons, and 
oligodendrocyte (Jaskelioff et al. 2011). In bovine keratin 5 mouse model, trans-
genic mice exhibit more efficient wound healing and higher proliferation rate in 
keratinocytes than wild-type mice due to expression of TERT (Gonzalez-Suarez 
et al. 2001).

Telomerase promotes cell survival to protect cells from programmed cell death. 
In cardiac myocytes, TERT expression can retard the cell cycle exit, induce hyper-
trophy, and promote cardiac muscle survival (Oh et al. 2001). Apart from that, neu-
ronal cells do not show telomere shortening because of their TERT expression 
(Mattson et al. 2001). TERT also has therapeutic importance in the central nervous 
system (Gonzalez-Giraldo et al. 2016).

7.4  The Potential Role of Telomerase in Antiaging Therapies

Aging is described as a process that involves time-dependent anatomical and physi-
ological changes which are responsible for the increased risk of disease and death 
(Ahmed and Tollefsbol 2001). The aging process of the cells and individu-
als  begins  to emerge immediately after birth and accelerate as age progress. 
According to this idea, telomerase gene present in inactive form  in most human 
somatic cells after the embryonic stage, and eventually telomere shortening occurs 
with age (Skulachev 1997). The cells expressing telomerase have been a potential 
field of study for the “antiaging” interventions, because they can sustain a youthful 
condition and proliferative indefinitely (Bodnar et al. 1998). In this respect, it was 
thought that immortalized cells could be crucial to the replacement of damaged tis-
sues and organs during aging. According to this  treatment, cells with short telo-
meres will be isolated from a patient, and telomere length  in the treated cells 
increased via expression and activation of TERT. The cells would be reproduced in 
culture condition, and then cells would be transplanted instead of damaged or aging 
tissue and organ (Shay and Wright 2000). Experiments conducted with telomerase- 
deficient mice have indicated that telomerase gene therapy is potentially usable in 
impaired organ regeneration induced by telomerase shortening (Rudolph et  al. 
2000). Recent study has indicated that telomerase gene therapy provides increased 
telomerase expression in a mouse model with aplastic anemia, which result in telo-
mere elongation and ultimately the reversal of aplastic anemia phenotypes without 
increased cancer susceptibility (Bär et al. 2016).

The concept of immortalization of cells by TERT sheds light on scientist in using 
cell therapy to prevent cell senescence. TERT-modified cells are used in classical 
gene therapy for in  vitro optimization of stem cell transplantation, for tissue 
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engineering like construction of new blood vessel, for the treatment of chronic dis-
ease such as atherosclerosis, and for the treatment of cancers such as hepatocellular 
carcinoma (Klinger et al. 2006; Nazari-Shafti and Cooke 2015; Shay and Wright 
2007). Various human cell types including skin keratinocytes, dermal fibroblasts, 
muscle cells, endothelial cells, bone marrow stromal cells, osteoblasts, odonto-
blasts, retinal-pigmented epithelial cells, and corneal epithelial cells are immortal-
ized by TERT to extend the life span of cells (Darimont et al. 2002; Oh et al. 2001; 
Robertson et al. 2005; Simonsen et al. 2002; Vaughan et al. 2004). It is reported that 
telomerase-negative normal human cells like retinal pigment epithelial cells express 
telomerase and exhibit reduction of replicative senescence, when transfected with 
vectors encoding to TERT (Bodnar et al. 1998). Except for transfection of TERT 
gene, transcriptional downregulation of telomerase can be reversed by various sub-
stances like histone deacetylase inhibitors and estrogen receptor agonists (Doshida 
et  al. 2006). Furthermore, protection of intracellular localization of telomerase, 
which locates in nucleus and cytosol, is a potential therapy for antiaging interven-
tion (Stewart 2002). Androgen therapies are used for the treatment of aplastic ane-
mia because androgens can activate transcription of TERT (Calado et  al. 2009). 
Treatment of telomeropathic patients with a synthetic androgen, danazol, has shown 
an increase in the length of telomeres in leukocytes (Townsley et al. 2016).

7.5  Telomerase Activators: Therapeutic Value and Future 
Perspectives

The utilization of telomerase activators in the treatment of aging-related phenotypes 
are of interest in recent years for the scientists who study with antiaging interven-
tions. Although telomerase chemical activators have been reported such as TA-65, 
there are limited studies about their mechanism of action in the cells. The first 
potential telomerase activator is TA-65, which is a small molecule derived from an 
extract of the root of Astragalus membranaceus. The study conducted with TA-65 
has shown that dietary intake in mice increases telomerase level in tissue and con-
sequently causes elongation in critically short telomeres. This study suggests that 
TA-65 improves health-span indicators including osteoporosis, glucose tolerance, 
and skin fitness, and thus, it should be used in antiaging therapies (Bernardes de 
Jesus et al. 2011). Another study is stated that telomerase activation occurs in low 
nanomolar level of TA-65 in human keratinocytes, fibroblasts, and immune cells in 
culture (Harley et al. 2011). In human T cells administrated with TA-65, MAPK- 
specific telomerase activation and significant increase in proliferation activity were 
observed (Molgora et al. 2013). TA-65 supplementation also caused improvement 
of markers of bone, metabolic, and cardiovascular health in human trials (Harley 
et al. 2013). Recently, an efficiency of TA-65 in treatment of early age-related mac-
ular degeneration was reported in a randomized placebo-controlled interventional 
study (Dow and Harley 2016).
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TAT2 is a single chemical substance extracted from the roots of Astragalus mem-
branaceus (Liu et al. 2017). TAT2, also known as cycloastragenol, was purposed as 
a therapeutic for HIV patients to increase the number of senescent memory CD8 T 
cells, which is found that it elongates human telomeres (Dock and Effros 2011). 
Recent study has shown that treatment with GRN510, a new small telomerase acti-
vator derived from GGNR665/TAT2, in murine model activates telomerase both in 
hematopoietic progenitor cells ex  vivo and in the bone marrow and lung tissue 
in vivo (Le Saux et al. 2013).

AGS-499 and AGS-500, which are chemical compounds, increase telomerase 
activity and TERT level in time- and dose-dependent manner in human bone mar-
row mesenchymal stem cells. Prolonged treatment of AGS protected cell from 
apoptosis and DNA damages induced by H2O2 (Tichon et al. 2013). Another study 
conducted with AGS-499 showed that this novel compound increased expression 
and activity of telomerase in brain and spinal cord of mice (Eitan et al. 2012).

Genistein is a controversial molecule on telomerase activation due to its bilateral 
effects on telomerase activity. Genistein had a telomerase activator role at low con-
centrations (0.5 μM) in DU-145 and LNCaP prostate, MCF-7 breast, and SKOV-3 
ovarian cancer cells; however, its inhibition of telomerase was observed at higher 
concentrations (50 μM) in all cell lines (Chau et al. 2007). Resveratrol, which is a 
natural phytoalexin present in grapes, fruits, and root extracts, makes the telomerase 
gene in active in human mammary and endothelial progenitor cells (Pearce et al. 
2008).

There are several promising telomerase activators except for those mentioned 
above, which are summarized in Table 7.1. However, there is almost no sufficient 
study about these telomerase activators so far. This means that scientist should 
detail studies about telomerase activator to maintain healthy and long life span.

7.6  Conclusion

Over the last century, a long, healthy life expectancy has increased rapidly and thus, 
researchers have tried to find a way to extend human life span. In this context, telo-
meres are very important DNA regions of chromosomes. Telomere shortening is an 
indicator of biological aging and is associated with age-related disease such cogni-
tive decline, diabetes, and chronic liver disease. Telomeres become shorter as age 
progress and shortening of telomeres constantly leads to senescence and/or apopto-
sis. Determining the pathways that regulate longevity is critical to develop new 
strategies for prolonged the life span in human being. Therefore, various molecules 
have been investigated for this respect, which can affect telomere length through 
telomerase expression and activation. Telomerase activators appear to be a promis-
ing candidate for antiaging interventions. Progress in this field and future studies 
with telomerase activators may be helpful to determine which molecules and mech-
anism effectively target telomeres and extend human life.
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in Antiaging
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Abstract
Life expectancy of the communities is constantly increasing every minute, 
including less developed countries. That’s why application of studies to over-
come and/or slow aging has always been an important and attractive issue for 
professional healthcare workers throughout history. There are numerous studies 
on different theories for explaining the aging process, but none of them can fully 
explain the cause. As it is known already, aging of different organs differs in a 
large extent. Fundamentals of this difference are mitotic activity of the tissues 
and resistance degree to deleterious damages. Cellular and molecular defense 
mechanisms clearly define resistance degree as “immunity.” Decline in immu-
nity may cause a progressive step in aging. Inflammaging, which is low-grade 
chronic inflammatory status that is characteristic of the aging process, can be 
taught to be a biological factor responsible for the age-related diseases in the 
elderly. Possibility to decrease inflammaging without compromising the physi-
ological role of inflammation can be a strategy for future perspectives. In this 
chapter we will focus on aging and immune system regulation together with 
therapies and/or modulations to rehabilitate aging.
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8.1  Introduction and History of Immune Theory of Aging

What is the main reason of aging? When does aging start chronologically and bio-
logically in separate ways? Is it only a chronological issue? The society is being 
populated by the elderly with an increasing momentum in the twenty-first century. 
Lifespan of human being (biological limit of life) has stayed stable (~125 years) for 
the past decades. On the other hand, due to daily advancements in state-of-the-art 
medical practice and better healthcare modalities, mortality rates are decreasing and 
mean life expectancy (71 years for global population) is increasing (WHO 2015). 
Slow and/or healthier aging will be a realistic purpose to healthcare systems for the 
entire world to minimize burdens of the increasingly surviving population into sev-
enth, eighth, and even ninth decades. In this chapter, we will focus on issues related 
to autoimmune diseases in elderly and inflammaging that will try to help biogeron-
tologists to understand immunosenescence. We will also focus on some possible 
modulation strategies to overcome age-related degenerative changes in both innate 
and adaptive systems.

Aging is a complicated process and should be investigated in physiological, met-
abolic, physical capability, cognitive function, and psychological and social points 
of views. The parameters that evaluate cardiovascular function, endocrine function, 
inflammation, immune function, and metabolic processes have been used as meta-
bolic biomarkers in aging (Lara et al. 2013). For centuries, aging was an unsolved 
and unavoidable problem for scholars. Defining mechanisms of a process should 
always be the first step in solving a scientific problem. From this point of view, there 
has always been a network of theories related to aging. Biological clock, time-based 
longevity, endocrine alterations, mitochondria-originated oxidative damage, 
mitochondria- lysosome organelle turnover relations, immunological alterations, 
opposite pleiotropic effects of special genes, cross-linking reactions, and wearing 
out of tissues are substantial instances for the aforementioned issue (Sitar et  al. 
2013; Jin 2010). The process of aging is an incredibly complex phenomenon, and it 
is impossible to understand it from only one or two perspectives. It is better to 
assume it as a multifactorial process. Many data in current literature support the idea 
that every original theory may at least in part explain the aging process. It is obvious 
that these networks of theories are associated with each other. For instance, reactive 
oxygen species, which are also fundamental substances of oxidative stress theory of 
aging, can also initiate a cellular immune response within the organism (Harman 
1983). Even though there are lots of evidences which support the oxidative stress 
theory of aging, the mechanism of immune aging is not completely understood in 
details (Cakatay et al. 2013). Systematic, irreversible, and intrinsic roles of immune 
system on aging were first reported by Roy Walford in the late 1960s (Walford 
1969; Fulop et al. 2014). It was presented as a time-based programmed theory pos-
tulating immunosenescence, which leads to increased vulnerability and frailty to 
diseases (Watad et al. 2017). It is attested that immune defense system reaches its 
peak capacity at puberty and then starts to decline with the passing of time (Jin 
2010). There are lots of contributors to this phenomenon such as stress, oxidative 
damage, less effective antibodies, proinflammatory cytokines, increased incidence 
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of infectious diseases, point mutations, chromosomal rearrangements, and adreno-
cortical hormone secretion changes (Ferrari et al. 2001; Xia et al. 2016). Milestone 
of immune theory attraction was a term “inflammaging.” It was first named by 
Franceschi et  al. to attract increasingly important role of chronic progressive 
increase in the proinflammatory nonresolving status which develops gradually 
through the continuous antigenic stimulation (Franceschi et al. 2000; Fulop et al. 
2014). It is also defined to be an ongoing low-grade chronic inflammation, which 
causes minute, gradual and progressive functional decline in the entire organism. 
Mitochondrial dysfunction and chronic inflammation can be considered as hall-
marks of immunosenescence connecting aging and age-related degenerative dis-
eases such as cardiovascular diseases, osteoporosis, depression, Alzheimer’s 
disease, Parkinson’s disease, malignancies, and type II diabetes (López-Otín et al. 
2013). Immune theory of aging also tries to explain a very important and common 
clinical entity in elderly, increased rate of infections, and high asymptomatic auto-
immune antibody rates.

8.2  Immunosenescence

The immune system and its functions are negatively affected by aging. These age- 
related degenerative changes are called immunosenescence (Martorana et al. 2012; 
Montgomery and Shaw 2015). Although immunosenescence was hypothesized to 
be a random deteriorative phenomenon (Franceschi and Cossarizza 1995), thymus 
involution, limitation of the T-cell pool and oligoclonal proliferation of memory/
effector cells against common pathogens, and enhancement of proinflammatory 
cytokines causing a chronic inflammatory condition have been shown to be involved 
(Candore et al. 2008; Krabbe et al. 2004; Bruunsgaard 2006).

8.2.1  Changes in Adaptive Immunity

Aging leads to an increase in antigen-experienced B and T cells, while naive cell 
populations decrease (Montgomery and Shaw 2015). With aging, naive CD8+ T cells 
decrease within peripheral blood CD3+ population, a higher amount of memory 
CD8+ T cells are found, and the effect of aging is less on CD4+ cells (Fagnoni et al. 
2000; Saule et al. 2006; Henson and Akbar 2010; Nikolich-Žugich and Rudd 2010). 
The antigen encountered lymphocyte pool increases, and interleukin-4 and IL-10 
become the predominant cytokines (Appay and Sauce 2014; Rink et al. 1998; Bektas 
et al. 2017). Thymic involution, regression in size due to decreased functional tissue, 
takes place around puberty due to hormonal changes. However, various assays that 
demonstrate thymic output, such as T-cell receptor excision circle assays, have shown 
that the thymus continues to function until old age (Douek et al. 1998; Ferrando-
Martínez et al. 2010). The deterioration of thymus functions is thought to be a trig-
gering event for the reduction of immune surveillance in the older population (Linton 
and Dorshkind 2004). In spite of this deterioration, lymphocyte numbers remain 
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constant over decades, as partial lymphopenia resulting from thymic function loss 
increases naive T-cell numbers (Kohler and Thiel 2009; Nikolich-Žugich 2008; 
Sauce et al. 2012). An overwhelmingly large percentage of naive CD4+ T cells are 
produced through peripheral T-cell proliferation (den Braber et al. 2012). The steady 
number of peripheral naive T cells is due to both thymic output and homeostatic 
proliferation, unlike that observed in mice (Nikolich- Žugich and Rudd 2010). There 
is a large variety of T-cell receptor (TCR) in which the T-cell pool resides. This 
allows a response to an almost infinite number of antigens and is extremely important 
for the immune system. Therefore, decreased precursors will negatively affect T-cell 
responses (Naylor et al. 2005). Oligoclonal cell populations may increase with age as 
TCR diversity decreases (Vallejo 2007; Olsson et al. 2001).

Inflammaging and immunosencescense are affected by pathogens that shape 
T-cell function (Bektas et al. 2017), such as cytomegalovirus (CMV) which leads to 
a reduction of TCR repertoire and clonally expanding T-cell subsets and conse-
quently T-cell senescence. This effect is especially observed in CMV-specific mem-
ory CD8+ T cells especially CD8+ CD28+ T cells (Bauer and De la Fuente 2016). 
This process is called “memory inflation” (Klenerman and Oxenius 2016; Cao et al. 
2010). T cells and TCR signaling are also affected by age, as shown by gene expres-
sion profiles. Comparison of CD8+ T cells of younger and older individuals has 
demonstrated up- or downregulation of different genes (Fessler et  al. 2013). 
Exaggerated immune reactions and immune homeostasis are primarily controlled 
by regulatory T cells (Tregs) (Jagger et al. 2014), which also decrease in number, 
distribution, and function by age (Li and Zheng 2015). Treg lineage is affected by 
FoxP3 transcription factor, and its suppressive function can only continue with its 
expression (Fessler et al. 2013). With age, FoxP3+ CD4+ Tregs increase in mice and 
humans leading to immunosenescence (Raynor et al. 2012, 2015).

Age is reported to lead to phenotypical and functional changes in B cells (Frasca 
et al. 2011). B-cell antigen receptor-related activation decreases and this in return 
causes lower antibody titers and affinity. Additionally, evidence suggests that the 
functionally exhausted memory B cells accumulate followed by a decrease in naive 
B cells. This is similar to the affect aging has on T cells. Both these affects impact 
immune competence (Bancos and Phipps 2010).

8.2.2  Changes in Innate Immunity

Increased age leads to reduced recruitment, phagocytosis, and granule release of 
polymorphonuclear neutrophils (PMN) or macrophages. This leads to a deficiency 
of the immune system and suggests an age-related dysfunction of signal transduc-
tion leading to immunosenescence (Solana et al. 2012; Shaw et al. 2013).

8.2.2.1  Neutrophils
Neutrophils are the first defense mechanism at sites of inflammation (Jaillon et al. 
2013). While the total number of neutrophils does not change with age (Solana et al. 
2012), chemotaxis and phagocytosis are impaired and free radical production 
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decreases (Fortin et al. 2008). This is reported to be due to altered signal trans-
duction through surface receptors by their specific ligands, such as granulocyte- 
macrophage colony-stimulating factor (GM-CSF) and 
N-formyl-methionyl-leucyl-phenylalanine (FMLP) (Hajishengallis 2014). Anti- 
apoptotic responses to GM-CSF mediated through JAK (Janus kinase)-STAT (sig-
nal transducer and activator of transcription) tyrosine kinase (Fortin et al. 2007) and 
phosphoinositide 3-kinase (PI3K)-AKT pathways (Tortorella et al. 2006) are exam-
ples for altered signal transduction. These alterations of the lipid membrane struc-
ture and lipid rafts may result in inappropriate localization or retention in membrane 
signaling domains (Shaw et al. 2013).

8.2.2.2  Monocytes and Macrophages
Increased age also causes changes in monocytes and macrophages. A shift occurs in 
the proportion of monocyte subsets and therefore inflammatory profiles. Increased 
age leads to some monocyte and macrophage functions to be compromised. These 
functions include chemotaxis, phagocytosis, production of some cytokines/chemo-
kines, reactive oxygen or nitrogen species, and expression of major histocompatibil-
ity complex (MHC) class II and costimulatory molecules. Plasticity of macrophages 
allows them to switch between a state of equilibrium to inflammation and vice versa 
(Glezeva et al. 2015; Malyshev and Malyshev 2015). This switch requires several 
microenvironmental factors. When a macrophage is removed from an inflammaging 
microenvironment, macrophage response is restored to a similar young macro-
phage, leading to the conclusion that “aged phenotype” of macrophages may be 
reversible. This may lead to therapeutic applications in the future (Albright et al. 
2016).

8.2.2.3  Natural Killer (NK) Cells
NK cells act on virus-infected and cancerous cells leading to their destruction. They 
are divided into a CD56low and CD56hi population that has cytotoxic activity and is 
responsible for cytokine production respectfully (Caligiuri 2008). As age increases, 
cytotoxicity decreases with an expansion of CD56low cytotoxic NK cell compart-
ment (Almeida-Oliveira et al. 2011; Chidrawar et al. 2006; Garff-Tavernier et al. 
2010). Cytokines and chemokines produced by NK cells such as IL-8 and 
interferon-γ (IFN-γ) also decrease with age (Mocchegiani et al. 2009).

8.2.2.4  Dendritic Cells (DCs)
Changes in the basic functions of DCs, such as phagocytosis, chemotaxis, IL-12, 
and IFN-α production and antigen presentation, which can occur without changes in 
number and structure, may result in the suppression of naive CD4 + T cells (Agrawal 
et al. 2007, 2010; Della Bella et al. 2007; Panda et al. 2010; Sridharan et al. 2011; 
Jing et al. 2009). Alterations in the expression and signaling mechanisms of Toll- 
like receptors (TLRs), NOD (nucleotid oligomerization domain)-like receptors 
(NLR), RIG-like receptors (RLR), and C-type lectin receptors known as “pattern 
recognition receptors” are associated with these changes (Agrawal et al. 2010). The 
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most significant changes are shown to be the reduced PI3K signal pathways chang-
ing TLR signaling (Agrawal et al. 2007).

Recognition of microbial structures, especially TLRs activate innate immunity. 
Signals generated by engagement of pathogen-derived ligands and specific TLRs 
activate nuclear factor-κB (NF-κB) and stimulate expression of antiviral and proin-
flammatory response genes (Olivieri et al. 2013). Age-related changes in the func-
tion of the murine TLR have been shown that they reduce TLR-induced cytokine 
production in macrophages of elderly mice involving differences within the relevant 
TLRs that may be the result of differing genetic inheritance (Boehmer et al. 2004, 
2005; Renshaw et al. 2002). Studies demonstrate reduced TLR2 and TLR4 function 
in macrophages and depressed TLR1, TLR2, and TLR4 protein expression in lung 
homogenates of elderly mice, with concomitant reduced proinflammatory cytokine 
production in response to treatment with bacterial pathogen-associated molecular 
patterns and decreased NF-κB activation (Hinojosa et al. 2009).

8.3  Inflammaging

High levels of acute phase reactants and proinflammatory cytokines in elderly peo-
ple without any immune stimulant and underlying disease are termed inflammaging 
(Shaw et  al. 2013; Franceschi et  al. 2000). Several posttranslationally modified 
macromolecules, parasites, pathogens (CMV, herpes simplex virus-1, Epstein-Barr 
virus), and tumor antigens can induce the innate immunity, which is especially 
achieved through macrophages, in particular by TLRs and may cause low-grade 
antigenic stimulation (De Martinis et al. 2005; Fulop et al. 2011). Like the continu-
ous formation of tumor cells, these changes contribute to the environment of an 
immune state with diminishing activity that does not respond appropriately to new 
antigens (Fulop et  al. 2011). In addition, inflammaging may begin with altered 
intestinal permeability leading to changes in microbiota of the gastrointestinal tract 
(Kim et al. 2016).

Family of the NF-κB are necessary for the transcription of genes that take part in 
innate and adaptive immune systems (Oeckinghaus and Ghosh 2009). Pathogens 
activate NF-κB via TLR-induced signals, proinflammatory cytokines (TNF and 
IL-1), TCR and B-cell receptor, and growth factors (Tilstra et  al. 2012). Aging 
mediators like reactive oxygen species, cellular senescence, and DNA damage stim-
ulate NF-κB by activating IκB kinase (IKK) and phosphorylating IκB, thus affect-
ing the expression of several cytokines, chemokines, growth factors, endothelial 
adhesion molecules, and interferon regulatory factors. Activation of NF-κB increase 
the production of inflammatory cytokines and thus stimulates NF-κB. This homeo-
static imbalance may lead to proposed chronic inflammatory state of aging. The 
chronic suppression of IKK/NF-κB has been shown to postpone the chronic aging- 
related diseases in DNA repair-deficient Ercc1−/Δ mice (Tilstra et al. 2012; Salminen 
et al. 2008) (Fig. 8.1).
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8.4  Autoimmune Diseases and Their Relationship with Age

Chronological and/or biological age of the patients is an important informative tool 
which is used for differential diagnosis of autoimmune and immune genetic dis-
eases in daily routine practice. Many autoimmune diseases preferentially occur in a 
specific time of the adulthood (Goronzy and Weyand 2012). Autoimmune diseases, 
except giant cell arteritis and primary biliary cirrhosis, are predominantly seen in 
females of childbearing age. Older people carry an undeniable risk of autoimmune 
diseases as well. Contributing factors to this phenomenon are:

 (a) Premature T cell senescence
 (b) Alterations in apoptosis in T cells and high exposure to apoptotic cells (Candore 

et al. 1997; Grolleau-Julius et al. 2010)
 (c) Production of less protective antibodies which have lower affinity to antigens 

(Stacy et al. 2002)

In Table 8.1, detailed information about common autoimmune diseases and their 
relationship with age is summarized. Giant cell arteritis is quite commonly seen in 
elderly people. It relates to age-induced remodeling of the vascular wall and age- 
related immune system alteration which results in decreasing and narrowing of 
T-cell diversity. Granulomatous lesions are localized on large- or medium-sized 
arteries together with multisystemic inflammation. The pathology of the initiating 
inflammatory process couldn’t be displayed, but abnormalities in innate and adap-
tive immunity play an important role in the starting and continuing process of the 
vasculitis (Mohan et al. 2011).

Fig. 8.1 NF-κB interactions in immune responses
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Table 8.1 Common autoimmune diseases which are seen in elderly and their relationship with 
aging

Disease
Important points in 
pathogenesis Relation with aging References

Polymyalgia 
rheumatica and 
temporal arteritis 
(giant cell arteritis)

Periarticular 
inflammation and 
vasculopathy

Almost nonexistent in 
younger persons

Grolleau- 
Julius et al. 
(2010)

Rheumatoid 
arthritis

Chronic and 
symmetrical 
polyarthritis

Elderly RA patients with 
geriatric syndrome had a 
longer disease duration and 
more patients surviving into 
old ages progressively

Song et al. 
(2009)

Systemic lupus 
erythematosus

Antibody production 
and complement fixing 
immune complex 
deposition

Insidious clinic and longer 
duration from disease onset 
to diagnosis in elderly

Chen et al. 
(2009)

Ankylosing 
spondylitis

More severe 
inflammation

Difficult-to-interpret 
radiological aspects because 
of age-related degenerations

Toussirot and 
Wendling 
(2005)

Graves disease Genetic clonal lack of 
suppressor T cells

Atypical and longer 
presentation in elderly

Ginsberg 
(2003)

Hashimoto disease Lymphocytic 
infiltration, fibrosis, and 
autoantibodies to 
thyroglobulin

Unique treatment and 
diagnostic modalities are 
needed for elderly

Ju and Zhang 
(2017) and 
Caleo et al. 
(2013)

Celiac disease Loss of villi leading to 
malabsorption

More prominent 
micronutrient deficiencies 
than intestinal symptoms in 
elderly

Rashtak and 
Murray (2009)

Inflammatory 
bowel disease

Aberrant immune 
system reacting 
inappropriately to gut 
organisms and their 
by-products

Dysbiosis and dysregulation 
of the immune system 
playing more significant role 
than genetics

Taleban et al. 
(2015)

Multiple sclerosis Central nervous system 
inflammation, 
demyelination, axonal 
degeneration, and 
gliosis

Accelerated clinic causing 
irreversible disability in 
elderly

Sorkin et al. 
(2012)

Primary biliary 
cirrhosis

Chronic cholestatic 
hepatic disease which 
can progress into 
cirrhosis by time

Low degree of initial 
histological stage and high 
frequency of 
asymptomaticity in elderly

Muratori et al. 
(2008)

Autoimmune 
gastritis 
(pernicious 
anemia)

Autoimmune disorder 
which leads to vitamin 
B 12 deficiency due to 
presence of gastric 
autoantibodies

More common 
polyautoimmunity and 
multiple autoimmune 
syndrome in elderly

Ohara et al. 
(2015) and 
Kalkan and 
Soykan (2017)
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Rheumatoid arthritis (RA), which is a systemic and inflammatory disease, 
affects primarily women between ages of 30 and 50. Patients with RA have prema-
ture immunaging. T cells in RA patients are identified by telomeric shortening in 
CD34 hematopoietic precursors, loss of telomeres activity in T cells, and restric-
tion in clonal proliferation capacity. The biologic effect of T cells in elderly is 
associated with reduction in functionality, declined vaccine responses and increased 
risk of infection, neurocognitive problems, and cardiovascular diseases (Weyand 
et al. 2014).

SLE, which is a chronic autoimmune disease, is described by multisystem 
involvement. It is diagnosed by multiple laboratory and clinical evidences. SLE is 
frequently diagnosed in women who are in their 20–40s. Late-onset SLE, which 
means the diagnosis was made above 50–65 years of age, affects 12–18% of total 
SLE population.

As it is understood from the Table 8.1 and aforementioned information, there is 
a general ambiguous clinical spectrum in elderly, which can lead to significant 
delays in diagnosis. It should always be kept in mind that there are patients who are 
passing to geriatric age and new patients who are diagnosed at geriatric age. 
Chronic and nonfatal nature of the diseases together with more effective treatment 
modalities are the main reasons for this circumstance. Both clinical approach and 
methodology in research studies should be planned according to this significant 
difference. Fewer amounts of researchers have recruited aged populations in their 
studies and mostly being over 65 has been used as an exclusion criterion. Because 
of variation in tolerance, response to treatments, pathogenic mechanisms contrib-
uting to the disease itself, and natural age-related degenerative differences in clini-
cal course will be crucial during management of the disease. Marked or complicated 
elevation of laboratory parameters, usage of polypharmacy, and lacking/inappro-
priate diagnostic criteria specific to old age groups will provide extra burden to the 
issue. As a conclusion more studies are needed to enlighten diagnostic and thera-
peutical issues in elderly especially regarding long-term side effects of pharmaceu-
tical agents. Extensive and multidisciplinary approach is needed to minimize 
morbidity and mortality.

8.5  Biomarker of Aging and Diagnostic Tools 
of Autoimmune Diseases in Elderly

The American Federation for Aging Research had proposed some criteria for an 
analytical test to be a marker of biological and/or chronological aging in both clini-
cal and research concepts. Aforementioned analytical parameter must estimate 
physiological, cognitive, and physical function of the individual independently of 
chorological age. It must be testable easily and efficiently that most clinical labora-
tories could perform the test accurately and reproducibly. It also should work in 
laboratory experimental animals as well as humans. Many important findings have 
been developed over the 50 years, but no ideal biomarker of aging had been identi-
fied which can fulfill all the criteria above.
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Elementary analysis of autoimmune diseases starts with searching autoantibod-
ies circulating in the serum of the individuals. When compared to young individu-
als, older people have increased levels of autoantibodies, but they have a decreased 
frequency of autoimmune diseases. The occurrence of some non-organ-specific 
antibodies was detected positive in healthy people who are over than 80 years old. 
The increase of these autoantibodies was associated with the result of a damaged 
tissue or high exposure to apoptotic cells instead of an autoimmune response 
(Vadasz et al. 2013). Rheumatoid factor (RF), antinuclear antibodies (ANA), and 
anticardiolipin antibodies were found positive with the frequency of 14%, 31%, and 
51%, respectively, in the healthy elderly people (Manoussakis et  al. 1987). In 
another study, increased ANA and anticardiolipin and antithyroid antibodies were 
found in healthy people who were 101–106 years old when compared with younger 
people who were 26–60 years old (Candore et al. 1997). Additionally, it was reported 
that higher rates of rheumatoid factors, anti-Ro and anti-La, lower rates of anti-RNP 
and anti-dsDNA antibodies, and hypocomplementemia were detected for late-onset 
SLE. None of these antibodies were correlated with organ complications of this 
systemic and highly variable disease (Rovenský and Tuchyňová 2008).

Anti-thyroglobulin or antithyroid peroxidase levels are usually found high in 
autoimmune Hashimato thyroiditis, but these autoantibodies are also found in 
healthy elderly people with a frequency of 14,6% in older women and 10,4% in the 
elderly people (Bryl and Witkowski 2009).

Anti-double-stranded (ds)DNA antibodies were found positive in about 14% of 
elderly people who were older than 80 years, but some studies found no relation 
with anti-dsDNA levels in older people (Manoussakis et al. 1987; Candore et al. 
1997). Anti-single-stranded (ss)DNA antibodies was found positive with the fre-
quency of 17% in the elderly people who are older than 81 years old (Candore et al. 
1997). Anticardiolipin antibodies were also detected in healthy elderly people’s sera 
in about 50% (Manoussakis et al. 1987). Similar results were detected for the RF 
which is an autoantibody directed against immunoglobulins (Ig). RF IgM and RF 
IgA levels were found positive with the frequency of 26,6% and 18.7%, respec-
tively, in elderly people (Andersen-Ranberg et al. 2004).

8.6  Improvement of Immune Functions in Aging

People have always tried to find a way to improve and extend their lifespan and their 
quality of life in history. Aging and longevity are very complex phenomena because 
genetic, behavioral, dietary, environmental, and social factors can affect life expec-
tancy. Proposed therapies for aging which are caloric restriction (Lu et al. 2011), 
spermidine (Eisenberg et al. 2009), metformin (Anisimov 2013), resveratrol (Chung 
et al. 2012), and rapamycin (Wilkinson et al. 2012) showed to have side effects such 
as malnutrition (Yang et al. 2016), nausea, gastrointestinal discomfort, nephrotoxic-
ity (De Cabo et al. 2014), and adverse effects (Lamming et al. 2012).

Melatonin can be an effective immunoenhancing agent in the elderly. It aug-
ments monocytes possibly via enhancement of monocytes sensitivity to GM-CSF, 
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increases production of CD4+ lymphocytes and NK cells, and also decreases CD8+ 
lymphocytes (Currier et al. 2000; Srinivasan et al. 2005; Castrillon et al. 2001). The 
production and release of various cytokines like IL-2, IL-6, IFN-γ, and IL-12 from 
T-helper lymphocytes and NK cells also are increased by melatonin (Carrillo-Vico 
et al. 2006; García-Mauriño et al. 2000). Melatonin probably modulates immune 
function by acting on the G protein-cAMP signal pathway and intracellular glutathi-
one levels (Wei et al. 2003; Urata et al. 1999). Melatonin production decreases with 
age. Orally administered melatonin can change mRNA levels and control the atten-
uated immune responses in the elderly (Bondy et al. 2004).

Wang et al. showed the treatment of aged SAMR1 mice with LW-AFC, an herbal 
medicine, reversed the immunosenescence status by reversing the reduced rates of 
helper and suppressor T cells and B cells; besides, the increased rates of regulatory 
T cells in the peripheral blood could make alterations in the levels of IL-1β, IL-2, 
IL-6, IL-17, IL-23, IL-4, IL-5, IL-10, eotaxin, G-CSF, GM-CSF, IFN-γ, RANTES, 
TNF-α, TNF-β, and MCP-1. These effects of LW-AFC were found out to be supe-
rior to melatonin (Wang et al. 2016).

IL-7 involves in maintenance of naive and memory CD8 T cells which are neces-
sary for host defense (Campos and Godson 2003; Schluns et  al. 2000). IL-7 by 
binding to the IL-7R complex stimulates sequential phosphorylation of Jak1, Jak3, 
and STAT5, leading to the upregulation of Bcl-2, which promotes cell survival 
(Jiang et al. 2004). Melchionda F et al. found out that IL-7 improves CD8 T-cell 
responses and increases survival of memory CD8 T cells (Melchionda et al. 2005). 
Kim et  al. demonstrated an age-associated decrease in IL-7Rα expression by 
EMCD45RA CD8 T cells that impairs cell signaling and survival responses to IL-7, and 
they stated that possible effects of IL-7 therapy in the elderly should be evaluated as 
it may not be as efficient and useful as in the young because of the decreased IL-7R 
expression and limited TCR pool (Kim et al. 2006).

In replicative senescence, CD8 T cells are unable to upregulate telomerase in 
case of chronic antigenic stimulations with latent viruses like HIV-1. Cell division 
without any telomerase activity leads to progressive telomere shortening. High 
amounts of senescent T cells are responsible for weak vaccine responses, bone loss, 
and elevated levels of proinflammatory cytokines. Telomerase-based gene therapy 
studies have suggested that replicative senescence can be delayed or prevented. The 
catalytic component of human telomerase (hTERT) gene has been shown to make 
unlimited proliferation and telomere length stabilization possible. Providing con-
tinuance of telomerase activity in virus-specific CD8 T cells may be a beneficial 
therapeutic approach for HIV (Effros 2007). Tert activation has been reported to 
cause safety problems due to close association with many cancers and reactivation 
of endogenous telomerase. For this reason, as well as with ongoing Tert-based stud-
ies in mice, development of safe treatment strategies for controllable telomerase 
activation in humans is an important challenge (Bär and Blasco 2016).

Nutrition has always been recognized with overall mortality and morbidity, and 
its role in improving quality of life and extending the lifespan has always attracted 
attention in scientific interest. Several foods and foodstuffs which have 
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anti- inflammatory and anti-oxidative properties have been identified as antiaging 
foods such as berries, dark chocolate, beans, fish, vegetables, nuts, garlic, whole 
grains, avocado, green tea, curcumin, etc. Curcumin is an Indian curry derived from 
Curcuma longa. Curcumin has been confirmed by its effect on anti-inflammatory 
and antioxidant actions in vivo and in vitro. It inhibits the activity of the transcrip-
tion factor NF-κB that activates the expression of TNF-α, IL-1β, and IL-6. 
Curcumin’s effect on inflammatory process suggests that it can delay the process of 
aging (Sikora et al. 2010). Dietary intake of curcumin also increased the lifespan of 
Drosophila melanogaster and Caenorhabditis elegans (Si and Liu 2014).

Cocoa contains a lot of epicatechin, a flavanol which can also be found in green 
tea, apples, berries, grapes, and pears. Dietary intake of cocoa can extend the life 
expectancy for 4 years in humans (Kirschbaum 1997). These effects can be attrib-
uted to epicatechin which can improve blood vessel function, insulin sensitivity, and 
hepatic antioxidant glutathione concentration and reduce systemic inflammation 
markers, serum low-density lipoprotein cholesterol, and insulin-like growth factor-
 1. It has been shown that dietary intake of epicatechin also increased the lifespan of 
Drosophila melanogaster and Caenorhabditis elegans (Si and Liu 2014).

Mediterranean diet which is characterized by the consumption of olive oil, fruits, 
vegetables, cereals, fish, poultry, and wine was shown to be associated with longev-
ity in HALE project (Knoops et al. 2004) and also with a 21% reduction in mortality 
in EPIC-Spain (Buckland et al. 2011). Marie-Paule Vasson et al. evaluated biomark-
ers of immune status in healthy old people in three European countries and found 
that NK cells were increased in Spanish population. They concluded that NK cell 
status may predict morbidity and mortality in old people which can be attributed to 
Mediterranean diet (Vasson et al. 2013).

Besides nutrition, calorie restriction was also found to be associated with longev-
ity and decreased incidence of chronic diseases like cardiovascular and neurological 
diseases, cancer, atherosclerosis, diabetes mellitus, and obesity. Adiponectin levels 
are increased by calorie restriction, and adiponectin suppresses the formation of 
inflammatory factors such as adhesion molecules and TNF-alpha (Chrysohoou and 
Stefanadis 2013). Dietary restriction improves healthy lifespan in Saccharomyces 
cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster (Fontana and 
Partridge 2015). Calorie restriction has a lot of beneficial effects on health and mor-
tality, but it is difficult to implement in real life.

Several studies have interpreted the role of microbial balance of colon, which is 
called microbiota, contributes to digestion by fermentation (saccharolytic) and 
putrefaction (proteolytic) (Fig.  8.2) (Kumar et  al. 2016; Giorgetti et  al. 2015). 
Microbiota also attributes to host immunity, metabolism, and health status by 
decreasing the activity of enzymes involved in the production of carcinogenesis, 
increasing mucosal cell proliferation and healing process in inflammatory bowel 
disease (Montemurno et al. 2014; Giorgetti et al. 2015). A healthy and balanced 
microbiota primarily consists of saccharolytic effect which bifidobacteria and lacto-
bacilli has (Chrysohoou and Stefanadis 2013). These bacteria hydrolyze polysac-
charides to its monomers, and then these monomers are converted to short-chain 
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fatty acids which are known by their protective affects and positive immune- 
modulating activity (Montemurno et al. 2014). Mediterranean diet can support the 
beneficial replacement of saccharolytic profile which can act as positive microbes. 
Complex carbohydrates fermentation ends with immune modulating activity by 
supporting intestinal barrier unity and by revealing direct transcriptional responses 
in immune cells (Kau et al. 2011). The bifidobacteria numbers in the gut decline 
prominently after the age of 55–60; therefore probiotic products can have important 
effects on prevention of age-related diseases (Nova et al. 2007). Gill HS et al. and 
Chiang BL et al. found that the phagocytic activity of monocytes and polymorpho-
nuclear cells and tumoricidal activity of NK cells can be improved by supplementa-
tion of Bifidobacterium lactis in elderly people (Gill et al. 2001; Chiang et al. 2000). 
Bifidobacterium lactis was also shown with increase phagocytic activity and 
improve IFN-alpha production by peripheral blood mononuclear cells in elderly 
people (Chiang et al. 2000; Gill et al. 2001). The same results concerning phago-
cytic and NK activities were also obtained with the supplementation of Lactobacillus 
rhamnosus in middle-aged and elderly subjects (Nova et al. 2007).

Among all the essential micronutrients in human diet, zinc is accepted to be one 
of the most abundant trace elements which should be taken regularly for a healthy 
life. The sources of zinc are red meat, animal protein sources, sea foods, cereals, and 
nuts. It is not stored in the body; therefore daily intake is essential. Zinc is required 
for several metabolic pathways that take part in structural and functional integrity of 
transcription factors and more than 300 enzymes. NF-κB transcription factor 
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Fig. 8.2 Microbiota and its relations with aging in elderly
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contains Zinc which has a critical role in expression of several immune and inflam-
matory cytokines. The effect of Zn is suppression of phosphorylation and degrada-
tion of the inhibitory proteins which separate NF-κB in the cytoplasm. Zinc plays a 
key role in inflammatory signal transduction and proinflammatory cascade. 
Proinflammatory cytokines are believed to play an important role in age and age- 
related disease; therefore zinc can be assumed as an important trace element in 
aging (Vasto et al. 2006).

Synthetic drugs have been used for antiaging benefits due to their antioxidant, 
anti-inflammatory, antidiabetic, or immunostimulant effect (Kapoor et  al. 2009). 
Aspirin or acetylsalicylic acid is an anti-inflammatory drug that inhibits cyclooxy-
genase enzyme. Cyclooxygenase is responsible of production of prostaglandins and 
thromboxanes from arachidonic acid. In this way aspirin inhibits platelet aggrega-
tion, and aspirin also delays the start of endothelial senescence by preventing reduc-
tion of nitric oxide (NO) formation (Kapoor et  al. 2009). Inosine pranobex or 
isoprinosine is an immunostimulant complex which has antiviral feature and can 
repair immune responses in aging (Kapoor et al. 2009).

Some hormones like sex hormones, human growth hormone, pineal hormone, 
melatonin, and dehydroepiandrosterone (DHEA) have been shown to have antiag-
ing effect. These hormones can improve vitality, strength, vigor, and sense of well- 
being. DHEA which is a steroid prohormone produced by the adrenal glands has 
antiaging effect that has greater potential than other hormones. DHEA levels 
decreases with age. DHEA levels are more important in elderly due to the decreased 
production of estrogens in postmenopausal women and decreased testosterone lev-
els in men. DHEA’s effects are seen frequently by its hormone end products. DHEA 
has both beneficial effects on the immune system as well as on the cardiovascular 
and neurological system (Kapoor et al. 2009).

8.7  Conclusion and Future Directions

Prolongation of mean lifespan is a well-accepted and ongoing victory for the health 
status of our society. But together with this progressing triumph, geriatric health 
problems will be focus of attention more and more importantly as time passes. 
There are promising antiaging dietary modulation options in modern medicine like 
curcumin, zinc, cocoa, and calorie restriction. Melatonin, telomerase-based gene 
therapy, fecal microbiota transplantation, DHEAS replacement, and even routine 
medications are considered as good candidates to prevent or delay age-related 
degenerations and vulnerability. As new bridges between immune system and aging 
are constructed, there will be new hopes for these achievements. Multidisciplinary, 
future-directed researches involving high number of patients are needed for new 
treatment discoveries to improve immunity and maintain reasonably good health in 
aged populations.
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9Sirtuin Modulators and Brain Aging
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Abstract
The sirtuins are proteins with enzymatic activity, which regulate diverse 
cellular processes including aging, longevity, inflammation, obesity, and stress 
resistance. There are seven sirtuins in mammals with varied subcellular local-
ization and enzymatic activity. Of these, SIRT1 exhibits NAD-dependent 
deacetylase activity, and it has been the most studied isoform to target aging-
related neurodegenerative disorders and longevity due to caloric restriction. 
SIRT activation can exert positive effects in aging-related disorders such as 
metabolic, cardiovascular, and neurodegenerative diseases; while SIRT1 inhib-
itors have anticancer properties. Currently, a number of clinical trials are 
conveyed with modulators of SIRT. This chapter focuses on SIRT activators 
and their effects on brain aging.
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Sirtuin · SIRT1 · Brain · Aging · Senescence · SIRT activators, SIRT inhibitors, 
central nervous system
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Abbreviations

ALS Amyotrophic lateral sclerosis
FoxO Forkhead box O
mTOR Mammalian target of rapamycin
NAD Nicotinamide adenine dinucleotide
SIRT Sirtuin

9.1  Sirtuins, Types and General Function

Sirtuins were initially described as transcription-silencing histone deacetylase 
enzymes in yeast (Satoh and Imai 2014). In mammals, there are seven sirtuins 
(SIRT1–SIRT7). All have a similar catalytic NAD+-binding domain, but each has 
diverse enzymatic activities, substrates, and cellular functions (Watroba et al. 2017). 
Although they are initially defined as deacetylases, they can also have deacylase and 
O-ADP-ribosylase activities (Houtkooper et al. 2012).

All these seven sirtuins have significant roles in physiological and pathological 
processes such as metabolism, longevity, senescence, cell survival, proliferation, 
apoptosis, DNA repair, and aging. Therefore, they are the potential targets for the 
treatment of neurodegenerative diseases, cardiovascular diseases, cancer, and aging 
(Carafa et al. 2016).

9.1.1  SIRTs in the Brain

Although different types of sirtuins are found in the peripheral tissues, SIRT1 is 
widely studied in the brain; however, there are limited studies with other subtypes. 
All subtypes are expressed in neurons. SIRT1, SIR5, SIRT6, and SIRT7 are 
expressed in astrocytes, while SIRT2 is detected in myelin-producing cells (Anamika 
et al., 2017). Table 9.1 summarizes the localization and function of sirtuins in the 
brain.

9.1.2  Brain Aging and SIRTs

SIRTs have been shown to have role in the pathogenesis of a number of brain disor-
ders. These include traumatic brain injuries (closed-head trauma, ischemia, stroke), 
neurodegenerative disorders (Parkinson’s disease, Alzheimer’s disease, Huntington’s 
disease, amyotrophic lateral sclerosis (ALS)), psychiatric disorders (depression, 
anxiety, sleep disorders), and aging (Satoh et al. 2017).

The process of normal brain aging includes areas of brain atrophy, reduced 
neurogenesis, decreased neurotransmitter production, increased myelination, and 
changes in neuronal synaptic structures. It has been shown that reduced 
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neurogenesis plays a role in the development of neurodegenerative diseases. Sirtuins 
have been shown to regulate neurogenesis and synaptic plasticity (Satoh et al. 2017). 
Sirtuin activation has also been shown to slow down the cognitive decline associ-
ated with aging (Morris 2013).

SIRT1 overexpression helps to protect against Alzheimer’s disease, Huntington’s 
disease, and ALS via reductions in cell death, B-amyloid production, and plaque 
formation (Paraiso et  al. 2013). Alzheimer’s disease has been associated with 
increased tau protein, a component of neurofibrillary tangles. SIRT1 can deacetylate 
tau thus decreasing the presence of neurofibrillary tangles (Morris 2013). In mouse 
models, SIRT1 deficiency causes impaired synaptic plasticity and increased neuro-
genesis which leads to memory impairment (Satoh et al. 2017). In addition, SIRT1 
overexpression slows neurodegeneration associated with Parkinson’s disease 
(Paraiso et al. 2013). In mouse models, SIRT1 leads to breakdown of alpha- synuclein 
which is involved in the pathogenesis of both Parkinson’s disease and Lewy body 
dementia (Morris 2013). Further research will be needed regarding the protective 
effects of SIRT1 in neurodegenerative diseases in humans.

The exact mechanism by which SIRT2 and SIRT6 contribute to brain aging is not 
yet fully known. SIRT2 overexpression and caloric restriction have been shown to 
increase the life span of yeast, but this has not yet been proven in humans (Carafa 
et al. 2012). In other models, SIRT2 is theorized to be neurotoxic. SIRT2 inhibition 
decreases apoptosis and is considered neuroprotective in models of Parkinson’s dis-
ease and Huntington’s disease (Morris 2013). SIRT6 may have a role in decreasing 
the destruction of telomeres, which has been associated with aging (Carafa et al. 
2012).

There is still much research that needs to be done in the area of SIRT activation/
inhibition and the role in neurodegenerative disease. Current research shows prom-
ise for future SIRT modulating agents as being beneficial for the treatment of neu-
rodegenerative diseases and aging (Carafa et al. 2016).

9.2  Modulation of SIRT as a Therapeutic Target in Diseases

During recent years, with the discovery of the SIRTs in brain function and brain 
disorders, studies focused on targeting modifying SIRT function to alter pathophys-
iological processes.

Especially during past decade, experimental molecules were synthesized to 
modify SIRT function. These ligands are mostly selective for SIRT1/2 as inhibitors 
or activators (Fig. 9.1).

9.2.1  SIRT Activators

9.2.1.1  Caloric Restriction
Dietary interventions such as caloric restriction (CR) extend life span and health 
span (Libert and Guarente 2013). CR refers to dietary regimens that reduce daily 
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calorie intake without incurring malnutrition (i.e., ≥10% in humans, ≥20% in ani-
mal) (Bales and Kraus 2013).

Recent data from animal and human studies demonstrate that CR slows down the 
aging and cognitive decline. Caloric restriction reduces the rate of metabolism, 
improves insulin sensitivity, and protects against oxidative stress and inflammation 
induced by aging [20]. It was shown that caloric restriction-induced longevity in 
rodents was mediated by SIRTs (Libert and Guarente 2013; Nikolai et al. 2015).

SIRT1 deficiency results in elevated mTOR (mammalian target of rapamycin) 
signaling. mTOR is a key kinase enzyme in modulating energy metabolism, nutrient 
sensing, aging, and longevity. Excessive mTOR activity is inhibited by caloric 
restriction and several agents like rapamycin. Both activate SIRT1 and increase life 
span (Ehninger et  al. 2014). SIRT1 activator resveratrol has also been shown to 
inhibit mTOR activity, whereas SIRT1 inhibitor nicotinamide enhanced it in a 
SIRT1-dependent manner (Ghosh et al. 2010).

Fig. 9.1 Modulation of sirtuins (SIRT) with inhibitors and activators

9 Sirtuin Modulators and Brain Aging
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9.2.1.2  Citicoline
Citicoline (cytidine 5′-diphosphocholine) is an essential intermediate in the biosyn-
thetic pathway of structural phospholipids in cell membranes, particularly phospha-
tidylcholine (Secades and Lorenzo 2006). It has been widely studied for its 
neuroprotective effects as well as the effects on improving memory. Citicoline 
increased SIRT1 protein expression in the brain following stroke; and this increase 
was prevented by pretreatment with SIRT inhibitor sirtinol (Hurtado et al. 2013).

9.2.1.3  Curcumin
Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5- 
dione) is the major active ingredient of turmeric (Curcuma longa) root. It has anti-
oxidant, anti-inflammatory, and anticancer activities (Aggarwal et al. 2007; Jurenka 
2009). A recent evidence suggested that curcumin has been shown to upregulate 
SIRT3 expression in the skeletal muscle tissues (Zhang et al. 2017a). In addition to 
periphery, curcumin also upregulated SIRT1 expression in the brain following 
stroke (Miao et al. 2016). The effects of curcumin (reduced infarct size, reduced 
edema, and improved neurological scores) were attenuated by sirtinol (Miao et al. 
2016).

9.2.1.4  α-Lipoic Acid
Alpha-lipoic acid (6,8-thioctic acid) is a dithiol compound derived from octanoic 
acid, which acts as a coenzyme for several redox reactions. It is synthesized in body 
naturally and is essential for aerobic metabolism. Many experimental and some 
clinical trials have been carried out to study its efficacy in diseases related to aging- 
induced oxidative stress (Skibska and Goraca 2015; Tibullo et al. 2017; Shay et al. 
2009) and neurotrauma (Ekiz et al. 2017; Toklu et al. 2010a; Ersahin et al. 2010; 
Toklu et al. 2009). Lipoic acid was shown to SIRt1 and SIRT3 in peripheral tissues 
(Valdecantos et al. 2012; Zhang et al. 2014).

9.2.1.5  Melatonin
Melatonin (N-acetyl-5-methoxy tryptamine) is a hormone that is secreted by the 
pineal gland and regulates sleep/wake cycles. It is a popular antioxidant supplement 
to support healthy aging. Its endogenous levels decrease in neurodegenerative dis-
orders such as Alzheimer’s disease (Hardeland et al. 2015). Several mechanisms 
were suggested for the actions of melatonin; however there are only few studies 
which show its effect on SIRT1 levels. Chang et al. (2009) have shown that melato-
nin treatment efficaciously retained the relative protein levels of SIRT1 in the hip-
pocampus of completely sleep-deprived rats (Chang et al. 2009). Recently, other 
studies supported melatonin’s ability to increase SIRT levels against brain aging 
(Cristofol et al. 2012; Kireev et al. 2013).

9.2.1.6  Quercetin
Quercetin (3,3′,4′5,7-pentahydroxyflavone) is a polyphenolic compound found in a 
variety of plants. It has antioxidant, anti-inflammatory, immuno-protective, and 
even anticarcinogenic effects (Andres et al. 2018). Like resveratrol, quercetin is also 
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an indirect activator of SIRT1 (Chung et al. 2010). Quercetin has been shown to 
delay postovulatory aging of mouse oocytes by regulating SIRT expression (Wang 
et al. 2017). However, its effect in the brain to activate SIRTs is unclear. In one 
study, quercetin increased hippocampal SIRT1 levels and improved cognitive 
function in aged rats (Sarubbo et al. 2018).

9.2.1.7  Rapamycin
Rapamycin, also called sirolimus is an immunosuppressant drug used for prevent-
ing rejection of organ transplants. It is the first pharmacological agent shown to 
extend life span in mammalian species (Carter et al. 2016; Ehninger et al. 2014). As 
mentioned earlier, caloric restriction has been shown to enhance longevity via the 
activation of SIRT pathway (Zhang et al. 2011), and SIRT1 deficiency results in 
elevated mammalian mTOR signaling (Ghosh et  al. 2010). mTOR is a kinase 
which has key role in longevity and energy metabolism. Rapamycin inhibits mTOR 
activity, mimics caloric restriction, and activates SIRT1. Thus, it has been shown 
to improve aging-related hypothalamic insulin resistance in rat models (Carter et al. 
2016; Scarpace et al. 2016; Toklu et al. 2016) besides its effect on increasing life 
span (Ehninger et al. 2014).

9.2.1.8  Resveratrol
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a plant polyphenol, found abun-
dantly in grape skin, blueberries, peanuts, and pistachios. In addition to its potential 
therapeutic effects in cancers and cardiovascular diseases, its neuroprotective effects 
in various neurotrauma models have been widely studied over the years (Lopez 
et al. 2015; Toklu et al. 2010b). Resveratrol is claimed to be a promising agent in 
epilepsy, brain trauma, Alzheimer’s disease, and other neurodegenerative diseases 
because of its effects in improving cognitive function and neuronal plasticity (Lange 
and Li 2018; Sarubbo et al. 2017; Poulose et al. 2015; Dias et al. 2016; Toklu et al. 
2010b).

SIRT1 has emerged as an attractive therapeutic target for many aging-related 
diseases; however, how its activity is modulated by resveratrol has been poorly 
understood. Resveratrol is a SIRT1 activator and mTOR inhibitor (Carafa et  al. 
2016; Ghosh et  al. 2010). Therefore, it mimics the beneficial effects of dietary 
restriction because of this common mechanism (Dolinsky and Dyck 2011; Villalba 
and Alcain 2012). However, resveratrol was not proven to extend life span like 
CR. On the other hand, it was demonstrated that resveratrol slows down the onset of 
age-related diseases (McCubrey et al. 2017).

Enhanced cerebral microvascular circulation, neurogenesis, mitochondrial func-
tion, neuroprotection, and neuronal survival are achieved with resveratrol treatment 
in experimental studies. In addition, resveratrol treatment decreased macular degen-
eration, retinal aging, and aging-induced hearing loss in rats (McCubrey et al. 2017).

9.2.1.9  SRT1720
SRT1720 is an experimental compound which is recently synthesized as selective 
activator of SIRT1. It is more potent than the prototype activator resveratrol. It 
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stimulates 750% SIRT1 activity at a concentration of 10 μM (Villalba and Alcain 
2012). It activates SIRT2 and SIRT3 with a lower efficacy. Like resveratrol, 
SRT1720 increased life span in mice (Mitchell et al. 2014) and preserved aging- 
induced vascular dysfunction (Gano et al. 2014). Its efficacy was demonstrated in 
reversing the adverse effects of obesity and insulin resistance, restoring metabolic 
function in mice (Nguyen et  al. 2018). Another study showed that intravenous 
SRT1720 treatment attenuated systemic inflammatory response in mice sepsis 
model (Khader et al. 2017). Lahusen and Deng (2015) have suggested that SRT1720 
could be potential therapeutic agent for cancer treatment due to its effect on enhanc-
ing lysosomal-dependent necrosis in breast cancer cells (Lahusen and Deng 2015).

9.2.1.10  Tempol
4-Hydroxy-tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) is a membrane 
permeable free radical scavenger. Tempol has been investigated in a number of 
experimental hypertension, neuronal injury, aging, and obesity models (Dornas 
et al. 2015; Hamel 2015; Wilcox 2010; Toklu et al. 2017).

In vitro tempol treatment was demonstrated to revert the downregulation of 
SIRT2 and SIRT6 in neural stem cells exposed to high glucose (Yu et al. 2016).

Decreased SIRT1 activity has been claimed to be responsible for aging-induced 
hypothalamic degeneration, metabolic disorders, and obesity. To test this hypothe-
sis, we infused tempol into the brains of aged rats and measured SIRT1, p53, and 
AMPK proteins. Old rats had significantly lower levels of SIRT1 in the hypothala-
mus. However, centrally given tempol failed to modulate SIRT pathway in the 
hypothalamus and improve aging-induced obesity (Toklu et al. 2017).

9.2.1.11  Ursolic Acid
Ursolic acid (3β-hydroxy-12-ursen-28-ic acid) is a pentacyclic triterpenoid found in 
peels of fruits (apples, prunes) and in herbs like rosemary, lavender, basil, pepper-
mint, eucalyptus, oregano, and thyme (Wozniak et  al. 2015). Ursolic acid and its 
analogs are studied to treat various cancers, inflammation, diabetes, Parkinson’s dis-
ease, Alzheimer’s disease, hepatitis B, hepatitis C, and AIDS (Hussain et al. 2017).

Ursolic acid has been shown to regulate aging by the activation of SIRT1 and 
SIRT6 in hypothalamus. It attenuated mitochondrial dysfunction in aged animals 
(Bahrami and Bakhtiari 2016). In an earlier study, it protected against D-galactose 
(D-gal)-induced neurotoxicity and improved cognitive function (Lu et al. 2007).

9.2.1.12  Vitamin E
Vitamin E includes a group of lipid-soluble tocopherols and tocotrienols. 
α-Tocopherol is the most plentiful and bioavailable form of vitamin E for humans 
(La Fata et al. 2014). It is a well-known antioxidant. Vitamin E deficiency causes 
neuronal dysfunction due to unmanaged oxidative stress. Hence, vitamin E was 
widely studied for its effect on brain aging and cognitive function (La Fata et al. 
2014; Tucker 2016).

A recent study has demonstrated that long-term deficiency of vitamin E remark-
ably decreased the expression of silent mating-type information regulation (SIRT)-2 
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mRNA compared to short-term deficiency (Fukui et  al. 2014). However, further 
studies are required to elucidate the SIRT-related mechanisms underlying the neu-
roprotective effect of vitamin E.

The studies involving these vitamin supplements have controversial results on 
their benefit, the evidence suggests that healthy brain aging may be achieved by 
healthy nutrition which contains balanced combination of these vitamins and fatty 
acids as well as reduced dietary sugar (Tucker 2016) (Fig. 9.2).

9.2.2  SIRT Inhibitors

There are no publications in literature which directly study the effect of SIRT inhib-
itors in brain aging. However, there are few studies published which studied the 
physiological effects of SIRT1 inhibition in the brain. Therefore, in this section, the 
studies conducted with SIRT1 inhibitors will be discussed for their effects on the 
brain. Since most of the neurodegenerative brain disorders are known to enhance 
brain aging due to neuronal injury, it is critical to recognize the consequences of 
SIRT inhibition in the brain in experimental neurotrauma models.

9.2.2.1  Alcohol
Ethanol downregulates SIRT1 in hepatic cells in humans and experimental animal 
models. The ethanol-mediated disruption of SIRT1 signaling leads to excess fat 
accumulation and inflammation (You et al. 2015). On the other hand, Mediterranean- 
type diet and moderate alcohol consumption with food have been suggested to 
be protective against cardiovascular diseases and increase longevity. Hence, the 
Mediterranean way of drinking refers to drinking wine, up to two glasses a day for 

Fig. 9.2 Chemical structures of SIRT activators
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men and one glass for women. The efficacy is the result of polyphenolic substances 
such as catechin and epicatechin, proanthocyanidin, anthocyanin, various phenolic 
acids, quercetin, and the stilbene resveratrol. Resveratrol is the most widely studied 
compound for its effects on increasing the expression of Sirt1 (Giacosa et al. 2016).

Acute ethanol inebriation was demonstrated to reduce Sir2 levels and increase 
histone H3 acetylation in the brain. This leads to neuroadaptive changes in synapsin 
levels, which is a protein required for ethanol sensitivity and tolerance (Engel et al. 
2016). Furthermore, binge ethanol consumption during puberty has been demon-
strated to alter microRNA expression in the hippocampus and cause long-term 
changes in brain-derived neurotrophic factor (BDNF) and sirtuin-1 (SIRT1) levels 
(Prins et al. 2014).

9.2.2.2  Cambinol
Cambinol is a chemically stable compound that shares a β-naphthol moiety with 
sirtinol and inhibits both SIRT1 and SIRT2 in vitro. It has weak inhibitory activity 
against SIRT5 (Villalba and Alcain 2012). However, inhibitory activity of cambinol 
for neutral sphingomyelinase 2 (nSMase2) in the brain was tenfold more potent than 
its effect on SIRT1/2. It was suggested that its neuroprotective effects in primary 
neurons were via nSMase2 inhibition (Figuera-Losada et al. 2015).

9.2.2.3  L-Arginine
L-Arginine is an amino acid which plays vital role in nutrition and health (Wu and 
Meininger 2000). L-Arginine is a precursor of nitric oxide, ornithine, citrulline, 
agmatine, polyamines, creatine, and proteins. While aging is often associated with 
L-arginine deficiency, supplementation for aging-related cardiovascular disorders 
was suggested. However, clinical and experimental studies demonstrate controver-
sial data on its beneficial effects (Moretto et al. 2017).

It has been recently demonstrated that SIRT1 mediates L-arginine protection 
against diabetic myocardial fibrosis via equilibrating the balance between profi-
brotic and antifibrotic mediators (Rizk et al. 2014).

9.2.2.4  Nicotinamide (Vitamin B3)
Niacin is the precursor to two important cofactors, NAD (nicotinamide adenine 
dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate), which are 
necessary for many enzymes catalyzing redox reactions in the human organism. 
Nicotinamide, also known as niacinamide, or vitamin B3, is an important compound 
functioning as a component of the coenzyme NAD.

In an in vitro study, antimycin A-induced increase ROS levels and apoptosis in 
the brain was enhanced by nicotinamide due to inhibition of SIRT (Hori et al. 2013). 
Even though nicotinamide is an inhibitor of SIRT1 in vitro, it may activate SIRT 
pathway in vivo (Hwang and Song 2017). Thus this may explain its protective effect 
on neuronal function after severe hypoxia (Shetty et al. 2014).

As mentioned earlier in this chapter, NAD+ acts as a metabolic sensor and SIRT1 
activity is increased in energy/nutrient stress (Houtkooper et al. 2012). SIRT1 has 
also been reported to improve insulin sensitivity in  vitro or in  vivo. Long-term 
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treatment with the SIRT1 inhibitor nicotinamide significantly impaired glucose 
tolerance in nicotinamide-treated mice (Qi et al. 2016). Furthermore, another study 
has demonstrated that leptin’s ability to improve glucose metabolism in the brain 
and reduce tau phosphorylation/β-amyloid production was prevented by nicotinamide 
(Greco et al. 2011).

9.2.2.5  Salermide
Salermide is a sirtuin inhibitor that acts on SIRT1 and SIRT2. Salermide is a reverse 
amide of sirtinol and it is more potent than sirtinol (Lara et al. 2009). It was shown 
that the inhibition of Sirt1 with salermide decreased BBB permeability, attenuated 
apoptosis in both normal and ischemic conditions in vitro (Chen et al. 2017). Sirt3 
expression was also partially prevented by salermide in this study, suggesting its 
role in the regulation of SIRT1/SIRT3 pathway in the brain. In contrary to its anti-
apoptotic effect in in vitro ischemia model (Chen et al. 2017), an in vivo study with 
mice using a traumatic brain injury model demonstrated that salermide promoted 
neuronal apoptosis (Zhao et al. 2012). Moreover, blood glucose levels were signifi-
cantly elevated in the salermide-treated mice compared to controls, providing 
evidence for the role of SIRT1 in regulating insulin sensitivity (Zhao et al. 2012).

9.2.2.6  Selisistat (EX-527)
Recent studies have demonstrated that SIRT1 mediates depression (Kim et al. 2016) 
and anxiety by activating MAO-A in the brain (Libert et al. 2011). Thus, SIRT1 
inhibition is expected to decrease MAO-A activity and increase monoamine levels. 
As known, MAO-A inhibitors are pharmacological agents which are clinically used 
to treat depression. Consistent with this hypothesis, our recent findings have dem-
onstrated that continuous infusion of EX-527 to the brain of aged rats increased 
locomotor activity by altering norepinephrine turnover in brain regions like the 
hypothalamus, pituitary, and nucleus tractus solitarius (NTS) [unpublished data].

SIRT1 pathway was also thought to be a potential target for the prevention and 
treatment of epilepsy and epileptic damage. Although earlier findings pointed out to 
the involvement of SIRT1-related pathway in epileptogenesis (Wang et al. 2016), a 
recent study with EX-527 did not support this hypothesis (Hall et al. 2017).

9.2.2.7  Sirtinol
Sirtinol, is a cell-permeable 2-hydroxy-1-naphthaldehyde derivative that acts as a 
selective inhibitor on SIRT1 and SIRT2 (Villalba and Alcain 2012).

SIRT1 was reported to be involved in the pathogenesis of cerebral ischemia, 
subarachnoid hemorrhage, and brain tumors via p53 deacetylation (Chen et  al. 
2017; Zhang et  al. 2016). Hence, resveratrol, SIRT1 activator, exerts protective 
effects on the brain in experimental trauma models (Qian et al. 2017; Toklu et al. 
2010b). Protective effects of resveratrol in subarachnoid hemorrhage were blocked 
by sirtinol, suggesting the role of SIRT1  in the formation of brain edema and 
preservation of blood brain barrier integrity (Cristofol et al. 2012).

In another study, endothelium-dependent vasodilation was impaired with sirtinol 
incubation in both young and older mice (Donato et al. 2011).
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9.2.2.8  Splitomicin
Splitomicin is a β-naphthol derivative and is an inhibitor of SIR2. It inhibits platelet 
aggregation by increasing cyclic AMP via inhibition of phosphodiesterase enzyme 
(Liu et al. 2009).

In an in vitro study, antimycin A-induced increase ROS levels and apoptosis was 
enhanced by splitomicin (Hori et al. 2013). Its effect was attributed to modification 
of FOXOs and p53 under oxidative stress.

9.2.2.9  Suramin
Suramin is anaphthylurea derivative that is used against trypanosoma infections. 
Suramin analogs have been shown to have inhibitory effects on SIRT1, SIRT2, and 
SIRT5 (Trapp et al. 2007; Villalba and Alcain 2012). In an earlier study, suramin 
abolished the ability of amyloid-β to increase the amplitude and velocity of calcium 
wave propagation in astrocytes (Haughey and Mattson 2003). However, the effects 
in the brain were attributed to its direct inhibition on adenylyl cyclase enzyme 
(Stohr et  al. 2005). No studies were carried out to specifically evaluate suramin 
effects and SIRT inhibition in the brain (Fig. 9.3).

9.3  Conclusion

Biological senescence is a loss of integration and resilience. Resilience is the ability 
to achieve a positive outcome when facing adversity. Even though aging is inevita-
ble, the evidence suggests that a healthy lifestyle has a crucial role to achieve brain 
resilience during aging.

Fig. 9.3 Chemical structures of SIRT inhibitors
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The relationship between SIRT function and extended life span is widely studied. 
With the advances in our understanding of SIRT function in the brain, and its role 
in pathological process, the specific targeting in aging brain will become more 
important. Either synthetic or natural SIRT-modulating ligands (for their potential 
in resilience) may be clinically used in the future to help healthy aging of the brain.
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Abstract
Maintenance of cellular energy homeostasis, counterbalanced by cellular stress 
response and an adequate cellular housekeeping are the hallmarks of improved 
healthspan and lifespan. Mammalian target of rapamycin (mTOR) is a central 
cell growth regulator that integrates cellular growth and proliferation with nutri-
ent status of the cell. It is an intracellular nutrient sensor that controls protein 
synthesis, cell growth and metabolism. mTOR turns off stress resistance and 
autophagy and activates translation. Available scientific evidence endorses that 
molecular inhibition of this pathway slows aging, extends lifespan and improves 
symptoms of diverse array of age-related diseases in wide range of species. 
Rapamycin, a small molecule inhibitor of the protein kinase mTOR, has been 
found to extend the lifespan of model organisms including mice. Many of such 
inhibitors of this pathway are already characterized and clinically approved. In 
the present chapter, we summarize current understanding of mTOR and its role 
in aging and age-related disease progression.

Keywords
Aging · Autophagy · Mammalian target of rapamycin · Protein synthesis · 
Rapamycin

10.1  Introduction

Aging is an inevitable process accompanied by multiple molecular changes in gene 
expression, altered metabolite levels and accumulation of molecular damages (Lee 
et al. 2017). Thus interventions that target these molecular changes provide a novel 
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entrance for evolution of innovative preventatives and therapeutics that delay the 
onset and progression of aging and age-related ailments (Saraswat and Rizvi 2017).

Mechanistic target of rapamycin (mTOR) is an integrated signalling network that 
converges various upstream signalling stimulations to regulate various cellular pro-
cesses such as cell proliferation, growth, survival, metabolism, autophagy, protein 
synthesis and apoptosis (Johnson et al. 2013). The ability of mTOR to regulate vari-
ous cellular processes has attracted great interest. Understanding this molecular 
pathway has led to the use of mTOR inhibitors (such as rapamycin and rapalogs) in 
the treatment against mouse models of age-related diseases, such as cancer, neuro-
degenerative diseases, cognitive decline, rheumatoid arthritis, organ transplantation 
and coronary restenosis (Ehninger et al. 2014).

The story of mTOR began in the 1970s, when soil samples from a Polynesian 
island Rapa Nui was found to have antifungal activity. This was attributed to be due 
to the presence of the bacteria Streptomyces hygroscopicus that produces a natural 
macrocyclic lactone, rapamycin. Since then, rapamycin (also called sirolimus) is 
used as antifungal, anti-cell proliferative drug that possesses strong immunosup-
pressant properties (Morris 1992). It has also been approved by the FDA as an 
anticancer drug. In 2009, Harrison and co-workers (2009) reported that rapamycin, 
when fed late in life could extend mean and median lifespan of male and female 
mice. Since then, rapamycin and other rapalogs have come into intense scrutiny for 
their potential as an anti-aging drug. In the 1990s, genetic screening of Saccharomyces 
cerevisiae revealed two genes, namely, TOR1 and TOR2, that are the mediators of 
the toxic effects of rapamycin in yeast (Kunz et al. 1993). Soon after this discovery, 
the mTOR was identified in mammalian cells too and designated as mechanistic 
target of rapamycin (Sabatini et al. 1994; Sabers et al. 1995). In the past few years, 
our understanding of this kinase has increased by leaps and bounds. Now it is known 
that mTOR is involved in regulating a diverse set of cellular functions and is sensi-
tive to many environmental and endocrine stimuli. Thus, mTOR functions not only 
as a master regulator of cellular functions but also for metabolism and aging.

mTOR is a 289-kDa protein that belongs to a class of serine/threonine protein 
kinase of phosphoinositide 3-kinase (PI3K)-related kinase family. mTOR nucleates 
around two distinct multi-protein complexes: mTORC1 and mTORC2 that differ in 
function, substrates and their sensitivity to rapamycin.

10.2  mTORC1: Central Regulator of Cellular Functions

Complex 1 of mTOR has five distinct components; a catalytic subunit, a regulatory 
subunit (raptor) which regulates mTORC1 assembly and recruits it to substrate and 
another unit named mammalian lethal with Sec13 protein 8 (mLST8 also known as 
GβL) of unknown function. Other two components are proline-rich AKT substrate 
(PRAS40) and mTOR-interacting protein known as deptor, both of which have a 
negative role in regulation of the complex (Peterson et al. 2009). When the activity 
of mTORC1 is reduced, PRAS40 acts as a direct inhibitor of substrate binding 
(Wang et al. 2007). When activated, mTORC1 phosphorylates PRAS40 and deptor, 
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thereby removing their direct interaction with mTORC1. Bacterial macrolide 
rapamycin played a major role in understanding how mTORC1 functions. When 
rapamycin enters the cell, it inhibits the activity of mTORC1 by binding to the 
FK506-binding protein of 12  kDa (FKBP12) and interacting with the FKBP12- 
rapamycin- binding domain (FRB) of mTOR.

mTORC1 is well positioned to coordinate various cellular growth processes and 
the availability of nutrients, energy and growth factors (Wullschleger et al. 2006). 
Signals from various upstream components that activate mTORC1 include the 
PI3K/AKT, Ras/MAPK and AMPK pathway (Mendoza et al. 2011; Mihaylova and 
Shaw 2011). These upstream signalling networks are activated in response to vari-
ous intracellular and extracellular stimuli (such as availability of oxygen, nutrients, 
cellular energy status, growth factors and stress) and converge onto mTORC1- 
related signalling network to control essential cellular processes including protein 
and lipid synthesis and autophagy (Laplante and Sabatini 2012). The key upstream 
regulator of mTORC1 is heterodimer TSC1 (or hamartin) and TSC2 (or tuberin). 
This dimer acts as a GTPase-activating protein (GAP) for Rheb (stand for Ras 
homolog enriched in brain) GTPase. Once bound with GTP, Rheb directly phos-
phorylates mTORC1 to activate its kinase activity. TSC1/TSC12 negatively controls 
the activity of mTORC1 by acting as Rheb GAP, i.e. it converts active Rheb into its 
inactive form by converting its GTP bound form to GDP bound form (Inoki et al. 
2005; Tee et al. 2003).

Growth factors such as insulin and insulin-like growth factor1 stimulate PI3K 
and Ras signalling networks which in turn phosphorylate and inactivate TSC1/
TSC12, thus integrating the signals to the mTORC1 (Sengupta et al. 2010).

Pro-inflammatory cytokines, such as tumour necrosis factor-α (TNFα), also acti-
vate mTOR in a similar fashion (Lee et al. 2007). Akt, either in integration to PI3K 
pathway or independent of TSC1/TSC12, can also signal to mTORC1 by phos-
phorylating and disengaging its regulatory subunit (raptor) from its inhibitory sub-
unit (PRAS40) (Sancak et al. 2007; Thedieck et al. 2007).

Canonical Wnt pathway that directs cell proliferation, cell polarity and cell fate 
determination during embryonic development and tissue homeostasis also play a 
role in regulating mTORC1. It suppresses TSC1/TSC12 by phosphorylating glyco-
gen synthase kinase 3β (GSK3-β), directly phosphorylating and activating TSC2 
(Inoki et al. 2006).

Intracellular energy status is also a crucial factor in regulation of mTOR path-
way. When cellular energy status is low (i.e. lower ATP/ADP ratio), the activity of 
mTORC1 is kept in check through AMP-activated protein kinase (AMPK) pathway 
(Xu et al. 2012). During energy deprivation, AMPK phosphorylates TSC2 which 
acts as a GAP for Rheb, thus inhibiting the activation of mTORC1. AMPK also 
regulates mTORC1 activity independent of TSC1/TSC12 by directly phosphorylat-
ing raptor, the regulatory subunit of mTOR (Gwinn et al. 2008). Other stress condi-
tions such as mild hypoxia also inhibit mTOR pathway by activating AMPK 
(Schneider et al. 2008).

Hypoxia can also activate TSC1/TSC12 through transcriptional regulation of 
DNA damage response 1 (REDD1) by releasing TSC2 from its 
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growth-factor-induced association with 14-3-3 proteins (DeYoung et al. 2008). This 
response is evolved to restrain any energy consuming process when only oxygen but 
not nutrient is a limiting factor.

High intracellular concentration of amino acid, most specifically leucine and 
arginine, also activates mTORC1 and is required by several upstream signalling 
networks to activate mTORC1 (Goberdhan et al. 2016). It has been known for many 
years that amino acids activate mTOR pathway independent of TSC1/TSC12. In 
2008, it was discovered that a protein named Rag GTPase is required for amino 
acid-dependent activation for mTORC1. Four of these proteins (Rag A to Rag D) 
exist in a heterodimeric form (Rag A/Rag B bind with Rag C/Rag D). These het-
erodimers function in contrast to nucleotide loading state, i.e. if Rag A/Rag B binds 
with GTP, Rag C/Rag D will be bound to GDP. Amino acids promote the binding of 
Rag A/Rag B to GTP which in turn enables the heterodimer to interact with raptor. 
This results in movement of mTORC1 from a poorly distinguished cytoplasmic 
location to the lysosomal surface where the Rag GTPases dock on a multisubunit 
complex called Ragulator (Sancak et al. 2010). It has been found that this regulator 
is essential for amino acid-mediated activation of mTOR (Laplante and Sabatini 
2012).

10.3  mTORC2

mTORC2 comprises of six different proteins, four of which are common to both 
mTORC1 and mTORC2. This includes a catalytic subunit of mTOR, rictor, deptor 
and mLST-8, all of which are common in both complexes. Two proteins specific to 
mTORC2 are mammalian stress-activated protein kinase-interacting protein 
(mSIN1) and protein observed with Rictor-1 (Protor-1), both of which play a major 
role in the establishment of mTORC2. In comparison to mTORC1, the function of 
mTORC2 is still a mystery. However, some recent findings have shown that 
mTORC2 plays key roles in various biological processes, including cell survival, 
metabolism, proliferation and cytoskeleton organization (Oh and Jacinto 2011).

10.4  mTOR and Aging

mTOR promotes cellular growth by either promoting protein synthesis or by inhib-
iting autophagy. It has been reported that mTOR activity is required for senescence 
associated phenotypes. In human cells, it has been found that high levels of TOR 
activity are required for cellular senescence when the cell cycle is blocked 
(Demidenko and Blagosklonny 2008). Cells with arrested cell cycle obtain a large 
morphology on beta galactosidase staining. These cells lose their proliferative com-
petence when the arrest is retracted. Thus, rapamycin, inhibitors of PI3K pathway 
and serum starvation prevent cellular senescence by inhibiting mTOR. Thus, in con-
ditions where actual growth is not possible, activation of mTOR pathway leads to 
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cellular senescence (Blagosklonny 2012). These accumulated senescent cells that 
cannot be removed from the system by autophagy when mTOR is in active states 
lead to aging (Fig. 10.1).

10.4.1  Autophagy Activation

Activation of autophagy is an mTORC1-mediated cellular degradation process. 
Although the main function of autophagy is to make the cell free from debris and 
recycling amino acids during the period of starvation, evidence suggests that it has 
a major role in longevity (He et al. 2013). It has been found that autophagic flux 
declines with age; this leads to the accumulation of damaged proteins aggregates 
and organelles, which give rise to age-related pathologies (Glick et  al. 2010). 
Therefore, an effective strategy would be the activation of autophagy by inhibiting 
mTORC1 to restore cellular homeostasis. It has also been found that autophagy 
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Fig. 10.1 Schematic representation of mTOR signalling network: mTOR integrates signals for 
intra- and extracellular signalling molecules and amalgamate them in the central signalling core. 
Scarcity of amino acids acts as a powerful inhibitor of TORC1 activity. Growth factors like TGFβ, 
IGF and insulin modulate TORC1 activity through Akt. Wnt signalling has also been demonstrated 
to regulate TORC1 activity. Wnt-mediated inactivation of Gsk3 alleviates TSC2-driven inhibition 
of Rheb and results in TORC1 activation.TORC1 also responds to hypoxia. Low oxygen levels 
inhibit TORC1 activity by a TSC2-dependent mechanism (AMPK, 5′ adenosine monophosphate- 
activated protein kinase; transcription factors, TSC2/TSC1; kinase: IKKβ, Akt, Vps34, GSK3, 
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plays a crucial role in many age-related diseases including cancer, diabetes, cardio-
vascular disease and neurodegenerative diseases (Periyasamy-Thandavan et  al. 
2009). Evidence from yeast and invertebrates studies has suggested that mTORC1- 
mediated autophagy activation by either dietary restriction or rapamycin indeed 
extends lifespan (Hansen et al. 2008; Alvers et al. 2009).

10.4.2  Mitochondrial Biogenesis

mTORC1 downregulates mitochondrial oxygen consumption by activating HIF-1, 
which enhances glycolytic flux. In yeast, it has been found that inhibition of 
mTORC1 results in a metabolic shift towards greater mitochondrial respiration and 
results in increased chronological lifespan (Ruetenik and Barrientos 2015). It has 
been shown that yeast strains with reduced target of rapamycin (TOR) signalling 
have greater overall mitochondrial electron transport chain activity, which provides 
an adaptive signal during growth by increasing expression of mitochondrial manga-
nese superoxide dismutase (Pan et al. 2011).

10.4.3  Stem Cell

Decline in stem cell function is one of the major hallmarks of aging and the onset of 
age-related diseases. It has been confirmed in various studies that inhibition of 
mTORC1 preserves or may even revive the stem cells in various tissues. Rapamycin 
can restore normal self-renewal capacity of haematopoietic stem cells (HSCs) that 
have high oxidative stress and decreased functional capacity. In mice, inhibition of 
mTORC1 by rapamycin protects aged mice from influenza by rejuvenating HSCs 
(Chen et al. 2009). In addition to this, inhibiting mTOR can also enhance somatic 
cell reprogramming to promote production of induced pluripotent stem cells.

10.4.4  Inflammation

Aging has been marked by chronic, low-grade inflammation, and it has been found 
that dietary restriction extends healthspan and lifespan by ameliorating inflamma-
tory components. Hyperactivated mTOR has been linked to increased inflammation 
(Johnson et al. 2013).

10.4.5  Protein Synthesis

Among the various functions performed by mTOR, regulation of mRNA translation 
and protein synthesis is most crucial. It has been proposed that a significant reduc-
tion in overall protein synthesis could be beneficial during aging and maintains 
protein homeostasis. According to this view, hyperfunctional biosynthetic and 
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proliferative processes like protein synthesis result in many age-related pathologies 
that are essential during growth and development but deleterious during adulthood. 
Evidence shows that regulation of mRNA translation and protein synthesis may 
extend lifespan in yeast, worms, fruit flies and mice (Showkat et al. 2014).

10.5  Rapamycin: Inhibiting mTOR to Extend Lifespan

Rapamycin and derivatives of this compound have been used clinically as a pre-
scription drug to prevent organ rejection after kidney transplantation. Clinical stud-
ies have revealed that rapamycin can be used to treat age-related diseases such as 
type 2 diabetes, atherosclerosis, heart hypertrophy, osteoarthritis, various neurode-
generative diseases such as Alzheimer’s and Parkinson’s as well as cancer 
(Blagosklonny 2010).

In 2009, intervention testing programme of NIA first revealed the life-extending 
effects of rapamycin on both male and female mice (Harrison et al. 2009). In this 
study, the treatment was initiated at two different ages (270 days and 600 day). In 
both the groups, rapamycin extended the median and maximum lifespan; an effect 
more pronounced in females than in males. This gender difference effect is because 
of higher blood concentrations of the compound found in females at a given rapamy-
cin concentration in rat chow. However, these gender difference effects on lifespan 
have not been confirmed in other studies. In another ITP study, rat administration of 
rapamycin began at the age of 9 months. It was found that rapamycin increased 
mean lifespan in males and females by 10% and 18%, respectively, and maximum 
lifespan by 16% and 13% (Miller et al. 2014).

Other studies have also confirmed the beneficial effect of rapamycin on lifespan. 
It has been found to decrease mortality in aged mice (Lamming et al. 2013). It has 
also been found to increase lifespan of 129/SV inbred strain mice and also decrease 
the risk of tumour incidence (Anisimov et al. 2011). All these observations have 
made rapamycin a suitable candidate for an anti-aging drug. However, the exact 
mechanism through which these effects of rapamycin occur is yet to be understood 
completely. In rat model of Alzheimer’s disease, rapamycin has been found to pro-
vide protection against amyloid-β-induced oxidative stress (Singh et  al. 2016). 
Synergistically with metformin, rapamycin reverses age-dependent oxidative stress 
in rats (Singh et al. 2017a). It has been found to reverse the aging-induced impaired 
activities of membrane-bound ATPases and altered levels of redox biomarkers in 
erythrocyte membranes (Singh et al. 2017b).

10.6  Conclusion

The search for an anti-aging intervention is long and elusive. mTOR is a critical 
mediator of the cellular response, and it has been found to extend lifespan in yeast, 
invertebrates and mice. However, the complexity of this pathway acts as a stumbling 
block in understanding how this pathway influences healthspan and longevity. There 
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are several reports showing the beneficial effects of rapamycin on a diverse array of 
age-related diseases. However, a long-term study of rapamycin treatment in mice 
reported increased incidence of cataracts and testicular degeneration (Fischer et al. 
2015). In humans, rapamycin supplementation has been found to produce a number 
of side effects including hyperlipidaemia and hyperglycaemia, anaemia and stoma-
titis (Kaplan et al. 2014). As rapamycin is an immunomodulatory drug, inhibition of 
mTORC1 may produce a negative effect on immune system and wound healing.
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Abstract
Aging is a multifactorial biological phenomenon manifested by oxidative dam-
age of biomolecules and cell organelles and their continuous accumulation, 
resulting in progressive loss of physiological functionality and high risk of mor-
tality. Efforts to develop strategies for extending health span and lifespan are now 
in spotlight of geroscience. There are several studies suggesting the involvement 
of autophagy in aging. Autophagy is a conserved and protective intracellular 
lysosomal degradation process that ensures continuous removal and recycling of 
accumulated biomolecules and nonfunctional cell organelles to maintain cellular 
homeostasis and overall functionality of the cells. The age-dependent defective 
autophagy has also been suggested to further accelerate aging and increase the 
risk of other aging-related diseases. In addition, autophagy integrates several 
pro-survival pathway(s) as associated with AMP kinase (AMPK) and mamma-
lian target of rapamycin (mTOR) to regulate growth, division, motility and over-
all survival of the cells. The pharmacological modulators of autophagy have been 
found rewarding in case of aging, and thus it is promising to expect autophagy 
modulators to be the next-generation antiaging drugs. This chapter summarizes 
the existing advances, perspectives, and challenges in the area of antiaging 
through induction of autophagy.
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Aging is an intricate biological phenomenon which is generally manifested by pro-
gressive and persistent decline of physiological performance and increased proba-
bility of morbidity and mortality (Finkel and Holbrook 2000). Moreover, aging is 
also marked by the constant accumulation of oxidized biomolecules and oxidatively 
damaged cell organelles which increase the susceptibility toward several health 
risks such as cancer, type 2 diabetes, and neurodegenerative and cardiovascular dis-
eases (Niccoli and Partridge 2012; Korovila et al. 2017). Global efforts of geron-
tologists have made great strides to enhance our understanding of the aging biology, 
and several hallmarks of aging have been identified that play a causative role in the 
pathophysiology of several aging-associated diseases, as shown in Fig. 11.1 (López- 
Otín et al. 2013, 2016; Kennedy et al. 2014). Although various theories of aging 
have been proposed, the oxidative stress theory has been extensively explored 
(Harman 1956). According to Harman, the aging process is mainly attributed to 
excessive generation of free radicals and continuous accumulation of free radicals 
mediated oxidized biomolecules in the cells and tissues that lead to increased risk of 
morbidity and mortality (Harman 1956, 2003). Moreover, aging is also caused at 
genetic and epigenetic levels mainly influenced by environmental risk factors 
(Kirkwood 2005).

Oxidative stress is a situation of redox imbalance where free radicals devastate 
the antioxidant competencies (Sies 2015). ROS are constantly generated endoge-
nously through normal mitochondrial electron transfer reactions. Moreover, exog-
enous ROS results from sources such as environmental pollutants coming in 
contact by evading our ecosystem. Thus, the resulting ROS exerts harmful effects 
by initiating toxic biochemical reactions such as extensive lipid peroxidation and 
oxidation of nucleic acids and proteins causing accumulation of toxic protein 

Fig. 11.1 Different factors that contribute to the progression of aging- and age-related degenera-
tive diseases
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aggregates (Poli et al. 2004). The oxidized protein aggregates and damaged DNA 
further trigger either necrotic or apoptotic cell death which lead to impaired phys-
iological functionality and progressive aging (Halliwell 1994). Therefore, the 
misfolded protein aggregation is the major manifestation of aging as well as 
aging-related degenerative disorders (Taylor et al. 2002). In addition, free-radical-
mediated damaged mitochondrial DNA stimulates mitochondrial shutdown, caus-
ing cells to die and organisms to age (Shigenaga et  al. 1994). Thus, these 
time-dependent accumulating damages are collectively believed to be fundamen-
tal cause of aging process. Additionally, oxidative stress further induces the pro-
gression of several diseases associated with aging (Calabrese et al. 2009, 2010; 
Texel and Mattson 2011; Rodriguez et al. 2015).

In normal conditions, cells boost up antioxidant defense machinery and other 
protective systems such as autophagy against oxidative stress (Garg et  al. 2017; 
Singh et  al. 2017b). In view of the above, a variety of antioxidants have been 
ardently sought as possible dietary supplements or therapeutic interventions for the 
management of aging- and age-dependent degenerative changes (Harman 1981; 
Floyd and Hensley 2002; Fusco et  al. 2007). Recently, various experimental 
approaches are being developed as potential antiaging strategies. These antiaging 
approaches include reduction in food intake or caloric restriction, modulation of 
metabolic signaling pathways using natural and synthetic molecules, rejuvenation 
of stem cells, and elimination of oxidized biomolecules and damaged cell organ-
elles accumulating during the progression of age through modulation of autophagy 
process. In the present chapter, attempts have been made to critically review the 
roles and benefits of autophagy against aging- and age-associated diseases.

11.1  Autophagy and Aging

Autophagy is an evolutionary conserved cellular cleanup process that ensures opti-
mal cellular functionality by lysosome-mediated degradation/removal and continu-
ous recycling of protein aggregates and damaged cell organelles (Ohsumi 2014). 
Autophagy is a multistep cellular process which is demonstrated in Fig. 11.2. The 
term first used in the 1960s is now proved to be an important adaptive mechanism 
during nutrient- and oxygen-deprived conditions and contributes to growth, devel-
opment, and longevity of the organism. Alteration in the physiological process of 
autophagy has been shown in pathologies of several human diseases (Levine and 
Kroemer 2008; Jiang and Mizushima 2014). These connections imply that the ther-
apeutic interventions to modulate autophagy process may be a beneficial strategy 
for the management of such diseases (Rubinsztein et al. 2012). Autophagy has been 
considered as a wonderful adaptive cellular process and also suggested to manage 
the aging process of the cells (Yang and Klionsky 2010). Moreover, an age- 
dependent defective autophagy has been suggested to further contribute to oxidative 
damage and accumulation of biomolecules, acceleration of aging, and therefore 
increases the risk of aging-related diseases (Cuervo et al. 2005).
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Depending upon the mechanism of cargo transportation to lysosomal lumen, 
autophagy has been mainly categorized into microautophagy, chaperone-mediated 
autophagy, and macroautophagy (also known as autophagy) (Kobayashi 2015). In 
microautophagy, the lysosome directly engulfs cargo through a sequential process 
of invagination, protrusion, and separation (Mijaljica et  al. 2011). However, 
chaperone- mediated autophagy degrades soluble cytoplasmic proteins that contain 
a target motif of pentapeptide, KFERQ. Moreover, these cargo proteins along with 
cytosolic hsp70 and some other co-chaperone of Hsp-70 are targeted to the lyso-
some through interaction with LAMP2A membrane receptor (Periyasamy- 
Thandavan et al. 2009), and undergo rapid proteolysis by resident hydrolases (Kiffin 
2004). Chaperone-mediated autophagy (CMA) is normally triggered under the 
influence of oxidative stress and hypoxic conditions, while it also becomes defec-
tive with the progression of age (Kiffin 2004; Bejarano and Cuervo 2010). A 
decreased LAMP-2A receptor has also been associated with defective CMA during 
aging (Cuervo and Dice 2000). An age-dependent decreased level of LAMP-2A 
receptor results in compromised interaction and translocation of substrates into 
lysosome (Cuervo and Dice 2000; Bandyopadhyay and Cuervo 2008). The restora-
tion of CMA leads to improved cellular microenvironment and overall cellular func-
tions during aging (Zhang and Cuervo 2008).

Fig. 11.2 The diagrammatic representation showing the regulation of different sequential steps of 
autophagy process by different signaling pathways and a series of autophagy-related proteins. The 
steps involve the formation of autophagosome which eventually fuse to lysosome to form autopha-
golysosome, in which the autophagic cargo is enzymatically degraded and recycled to the cyto-
plasm. Abbreviations: mTOR mammalian target of rapamycin, PI3K 
phosphatidylinositol-4,5-bisphosphate 3-kinase, AKT protein kinase B, AMP adenosine mono-
phosphate, ATP adenosine triphosphate, VPS34 vacuolar protein sorting, LC3 light chain 3B 
microtubule-associated proteins LAMP lysosomal-associated membrane protein, Atg autophagy- 
related protein
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Macroautophagy, the most widely characterized autophagy process, is a sequen-
tial process initiated by the sequestering of cytoplasmic constituents to be degraded 
in a double-membrane-bound structure termed as autophagosome. These autopha-
gosomes are transported to the lysosome where they fuse with it to form structures 
called autophagolysosomes (Weidberg et al. 2011). Both the inner membrane and 
material within the autophagolysosomes are degraded and recycled by lysosomal 
hydrolases (Glick et al. 2010; Axe et al. 2008; Hailey et al. 2010). There is a con-
served family of Atg genes (AuTophaGy-related genes), and till now 32 Atg genes 
are reported in yeast and 14 Atg genes in mammals (Klionsky 2007). Phagophore 
formation starts with the interaction of Vps34 with a complex protein containing 
Atg6 (Beclin-1), Atg14, and Vps15. This along with other components such as 
Atg5, Atg12, Atg16, and FIP200 interacts with Atg1 (ULK1) and Atg13 to initiate 
early autophagy (Ravikumar et al. 2010).

Plethora of literature suggests that the defective autophagy contributes to the 
onset and progression of several aging-associated diseases (He et al. 2013; Choi 
et al. 2012; Lapierre et al. 2013). In addition, autophagy-related genes are found to 
be important for increased longevity C. elegans (Meléndez et al. 2003). Moreover, 
the inhibition of mTOR was also found to improve the longevity of C. elegans 
(Vellai et al. 2003). In line, the downregulated expression of Atg genes was found in 
aged human brain in comparison to young counterpart (Lipinski et  al. 2010). 
Furthermore, the upregulated expression of autophagy markers such as LC3B, 
Atg5, and Atg12 has been shown to maintain the mitochondrial health and energetic 
homeostasis and increase lifespan (Mai et al. 2012). A group of NAD+-dependent 
deacetylases, also known as sirtuins, are promising molecules that regulate autoph-
agy process. There are seven mammalian sirtuins which play important role in 
deacetylation of proteins usually involved in autophagy machinery (Brenmoehl and 
Hoeflich 2013; Fang et  al. 2016). Thus, targeting sirtuins is also an effective 
approach for improving longevity and healthy aging.

11.2  Caloric Restriction-Mediated Autophagy 
as an Antiaging Strategy

Caloric restriction (CR), one among the best antiaging strategies, improves lifespan 
and slows down the progression of aging-associated diseases (Anderson and 
Weindruch 2012). Although the mechanisms of CR is not clearly understood, stud-
ies involving rodents, primates, and humans suggest that CR controls multiple sig-
naling pathways to regulate autophagy process that may ultimately extend lifespan 
and health span (López-Lluch and Navas 2016). CR improves mitochondrial metab-
olism by increasing mitochondrial content and function. Moreover, CR also affects 
mitochondria to generate less ROS and optimum ATP; thus CR reduces oxidative 
damage and progression of aging (Martin-Montalvo and de Cabo 2013).

Aging is mainly associated with dysfunctional autophagy and proteostasis pro-
cesses which are mainly responsible for continuous removal and recycling of oxidized 
macromolecules especially aggregated proteins (He et  al. 2013; Choi et  al. 2012; 
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Kaushik and Cuervo 2015). However, CR attenuates aging-induced dysfunctional 
autophagy and proteostasis processes in several species (Morimoto and Cuervo 2014; 
López-Lluch and Navas 2016). The antiaging effect of CR is regulated by several 
signaling pathways such as AMPK, mTOR, andIGF-1 etc., which are cardinal integra-
tors of the autophagy process (Testa et al. 2014), as shown in Fig. 11.3. CR also stimu-
lates autophagy process in aging rat heart (Dutta et al. 2014) and liver (Del Roso et al. 
2003). Although CR is an effective antiaging strategy, it might be challenging due to 
its undefined regimen. To overcome the issue, caloric restriction mimetics (CRMs) 
have emerged as effective molecules for healthy aging. CRMs are either natural or 
synthetic compounds which mimic the benefits of CR by targeting the similar cellular 
and molecular events (Ingram et al. 2004; Ingram and Roth 2015).

11.3  Caloric Restriction Mimetics-Mediated Autophagy 
as Antiaging Strategy

CRMs stimulate autophagy process and deacetylate the proteins. The deacetylation 
is achieved by the compounds that (1) diminish acetyl coenzyme A, (2) inhibit ace-
tyl transferases, and (3) stimulate deacetylases activities (Madeo et al. 2014). CRMs 

Fig. 11.3 Schematic representation showing different pro-survival signaling pathways regulated 
by caloric restriction. Abbreviations: PI3K phosphatidylinositol-4,5-bisphosphate 3-kinase, AKT 
protein kinase B, AMPK adenosine monophosphate-activated protein kinase, Sirt sirtuin, mTOR 
mammalian target of rapamycin
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increase the health span and longevity and reduce the risk diseases associated with 
aging via activation of autophagy (Pearson et al. 2008; Niu et al. 2013; Kibe et al. 
2014). Additionally, several molecules have been identified as potential CRMs that 
slow down the aging process through activation of autophagy by mTOR inhibitors 
such as rapamycin (Singh et al. 2017a), glycolytic inhibitors such as 2-deoxy-D- 
glucose (Handschin 2016), AMPK activators such as metformin, and antioxidants 
and polyphenols such as resveratrol and fisetin (Mouchiroud et al. 2010; Singh et al. 
2017b).

Recent evidence produced by our research group demonstrates that the activation 
of autophagy slows down aging process and increases longevity (Garg et al. 2017; 
Singh et al. 2017a, b). We have shown that CRMs such as rapamycin, fisetin, and 
metformin maintain redox balance and protect rat brain against aging-induced alter-
ations via activation of autophagy. Resveratrol and rapamycin have been shown to 
delay aging and pathogenesis of associated diseases and increase lifespan in yeast, 
invertebrate species, and rodents (Kaeberlein 2010; Marchal et  al. 2013; 
Blagosklonny 2013; Tresguerres et al. 2014; Ehninger et al. 2014). Moreover, the 
supplementation of polyamine spermidine and resveratrol has also been reported to 
increase the longevity of yeast, nematodes, and fruit flies through activation of 
autophagy (Morselli et al. 2009; Minois 2014). The antiaging effects of these CRMs 
become ineffective when autophagy process is inactivated, suggesting that autoph-
agy is an essential process for CRMs-mediated antiaging effects (Mariño et  al. 
2014).

11.4  Mechanistic Cross-talk Between Autophagy 
and Antiaging Effects

Autophagy integrates several pro-survival signaling pathway(s) including AMPK 
and mTOR that maintain cellular homeostasis and overall functionality of the cells 
(Kim et al. 2011; Sarkar 2013). A number of longevity-related genes fall into three 
nutrient sensing pathways, viz., mTOR, insulin/IGF-1, and sirtuin pathways, which 
mainly sense cellular glucose level, amino acid, and NAD+/NADH (Mazucanti et al. 
2015).

Under the influence of nutrient starvation, growth factor deprivation, and stress 
signals, autophagy machinery is activated in the cells through inhibition of mTOR, 
a cardinal integrator of multiple signaling pathways that mainly regulates the 
autophagy process. Out of the two complexes of mTOR (mTORC1 and mTORC2), 
mTORC1 mainly modulates autophagy process (Hara et al. 2002; Kim et al. 2003; 
Jacinto et al. 2004; Vander Haar et al. 2007). Dysregulated mTORC1 activity has 
been implicated in several diseases associated with defective autophagy during 
aging; therefore mTOR inhibitors may be a promising strategy for managing these 
diseases (Santini and Klann 2011; Shafei et al. 2017).

Under glucose deprivation, energy sensor AMPK is activated which further 
induces alteration in metabolism of the cells by increasing NAD+ level and sirtuin-1 
activity to maintain energy homeostasis (Kim et al. 2011). AMPK directly regulates 
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mTOR and phosphorylates ULK1 (Ser 317 and Ser 777) to activate autophagy pro-
cess (Kim et al. 2011). AMPK activates sirtuins that deacetylate and regulate the 
transcription of FoxO to prolong longevity (Burkewitz et al. 2014). Sirt1 and Sirt2 
have been demonstrated to regulate autophagy process. Sirt1 directly regulates 
autophagy via deacetylation of Atg proteins. Upon translocation into nucleus, Sirt1 
activates autophagy through induction of FoxO transcription factors (Ng and Tang 
2013). Autophagy is also controlled by insulin/IGF-1 that maintains energy balance, 
growth, development, and differentiation (Renna et al. 2013).

11.5  Autophagy in Age-Related Diseases

Adoptive autophagy protects organisms against several aging-associated diseases 
such as neurodegenerative (Alzheimer’s disease and Parkinson’s disease), cardio-
vascular diseases, obesity, diabetes, and cancer. Neurodegenerative diseases are 
mainly caused by age-dependent accumulation of misfolded protein aggregates: 
accumulation of amyloid-β (Aβ) and tau proteins in case of Alzheimer’s disease 
(AD) and α-synuclein in case of Parkinson’s disease (PD). Moreover, neurodegen-
erative diseases are also caused by age-dependent autophagy dysfunction (Querfurth 
and LaFerla 2010; Nixon and Yang 2011). Thus, targeting autophagy may be a 
newer therapeutic strategy against neurodegenerative diseases. A number of autoph-
agy modulators have been shown to improve Alzheimer’s disease condition (Li 
et  al. 2017). Rapamycin-induced autophagy has been shown to reduce Aβ and 
improve cognitive abilities (Spilman et al. 2010; Cai and Yan 2013). Recently, we 
have also shown that rapamycin-mediated induction of autophagy activates pro- 
survival PI3K-Akt-mTOR-CREB signaling pathway(s) that provide neuroprotec-
tion during age-related AD pathogenesis (Singh et  al. 2017a). Therefore, the 
inhibition of mTOR and activation of AMPK restore autophagy and promote lyso-
somal degradation of Aβ (Grotemeier et  al. 2010; Eisenberg-Lerner and Kimchi 
2012). Similarly, evidence suggests that the activation of autophagy removes 
α-synuclein and maintains mitochondrial homeostasis in PD (Wang et al. 2016).

Under normal physiological condition, autophagy machinery acts at the basal 
level in myocardium, and age-dependent defective autophagy leads to cardiac dys-
function (Mei et al. 2015). In addition, autophagy is promptly increased under the 
influence of stressful conditions and plays a protective role; however excessive 
autophagy may also induce cell death (Rothermel and Hill 2008). Thus, autophagy 
is considered as double-edged sword which can either prevent or enhance the patho-
genesis of diseases, depending on the situation and amplitude of induction 
(Rothermel and Hill 2007). The activation of autophagy has been suggested to 
reduce cardiac pathologies and increase lifespan (Hoshino et al. 2013; Pyo et al. 
2013). In line, activation of mTOR and suppression of Sirt1 have been reported to 
downregulate autophagy in the heart (Hariharan et al. 2010; Sciarretta et al. 2012). 
Additionally, the pharmacological agents such as trehalose, propranolol, and vera-
pamil were found to activate autophagy in cardiomyocytes (Fleming et al. 2011), 
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which protects heart tissue by reducing the death of cardiomyocytes in ischemic 
model (Sciarretta et al. 2012).

The major causes of obesity and type 2 diabetes are oxidative stress, mitochon-
drial dysfunction, and abnormal inflammatory signaling pathways. The pro- 
inflammatory cytokines regulate autophagy machinery in obese and type 2 diabetes 
patients (Harris 2011). In addition, the mutation in autophagy gene Atg7 has been 
implicated in impairment of glucose tolerance and circulating insulin concentration 
and reduced pancreatic insulin content, suggesting that autophagy is crucial for effi-
cient functioning of pancreatic beta cells and insulin target tissues (Marsh et  al. 
2007; Ebato et  al. 2008; Jung et  al. 2008; Barlow and Thomas 2015). Increased 
autophagy also leads to apoptosis of subcutaneous adipose tissues in patients with 
obesity and visceral adipose tissues in patients with type 2 diabetes (Kosacka et al. 
2015). The oxidative stress in pancreatic beta cells is regulated by autophagy 
(Kaniuk et al. 2007), and the defective autophagy in pancreatic beta cells favors the 
progression of disease from obesity to diabetes (Quan et al. 2012).

11.6  Conclusion

In the present chapter, we provided substantial review on the involvement of autoph-
agy process in the biology of aging- and age-related diseases. Defective autophagy 
contributes to accumulation of oxidized macromolecules and oxidatively damaged 
cell organelles that eventually lead to aging and onset of age-related degenerative 
diseases. Therefore, the therapeutic consideration for autophagic modulators would 
be essential for developing and designing better antiaging strategies.
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Abstract
Advances in computational methodologies have ushered in innovations in visu-
alization, calculations, and prediction of factors relating to aging processes and 
concomitant diseases with novel strategies like comparative genomics, protein 
interactive networks, and systems biology. Molecular level investigations of anti-
aging agents like phytochemicals such as curcumin, resveratrol, and quercetin 
have been carried out by electronic structure calculations by density functional 
theory and molecular docking studies to cytochrome P450 3A4 protein. It is 
found that both hydrogen bonding and hydrophobic interactions play a crucial 
role in the interaction between these phytochemicals and CY3A4 protein, which 
may provide important insights into modulations of drug metabolism in aging 
populations.
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12.1  Introduction

Aging is dependent on a web of combined and interdependent interactions between 
various components of the human system as well as the continuous equilibrium 
between damage and repair (Suresh et al. 2013). Even revolution of healthcare sec-
tor in recent decades has not managed to relieve the elderly of age-related risk fac-
tors for the majority of complex diseases, including metabolic and neurodegenerative 
disorders such as loss of vigor (Christensen et al. 2009; Comfort 1964). As there is 
neither single mechanism to control aging nor any functional failure of any indi-
vidual tissue, organ, or system, understanding aging processes can be tricky, but in 
recent decades, this has been made possible with the rise in scale and accuracy of 
computational methods.

An example of this can be illustrated through the recent hierarchical multi- 
method simulation framework adopted to investigate mitochondrial dysfunction 
prevalent in aging processes, which included monitoring mitochondrial cell popula-
tions with several added aging parameters from literature to observe mitochondrial 
stress responses, damage repair, states of cellular senescence, and mitochondrial 
count (Hoffman 2017).

Genomic instability, telomere attrition, epigenetic alterations, perturbation of 
cellular homeostasis, and stem cell exhaustion are some of the various intercon-
nected indications of aging which are common among organisms (Lopez-Otin et al. 
2013; Kirkwood 2005), and these have been the target of several computational 
investigations. Sirtuins, which are related to antiaging pathways, were studied by 
molecular docking methods, along with resveratrol, which were carried out with 
HNF-1a structural motif related to type II diabetes mellitus (Kaladhar 2011).

Longevity in different species may be enhanced by replicating energy depriva-
tion conditions through reduced nutrient intake dietary restriction (DR) or genetic/
pharmacological interventions (Fontana et al. 2010). Various age-related metabolic, 
autoimmune, neurodegenerative, cardiovascular diseases may be protected against 
with the help of DR. By employing the mummichog and MetaboAnalyst program, 
system biology approaches have been directed toward exploring metabolomic 
explanations of how DR can slow aging rates in Drosophila species (Laye et al. 
2015). The authors have demonstrated how the methionine metabolism pathway 
gives rise to intermediates like homocysteine that can lead to aging factors like 
endothelial cell death and increase in risk of Alzheimer’s disease. In recent years, 
the introduction of autophagy has emerged as a common attribute of several antiag-
ing interventions (Gelino and Hansen 2012) including both DR and reduced target 
of rapamycin signaling (Alvers et  al. 2009). Intermolecular interactions with 
enzyme active sites of inducers of autophagy like anacardic acids have been explored 
through density functional theory in earlier computational studies (Marino et  al. 
2014).

We have highlighted examples of useful in silico methods including algorithms 
for modeling the complex genetic network of human aging and data mining meth-
ods, such as comparative genomics. We have also illustrated how dietary 
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phytochemicals, which are effective antiaging agents, can be evaluated computa-
tionally and may be used further for investigations on binding to specific enzymes 
important for drug metabolism.

12.2  Computational Methods for Understanding 
and Reversing Aging Processes

12.2.1  Modeling Aging Networks

High-performance genomic and proteomic discoveries produced an abundance of 
openly available data on aging, the retrieval and analysis of which is essential for 
better comprehension of causes and effects of aging. Databases like GenAge pro-
vide information regarding the interactions of antiaging genes in several organisms 
including humans along with environmental factors. Powerful computational tools 
can analyze those big data and generate patterns in order to be aware of the genetic 
network involved in aging processes (Boyd and Crawford 2012) which is evident in 
case of microarray incorporated databases and analysis platforms like Gene Aging 
Nexus and AGEMAP (Cevenini et al. 2010).

12.2.2  Protein-Protein Interaction Networks in Aging

Protein-protein interaction networks (interactomes) involve proteins as elements 
which are linked together through physical interactions, and the strength of these 
interactions is related to the weights of a protein-protein interaction link. However, 
these links are directionless owing to this probabilistic nature of the network con-
cept. The protein-protein interaction (PPI) networks of aging-associated genes are 
sub-networks of the interactomes which are composed of links between aging- 
related genes, which is illustrated in the case of humans in (Fig. 12.1). Schematic 
diagram of the genetic network study of human aging is depicted in (Fig. 12.2). 
Datasets like HIPPIE (Human Integrated Protein-Protein Interaction Reference) 
have evolved for network investigations along with computational topological study 
of such networks in case of neurodegenerative diseases (Goñi et al. 2008; Schaefer 
et al. 2012).

12.2.3  Comparative Genomics of Aging

Data mining possibilities for comprehending the digital genetic information rele-
vant to aging, which was presented by the human genome sequencing project, form 
the backbone of comparative genomics which aid in collecting data relating to pro-
tein interactions and finding and function allocation to new genes as well as unknown 
genes, respectively (Brazhnik et al. 2002), along with characterization of the gene 
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function (Qin et al. 2010). Comparison of several different genomes in organisms is 
important due to genomic links to common ancestors correlated with the process of 
evolution. Algorithms like ClustalW can help in study of domains related to DNA 
repair and their evolution as in the case of DNA repair proteins of Escherichia coli 
and Saccharomyces cerevisiae by several alignments of protein families compared 
with available genomic sequences. This has also been facilitated with the help of 
computational tools like the “VISTA” suite which provides visualization of entire 
genomic sequences and alignment options (using “AVID” alignment tool) to  new/
user-defined genomic sequences (Frazer et al. 2004). In the long run, we may be 
capable of evaluating and finding connections in protein families belonging to 
mammals with contrasting aging rates. The application of comparative genomic 
methodologies in mammals is limited to requirement for several fully sequenced 
genomes, which may be fulfilled soon.

Fig. 12.1 The human protein-protein interaction network of aging-associated genes. 306 aging- 
associated genes were assembled using the GenAge Human Database
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12.2.4  Transcriptional Regulation of Aging

Transcriptional regulation, though a complex process, is also digital in nature as it 
can be found largely in the form of cis-regulatory genetic sequences (noncoding) 
which are specifically targeted by transcription factors (TFs) that control gene 
action along with the binding proteins. Bioinformatics tools include phylogenetic 
footprinting along with several systems biology approaches which have been 
employed to investigate transcriptional profiling in muscle aging, Alzheimer’s, as 
well as polycystic kidney disease (Song et al. 2009; De Magalhães and Toussaint 
2004; Miller et al. 2008; Zahn et al. 2006).

12.2.5  Computational Epigenetics

Epigenetics encompass both transmissible changes in gene activity and expression 
and also durable changes in the cell transcriptional potential that may or may not be 
passed on. Any dysfunctions in epigenetic regulation due to physiological, patho-
logical, and environmental factors can hasten aging processes (Vincenzo et al. 2009; 
Fraga and Esteller 2007; Benayoun et al. 2015). Computational epigenetics have 
evolved as predictive tools of epigenetic variations as well as for selection of bio-
markers for related diseases like cancer (Bock and Lengauer 2008). Such statistical 
analysis is aided by computational software like EpiGRAPH, Galaxy, and R/
Bioconductor which facilitate DNA methylation mapping along with genome pro-
cessing and biomarkers candidate options through microarray development (Bock 
2009).

Fig. 12.2 Schematic diagram of the genetic network study of human aging (De Magalhães and 
Toussaint 2004)
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12.3  Computational Evaluation of Phytochemicals Related 
to Antiaging

12.3.1  Phytochemicals and Antiaging

Having established the multiple aspects related to aging, the spotlight now turns to 
certain naturally occurring compounds which can regulate aging pathways and 
combat age-related diseases and are often a part of daily diet. Majority of phyto-
chemicals, which are mostly secondary metabolite plant products, are known to 
regulate signaling pathways, cellular metabolism, enzyme activity, and stress resis-
tance as well as possess antioxidant and anti-inflammatory action (Pandey and 
Rizvi, 2009). Green tea contains polyphenolic chemoprotective agents known as 
catechins which possess antioxidant properties that can delay age-related decay. 
Catechins not only prevent cancer but also defend against DNA oxidative damage, 
cerebral atrophy apart from being neuroprotective. The polyphenolic compound 
curcumin (found in turmeric) has been used extensively in herbal medicine due to 
its proposed oxidant-radical scavenging, anti-inflammatory, and anticancer effects.

Quercetin is a polyphenolic flavonoid, which not only possesses free radical 
scavenging, antithrombotic, anticancer, and antidiabetic activity but also protects 
against apoptotic neuronal cell death (Pandey and Rizvi 2009). Human CYP1A2 is 
directly engaged in flavonoid metabolism, and this is responsible for regulation of 
creation of metabolites with diverse biochemical properties relative to the parent 
compound, and expression may differ from individual to individual. Resveratrol, a 
polyphenolic compound, has several antiaging properties like anticarcinogenic and 
anti-inflammatory activity along with boosting expression of antiaging Klotho 
genes (Hsu et al. 2014). Quantum chemical calculations show that elongation of 
conjugated chain in resveratrol, particularly in s-cis conformations, may enhance its 
antioxidant and radical scavenging ability (Lu et al. 2013).

12.3.2  Molecular Properties of Phytochemicals

Molecular structure and properties play a crucial role in biochemistry. Gathering of 
knowledge regarding the arrangement of atoms and molecules is essential in order to 
be able to study chemical properties and process. Nowadays, computational investi-
gations act as emerging tools for studying a number of molecular parameters 
(Pattanayak and Chowdhuri 2013a, b, 2014; Chowdhuri and Pattanayak 2013; 
Chand. et al. 2017). In this chapter, density functional theory calculations were done 
by using the Gaussian 09, Revision D.01 software package (Frisch et al. 2013) with 
GaussView as the graphical user interface. The optimized structure was obtained 
using the HF (Hartree-Fock) theory method. The choice of basis sets for these types 
of calculations may be chosen to be at the level of either 3-21G or 6-31G(d,p). The 
polarization ensures adequate description of lone pair electrons. One of the objec-
tives of this work is to investigate the intrinsic electronic properties of phytochemical 
molecules. Recently, a correlation of electronic properties with antioxidant action of 
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other phytochemical compounds, which protect DNA against damage from radical 
oxygen species (ROS), was drawn from DFT calculations (Zerrouki and Farad 2018).

We have calculated the energy of the highest occupied molecular orbital (EHOMO), 
energy of the lowest unoccupied molecular orbital (ELUMO), energy gap, Mulliken 
charges on the different atoms, dipole moment (μ), ionization energy (I), electron affin-
ity, absolute electronegativity (χ), absolute hardness (η), and absolute softness (σ).

12.3.3  Mulliken Charges, HOMO-LUMO, and Chemical Reactivity 
Descriptors Analysis of Curcumin and Resveratrol 
Phytochemicals

The Mulliken atomic charges of curcumin and resveratrol were calculated by HF 
level of theory (Fig. 12.3). The most important orbitals in the molecule are the fron-
tier molecular orbitals, called the highest occupied molecular orbital (HOMO) and 
lowest unoccupied molecular orbital (LUMO). The HOMO-LUMO of curcumin 
and resveratrol is shown in Fig. 12.4. Both the ionization potential and the electro-
negativity are playing an important role for studying the chemical reactivity behav-
ior of atoms and molecules. According to the theorem of Koopmans (Koopmans 
1933), all the terms like ionization potential (I), electron affinity (A), the electro-
negativity (χ), global hardness (η), and softness (S) are often expressed in the energy 
terms of HOMO and LUMO. Ionization potential (I) is related to the negative value 
of EHOMO. On the other hand, the electron affinity (A) is related to the negative value 
of ELUMO. The HOMO energies of curcumin and resveratrol are found to be −7.82 eV 
and −7.5  eV, respectively. The LUMO energies of curcumin and resveratrol are 
found to be 1.3 eV and 2.53 eV, respectively. The total energy (au) of curcumin and 
resveratrol was found to be −1249.0184 and −761.7424859, respectively. The 
chemical softness(S) was estimated to be 0.219 and 0.199, respectively, for cur-
cumin and resveratrol phytochemicals.

Fig. 12.3 Mulliken charges of curcumin (left panel, black color) and resveratrol (right panel, blue 
color) studied phytochemicals by HF level of theory
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12.3.4  Molecular Electrostatic Potentials (MEPs) of Curcumin 
and Resveratrol

Molecular electrostatic potential (MEP) simultaneously displays molecular shape, 
size, and electrostatic potential in terms of color grading. MEP maps are helpful 
tools in the analysis of the correlation amid molecular structures with its physio-
chemical property relationship, including biomolecules and drugs (Karabacak et al. 
2012). MEP map generated at the optimized geometry of the title molecules using 
GaussView 5.0 program is shown in Fig.  12.5. It can be seen that the negative 
regions are mainly over the oxygen atoms. Negative (red color) and positive (blue) 
regions of electrostatic potential are associated with electrophilic and nucleophilic 
reactivity. These active sites are found to be clear evidence of biological activity in 
the title compound.

Fig. 12.4 The frontiers energies of HOMO-LUMO of curcumin (left panel) and resveratrol (right 
panel) studied phytochemicals

Fig. 12.5 The molecular electrostatic potentials map of curcumin (left) and resveratrol (right). 
Red color atom represents the oxygen; gray color atom represents carbon atoms, whereas small 
white color atoms represent the hydrogen atom. Red color surface represented the regions of the 
most negative electrostatic potential; blue color surface represents the regions of the most positive 
electrostatic potential, and green color surface presents the region of zero potential
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12.3.5  Polarizability and First Hyperpolarizability Properties

The static dipole moment, mean polarizability, and first hyperpolarizability proper-
ties, which arise of electromagnetic field by different interactions, have been used in 
various fields. The total dipole moment μtot of the studied molecules can be achieved 
by Taylor expansion. The detailed calculation of molecular dipole moment (μ), the 
linear polarizability (α), and the first-order hyperpolarizability has been discussed 
previously (Tanak and Toy 2013). On the basis of the finite-field approach, using HF 
basis sets, the first hyperpolarizability (β), dipole moment (μ), and polarizability (α) 
for resveratrol are calculated and given in Table 12.1.

12.4  Interaction of Cytochrome P450 3A4 Protein 
with Phytochemicals Against Aging Disorders

12.4.1  Aging Effects on Cytochrome P450 3A4 Protein

CYP3A4 gene is encoded for the protein cytochrome P450 3A4 with sequence 
length of 503 amino acid residues. This abundantly expressed enzyme is involved in 
a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent electron 
transport pathway. Cytochrome P450 3A4 catalyzes a number of metabolic pro-
cesses including aliphatic oxidation and aromatic hydroxylation and plays an 
important role in drug metabolism. It has been found that aging processes particu-
larly in patients with liver ailments can cause selective decline in content of CYP3A4 
protein from hepatic cells (George et al. 1995; Kinirons and O’Mahony 2004) and 
may affect functionality of the protein in drug metabolism of erythromycin and 
cyclosporine among others. Aging also affects expressions of the steroid and xeno-
biotic receptor (SXR) which targets the CYP450 genes (Miki et al. 2005).

Table 12.1 The dipole moment in different direction (μ), polarizability (Δα), and the different 
components of hyperpolarizability (β) of resveratrol

Dipole 
moment in 
different 
direction Value (D) Polarizability Value (a.u.)

First-order 
hyperpolarizability Value (a.u.)

μx 0.6278 αxx 199.6446215 βxxx −63.884163

μy 0.2162 αxy −59.5944327 βxxy −303.2532889

μz −1.0578 αyy 201.6239407 βxyy 454.3266286

μ 1.2489 αxz −2.8332854 βyyy −260.9120348

αyz −0.8779133 βxxz −11.140439

αzz 67.8875336 βxyz 6.7196338

βyyz 7.1483656

βxzz −28.7739009

βyzz 28.952763

βzzz −2.0943099
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12.4.2  Protein-Protein Interaction Network of CYP3A4

Protein-protein interacting network patterns indicate that the CYP3A4 was interact-
ing with resulting over the rest ten genes, which interacts with all the proteins pres-
ent in the network. By combining all the patterns with aging disorder associated 
with protein-protein interaction, all the proteins are found responsible for aging 
disorders, in which all are proved by different sources. The interaction network of 
CYP3A4 with others is shown in Fig. 12.6. The interaction (in terms of probability 
score) between CYP3A4 and other proteins is analyzed by STRING database which 
is given in Table 12.2.

Fig. 12.6 Interaction of CYP3A4 protein (present in the center) with other ten relevant proteins 
by STRING software

Table 12.2 Protein-protein 
interaction with CYP3A4 
analyzed using STRING 
database

Node1 Node2 Score
CYP3A4 UGT2B7 0.36
CYP3A4 UGT1A1 0.36
CYP3A4 UGT1A6 0.36
CYP3A4 CYP2C9 0.36
FMO3 CYP3A4 0.181
CYP3A4 PPIG 0.042
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12.4.3  Interaction of Protein CYP 3A4 with Different 
Phytochemicals

Pharmacokinetic interactions between phytochemicals and drugs may proceed 
through induction/inhibition of CYP enzymes, and these can have radical effects on 
efficiency of treatment by drugs or enhanced toxicity caused by increased drug con-
centration in body fluids (Dresser et al. 2000).

Curcumin can pose as enzyme substrate by competitively inhibiting human 
CYP3A4, which bio-modifies most drugs. In order to explore interactions of various 
curcumin analogues (CA) with human cytochrome P450 2 C9 (CYP2C9 or 2 C9), 
molecular docking and molecular dynamics (MD) simulation studies have been pre-
viously utilized with focus on binding site conformation. Hydrogen-bonding net-
works, whether direct or water-bridged between CAs and residues, boost up 
CAs-2C9 interactions in the binding sites of A0/2 C9 and C0/2 C9, but specifically, 
hydrophobic interactions predominate in causing binding interactions in the B12 
complex (Shi et al. 2012).

Green tea extracts (GTE) and more specifically catechins like (−) epigallocatechin- 
3- gallate (EGCG) have been also shown to reduce intestinal CYP3A activity, and 
the hydrogen-bonding potential of catechins may enable them to bind directly to 
CYP enzymes (Misaka et al. 2013).

Resveratrol irreversibly inhibits cytochrome P450 and suppresses rifampicin- 
induced expression of CYP450, possibly through modulation of pregnane X recep-
tor (Deng et al. 2014). Muntafiah et al. investigated the antiaging effect of pumpkin 
seed extract (PSE) on NIH 3T3 fibroblast normal cell induced by doxorubicin. 
Based on their in vitro test, PSE was not cytotoxic to NIH 3T3, and it was also found 
that tocopherol (−107,409) has a higher interaction to CYP3A4 compared to doxo-
rubicin (−70, 52). Both of these compounds have a similar binding site in Leu 364, 
Phe 435, Pro 434, Cys 442, Ile 369, Thr 309, and Ala 305. Tocopherol, which pro-
tects against reactive oxygen species responsible for aging, has been computation-
ally analyzed with relation to its stereochemistry and thermodynamic stability in 
addition to evaluation of its optimized enthalpy (Cho and Richard 2017).

12.5  Interaction Between Cytochrome P450 3A4-Protein 
and Phytochemicals by Molecular Docking

In the field of molecular docking, docking is the method which refers to the compu-
tational simulation of a candidate ligand binding to a receptor and is frequently used 
to predict the preferred binding orientation of small molecule candidate to their 
protein targets in order to in turn predict the affinity and activity of the small mole-
cule (Bissoyi et al. 2017, 2018). The focus of molecular docking is to computation-
ally simulate the molecular recognition process along with optimization of protein 
and ligand conformation aiming at overall minimization of free energy of the sys-
tem. Scoring functions have also been developed to predict the strength of other 
types of intermolecular interactions, for example, between two proteins or between 
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protein and drug or phytochemical molecules. These configurations are evaluated 
using scoring functions to distinguish the experimental binding modes from all 
other modes explored through the searching algorithm. Recently, in silico studies 
involving molecular docking and simulations were adopted to investigate metabolic 
pathways by binding of several CYP enzymes including CYP3A4 to pro- 
carcinogenic agents (Khan et al. 2017). For prediction of interaction of receptor and 
ligand, various tools have been used, but in this chapter, AutoDock Vina was used to 
find out the binding affinity and interacting active side residues of protein cyto-
chrome P450 3A4 with phytochemical compounds. After docking job was com-
pleted, the visualization and image preparation was performed by using Discovery 
Studio Visualizer (Visualizer 2005). The intermolecular interaction study of the 
cytochrome P450 protein with different phytochemicals which shows the inhibitory 
effect against aging disorders was carried out, and these can be classified by the 
strength of their geometric constraints. The overall representation of ribbon struc-
ture of human cytochrome P450 3A4 (PDB ID 5VVC) is shown in Fig. 12.7. The 
docking analysis of phytochemicals with protein cytochrome P450 3A4 is given in 
Table 12.3. The binding energies of catechin, resveratrol, curcumin, and quercetin 
are found to be −9.8, −10.1, −9.9, and −10.4 kcal/mol, respectively. All the studied 
phytochemicals are shown to have hydrogen bond interaction with protein cyto-
chrome P450 3A4 except catechin. The result shows that the catechin interacts with 
ARG106 and GLU374 residues that are involved in electrostatic bonding, and bond 
lengths vary from 4.43066 to 3.56382 Å, whereas PHE108, PHE215, and ARG106 
residues are involved in hydrophobic bond, and hydrophobic bond lengths vary 
from 5.47019 to 4.44395 Å. The interaction between catechin and titled protein is 
shown in Fig. 12.8.

Fig. 12.7 Overall 
representation of ribbon 
structure of human 
cytochrome P450 3A4 
(PDB ID 5VVC) having 
resolution 1.74 Å. The 
figure was generated by 
using visualization 
software of Discovery 
Studio suits version 4.5
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The result shows that resveratrol interacts with ARG106 residue, which is 
involved in two types of hydrogen bonding with two different atoms of the resvera-
trol, and bond lengths are 3.18199 and 3.10361 Å, whereas PHE215, PHE108, and 
ARG105 residues are involved in hydrophobic bond, and bond lengths vary from 
5.06186 to 4.28371 Å. The electrostatic bond involving ARG106 shows bond length 
of 4.35842 Å. The interaction between resveratrol and titled protein is shown in 
Fig.  12.9. The results show curcumin interaction with ARG106, ALA370, and 
GLU374 residues that are involved in hydrogen bonding, and bond lengths vary 
from 3.77756 to 1.80965 Å. However, PHE215 and ARG372 residues are involved 
in hydrophobic bond, and bond lengths are 4.53403 and 4.77703 Å. The interaction 
between curcumin and titled protein is shown in Fig. 12.10.

The result illustrates quercetin interaction with SER119 residue that is involved 
in hydrogen bonding, and bond length is 2.43116 Å. It is to be noted that PHE215, 
PHE108, and ARG105 residues are involved in hydrophobic bond, and bond lengths 

Fig. 12.8 Schematic representation of interaction between cytochrome P450 3A4 with phyto-
chemical catechin. Here ball and stick model represents the phytochemical. Pink dotted line repre-
sents the hydrophobic bonds between binding residues ARG106, PHE108, and PHE215. Deep 
yellow dotted lines show electrostatic bonds between binding residue ARG 106 and GLU374. The 
figure was generated by using visualization software of Discovery Studio suits version 4.5

A. Chand et al.



189

vary from 5.1086 to 4.30201 Å, whereas GLU374 is involved in electrostatic bond-
ing, and bond length is 3.88186 Å. The interaction between quercetin and titled 
protein is shown in Fig. 12.11. The details of docking analysis of phytochemicals 
with CYP3A4 (cytochrome P450 3A4) are given in Table  12.3. The interaction 
between phytochemicals and title proteins is dominated by electrostatic, hydropho-
bic, and hydrogen bonds. The presence of water molecules in the active site further 
confirmed the formation of H-bonding.

12.6  Conclusions

We have discussed innovations in computational methods which can help us under-
stand aging processes through data mining methods and probe antiaging factors 
through computational epigenetics and transcriptional profiling. Molecular proper-
ties of antiaging have been poised to be integrated into the antiaging framework. 
The binding energy of catechin, resveratrol, curcumin, and quercetin is found to be 
−9.8, −10.1, −9.9, and −10.4 kcal/mol, respectively. The result illustrates quercetin 
interaction with SER119 residue that is involved in hydrogen bonding with bond 
length of 2.43116 Å. It is to be noted that PHE215, PHE108, and ARG105 residues 
are involved in hydrophobic bond, and bond lengths vary from 5.1086 to 4.30201 Å, 
whereas GLU374 is involved in electrostatic bonding, and bond length is 3.88186 Å. 
Both hydrogen bonding and hydrophobic interactions play a crucial role in the 

Fig. 12.9 A diagrammatic representation of hydrogen bond between the resveratrol and residue 
ARG106 of cytochrome P450 3A4 which is shown in green dotted line. The phytochemical of 
resveratrol is shown in ball and stick model (gray color). Pink dotted line represents the hydropho-
bic bonds between binding residues PHE215, ARG106, and PHE108 of cytochrome P450 3A4 and 
resveratrol. Yellow dotted lines show electrostatic bonds of binding residue ARG 106. The figure 
was generated by using visualization software of Discovery Studio suits version 4.5
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interaction between phytochemicals related to antiaging and cytochrome P450 3A4 
protein, which may be relevant to metabolism of antiaging drugs. A critical assess-
ment of the molecular dynamics simulation techniques might require further exten-
sion for future predictions.

Fig. 12.10 Details of interaction between the cytochrome P450 3A4 and curcumin. The selected 
hydrogen bond (which is represented in green color dashed lines) is between residues ARG106 and 
ALA 307 and curcumin. Violet color dotted line represents the hydrophobic bonds between bind-
ing residues AGR 372 and PHE215 and curcumin. The figure was generated by using visualization 
software of Discovery Studio suits version 4.5

A. Chand et al.
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Abstract
Old age is one of the major determinants of neurodegenerative diseases. There 
have been major advancements in understanding the biology of aging along with 
various interventions that may promote healthy aging. Many nutritional interven-
tions such as caloric restriction, periodic fasting, and alternate day fasting have 
been proposed that may hamper age-associated cognitive decline. Among the 
various regimens, intermittent fasting-dietary restriction (IF-DR) seems to be 
most promising as it has been well documented to provide neuroprotection by 
enhancing synaptic plasticity and neurogenesis. It is also known to prolong life 
span and delay the onset of age-associated disorders by reducing inflammation 
and oxidative stress. IF-DR regimen is known to possibly work by establishing a 
conditioning response which maintains survival mode in organisms by focusing 
on energy conservation, thereby causing a metabolic shift from growth to main-
tenance activities and hence promoting anti-aging effects. IF-DR regimen is also 
known to improve many physiological indicators such as reduced levels of leptin, 
insulin, amount of body fat, reduced blood pressure, and increase in resistance to 
stress. Thus, IF-DR regimen initiated in middle or old age has the ability to 
impede age-associated neurodegeneration and cognitive decline and may be a 
potential intervention to abrogate age-related impairment of brain functions.
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Aging · Cognitive decline · Intermittent fasting-dietary restriction · 
Neuroprotection · Oxidative stress
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Abbreviations

AD Alzheimer’s disease
ADCR Alternate day caloric restriction
ADF Alternate day fed
AL Ad libitum
AMP Adenosine monophosphate
AMPA α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
AMPK Adenosine monophosphate-activated protein kinase
ARC Arcuate nucleus
ATP Adenosine triphosphate
BDNF Brain-derived neurotrophic factor
CA Cornu ammonis
CaM Calmodulin
CaN Calcineurin
COX2 Cyclooxygenase-2
CR Caloric restriction
CREB Cyclic AMP response element-binding protein
DNA Deoxyribonucleic acid
DR Dietary restriction
FOXO Forkhead box O3
GCs Glucocorticoids
GFAP Glial fibrillary acidic protein
GLP-1 Glucagon-like peptide 1
GluR2 Glutamate receptor subunit
GnRH Gonadotropin-releasing hormone
GSH Glutathione
HNE 4-Hydroxynonenal
HPA Hypothalamic-pituitary-adrenal axis
Iba1 Ionized calcium-binding adapter molecule-1
ICAM Intracellular adhesion molecules
IF-DR Intermittent fasting-dietary restriction
IFDRH Intermittent fasting-dietary restriction plus herbal supplementation
IL Interleukin
iNOS Inducible nitric oxide synthase
KA Kainic acid
LPS Lipopolysaccharide
MAL Middle-aged ad libitum fed
MAPK Mitogen-activated protein kinase
MDR Middle-aged dietary restriction
MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (neurotoxin)
mRNA Messenger ribonucleic acid
mTOR Mammalian target of rapamycin
NAD+ Nicotinamide adenine dinucleotide
NADH Nicotinamide adenine dinucleotide plus hydrogen
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NCAM Neural cell adhesion molecule
NF-кB Nuclear factor kappa B
NMDA N-methyl-D-aspartate
NO Nitric oxide
NP 3-Nitropropionic acid
NPY Neuropeptide-Y
NRF Nuclear respiratory factor
NT-3 Neurotrophic factor-3
PC Piriform cortex
PD Parkinson’s disease
PGC-1α Proliferator-activated receptor gamma coactivator 1-alpha
PI3K Phosphatidylinositol 3-kinase
PM Plasma membrane
PMRS Plasma membrane redox system
PPARγ Peroxisome proliferator-activated receptor gamma
PSA-NCAM Polysialylated neural cell adhesion molecule
PSD95 Postsynaptic density protein 95 kDa
ROS Reactive oxygen species
SIRT-1 Sirtuin
SOCS3 Suppressor of cytokine signaling 3
TBARS Thiobarbituric acid reactive substances
TFAM Mitochondrial transcription factor A
Trk Tyrosine kinase
VCAM Vascular cell adhesion molecule

13.1  Introduction

Aging is a naturally occurring, inexorable process which is characterized by pro-
gressive loss of physiological integrity, leading to impaired functioning of the body. 
Aging has been characterized by many hallmark features, such as genomic instabil-
ity, cellular senescence, attrition of telomeres, mitochondrial dysfunction, epigene-
tic alterations, and altered intercellular communication (reviewed in López-Otín 
et al. 2013). Deterioration of physiological functions with aging makes a person 
prone to many pathological conditions such as diabetes, cancer, cardiovascular dis-
eases, and neurodegenerative disorders. Most age-associated diseases have been 
closely linked to persistence of chronic inflammatory milieu as evidenced by infil-
tration of inflammatory mediators such as macrophages and higher circulation lev-
els of adhesion molecules, pro-inflammatory cytokines, and components of 
complement system (Sarkar and Fischer 2006). Further, various age-related neuro-
pathologies, such as dementia, Alzheimer’s disease, and Parkinson’s disease along 
with cognitive decline, have been attributed to enhanced oxidative stress, neuronal 
degeneration, neuroinflammation, glutamate excitotoxicity, and various other fac-
tors (Hamilton et al. 2001).
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Several theories have been proposed to understand underlying mechanism of 
aging including free radical and oxygen stress-mitochondrial theories. Free radical 
theory of aging explains that damage induced by free radicals to biological macro-
molecules and inability of cellular endogenous antioxidant mechanisms to counter-
balance this stress leads to enhanced oxidative stress, aging, and related pathologies 
(initially proposed by Harman 1956). On the other hand, mitochondrial theory of 
aging says that increased oxidative stress induces mutations in mitochondrial DNA 
resulting in deregulated and disrupted mitochondrial biogenesis and bioenergetics 
(Loeb et al. 2005). Increased ROS are reported to induce mutations and deteriora-
tion of DNA, oxidation, and damage to proteins and lipids. Modification of DNA 
such as formation of 8-hydroxydeoxyguanosine, protein modifications such as car-
bonyl formation, nitration, glycation, lipid peroxidation generating 
4- hydroxynonenal, and mitochondrial membrane potential are the common param-
eters which undergo changes during oxidative stress (Sohal and Weindruch 1996; 
Munch et al. 2000; Lopez-Lluch et al. 2006; Johnson et al. 2007; Mattson 2009; 
Singh et al. 2015). These modifications of DNA, lipids, proteins, and other biomol-
ecules have been reported to be involved in various neurodegenerative diseases 
(Martin et  al. 2006). Aging is also associated with impairments in learning and 
memory functions, which occurs due to changes in hippocampal plasticity. 
Accumulation of oxidative stress in aging hippocampus is the main driving force for 
these synaptic impairments (Serrano and Klann 2004).

Aging research has witnessed prodigious advancements in recent years, and vari-
ous interventions have been proposed to encourage healthy aging. These interven-
tions aim to improve physical and psychological well-being and to promote health 
among aging citizens by delaying the onset of age-associated pathological condi-
tions. Hormesis is an adaptive response of cells and organisms to a moderate, usu-
ally intermittent stress (reviewed in Mattson 2008). Hormetins have been 
characterized as physical hormetins, such as exercise; mental hormetins, such as 
intense brain activity and meditation; and nutritional hormetins, such as flavonoids 
and polyphenols (Rattan 2017). Various hormetins have been described which can 
be used as agents to promote healthy aging and enhance life span. Caloric restric-
tion is one of the nutritional hormetins, which has gained attention of many research-
ers worldwide.

Caloric restriction (CR) is an extremely popular approach to slow down the 
degenerative effects of aging. CR has been defined as 20–40% less intake of calories 
than is normally required by the body (Mattson et al. 2003). Intermittent fasting- 
dietary restriction (IF-DR) is another variation of CR, which involves alternate day 
fasting while maintaining complete nutritional intake in the intervening day. IF-DR 
is also referred to as “every other day feeding” (Martin et al. 2006). In comparison 
to CR, IF-DR is a better approach as the compliance with IF-DR regimen may be 
greater than CR regimen. Owing to the periodic nature of fasting, IF-DR regimen 
mitigates the constant hunger effect experienced by CR practitioners (reviewed in 
Horne et al. 2015). Moreover, persistent CR may lead to malnutrition, the possibil-
ity of which is ruled out in IF-DR regimen due to ad libitum access to food every 
alternate day. Further, a pilot study comparing the effects of daily CR and IF-DR 
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regimens on weight loss has reported reversion of weight loss after stopping CR 
regimen (Catenacci et  al. 2016). IF-DR regimen was shown to produce greater 
energy deficit from weight maintenance requirements than daily CR. Furthermore, 
IF-DR regimen has been shown to produce similar beneficial effects as CR (Varady 
2011; Anton and Leeuwenburgh 2013).

The beneficial effects of IF-DR have been extensively studied in middle age and 
old age animal model systems by our lab (Singh et al. 2012, 2015) as well as others 
(Lara-Padilla et al. 2015; Vasconcelos et al. 2015). IF-DR regimen is known to pos-
sibly work by establishing a conditioning response which maintains survival mode 
in organisms by focusing on energy conservation, thereby causing a metabolic shift 
from growth to maintenance activities and hence promoting antiaging effects (Kaur 
and Lakhman 2012). IF-DR regimen has been reported to delay the onset of neuro-
degenerative disorders in experimental models of Alzheimer’s disease, Parkinson’s 
disease, and stroke by increasing resistance of hippocampal neurons to degeneration 
(Mattson 2003). IF-DR regimen is also known to improve many physiological indi-
cators such as reduced amount of body fat (Tinsley and La Bounty 2015), reduction 
in inflammation (Johnson et al. 2007; Castello et al. 2010), increase in resistance to 
stress (Vasconcelos et al. 2015), and reduced levels of insulin and leptin (Duan et al. 
2003). IF-DR regimen has also been recently reported to exert antitumor effects 
(reviewed in Mattson et al. 2017).

The architecture of aging brain is prone to modifications by various nutritional 
and metabolic stimuli. Research in the recent past has tried to unveil various mecha-
nisms of neuroprotection posed by IF-DR.  The valuable insights gained from a 
plethora of studies have helped in better understanding of relationship between 
energy metabolism and brain functioning. It has also expanded our knowledge 
regarding various interventions which may be beneficial in improving brain health 
and providing resistance to age-associated neurological disorders. As already men-
tioned, brain aging is characterized by reduced synaptic plasticity, cognitive decline, 
increase in oxidative stress, and inflammatory milieu. Keeping in view these char-
acteristics, we have discussed the effects of IF-DR regimen on age-associated 
changes in brain architecture and functions in this review.

13.2  IF-DR and Brain Plasticity

Over many years, various lines of evidence have suggested that dietary restriction 
(IF-DR or daily CR) can enhance brain plasticity and cognitive performance in dif-
ferent age group of rats by counteracting molecular and cellular changes that impair 
cognition (Idrobo et al. 1987; Komatsu et al. 2008; Stranahan et al. 2009). Various 
preclinical studies have shown the beneficial effects of IF-DR regimen in preventing 
the cognitive decline associated with aging. The behavioral responses to IF-DR are 
associated with increased brain plasticity and neurogenesis. For instance, young 
mice maintained on IF-DR regimen for 11 months performed significantly better on 
tasks of learning and memory (fear conditioning and Barnes maze), and these 
behavioral outcomes were associated with increased size of pyramidal neurons of 
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CA1 region of the hippocampus (Li et al. 2013). In line with this, another study has 
also demonstrated that IF-DR regimen enhances hippocampal neurogenesis by pro-
moting the survival of newly synthesized neurons (Lee et al. 2002). Studies from 
our lab have also shown that IF-DR regimen initiated in middle age and old age rats 
for 3 months exhibited improved motor performance on rotarod and task of spatial 
learning and memory (morris water maze) than their ad libitum (AL) fed counter-
parts (Singh et  al. 2012, 2015). The studies suggested that these behavioral out-
comes could be due to enhanced synaptic plasticity and reduced mitochondrial 
oxidative stress.

The cellular and molecular mechanisms by which dietary restriction enhances 
brain plasticity and improves cognitive functions during aging include  increase 
in  synaptic activity that causes production of neurotrophic factors  (Amigo and 
Kowaltowski 2014), which in turn, stimulate the formation of new synapses and 
promote neurogenesis and potentiation (Anton and Leeuwenburgh 2013). Other 
factors include activation of cellular stress-responsive machinery against oxidative 
and metabolic stress (Bruce-Keller et  al. 1999), and activation of immune and 
inflammatory mediators (reviewed in Mattson 2015). Brain-derived neurotrophic 
factor (BDNF) is one of the most notably produced neurotrophic factors in response 
to fasting in discrete brain regions with most robust production in hippocampus 
region of the brain (Cotman et al. 2007). BDNF promotes various aspects of synap-
togenesis, neurogenesis, migration, and plasticity (Greenberg et al. 2009; Park and 
Poo 2013). In addition it is critical for synaptic plasticity implicated in optimization 
of various domains of cognitive functions (Kuipers and Bramham 2006). 
Highlighting the relevance of this neurotrophic factor in brain function, individuals 
carrying mutation in this gene exhibited decreased secretion and deficits in memory 
and increased anxiety and depression (Egan et al. 2003; Hariri et al. 2003). Evidence 
suggests that BDNF is produced and released at or near to synapses in response to 
synaptic activity and thus plays a pivotal role in synapse formation and learning and 
memory (Marosi and Mattson 2014). Mild metabolic stress and increased neuronal 
activity can induce BDNF production and its downstream signaling to enhance 
brain plasticity.

BDNF signaling activates the protein translational machinery which is critical 
for neural transmission and potentiation (Lu et  al. 2008). Direct application of 
BDNF to the hippocampus was observed to upregulate the expression of markers 
critical in synapse formation and plasticity, viz., postsynaptic density protein 95 
(PSD95) and glutamate receptor subunit (GluR2) (Robinet and Pellerin 2011). In 
addition, BDNF production is known to promote the survival of neurons under con-
ditions of oxidative and metabolic stress (Mattson 2015). IF-DR has shown its ben-
eficial role in protecting hippocampal neurons from seizure-induced excitotoxicity 
(Bruce-Keller et al. 1999), and another study has speculated that this protection is in 
part mediated by BDNF signaling (Duan et al. 2001). Further the beneficial effects 
of IF-DR following excitotoxic stimulus are associated with lower levels of corti-
costerone, leading to decreased hippocampal cell death, increased plasticity by acti-
vation of BDNF and phosphorylated CREB, and reversal of learning deficits (Qiu 
et al. 2012). Such effects of BDNF signaling likely contribute to the processes by 
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which IF-DR regimen may enhance cognitive function and prevent brain damage. 
For instance, in a recent study from our lab, we have shown that IF-DR regimen 
activated the production of neurotrophic factors BDNF and NT-3 (neurotrophic fac-
tor 3) and immature neuronal marker PSA-NCAM (polysialylated neural cell adhe-
sion molecule) in hippocampus, hypothalamus, and piriform cortex (PC) regions of 
rat brain in response to pilocarpine-induced excitotoxic insult (Kumar et al. 2009). 
Further the study showed that proliferation rate of neural progenitor cells was also 
increased in response to dietary restriction as evident from the BrdU immunostain-
ing. These observations highlight the beneficial role of IF-DR as an effective inter-
vention to protect and enhance the resistance of the brain to excitotoxic insult. 
Studies from our lab have also proposed the potential beneficial role of IF-DR regi-
men initiated in young and old age rats in attenuating reactive astrogliosis and neu-
ronal plasticity (Sharma and Kaur 2008; Kaur et  al. 2008). Young adult rats on 
IF-DR regimen for 12 weeks demonstrated that kainic acid (KA) excitotoxicity- 
induced reactive astrogliosis was suppressed and neuronal plasticity was enhanced 
in response as evident from reduced immunoreactivity of GFAP and enhanced 
expression of neuronal plasticity markers, PSA-NCAM and NCAM (Sharma and 
Kaur 2008). The data suggested that IF-DR regimen modulated reactive astrogliosis 
and prevented age-associated neuronal dysfunction.

Hippocampal neurons play a pivotal role in learning and memory and are vulner-
able to neurodegeneration and dysfunction with advancing age. Fasting stimulates 
the production of BDNF as a result of increased activity of these neurons. BDNF 
promotes and maintains the growth of dendrites and synapses and also enhances the 
neurogenesis (Wrann et al. 2013; Longo and Mattson 2014). The newly synthesized 
cells then integrate into the existing network of neuronal circuits, thus strengthening 
the synapse and prompting plasticity. After activation, BDNF binds to its high- 
affinity receptor tyrosine kinase TrkB, resulting in the activation of PI3K/Akt/
mitogen- activated protein kinase (MAPK) signaling cascade (Marosi and Mattson 
2014). Recent findings have suggested that peripheral signals such as muscle- 
derived factors can enter the brain and contribute to neuroplasticity and stress resis-
tance (Mattson 2015). For instance, muscle-derived protein FNDC5 is cleaved and 
secreted as irisin can cross the blood-brain barrier and stimulate BDNF production 
in the brain which is associated with improved cognitive function following exer-
cise (Wrann et al. 2013).

Apart from the significant contribution of BDNF signaling in maintaining the 
optimal cognitive functioning and neuronal bioenergetics in the brain in response to 
IF-DR, glutamate, insulin, and glucagon-like peptide 1 (GLP-1) also contribute to 
the adaptive responses of the brain to protect it from neurodegeneration (Longo and 
Mattson 2014). Glutamate activates AMPA (α-amino-3-hydroxy-5-methyl-4- 
isoxazolepropionic acid) receptors and NMDA (N-methyl-D-aspartate) receptors 
resulting in the calcium influx followed by activation of protein kinase (CaM) and 
phosphatases (CaN) which are calcium-dependent regulators of learning and mem-
ory (Longo and Mattson 2014). Their activation in turn leads to activation of tran-
scription factors cyclic AMP response element-binding protein (CREB) and NF-κB 
(nuclear factor kappa B). Insulin binds to its receptor leading to activation of mTOR 
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signaling pathway implicated in protein synthesis and cell growth. Finally, GLP-1 
activates its receptor, followed by cyclic AMP production in a coupled manner, 
CREB activation, and BDNF production. All these signaling cascades mediate neu-
roprotective effects in response to fasting by regulating neuronal bioenergetics.

Both late-onset and early-onset short-term IF-DR regimens have shown benefi-
cial effects in terms of synaptic plasticity. Synaptophysin is a presynaptic marker 
used as an index of synaptic number and density, and fall in its expression reflects a 
decrease in neurotransmission affecting spatial memory (Liu et al. 2005). The stabi-
lization in synaptophysin levels in response to short-term IF-DR in discrete brain 
regions indicates the prevention of decline in synaptic function in both middle and 
old age Wistar rats (Singh et al. 2012, 2015). Further the studies have shown that 
hippocampal synaptic potentiation by signaling molecules like CaMKII and CaN 
was strengthened by IF-DR regimen. Both of these proteins are enriched in postsyn-
aptic density and are involved in calcium signaling and homeostasis, neural trans-
mission, learning, and memory.

Although IF-DR regimen showed neuroprotective role in middle and old age 
rats, adverse effects were seen on reproductive functions of young adult female rats 
via estrous cycle disruption and altered levels of estradiol, testosterone, and lutein-
izing hormone in both male and female rats (Kumar and Kaur 2013). Further, the 
decrease in gonadotropin-releasing hormone (GnRH) and PSA-NCAM was 
observed in median eminence region of the hypothalamus. The study suggested that 
neuroendocrine energy regulators such as leptin, NPY, and kisspeptin target the 
GnRH neurons on hypothalamus-hypophysial-gonadal axis (HPA) and disrupt the 
reproductive functions and cause nutritional infertility in the face of energy status of 
the rats. The findings of this study may suggest that although IF-DR regimen is 
beneficial in all age groups, but,  females in reproductive age may have adverse 
effects on their reproductive functions.

13.3  IF-DR and Oxidative Stress

A steady and notable observation from different model systems reported in various 
studies is that DR promotes healthy aging by reducing oxidative stress and associ-
ated damage (Walsh et al. 2014). In addition to oxidative stress induced within the 
body due to imbalanced homeostasis, IF-DR has been also reported effective against 
age-related and LPS-induced oxidative stress in rat hippocampus. LPS-induced 
increase was observed in lipid peroxidation indicated by TBARS levels, nitric oxide 
(NO), and protein nitrosylation similar to age-related changes. IF-DR for 30 days 
(every alternative day feeding) was found to prevent LPS-induced changes in these 
parameters (Vasconcelos et al. 2015).

Further, a clinical study reported by Johnson evidenced that IF-DR regimen 
reduced expression of oxidative and inflammatory markers (Johnson et al. 2007). 
Protein carbonyls are well-reported markers of oxidative stress because of their 
relative formation in early phase and stability (Dalle-Donne 2003). In 8-week 
IF-DR study, protein carbonyls and other markers of oxidative stress such as 
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nitrotyrosine, 8-isoprostane, histidine, and lysine-4-hydroxy nonenal adducts were 
significantly decreased. Uric acid, the major scavenger of peroxynitrite and hydroxyl 
radical concentrations, was significantly enhanced in urine of ADCR subjects 
(Johnson et al. 2007). Age-associated increase in protein carbonyl content was also 
reported by our lab (Singh et al. 2015). The brain regions of MAL (middle-aged ad 
libitum fed) rats were found to have higher protein carbonyl content which was 
significantly reduced in MRD (middle-aged dietary restriction) rats. Reduced pro-
tein carbonyl content indicates reduced oxidative stress by IF-DR intervention 
which may be due to early initiation of repair and maintenance (Singh et al. 2015).

HNE (4-hydroxynonenal), a major aldehydic product from peroxidation-induced 
breakdown of membrane phospholipids, was found to be progressively increased 
with age in heart tissue of rat along with protein carbonyl content. Both HNE and 
protein carbonyl content were found significantly reduced in hearts of alternate day 
fed (ADF) animals (Castello et al. 2010). In addition to lipid and protein oxidation, 
ADF dietary regime also improved the reduced glutathione (GSH) concentrations 
and significantly decreased GSH/GSSG (oxidized glutathione) ratio, thus improv-
ing the antioxidant levels within the body.

Plasma membrane redox system (PMRS) enzymes which are important for anti-
oxidant recycling and antioxidant levels such as coenzyme Q and α-tocopherol were 
also upregulated by calorie restriction (Hyun et  al. 2006). Further age-related 
increase in protein carbonyls, PM lipid peroxidation, and nitrotyrosine were signifi-
cantly attenuated by CR in cultured neuronal cells (Hyun et al. 2006).

13.3.1  Dietary Restriction, Oxidative Stress, 
and Neurodegenerative Diseases

Dietary restriction is well documented to prolong life span and to render the nervous 
system resistant to age-associated neurodegenerative diseases (Prolla and Mattson 
2001). Dietary restriction is beneficial to vulnerable neurons in PD brain as it is 
reported to bolster brain and peripheral biogenesis (Longo and Mattson 2014). DR 
has also been reported to confer resistance to dopaminergic neurons against MPTP- 
induced Parkinsonism and motor deficit amelioration (Duan and Mattson 1999). 
Two- to 4-month DR regime was reported to be effective against kainic acid-induced 
Alzheimer’s disease, ameliorating degeneration of pyramidal hippocampal neurons, 
learning, and memory deficits (Bruce-Keller et  al. 1999). Further, DR increased 
resistance against excitotoxicity and oxidative stress in presenillin-1 and APP-1 
mutant mice as compared to ad libitum fed animals (Zhu et al. 1999; Mattson et al. 
2001). DR was found beneficial against excitotoxic insults caused by 3- nitropropionic 
acid (NP) to induce Huntington’s disease. Striatal neurons in rats maintained on 
3-month DR regime developed resistance against 3-NP along with improved motor 
functioning (Bruce-Keller et al. 1999). Interestingly, DR was also observed to con-
fer protection and extend life span in Drosophila model of AD (Kerr et al. 2011). In 
addition to these conditions, dietary restriction has been reported beneficial in mod-
els of ischemic stroke (Yu and Mattson 1999; Fann et al. 2017).
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13.3.2  Cellular Effectors of Dietary Restriction

Mitochondria is the main focus of aging research since decades. Increased oxidative 
stress and loss of mitochondrial bioenergetic efficiency are considered as character-
istic features of senescence, neurodegeneration, and aging. Dietary restriction 
imparts reduced workload and wear and tear of mitochondria by promoting mito-
chondrial biogenesis and induction of autophagy.

13.3.2.1  Mitochondrial Biogenesis
Activation of distinct genetic programs by nuclear and mitochondrial transcription 
factors allows synthesis of new mitochondria in response to damaged organelles or 
increased oxidative stress, known as mitochondrial biogenesis. Nuclear respiratory 
factor (NRF) and mitochondrial transcription factor A (TFAM) are reported down-
stream transcription factors which coordinate nuclear and mitochondrial gene tran-
scription responsible for mitochondrial bioenergetics (Wu et  al. 1999; St-Pierre 
et  al. 2003). PPARγ is an upstream regulator of TFAM and NRF, which acts as 
nutrient and energy sensor, signals mitochondrial biogenesis, and further transfers 
utilization of substrate for cellular energy from carbohydrates to fats (Lopez-Lluch 
et al. 2006). Sirt1 directly deacylates PPARγ, regulates biogenesis and bioenerget-
ics, and prolongs the healthy life span (Rodgers et al. 2005; Nemoto et al. 2005). In 
a clinical study on human population, an increase in muscular mitochondrial DNA 
was observed in response to calorie restriction along with reduced oxidative stress 
and DNA damage, which suggests that calorie restriction exerts positive effects on 
mitochondrial functioning in young nonobese individuals (Civitarese et al. 2007). 
Lopez and group reported CR-induced mitochondrial biogenesis and bioenergetics 
regulation both in vitro and in vivo by studying mitochondrial membrane potential, 
a bioenergetic parameter (Lopez-Lluch et al. 2006). Calorie restriction is proposed 
to carry out efficient electron transfer in respiratory chain which meets equivalent 
ATP production even under reduced oxygen consumption and reduced ROS produc-
tion. Attenuation of cellular and molecular damage due to oxidative stress and 
reduced rate of aging is attributed to this change in mitochondrial efficiency in dif-
ferent organisms (Lopez-Lluch et al. 2006).

13.3.2.2  Autophagy
Autophagy is a strictly regulated process of recycling of damaged organelles and 
damaged and aggregated cellular proteins into biosynthetic and bioenergetic prod-
ucts in order to maintain cellular homeostasis (Morselli et al. 2010; Wohlgemuth 
et al. 2010; Yang et al. 2014; Ntsapi and Loos 2016; Pani 2015). This cellular mech-
anism is potentially induced by CR and plays an important role in CR exerted anti-
aging effects (Ntsapi and Loos 2016). Several studies have revealed that CR-induced 
autophagy is controlled by Sirtuin 1 expression in in vitro human cells and in C. 
elegans in vivo, whereas knockout of Sirtuin 1 abolished the autophagy induction 
by nutrient deprivation in cultured human cells as well as autophagy induced in C. 
elegans by dietary restriction (Morselli et al. 2010). Mammalian target of rapamy-
cin (mTOR) pathway negatively regulates autophagy, and its inhibition by CR is 
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also one of the reported underlying mechanisms of CR-induced autophagy (Yang 
et al. 2014). Thorough literature studies revealed that dysfunctional autophagy in 
the brain, muscle, liver, and other organs leads to degeneration and aging, and 
dietary restriction mends the dysfunctional autophagy and delays aging by regulat-
ing different pathways (Kume et al. 2010; Morselli et al. 2010; Wohlgemuth et al. 
2010; Yang et al. 2014; Ntsapi and Loos 2016; Pani 2015).

13.3.3  Molecular Effectors of Dietary Restriction

Dietary restriction targets the pathways and molecules responsible for energy 
metabolism, maintaining homeostasis and synthesis.

13.3.3.1  Sirtuins
Sirtuins are family of NAD+-dependent mitochondrial deacetylases, which monitor 
oxidative and energy metabolism along with mitochondrial dynamics within mito-
chondrial matrix and maintain cellular homeostasis (Tang et  al. 2017; Su et  al. 
2017). Dietary restriction has been reported to enhance SIRT1 expression and mito-
chondrial biogenesis through SIRT-1-mediated deacetylation of PGC-1α, a major 
regulator of biogenesis (Amigo and Kowaltowski 2014; Cohen et al. 2004; Nemoto 
et al. 2005). SIRT1 orchestrates oxidation of fatty acids in the muscle and liver and 
mobilization of lipid in adipose tissue, thus suggesting that its activation in dietary 
restriction may induce metabolic reprogramming (Rodgers et  al. 2005; Fiskum 
et al. 2008; Amigo and Kowaltowski 2014). In yeast, protein Sir2, a gene product of 
SIR2, catalyzes histone deacetylation and NAD+ cleavage. Since NAD+ and NADH 
are metabolic cofactors in various key reactions, Sir2 may be used as metabolic sen-
sor which could regulate gene expression according to cellular metabolic state 
(Guarente 2000; Tanner et al. 2000). Based on this hypothesis, several studies pro-
posed that Sir2/SIR2 mediate cytoprotective effects of dietary restriction in yeast 
(Canto and Auwerx 2009). Beneficial effects of CR in mammals have been attrib-
uted to sirtuins and their interconnections with other cell circuitries such as AMPK1, 
CREB, and PGC1, which are reported to be activated by fasting (Schulz et al. 2007; 
Canto and Auwerx 2009; Price et al. 2012; Pani 2015). In several cellular and ani-
mal studies, Sirt1 activity has been linked to neuronal plasticity, rendering protec-
tion against misfolded protein excitotoxicity in Parkinson’s, Alzheimer’s, and 
Huntington disease (Parker et  al. 2005; Gao et  al. 2011; Donmez et  al. 2012). 
Clinically the neuroprotective effects of Sirt1/SIRT1 can be mimicked and enhanced 
experimentally by resveratrol which is known to mimic effects of dietary restriction 
(Amigo and Kowaltowski 2014; Pani 2015).

13.3.3.2  AMPK and Cross Talk with mTOR, SIRT1, and FOXO 
Encoded Proteins

Adenosine 5′ monophosphate-activated protein kinase (AMPK) pathway has been 
reported to play an important role in preventing aging and senescence (Ido et al. 
2015). It is regulated by intracellular ATP/AMP ratio and serves as cellular nutrient 
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and energy sensor with ability to modulate whole body metabolism (Xu et al. 2012). 
AMPK might arbitrate the beneficial effects of dietary restriction via regulating 
mitochondrial metabolism and biogenesis. AMPK has been reported to prevent oxi-
dative stress-mediated senescence and aging by inducing autophagy via suppression 
of mTOR pathway (Canto and Auwerx 2011). Mammalian target of rapamycin 
(mTOR) is another important pathway to regulate energy balance which responds to 
hormonal and nutritional cues (Powell et  al. 2012; Xu et  al. 2012). The role of 
mTOR as important longevity pathway suggests that inhibition of mTOR complex 
1 (mTORC1) activity is sufficient to increase life span. In mammals calorie restric-
tion has been shown to reduce mTOR signaling (Stanfel et al. 2009). So it is hypoth-
esized that in need of energy/fasting/calorie restriction, ATP demand increases 
which suppresses mTOR pathway, thus leading to autophagic destruction of dam-
aged cells resulting in longevity and increased life span.

In a recent review by Pani (2015), it has been proposed that neurodegenerative 
diseases, mTOR promotes tau and amyloid β aggregation by promoting protein syn-
thesis and inhibiting onset of autophagy. CR inhibits mTOR thus inducing autoph-
agy, protects from cognitive decline, and ameliorates disease-related pathology in 
AD (Pani 2015). Further, AMPK phosphoregulates PGC-1α and enhances NAD+ 
levels which acts as rate-limiting step in SIRT1 deacetylation (Canto and Auwerx 
2009). Thus AMPK allows specific and higher activity of SIRT1 and promotes neu-
roprotective effects of sirtuins (Canto and Auwerx 2011). The other family of tran-
scription factors, FOXO, provides another evidence of CR and AMPK and increased 
life span correlation. Genetic evidences suggest that FOXO proteins have the ability 
to enhance longevity by providing resistance to oxidative stress, protein structure 
protection, promotion of autophagy, and lipid metabolism (Fontana et  al. 2010; 
Gross et  al. 2008). AMPK directly phosphorylates different members of FOXO, 
which act as mediators of AMPK-induced autophagy (Nakashima and Yakabe 
2007).

13.3.3.3  CREB and CREB-Sirt1 Cross Talk
Neurotrophins, the neurotrophic factors, promote neuronal heath by modulating 
genetic factors majorly via cAMP-responsive element-binding (CREB) factor 
(Riccio et al. 1999; Finkbeiner 2000). The beneficial neuroprotective effects of cal-
orie restriction in the forebrain of mice lacking CREB were reported to be abol-
ished, thus suggesting the important role of CREB in CR-mediated neuroprotection 
(Fusco et al. 2012). Further, reports have evidenced significantly reduced levels of 
CREB expression in aged and neurodegenerative disease associated brains. The 
CREB-mediated neuroprotection is also dependent on CREB-sirtuin cross talk (Cui 
et al. 2006; Caccamo et al. 2010). Increased neurotrophins in response to CR and 
DR increase the CREB expression which further induce Sirt1 expression and its 
mediated pathway. Sirt1 expression is reported to be highly reduced in absence of 
CREB, and nutrient availability regulates expression of CREB and CREB-related 
genes in the brain (Fusco et al. 2012). CREB has been also reported to transactivate 
neurotrophin BDNF and TrkB encoding gene expression in the brain (Deogracias 
et al. 2004). Furthermore, deletion or mutation of CREB leads to neurodegeneration 
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and neuronal damage induced by huntingtin mutant (Cui et al. 2006). In C. elegans 
CREB has been reported to be essential for memory, and differential regulation of 
CREB is one important factor underlying age-related decline in memory. In mam-
malian brains also CREB is referred to as memory regulator, and overexpression of 
CREB in the hippocampus enhanced the performance of aged animals in long-term 
memory experiments (Kauffman et al. 2010).

13.4  IF-DR and Neuroinflammation

CR is known to inhibit immunosenescence (Koubova and Guarente 2003) which 
refers to the age-associated decline of immune functions (Solana et al. 2006). Food 
restriction inhibits the pro-inflammatory pathways and enhances anti-inflammatory 
pathways in various tissues including the brain. In the hypothalamus, increased 
mRNA expression of anti-inflammatory signaling molecules including suppressor 
of cytokine signaling 3 (SOCS3), interleukin-10 (IL-10), and neuropeptide-Y 
(NPY) was observed in CR animals (MacDonald et al. 2011). CR suppressed LPS- 
induced release of IL-1β, IL-6, and TNF-α and enhanced anti-inflammatory corti-
costerone (MacDonald et al. 2014). Increase in glucocorticoids (GCs) after CR is 
one of the possible mechanisms by which caloric restriction exerts its anti- 
inflammatory effect (Levay et  al. 2010). GCs show dual effects on regulation of 
inflammation under stressful conditions. Mild stress results in anti-inflammatory 
effects of GCs as they reduce pro-inflammatory cytokine production and increase 
the expression of anti-inflammatory proteins. On the other hand, pathological stress-
ful stimuli lead to chronically elevated GCs and also promote pro-inflammatory 
cytokines and microglia activation (Vasconcelos et  al. 2016). CR suppresses the 
activation of microglial cells, which are primary immune cells in the brain (Jochen 
Gehrmann et  al. 1995). Microglial cells possess receptors for hormones such as 
leptin and ghrelin, which are known to be altered by CR. Leptin is an appetite hor-
mone and also has pro-inflammatory effects (Luheshi et al. 1999) which is reduced 
by CR (Govic et al. 2008).

CR reduces the ionized calcium-binding adapter molecule-1(Iba1) expression in 
LPS-induced animals. LPS induction causes upregulation of Iba1, protein specifi-
cally expressed by microglia, in activated microglia (Imai and Kohsaka 2002). In 
AL fed animals, LPS increases the mean intensity of Iba1, but this increase in Iba1 
expression was not observed in animals exposed to CR which may suggest that CR 
inhibits microglial activation. Significant decline of Iba1 expression was also 
observed in both hippocampus and piriform cortex (PC) in animals put on IF-DR 
with herbal supplementation which indicates that CR is effective to prevent inflam-
mation during aging (Singh et al. 2017). CR also attenuated LPS-stimulated microg-
lial activation in hypothalamus arcuate nucleus (ARC) (Radler et  al. 2014) and 
inhibited NF-κB activation and NF-κB-driven inflammatory gene expression in 
aged rats (Grosjean et al. 2006). NF-κB is considered as a master regulator of innate 
immunity, and NF-κB in cytosol fraction is in inactive state, complexed with inhibi-
tory IKβα protein. The activation of NF-κB occurs by phosphorylation of IKβα at 
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serine residue 32 and 36 by IKKα complex (Grosjean et al. 2006). The phosphoryla-
tion of IKβα causes degradation of inhibitory IKβα, thus allowing translocation of 
NF-κB to the nucleus, and permits the binding of NF-κB to regulatory elements in 
DNA promoters subsequent to genes involved in inflammatory response. NF-κB 
regulates expression of pro-inflammatory molecules such as tumor necrosis factors 
(TNF-α and TNF-β), interleukins (IL-1β, IL-2, and IL-6), chemokines (IL-8 and 
CCL5), adhesion molecules (ICAM-1, VCAM, and E-selectin), and enzymes like 
iNOS and COX2 (Chung et al. 2002).

Hunger is an adaptive response to fasting that involves neuroendocrine signals in 
addition to sensory and cognitive changes that activate food seeking behavior. 
Several studies have reported that hunger-related neuropeptides and hormones play 
a pivotal role in mediating the beneficial effects of IF-DR on aging and its associ-
ated diseases. A recent study from our lab has reported that NPY which is a “hunger 
peptide” and energy regulator was activated in the hypothalamus of middle-aged 
male Wistar rats in response to IF-DR regimen as compared to their AL counterparts 
(Singh et al. 2015). The study further showed that rats maintained on IF-DR exhib-
ited reduced expression of leptin receptor in the hypothalamus. NPY expression is 
influenced by peripherally produced hormone signals, including appetite suppressor 
leptin and appetite stimulant ghrelin. Leptin regulates NPY release through leptin- 
NPY- GnRH pathway (Fernandez-Fernandez et  al. 2006). In addition, leptin also 
regulates energy homeostasis via central activation of the nervous system through 
its receptor, Ob-Rb. Low leptin levels are known to induce orexigenic signals in 
hypothalamus and suppressing energy expenditure (Valassi et al. 2008). A study by 
Shi et al. (2012) showed that caloric restriction was unable to elevate the levels of 
circulating adiponectin in NPY deficient mice thus suggesting the central role of 
this neuropeptide in peripheral adaptation to energy restriction. In addition, NPY 
activation is linked to anti-inflammatory response following CR by suppression of 
microglial activation (Sonti et al. 1996; Sousa-Ferreira et al. 2011). Several studies 
have shown that CR exerts anti-inflammatory role by altering the level of circulating 
leptin and ghrelin resulting in enhanced production of NPY (Felies et  al. 2004; 
Sousa-Ferreira et al.. 2011; Radler et al. 2015).

Recently, our lab has reported the effect of IF-DR along with supplementation of 
herbal extracts Withania somnifera and Tinospora cordifolia. This regimen sup-
pressed inflammation induced due to aging in middle-aged female rats by reducing 
and normalizing the expression of inflammatory molecules such as NF-κB, Iba1, 
TNFα, IL-1β, and IL-6 in both hippocampus and PC regions of the brain. This was 
observed in both IF-DR and IF-DR + Herbal (IFDRH) supplementation groups 
(Singh et  al. 2017). This study also demonstrated that IFDRH regimen reduced 
anxiety-like behavior in middle-aged rats, which was mediated by anti- inflammatory 
effect posed by this dietary intervention.
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13.5  Conclusion

As discussed in the preceding sections, IF-DR regimen provides neuroprotection by 
various mechanisms (Fig. 13.1), thereby raising the possibility of extended health 
span and delayed onset of age-related disorders. The effects of IF-DR regimen have 
shown evolutionary conservation ranging from simple organisms such as 
Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (nematode), and 
Drosophila melanogaster (fruit fly) to mammals (Longo and Mattson 2014). The 
lifestyle in present-day society, which has seen technological advances in food pro-
cessing, agriculture, as well as transportation, has given rise to sedentary work 

Fig. 13.1 Beneficial effects of IF-DR and its possible mechanisms
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culture in many fields. Besides consuming energy dense food, people are also less 
exposed to vigorous exercise schedules. This has resulted in impaired physical and 
mental health and early onset of diseases. Further, medical practitioners and phar-
maceutical industry also aim to treat diseases with chemically synthesized drugs 
and/or surgery; instead the focus should be on the prevention of diseases. This can 
be achieved by proper education of children as well as parents regarding the impor-
tance of intermittent challenges to the brain for sustaining optimal brain health. 
IF-DR regimen can prove to be a boon in this scenario. Different cultures and reli-
gious groups have been practicing fasting since times immemorial. These include 
Hindus, Buddhists, Christians, Jews, as well as Muslims, who fast during the month 
of Ramadan. IF-DR regimen, thus, provides a scientific validation to the traditional 
practice of fasting. Though the scientific literature provides immense evidence for 
the potential beneficial effects of IF-DR, yet its translation to human subjects on a 
regular basis is still a challenge.
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Abstract
Melatonin (N-acetyl-5-methoxy tryptamine, MLT) is a hormone that is produced 
by the pineal gland. It is synthesized regularly with high levels at night. Age- 
related decline in MLT contributes to an increased susceptibility to a number of 
pathophysiological disorders like neurodegenerative diseases, cancer, and aging. 
There are strong evidences that both Alzheimer’s disease and Parkinson’s disease 
are associated with low levels of MLT. Because of its wide-ranging antioxidant 
and radical scavenger effects, MLT may act as a protective agent against many 
age-related illnesses. MLT’s protection may be possible for both protein and fat 
tissues in the body by crossing all cell membrane. Currently available data make 
us to determine that MLT is beneficial for the aging process. Administration of 
MLT is able to increase the life span of several animals including some rodents. 
Although, to preserve health in old age becomes a primary goal for biomedicine, 
there is a necessity for extensive studies on the administration of MLT in order 
to increase the quality of life in advanced age. In this chapter experimental 
approaches to antiaging activity of MLT as well as its possible therapeutic sig-
nificance are reviewed and discussed.
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Abbreviations

AD Alzheimer’s disease
CR Caloric restriction
GSH Glutathione
HD Huntington disease
HNE 4-hydroxy-2-nonenal
MDA Malondialdehyde
miRNA MicroRNA
MLT Melatonin
mtDNA Mitochondrial DNA
NAS N-acetylserotonin
OS Oxidative stress
PUFA Fatty acid
ROS Reactive oxygen species
SIRT Sirtuin

14.1  Introduction

Life expectation has been getting improved across the world and the number of 
elderly is growing rapidly. As a consequence of the rise in the old age people, the 
occurrence of age-associated diseases has also increased. Therefore the policies and 
approaching to discover new and effective antiaging molecules are important (Rizvi 
and Jha 2011). Various molecules are candidate to stop aging, cancer, and degenera-
tive disorders. It has been realized that the decline of different physiologically impor-
tant molecules such as melatonin (MLT) over the life span is strictly connected to the 
aging process. Replacement of these molecules is a common approach against aging 
(Heutling and Lehnert 2008). MLT absence is related to suppressed immunocompe-
tence, and treatment of MLT increased life span and delays aging. Many of its activi-
ties are helpful for the prevention of aging (Karasek and Reiter 2002; Karasek 2004). 
There are strong evidences that MLT is a geroprotective agent which reduces the 
aging process. As MLT may delay aging process with its versatility of actions, it may 
also reduce and/or delay the occurrence of age-related diseases such as of Alzheimer’s 
disease (AD) (Rosales-Corral et al. 2012; Gurer-Orhan et al. 2016).

14.2  Oxidative Stress in Disease and Aging

The simplest description of oxidative stress (OS) is basically an imbalance between 
the creation of free radicals and the capacity of the organism to prevent their 
damaging effects. OS may cause many pathophysiological disorders in the body. 
The most important ones are neurodegenerative diseases like Parkinson’s disease 
and AD, gene mutations and cancers, atherosclerosis, heart failure, heart attack, 
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inflammatory diseases, and aging. Considering this connection, the goal of numerous 
ongoing studies is to reveal the underlying mechanisms and role of OS in disease 
onset and development. Specifically, there is significant importance on finding new 
therapeutic strategies for decreasing OS (Tekiner-Gulbas et al. 2013; Shirinzadeh 
et al. 2016).

Although, there are several endogenous and exogenous antioxidant molecules 
that can offer protection, aging is still not possible to prevent or stop. Among 
antioxidants MLT and related compounds have been confirmed to be significantly 
effective (Suzen et al. 2006; Gurkok et al. 2009; Yilmaz et al. 2012). In addition to 
this increased MLT levels revealed very promising results against some other 
diseases like age-related macular degeneration (Chakravarty and Rizvi 2011), acute 
respiratory distress syndrome (Ochoa et al. 2003), glaucoma (Yi et al. 2005), and 
sepsis (Gitto et  al. 2004). Recent findings showed that antioxidant properties of 
MLT help protect against heart muscle injury caused by heart attack (Chen et al. 
2003; Reiter et al. 2010a, b).

The MLT level differs throughout the life span. During fetal period, the fetus has 
easy access to maternal MLT via the placenta (Waddell et al. 2012). The levels of 
MLT then peak during puberty, and then decrease starts in middle-aged. This decline 
may be reflected many vital changes in the elderly (Savaskan et al. 2005). Induced 
OS and neurodegeneration experiments display that MLT can protect and defend 
neurons during aging process (Kaewsuk et al. 2009).

It was proved that MLT has a great capacity to inhibit cell proliferation in some 
cancer types (Pawlikowski et al. 2002; Srinivasan et al. 2008). It has been used as 
an adjuvant therapy in cancer patients with solid tumors undergoing chemotherapy 
or radiation therapy. The use of 20 mg of MLT once daily versus conventional treat-
ment alone increased the 1-year survival rate by 45% (Wang et al. 2012).

Animal studies showed that MLT has a protective effect against the onset of dia-
betes in diabetes-prone rats. Treatment of MLT improved the animals’ cholesterol 
and triglyceride levels (Sartori et  al. 2009). McMullan et  al. (2013) showed that 
poor MLT secretion or lack of MLT secretion might lead to type 2 diabetes or related 
with a higher risk of having type 2 diabetes. Additional distinctive and powerful 
property of MLT is its capability to cross the blood-brain barrier. Preclinical studies 
discovered that MLT shows neuroprotective effects against beta-amyloid plaque, in 
AD patients in the early stages (Pappolla et al. 1999). MLT secretion declines in 
AD, and replacement of MLT helps protection from Aβ toxicity at the mitochon-
drial level (Cardinali et al. 2010).

Reactive oxygen species (ROS) produced mainly by mitochondria and that cre-
ate damage to mitochondrial constituents then eventually cause degradative pro-
cesses. These harmful reactions to cells and cell components associated with the 
aging process (Bonomini et al. 2015). Under physiological circumstances oxidative 
harm to mitochondrial DNA (mtDNA) with age can lead to DNA strand breaks and 
somatic mtDNA mutations (Richter 1995). Accumulation of excess mtDNA may 
cause to impairment of the respiratory chain complexes. This never-ending cycle is 
the reason of increase in mitochondrial ROS and buildup of additional mitochon-
drial DNA mutations during aging (Sohal and Weindruch 1996).
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Since OS plays an essential role in the aging process and chronic diseases linked 
with senescence, the use of a potent antioxidant compound like MLT may develop 
a hopeful, safe, and effective approach to slow aging and age-related diseases 
(Poeggeler 2005). There is strong suggestion that MLT diminishes cancer at the 
initiation, progression, and metastasis phases and two theories related to action of 
MLT on cancer. These are either membrane receptor-mediated action or membrane 
receptor- independent action. Research have shown that MLT’s co-administration 
significantly helps to conventional drugs to inhibit cancer and metastasis by pre-
venting the entrance of cancer cells into the vascular system. MLT reduced the toxic 
effects of anticancer medication, increasing their effectiveness (Reiter et al. 2017; 
Gurer- Orhan et al. 2017).

14.3  The Mechanism of Aging

Aging involves multifunctional process and many accompany theories. Therefore, 
there are still speculations about the biological mechanism of aging. Free radicals that 
cause OS are the main suspect of this occurrence. It is known that free radicals, ROS, 
and reactive nitrogen species (RNS) are generated by our body by various endogenous 
systems that can damage cell membrane as well as cause the accumulation of dam-
aged proteins. ROS can affect proteostasis, causing the accumulation of damaged pro-
teins in cells which lead additional protein misfolding or aggregation (Powers et al. 
2009). These radicals can be removed by endogenous reducing agents, like glutathi-
one, but excess free radical attacks on collagen can cause cross-linking of protein 
molecules. As a result due to the lack of proper cell division, injured cells cannot be 
changed by new cells, and cellular senescence starts by DNA damage, oncogenesis. 
The immune system is able to remove senescent cells in young people, but this pro-
cess is not very easily happen in the elderly (Rodier and Campisi 2011). It can be 
concluded that aging could be due to accumulation of somatic mutations, telomere 
shortening, protein damage, or mitochondrial dysfunction (Kriete et al. 2011).

In a different theory of the mechanism of aging increase of unrepaired molecular 
damage which ultimately cause to cellular defects and age-related diseases 
(Kirkwood 2005). Regarding aging, exposure to sources of damage will definitely 
affect life span. Additional factors consist of genetics, epigenetics, diet, physical 
activity, and chance (Jansen-Dürr and Osiewacz 2002).

Life span could be dignified by the equilibrium between cellular damage of met-
abolic procedures happening within the cell and molecular reactions that can repair 
the injury. Oxygen might produce oxygen radicals at the mitochondrial and peroxi-
somal level, which may attack DNA, protein, cell membranes, and organelles. In 
elderly buildup of altered macromolecules and membranes may damage cell func-
tioning and accelerate the aging process (Bergamini et al. 2004). Autophagy plays 
very crucial part in the degradation of damaged organelles including mitochondria 
(Jin 2006) and effective antiaging cell repair mechanism responsible for the antiag-
ing activity of caloric restriction (CR). CR, or energy restriction, is a dietary regi-
men that reduces calorie intake without incurring malnutrition or a reduction in 
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essential nutrients. Period and level of CR have significant results on the antiaging 
effects. Research supports that autophagy has a chief role in the delay of the aging 
process by antiaging interventions like CR. Antioxidant drugs for clinical use are 
promising for retardation of aging and age-associated diseases. Geriatric studies 
which involve aging mechanisms at the molecular and cellular levels are opening 
important new windows into understanding aging (Cavallini et al. 2008).

14.4  Aging and the Brain

Aging brain causes many neurodegenerative diseases. It was shown that the antioxi-
dant enzymes SOD, catalase, glutathione peroxidase, and glutathione reductase are 
not present in high quantities in the brains of Alzheimer’s patients (Pappolla et al. 
1992). ROS of mitochondrial basis are responsible of the major mtDNA injury. This 
may be due to a lack of mtDNA mending mechanisms and the absence of the 
defense by histone proteins (Barja 2004). Due to the high mutation rate of mtDNA, 
as the amount of mutant mtDNA growths, the cellular energy declines (Yoneda 
et al. 1995). Data have shown that oxidative-induced mutations in mtDNA increased 
with age and stored in the brain (Chomyn and Attardi 2003). Many age-related dis-
eases such as Alzheimer’s and Parkinson’s diseases have been shown to be related 
with excess quantity of mtDNA mutations. OS is one of the important reasons to Aβ 
accumulation and has a crucial role in the pathogenesis of AD (Bekris et al. 2010; 
Chen and Zhong 2014) and similarly in Parkinson’s diseases (Hwang 2013).

Numerous clinical complications in the elderly are associated with nervous sys-
tem aging, including loss of cognition, awareness, memory, some gastrointestinal 
problems, and balance impairment. There are some aging theories linked to signal-
ing pathways have been developed. The most considerable is that of free radicals, 
which describes the important role of antioxidants such as MLT. In aging membrane 
fatty acid structure is affected such as reduction in the levels of polyunsaturated 
fatty acids (PUFAs) and an escalation in monounsaturated fatty acids. PUFAs, such 
as arachidonic acid, are decreased in the hippocampus of aged rats and forms malo-
ndialdehyde (MDA), which causes DNA damage (Head et al. 2002). In the aged 
brain, high amount of MDA is present. 4-Hydroxy-2-nonenal (HNE), the peroxida-
tion of linoleic acid, is more stable than free radicals and causes more injury in the 
brain (Papaioannou et al. 2001). One of the significant indicators of aged brain is 
increased levels of HNE which have also been found in Alzheimer’s and Parkinson’s 
disease (Zarkovic 2003).

Data shows that aging brains have high amount of oxidized mitochondrial 
proteins which have increased levels of protein carbonyl groups. Protein oxidation 
is one of the main reasons of weakening in physiological functioning that goes 
along with aging (Cakatay et al. 2001; Nicolle et al. 2001). An important number 
of expressed microRNAs (miRNAs) are differentially regulated during aging, 
 associating miRNAs as regulators of brain aging. miRNA-mediated, brain func-
tional changes are effective on life span.
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14.5  Antioxidant Properties of Melatonin

N-Acetyl-5-methoxytryptamine is a hormone known as MLT (Fig.  14.1). In a 
healthy circadian cycle, MLT is released by the pineal gland in the brain as well as 
many other organs including the retina, skin, cerebellum, liver, kidneys, ovary, and 
pancreas when it starts to get dark (Reiter et al. 2003; Vriend and Reiter 2015). MLT 
is known to be produced in the plant kingdom as well (Reiter et  al. 2015). The 
research has been shown that it is an amazing molecule. Besides its regulatory role 
in circadian rhythms, there are many other functions that MLT shows such as anti- 
inflammatory properties (Carrillo-Vico et al. 2005; Chahbouni et al. 2010), homeo-
static effects in the mitochondria (Paradies et  al. 2010), and inhibition of cancer 
progression (Jung-Hynes et al. 2010). Several of these activities are facilitated by 
G-protein-coupled MLT receptors in cellular membranes; other activities appear to 
contain its interface with orphan nuclear receptors and with molecules. MLT’s 
capacity to scavenge ROS is receptor-independent. This ability makes it challenging 
to define precisely how MLT functions to exert its actions. We know that MLT 
contribute to improve cellular and organismal physiology (Suzen 2007; Reiter et al. 
2010a, b).

MLT is synthesized using a four main steps starting from the precursor tryp-
tophan (Fig.  14.2). It is hydroxylated by tryptophan hydroxylase to 
5- hydroxytryptophan which then decarboxylated by aromatic-L-amino acid decar-
boxylase to give serotonin. Serotonin carry on to either MLT synthesis or go 
through different metabolic pathways. For MLT synthesis, serotonin is acetylated 
with serotonin N- acetyltransferase on its free amine and then O-methylated on the 
hydroxyl group by hydroxyindole-O-methyltransferase to form MLT (Hardeland 
2010; Tan et al. 2015). Approximately 90% of MLT is cleared in a single passage 
through the liver. A small quantity of unmetabolized MLT is excreted in the urine 
(Vijayalaxmi et al. 2002).

MLT was recognized as a potent free radical scavenger (Tan et al. 1993, 2002) 
and effective antioxidant (Reiter et al. 2000; Rodriquez et al. 2004). This necrohor-
mone is able to scavenge many different types of reactive oxygen and nitrogen spe-
cies mainly hydroxyl radical, hydrogen peroxide, singlet oxygen, nitric oxide, and 
peroxynitrite anion (Reiter et al. 2003). The structure-activity relationships show 
that the indole ring of the MLT molecule is the reactive center dealings with oxidant 
species with the contribution of the methoxy and amide side chains (Karaaslan and 
Suzen 2015; Suzen 2015).

Fig. 14.1 Chemical 
formula of melatonin
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In vivo efficiency of MLT could be due to the cascade of its antioxidant metabo-
lites (Hardeland et  al. 2009). It is interesting that MLT does not redox-cycle in 
contrast with biological antioxidants like vitamin C, α-tocopherol, lipoic acid, etc. 
It behaves like “suicidal antioxidant” by performing molecular rearrangement and 
removing the free electron from the system (Johns and Platts 2014) (Fig. 14.3).
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MLT is very active as an antioxidant at the mitochondrial level when compared 
with synthetic antioxidants and accomplished better in decreasing damage to this 
organelle. After administration MLT is absorbed in very good quantity and accumulate 
in the matrix of mitochondria. MLT can be categorized as a naturally synthesizing 
mitochondrial-targeted antioxidant due to its easy access to mitochondria either via 
production in mitochondria or consumed in the diet (Reiter et al. 2014).

MLT is a powerful antioxidative agent also by secondary effects by enhancing 
activity of antioxidative enzymes (Fischer et al. 2008) such as manganese superoxide 
dismutase (MnSOD), copper-zinc superoxide dismutase (Cu/Zn-SOD), GPx and 
gamma-glutamylcysteine synthetase (γ-GCS), and glutathione (GSH) (Martín et al. 
2002). This effect may be possible through a connection of membrane and/or 
nuclear MLT receptor activation (Kleszczynski and Fischer 2012).

14.6  Melatonin and Aging

Aging is characterized by a progressive decline of physiological functions and 
metabolic processes. Even though not much is known about the exact physiological 
mechanisms of age-related changes in the body, it can be said that mainly the 
changes happen in the suprachiasmatic nucleus (Wu and Swaab 2005).

MLT due to its known powerful ROS combating properties has attracted many 
attentions. MLT has also a definite immunomodulatory action both in mammals. 
The age-related weakening of the immune system occurs with the decrease of 
plasma MLT concentration (Esquifino et al. 2004). Furthermore, MLT shows valued 
antiaging effects in rats and protects cells from lipid peroxidation and other damag-
ing progressions associated with OS (Paradies et al. 2010). The age-related decrease 
in serum MLT levels may play an important part in the raised oxidative damage in 
the elderly (Reiter et al. 2002). Low-dose and long-term treatment of MLT against 
age-induced OS in mice tissues, namely, the brain, liver, spleen, and kidney, exhib-
ited significant drop in the level of GSH, GSH-Px, and alkaline phosphatase activity 
(Manda and Bhatia 2003).

Mitochondria are responsible for definite serious process such as the generation 
of ATP. During this process mitochondria also are a main location for the production 
of ROS which needs to be scavenge before they damage organelles (Murphy 2009). 
The mitochondrial theory is one of the main aging theories. Oxidative damage of 
mitochondria could be responsible to many serious pathologies and especially to 
aging. There are some evidences related to use of antioxidants to prevent aging, but 
this is sparse concerning the actual application of regularly used antioxidants to 
influence the progression of the diseases or aging (Reiter et al. 2016).

Existence of MLT in different compartments in the body showed that very high 
amount is present in the skin (Fischer et al. 2006). This amount is may be 10- to 
1000-fold higher than in the plasma (Reiter and Tan 2003; Reiter et al. 2005). It was 
found that melatoninergic antioxidative system (MAS) in the skin is modifying skin 
homeostasis and takes an important part to prevent the harmful UV solar skin injury 
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(Slominski et  al. 2005). It is important to apply MLT before the UV irradiation 
(Dreher et al. 1998).

MLT has many attractive features for pharmaceutical use. MLT has many advan-
tages like very low toxicity (Jahnke et  al. 1999) and easily crossing physiologic 
barriers (Ceraulo et al. 1999; Bonnefont-Rousselot and Collin 2010). In addition to 
these advantages, MLT antioxidant capacity does not decline after being metabo-
lized (Tan et al. 2001; Galano et al. 2013; Gurer-Orhan and Suzen 2015). Therefore, 
it is not unexpected that there are many research-related MLT and synthetic deriva-
tives for several purposes (Suzen 2013; Galano 2016). The decline of MLT secre-
tion in older ages depends on the degeneration of the serotonergic and noradrenergic 
neuron systems. This follows by the demolition of ovarian cyclicity which is related 
to MLT or by 5-hydroxytryptophan administration (Rúzsás and Mess 2000). Studies 
are demonstrating that dietary MLT supplementation has useful effects against age- 
related bone loss in old rats. Rats administrated with MLT had bigger bone volume 
and improved microstructure of aged bones against the control group (Tresguerres 
et al. 2014).

Sirtuins (SIRTs1–7) are a class of proteins that possess either mono-ADP- 
ribosyltransferase or deacylase activity and regulate the cell cycle, DNA repair, cell 
survival, and apoptosis. Therefore recently they are favorable in many pharmaco-
logical procedures and research in antiaging, cancer, or neurodegenerative diseases 
(Mayo et al. 2017). It was found that in yeasts there are some cellular factors called 
“silent information regulator” (Sir2 or sirtuin) which is present in human in seven 
forms (Blander and Guarente 2004). Many studies show the increase in activity, 
particularly on SIRT1, after MLT administration. A study showed that administra-
tion of MLT for dentate gyrus of rats reduced the OS as well as significantly 
increased SIRT1 levels (Kireev et al. 2013, 2014). SIRT1 have significant consider-
ation as mediators of life span extension in some model organisms. Induction of 
SIRT1 expression also reduces neuronal degeneration in AD and HD. Tajes et al. 
(2009) observed that MLT is able to act like SIRT1 inducer and increases the level 
of young neurons.

Obviously SIRT1 is associated with the aging process. Since there is natural 
decrease in nighttime MLT levels in older age, it was suggested that this situation 
may increase the development of aging-related diseases such as cancer risk (Jung- 
Hynes and Ahmad 2009). Studies showed that SIRT1 is overexpressed in prostate 
cancer cells and MLT administration (20 mg/L) in drinking water reduced tumor 
growth (Jung-Hynes et al. 2011). Inhibition of SIRT1 activity by sirtinol improves 
the antitumor activity of MLT in a human osteosarcoma (Cheng et al. 2013). Chen 
et al. (2015) proved that SIRT3 facilitates the antioxidant activity of the MLT in 
hepatocytes. SIRT1, p53, and eNOS are some of the key indicators of progressive 
vascular dysfunctions associated with aging. MLT stimulates SIRT1  in primary 
neurons of young animals, as well as in aged neurons. It evidently improves the 
endothelial injury and reduced loss of SIRT1 by decreasing p53 expression 
(Rodella et al. 2013).

Aging is related with many physiological processes. One of them is immunose-
nescence which is a decline of immune function characterized by a decrease in the 
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functional activity of natural killer cells, granulocytes, and macrophages. MLT has 
been confirmed to have an immunoenhancing influence in mammals (Nelson 2004; 
Espino et al. 2012). Knowing that MLT is synthesized also by human lymphocytes 
supports the MLTs action in the regulation of the immune system (Carrillo-Vico 
et al. 2004). It induces production of interleukin-2 (IL-2), interleukin-6 (IL-6), and 
interleukin-12 (IL-12) and helps to reduction of CD8+ cells (Srinivasan et al. 2005).

Due to the biphasic chemical structure of MLT, it is able to diffuse straightfor-
wardly in every skin and cell compartment. UV-exposed skin assists MLT metabo-
lism to produce antioxidant MLT metabolites which can protect the skin cells from 
ROS (Tan et al. 2000, 2007). Molpeceres et al. (2007) investigated the daily MLT 
supplementation on liver apoptosis induced by aging in rats. Results revealed that 
liver apoptotic cell death which is increased by ROS was prevented by antioxidant 
properties of MLT.

One of the sources of hydroxyl radical is UV irradiation. When hydroxyl radical 
produced in the skin reacts directly with MLT (Berneburg et al. 1999). The products 
of the reaction of MLT and hydroxyl radical are 2-OH-MLT and 4-OH-MLT which 
are then metabolized to AFMK and AMK (Hardeland et al. 1993). MLT and antioxi-
dant metabolites are able to scavenge hydroxyl radicals occurring under UV solar 
radiation and play an important role to reduce lipid peroxidation, protein oxidation, 
mitochondrial damage, and DNA damage. MLT is a promising molecules to protect 
the skin from aging. There is a strong indication that MLT may prevent UV injury 
if it is administrated before UV irradiation in applicable concentrations right at the 
irradiation site (Fischer et al. 2002; Lee et al. 2003).

After pinealectomy it is possible to observe morphometric and biochemical 
changes such as thickness of epidermis and dermis on skin architecture due to the 
lack of MLT secretion. Exogenous MLT administration to pinealectomized rats 
expressively improved these changes in all body areas and increased the levels of 
antioxidant enzymes, catalase and glutathione peroxidase (Eşrefoğlu et al. 2005). 
There is evidence that MLT administration to pinealectomized rats protects the 
cells. There is no nuclear irregularity and heterochromatin condensation present in 
the cell, and most importantly mitochondrion which is the main related factor to 
skin aging is undamaged. Data show that MLT has powerful therapeutic effects in 
healing age-related damage (Eşrefoğlu et al. 2006). Indeed MLT effect on the myo-
cardial mitochondria of aged rats is found significant. In the MLT administrated 
group, ATP levels, cyt-c levels, and Bcl2 and Bax ratios were found significantly 
higher compared with the control group. Data propose that MLT has a protecting 
effect on mitochondrial function in aged rat (Guo et al. 2017). MLT precursor and 
metabolite N-acetylserotonin (NAS) might display antiaging activity like MLT on 
mice. Both NAS and MLT after 4 weeks of treatment significantly improved the 
antioxidant ability of the brain (Oxenkrug et al. 2001).

Ability of MLT interacts with many forms of free radicals such as H2O2, •OH, 
singlet oxygen (1O2), superoxide anion (•O2

−), peroxynitrite anion (ONOO−), and 
peroxyl radical (LOO•), and antioxidant activity indicates a free radical scavenger 
cascade in case of UV irradiation (Fischer et al. 2006; Tan et al. 2007). Evidence 
proposes that both aging and cancer are related due to DNA damage caused by ROS 
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(Longo et al. 2005). Anisimov et al. (2003, 2006) showed that lower doses of MLT 
treatment did decrease the body weight of mice and increased life span of the last 
10% of the survivors as well as significantly decreased tumor incidence. This data 
reveals that MLT act as a dose-dependent geroprotector.

The effect of MLT on life span was very significant on fruit flies. The maximum 
life span was determined 61.2 days in controls and 81.5 days in the MLT adminis-
trated group. The results also revealed that MLT administration made fruit flies 
stronger against superoxide-type free radicals. A similar study showed that MLT, 
addition daily to the nutrition medium at a concentration of 100 μg/ml, meaning-
fully increased the life span of the D. melanogaster Oregon wild strain (Bonilla 
et al. 2002).

After having MLT in the night drinking water (10 mg/l) since the age of 3 months 
until natural death, survival of LIO rats was found expressively higher against con-
trol group (80% and 57%, respectively, p < 0.05) (Vinogradova et al. 2005). Both 
MLT and its metabolite NAS administered in C3H mice with drinking water pro-
longed life span in male animals by about 20% versus control animals (p < 0.01) 
(Oxenkrug et al. 2001). Studies showed that life span-promoting activity of MLT 
may be due to activation of SIRT1 (Ramis et al. 2015). SIRT1-mediated mitochon-
drial biogenesis may reduce the manufacture of ROS, a potential source of aging 
(Guarente 2007).

Female fertility is adversely affected by aging, with a decline in oocyte quality 
being the major contributing factor for female infertility with ovarian aging. 
Female fertility is adversely affected by aging, with a decline in oocyte quality 
being the major contributing factor for female infertility with ovarian aging. At 
both physiological and pharmacological concentrations, MLT reduces OS and 
adjusts cellular metabolism. Research of reproductive physiology proves the role 
of MLT in reproduction system. MLT has cytoprotective effects due to it has anti-
oxidant properties. Long-term MLT administration prevents ovarian aging in mice. 
MLT shows various functions at different phases of follicle growth. Data shows 
that delay in ovarian aging take places via several mechanisms mainly related to 
MLT’s antioxidant properties (Cruz et  al. 2014; Tamura et  al. 2014, 2017). 
Neurodegenerative diseases such as Huntington disease (HD) and AD are chronic, 
progressive diseases and described by the damage of mental functions and loss of 
memory. Studies proved that in AD patients MLT inhibits the amyloidogenic action 
of β-amyloid protein. Evaluation of the neuroprotective activity of MLT in AD is 
promising and competent to be an anti- AD therapy (Shukla et al. 2017). Due to 
MLT’s antioxidant potential and anti- amyloid activity, it is not unexpected that 
MLT is defensive in many age-related diseases. Long-term MLT treatment pro-
duces anti-amyloid and antioxidant effects before the amyloid formation in the 
brain (Zhang et al. 2004). MLT treatment has been proposed to increase circadian 
rhythmicity by reducing agitated behavior and confusion and produce valuable 
effects on memory in AD patients (Cohen- Mansfield et al. 2000). This may be one 
of the potential approaches for symptomatic treatment.
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14.7  Conclusions

Aging of the skin is a complicated progression involving many endogenous factors 
and numerous environmental factors. Dermatological research in the area of 
dermato- endocrinology is hopeful to develop effective antiaging agents from 
extremely promising MLT and related MLT derivatives (Kleszczynski and Fischer 
2012). MLT has attracted a great deal of exploratory consideration. Research shows 
that there are numerous MLT-related compounds as a result of its promising phar-
macological activities (Galano et al. 2017).

MLT seems to have substantial antiaging properties (Reiter et al. 2000). Search 
for a pharmaceutical agent that can increase the quality of life in the elderly sug-
gests that the agent definitely have antioxidant and immunoenhancing properties. In 
this perspective, the role for MLT in our lives is undiscussable.

Data underlined that some of the harmful effects of OS in elderly may be pre-
vented. So, therapies focused on reducing OS are beneficial. Use of MLT could 
prevent or delay the weakening of the immune system which is closely related with 
aging (Yoo et  al. 2012). Similarly, dietary intake of MLT showed a reduction in 
proinflammatory markers and increase in anti-inflammatory markers in serum 
(Delgado et al. 2012). Depending on these findings and with lack of toxicity, high 
lipophilicity, and antioxidant properties, MLT is one of the most attractive mole-
cules to be inspected in relation to age-associated diseases and should be supposed 
as a promising molecule to increase the quality of life in aging population.

Mitochondria are responsible for definite serious process such as the generation of 
ATP. During this process mitochondria also are a main location for the production of 
ROS which needs to be scavenge before they damage organelles (Murphy 2009). The 
mitochondrial theory is one of the main aging theories. Oxidative damage of mito-
chondria could be responsible to many serious pathologies and especially to aging. 
There are some evidences related to use of antioxidants to prevent aging, but this is 
sparse concerning the actual application of regularly used antioxidants to influence 
the progression of the diseases or aging (Hardeland 2012; Reiter et al. 2016).
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Abstract
Mediterranean diet consists of fresh fruits, vegetables, legumes, whole grains, 
fish, olive oil, garlic, and red wine. Levels of saturated fats are very low in 
Mediterranean diet. Among Mediterranean diet components, fresh fruits and 
vegetables provide various vitamins, carotenoids, flavonoids, fiber, and metal 
ions (potassium, magnesium, and calcium). Fish provides eicosapentaenoic and 
docosahexaenoic acids; olive oil is enriched in polyphenols (tyrosol, hydroxyty-
rosol, and oleuropein); red wine contains resveratrol; and garlic is enriched in 
sulfur compounds (alliin, allicin, S-allyl cysteine, and diallyl trisulfide). High 
levels of free radicals and neuroinflammation play an important role in cardio-
vascular diseases, type 2 diabetes, and neurological disorders. Mediterranean 
diet-derived metabolites are known to block free radical damage and retard neu-
roinflammation in above pathological conditions. Collectively, these studies 
indicate that the consumption of Mediterranean diet from the childhood to the 
old age not only leads to decrease in cardiovascular diseases, type 2 diabetes, and 
many types of cancers but also slows the onset of neurological disorders.
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15.1  Introduction

Aging is a complex and multifactorial process, which is driven by the induction of 
oxidative stress, onset of persistent low-grade inflammation, energy failure, and 
mitochondrial dysfunction along with shortening of telomeres. These processes 
contribute to various structural, functional, and metabolic changes in the brain, 
leading to cognitive decline and increase in the vulnerability to chronic visceral 
and brain diseases (diabetes, metabolic syndrome, cancer, and neurodegenerative 
diseases)”. The onset of these diseases produces cognitive decline, eventually 
resulting in cell death. The cognitive decline in old age not only slows processing 
and encoding of new information into episodic memory, but markedly affects the 
ability to recall semantic knowledge, which remain relatively stable in the adult life 
span (Park and Payer 2006). Cognitive decline is modulated by several factors 
(Fig. 15.1). Collective evidence suggests that age-related decline in cognitive func-
tion is caused by (a) changes in gray matter and white matter volumes and deterio-
ration of neuronal and mitochondrial membranes (Giorgio et al. 2010; Thambisetty 
et al. 2010), (b) alterations in cerebral blood flow (CBF) to the brain regions (Lu 
et al. 2011), and (c) decrease in functional connectivity in these regions (Geerligs 
et al. 2015). In addition to abovementioned changes in the brain, age-related cogni-
tive decline is also affected by the decrease in the monoaminergic neurotransmis-
sion (Bäckman et  al. 2006, 2010), insulin resistance, alterations in endothelial 
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function, decrease in hormone, and changes in the brain-derived neurotrophic fac-
tor (BDNF) levels. In addition, aging is also accompanied by decrease in p-CREB 
(phosphorylated cAMP response element-binding protein) and reduction in neuro-
peptide Y (NPY) (Hattiangady et al. 2005) and lack of social network. These alter-
ations in neurotransmitter and growth factor signaling produce reductions in 
synaptic density and plasticity (adaptability) (Sametsky et al. 2010) and produce 
50% reduction in the length of myelinated axons (Rabbitt et al. 2001), making the 
brain networking increasingly less efficient with aging. Furthermore, in the frontal 
cortex after age 40, there is reduction in expression of genes related to synaptic 
plasticity, vesicular transport, and mitochondrial function (Lu et al. 2004). These 
processes modulate the age-dependent cognitive decline. The most important bio-
logical marker of aging is the shortening of telomere. It not only affects life expec-
tancy but also increases the individual susceptibility to the development of chronic 
visceral and neurodegenerative diseases (Paul 2011; Rafie et al. 2017). Lifestyle 
(diet and exercise) and metabolic factors (particularly an increased visceral adi-
pose tissue and circulating glucose levels) promote rapid shortening of telomeres 
and decrease in telomerase activity, suggesting the key role of the environmental 
factors in the cellular senescence (Epel et al. 2006). It is hypothesized that success-
ful cognitive aging requires interactions between neural plasticity and cognitive 
plasticity (Greenwood and Parasuraman 2010). Age-related decline in cognitive 
function can be improved by the healthy lifestyle (long-term consumption of 
Mediterranean diet and exercise) to increase insulin sensitivity with the addition of 
cognitive training protocols (Chapman and Mudar 2014; Chapman et al. 2015) as 
well as physical exercise regimens (Chapman et al. 2013; Farooqui 2014) to main-
tain cognition. Consumption of Mediterranean diet and exercise are known to pro-
mote and maintain cognitive gain, which is linked with increases in cerebral blood 
flow, functional connectivity, and signal transduction processes associated with 
neural cell survival (Farooqui 2014). The main objective of this chapter is to pres-
ent readers with the beneficial effects of components of Mediterranean diet on 
signal transduction processes related to healthy brain function.

15.2  Components of Mediterranean Diet

Mediterranean diet contains many nutrients, vitamins, and minerals (Farooqui 
2012). Regular intake of Mediterranean diet slows the age process by retarding free 
radical damage, reducing neuroinflammation, and supporting, maintaining mito-
chondrial function, and increasing longevity (Farooqui 2012). Flavonoids induce 
their effects by modulating and maintaining cognitive functions through the increase 
in cerebral blood flow, inhibiting oxidative stress-mediated neuronal damage, reduc-
ing neuroinflammation, and stimulating neuronal signaling pathways that involve 
serine/threonine-specific protein kinase (Akt), extracellular signal-regulated kinase 
(ERK), and elevation in the expression of brain-derived neurotrophic factor (BDNF) 
(Miller and Shukitt-Hale 2012; Rendeiro et al. 2013). Flavonoids also contribute to 
the regulation of carbohydrate digestion, insulin secretion, insulin signaling, and 
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glucose uptake in insulin-sensitive tissues through various intracellular signaling 
pathways (Hanhineva et al. 2010).

Olive oil constituents (tyrosol, hydroxytyrosols, oleocanthal, and oleuropein) and 
garlic components (allicin, alliin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, 
S-allyl cysteine, ajoene) induce antioxidants and anti-inflammatory effects (Fig. 15.2). 
Similarly, fish is enriched in omega-3 fatty acids (EPA; 20:5n3) and docosahexaenoic 
acid (DHA; 22:6n3) (Fig. 15.2). These fatty acids are transformed by 15-lipoxygen-
ases into docosanoids (resolvins, neuroprotectins, and maresins) (Serhan 2008; 
Farooqui 2012). Docosanoids induce antioxidant, anti-inflammatory, and antiapop-
totic properties. Red wine contains a polyphenol called resveratrol (Fig.  15.2). 
Resveratrol promotes antiaging, cardioprotective, and cerebroprotective effects.

Regular consumption of Mediterranean diet components slows cognitive decline 
by preventing free radical damage (oxidative stress) to neural cell components and 
inhibiting neuroinflammation (Farooqui 2012). Furthermore, regular consumption 
of Mediterranean diet also retards the onset of type 2 diabetes and metabolic syn-
drome. These pathological conditions may contribute to the development of stroke, 
Alzheimer’s disease, and depression. Long-term intake of Mediterranean diet 
increases longevity not only by protecting the telomere length (Lopez-Miranda 
et al. 2007, 2012; Boccardi et al. 2013) but also by producing antiproliferative, 
antiviral, and hypocholesterolemic effects (Joseph et al. 2007).
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15.3  Effects of Mediterranean Diet-Derived Mediators 
on Aging, Type 2 Diabetes, and Neurological Disorders

Aging is accompanied by the loss of several functions such as thinking, remembering, 
and reasoning that interfere with daily activities. Individuals with cognitive dysfunc-
tion lose ability to learn, recall, concentrate, and problem-solve. Cognitive function is 
regulated not only by neurochemical and intricate synaptic changes but also by neuro-
nal and glial interactions (Morrison and Baxter 2012). Decline in cognitive function 
predisposes individuals to dementia and neurological and psychiatric disorders, even-
tually affecting the quality of life. The regular consumption of Mediterranean diet 
slows the progression of cognitive decline. The Alzheimer’s Society recommends the 
consumption of Mediterranean diet. This approach not only slows aging but also 
improves memory by decreasing cognitive dysfunction (Alzheimer’s Society 
Mediterranean Diet 2016; Aridi et  al. 2017). Investigators have developed various 
cognitive tests to measure cognitive dysfunction. These tests include patient’s 
responses to questionnaires, determination of blood components, brain scans, per-
sonal history, and a specific cognitive test. Cognitive testing can range from a few 
minutes to more than 2 h (Alzheimer’s Australia Tests 2016). Many lifestyle-related 
factors, such as heart disease, diabetes, depression, excessive consumption of alcohol, 
smoking, lack of exercise, and poor dietary habits (Alzheimer’s Association 2016), 
play an important role in the maintenance of our health. These factors are reversible. 
However, age and family history are irreversible factors, which are not affected by the 
lifestyle-mediated changes. In a study of 2258 community-dwelling, non-demented 
New Yorkers, intake of Mediterranean diet decreases the onset of Alzheimer’s disease 
over an approximately 4-year period compared to individuals who poorly consumed 
Mediterranean diet. These individuals have an approximately 40% greater risk of 
onset of AD (Scarmeas et al. 2006). The Mediterranean diet consumption reduces 
cognitive impairment during aging. However, this controversial issue is still under 
investigation. At least two studies on the basis of MRI study has demonstrated that 
regular intake of Mediterranean diet not only preserves cortical thickness (Mosconi 
et al. 2014) References of Mosconi et al have been repeated. Please give one reference 
and remove a and b. Results based on meta-analysis of several studies have indicated 
that regular consumption of the Mediterranean diet decreases mild cognitive impair-
ment (MCI) by 27% and chances of developing AD by 36% among cognitively nor-
mal adults (Singh et al. 2014). Aging process substantially decreases hippocampal 
neurogenesis, a process by which stem cells in the hippocampus transform themselves 
into new mature neurons that may integrate into the local circuitry. These observations 
suggest that neurogenesis is not only closely associated with neural plasticity and 
brain homeostasis but also plays an important role in preserving the cognitive function 
and repairing the damaged brain cells in the aging brain (Kuhn et al. 1996; Rao et al. 
2005, 2006; Drapeau and Abrous 2008).

Type 2 diabetes, a lifestyle pathological condition, is linked with heart dis-
ease, peripheral vascular disease, nephropathy, blindness, as well as stroke, 
Alzheimer’s disease, and depression (Farooqui 2013). Regular consumption of 
Mediterranean diet not only reduces the risk of onset of type 2 diabetes but also 
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delays the induction of neurological disorders by decreasing the oxidative stress, 
neuroinflammation, and insulin resistance and stimulating the immune system. The 
reduction in above parameters preserves cognitive function, reduces platelet aggre-
gation, and regulates hormonal metabolism. In contrast, regular intake of Western 
diet, which is enriched in simple sugars; high in saturated fat, protein, and salt; and 
low in fiber, increases the risk of type 2 diabetes, stroke, AD, and depression 
(Farooqui 2013, 2015). Oleuropein, which is a constituent of olive oil (Fig. 15.2), 
increases the total antioxidant capacity in plasma of healthy elderly people (Oliveras- 
López et al. 2013). Oleuropein also increases catalase activity in erythrocytes and 
decreases superoxide dismutase and glutathione peroxidase activities (Oliveras- 
López et al. 2013). By binding to Aβ peptide, oleocanthal induces the morphologi-
cal and functional changes in neurons, which contributes to the pathogenesis of 
AD. Oleocanthal nonselectively inhibits cyclooxygenase (COX) activity (Abuznait 
et  al. 2013). The treatment of mice with oleocanthal for 1 month significantly 
reduces levels of Aβ not only in the hippocampus but also in cerebral microvessels 
(Abuznait et al. 2013), suggesting that this component of olive oil may slow the 
development of AD by blocking the production of Aβ (Lopez-Miranda et al. 2007; 
Sofi et al. 2008) and reducing the activation of astrocytes and microglia. Activation 
of glial cells contributes to increase in neuroinflammation through the upregulation 
and elevated secretion of proinflammatory cytokines.

Organosulfur compounds of garlic are metabolized by the humans. Thus, 
γ-glutamyl-cysteine is converted to alliin (+S-allyl-L-cysteine sulfoxide), which is 
then transformed into allicin (thio-2-propene-1-sulfinic acid S-allyl ester). This 
metabolite acts as antibiotic. It is a stronger antibiotic than penicillin or tetracycline. 
It stimulates humoral and cell responses of the immune system. Upon heating in the 
presence of oxygen, allicin is transformed into ajoenes [(E, Z)-4,5,9-trithiadodeca- 
1,6,11-triene 9-oxides], which possess many pharmacological activities, including 
antithrombotic, lipoxygenase inhibitory, fibrinolysis enhancing, and platelet activa-
tion inhibiting effects along with antimicrobial, anticancer, and cholesterol- lowering 
effects (Powolny and Singh 2008). In aqueous solutions, allicin quickly decom-
poses to several other small sulfur-containing metabolites (Amagase et al. 2001). 
These metabolites produce antioxidant, anti-inflammatory, antidiabetic, anti- 
atherosclerosis, antimicrobial, anticancer, and immune-modulatory effects. 
Abovementioned effects are produced by the modulation of NF-κB and Nrf2. Thus, 
downregulation of NF-κB by organosulfur compounds of garlic retards the produc-
tion and secretion of TNF-α, IL-1β, IL-6, and chemokines (Ho and Su 2014; Xiao 
et al. 2012). Organosulfur compounds of garlic produce antioxidant effects by stim-
ulating Nrf2 pathway. Under physiological conditions, Keap1 and Nrf2 complex is 
present in the cytoplasm (Suzuki and Yamamoto 2015). In the presence of organo-
sulfur compounds of garlic, Nrf2 translocated from cytoplasm to the nucleus, where 
in the presence of Maf, it interacts with ARE and modulates the induction of anti-
oxidant enzymes, which plays an important role in neuroprotection.

Fish contains EPA and DHA. EPA is metabolized by 15-lypoxygenase (15-LOX) 
into three-series prostaglandins and thromboxanes, five-series leukotrienes, and 
E-series resolvins (resolvin E1 or RvE1). The oxidized metabolites of EPA induce 
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anti-inflammatory and antiproliferative effects. Moreover, EPA is also oxidized by 
5-cyclooxygenase (5-COX) and 5-lipoxygenase (5-LOX). These enzymes produce 
three-series prostaglandins and thromboxanes and five-series leukotrienes, respec-
tively. The biological effects of these metabolites are different from the correspond-
ing metabolites of arachidonic acid (ARA). Thus, EPA-derived PGE3, LTB5, and 
TXA3 produce less efficient aggregation of blood platelet than ARA-derived PGE2, 
LTB4, and TXA2. Similarly, PGE3, LTB5, and TXA3 produce less vasoconstrictive 
effect on blood vessels than PGE2, LTB4, and TXA2 (Calder 2009). 15-LOX trans-
forms EPA into resolvins of the E series (Arita et al. 2006, 2007), including resolvin 
E1 and resolvin E2. RvE1 and RvE2 produce strong anti-inflammatory and pro- 
resolution effects in vivo (Arita et al. 2006). RvE1 and RvE2 interact with their G 
protein-coupled receptors (see below). RvE1 suppresses the activation of NF-κB and 
reduces the expression of tumor necrosis factor-α (TNF-α) through binding with 
PMN (Arita et al. 2007).

The 15-LOX-like enzyme transforms DHA into resolvins D1–D6 (RvD1, RvD2, 
RvD3, RvD4, RvD5, and RvD6). DHA is also metabolized by COX-2 in the presence 
of aspirin. This leads to the production of D-series resolvins (AT-Rv). In humans 
and mouse, these metabolites produce their anti-inflammatory and pro- resolutionary 
effects by interacting with neutrophils and glial cells. In microglial cells, both 17S 
and 17R D-series resolvins inhibit the expression of proinflammatory cytokines 
(Serhan 2008; Serhan et al. 2008). Resolvins act through specific receptors called 
resolvin D receptors (resoDR1) (Serhan 2008; Serhan et  al. 2008). Interactions 
between D-series resolvins and resoDR1 regulate neuroinflammation and immuno-
regulatory function in the brain. In the brain, D-series resolvins not only inhibit the 
expression of cytokines (TNF-α, IL-1β, and IL-6) but also regulate the trafficking of 
leukocytes at the injury site (Serhan et al. 2008). 15-LOX also converts DHA into 
protectin D1 (PD1). In the brain this metabolite is known as neuroprotectin D1 (Hong 
et  al. 2003). NPD1 reduces stroke-mediated neuronal injury (Marcheselli et  al. 
2010) and induces neural cell survival by stimulating neuroprotective gene- 
expression programs and initiating its antiapoptotic effects. These processes also 
suppress Αβ42-mediated neuronal cell death in AD (Lukiw et al. 2005). Furthermore, 
DHA and NPD1 promote neuroprotective effects by maintaining the integrity of 
synapses and decreasing the number of activated microglia in the hippocampus 
(Pomponi et al. 2008). In macrophages, DHA is also oxidized by a 14-LOX. The 
action of this enzyme results in the formation of new metabolite called as maresin 
(MaR1) (Fig. 15.4). This metabolite is involved in the termination of PMN infiltra-
tion, as well as stimulation of macrophage phagocytosis. 7S,14S-diHDHA, an iso-
mer of MaR1, is also produced by macrophages. This isomer is less active than 
MaR1 in terminating PMN infiltration. This observation suggests that DHA pro-
duces several MaRs, which may stereoselectively regulate catabasis and facilitate 
arrival of tissues to homeostasis (Serhan et al. 2009).

Resveratrol is a polyphenolic trans-stilbene (Fig. 15.2), which has the ability to 
cross blood-brain barrier (BBB), inhibits oxidative stress, and attenuates neuroin-
flammation. The bioavailability of resveratrol is low because it is metabolized into 
glucuronide and sulfate derivatives. Resveratrol acts by stimulating Sirtuin (SIRT1). 
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This enzyme regulates transcription, metabolism, and cellular stress response 
(Alcain and Villalba 2009). Sirtuin also blocks the activation of microbial cells by 
inhibiting the activation of NF-κB and retarding the expression of proinflammatory 
cytokines (Capiralla et al. 2012). In addition, intake of resveratrol produces condi-
tions similar to caloric restriction (Baur and Sinclair 2006). Antioxidant and free 
radical scavenging properties of resveratrol are due to its ability to donate hydrogen 
atoms or electrons to the free radicals generated by the oxidative stress according to 
the following reaction (Hussein 2011) (Fig. 15.3):

 
Resveratrol OH Resveratrol OH RV H H O+ → + ↔ −( ) ++ −• •

2  

Resveratrol-mediated activation of heme oxygenase produces antiaging effects. 
Resveratrol produces inhibition of neuroinflammation by blocking the activation 
of microglial cells, inhibiting NF-κB activation, and decreasing the expression of 
proinflammatory cytokines. Treatment of animals with resveratrol not only stimu-
lates neurogenesis and angiogenesis in the microvasculature but also diminishes 
astrocyte hypertrophy in the hippocampus (Maruszak et al. 2014). Furthermore, 
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intraperitoneal injections of resveratrol also produce neuroprotective effects 
through the upregulation of superoxide dismutase and catalase (Mokni et al. 2007). 
Resveratrol also protects against the colchicine-mediated cognitive impairment, 
reduces levels of MDA and nitric oxide, and normalizes levels of reduced glutathi-
one (Kumar et al. 2007). Several studies have indicated that in late middle age, 
intake of resveratrol not only improves memory but also induces better mood func-
tion. Collective evidence suggests that resveratrol acts by modulating hippocampal 
plasticity and suppressing chronic low-level inflammation (Kodali et  al. 2015). 
Resveratrol increases the cerebral blood flow and decreases levels of secreted 
intracellular Aβ peptides and α-synuclein in animal models of AD and PD (Wang 
et al. 2008). Resveratrol also stimulates the degradation of intracellular Aβ. This 
process involves proteasomal enzymes (Marambaud et al. 2005). In the Tg2576 
mouse model of AD, resveratrol stimulates α-secretase-mediated degradation of 
APP. This process generates AICD. This metabolite improves memory and induces 
neurite extension leading to neuroprotection. α-Secretase-mediated degradation of 
APP prevents the generation of Aß42, a neurotoxic peptide, which contributes to 
the pathogenesis of AD (Wang et al. 2006a). Resveratrol also blocks the aggrega-
tion of the Aβ peptide (Riviere et al. 2007). Resveratrol has no effect on degrada-
tion of APP by β- and γ-secretases. Furthermore, it does not stimulate Aβ 
degradation by proteasomes (Marambaud et  al. 2005). Resveratrol reduces the 
concentration of 8-iso-prostaglandin F2α and prevents free radical generation 
(Candelario-Jalil et al. 2007). Resveratrol also downregulates genes that control 
the expression of iNOS and production of prostaglandin E2 (PGE2), decreases the 
activation of cathepsin, and reduces the availability of NO (Kim et al. 2006).

Fresh fruits are important components of Mediterranean diet. They contain flavo-
nols, anthocyanins, procyanidins, vitamins, and minerals, which produce beneficial 
effects in the vascular system associated with heart disease and neurological disor-
ders. The beneficial effects of flavonoids in heart disease and neurological disorders 
are due to antithrombotic, anti-ischemic, antioxidant, and vasorelaxant activities 
(Fraga et al. 2010). Regular consumption of flavonoids also produces antitumoral, 
antiviral, and antibacterial effects in our bodies. Converging evidence suggests that 
flavonoids decrease the risk of heart disease and neurological disorders by improv-
ing vasodilatation and reducing blood clotting, as well as by preventing the oxida-
tion of low-density lipoproteins (LDLs) (Atmani et al. 2009). Neurovascular unit, 
which comprises neural cells, pericytes, and endothelial cells, controls local brain 
perfusion. Neurovascular units are niches for neural stem/progenitor cells in the 
adult brain. Neurovascular units have the ability to undergo neurogenesis and angio-
genesis, processes, which are linked with the formation of neurons and remodeling 
of blood vessels. The generation of new blood vessels promotes neurorestorative 
processes, such as synaptogenesis, which in turn lead to enhancement in neuroplas-
ticity and neuronal function (Gomez-Pinilla et al. 2008; Farooqui 2014).

The consumption of fresh fruit-derived flavonoids promotes the formation of 
healthy neurons and astrocytes, which contribute to the neurovascular unit. The con-
sumption of flavonoids also maintains health of endothelial cells at the BBB. In the 
cerebrovascular system, endothelial cells regulate cerebral blood flow by 
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modulating the generation of NO. In the brain, release of NO maintains microvas-
cular pressure by regulating the dilation of the larger upstream arteries not only via 
endothelial cell-dependent mechanisms but also through vasomotor responses 
(Cipolla 2009). Thus, it is possible that flavonoid-mediated enhancement in neuro-
vascular unit health and NO-mediated dilation in peripheral vessels may increase 
cerebral perfusion. This process may promote cognition in the stroke patients. Anti-
inflammatory effects of the flavonoids are due to their ability to inhibit cyclooxy-
genase, lipoxygenases, and iNOS, which contribute to the generation and release of 
prostaglandins E2, F2, and thromboxane A2 and peroxynitrite, respectively (Wang 
et al. 2006b). Converging evidence suggests that flavonoids play a key role in neu-
roprotection against acute injury (stroke) and AD and PD. Specific receptors through 
which flavonoids produce their effects have not been characterized. However, it is 
reported that flavonoids may produce their effects by binding with the γ-aminobutyric 
acid type A (GABAA) receptors in the brain, insulin-like growth factor 1 (IGF-1) 
receptor in hippocampal neurons (Marder and Paladini 2002), 5-HT1A serotonin 
receptor (Bodesheim and Holzl 1997), glutamatergic AMPA receptor, and adenos-
ine (type I) receptors (Marder et al. 2003). These receptors are linked with protein 
kinases (protein kinase C, tyrosine kinases, serine/threonine kinases, and mitogen- 
activated protein kinase (MAPK)) through different signal transduction mecha-
nisms (Schroeter et al. 2002). These observations suggest that flavonoids exert their 
beneficial health effects through multiple signal transduction mechanisms.

Above mentioned studies indicate that components of Mediterranean diet may 
reduce the detrimental effects of oxidative stress and neuroinflammation not only by 
normalizing mitochondrial dysfunction, decreasing insulin resistance, and improv-
ing endothelial function but also by improving signal transduction processes associ-
ated with cognitive function. In addition, regular consumption of Mediterranean 
diet also reduces homocysteine levels (Seshadri et  al. 2002; Elias et  al. 2005). 
Therefore, the consumption of Mediterranean diet increases longevity by maintain-
ing the length of the telomeres (Boccardi et al. 2013). Decrease in telomere length 
produces cognitive impairment not only in poststroke patients (Martin-Ruiz et al. 
2006) but also in older community-dwelling women (Yaffe et al. 2011). Furthermore, 
telomere degradation is linked with chronic inflammation (Kaszubowska 2008; 
Carrero et al. 2008) and cognitive decline (Gorelick 2010). This suggests that regu-
lar intake of Mediterranean diet increases longevity by maintaining the length of 
telomeres and retarding chronic oxidative stress and inflammation in visceral organs 
and brain.

Regular consumption of Mediterranean diet blocks the risk of cognitive decline in 
heart disease, cancer, diabetes, and metabolic syndrome along with neurological dis-
orders (stroke, AD, and PD) (Farooqui 2012). This is because intake of Mediterranean 
diet inhibits oxidative stress and retards inflammation through Mediterranean diet-
derived metabolites. In addition, these metabolites also induce insulin sensitivity and 
produce antiapoptotic effects, leading to the increased neural cell survival. The con-
sumption (regular intake) of Mediterranean diet and regular exercise (45–60 min/
day). (F2-isoprostane and 9-hydroxyoctadecadienoic acid for oxidative stress. 
Moreover, the consumption of Mediterranean diet increases levels of reduced gluta-
thione and plasma ascorbic acid (Dai et al. 2008; Gaskins et al. 2010).
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15.4  Effects of Mediterranean Diet and Exercise on the Brain 
Aging

The consumption of Mediterranean diet and regular exercise (45–60 min/day) pro-
duce beneficial effects on aging process (Fig. 15.4). Molecular mechanisms con-
tributing to beneficial effects of Mediterranean diet consumption and exercise 
involve changes in the brain structural integrity by enhancing neurogenesis and 
angiogenesis with more secretions of growth factors, promoting formation of den-
dritic connections among neurons (Gomez-Pinilla et  al. 2008; Farooqui 2014). 
Mediterranean diet-derived metabolites and regular exercise improve cognitive 
function by increasing the gray matter volume (Hillman et al. 2008) and initiating 
the differentiation of stem cells into neurons in the dentate gyrus. This increase in 
neurogenesis and angiogenesis is linked with exercise-mediated increase in cere-
bral blood flood flow and elevation in cerebral blood volume (van Praag et  al. 
1999). Thus, regular intake of Mediterranean diet and exercise promote the forma-
tion of new neurons and blood vessels, which is reflected in increase in cerebral 
blood flow and cognitive processing. Exercise also induces an increase in levels of 
VEGF, BDNF, catechol-O- methyltransferase (COMT), endorphins, and NO 
(Neeper et al. 1996; Stroth et al. 2010; Carmargo et al. 2013). In addition, con-
sumption of Mediterranean diet and regular exercise also modulate the expression 
of genes, which promote insulin-like signaling, energy metabolism, neurogenesis, 
and synaptic plasticity (Reagan 2007; van Praag et al. 2005). These processes con-
tribute to neuronal survival in the aging brain.
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15.5  Conclusion

Aging is multifactorial process, which slows metabolic processes and ultimately 
results in increased vulnerability to cellular degeneration and death. Aging also 
involves alterations in genomic stability, defects in nuclear architecture, decrease in 
telomere length, epigenetic alterations, and chromatin remodeling leading to altera-
tions in neural cell signaling and intercellular communication. In addition, aging is 
also accompanied by mitochondrial dysfunction, increase in ROS, elevation in cyto-
kines, and deregulation of autophagy. The deregulation of these processes contrib-
utes to the pathogenesis of age-related diseases. As mentioned earlier, the 
consumption of Mediterranean diet provides mediators, which slow aging, retard 
increase in ROS, inhibit cytokines, and improve cognitive decline in elderly popula-
tion. Moreover, long-term consumption of Mediterranean diet also decreases risk of 
diabetes, metabolic syndrome, dementia, and AD.
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Abstract
Aging is a complex natural process, involving various factors exhibited by all liv-
ing organisms. It is visible in a consistent deterioration of regular physiological 
functions in a time-dependent fashion. Various scientific studies in different model 
organisms indicate that epigenetic alterations play a huge role in the aging pro-
cess. Such types of epigenetic change occur in the genes responsible for aging 
and also affect their function. These types of epigenetic changes occur at different 
levels that include DNA methylation, change in levels of the core histones, post-
translational modifications of histone and replacement of canonical histones with 
another form of histone, and altered noncoding RNA expression, during both 
individual’s aging and replicative senescence. Dietary nutrients can significantly 
affect the epigenetic medications. This chapter will discuss how these changes 
affect the functioning of the genes and are targeted by the dietary nutrients.

Keywords
Aging · Dietary nutrients · DNA methylation · Epigenetics · Histone modifica-
tions · ncRNA

16.1  Introduction

Aging is an irreversible and intricate biological process of growing older. After 
reproductive maturity, during the organism’s life, the efficiency of various physio-
logical processes declines with time (Kirkwood 2005; Hayflick 2007).The incom-
petence and malfunction of maintenance repair and turnover pathways are the major 
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causes of aging and age-related diseases. Scientists are working on the genetic and 
epigenetic regulations of molecular mechanism(s) of aging and interactions among 
various gene products. The damage in molecular structures is associated with an 
accumulation of molecular oxidative environment. Concomitantly, numerous strate-
gies are being tried and tested to slow down the aging process and prevent age-
related pathologies. The final aim of such studies is to get better quality of human 
life during old age and lengthen the overall health span and life span.

There are different experimentally proposed models of epigenetic alterations 
especially in aging such as DNA methylation, heterochromatin loss model, and his-
tone modification (Goll and Bestor 2005; Smith and Peterson 2005; Kouzarides 
2007). In addition, noncoding RNAs in some species affect the expression of the 
genes linked to aging, which is also considered as a mechanism of epigenetic 
changes (Bernstein and Allis 2005). Some of them are discussed below.

16.1.1  DNA Methylation

DNA methylation is the basic characteristic of epigenetic changes; the reaction is 
catalyzed by DNA methyltransferases (DNMT) enzymes that transfer a methyl 
group from S-adenosyl-methionine (SAM) to the fifth carbon of a cytosine. DNA 
methylation is understood as a method of gene silencing, and it works differently. 
The shortest way is interfering with transcription factors or other transcriptional 
machinery that interact with cytosine in the major groove of DNA double helices. 
Since most of the transcription factors have DNA recognition motif-containing 
CpG-rich and GC-rich binding sites. Alternatively, transcriptional machinery can 
be directly excluded from methylated promoter DNA by altering nucleosome sta-
bility or position (Bird and Wolffe 1999). There are groups of methyl-CpG-binding 
domain proteins (MBDs) that affect the DNA methylation of genes. So far, five 
major mammalian MBD proteins have been identified: methyl-CpG-binding 
protein 2 (MeCP2), MBD1, MBD2, MBD3, and MBD4. Except for MBD3, the 
rest of proteins exhibits a higher binding affinity for methylated than unmethylated 
DNA (Fraga et al. 2003). Although each MBD augments transcriptional repression 
through direct interaction with co-repressors, viz., Sin3, c-Ski, and N-CoR, and 
makes a complex structure. This structure further binds to the histone deacetylases 
and employing them to the sites of methylation for the establishment of silent chro-
matin (Jones et al. 1998; Kokura et al. 2001; Bogdanovic and Veenstra 2009).

Several lines of evidence prove that DNA methylation is also associated with 
aging. DNA methylations at multiple CpG sites in human genome have been identi-
fied as candidate for age prediction (Zbiec-Piekarska et al. 2015). Methylation of 
CpGs in the EDARADD, TOM1L1, and NPTX2 genes was especially correlated 
with age, and by building a regression model using two cytosines from these loci, 
the authors were able to predict the age of an individual with an average error of 
5.2 years (Bocklandt et al. 2011).

Lifestyle factors can positively or negatively have an effect on life span and are 
also identified to affect the DNA methylation. For instance, smoking may have 
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pro- aging effects by inducing methylation of DNA and changes of genes function 
involved in age-associated diseases such as cardiovascular pathologies and cancer 
(Breitling et al. 2011; Lee and Pausova 2013; Besingi and Johansson 2014). On the 
other hand, proper antioxidant intake, caloric restriction, and physical activity may 
exert antiaging action by neutralizing injurious DNA methylation alterations 
(Miyamura et al. 1993; Fang et al. 2007; Li and Tollefsbol 2010; Qi et al. 2010). 
All these aforementioned genes have a role in human pathologies. For example, 
EDARADD mutations are related to slow wound healing (Langton et al. 2008) and 
cause loss of teeth, hair, and sweat glands (Yan et al. 2002). In Parkinson’s disease 
(PD), NPTX2 protein expression is high (Moran et  al. 2008) and in pancreatic 
cancer (YB 2007), whereas TOM1L1 downregulation is reported in esophageal 
squamous cell carcinoma (Qi et al. 2010). On the basis of these findings, it has 
been hypothesized that epigenetic drift with aging and DNA methylation is associ-
ated with longevity (Jones et al. 2015; Mendelsohn and Larrick 2017). In several 
in vitro experiments, it has been proved that DNA methylation plays an important 
role in the regulation of life span. In one experiment with the model of premature 
senescence induced by hydrogen peroxide (H2O2) in human embryonic lung fibro-
blasts, a global hypomethylation was investigated during both stress-induced and 
replicative senescence (Zhang et al. 2008). In another study, when normal diploid 
fibroblasts from mice, hamsters, and humans were grown in culture, the 5-methyl-
cytosine (5mC) content of DNA markedly decreased. The greatest rate of loss of 
5- methylcytosine residues was observed in mouse cells, which survived the least 
number of divisions. Immortal mouse cell lines had more stable rates of methyla-
tion (Wilson and Jones 1983). Additionally, azacytidine (5-aza-CR) and azadeoxy-
cytidine (5-aza-CdR) are known to inhibit the methylation of cytosine (5-mC) in 
DNA of human diploid fibroblasts and significantly reduce the doubling potential 
of cells in vitro (Holliday 1986). Inhibition of DNMTs with 5-azacytidine (5-AzaC) 
or with specific small interfering RNA (siRNA) against DNMT1 and 3b induced 
the cellular senescence of human umbilical cord blood-derived multipotent stem 
cells (hUCB-MSCs) and increased p16 (INK4A) and p21 (CIP1/WAF1) expres-
sion (So et al. 2011). In such a way, DNMTs play a role in maintenance of plastic-
ity potential and self-renewal of stem cell that are related to aging and regeneration. 
In fact, in hematopoietic stem cells of the mouse which have reduced Dnmt1 activ-
ity cannot suppress myeloerythroid regulators as well as disallowing them from 
differentiating into lymphoid progeny. The above evidence leads to the conclusion 
that constitutive methylation is crucial for the renewal of hematopoietic stem cells 
(Broske et al. 2009).

Demethylation is also thought to play a prominent role in hematopoietic differ-
entiation (Calvanese et al. 2012). Notable, it is possible to generate pluripotent stem 
cells from adult somatic cells through the induction of defined factors (Takahashi 
and Yamanaka 2006). These induced pluripotent stem cells (iPS) are similar to 
embryonic stem cells (ES) in morphology, proliferation and teratoma formation; 
however they are different with regard to gene expression and DNA methylation 
patterns and fail to produce adult chimeras. Thus, epigenetic reprogramming is 
required for the development of viable stem cell therapies (Okita et al. 2007). The 
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significance of DNA methylation in aging is also established by a large number of 
in vivo experiments, e.g., hypomethylation of whole genome is reported in the vari-
ous organs of mice and rats with advancing of age (Vanyushin et al. 1973; Singhal 
et al. 1987; Mays-Hoopes 1989). A population-based investigation was performed 
to understand the fundamental dynamics of individual normal epigenomes. In this 
study making use of pyrosequencing probed 217 nonpathologic human tissues from 
10 anatomic sites and analyzed DNA methylation of 1413 autosomal CpG loci asso-
ciated with 773 genes in both young and old subjects. A strikingly significant CpG 
island-dependent connection between methylation and aging was observed. Loci 
outside of CpG islands lost methylation with age, whereas loci in CpG islands 
gained methylation with age (Christensen et al. 2009). In normal human prostate 
tissue procured from 45 organ donors, hypermethylation was observed as a function 
of age for CpG islands in RARb2, RASSF1A, GSTP1, NKX2-5, and ESR1 genes. 
Upon mutations in these genes, the chances of cancer pathogenesis and progression 
are increased (Kwabi-Addo et  al. 2007). In an age-related study, in which the 
peripheral blood DNA from 318 humans of middle and advanced age were ana-
lyzed, it was found that the global DNA methylation levels were correlated to the 
frailty status in middle/advanced-aged subjects. A 7-year follow-up disclosed that a 
significant decrease in 5mC content was associated with a worsening in health sta-
tus (Bellizzi et al. 2012).

Werner syndrome (WS) is characterized by growth retardation and premature 
aging, the gene known as WRN is mutated in patients. This gene plays roles in telo-
mere maintenance, DNA repair, and transcription (Lutomska et  al. 2008). It is 
reported that WRN aberrantly methylated in advanced oral squamous cell carci-
noma (Supic et al. 2009); nevertheless, no study is available to show the methylome 
of WS patients. It would be interesting to know if these patients display atypical 
DNMT expression as well as atypical DNA methylation patterns compared to 
healthy controls.

16.1.2  The Role Heterochromatin in Aging

Heterochromatin is one of the first models of aging. According to this model, het-
erochromatin domains established early in embryogenesis are broken down during 
the aging process, contributing to the derepression of silenced genes and leading to 
aberrant gene expression patterns (Villeponteau 1997; Tsurumi and Li 2012). The 
loss of heterochromatin also leads to changes in global nuclear architecture. As a 
consequence, the expression of genes, located in those regions, gets affected directly 
or indirectly causing aging and cellular senescence. Like another model of aging, 
the heterochromatin loss model is proved by lots of experimental data, but there are 
also mystifying observations. Decay of the heterochromatin resulting in failure of 
transcriptional silencing happens during aging in all eukaryotes examined from 
yeast to humans (Smeal et  al. 1996; Villeponteau 1997; Haithcock et  al. 2005; 
Larson et al. 2012; Tsurumi and Li 2012), and accelerating or reversing this process 
can either shorten or lengthen the life span. Histone acetylation in heterochromatin 
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area is indispensable for gene silencing. Therefore, treatment with histone deacety-
lase (HDAC) inhibitors or deletion of genes encoding HDACs in yeast sirtuin-2 
(SIRT2) or its counterparts SIRT1 in metazoan species shortens life span, whereas 
chemical activation or overexpression of SIRT2 extends life span (Haigis and 
Sinclair 2010; Guarente 2011). Yeast SIRT2 was first recognized as an H4K16Ac 
deacetylase, whereas mammalian SIRT1 is an H3K9Ac or H4K16Ac deacetylase 
(Haigis and Sinclair 2010). Sirtuins play a role in aging including genome mainte-
nance by deacetylating histone and other transcriptional proteins (Oberdoerffer 
et  al. 2008). Global heterochromatin loss is a mode of epigenetic variations and 
possibly associated with the origin of various molecular events of aging. It may 
also link with the various models of aging like the free radical theory, genetically 
programmed senescence, telomere shortening, genomic instability, nutritional 
intake, and growth signaling.

16.1.3  Histone and Protein Modifications

Histone modifications are occurring in both conditions either in gene activation or 
gene repression. Modifications for active transcription that includes acetylation of 
histone 3 (H3) and histone 4 (H4), and dimethylation (Me2) or trimethylation (Me3) 
of H3K4 and H3K36, are also known as euchromatic modifications. H3K9, H3K27, 
and H4K20 sites of methylation are located in heterochromatic regions (Ruthenburg 
et al. 2007). ATP-dependent chromatin remodeling and incorporation of specialized 
histone variants in chromatin structure are known as an epigenetic control mechanism 
(Wang et al. 2007a, b).

Methylation pattern of histones is associated with specific proteins that distinguish 
these marks and thus convey their silencing or activating effects. Aged animals have 
a different pattern of gene expression, and it is correlated with epigenetic modifica-
tion of genes. An increase in H4K20 methylation has been observed in old age rat 
tissue (Sarg et al. 2002). With age, human cells have also reduced histone synthesis. 
Moreover, H4K20Me3 has also been reported in high amount in cells from patients 
with Hutchinson-Gilford progeria syndrome (HGPS) (Sarg et al. 2002). HGPS is a 
rare aging disorder that is distinguished by the early and rapid onset of some devas-
tating phenotypes, for example, severe growth retardation, loss of subcutaneous fat, 
alopecia, loss of bone density, and poor muscle development (Kudlow et al. 2007). 
Along with, H4K20Me3 modification was in concert with another histone modifica-
tion such as decrease of H3K27Me3 and H3K9Me3. The enzyme responsible for 
methylation of H3K27, i.e., methyltransferase, was also shown to be downregulated 
in HGPS cells (Shumaker et al. 2006). In another experiment, after several passages 
in culture condition of cells derived from normal individuals (more than 80 years), 
showing a similar pattern of chromatin modification like HGPS patients (Scaffidi 
and Misteli 2006).

In yeast, SIRT2 (member of NADP-dependent HDACs family) maintains chro-
matin modification (Sengupta and Seto 2004). It silences gene by deacetylating 
histones H3 and H4 and with the help of other silencing proteins specifically to 

16 Epigenetic Changes in Aging and Modulation by Dietary Nutrients



258

heterochromatic regions located at ribosomal DNA, telomeres, and silenced mating- 
type loci. SIRT2 shortens the life span after inactivation, whereas its overexpression 
lengthens life span (Kennedy et al. 1995; Haigis and Guarente 2006; Longo and 
Kennedy 2006). Therefore, nuclear distribution of SIRT2 complex regulates yeast 
aging. This modulates the chromatin structure of the specific region of the genome. 
Apart from this, the second protein is histone chaperones, also called as the histone 
binding protein (HBP), that directly control the chromatin structure together with 
the histone (Vaquero et  al. 2003). It is reported in Drosophila that the dynamic 
exchange of histones by chaperones might function in epigenetic regulation (Ahmad 
and Henikoff 2002a, b).

16.1.4  ncRNA Model of Aging

ncRNAs represent a functionally and structurally diverse class of RNA species that 
participate in a wide range of basic cellular processes including protein translation, 
mRNA splicing, chromatin organization, and the regulation of gene expression 
(Esteller 2011). Several classes of ncRNAs (e.g., miRNAs, rRNAs, tRNAs, and 
many lncRNAs) fulfill discrete functions within the cells. RNA genes are sequences 
that transcribe ncRNAs and play a direct role in RNA processing and degradation as 
well as indirectly control gene expression (Ying et al. 2008).

It has been shown in many studies that the status of miRNAs level changes 
throughout the life span in several species and can be associated with age-related 
disorders (Wang et al. 2008). Knocking out the miRNA of gene lin-4 in the nema-
tode decreased the life span and accelerated tissue aging, whereas overexpression of 
this miRNA extended it (Boehm and Slack 2005). Evidence in mammals proposes 
that miRNAs might play a role in age-associated conditions such as neurodegenera-
tion (Nelson and Keller 2007; Wang et al. 2008).

16.2  Epigenetic Modulation by Dietary Nutrients

There is enough supporting data that advocates the role of the nutrients in the epi-
genetic modification, either at the global scale or at locus-specific sites (Bogdarina 
et al. 2010; Vucetic et al. 2010; Dudley et al. 2011; Jousse et al. 2011; Altmann et al. 
2012). For DNA methylation, there are three ways by which nutrition affects its pat-
tern, i.e., (1) by providing substrates for proper DNA methylation, (2) by being a 
cofactor it modulates the DNMT enzyme activity, and (3) by regulating one-carbon 
cycle they influence the activity of the enzymes regulating the one-carbon cycle. 
Importantly, all three mechanisms are mutually compatible with each other and may 
operate together in a time. Aging is the essential risk factor for developing cancer. It 
is well established by an investigation that epigenetics play a role in both cancer and 
aging. Dietary nutrients (Tables 16.1 and 16.2) such as resveratrol are an important 
mediator of aging and act on SIRT1 (a kind of HDAC) that leads to increased 
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Table 16.1 Dietary nutrient targeting DNA methylation and histone modification

Nutrients Sources Molecular targets References
Epigallocatechin-
3- gallate (EGCG)

Green tea DNMT, HDAC, H3 and H4 
acetylation, HMT, H3K27m3, 
NF-kB, IL-6, BMI-1, SUZ12/HAT, 
EZH2,

Tsang and 
Kwok (2010)

Resveratrol Mulberries, 
blueberries 
cranberries, 
grapes, and 
peanuts; red wine 
is most abundant 
dietary source

RBP/SIRT1, TNFα, IL-8 Tili et al. 
(2010a, b)

Curcumin Turmeric EOMES/HAT, HDAC, H3 and H4 
acetylation, p53, GATA4, GZMB, 
PRF1

Mudduluru 
et al. (2011)

Diindolylmethane 
(DIM) and 
indole-3-carbinol 
(I3C)

Brussels sprouts, 
cabbage, broccoli, 
and kale

COX-2/HDAC Wang et al. 
(2010)

Phenethyl 
isothiocyanate 
(PEITC)

Cruciferous 
vegetables

H3 and H4 acetylation, p21, 
GSTP1/HDAC

Shankar et al. 
(2013)

Ellagitannins Pomegranates, 
raspberries, 
walnuts

HDAC and HAT Wen et al. 
(2009)

Butyrate Cheese, butter 
colonic 
fermentation of 
dietary fiber

H3 and H4 acetylation HDAC, 
NRF2

Shankar et al. 
(2013)

Sulforaphane Broccoli, cabbage, 
and kale

H3 and H4 acetylation, H3K9ac, 
H3K9me3

Meeran et al. 
(2010b)

HBD-2, H3K27me3, RARβ, 
HBD-2, p21, BAX/HDAC

Quercetin Buckwheat and 
citrus fruits

SIRT1,IP-10, MIP-2/HAT Manikandan 
et al. (2011)

Genistein Soybeans and soy 
products

DNMT, H3, H4, H2A and H2B 
acetylation, H3K4me2, H3K9me3, 
p21, p16, PTEN, p53, FOXA3, 
BTG3, RARβ, hTERT, CCLD/
HAT, HDAC, SIRT1, p16

Fang et al. 
(2005, 
King-Batoon 
et al. (2008), 
and Majid 
et al. (2009)

Organosulfur 
compounds

Garlic and onion H3 and H4 acetylation, p21/HDAC Druesne et al. 
(2004)

Phenolic 
compounds; 
hesperetin, 
naringin, 
apigenin, and 
luteolin,

Fruits and 
vegetables

DNA methylation by indirectly 
regulate DNMT activity

Lee et al. 
(2005, Fang 
et al. (2007), 
and Mukherjee 
et al. (2015)

Vitamins B2, B6, 
and B12

Serine hydroxymethyltransferase 
(SHMT), methyltetrahydrofolate- 
homocysteine methyltransferase 
(MTR)

Zhang (2015)
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longevity both in vitro and in vivo (Wood et al. 2004; Bass et al. 2007, Barger 
et al. 2008; Subramanian et al. 2010). Moreover, many other phytochemicals, for 
instance, epigallocatechin-3-gallate (EGCG), have also beneficial effects on the 
aging process (Queen and Tollefsbol 2010). Other dietary components such as 
phenethyl isothiocyanate (PEITC) as well as genistein present in cruciferous 
vegetables and soybeans, respectively, may also have advantageous effects on life 
span through their cancer preventive properties (Li et al. 2009; Meeran et al. 2010a; 
Li et al. 2011).

Table 16.2 Dietary nutrients targeting ncRNA

Nutrient miRNA Gene Function Reference
Genistein miR- 574- 3p RAC1, 

EGFR, 
EP300

Tumor suppressor miRNA, 
inhibiting cell proliferation, 
migration, and invasion

Chiyomaru 
et al. (2013a)

miR-34a HOX Tumor suppressor miRNA, 
apoptosis, low invasiveness, 
decreased cell proliferation

Chiyomaru 
et al. (2013b)

miR-27a Sprouty2 Oncogenic miRNA, 
promoting tumor growth 
and migration

Taylor et al. 
(2009) and Xu 
et al. (2013)

miR-155 OXO3, 
PTEN, 
casein 
kinase, 
and p27

Oncogenic miRNA, 
promoting tumor growth 
and migration

de la Parra 
et al. (2016)

miR-221, 
miR-222

ARH1 Regulates the expression of 
ARH1 gene, determining 
decreased proliferation and 
invasiveness

Chen et al. 
(2011)

miR- 23b- 3p PTEN Induction of apoptosis in 
the moment of 
downregulation

Zaman et al. 
(2012)

Epigallocatechin-
3- gallate (EGCG)

miRNA- 330 AR Antagonizes androgen 
receptor function

Siddiqui et al. 
(2011)

miR-210 HRE Disable cell proliferation 
and suppress cell growth

Wang et al. 
(2011)

miR-let7b 67LR Inhibits melanoma cells 
growth via inhibition of 
HMGA2

Yamada et al. 
(2016)

miR-16 Bcl-2 Apoptosis induction Tsang and 
Kwok (2010)

Kaempferol miR-200 ZEB1, 
ZEB2

Inhibitory activity regarding 
the epithelial- to- 
mesenchymal transition and 
migration

Jo et al. (2015)
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16.3  Conclusion and Future Perspective

Aging phenotype includes the accumulation of cell divisions and macromolecular 
damage during the life span of the organism. These phenotypes are the consequences 
of epigenetic modifications of the genome. Epigenetic modifications include, but 
are not limited to, DNA methylation, histone modification, and ncRNA. Young and 
healthy cells have comparatively different epigenetic patterns than the old one that 
influence the functioning of cells. Pathways involved in cellular senescence, which 
has been shown to contribute to the aging phenotype, can be regulated by epigenetic 
modifications. Epigenetic changes are essential for many aspects of aging, and 
dietary nutritions are important resources to improve various adverse effects of 
these biological processes. The quality and quantity of the diet are vital in healthy 
aging. The diet quality has been explained very well; however the diet which 
consists of phytochemicals (e.g., genistein, EGCG, etc.) modulates epigenetic 
processes such as DNA methylation, histone modifications, and noncoding 
RNA. Extensive results clearly represent that the dietary nutrition has considerable 
potential in reducing the incidence of age-related diseases. Many questions are 
unanswered regarding the role of epigenetics in aging and their targets, but one 
thing is now clear that epigenetic changes are a basic abnormality during aging. 
More research is required in the direction of new dietary molecules which affect 
health span and life span while controlling the epigenetic changes.
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Abstract
Phytochemicals are diverse secondary metabolites derived from plants, and it has 
been proven that phytochemicals can extend longevity by evolutionarily con-
served mechanisms. The positive impact of dietary phytochemicals on overall 
health and longevity has been studied extensively over the past decade. The 
emerging role of phytochemicals as an effector of metabolic and longevity sig-
nals offers new therapeutic perspectives. In this regard, we will discuss the role 
of phytochemicals in eliciting the longevity genes and also the various mecha-
nisms involved. This review will give a broad outline of how different phyto-
chemicals modulate signaling pathways that modulate the expression of specific 
set of genes. This review will also highlight the most exciting perspective for 
research in the future in this rapidly developing field of signaling pathways 
which include the genes encoding heat shock protein, genes responsible for the 
antioxidant response, genes involved in metabolism, etc. and are crucial for the 
phytochemicals to elicit longevity.

Despite various beneficial biological functions, phytochemicals might have 
adverse side effects like carcinogenicity and genotoxicity at high doses or con-
centrations. Hence, the future research challenge is to determine the optimal dose 
range and to perform intervention studies in order to improve longevity.

Keywords
Aging · Phytochemicals · Longevity · Oxidative stress

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1699-9_17&domain=pdf


268

17.1  Introduction

Life expectancy is defined as the average total number of years that a species is 
expected to live. Differently, life span is the duration of time that one individual 
lives from birth till death. Maximum life span is an inherent characteristic of each 
and every species and remains relatively unaltered through generations, while it 
may be increased or decreased over generations that needs a number of biological 
pathways to be altered, rewired, or reprogrammed (Ma et al. 2015). Even though 
human life span has been unaltered for the past million years at approximately 
125 years, life expectancy has gradually increased (~27 years during the last cen-
tury), especially in Western countries (Hayflick 2000). This increase might be 
mainly due to the control of many communicable diseases by the invention of anti-
biotics and preventive measures like vaccination that had ultimately resulted in 
population aging (Elavarasan et al. 2012), which reflects a human success story of 
increased longevity. In the current global scenario, living up to the age of 70 or 80 
is common in many parts of the world. Human population in the world had reached 
7 billion in 2012, among which 562 million (or 8.0%) were aged 65 and above. In 
2015, 3 years later, the elderly population rose by 55 million, and it reached 8.5% of 
the total population of the world (World Population Aging 2015). Among the vari-
ous continents, Asia is referred to as the population giant, in terms of size of its older 
population (617.1 million in 2015), which is more than half of the world’s aging 
population. By the year 2050, nearly 1000 million older people are projected to live 
in Asia, accounting for about two-thirds (62.3%) of the world’s total older popula-
tion even though the estimated speed of aging for Asia and Latin America remain 
the same (World Population Aging 2015).

Aging or senescence is the decline in the ability of the organism to withstand 
stress of any kind resulting in the increased risk for mortality and morbidity. 
“Senescence” is derived from the Latin word senex, meaning “old age.” The analy-
sis that many animals living in a natural environment generally die earlier because 
of natural causes like disease, predation, starvation, or drought (Holliday 2006)] 
suggests that aging is a unique phenomenon applicable to the highly evolved human 
species (Hayflick 2000).

Many gerontologists accept that aging is an adaptive process, caused by factors 
of multiple etiologies, and these factors tend to get modulated by the genetic and 
environmental factors (Holliday 1995). The detrimental effects of aging are best 
observed in postmitotic tissues, where cells that are irreversibly damaged or lost 
cannot be replaced by mitosis of intact ones (Murali et al. 2008).

Increasing life span without proper health is deleterious. Survival with good 
health and physiological functions has been termed as “successful aging,” “healthy 
aging,” or “exceptional aging.” Research with supercentenarians have revealed that 
people with longevity have the onset of disease with disability and decline in physi-
cal and cognitive function at older ages; thereby their health span approaches life 
span (Andersen et al. 2012). Nearly 30% of centenarians and 70% of supercentenar-
ians escape many of the major age-related diseases including dementia, or many of 
the centenarians and supercentenarians have exhibited a delay on the onset of major 
age-related disease until age ≥80  years. Even though women have the greater 
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probability of survival, male centenarians have better cognitive and physical func-
tional status (Newman and Murabito 2013).

Many different molecular players have been identified to be responsible for lon-
gevity: Apo E (Schächter et  al. 1994), cholesteryl ester transfer protein (CETP) 
(Koropatnick et  al. 2008), Forkhead box protein O3 (FOXO3A) (Willcox et  al. 
2008), insulin-like growth factor 1 (IGF-1), mammalian target of rapamycin 
(mTOR) (Kenyon 2010), RAC-alpha serine/threonine-protein kinase (AKT1) 
(Pawlikowska et al. 2009), sirtuins (Lin et al. 2000), and mitochondrial DNA hap-
lotypes 9 (Alexe et al. 2007).

The exact mechanisms by which these longevity genes are shown to modulate 
the aging process are still unknown except for few genes. However, it is clear that 
these genes are involved in pathways of lipid metabolism and DNA repair which 
delay the onset of age-associated diseases like cardiovascular disease, dementia, 
and Alzheimer’s disease. Meta-analysis of all compiled human genome-wide asso-
ciation study (GWAS) conducted to broadly examine the genetics of resistance to 
age-associated disease by Jeck et al. (2012) identified ten different locations across 
the genome which are shown to be associated with the susceptibility to multiple 
age-related diseases. These locations have genes associated with cellular senes-
cence or inflammation pathways, portraying the significance of these pathways in 
influencing the human health span. Even though a number of genes have been iden-
tified, it is undeniable that many genetic variants combine to influence human life 
span: no single gene variant is found to be responsible.

Healthy longevity has been an unrelenting quest of human from ancient times. 
Exceptional longevity is a complex trait which is not only determined by genetic 
factors but also by external and environmental factors (Christensen et al. 2006). The 
major external factors that affect longevity include dietary patterns, stress, and sed-
entary lifestyle. The environmental factors include exposure to toxicants and pollut-
ants that interfere with normal metabolic and physiological processes leading to 
mutations or decline of organ functions.

Even though the complex relationship among dietary habits/intervention and 
aging has not been fully explored, research from animals and human data suggest 
that dietary intervention can retard aging process, preventing or protecting them 
from various age-associated diseases and their pro-inflammatory status, the inflam-
maging (Fontana and Partridge 2015). Healthy diets with less concentrations of 
refined sugars and proteins from animal sources can substantially decrease the risk 
of age-related diseases, thereby favoring successful aging and longevity (Longo 
et al. 2015). On the contrary, a bad dietary lifestyle is shown to accelerate the aging 
process by modulating the pathways and mitogenic stimuli, finally accelerating 
aging phenotype (Verburgh 2015).

Moreover, effective interventions have to be developed to sustain or enhance lon-
gevity as the younger generations are having a lifestyle that leads to obesity, which 
makes them less healthy, and even they tend to have shorter lives than their parents. 
Dietary and pharmacological interventions such as restriction of food or methionine 
(Flurkey et al. 2010) and administration of rapamycin, an inhibitor of mTORC1 (Miller 
et al. 2014), can retard aging by comprehensive interactions of multiple targets.
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Phytochemicals called as nutraceuticals are defined as naturally derived bioac-
tive compounds that are found in plant kingdom and have health benefits. 
Nutraceutical is a conjunction among nutrition and pharmaceutics, and it was coined 
in 1989 by Stephen De Felice (Gupta et al. 2010). However, many nutraceuticals 
have been referred to as agents that delay aging or age-related diseases; the transla-
tional gap between basic and clinical research has yet to be filled. Many in vitro and 
in  vivo experimental evidences suggest that phytochemicals can influence the 
expression of numerous longevity genes, but the molecular interactions between 
phytochemicals and signaling pathways that modulate aging and age-related dis-
eases are obscure. These dietary phytochemicals trigger a condition called hormesis 
(Verburgh 2015), which states their ability to induce the stress-protective gene 
expression and resist aging.

Many cellular proteins and signaling pathways have been identified as candi-
dates that are indispensable for life span prolonging. We will discuss about the 
major cellular proteins that influence aging and few phytochemicals that modulate 
the expression of longevity genes.

17.2  Signaling Proteins and Aging

17.2.1  Proteins That Boost Antioxidant Status

The free radical theory of aging proposes that aging occurs as a consequence of the 
deleterious effects of free radicals produced during cellular metabolism (Harman 
1981). Oxidative stress is caused due to the loss of balance between ROS production 
and antioxidant defenses affecting all the vital organs resulting in aging. Hence, 
circumventing oxidative stress is one of the key processes involved in delaying 
aging and age-associated diseases.

17.2.2  Key Proteins That Regulate Life Span

The key proteins and pathways that regulate life span directly or indirectly by reduc-
ing oxidative stress include Nrf2 (Kensler et al. 2007), insulin/IGF1 signal transduc-
tion pathway (Kenyon 2010), DAF 16/FOXO (Kwon et  al. 2010), sirtuins (Imai 
et al. 2000), and heat shock factor 1 (HSF-1) (Shemesh et al. 2017).

17.3  Phytochemicals and Antiaging

The dream of longevity is not new, and a multitude of reviews have been written to 
address the process of aging in an elaborate fashion (Murphy and Partridge 2008). 
Identification and isolation of long-lived C. elegans mutants have triggered an array 
of research activities to identify many life span-modulating genes, and C. elegans 
mutant has been the organism for studying anti-aging strategies.
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17.3.1  Garlic

Allium vegetables including garlic and onion have been reported to have health 
benefits from ancient times (Rivlin 2001). Epidemiological studies have identified 
that diets rich in Allium vegetables are associated with lowered risk of cancer 
(Tanaka et  al. 2004 and other age-associated diseases like diabetes, neurological 
diseases (Powolny and Singh 2008), and cardiovascular disease (Ried et al. 2008).

Different forms of garlic including raw garlic, garlic oil, garlic powder, oil- 
extracted garlic macerates, aged garlic extract (AGE), and individual garlic-derived 
compounds such as ajoene, S-allyl cysteine, diallyl thiosulfinate (allicin), diallyl 
disulfide (DADS), and diallyl trisulfide (DATS) have been tested (Charron et  al. 
2016) for cardiovascular benefits and antiaging potential. S-Allyl-L-cysteine (SAC) 
is the primary thio-allyl compound in aged garlic extract (AGE), and the antiaging 
effects of SAC were extensively studied by Moriguchi et al. (1997). His studies have 
shown that chronic intake of a low dosage of SAC in the diet improved the deficit in 
learning performance in SAMP8 mice and memory consolidation in SAMP10 mice. 
These findings have substantiated that SAC helps in reducing age-related learning 
disabilities and cognitive disorders.

Chronic administration of S-allyl cysteine is also shown to activate Nrf2 factor, 
one of the longevity genes, and enhance the activity of antioxidant enzymes in the 
striatum, frontal cortex, and hippocampus in Wistar rat (Franco-Enzástiga et  al. 
2017). The protective effect of garlic extract on ROS formation, MMP-1 protein and 
mRNA expressions, cytokines such as interleukin (IL)-1β and IL-6, senescence- 
associated β-galactosidase activity, and SIRT1 activity in UVB-irradiated HaCaT 
cells is an added evidence for garlic to act as a potent antiaging agent (Kim 2016).

17.3.2  Coffee

Coffee use dates back to the Stone Age and is one of the three most-popular bever-
ages in the world (alongside water and tea) that is rich in antioxidants and caffeine. 
In the recent past, coffee has been recognized as a potent beverage for healthful 
aging, with special emphasis by its ability to protect from cardiovascular diseases 
(Ding et al. 2014) and mild cognitive impairment (Takahashi and Ishigami 2017). 
Caffeine, a secondary metabolite with pesticide activity, which paralyzes and kills 
certain insects is a xanthine alkaloid compound. It acts as a stimulant that fends off 
drowsiness in humans and is mostly distributed through drinks including tea, coffee, 
soft drinks, and chocolate.

Park et al. (2017) have studied the association of coffee consumption with total 
and cause-specific mortality among nonwhite populations and found that increased 
coffee consumption was associated with a significantly low risk for death in Latinos, 
Japanese Americans, African Americans, and whites. Similarly Ding et  al. (2014) 
have identified that regular coffee drinking in moderate amounts is associated with a 
decreased incidence of death from cardiovascular disease, neurological diseases, and 
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suicide. Moreover, habitual coffee drinking following acute myocardial infarction 
was shown to be associated with a reduced risk of mortality (Brown et al. 2016).

Sutphin et al. (2012) have reported that caffeine is capable of extending life span 
and improving health span in C. elegans. Life span extension by caffeine might be 
due to its epistatic interaction with dietary restriction and reduced insulin signaling. 
Studies by Lublin et al. (2011) have shown that caffeine significantly decreased the 
age-dependent acceleration of mortality rate which was dependent on DAF- 16.

Studies with worms have been carried out to study the influences from caffeine 
and non-caffeine sources of coffee with respect to longevity. Dostal et al. (2010) 
identified SKN-1 as a major downstream signaling molecule involved in the 
caffeine- independent delay in amyloid beta toxicity using coffee extract. Lublin 
et al. (2011) identified IIS as an important player in life span extension by caffeine. 
Moreover, the polyphenol chlorogenic acid present in coffee has lipid-lowering 
effect in diet-induced obese mice by downregulating sterol regulatory element- 
binding protein 1 (Takahashi and Ishigami 2017). Studies by Sutphin et al. (2012) 
have clearly shown that caffeine appears to act, at least in part, by activating the 
FOXO transcription factor DAF-16 as it could not extend longevity in Daf 16 
mutants, but it extended the life span of Sir-2, Hif-1, and Cep-1 mutants to some 
extent, although the magnitude of effect of caffeine was comparatively lesser in 
wild type. Hence, it is evident that the life span-extending effects of caffeine may be 
mediated by several genetic pathways.

17.3.3  Curcumin

A myriad of health benefits have been attributed to curcumin, which was first iso-
lated as “yellow coloring matter” from Curcuma longa by Vogel and Pelletier in 
1815 (Bandyopadhyay 2014). Curcumin, a known powerful antioxidant, has the 
capacity to mitigate age-associated cellular damage induced by the production of 
reactive oxygen species (ROS) (Queen and Tollefsbol 2010). Lee et al. (2010) have 
reported that curcumin extends life span of different strains of Drosophila melano-
gaster and attributed this effect to its ability to afford protection against improve-
ment in locomotion, oxidative stress, and chemopreventive effects. Extension of life 
span was also found to be gender as well as genotype specific. Curcumin also is 
shown to modulate the expression of a plethora of aging-related genes, including the 
insulin, JNK, and methuselah signaling pathways.

Motterlini et al. (2000) reported that curcumin reduced oxidative stress by upreg-
ulating the expression of HO-1 in bovine aortic endothelial cells. In addition, cur-
cumin is also shown to inhibit NF-κB, which is the main mediator of inflammation, 
to activate the expression of many pro-inflammatory cytokines. Furthermore, cur-
cumin decreases or blocks the mTOR, which integrates the input from multiple 
signaling pathways and acts as a sensor of cellular nutrient and energy levels and 
redox status in cells (Sikora et  al. 2010). Shen et  al. (2013) have shown that 
curcumin- enriched diets increase antioxidant enzyme activity and mean life span in 
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Drosophila. A 75% improved life span and activity for curcumin-fed flies in Ab1–
42-expressing transgenic Drosophila was observed by Caeser et al. (2012).

17.3.4  Quercetin

Quercetin, the major flavonol found in several fruits and vegetables including broc-
coli, apples, onions, cherries, blueberries, and red grapes, is a natural antioxidant 
with potential anticancer and antiaging activities. Quercetin is shown to have puta-
tive health beneficial effects with special reference to its ability to boost antioxidant 
status (Belinha et al. 2007). Many studies have identified that quercetin increases 
the ability of the organism to resist stress and extend life span. Mev-1 mutant, which 
is characterized by an increased accumulation of endogenous ROS (provides a spe-
cial test system to prove the antioxidative capacity), exhibited a significant quercetin- 
mediated gain in life span (Ishii et  al. 1998). It is thereby conceivable that the 
antioxidative property of quercetin may have impacted life span extension in mev-1 
mutants. On the other hand, Saul et al. (2008) established that quercetin-mediated 
longevity is observed in a daf-16(mgDf50) loss-of-function mutant. These finding 
dictates that the reduction of internal oxidative stress is not the exclusive role of 
quercetin. Quercetin-induced longevity and stress resistance have been described in 
three different studies that identified the antioxidant properties and the UNC-43/
SEK-1 pathway as the major mechanism behind its life span extension (Pietsch 
et al. 2009). The other genes that might be tentatively involved in quercetin’s ability 
to increase life span might be age-1 and daf-2, which are central players in IIS to 
inhibit DAF-16 activity.

17.3.5  Resveratrol

Resveratrol (3,5,4′-trihydroxy-trans-stilbene), a polyphenolic phytoalexin which is 
found in red wine and the skin and seeds of grapes, has been reported to possess a 
wide range of biological and pharmacological activities including antiaging effects. 
It increases longevity in the short-lived invertebrates C. elegans and Drosophila 
(Howitz et  al. 2003) and prolongs life span and retards the onset of age-related 
markers in a short-lived vertebrate fish Nothobranchius furzeri (Valenzano et  al. 
2006). Resveratrol is shown to affect gustatory responsiveness to a significant extent 
and is shown to prolong life span in honey bees (wild type) under normal oxygen 
conditions. Moreover, resveratrol is shown to have a satiety effect on honey bees 
and further reduce food intake (Rascón et al. 2012). Cidea, a gene which regulates 
energy balance in brown fat, was upregulated on high-cholesterol diet feeding, and 
it was downregulated by resveratrol supplementation. This clearly indicates the 
ability of resveratrol to prevent the deleterious effects of excess caloric intake and 
modulate known longevity pathways. The life-prolonging ability of resveratrol is 
caused by influencing the insulin sensitivity, PGC 1 alpha, and sirtuins similar to 
that of calorie restriction in honey bees (Baur et  al. 2006). The knockdown or 
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knockout of Sirt-1 prevented the autophagy induction by resveratrol in human cells, 
and it is suggested that autophagy is required for the life span-prolonging ability of 
resveratrol, similar to that of calorie restriction (Morselli et al. 2010). These studies 
clearly indicate the ability of resveratrol to prevent the deleterious effect of excess 
calorie intake and modulate known longevity pathways by mimicking calorie 
restriction.

17.3.6  Green Tea Catechins

Green tea is obtained from the leaves of the plant Camellia sinensis, consumed 
primarily in China, Japan, and a few countries in North Africa and the Middle East, 
and is reported to contain 4000 biologically active compounds, one-third of which 
are polyphenols (Weisburger 2002). Tea and tea flavonoid consumption has been 
linked to lower incidences of chronic diseases such as cardiovascular disease and 
cancer (Pandey and Rizvi 2009). The health benefits associated with tea consump-
tion have been attributed in part to the antioxidant and free radical scavenging activ-
ity (Rice-Evans 1999). Green tea and its catechins, namely, gallocatechin, 
(-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), (-)-epigallocatechin- 
3- gallate (EGCG), and catechin and (-)-epicatechin (EC), are best known for their 
antioxidant properties (Yang et al. 1999).

EGCG treatment increases the mean life span of C. elegans and reduces its sus-
ceptibility to lethal oxidative stress. Studies by Abbas and Wink (2009) show that 
EGCG pretreatment suppresses hsp-16.2 expression under oxidative stress and 
increases the life span.

EGCG is shown to safeguard the aged rats when challenged with hypercholester-
olemic diet (Senthil Kumaran et al. 2009). EGCG brought about an augmentation in 
the activities of enzymic antioxidants like superoxide dismutase, catalase, glutathi-
one peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase and 
improved the nonenzymic antioxidants like tocopherol, ascorbic acid, and glutathi-
one. EGCG ameliorated the malondialdehyde and protein carbonyl levels and 
emerged out as a good antioxidant neutraceutical and a neuroprotective agent in 
alleviating the age-associated oxidative damage in aged rat brain (Srividhya et al. 
2009). EGCG is shown to mediate the downregulation of NF-AT and thereby mac-
rophage infiltration in experimental hepatic steatosis (Krishnan et al. 2014). These 
findings suggest the multifaceted role of EGCG in mitigating age-associated 
derangements.

17.3.7  Other Phytochemicals Reported as Longevity Agents

The other phytochemicals that have been reported to promote longevity in model 
organisms are glaucarubinone (Zarse et al. 2011), icariin and its derivative icariside 
II (Cai et al. 2011), arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic 
acid (West et al. 2004), aspirin (Strong et al. 2008), phloridzin (Xiang et al. 2011), 
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butein (Howitz et al. 2003), celastrol (Kiaei et al. 2005), crocin (Bakshi et al. 2009), 
ellagic acid (Saul et al. 2011), gallic acid (Saul et al. 2011), myricetin (Grünz et al. 
2012), oleuropein (Katsiki et al. 2007), tocopherol (Sattler et al. 2004), coenzyme 
Q10 (Strachecka et  al. 2014), tocotrienol (Aan et  al. 2013), blueberry extract 
(Wilson et al. 2006), and tannic acid (Saul et al. 2010).

These studies indicate that even though genetics play a major role in determining 
the life span, dietary intervention by small molecules can influence many longevity. 
However, the mechanisms by which they influence the life span extension being still 
not absolutely identified. From the experimental evidences, it cannot be denied that 
these small molecular interventions have beneficial effect on healthy aging.
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Abstract
Neurodegenerative diseases are progressively increasing globally and most often 
are associated with the aging process. Time and again, neuroscientists and clini-
cians have tried many approaches to maintain a healthy brain with normal aging. 
Irrespective of the approaches, oxidative stress is the marker of several age- 
related disorders of the brain, and the primary consideration of nutrigerontolo-
gists is toward lessening the burden of reactive oxygen species through dietary 
interventions that can positively trigger numerous genes encoding many antioxi-
dant enzymes and pro-apoptotic and anti-inflammatory factors and finally main-
tain a redox balance. Among the various approaches, naturally derived bioactive 
compounds have attracted the attention of scientists, and what is more is that 
polyphenols have gained popularity because of the various benefits derived from 
them either on their own or in combination with nonpharmacological means such 
as physical exercise. Human and animal experiments using flavonoids, a class of 
polyphenols, have suggested a positive relation between flavonoids such as cat-
echin and preservation of cognitive function with age. This review is, firstly, an 
assembly of recent findings on nutrient signaling pathways of polyphenols, com-
monly found in fruits and vegetables, and, secondly, their impact on the brain as 
natural medicaments in promoting mental health with successful aging and 
longevity.
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18.1  Introduction

Aging is accompanied by a decline in several physical and mental faculties. 
Astonishingly, aging progresses in a geometrical manner past middle age in humans 
and animals as well. However, as the world moves ahead with increased life expec-
tancy, the normally aging elderly population is facing cognitive decline encompass-
ing lowered learning skills and spatial and episodic memory leading to greater 
incidences of neuroinflammatory neurological degeneration. Knowing these would 
open up a wide array of options to deter the onset of not only cognitive loss during 
normal aging but, more importantly, the possibilities of delaying the onset of disor-
ders apart from mild dementia and mild cognitive impairment (MCI) that may be a 
challenging situation for the senescent individuals. Hence identifying the important 
regulators and molecular mechanisms of brain aging, in particular cognitive aging, 
will pave suitable pathways toward interventions that could be effective for attain-
ing healthy brain during normal aging. Understanding the biological mechanisms of 
cognitive aging has provided an array of options to deter the onset of not only cogni-
tive loss during normal aging but, more importantly, the possibilities of delaying the 
onset of mild dementia and mild cognitive impairment (MCI) that may be a chal-
lenging situation for the senescent individual. Hence identifying the important regu-
lators and molecular mechanisms of brain aging, in particular cognitive aging, will 
pave suitable pathways toward interventions that could be effective for attaining 
healthy brain during normal aging. Presently, therapies are targeted toward lowering 
physical complications that are unable to eliminate the pathology leading to an 
unimaginable burden to the mankind (Deak et al. 2016). Interestingly, resorting to 
fruits and vegetables is beneficial to humans (Nooyens et  al. 2011; Kumar and 
Khanum 2012). Nutritional supplements derived from fruits and vegetables and 
those that optimize cognitive well-being and function include those essential for the 
synthesis and preservation of acetylcholine (ACh), a neurotransmitter for learning 
and memory function and those required as an anti-inflammatory and anticoagulant 
agents. Loss of brain function during aging is inevitable. Middle-aged adults who 
still haven’t experienced but are on the border of forgetfulness or MCI should some-
how be benefited by certain nutritional interventions. Equally important is that in 
those who already have these symptoms, such interventions should be toward pre-
vention of the onset of full-blown dementia (Burns and Zaudig 2002). Hence, it is 
important to target nutritional interventions to suppress the onset of cognitive 
impairment. This review is focused on the importance of polyphenols, especially 
from grape seeds in preserving cognitive capacity and evidence that support the role 
of major polyphenols, with emphasis on grape seed products and their bioavailabil-
ity and potential neuroprotective functions as an antiaging, antioxidant, and anti- 
inflammatory compounds. Finally, the review attempts to highlight their possible 
benefits for brain health and prevention of dementia that is projected to triple glob-
ally by the year 2040.
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18.2  Phenolic Compounds in Grape Seeds

Grapes are rich in phenolic compounds and are mainly distributed in skin, stem, 
leaf, and seed, but not in the juicy pulp preferred by all. Constituting the largest 
category/group of grape polyphenols, flavonoids deemed to be the main molecules 
that have biological properties. In grapes, flavonoids are located primarily in the 
berry skin and the seeds (Waterhouse 2002; Lepiniec et al. 2006; Bogs et al. 2007).

The above phenolic compounds are usually extracted from grapes using solvents 
such as ethanol, formic acid, acetone, and methanol in various proportions. Although 
solvent extraction is popular, several other methods are used like microwave- 
assisted extraction (Hong et  al. 2001), supercritical fluid extraction (Fiori. 2007; 
Vatai et al. 2009), and ultrasound-related extraction (Novak et al. 2008; Ghafoor 
et al. 2009). Polyphenols in grape seed are flavonoids comprising gallic acid and 
monomeric flavan-3-ols, catechin and epicatechin (Shi et al. 2003), and proanthocy-
anidins (Table 18.1).

18.2.1  Antioxidant Activities of Grape and Its Products

The phenolic constituents of grape seed extract are of two groups: phenolic acids 
and flavonoids. Grape and its products are identified for their antioxidant activities 
that are health promoters. For instance, grape seeds decrease the levels of low- 
density lipoproteins in the plasma (Sano et al. 2007) and grape wine protects against 
hypercholesterolemia and fatty streak storage in experimental hamsters (Auger 
et al. 2005) and defends against hyperglycemia (Asha Devi et al. 2006).

Grape seed proanthocyanidin extract (GSPE) are antioxidants made of polyphe-
nolic acids, such as gallic acid, and are known to scavenge reactive oxygen species- 
mediated ischemic-reperfusion (I-R) injury and apoptosis of cardiac cells (Sato 
et al. 2001; Georgiev et al. 2014). Its antioxidant properties are largely related to 
their free radical scavenging activity and metal-chelating action. One of our review 
articles (Asha Devi and Abhijit 2017) reported the outcome measures of utilizing 
different types of learning modules and the brain regions involved in the behavior. 
Further, experimental evidences were enlisted regarding the role of GSPE supple-
mentation in alleviating the extent of deposition of lipofuscin, a product of lipid 
peroxidation in the hippocampus of aging rats. Polyphenols are now recognized for 
their efficient cell signaling pathways and expression of genes (Dell et  al. 2005; 
Soobrattee et al. 2005).

18.2.2  Bioavailability of Polyphenols from Grape Seeds

Studies have indicated that, following ingestion of polyphenol-containing berries, 
active intestinal absorption occurs and some metabolites can exert affects in vivo 
(Archivo et al. 2010). Although polyphenols are water-soluble, the exact mecha-
nisms of how they cross the blood-brain barrier (BBB) have not yet been fully 
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Table 18.1 Grape and grape products

Major phenolics Sample/region Benefits References
Proanthocyanidins, 
quercetin 

Grape skin Accumulation of 
proanthocyanidins in 
Shiraz grape skin is 
independent of that in 
seeds. However, in both 
skin and seeds, 
synthesis is seen in 
berry development and 
attains maximum levels 
around veraison

Downey 
et al. (2003)

Quercetin Grape stem Have high amounts of 
phenolics and 
antioxidant potency. 
Identified flavanols 
were rutin and quercetin 
3-O-glucuronide, 
stilbenes (trans- 
resveratrol and 
resveratrol 
dehydrodimer), and 
astilbin (a 
dihydroflavonol 
glycoside)

Makris et al. 
(2008)

Trans-resveratrol 

Astilbin 

Rutin
Kaempferol Grape leaf Phenolic content and 

antioxidant capacity in 
terms of μM TEAC/g 
muscadine leaf skin is 
12.8 (Trolox equivalent 
antioxidant capacity)

Pastrana- 
Bonilla et al. 
(2003)

Gallic acid  

Quercetin 

(continued)
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Table 18.1 (continued)

Major phenolics Sample/region Benefits References
Proanthocyanidins Grape seeds GA(+)-catechin and 

epicatechin are major 
polyphenolics in the 
seeds

Pastrana- 
Bonilla et al. 
(2003), 
Yilmaz and 
Toledo 
(2004)

Gallic acid Proanthocyanidin 
concentration in some 
crosses (Monastrell x 
Syrah grape (Vitis 
vinifera) exceeds that in 
either parent

Hernandez- 
Jimenez et al. 
(2009)

Catechin Plasma catechin 
concentrations are 
insignificantly different 
after single moderate 
servings of 
dealcoholized red wine 
(DRW) or water and 
alcohol (ARW)

Bell et al. 
(2000)

Epicatechin 

Resveratrol, catechin, 
quercetin

Red wine Resveratrols are 
bioactive components of 
wine and improves 
TAC, hydroxyl and 
superoxide activity, 
HRSA scavenger 
activity (hydroxyl 
radical), super oxide 
radical scavenger 
activity (SRSA)

Rivero-Perez 
et al. (2008)

Hydroxycinnamic acid

 

Lyophilized extract of 
wine (JW-E) from 
Jacquez grapes (Vitis 
aestivalis-cinerea x Vitis 
vinifera grapes) against 
harmful effects of 
IL-beta. Protects 
cartilage

Panico et al. 
(2006)
Auger et al. 
(2005), 
Monagas 
et al.(2005)

Catechin, quercetin, and 
resveratrol prevent 
atherosclerosis (AS) in 
experimental hamsters

(continued)
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elucidated. Studies on animals and humans have shown an age-related increase of 
BBB permeability in healthy individuals (Toornvliet et al. 2006; Farrall and Wardlaw 
2009; Blau et al. 2012). Advanced magnetic resonance imaging (MRI) techniques 
have shown increased BBB permeability in one of the important areas of the brain 
for cognitive functioning – the hippocampus – of healthy older people aged between 
55 and 90 years who had no cognitive decline (Montagne et al. 2015). In studies on 
mice, Elahy et al. (2015) have shown inflammation-related BBB dysfunction and 
decreased tight junctions in the aged compared to the young.

Furthermore, although studies on the mechanisms of permeation of polyphenols 
across the BBB have been elucidated by Youdim et al. (2003, 2004), it is still specu-
lative as to whether the metabolites of polyphenols cross by diffusion or through 
specific carrier-facilitated mechanism. It is said that the BBB is an interface that can 
regulate molecular alterations and exchanges between the blood and different 
regions of the brain.

Among several selected interventions to improve cognition, there are reports of 
a positive correlation between flavonoid consumption and cognitive ability. 
Experimental evidences from animals as well as humans are suggestive of polyphe-
nols as protectants not only against the development of neurodegenerative diseases 
but also in ameliorating cognitive function in suggesting that polyphenols may 
potentially have a protective effect on the development of neurodegenerative dis-
eases (Macready et al. 2009) and may improve cognitive function in patients with 
established neurodegenerative diseases (Weichselbaum and Buttriss 2010). In fact, 
the studies were evidenced from a total of 55 different cognitive tests encompassing 
a broad range of cognitive domains, and most studies incorporated at least one mea-
sure of executive function/working memory, with nine reporting significant 
improvements in performance as a function of flavonoid supplementation compared 
to a control group (Jagla et al. 2010). However, equally essential is to characterize 
the essential biologically active constituent that influences cognition.

Major phenolics Sample/region Benefits References
Hydroxycinnamic acid Raisins  Studies on phenolic 

content in sun-dried, 
dipped, and golden 
raisins are in the order 
of 10% compared to 
fresh grapes. Formation 
of 
hydroxymethylfurfural 
in the sun-dried is 
because of Maillard 
browning reactions

Karadeniz 
et al. (2000)Hydroxymethylfurfural 

Table 18.1 (continued)
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18.3  Polyphenols and Neuropreventive Potential 
Against Cognitive Aging

Experimental evidences demonstrate that polyphenols presented in foods might be 
beneficial in reversing neuronal and behavioral aging. Experimental evidences have 
indicated that repeated dosing of supplemental GSPE is more effective in increasing 
the bioavailable concentrations of major constituents of the extract rather than sin-
gle dosing in rat models (Ferruzzi et al. 2009). Generally, polyphenols are widely 
known notably for their antioxidant capabilities compared to certain other antioxi-
dants such as vitamins E and C (Barros et al. 2006). Because the brain is vulnerable 
to age-related oxidative damage and other insults including inflammation, studies 
on proanthocyanidins from grape seeds are largely based on the free radical- 
generated oxidative stress hypothesis. In a study by Deshane et  al. (2004), rats 
ingesting grape seed extract (GSE) experienced changes in expression or modifica-
tions of specific brain proteins that might protect against pathologic events. Due to 
their antioxidant activity, in scavenging free radical, grape seeds prevent organs and 
tissues from oxidative stress-induced damage while modifying the body’s negative 
mechanism of redox status. Further evidences have been obtained from behaviors of 
rats aged 19–21 months, wherein consumption of a 10% grape juice improved the 
release of dopamine from striatal slices, as well as in their cognitive performance in 
the Morris water maze, while the 50% grape juice improved their antioxidant capac-
ity (Joseph et al. 2009). While supplementing rats with GSE at 100 mg/kg b.wt. for 
30 days has been shown to reduce the accumulation of age-related oxidative DNA 
damages in neural tissue (Balu et al. 2005, 2006), a dose of GSE at 60 mg/kg b.wt 
has been shown to effectively inhibit DNA damage in the rat hippocampus (Hwang 
et al. 2004) and improve behavior. In addition, GSE has been proved to alleviate 
hypoxic ischemic brain injury in neonatal rat with 50 mg/kg b.wt (Feng et al. 2005).

Furthermore, in addition, the alleviation of several indices of oxidative stress such 
as lipid peroxidation and protein carbonylation and upregulation of antioxidant 
enzymes in the aging hippocampus and cerebral cortical regions (the regions con-
cerned with spatial learning) have been reported in rats on a daily supplement of 
75–100 mg/kg b.wt grape seed extract for 30 days (Asha Devi et al. 2011), and the 
reduction in age-mediated oxidant injury to brain cells elevates a vital neurotransmit-
ter, acetylcholine (Asha Devi et al. 2006). In fact, grape seed extract, a natural product, 
induces neuroprotective action in composition of brain proteins and their expression, 
thus impacting the many actions of psychoactive drugs by maintaining a healthy brain 
(Kim et al. 2006). Our research has shown that GSPE treatment in aging rat model 
results in an attenuation of age-associated changes in the hippocampus and medial 
prefrontal cortex including cognitive impairments (Abhijit et al. 2017). Additionally, 
GSPE treatment elevates number of neurons in the CA1 subfield of the hippocampus 
of middle-aged rats compared with their controls (Abhijit et al. 2018).
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Brain-derived neurotropic factor (BDNF), in the control of synaptic plasticity 
and long-term memory (Pruunsild et al. 2011) and of flavonoids activating specific 
signaling proteins such as extracellular signal-regulated kinases (ERK) in modulat-
ing the activation of cAMP response element-binding protein (CREB) and increased 
BDNF expression in the hippocampus in middle-aged animals, suggests pathways 
for GSPE flavanols (De Nicoló et al. 2013). Bensalem and his coresearchers (2016) 
have shown that an 8-week polyphenol-enriched diet consisting of polyphenol-rich 
extract from grape and blueberry (PEGB) in middle-aged mice could improve spa-
tial memory and br related to the observed increase in hippocampal calmodulin 
kinase II (CaMKII) mRNA levels along with nerve growth neurotrophic factor 
(NGF) mRNA levels and was similar to supplemented adult mice. The existence of 
specific polyphenol binding sites at the plasma membrane in the rat brain has been 
suggested by Han et al. (2006). These binding sites support observations by Abhijit 
et al. (2018) on the bioavailability of GSPE constituents, catechin, epicatechin, and 
gallic acid, in the medial prefrontal cortex and hippocampus. Further, we found that 
age-related oxidative stress in the hippocampus of middle-aged rats was effectively 
alleviated in terms of altered glutathione (GSH) level and of glutathione reductase 
(GR) and glutathione peroxidase (GPx) activities by a 120-day GSPE supplementa-
tion, thereby suggesting an efficient coordination between the endogenous and 
exogenously supplemented natural antioxidant. Interestingly, in these middle-aged 
rats, the observed age-related decrease in CA1 neurons and volume was restored by 
the grape seed polyphenols, catechin, epicatechin, and gallic acid, in the extract 
(Abhijit et al. 2018).

Studies have also shown that cognitive decline in humans may be prevented 
(Kang et al. 2005; Macready et al. 2009) or improved (Jagla et al. 2010) with the 
consumption of polyphenol-containing fruits and of vegetable consumption 
(Krikorian et al. 2010; Weichselbaum and Buttriss 2010; Cimrova et al. 2011; Huhn 
et al. 2015). Figure 18.1 is a diagrammatic representation of our findings on GSPE 
as an effective intervention against brain aging.

18.4  Polyphenols and Neurodegenerative Diseases

A recent estimate put forth by the World Health Organization (WHO) (2006) projects 
that a figure of 24 million people globally is affected by dementia. Therefore, main-
taining healthy cognitive function is necessary for quality aging especially during the 
transition into older age. However, successful strategies for prolonging the longevity 
have concomitantly increased the number of older adults, which is alarmingly 
expected to grow to approximately 81 million by the year 2040 (WHO 2006). As an 
alternative to drug-based treatments, several animal and human studies have signified 
the importance of natural products, for instance, the regular consumption of flavo-
noids extracted from grape seeds in preventing dementia with age. Human subjects 
with a high consumption of polyphenols from grapes and berries have a lower risk of 
neurodegenerative disorders including Alzheimer’s disease (Ramirez et  al. 2005). 
Moreover interesting is that polyphenols from grape seeds referred to as proanthocy-
anidins have antiaging effects on cardiovascular function and protective effects against 
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cardiovascular disease, an important risk factor initiating dementia (Fillet et al. 2008). 
An even more interesting finding is that cognitive reserve (CR) in Alzheimer’s patients 
on red wine consumption is enhanced (Ono et al. 2008). When referring to age-related 
neurodegenerative diseases, a frequently used term is CR which defines the ability to 
maintain cognition despite disease-free normal aging or disease-related characteristic 
changes to the brain such as storage of amyloid beta in Alzheimer’s disease (Stern 
2009; Rentz et al. 2010) compared to normal disease-free aging. However, CR devi-
ates from brain reserve wherein brain volume and the extent of the neuronal network 
can impact cognitive ability (Tucker and Stern 2011). In many AD patients, ACh lev-
els are the best measures of judging memory of the spatial type in rats, and the key 
enzyme is acetylcholine esterase (AChE). In AD, studies suggest GSE as an efficient 
anti-AChE natural product that increases acetylcholine levels and increases ACh 
release in the hippocampus (Rhodes et al. 1996). Concomitant studies in animal mod-
els of Alzheimer’s disease have demonstrated that mice supplemented with grape seed 
extract have reduced amyloid-beta protein deposition and this was accompanied by a 
reduction in cognitive decline (Wang et al. 2008). Liu et al. (2011) have demonstrated 
in AD patients an effective reduction in amyloid-β (Aβ) oligomers in the brain. These 
Aβ-oligomers result in impaired memory due to synaptotoxicity. They observed that 
GSPE supplementation for 5 months could inhibit Aβ-oligomerization in vitro and 
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Fig. 18.1 GSPE intervention on oxidative stress and cognitive aging. Schematic representation of 
the effects of free radicals and oxidative stress on brain aging. Aging decreases the m1ACh recep-
tors and increases AChE activity in the hippocampus and prefrontal cortex. Increased lipid peroxi-
dation and protein oxidation are accompanied with deficit in antioxidant defense. Grape seed 
proanthocyanidin extract (GSPE), however, attenuates the age-related effects on oxidative stress 
and cognition
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deter AD-associated pathology in the brains of transgenic mice, Tg2576. GSPE is 
shown to block Aβ-fibril synthesis and tau protein besides destabilizing preformed Aβ 
and tau-promoted pathology (Ono et al. 2008). A closely related study is that of Ho 
et al. (2009) on the abnormal misfoldings of the microtubule-associated tau that are 
finally observed as neurofibrillary tangles (NFTs) in tau-related neurodegenerative 
diseases and of the NFTs being attenuated by grape seed polyphenol extract. Further, 
the cognitive decline experienced in experimentally induced epilepsy in rats is 
reported to be reversed by GSE through a reduction in oxidative stress and mitochon-
drial injury (Zhen et al. 2014). GSPE has in common with other polyphenols a neuro-
protective property that enables the scavenging of free radicals and upregulating 
antioxidant defenses, for instance, through the upregulation of the transcription factor 
nuclear (erythroid-derived 2)-related factor 2 (Nrf2) pathway followed by the modula-
tion of signal transduction cascades (Kelsey et al. 2010).

Despite the fact that AD and Parkinson’s disease (PD) have varied pathological 
symptoms, the underlying cellular and molecular mechanisms seem to overlap quite 
significantly. A major share of these include amyloidogenesis and tau in AD and αS 
(amorphous α-synuclein) in PD. Polyphenols from red wine have been projected 
time and again as being neuroprotective to explain how these are essential as an 
intervention therapy for AD, and PD is a great task not only for basic neuroscientists 
but also for clinicians. This statement needs greater concern since despite the obser-
vation on a 5-year follow-up study of 1357 human subjects aged 65 years and over, 
who exhibited a significant negative correlation between grape flavonoids and 
occurrence of dementia, this does not convincingly answer whether subjects with a 
mild form of cognitive impairment or dementia are benefited by grape consumption 
(Commanges et al. 2000). Evidences from a study by Lee et al. (2017) on human 
subjects with MCI emphasize the benefits of grape as an effective strategy for 
 slowing the progression of dementia as a “positive outcome.” Importantly, the 
molecular mechanisms include anti-inflammatory activities, free radical scaven-
gers, antioxidant capacity, metal chelators, and antiamyloid action (Basli et  al. 
2012; Wang et al. 2014).

18.5  Conclusion

During normal aging, the decline in cognition is not inevitable. Biochemical, 
molecular, and pharmacological evidences suggest that interventions of naturally 
occurring polyphenols can combat not only the normal age-associated cognitive 
deficits but also those of pathological conditions.
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Abstract
The possibility to manipulate the aging process and extend healthy life has 
always fascinated humans. Scientific studies during the past few decades have 
dissected molecular mechanisms which play important roles in determining lon-
gevity. There is increasing evidence that the hypothesis based on structural and 
functional damage during aging involves a change in cellular redox states. Recent 
studies document that the plasma membrane redox system (PMRS) of eukaryotic 
cells acts as redox balancer by transferring reducing equivalents that are used to 
maintain homeostasis. As a compensatory mechanism, overexpression of PMRS 
has been noted during aging. It is hypothesized that activation of PMRS may 
provide a strategy to counteract redox shift and oxidative stress during aging. 
The present chapter deals with activation of PMRS and its role in antiaging 
intervention.

Keywords
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19.1  Introduction

Inevitable decline in functional ability of physiological systems in the body in post- 
reproductive phase of life is conventionally referred to as aging. The deteriorative 
alterations cumulatively lower the fitness level and the ability to preserve redox 
state, a vital condition for successful operation of various biochemical activities 
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inside the cell (Sohal and Orr 2012; Zheng et al. 2018). Among the various mecha-
nisms proposed to explain the aging and age-associated impairments, an altered 
redox state or impaired homeostasis in tissues is the most accepted phenomenon.

Endogenously generated reactive oxygen radicals (ROR) and mild oxidative 
stress are essential for various signaling activities in cellular reactions; however, in 
context to aging process, oxidative stress implies a condition of cellular state with 
inadequate antioxidant defenses to combat excessive ROR, thereby resulting in 
accrual of molecular and structural damage (Harman 1956; Pandey and Rizvi 2010). 
In the last decades, advanced studies have been performed in this area, and it is real-
ized that the role of redox state in aging process needs to be incorporated with 
structural damage hypothesis (Sohal and Orr 2012).

Comprehensive studies on antiaging interventions suggest that maintaining/
restoring the homeostasis or redox state may be an effective strategy for survival 
and promoting healthy life span (Schafer and Buettner 2001; Chiurchiù et al. 2016; 
Saraswat and Rizvi 2017). It has been documented that the determination of redox 
balance or cellular homeostasis is done by measuring the reduction potentials of 
redox duplets like GSH/GSSG, NADPH/NADP+, and thioredoxine reduced/oxi-
dized. These redox couples restore the cellular homeostasis via different pathways 
and mechanisms (Schafer and Buettner 2001; Forman et al. 2009; Sohal and Orr 
2012). Keeping this rationale in mind, it has been hypothesized that all the path-
ways/mechanisms entailed to withstand varied kind of stressors and to conserve 
redox homeostasis may be paramount in promoting healthy longevity. In the present 
chapter, we have described a plasma membrane-based novel redox system that 
operates in the body to counteract redox imbalance. Its activation may act as a com-
pensatory mechanism to intervene aging and associated impairments.

19.2  Plasma Membrane Redox System

Plasma membrane regulates numerous facets of cellular physiology including nutri-
tional transport and signal transduction in addition to protecting cell against external 
stressors (Wang et al. 1999; Hyun et al. 2006b; Hyun and Lee 2015). Due to proteins 
and lipids which are vulnerable to oxidative insult due to their inherent composition, 
plasma membrane is always menaced in all eukaryotes. The oxidative injury to the 
proteins and lipids present in the membrane transporters disturbs the activity, fluidity, 
and deformability of these transporters, which significantly results in aging and 
related cellular impairments (Pandey and Rizvi 2011a, b). Compromised plasma 
membrane state results in redox imbalance and may directly induce cell death (Circu 
and Aw 2010). In eukaryotic cells, it has been found that a group of oxidoreductase 
enzymes incorporating quinone reductases such as cytochrome b5 reductase and 
NADH-quinone oxidoreductase associated with plasma membrane and are involved 
in conserving redox homeostasis of the cell, thus collectively known as plasma mem-
brane redox system (PMRS) (Adlard and Bush 2011; Hyun and Lee 2015). Later 
studies have confirmed that besides maintaining redox shift, this system plays many 
other vital roles (Rizvi et al. 2006; Hyun et al. 2006b; Adlard and Bush 2011). PMRS 
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transfers reducing equivalent from the intracellular donors like reduced nicotinamide 
adenine dinucleotide (NADH) and ascorbate (ASC) or both to extracellular acceptor 
which is utilized to restore oxidized environment to reduced form. It has been sug-
gested that PMRS functions in maintenance of redox state of sulfhydryl residues in 
membrane-associated proteins, reducing the ROR, cell growth stimulation, recycling 
of α-tocopherol, prevention of peroxidative modification of lipids, and reducing of 
ferric ion before its uptake by iron in a transferring- independent pathway (VanDuijn 
et al. 1998; Rizvi et al. 2009; Adlard and Bush 2011).

PMRS also plays a critical role in modulation of the cellular NAD+/NADH ratio 
to counter shifts in energy requirement (Hun et al. 2012). In addition, it also has the 
ability to compensate mitochondria dysfunction which is reflected by increased 
activity of PMRS enzymes in mitochondria deficient cells (Hyun et  al. 2006b). 
Under stress condition, a transcription factor Nrf-2 induces a NAD(P)H-dependent 
reductase in the inner surface of the plasma membrane, NAD(P)H-quinone oxido-
reductase1 (NQO1) (Rushmore et al. 1991). Higher NQO1 levels have been pro-
posed to enhance resistance during cellular energy deprivation and proteotoxicity 
(Hyun et al. 2012).

Ascorbate free radical (AFR) reductase is another important component of 
PMRS that is involved in maintaining the extracellular ASC concentration by using 
electrons derived from intracellular ASC or other donors (de Grey 2005; Rizvi et al. 
2009). The combined action of PMRS and AFR reductase in regeneration of ASC 
seems very useful since ASC is an important antioxidant in cellular system and 
involved in primary defense machinery to various stressors. ASC also functions as 
an enzyme cofactor which plays an important role in reactions involved in catechol-
amines and peptide hormone synthesis (Harrison and May 2009). It is interesting 
that despite involvement in vital functions of the cell, humans and guinea pigs can-
not synthesize ASC in the body because of the lack of enzyme L-gulonolactone 
oxidase, which is required for ASC biosynthesis in mammals (Nishikimi et  al. 
1994). Encounter of an oxidant triggers the oxidation of ASC to AFR, which forms 
an unstable intermediate dehydroascorbate (DHA) that undergoes irreversible 
hydrolysis to form 2,3-diketo-L-gulonic acid, in consequence to which the level of 
the vitamin decreases in the cell. The reaction of two AFR molecules results in the 
formation of one ASC and one DHA molecule (Fig. 19.1).

Higher PMRS enzymes and AFR reductase activities have been reported during 
aging and associated complexities (Lenaz et al. 2002; Rizvi et al. 2009; Pandey and 
Rizvi 2013). Further studies have provided evidence that activation of PMRS and 
AFR reductase systems acts as compensatory mechanism that minimizes aging- 
induced oxidative stress and restores the plasma ASC level (de Grey 2005; Rizvi 
et al. 2009; Pandey and Rizvi 2010, 2013). Hyun and co-workers have documented 
that during aging, PMRS activation in brain cells helps to counteract dysfunction in 
mitochondria and oxidative insult (Hyun et al. 2006a). Reports suggest that another 
important component of PMRS is coenzyme Q (CoQ), which, in its reduced form, 
acts as an antioxidant and provides protection to lipids from oxidative injury. This 
protection may be either direct or through conserving the reduced state of both 
α-tocopherol and ascorbate (Kagan et al. 1990; Hyun et al. 2006a). These studies 
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potentiate the notion that activation of PMRS has significant action in maintaining 
the cellular redox state and can serve as novel biomarker of aging.

19.2.1  Activation of PMRS

Overexpressed PMRS in old individuals in comparison to the young and its acti-
vation during adverse cellular conditions have provided a clue that its activation/
upregulation may be a potent strategy to intervene aging and associated conse-
quences thereby promoting the healthy life span (Pandey and Rizvi 2010; Hyun 
et al. 2012). Thus, a compound with the ability to upregulate PMRS may act as 
antiaging agent. Recent studies on the health-promoting activities of polyphenols 
have reported that some polyphenols possess the ability to enter inside the cell. 

Fig. 19.1 Schematic representation of involvement of plant polyphenols and other compounds 
inactivation of PMRS. Activated PMRS transfers reducing equivalents to AFR and reduces it into 
ASC thus helps in increased ASC recycling during aging. ASC ascorbate, AFR ascorbate free radi-
cal, DHA dehydroascorbate, NADH nicotinamide adenine dinucleotide, Glut glucose transporter, 
PD protein disulfide. (Pandey and Rizvi 2013)
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Ones inside the cell, these polyphenols accumulate in higher concentration and 
activate PMRS by donating the reducing equivalent which is utilized to recycle 
the AFR back into ASC (Fiorani and Accorsi 2005; Rizvi and Pandey 2010; 
Pandey and Rizvi 2012, 2013) (Figs. 19.1 and 19.2).

Interestingly most of the polyphenols, which activate PMRS, have already been 
documented as beneficial during aging. It has been proposed that activation of 
PMRS may be classified among the mechanisms by which these polyphenols exert 
antiaging benefits. Polyphenols are naturally occurring components in plants, syn-
thesized during adverse conditions such as exposure to stressors or during attack by 
pathogens (Pandey and Rizvi 2009). During the last decade, polyphenols have been 
broadly studied for their pleiotropic biological effects which are beneficial in 

Fig. 19.2 Molecular structures of plant-derived polyphenols having the ability to activate PMRS
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promotion of human health (Scalbert et al. 2006; Pandey and Rizvi 2009, 2011a, b; 
Moreira et al. 2014; Mohammed et al. 2017).

Later studies have reported that resveratrol, green tea catechins, and quercetin 
exhibit the ability to activate the PMRS in human cells. A study performed on 
human red blood cells of both males and females between the age 18 and 82 has 
reported that resveratrol significantly upregulated the PMRS thereby promoting 
enhanced ASC recycling during aging (Pandey and Rizvi 2013). Likewise in other 
studies, epicatechin, epigallocatechin, epicatechin-3-gallate, epigallocatechin- 3- 
gallate, quercetin, ASC, and NADH have also been documented to activate the 
PMRS (Hyun et al. 2006b; Pandey and Rizvi 2009, 2010, 2012).

Caloric restriction (CR) which may be defined as reduction in the intake of calo-
ries without malnutrition is the most described strategy for healthy aging and to 
extend longevity. The molecular mechanisms of CR are not fully understood, but it 
has been reported that CR upregulates the PMRS and reduces oxidative stress dur-
ing aging (Hyun et al. 2006a). A study performed on brain cells reports that CR 
increased the PMRS enzyme activity including AFR reductase, NQO1, NADH- 
ferrocyanide reductase, COQ10 reductase, NADH-cytochrome c reductase, and 
level of α-tocopherol (Hyun et al. 2006a, 2012).

19.3  Conclusion

Based upon available reports, activation of PMRS is one of the most promising 
approaches for a successful antiaging strategy since PMRS has the ability to act in 
response to adverse conditions and safeguard the cells during aging. Future research 
efforts on PMRS enzyme activities and agents which can upregulate its activity may 
provide a better understanding toward healthy life extension.
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Abstract
Sarcopenia is a condition characterized by loss of skeletal muscle mass and func-
tion with aging and is associated with frailty, physical disability, falls, and higher 
mortality.

Many factors play role in the pathophysiology of sarcopenia. These include 
genetic factors, mitochondrial defects, decreased anabolic hormones, inflamma-
tory cytokines, insulin resistance, decreased protein intake and activity, poor 
blood flow to muscle, and growth-derived factor-11 deficiency. The molecular 
mechanisms underlying and/or associated with sarcopenia have significant role 
in aging. Hence, interventions targeting sarcopenia shall have an impact on 
healthy aging. At present, the best-demonstrated and practically recommended 
approaches to prevent/treat sarcopenia are resistance exercises and intake of ade-
quate protein and vitamin D. Adequate intake of protein and resistance exercises 
are mandatory to preserve muscle mass. Many other promising treatment modal-
ities are currently being investigated listed on the way.

Keywords
Aging · Intervention · Molecular mechanisms · Sarcopenia

20.1  Definition and Epidemiology of Sarcopenia

The term “sarcopenia” was first proposed by Rosenberg and Roubenoff in 1995 to 
define age-related muscle loss (Rosenberg and Roubenoff 1995). Sarcopenia is a 
condition characterized by progressive and generalized loss of skeletal muscle mass 
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and function with aging. The European Working Group on Sarcopenia in Older 
People (EWGSOP) provided a working definition of sarcopenia as “a syndrome 
characterized by progressive and generalised loss of skeletal muscle mass and 
strength with a risk of adverse outcomes such as physical disability, poor quality of 
life and death” (Cruz-Jentoft et  al. 2010). A similar approach was taken by the 
International Working Group on Sarcopenia (IWGS) in 2009 which provided a con-
sensus definition of sarcopenia as “age-associated loss of skeletal muscle function 
and mass” (Fielding et al. 2011). EWGSOP suggested three categories of sarcope-
nia: pre-sarcopenia, sarcopenia, and severe sarcopenia. The pre-sarcopenia is char-
acterized by low muscle mass without reduced muscle strength or physical 
performance. The sarcopenia stage is characterized by low muscle mass, accompa-
nied with low muscle strength or low physical performance. Severe sarcopenia is 
characterized by low muscle mass, low muscle strength, and low physical 
performance.

The prevalence of sarcopenia in the literature varies widely and is likely to be 
affected by the population studied and the different methods used to assess muscle 
mass, muscle strength, physical performance, and different muscle mass adjustment 
methods. Moreover, significant differences between cutoff values lead to a differ-
ence in prevalence. In the systemic review reported by Cruz-Jentoft et  al., the 
EWGSOP-defined sarcopenia prevalence was reported as 1–29% in community- 
dwelling elderly, 14–33% in long-term care residents, and 10% in acute hospital 
care (Cruz-Jentoft et al. 2014).

20.2  Effects of Sarcopenia on Healthy Aging

Sarcopenia is related with reduced physical capability (Tanimoto et  al. 2012), 
mobility impairment, disability, deterioration of respiratory function, impaired car-
diopulmonary performance, unfavorable metabolic effects (Karakelides et al. 2005), 
immune deprivation, decreased quality of life (Visser and Schaap 2011), frailty, 
difficulties in instrumental and basic activities of daily living, osteoporosis, falls 
(Landi et al. 2012), increased length of hospitalization and readmission (Gariballa 
and Alessa 2013), and death (Landi et al. 2013).

20.3  Diagnosis of Sarcopenia

There is substantial work performed to yield consensus definitions organized by 
different groups, and presence of both low muscle mass and low muscle function is 
required for diagnosis of sarcopenia as the consensus of all (Cruz-Jentoft et  al. 
2010; Muscaritoli et al. 2010; Fielding et al. 2011; Morley et al. 2011; Dam et al. 
2014). For muscle mass, recommended measurement techniques include computed 
tomography (CT) and magnetic resonance imaging (MRI), dual X-ray absorptiom-
etry (DXA) scan, and bioelectrical impedance (BIA). MRI and CT are considered 
to be accurate imaging techniques that can separate fat from other soft tissues which 
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makes these methods gold standards for measuring muscle mass in research. But for 
routine clinical practice, they are not appropriate because of limited access, high 
cost, or radiation exposure. For research and clinical use, DXA is the suggested 
alternative method because DXA can differentiate fat, muscle, and bone mineral 
tissue and at the same time radiation exposure is minimal. Another method that can 
be used for muscle mass measurement is BIA. BIA is a portable, widely available, 
rapid, noninvasive, inexpensive, readily reproducible technique appropriate for both 
ambulatory and bedridden patients and operator friendly not requiring high-level 
training. Low muscle mass cutoff values show differences between populations. 
EWGSOP recommends use of normative data of the study population if available 
instead of other predictive reference populations, with cutoff points of muscle mass 
at two standard deviations below the mean reference value (Cruz-Jentoft et  al. 
2010). Population-specific cutoff values have been reported in a few number of 
population including the Turkish population (Bahat et al. 2016).

There are three different approaches to adjust lean mass to body size, which 
include muscle mass indexes adjusted for height squared (Baumgartner et al. 1998), 
for total body mass (Janssen et al. 2002), or for BMI (Cawthon et al. 2014). There 
is no consensus on which correction method is better. Low muscle mass/height2 was 
present almost exclusively only among normal or underweight patients, whereas 
indexing to body weight and BMI classified more overweight and obese patients as 
having low muscle mass. Kittiskulnam et al. reported that the degree of correlation 
between muscle strength and muscle mass was highest when muscle mass was 
adjusted by BMI and lowest for by height2 (Kittiskulnam et al. 2017). The muscle 
mass adjusted by BMI may be better for association of low muscle mass with func-
tionality than the other methods.

There are fewer well-validated techniques to measure muscle strength. Although 
for gait and physical function lower limbs are more relevant than upper limbs, hand-
grip strength has been widely used and is well correlated with most relevant out-
comes (Cruz-Jentoft et al. 2010). Low handgrip strength is a clinical marker of poor 
mobility and a better predictor of clinical outcomes than low muscle mass 
(Laurentani et al. 2003). Low muscle strength cutoff values should better be deter-
mined separately for each population. Again, the population-specific handgrip 
strength cutoff values have been reported in few populations including Turkish 
population (Bahat et al. 2016; Fried et al. 2001).

There are comprehensive tests to measure physical performance such as 6-min walk 
test, usual gait speed, short physical performance battery (SPPB), and the stair climb 
power test. The SPPB evaluates gait, balance, strength, and endurance. Usual gait 
speed is part of the SPPB, but it can also be used as a single parameter for research and 
clinical settings. Timed get-up-and-go (TGUG) test is an important test, especially 
when evaluating the dynamic balance. It can serve as a performance measurement.

Most commonly, sarcopenia diagnosis is recommended to be made by evaluation 
of handgrip strength and usual gait speed as measures of muscle function. According 
to the algorithm published by the EWGSOP in 2010, the first step to evaluate sarco-
penia is the walking speed. If the walking speed is >0.8 m/s, evaluation of handgrip 
strength is required. If any of the assessments (i.e., handgrip strength or walking 
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speed) is identified low, muscle mass should be measured to evaluate sarcopenia. 
The approach recommended by the IWGS in 2011 is similar.

As detailed above, as sarcopenia is associated with many adverse outcomes (i.e., 
mobility disability, falls, fracture, cognitive impairment, metabolic syndrome, car-
diovascular diseases, and mortality) accompanying the unhealthy aging, recognition 
of factors causing sarcopenia is important. Accordingly, interventions that aim to 
prevent or improve these etiologic factors/mechanisms may facilitate healthy aging.

20.4  The Pathophysiology of Sarcopenia

Multiple, interrelated factors contribute to the development and progression of sar-
copenia. These factors contribute in varying degrees to the age-related losses of 
muscle mass, strength, muscle quality, and physical reserve in older adults. Increased 
levels of pro-inflammatory cytokines (e.g., IL-6, TNF), altered endocrine function 
(testosterone, insulin, estrogen, growth hormone), cellular apoptosis, mitochondrial 
dysfunction, and inadequate nutrition (particularly dietary protein) have all been 
implicated as potential contributing factors to loss of muscle mass, strength, and 
contractile quality. Endothelium-dependent vasodilation decreases with aging, due 
to decreased nitric oxide bioavailability. These changes lead to decreased microvas-
cular oxygenation. Another contributor to the development of sarcopenia is the 
decrease in blood flow to muscle with aging.

In 2016, Morley extensively reviewed the pathophysiological causes of sarcope-
nia (Morley 2016). When muscle contracts mechanoreceptors such as titin and dys-
troglycan have been activated. The activity of muscle growth factors is increased by 
the mechanoreceptors. The synthesis of muscle is increased by these factors and 
recruits satellite cells and motor units. So, muscle function is regenerated and mus-
cle function increases. Muscle contraction leads to muscle injury. With aging mus-
cle injury increases and also muscle regeneration and function decrease.

Because of the decrease in muscle growth factors, the protein synthesis/degrada-
tion ratio, the satellite cell, and the motor unit activation decrease. There is type II 
fiber atrophy with aging, and this results in diminished muscle mass, power, and 
strength (Purves-Smith et al. 2014). In sarcopenic patients the motor unit number 
index (munix) reduces. The 25% loss of motor neurons with aging leads to germi-
nating of small motor neurons that innervates type II fibers which leads to an ulti-
mate loss of type II fibers. Also with aging ciliary neurotropic factor (CNTF), which 
stimulate motor unit formation, declines.

20.4.1  Myokines

Myokines which are produced by skeletal muscle can affect muscle growth and 
repair (Demontis et al. 2013). Interleukin-6 is produced predominantly by adipose 
tissue that infiltrates the muscle. Intramuscular lipid infiltration is related with 
decreased muscle mass, decreased muscle strength, and increased levels of 
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inflammatory markers. IGF-1, IGF-binding proteins, musclin, myostatin, CXCL-1, 
and leukemia inhibitory factor have direct effects on muscle. Myostatin is a regula-
tory factor primarily exerting its effect in the skeletal muscle. It is a member of the 
TGF-β family and inhibits muscle growth. Growth hormone inhibits myostatin lev-
els. Decrease in growth hormone with aging may cause an increase in myostatin 
levels. VEGF-B, IL-8, and follistatin-like1 increase angiogenesis in muscles. 
Contractile protein accumulation is increased by IL-5 and this induces myotube 
hypertrophy (Pistilli and Quinn 2013).

20.4.2  Genetics

In older persons genes play a role in 50–80% of muscle strength and 65% of muscle 
mass (Garatachea and Lucia 2013). In muscle contraction angiotensin-converting 
enzyme alleles play an important role. In men ACTN3 gene deficiency is associated 
with reduced strength and endurance activity. CNTF, IL-5, myostatin, insulin 
growth factor, collagen type II, the vitamin D receptor, and the androgen CAG 
receptor genes are also related with muscle strength. Older persons have higher 
perilipin 2 levels, and it is related with lipid droplets. It causes a decrease in muscle 
strength and the proteins associated with muscle atrophy, i.e., atrogin and MURF1.

20.4.3  Mitochondria

Mitochondrial dysfunction plays a role in the pathogenesis of aging (Marzetti et al. 
2013). The production of cellular energy, free radical signaling is controlled by 
mitochondria, and it can activate apoptotic pathways. Along with aging, there is an 
increased fusion, and it leads to a giant mitochondria. Removing giant mitochondria 
from cell is difficult, and because of that, cells function poorly. Older mitochondria 
lose its outer membrane; this leads to increase their tendency to apoptosis. This is 
interrelated to a reduction in CiSD2 gene expression.

The peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regu-
lates mitochondrial biogenesis and function. Muscle fiber adaptation to exercise is 
regulated by PGC-1α (Amold et  al. 2011). In old animals the functional loss of 
mitochondrial enzymes is reduced by the activity of PGC-1α, and this protects mus-
cle from damage. PGC-1α gene expression reduces in older persons (Garatachea 
and Lucia 2013). With aging PGC-1α levels decrease, and this causes translocation 
of BAX to mitochondrial membrane with activation of the mitochondrial membrane 
pore and loss of cytochrome C.  This causes mitochondrial apoptosis. Also this 
reduction causes low-grade inflammatory reaction with increased levels of IL-6 and 
TNFα. Excessive release of PGC-1α harms the heart and muscle. Therefore increas-
ing PGC-1α to physiological levels in sarcopenic tissue may be a fundamental ther-
apeutic approach to treat muscle wasting. Muscle mitochondria-centered approaches 
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can be a reasonable option for the treatment of sarcopenia. However, all approaches 
need to be further explored.

20.4.4  Protein Synthesis and Degradation

IGF-1 receptor or insulin activation controls protein synthesis and/or degradation. 
This stimulates the phosphoinositide 3-kinase (PI3K)-AKT – mammalian target of 
rapamycin (mTOR) signaling pathway. Increased mTOR leads to an increase in 
protein synthesis. AKT and PGC1a stop FOXO activity; this leads to reducing the 
transcription of atrogenes. These atrogenes are MURF-1 or TRIM63 and atrogin1. 
Atrogin1 deteriorates proteins that increase protein synthesis. Myofibril breakdown 
is directly controlled by MURF-1 and ubiquitin tripartite motif containing protein 
32 (TRIM32). MURF-1 leads to devastation of the thick myosin filament by attack-
ing the myosin light chain and the myosin binding protein. TRIM32 devastates des-
min and then the Z-band and finally the thin actin filament. Therewithal TRIM32 
directly limits PI3 K-AKT activity which leads to increased proteolysis. Myofibrils 
form the vast majority of muscle protein. Destruction of these myofibrils causes loss 
of muscle function (Cohen et al. 2012). In sarcopenia protein destruction and ubiq-
uitination increase. TRIM32 and/or MURF1 inhibitors represent attractive thera-
peutic targets in the treatment of sarcopenia.

20.5  Treatment of Sarcopenia

Sarcopenia treatment components that have convincing evidence-based data include 
exercise, nutritional support, and hormonal treatment options. There are also new 
emerging treatment alternatives.

20.5.1  Exercise

The primary treatment of sarcopenia is exercise. With exercise, both muscle strength 
and muscle mass can be increased. In aerobic exercise, large muscle groups move in 
a rhythmic pattern for a certain period of time. Resistance exercises are performed 
against a force or weight applied (i.e., weight lifting). Both resistance and aerobic 
exercises reduce muscle mass and strength decline that occurs with aging. Resistance 
exercise among different types of exercise to struggle with sarcopenia is the safest 
and most effective method to improve both muscle mass and muscle function. It 
seems to be an important tool in the treatment of sarcopenia by promoting positive 
functional (strength and power) and structural (hypertrophy and phenotypic 
changes) adaptive responses. In a meta-analysis assessing 121 randomized con-
trolled studies, it was found that physical function, walking speed, timed up-and-go 
test, ladder climbing power, and muscle strength were improved in older people 
who had progressive resistance training twice or three times a week. Aerobic 
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exercise such as walking, running, swimming, or biking are known to have benefits 
on cardiovascular fitness, flexibility, and endurance capacity (Koopman et al. 2010). 
It is also known that aerobic exercise is less likely to contribute to muscle hypertro-
phy, but this exercise may increase the cross-sectional area of muscle fibers. Aerobic 
exercise training affects skeletal muscle by enhancing mitochondrial bioenergetics, 
protein synthesis, and insulin sensitivity, reducing inflammation and oxidative 
stress, (Short et al. 2004). In addition to the beneficial effects of aerobic exercises 
on cardiovascular health, resistance and endurance exercises performed three times 
a week have been found to be effective in sarcopenia (Phu et al. 2015).

20.5.2  Nutritional Support

Nutrition intervention is considered to be one of the anchors of intervention in sar-
copenia, but most of the evidence is based on short-term protein synthesis studies. 
Older people are at risk for inadequate protein intake. Health, Aging, and Body 
Composition Study (Houston et  al. 2008) showed that higher protein intake was 
associated with less appendicular lean muscle mass loss over a period of 3 years. It 
has been suggested that the daily intake of 0.8 g/kg protein recommended in healthy 
adults is inadequate to prevent the occurrence of sarcopenia in the older adults. 
Increased muscle wasting in the elderly, comorbid diseases, and their exacerbation 
periods increase the protein requirement of the patients. It is suggested that protein 
intake of 1.2–1.5 g/kg/day is needed in the older adult arranged by consideration of 
compulsory inactivity periods and stress factors. with adequate energy intake (Deutz 
et al. 2014). Comorbid diseases in the advanced age and immobility process increase 
muscle loss. Increased loss in the process of recruitment makes protein support 
more important in this period. The quality of the protein is also important. Essential 
amino acids are important stimulants of protein synthesis. Particularly, leucine has 
anabolic effect on muscle through stimulation of motor pathway. Essential amino 
acids, especially leucine and beta-hydroxy-methylbutyrate (HMB) supplement, 
improve the parameters related to muscle mass and function (Cruz-Jentoft et  al. 
2014). A systematic review published by Cruz-Jentoft et al. in 2014 assessed the 
exercise and nutritional support underlying sarcopenia. Nutritional support treat-
ments have focused on the effect of protein supplementation (sufficient calories can 
be provided with other nutrients in general), amino acid supplementation, and beta- 
hydroxy- methylbutyric acid supplementation (HMB: leucine bioactive metabolite) 
(with arginine or alone) on muscle mass and/or muscle function in 8–24 weeks. It 
has been stated that the activity of protein supplementation in muscle mass and 
function is unclear in studies in which the quality level is moderate to good accord-
ing to their own evaluations. It was noted that the EAA (essential amino acid) sup-
plementation had partial positive effects and the HMB had partial positive effects, 
but the samples were with a small number of patients, and fatty acid supplementa-
tion had no effect (Cruz-Jentoft et al. 2014). In addition, the daily protein intake 
needs to be distributed throughout the day in proportion to the meals to have optimal 
benefit from the ingested protein (Layman 2009). Vitamin D plays an important role 
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in muscle and bone metabolism. When vitamin D binds to the skeletal muscle 
receptor, muscle protein synthesis increases and calcium intake from the cell mem-
brane increases (Bischoff et al. 2001). Vitamin D deficiency is associated with atro-
phy especially in type II muscle fibers and sarcopenia (Ziambaras et al. 1997). Older 
patients with low vitamin D levels have reported difficulties in stair climbing- 
standing up, proximal muscle weakness, and balance problems (Mowe et al. 1999). 
In postmenopausal women vitamin D supplementation alone has a significant pro-
tective effect against the formation of sarcopenia and provides a significant improve-
ment in muscle strength (Stratos et  al. 2013). The maximum blood level for the 
healthiest effect of vitamin D has been reported as 50 ng/ml (Shuler et al. 2012). 
Maintaining adequate and optimal level of vitamin D is one of the mainstays of the 
evidence-based sarcopenia treatment.

In summary, balanced protein, energy, and vitamin D intake, particularly as part 
of a multimodal therapeutic approach to treating and preventing sarcopenia in the 
elderly, may be useful, especially when combined with regular exercise.

20.5.3  Pharmacological Treatment

20.5.3.1  Testosterone
From 30 years of age, testosterone levels decrease at the rate of 1% per year (Morley 
2011; Morley et al. 1997). This decrease in testosterone is related with a decline in 
muscle mass and strength (Baumgartner et  al. 1999). Numerous studies have 
revealed that testosterone increases muscle mass and decreases fat mass at low 
doses (Wittert et al. 2003) and increases muscle mass and muscle power at higher 
doses (Bhasin et al. 2005). In lower doses, testosterone enhances protein synthesis, 
and this increases muscle mass (Ferrando et al. 2003). In high doses, testosterone 
activates satellite cell recruitment and reduces adipose stem cells (Kovacheva et al. 
2010). In frail older people and people with heart failure, testosterone increases both 
strength and walking distance. In frail older people, testosterone with protein sup-
plementation reduced the hospitalization rate (Chapman et al. 2009). A study by 
Stephanie et al. has shown that testosterone alone or with drugs such as finasteride, 
5-alpha reductase inhibitor, corrects body compositions. This study, consisting of 
patients with a mean age of 71 years, showed improvement of metabolic function 
and muscle mass at lower extremity with appropriate testosterone levels at the end 
of 36 months (Stephanie et al. 2005). Results from recently published individual 
trials showed that testosterone has beneficial effect on bone strength and bone min-
eral density (Nieschlag 2015; Irwig 2014). Osteoporosis and sarcopenia frequently 
coincide (osteosarcopenia).

In his 2016 review, Morley suggests that the most effective and safest drug devel-
oped for sarcopenia is the testosterone (Morley 2016). The role of testosterone 
replacement to treat the decline in serum testosterone concentration that occurs in 
aging men was addressed in the multicenter Testosterone Trials in 2017, an inte-
grated set of seven trials in nearly 800 men over age 65 years with low testosterone 
and sexual dysfunction, and reduced vitality, who were randomly assigned to 
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testosterone gel or placebo for 12 months. Initial results suggested that testosterone 
had a beneficial effect on sexual function, depressive symptoms, and mood and pos-
sibly physical function (walking distance) (Resnick et al. 2016). But it is known that 
there are some side effects, and because of these side effects, its use is restricted in 
the clinic. Testosterone replacement can lead to adverse outcomes such as prostate 
enlargement, gynecomastia, polycythemia, fluid retention, and sleep apnea. It 
remains controversial whether or not testosterone has an effect on cardiovascular 
events, especially in the first 3 months after administration (Mogentaler et al. 2015; 
Borst et al. 2014). A meta-analysis of the controlled studies of testosterone in older 
males did not show an increase in mortality (Carona et al. 2014). Very recently, in 
their study Cheetham et al. reported that testosterone usage was related with lower 
risk of cardiovascular outcomes (Cheetham et al. 2017). However, in this analysis, 
most of the men were relatively healthy and young, and it may be older men at 
higher cardiovascular risk that are most vulnerable to side effects of testosterone 
therapy. In their study Budoff et al. reported that treatment with testosterone gel for 
1 year, compared with placebo, was associated with a significantly greater increase 
in coronary artery noncalcified plaque volume (Budoff et al. 2017). Therefore, it is 
noted that at the current time, clinicians should remain aware that the cardiovascular 
risks and benefits of testosterone replacement in older hypogonadal men have not 
been adequately resolved (Orwoll 2017). More attention should be paid to the 
potential role of testosterone in the treatment of sarcopenia.

20.5.3.2  Anabolic Steroids/Selective Androgen Receptor 
Modulators (SARMs)

Anabolic Steroids
Nandrolone is an injectable anabolic steroid. It enhances muscle mass and fiber 
area, but there is no data for increased strength (Macdonald et al. 2007). In three 
studies of persons with hip fracture, it has been shown that there is nonstatistical 
improvement in functional status (Farooqi et al. 2014). In hemodialysis patients, 
ingesting oxymetholone was related with a raise in handgrip strength, fat-free mass, 
and muscle mRNA levels for several growth factors and a decrease in fat mass, but 
it also induced liver injury (Supasyndh et al. 2013). MK0773 (TFM-4AS-1) is a 
4-aza steroidal drug. It has androgen gene selectivity. It has been shown that it 
increased insulin growth factor-1 (IGF-1) and also stair climbing capacity and gait 
speed in females. But due to increased signal for cardiac failure, this study was 
terminated (Papanicolaou et al. 2013).

Selective Androgen Receptor Modulators (SARMs)
Fear of adverse side effects from the testosterone has led to the search for selective 
androgen receptor modulators (SARMs) which could be theoretically safer. SARMs 
act by binding to the androgen receptor. SARMs show different sensitivities when 
compared to testosterone (Mohler et al. 2009). LGD-4033 is a nonsteroidal, orally 
active SARM. The phase I trial showed an increase in muscle mass but did not show 
any effect on fat mass at 21 days of the trial (Basario et al. 2013). In a 12-week study 
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with female cancer patients, an another SARM, “enobosarm,” increased stair climb 
performance and total lean mass (Dalton et al. 2011). In two phase III trials, it main-
tained body mass and enhanced stair climbing power in patients with cancer in one 
of two trials (Steiner 2013). Overall, these studies of SARMs have shown no supe-
riority to the testosterone. Currently it is not recommended because there is not 
enough supportive study to use it.

20.5.3.3  Growth Hormone/Insulin Growth Factor-1
Growth hormone (GH) is one of the effective hormones in the maintenance of mus-
cle and bone mass. GH produces its anabolic effect by release of liver-derived IGF- 
1. There is a decrease in the pulsatile frequency and amplitude of both growth 
hormone and IGF-1 with aging. Because of this decline, central obesity, deteriora-
tion in mental functions, and fragility with loss of muscle mass and physical func-
tion occur. In a study conducted, growth hormone supplementation showed a 2 kg 
increase in lean muscle mass and a 2 kg decrease in fat mass. Many studies have 
shown that although there is an increase in muscle mass with growth hormone 
replacement in the elderly who are healthy and without growth hormone deficiency, 
there is no significant effect on muscle strength (Burton and Sumukadas 2010; 
Papadakis et al. 1996). Both high and low levels of IGF-1 increase risk of cardiovas-
cular disease. A study of IGF-1 found an increase in side effects such as edema, 
myositis, orthostatic hypotension, and gynecomastia. Both GH and IGF-1 are not 
currently recommended in the treatment of sarcopenia (Sullivan et al. 1998).

20.5.3.4  Myostatin and Activin 2 Receptor Inhibitors
Growth differentiation factor-8 or myostatin which prevents muscle protein synthe-
sis and satellite cell production and promotes fibrosis is produced in skeletal mus-
cle. Myostatin inhibition causes muscle hypertrophy. Hence, several agents which 
are mechanistic myostatin antagonists, including hormones such as soluble activin 
type IIB receptors (myostatin binds to activin type I, IIA, and IIB receptors for its 
action), follistatin (a natural myostatin-binding protein), and recombinant myostatin 
antibodies, are all in development. In people with muscular dystrophy, myostatin 
antibody (MYO-029) has increased muscle mass (Wagner et al. 2008). Muscle fiber 
diameter increased in 10 mg/kg dose. Side effects in high doses include urticaria 
and aseptic meningitis. In patients with androgen deprivation therapy for prostate 
cancer, another myostatin antibody (AMG 745) causes decreased fat and increased 
lean body mass after 28 days (Padhi et al. 2014). In the persons receiving active 
drug, confusion, fatigue, and diarrhea were more common. In persons with advanced 
cancer, LY2495655 increased handgrip strength and muscle volume (www.clinical-
trials.gov). In monkeys an activin II receptor ligand trap, ACE-011, increased bone 
strength and mass (Fajardo et al. 2010). In 48 postmenopausal women, after a single 
dose of ACE-031, lean body mass and thigh muscle volume had been increased 
(Attie et al. 2013). Another ligand trap, ACE-083, is in development phase. Due to 
side effects such as epistaxis, telangiectasia, and changes in gonadotropin levels, the 
company stopped the development of these compounds. Studies are going on, but 
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there is not currently enough evidence to use myostatin and activin receptor inhibi-
tors in the treatment of sarcopenia.

Bimagrumab A human monoclonal antibody directed against type II activin recep-
tors. In a 24-week randomized, double-blind, placebo-controlled study in older 
adults with sarcopenia, it is shown that treatment with bimagrumab increased mus-
cle strength and mass, and in those with slow walking speed, it enhanced mobility 
(Rooks et al. 2017).

20.5.3.5  Angiotensin-Converting Enzyme Inhibitors (ACEIs)
Angiotensin-converting enzyme inhibitors have a positive effect on skeletal muscle 
function with various mechanisms, such as regulation of endothelial function, anti- 
inflammatory effect, and regulation of angiogenesis which leads to regulation of 
skeletal blood flow (Sumukadas et al. 2008). ACE inhibitors may also increase the 
number of mitochondria and IGF-1 levels (Papadakis et al. 1996). It has been shown 
that perindopril increases walking distance in older people with left ventricular sys-
tolic dysfunction (Hutcheon et al. 2002). In older persons with functional impair-
ment, perindopril also improved 6-min walking distance (Sumukadas et al. 2007). 
In HYVET study perindopril decreased hip fracture (Peters et al. 2010). Although 
there are positive effects in a small number of prospective studies, large studies are 
needed to investigate the effects of ACE inhibitors on sarcopenia.

20.5.3.6  Fast Skeletal Troponin Activators (Tirasemtiv)
Tirasemtiv, a selective fast skeletal muscle troponin activator that synthesizes the 
sarcomere to calcium and amplifies the response of muscle to neuromuscular input 
in humans, has been reported to improve muscle power and muscle fatigability in 
humans (Hansen et  al. 2014). Tirasemtiv slowed the rate of decrease in muscle 
strength (Malik et  al. 2014). There is not currently enough evidence to suggest 
tirasemtiv; further studies are needed.

Drugs Targeting Systemic Inflammations
They modulate both energy balance and muscle protein balance.

Omega-3-Suplements Omega-3-polyunsaturated fatty acids (n3-PUFA) espe-
cially eicosapentaenoic acid (EPA) reduce mitochondrial oxidant emissions, 
increase postabsorptive muscle protein synthesis, and enhance anabolic responses 
to exercise in older adults. And also it has anti-inflammatory effect (Calder 2013). It 
is synthesized from ingested alpha-linolenic acid or is consumed in fish and fish oil 
such as cod liver, sardine, and salmon oil. The administration of omega-3 fatty acids 
and EPA capsules or supplements with EPA has been shown to be associated with 
weight stabilization, gains in lean body mass, and improvements in quality of life 
markers in weight-losing patients.
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OHR/AVR118 This is a broad-spectrum peptide immunomodulator drug, which 
modulates cytokine action. The drug mitigates the deleterious effects of various pro- 
inflammatory cytokines that are implicated in the etiology of cachexia, whose acti-
vation has a direct effect on muscle metabolism. A phase II study involving patients 
with advanced cancer and cachexia showed an improvement in dyspepsia, anorexia, 
depression, and strength (Chasen et al. 2011).

This agent has worked in cachexia treatment until now. However anti- 
inflammatory activity is likely to have positive effects on the underlying sarcopenia. 
Further studies are needed to assess the safety and adequacy of these agents in 
patients with sarcopenia.

VT122 This is a fixed-dose combination of propranolol and etodolac, a COX-2 
inhibitor. In a randomized phase II study in 59 weight-losing non-small cell lung 
cancer patients, treatment with the combination of propranolol and etodolac resulted 
in an increase in lean body mass (Bhattacharyya et al. 2013). Further studies are 
needed to investigate the effects of this treatment on sarcopenia.

Drugs Targeting Muscle Homeostasis
Maintenance of skeletal muscle mass is mainly determined by the balance between 
muscle protein synthesis and proteolysis. Different signaling cascades involved in 
muscle protein turnover are targeted by the new drugs.

Ghrelin and Its Analogs Ghrelin, an endogenous GH secretagogue (GHS), is pro-
duced from the fundus of the stomach and increase appetite, food intake, and weight 
gain. A randomized, blinded, placebo-controlled trial using the oral ghrelin mimetic 
MK-677, which activates the ghrelin receptor to increase growth hormone, resulted 
in increased fat-free mass by 1.6 kg with no significant change in strength or func-
tion (Nass et al. 2008). Another study using the capromorelin, a ghrelin receptor 
agonist, demonstrated increases in body weight and fat-free mass and also improved 
tandem gait, and at the end of treatment for a year, stair climbing also improved in 
sarcopenic individuals (White et  al. 2009). More trials are needed to detect the 
effectiveness and safety of these agents in the long-term treatment of sarcopenia.

Potential Future Targets for Drug Development to Treat Sarcopenia
These agents are the other potential agents that are still in the research phase 
(Morley 2016).

The Anabolic Catabolic Transforming Agent (ACTA) Espindolol (Mixed 
Agonist/Antagonist B1, B2, B3 Activity) Espindolol is the S-enantiomer of 
pindolol. It decreases fat mass and increases muscle mass in older animals 
(Potsch et al. 2014). A phase II trial showed a decrease in fat mass and an increase 
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in muscle mass (Steward Coats et al. 2011). It also increased handgrip strength. 
More trials are needed to investigate the effects of this treatment on sarcopenia.

Ruxolitinib An orally bioavailable drug that selectively inhibits Janus kinase 1 
(JAK1) and Janus kinase 2 (JAK2), correlated with decreased levels of phosphory-
lated JAK and of signal transducer and activator of transcription (STAT). A phase 
I–II study of patients with myelofibrosis showed that ruxolitinib was associated 
with weight gain (Verstovsek et al. 2010). A randomized phase III trial comparing 
ruxolitinib with the best available therapy in patients with primary myelofibrosis 
showed that the ruxolitinib group had a mean gain in body weight of 4.43 kg by 
week 48 (Harrison et al. 2012). Whether weight gain through implementation of 
ruxolitinib may also improve sarcopenia needs to be further explored.

PPAR-δ Agonists and AICAR (5-aminoimidazole-4-carboxamide-1-beta-4- 
ribofuranoside) Studies have recommended a role for both the peroxisome 
proliferator- activated receptor-δ (PPAR-δ) and AMP-activated protein kinase in 
regulating the metabolic and contractile characteristics of myofibers. In 2008, 
Narker et al. conducted studies investigating the effect of modulating these recep-
tors in mice. The PPAR-δ agonist GW1516 significantly increases exercise capacity 
when combined with exercise but does not increase this in sedentary mice. However, 
AICAR (5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside), the activator 
of AMP-activated protein kinase, increases exercise performance by 44% even in 
sedentary mice (Narkar et al. 2008). It should be proved whether these drugs are 
suitable for humans, especially elderly people.

Biguanide: It inhibits BAX translation to mitochondrial membrane and enhances 
nitric oxide function.

TRIM 32 Inhibitor: It inhibits destruction of thin actin filaments, desmin, and the 
Z-band proteolysis.

Growth Differentiation Factor (GDF11): Satellite cell rejuvenation
Ciliary Neurotrophic Factor Agonist: It increases function of motor neuron 

endplate.
Myokine Activator and Inhibitor: It modulates function of muscle.
CisD Protein Replacement: It increases permeability of outer mitochondrial 

membrane.
Sirtuin/Resveratrol/Polyphenol: It enhances the interaction of nuclear/mitochon-

drial protein.
Nitric Oxide (Isosorbide Dinitrate): It increases blood flow of muscle.
MicroRNA (miR-1, miR-29, miR208, and miR486) Modulator: It modulates satellite 

cell quiescence.
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RNA Antisense: It modulates RNA function.
PGCI-α Agonist: It plays a role in mitochondrial biogenesis.
Serum and Glucocorticoid Inducible Kinase 1 (SGK1): It decreases autophagy and 

proteolysis and improves protein synthesis.

20.6  Conclusion

Sarcopenia seem to heavily impact aging. At present, the best-demonstrated and 
practically recommended approaches to prevent/treat sarcopenia are resistance 
exercises and intake of adequate protein and vitamin D. Many other promising treat-
ment modalities are currently being investigated listed on the way.
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Abstract
Aging is an inevitable process due to functional and structural loss in the body 
accrued over a period of time owing to harmful effects of free radical generated 
by a variety of events. Aging is associated with changes in cell metabolism which 
leads to decrease in cell size, number, and atrophy of organs. Cell loss is most 
evident in the brain and heart, in which regeneration of lost cells does not occur. 
Many theories explain the process of aging, but the free radical theory provides 
plausible evidence for its occurrence. Endogenous metabolic events and 
exogenous factors are responsible for the generation of reactive oxygen species 
(ROS) and reactive nitrogen species (RNS). Reactive oxygen species is 
collectively used in a broad sense to free radicals like superoxide (O2

.−), hydroxyl 
(OH•), and lipid peroxyl (LOO•) radicals and non-free radicals such as hydrogen 
peroxide (H2O2), ozone (O3), singlet oxygen (1O2), and lipid peroxide (LOOH). 
Uncontrolled increase in ROS concentration enhances free radical-mediated 
chain reactions which generally target proteins, lipids, polysaccharides, and 
DNA.  Human body has the capability to counteract the ROS by enzymatic 
antioxidants superoxide dismutase (SOD), catalase, and glutathione peroxidase 
(GPx); nonenzymatic nutrient antioxidants β-carotene, α-tocopherol, ascorbic 
acid; and metabolic antioxidants, bilirubin, uric acid, ceruloplasmin, ferritin, 
transferrin, albumin, and glutathione.
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21.1  Introduction

Aging is a natural physiological process associated with loss in cellular integrity 
and cell mass guided by programmed cell death or apoptosis. Many believe that this 
process could be slowed down if not completely halted. Human internal environment 
is maintained by a number of metabolic events which depend on oxidation of 
nutrients by the cell and elimination of metabolic end products which are considered 
to be waste materials.

21.2  Cellular Events in Aging Process and Theories of Aging

21.2.1  General Changes in the Cell

Changes associated with aging are inevitable.

21.2.1.1  Cell Loss and Body Composition Changes
Aging is associated with changes in cell metabolism which leads to decrease in cell 
size, number, and atrophy of organs. Cell loss is most evident in the brain and heart, 
in which regeneration of lost cells does not occur. Cell loss in the brain is selective, 
with the greatest loss occurring in the (a) basal ganglia (b), substantia nigra, and (c) 
hippocampus.

Body composition changes continuously throughout life. After sixth decade 
body weight (BW) decreases significantly, around 7 kg per decade in males and 
6  kg per decade in females. There is decrease in fatness also. Lean body mass 
(LBM) decreases by about 6% for each decade of age, the loss accelerating in later 
life and greater in males. Between 70 and 75 years, about 1 kg LBM is lost.

Body cell mass decreases with age due to decreasing number of cells in organs 
and increased disuse of skeletal muscle with age. By 70 years of age, skeletal muscle 
has lost 40% of its maximal weight in early adult life compared with 18% for the 
liver, 9% for the kidney, and 11% for the lungs. Muscle thus contributes most to the 
loss of cell mass. Loss of cells in organs such as the liver and kidney will lead to a 
loss of reserve tissue available to cope with disease conditions.

Loss in BW in the eighth decade of life corresponds more to loss of body cell 
mass in males and more to loss of body fat in females. Bone density decreases by 
12% in males and 25% in females by the ninth decade. Changes in bone density 
begin at the age of 40 years. Estrogen withdrawal accounts for much of the bone 
loss among women between 40 and 60 years.

21.2.1.2  Organelle Changes
The endoplasmic reticulum of aged cells is disordered, and its usual association 
with ribosomes is lost. Hence free ribosomes are present in greater numbers than 
normal. This results in abnormalities in synthesis of protein to be exported out of the 
cell. Hence quantitative and qualitative activity of many enzymes decreases (Digital 
World Medical School 2016).
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Abnormalities in size, shape, and cristae in the mitochondria occur with aging. 
These, together with reduced levels of cytochrome C reductase, impair energy 
production. An increased rate of organelle breakdown in aged cells is associated 
with the presence of increased numbers of (a) phagolysosomal vacuoles in the cells 
and (b) deposition of lipofuscin – a brown pigment believed to be derived from 
degraded organelle membranes, particularly evident in the heart, brain, and liver 
(Chandrasoma and Taylor 2001; Digital World Medical School 2016).

Abnormalities develop in some of the cytoplasmic structures in aged cell. The 
contractility of myofibrils in muscle cells is decreased. The ability of the nerve cells 
to synthesize acetylcholine declines with aging. The phagocytic efficiency of 
macrophages is reduced. Cell surface hormone receptors become abnormal, 
resulting in disturbances in binding of ligands such as insulin (Digital World 
Medical School 2016). As such the vital activities that sustain the life process is 
greatly reduced, and the cells lose their viability and physiological capability.

21.2.1.3  DNA Abnormalities
DNA abnormalities are mainly the result of a progressive failure of cellular DNA 
repair mechanisms. Failure of DNA repair can potentially affect any cellular 
function and frequently leads to cell death (Digital World Medical School 2016).

21.2.2  Apoptosis

Apoptosis is alternatively referred to as programmed cell death. Apoptosis literally 
means “a falling away from”. It is a pathway of cellular suicide and is responsible 
for programmed cell death in several important physiological as well as pathological 
processes listed below:

 (a) Programmed destruction of cells during embryogenesis, as occuring in implan-
tation, organogenesis, and developmental involution

 (b) Hormone-dependent physiologic involution, such as involution of the endome-
trium during the menstrual cycle or the lactating breast after weaning, or patho-
logic atrophy as in the prostrate after castration

 (c) Cell deletions in proliferating populations such as in the intestinal crypt epithe-
lium or cell death in tumors

 (d) A variety of mild injurious stimuli (heat, radiation, cytotoxic cancer drugs) that 
cause irreparable DNA damage that in turn triggers cell suicide pathway (e.g., 
via the tumor suppressor protein TP53) (Anonymous 2009)

Apoptosis usually involves single cells or clusters that appear on H &E stained 
sections as round or oval masses with intensely eosinophilic cytoplasm. The nuclear 
chromatin is condensed, and it aggregates peripherally, under the nuclear membrane, 
into well-delimited masses of various shapes and sizes. Ultimately karyorrhexis 
occurs, at a molecular level, reflected in fragmentation of DNA into nucleosome- 
sized pieces, presumably through activation of endonucleases. The cells rapidly 
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shrink, form cytoplasmic buds, and fragment into apoptotic bodies composed of 
membrane-bound vesicles of cytosol and organelles. Fragments are quickly extruded 
and phagocytosed or degraded.

21.2.3  Theories of Aging

Many theories have been proposed to explain the basis of aging. Hayflick (1985) in 
his review article on “theories of biological aging” classified them as follows:

 (a) Organ theories (immune or neuroendocrine)
 (b) Physiological theories (free radical, cross-linking, and waste-product 

accumulation)
 (c) Genome-based theories (somatic mutation, error theory, and program theory)

21.2.3.1  Organ Theories

Immunological Theory
According to the immunological theory, with aging there is decline in normal 
immune response accompanied by increased autoimmune manifestation.

Neuroendocrine Theory
The neuroendocrine theory of aging is based on the decline in neurons and endo-
crine cells which are vital to coordinate the activities. Ten percent decrease occurs 
in total brain weight with age (Brody 1980).

21.2.3.2  Physiological Theories

The Free Radical Theory
Since free radicals are highly unstable reactive molecules, they tend to propagate 
chain reactions during which many stable molecules are converted to free radicals 
through a process of oxidation. Uncontrolled increases in oxidant concentrations 
tend to enhance free radical-mediated chain reactions which generally target 
proteins (Stadtman and Levine 2000), lipids (Rubbo et al. 1994), polysaccharides 
(Kaur and Halliwell 1994), and DNA (Richter et al. 1988; LeDoux et al. 1999). The 
indiscriminate damages lead to loss in cellular architecture which culminates in the 
death of the cells (Harman 1981).

The Cross-Linkage Theory of Aging
Bjorksten (1974) claims that free radicals are effective cross-linkers. With aging 
macromolecules like proteins, DNA, and RNA are linked covalently or by a 
hydrogen bond between them. Cross-linking of collagen increases viscosity in the 
extracellular compartment, thereby impairing the flow of nutrients and waste 
products into and out of cells. Cross-linking of DNA affects its usual function 
leading to mutation or cell death (Hayflick 1985).
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Waste-Product Accumulation
Lipofuscin found in lysosomes indicates cellular wear and tear and may impair the 
cellular function (Hayflick 1985). Lipofuscin is an intralysosomal undegradable 
polymeric substance, and aged lipofuscin-rich cardiac myocytes become overloaded 
with damaged mitochondria, leading to increased oxidative stress, apoptotic cell 
death, and the gradual development of heart failure (Terman et al. 2008).

21.2.4  Genome-Based Theory

Genes may be instrumental in determining longevity. The genetic material is con-
stantly exposed to endogenous and exogenous materials that could bring about 
mutational changes in DNA. The somatic mutation theory is built on the concept 
that accumulation of a sufficient level of mutations in somatic cells will produce 
physiological decrements characteristic of aging (Hayflick 1985).

21.3  Generation of Free Radicals and Reactive Oxygen 
and Reactive Nitrogen Species

Living organisms are endowed with the inherent potential to generate energy using 
molecular oxygen. This inevitably results in the generation of reactive oxygen 
species (ROS) as well as reactive nitrogen species (RNS) owing to the reactive 
nature of oxygen. Atoms are most stable in the ground state. An atom is considered 
to be “ground” when every electron in the outermost shell has a complimentary 
electron that spins in the opposite direction. The oxygen atom contains unpaired 
electrons in both the outer and inner shells; however the total number of electrons is 
even. Molecular oxygen (O2) is a diatomic molecule containing two unpaired 
electrons in the outer shell. The Lewis structure for oxygen molecule is :Ö::Ö:. 
Therefore double bond is necessary to satisfy the octet rule for both oxygen atoms, 
and hence molecular oxygen is not very reactive with the two electrons involved in 
a chemical bond.

Reactive oxygen species (ROS) refers to a variety of molecules and free radicals 
(chemical species with one unpaired electron) derived from molecular oxygen. 
Reactive oxygen species is collectively used in a broad sense to free radicals 
(O2

.−,OH.) and non-free radicals (H2O2, 1O2) of the biological system. Free radicals 
are thus atoms, molecules, or ions with unpaired electrons. Free radicals are formed 
from molecules via the breakage of a chemical bond such that each fragment keeps 
one electron (Halliwell and Gutteridge 2007; Bahorun et al. 2006). These are formed 
in our body during various physiological and pathological processes.

Oxygen-derived free radicals include hydroxyl (OH•), superoxide (O2
•−), peroxyl 

(ROO•), and lipid peroxyl (LOO•) and non-radicals like hydrogen peroxide (H2O2), 
ozone (O3), singlet oxygen (1O2), hypochlorous acid (HOCl), and lipid peroxide 
(LOOH). The non-radical derivatives are generally referred to as oxidants but can 
easily lead to free radical reactions in living organisms (Genestra 2007). The 

21 Antioxidants for Health and Longevity



328

nitrogen-derived free radicals are nitric oxide (NO•), nitrogen dioxide (NO2
•), and 

peroxynitrite (ONOO−) (Koppenol et al. 1992). Sequential reduction of molecular 
oxygen leads to the formation of reactive oxygen species (ROS) such as superoxide 
anion, hydrogen peroxide, and hydroxyl radical as part of normal aerobic process 
(Fig. 21.1). Free radicals, ROS, and RNS do play a role in physiological function. 
They are unstable, highly reactive species which possess the ability to oxidize other 
molecules in an attempt to attain a stable state. In such a process the oxidized 
molecules become unstable and reactive and continue the oxidation process causing 
damage to the oxidized molecules.

Free radicals are formed during normal biochemical reaction involving oxygen. 
Metals containing proteins, as well as other sources of metals, are potent electron- 
transferring agents. Endogenous free radicals are generated in the biological system 
during normal cellular metabolism such as mitochondrial electron transport and 
endoplasmic reticulum oxidation; enzymatic activity including NADPH oxidase, 
xanthine oxidase, monoamine oxidase, tyrosine hydroxylase, L-amino oxidase, 
diamine oxidase, glycolate oxidase, alpha-hydroxy acid oxidase, nitric oxide syn-
thase, and L-gulonolactone oxidase; and events like prostaglandin synthesis, auto-
oxidation of adrenaline, activated phagocytic cells, and cytochrome P450 activity 
(Tandon et al. 2005; Bandyopadhyay et al. 1999; Babior 1978; Slater 1984; Sinclair 
et al. 1991). Energy required for the cellular activities is generated principally in 
mitochondria by aerobic oxidation whereby molecular oxygen is completely 
reduced to water. Nearly 3–5% of the daily oxygen utilized is converted to superox-
ide, hydrogen peroxide, and hydroxyl radicals.

Endogenous free radicals are generated from immune cell activation, inflamma-
tion, mental stress, excessive exercise, ischemia, infection, cancer, and aging. 
Exogenous ROS/RNS results from air and water pollution, cigarette smoke, alco-
hol, heavy or transition metals (Cd, Hg, Pb, Fe, As), certain drugs (cyclosporine, 
tacrolimus [an immunosuppressive drug], gentamycin, bleomycin [an antitumor 
antibiotic]), industrial solvents, cooking (smoked meat, used oil, fat), and radiation 
(Pham-Huy et al. 2008).

Perez-Campo et  al. (1998) have reviewed the relationship between oxidative 
stress and maximum life span (MLSP) in different vertebrate species. They are of 
the view that MLSP correlates negatively with the antioxidant status in animals and 
human beings show the minimum levels of antioxidants.

Fig. 21.1 Generation of free radicals from oxygen
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21.4  Harmful Effects of Free Radicals

A free radical is easily formed when a covalent bond between entities is broken and 
one electron remains with each newly formed atom. When free radicals steal an 
electron from a surrounding compound or molecule, a new free radical is formed in 
its place. Newly formed radical then looks to return to its ground state by stealing 
electrons with antiparallel spins from cellular structures or molecules. Thus the 
chain reaction continues and can be “thousands of events long” (Karlsson 1997).

21.4.1  Peroxidation

Lipid peroxidation refers to the oxidative degradation of lipids. Polyunsaturated 
fatty acids (PUFAs) are abundant in cell membranes and low-density lipoproteins 
(LDL). The PUFAs are responsible for the fluidity of cellular membranes which 
governs its semi-permeability. Free radicals seize electrons often from PUFAs in 
cell membranes, which results in cell damage via a free radical chain reaction 
mechanism (Fig.  21.2). In addition, end products of lipid peroxidation may be 
mutagenic and carcinogenic. The effect of ROS on the carbon-carbon double bond 
of PUFAs weakens the carbon-hydrogen bond (CH2), letting a hydrogen atom by 
dissociation and leave behind an unpaired electron on the carbon atom (•CH). The 
resultant carbon radical is stabilized by molecular rearrangement to produce a 
conjugated diene, which then can react with an oxygen molecule to produce lipid 

Fig. 21.2 Lipid peroxidation
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hydroperoxide (LOOH) and at the same time propagate lipid peroxidation further. 
A free radical stealing the single electron from the hydrogen associated with the 
carbon at the double bond leaves the carbon with an unpaired electron and hence 
becomes a free radical as well (Halliwell and Gutteridge 1985). When lipid 
peroxidation occurs in biological membranes, their structure and function are in 
disarray causing highly damaging consequences to the cell. One of the products of 
lipid peroxidation, malondialdehyde (MDA), has been extensively measured in a 
variety of conditions. The MDA concentration is significantly higher in normal 
elderly people (396.39 ± 43.58 nanomoles/dL), elderly hypertensive (551.16 ± 
199.52 nanomoles/dL), elderly diabetic (555.87 ± 88.39 nanomoles/dL), and elderly 
diabetic hypertensive (749.42 ± 260.6 nanomoles/dL) patients compared to normal 
young subjects (352.26 ± 67.59 nanomoles/dL) (Akila et  al. 2007). Diabetes is 
usually accompanied by increased oxidative stress which result from overproduction 
of precursors to reactive oxygen radicals and decreased efficiency of inhibitory and 
scavenger systems. There is evidence that both free radical production and 
antioxidant defenses are disturbed in diabetes (Lyons 1991; Ceriello 2000). Evidence 
has been generated also from our own laboratory that there is significant increase in 
MDA levels among diabetic patients (2.22 ± 1.58 μmol/L) compared to the controls 
(1.21 ± 0.6 μmol/L) (Udayangani et al. 2015) and proteinuric diabetic patients had 
even higher MDA levels of 5.2 ± 3.4 μmol/L (Udayangani 2015).

Richard (1985) studied the peroxide-producing potential of tissues in vitro and 
observed that human brain and kidney tissue homogenates are found to be most 
resistant to autoxidation, in agreement with humans having the longest MLSP. Based 
on his observation, he concluded that longevity of different mammalian species is 
determined in part by intrinsic differences in tissue peroxidation potential due 
possibly to unusually high concentrations of antioxidants and other defenses against 
peroxidation reactions.

21.4.2  Oxidation of Nucleic Acid/DNA by ROS

The hydroxyl radical (OH•) is the mediator of much of the DNA damage causing 
strand breaks, which are initiated by abstraction of a deoxyribose hydrogen atom by 
the hydroxyl radical. ROS forms DNA adduct which is characterized by deletion 
and mutation and causes genetic effects. The oxidation leads to degradation of 
bases, single- or double-stranded DNA breaks, purine, pyrimidine or sugar-bound 
modifications, mutations, deletions or translocations, and cross-linking with 
proteins. Sugars and base moieties are degraded by ROS and cause oxidation of 
bases and cross-linking to protein (Sies 1985). The hydroxyl radical (OH•) oxidizes 
guanine to 8-hydroxy-2-deoxyguanosine (8-OHdG), which eventually leads to 
GC→ TA transversions during subsequent DNA replication (Floyd 1990). DNA 
alteration has been suggested to be responsible in part in the processes of aging 
(Fraga et al. 1990).
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21.4.3  Oxidation of Proteins

The ROS cause oxidation of sulfhydryl groups and modification of amino acids. 
The proteins may undergo fragmentation, resulting in the loss of their biological 
activity. ROS can react with several amino acid residues in vitro, generating a wide 
range of products from modified and less active enzymes to denatured, nonfunctioning 
proteins (Butterfield et al. 1998; Said and Aiman 2014).

Free radicals are implicated in a number of diseases like diabetes mellitus, car-
diovascular diseases, hypertension, atherosclerosis, cancer, and neurodegenerative 
diseases besides its involvement in aging as summarized by Velavan (2011).

21.5  Antioxidants and Their Role in Preserving Cellular 
Integrity

A biological antioxidant has been defined as any substance that is present at low 
concentrations compared to an oxidizable substrate and significantly delays or 
prevents the oxidation of that substrate (Halliwell and Gutteridge 2007). The 
beneficial effect of antioxidant depends on their ability to work in aqueous and 
nonaqueous environment in the body. Antioxidants play a vital role in eliminating 
or keeping the ROS and/or RNS under check. An imbalance between the excessive 
formation of ROS and/or RNS and limited antioxidant defenses results in “oxidative 
stress” leading to various deleterious processes. Based on their location, antioxi-
dants could be grouped as:

 (a) Plasma antioxidants: ascorbic acid (vitamin C), bilirubin, uric acid, transferrin, 
ceruloplasmin, β-carotene

 (b) Cell membrane antioxidants: α-tocopherol (vitamin E)
 (c) Intracellular antioxidants: superoxide dismutase (SOD), catalase, glutathione 

peroxidase (GPx)

However according to their nature and action, they are grouped into:

 (a) Enzymatic antioxidants: SOD, catalase, GPx, glutathione reductase
 (b) Nonenzymatic antioxidants:

Nutrient antioxidants: β-carotene, α-tocopherol, ascorbic acid
Metabolic antioxidants: bilirubin, uric acid, ceruloplasmin, ferritin, transferrin, 

albumin, glutathione
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21.5.1  Antioxidant Protection by Nutrient Antioxidants

Plants are important contributors of various dietary constituents and nutrients. 
Among them vitamin E, vitamin C, and carotenoids are considered as natural 
antioxidants. They are very useful to the body and supplement the action of various 
endogenous antioxidants to combat the deleterious effects of free radicals. All the 
dietary nutrients are quite specific in its structure and function.

21.5.1.1  Vitamin E
Vitamin E occurs in the diet as a mixture of several closely related compounds, 
called tocopherols of which α-tocopherol is the most potent form of vitamin 
E.  Tocopherols are considered as nature’s best antioxidants. Because of their 
lipophilic nature, they are present in circulating lipoproteins, cell membranes, and 
fat deposits. Vitamin E donates extra electrons to needed unpaired electrons in order 
to stop the damaging potential of the free radical. As a result, vitamin E is converted 
to tocopheryl radical which is no longer active. Although free radical damage can’t 
be stopped all together, it can be minimized.

Vitamin E is a fat-soluble antioxidant and is the primary defender against effects 
of free radicals in the body. It protects components of the cell and their membrane 
from destruction. It is stored in the liver and fat cells. Vitamin E acting as an electron 
sink is an efficient lipid-soluble antioxidant that functions as “chain breaker” during 
lipid peroxidation in cell membranes and various lipid particles including LDL 
(Packer 1998; Kagan et al. 2002).

21.5.1.2  Vitamin C
Vitamin C alternatively termed as ascorbic acid is a water-soluble and versatile free 
radical scavenger which gives up electrons very easily when they are needed. It 
helps to regenerate vitamin E from tocopheryl radical. It has the ability to recycle 
over and over again. Ascorbic acid upon oxidation is converted to dehydroascorbic 
acid which could be regenerated by glutathione (Fig. 21.3). Vitamin C is a powerful 
reducing agent which can directly scavenge superoxide, hydroxyl radicals, singlet 
oxygen, and H2O2.

Fig. 21.3 Interaction of antioxidants in biological system
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21.5.1.3  Carotenoids
Carotenoids such as α-, β-, and γ-carotene, lycopene, and lutein function as impor-
tant antioxidants, and they quench O2

−· and ROO· radicals. Among carotenoids the 
most potent one is β-carotene.

Synergistic interaction by vitamin C, vitamin E, and carotenoids has shown to 
prevent lipid peroxidation (Niki et al. 1995).

21.5.2  Antioxidant Protection by Enzymatic Antioxidant

21.5.2.1  Superoxide Dismutase
Superoxide dismutase (SOS) is a metalloenzyme present in most of the cells. It 
converts superoxide radical to H2O2.

   
2 22 2 2 2O H H O O

SOD

•− ++ → +
 

The three SOD forms are:

 (a) Cu-Zn SOD present in the cytoplasm
 (b) Mn-SOD found in the mitochondria
 (c) Cu-SOD in extracellular SOD

21.5.2.2  Catalase
Catalase is responsible for converting the H2O2 to harmless water and oxygen. It is 
found in high concentration in the liver and erythrocytes. The brain, heart, and 
skeletal muscle contain only low amounts.

   
2 22 2 2 2H O H O O

Catalase

→ +
 

21.5.2.3  Glutathione Peroxidase
Glutathione peroxidase (GPx) is a selenium-dependent enzyme which detoxifies 
hydrogen peroxide using glutathione. Glutathione (GSH), a tripeptide found in most 
cells, is oxidized (GSSG) in the reaction catalyzed by glutathione peroxidase and 
prevents the damage to biomolecules by H2O2. Glutathione reductase (GR) keeps 
the glutathione pool in cell in a reduced state using NADPH derived from hexose 
monophosphate shunt (Fig. 21.3).

   
H O GSH H O GSSG

GPX

2 2 2+ → +
 

 
GSSG NADPH GSH NADP

GR

+ → ++
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21.5.3  Other Dietary Antioxidants

Zinc, copper, and selenium protect against oxidative stress indirectly serving as 
cofactors for antioxidant enzymes superoxide dismutase and glutathione peroxidase.

21.5.4  Antioxidant Protection by Non-nutrient Antioxidants

Phytochemicals are non-nutrient compounds found in plant-derived foods that have 
biological activity in the body. They contribute taste, aromas, colors, and other 
characteristics to food. Polyphenols are the important phytochemicals that can work 
either indirectly or directly by stopping free radicals from propagating.

The most common group of plant phenolics are flavonoids and nearly 4000 have 
been identified in plants. They are sometimes referred to as “super antioxidants.” In 
addition to the antioxidant potential, they show antiviral, antiallergic, anti- 
inflammatory, antithrombogenic, and anticarcinogenic effects. Flavonoids share a 
common structure (two benzene rings and a central pyran ring) which determines 
their antioxidant functioning. They are grouped into flavonols, flavanols, flavonones, 
anthocyanins, isoflavones, and flavones.

Our recent study on soy-incorporated traditional breakfast food items in diabetic 
individuals revealed that the serum antioxidant capacity measured as the ferric 
reducing ability of plasma (FRAP) significantly increased from 817.80 ± 176.5 to 
1059.75 ± 200.6 μmol/l over an experimental period of 120 days. In the control 
group of diabetics, the FRAP value was 820.61 ± 147.1 μmol/l at the commencement 
and decreased to 723.64 ± 101.3  μmol/l during the same experimental period. 
Soybean is a relatively good source of vitamin E (7.15 μg of tocopherol/g of seeds) 
(Vasantharuba et al. 2007) and ascorbic acid (37.84 mg/100 g) (Okuwa and Orji 
2007). Further the flavonoid content is 3.84  mg/100  g and is relatively higher 
compared to tannins (0.46  mg/100  g), phenols (0.04  mg/100  g), and saponins 
(0.17 mg/100 g) (Okuwa and Orji 2007). These antioxidants would have enhanced 
the total antioxidant capacity.

21.5.5  Human and Animal Studies on the Role of Antioxidants 
in Longevity

With the current understanding from human and animal studies, evidence supports 
that vitamins A and E may only provide life span benefits when started early in life 
(Chong-Han 2010).

21.5.5.1  Thai Traditional Formula
A Thai traditional formula has been claimed to prevent and/or cure disease. Based 
on this assertion, Luanchoy et al. (2014) carried out phytochemical screening tests 
in the six herbs included in the formula for longevity and documented the presence 
of phenolic compounds, tannins, and flavonoids in Cyperus rotundus and Albizia 
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procera; phenolic compounds and flavonoids in Piper nigrum, Diospyros 
rhodocalyx, and Streblus asper; and phenolic compounds, but neither flavonoids 
nor tannins, in Tinospora crispa extract. Further their investigations revealed only 
Albizia procera possessed highly potent antioxidant activity, although its potency 
was lower than that of vitamin C and Trolox.

21.5.5.2  Blue Mountains Eye Study
Ava Grace Tan et al. (2008) through a prospective population-based cohort study 
provided evidence of long-term beneficial association between antioxidants, mainly 
vitamin C (either alone or in combination with other antioxidants), and nuclear 
cataract development, a well-known biological marker of aging. Their findings that 
subjects in the highest quintile of total intake of vitamin C contributed by diet and 
supplements had a reduced risk of incident nuclear cataract is a convincing evidence 
for the protective role of vitamin C.  Furthermore, intake of vitamins C and E, 
β-carotene, and zinc in combination above median value was also associated with a 
reduced risk of incident nuclear cataract. The reason for the damage to crystalline 
proteins, lens fiber membranes, and lipids resulting in lens opacities is due to the 
oxidative consequence of superoxides and hydroperoxides (Boscia et al. 2000).

21.5.5.3  Oyster Mushroom Supplements
Sánchez et al. (2015) studied the effect of selected oyster mushroom supplements 
on the longevity of the Mexican fruit fly, Anastrepha ludens. They reported that 
Pleurotus djamor ECS-0142 strains with the highest antioxidant capacity when 
supplemented at 1% level showed slightly but significantly greater survival than 
those on the control diet. However 5–20% concentrations of mushrooms in the diet 
resulted in a decrease in life expectancy.

21.5.5.4  Mediterranean Diet
The traditional Mediterranean diet is long known for its health-preserving ability. 
The traditional Mediterranean diet is built on health-promoting characteristic such 
as high consumption of legumes, cereals, fruits, and vegetables, moderate 
consumption of milk and dairy products and ethanol and intake of fat with high 
monounsaturated to saturated ratio, as well as low consumption of meat and meat 
products (Trichopoulou et al. 1995). Based on the fact that the Mediterranean diet 
contributes a significant amount of flavonoids through fruits, vegetables, and 
beverages and polyphenolic compounds from olive oil, Trichopoulou and 
Vasilopoulou (2000) concluded that the diet has considerable antioxidant properties. 
Even though they claimed that there is no direct evidence that the antioxidants are 
central to the benefits of the Mediterranean diet, based on epidemiological data they 
suggested that there is indirect evidence to indicate antioxidants may play a major 
role.

21.5.5.5  Antioxidant Profiles in Italian Centenarians
Plasma levels of vitamin C, uric acid, vitamin A, and vitamin E and activities of 
SOD and GPx were estimated in healthy subjects of different age groups. In subjects 
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≤60  years, 61–80  years, 81–99  years, and ≥100  years, the vitamin C (μM) 
concentrations were, respectively, 49.5  ±  14.5, 49.8  ±  15.8, 35.7  ±  9.8, and 
29.6 ± 4.5. Subjects who were 81 years or more had significantly lower vitamin C 
concentration than the subjects in other age groups (Polidori et al. 2007). Similarly 
the uric acid concentrations were significantly lower in 81–99 years (243.2 ± 64.2 μM) 
and ≥100 years (218.6 ± 57.4 μM) old subjects than subjects in the age categories 
≤60 years (324.1 ± 88.0 μM) and 61–80 years (293.7 ± 79.9 μM). However, plasma 
levels of the fat-soluble vitamins A (3.5 ± 1.8 μM in centenarians higher than other 
age groups) and E (49.9 ± 8.3 μM in centenarians higher than other age groups) 
were significantly higher in centenarians compared to younger groups. This study 
concluded that in Italian population, elevated levels of plasma vitamins A and E 
seem to be important for longevity.

21.5.5.6  Green Tea
Consumption of green tea has caught the attention of many. The tea plant Camellia 
sinensis upon processing yields a variety of white, green, and black tea. C. sinensis 
is grown in many Asian countries. The health benefits of green tea is due to 
flavonoids, mainly catechins, epicatechin (EC), epigallocatechin (EGC), epicatechin 
gallate (ECG), and epigallocatechin gallate (EGCG). Epigallocatechin gallate is an 
efficient antioxidant, and its concentration in green tea is higher than black tea 
(Cheng 2000). The concentration of total polyphenols in dried green tea leaves vary 
from 8% to 12% (Min and Peigen 1991).

Apart from its antioxidant effect, green tea lowers total cholesterol level as well 
as improves the ratio of LDL cholesterol to HDL cholesterol (Cheng 2006).

Maurya and Rizvi (2008) reported that the tea catechins have strong antiaging 
activity; hence consumption of green tea, which is rich in catechins, may delay the 
onset of aging.

21.5.5.7  Resveratrol
Resveratrol, a polyphenol found in grape, is claimed as an antiaging agent. 
Resveratrol is a calorie-restriction mimetic agent (Barger et al. 2008). Sirtuins are 
NAD+ dependent histone/protein deacetylases which are target for resveratrol. 
Seven sirtuins (SIRT) have been reported in mammals, of which SIRT-1 via its 
deacetylase activity mediates the beneficial effects on health and longevity of resve-
ratrol (Markus and Morris 2008). Resveratrol, abundantly present in wine, scav-
enges O2

− and OH• in vitro, as well as lipid hydroperoxyl free radicals.

21.6  Natural Sources of Nutrients and Phytochemicals 
with Antioxidant Capacity

21.6.1  Vitamin C

Vitamin C is widely distributed in fresh fruits and vegetables. Some rich sources of 
it are presented in Table 21.1.
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21.6.2  Vitamin E

Vitamin E in nature is found in dietary articles that are rich in polyunsaturated fat. 
Hence vegetable oils like sunflower, soybean, and safflower oils are among the best 
sources of vitamin E. Tocols is the name designated to tocopherols and tocotrienols. 
Tocopherols exist as four homolog forms, alpha, beta, delta, and gamma, and alpha- 
tocopherol is the major tocopherol in many edible oils. By far the richest source of 
vitamin E is wheat germ oil. Oils extracted from cereals like rice bran and corn also 
provide some vitamin E. Almonds among the nuts are considered as a good source 
of vitamin E, and peanuts, hazelnuts, and sunflower seeds contain considerable 
amount of vitamin E. The daily vitamin E requirement is 15 mg, and one tablespoon 
of wheat germ oil provides 20.3 mg, which is more than the recommended daily 
allowance. The US Department of Agriculture’s nutrient database indicates that 
wheat germ contains 4.53 mg of vitamin E in 28 g. Germination of soybean seed for 
48 h increases the vitamin E content from 7.15 ± 0.34 μg/g of seed to 12.63 ± 0.54 μg/g 
of seed (Vasantharuba et al. 2007).

21.6.3  Carotenoids 

The plant kingdom contributes to our carotenoid requirements. The carotenoid fam-
ily has many types, but the most common ones are α-carotene, β-carotene, beta- 
cryptoxanthin, lutein, zeaxanthin, and lycopene. The color of the fruits and 
vegetables is due to their carotenoid content, and hence they are considered as good 
sources. Dark leafy green vegetables like spinach, broccoli, and leaf cabbage (kale) 
are good sources of carotenoids, and those grown in Sri Lanka such as Alternanthera 
sessilis, Sesbania grandiflora, and Centella asiatica are also good sources. Values 
for α-carotene, β-carotene, lutein + zeaxanthin, lycopene, and β-cryptoxanthin from 
approximately 200 references were evaluated and reported by Holden et al. (1999).

Sources
Amount of vitamin C 
(mg/100 g food)

Rosehip 2000
Kiwifruit 90
Broccoli 90
Orange juice (3/4 cup) 75
Strawberry 50
Orange 50
Lemon 40
1 potato 25
Banana 9
Apple 6

Table 21.1 Dietary sources  
of vitamin C
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21.6.4  Phytochemicals 

The naturally occurring chemical compounds found in plants which provide health 
benefits for humans further than those attributed to macronutrients and micronutri-
ents are grouped as phytochemicals (Hasler and Blumberg 1999). The foods contain-
ing considerable amount of such phytochemicals are also referred to as functional 
foods and are being extensively studied. Among the phytochemicals, polyphenols are 
recognized as having health-promoting roles. Based on the structure, polyphenols 
are divided into (a) simple phenolic acids, e.g., ferulic, caffeic, p-coumaric, vanillic, 
gallic, ellagic, p-hydroxybenzoic, and chlorogenic acids; (b) stilbenes, e.g., resvera-
trol; (c) curcuminoids, e.g., curcumin; (d) chalcones, e.g., phlorizin and naringenin 
chalcone; (e) lignans, e.g., matairesinol and secoisolariciresinol; and (f) flavonoids 
(Bravo 1998; Harborne and Baxter 1999; Williams et al. 2004).

The flavonoids are composed of seven subclasses, namely:

 (a) Flavonols, e.g., quercetin [in apples and onions]
 (b) Flavanols as monomeric, e.g., catechin [in red wine, grapes, and black tea] and 

epicatechin [in cocoa and chocolate], oligomeric, and polymeric compounds, 
e.g., proanthocyanidins, also called condensed tannins [in apple, grape seed, 
and cocoa]

 (c) Anthocyanins, e.g., cyanidin [black berries]
 (d) Flavones, e.g., luteolin [in tea, fruits, and vegetables] and apigenin
 (e) Flavanones, e.g., naringenin [citrus fruits, tomato] and hesperidin [in orange 

juice]
 (f) Flavanonols, e.g., taxifolin [in red onion]
 (g) Isoflavones, e.g., genistein [in soya] and daidzein [in soymilk]

Dietary phytochemicals have been known to possess anti-obesity potential, and 
their mechanisms of action have been reviewed (González-Castejón and Rodriguez- 
Casado 2011).

The phytochemicals present in foods have been reported to possess some possi-
ble health benefits. Isoflavones can reduce blood pressure and increase blood vessel 
dilation; anthocyanins also cause blood vessel dilation and improve insulin sensitiv-
ity; proanthocyanidins inhibit LDL oxidation and inflammation; catechins and epi-
catechins through vasodilation improve blood flow to the brain, in addition to 
improving insulin sensitivity (Heneman and Zidenberg-Cherr 2008).

21.7  Conclusion

Aging, an inevitable process, is the result of free radical-mediated damage to cel-
lular fabric. Antioxidants provide relief from oxidant stress. Natural antioxidants 
present in the diet that we consume contribute to the body’s antioxidant defense 
system along with the endogenous antioxidants. As age advances, the antioxidant 
protection diminishes when dietary intake dwindles. There are convincing 
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evidences from a number of studies to indicate that aging could be slowed down by 
antioxidants giving the hope that life can be prolonged if adequate antioxidant 
capacity of the body is maintained. Thus dietary antioxidants could prove its value 
for an aging population. Fruits, vegetables, and other plant-based foods are rich in 
bioactive phytochemicals with antioxidant potential, especially the phenolics, that 
may provide desirable health benefits beyond basic nutrition to reduce the risk of 
the development of chronic diseases due to oxidant stress. There are many more 
effects of antioxidants which are not covered in this chapter.
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Abstract
Worldwide, more than 10 million people suffer from traumatic brain injury 
(TBI). A TBI is a time-dependent series of events starting with a traumatic insult 
damaging the tissues and then followed by secondary damage to the tissue 
including neuronal excitotoxicity, neural inflammatory changes, and apoptosis. 
Long-term physiologic effects of TBI include accelerated aging through volume 
decrease and variability in synapsis plasticity. There are several immune- and 
receptor-modulating therapies hypothesized to prevent the aging effects of 
TBI. This chapter will focus on the aging effects of TBI and therapies to prevent 
this acceleration of aging.
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22.1  Traumatic Brain Injury

This chapter will introduce brain injury and discuss the role TBI has in aging and 
the antiaging therapies available to treat TBI-associated aging.
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Different types and severities of TBI accelerate aging through different physio-
logic pathways. Rapid acceleration and deceleration of the brain may lead to a com-
plex cascade of neuronal damage, in which neuronal cell membranes are disrupted 
due to mechanoporation of lipid membranes and axons are compressed or stretched 
in a relatively short period of time (Barkhoudarian et al. 2011). As a result, ion chan-
nels lose their ability to regulate ion flow, and a nonspecific flux of ions into and out 
of the neuron is common, causing rampant depolarization and subsequent action 
potential throughout the brain. This leads to an inefficient and indiscriminate release 
of neurotransmitters and excitatory amino acids (Giza and Hovda 2014). After the 
primary TBI (closed head or penetrating) has occurred, a secondary phase of injury 
can occur indirectly hours to days afterward. The secondary injuries often cause the 
majority of structural and functional damage. Cerebral edema, altered metabolism, 
inflammation, oxidative stress, excitotoxicity, and altered cerebral blood flow occur 
and can trigger inflammation, necrosis, and apoptosis (Winkler et al. 2016).

22.2  Physiology of Cerebral Aging

Advancing age is associated with multiple changes in the brain that can be observed 
at the macroscopic and microscopic levels. White matter (WM) volume loss and 
myelin integrity deterioration begin after the fourth decade of life and are more 
pronounced in prefrontal areas of the brain (Harada et al. 2013). The WM volume 
loss is likely due to multiple mechanisms including demyelination and shrinkage of 
neurons (Bennett et  al. 2017). Gray matter (GM) volume, in contrast, follows a 
linear pattern of decline starting at approximately at age twenty (Salat 2011).

Neurotransmitter system changes also occur as part of normal aging. The dopa-
minergic system activity declines in older adults, while total dopamine synthesis 
does not. The serotonergic system degrades with normal aging. The level of sero-
tonin, serotonin transporters, and serotonin receptor binding declines. The decline 
in serotonergic signaling capability may be related to a decrease in neuronal plastic-
ity and likely predisposes the elderly to depression, neurodegenerative disease, and 
other pathologies (Peters 2006).

22.3  Effects of Traumatic Brain Injury on Aging

The negative effects of TBI are closely related to normal cerebral age-related 
changes. Loss of brain volume and myelin density occurs at accelerated rates in TBI 
victims. Studies have linked worsening severity of injuries with worse rates of atro-
phy and volume loss. Loss of WM was found by Klein et al. (1996) to be the most 
observed impact of TBI on aging through changes in information processing and 
fluid intelligence, which significantly impact higher executive functions as well, 
demonstrating accelerated aging. TBI accelerates aging through loss of effective 
remyelination as well (Franklin et al. 2002). TBI also significantly alters the normal 
aging trajectory of neuroendocrine dysfunction through chronic hormonal and 
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immunologic changes (Lieberman et al. 2001). TBI-related microglial upregulation 
leads to oxidative stress and free radical production. Decreased serotonin and dopa-
mine receptor binding are also examples of neuromediators linked to cognitive 
decline in aging associated with TBI (Volkow et al. 2000).

22.4  Therapies to Prevent the Aging Effect of Traumatic 
Brain Injury

Although there exist many guidelines for the management of TBI, there is very little 
evidence to support any one standard therapy to alleviate the detrimental premature 
aging effects of TBI that may occur in the years following injury (Margulies and 
Hicks 2009). The short- to intermediate-term treatment of TBI depends primarily on 
the development of secondary injury. Rehabilitative care and physical therapy can 
be used to help restore altered functional ability such as decreased movement, bal-
ance, and postural control, as well as aid in the reduction of post-concussive symp-
toms like headache and confusion (Hugentobler et al. 2015).

In the long term, TBI has been shown to induce many different age-related cog-
nitive effects on the injured, such as diminished memory, attentional capacity, con-
centration, and decision-making skills, as well general disorientation (Moretti et al. 
2012). Prevention and treatment of these long-term cognitive aging effects of TBI 
will vary based on the individual injury, with traditional therapies focusing on 
increasing cognitive reserve. Cognitive training programs have been shown to 
increase neuroplasticity in the areas of the brain that are affected after TBI. Another 
strategy aimed at improving long-term cognitive function after TBI is minimizing 
the factors that often worsen cognitive decline such as alcohol, drug abuse, and 
psychiatric disorders including depression and social isolation.

While pharmacological treatments have been shown to have some success in 
animal models, at this time there are no pharmacological treatment options avail-
able that have demonstrated clear clinical efficacy in treating TBI patients. The dif-
ficulty in translating lab-based results to preventing TBI-related premature aging 
effects most likely varies from experiment to experiment. Most injury models uti-
lized in the laboratory setting induce homogenous injury patterns and severity when 
in reality TBI is quite heterogeneous. There is also a lack of understanding of phar-
macokinetics and pharmacodynamics of the compounds tested. Dose and regiments 
vary from trial to trial and often are administered close to the time of injury which 
often is impossible in a clinical scenario. Trial results often focus on a specific out-
come marker which can represent only a small part of the injury cascade in TBI 
injuries thus not performing as well in the complicated, multifactorial TBI progres-
sion in a patient (Wei and Xiao 2013). Clinical outcomes are often insufficiently 
sensitive endpoints to detect clinical significant effects (Howard et al. 2017).

To this end, most research indicates that no single pharmacological medication will 
provide the needed treatment to counteract the aging effects of TBI but that instead 
different combinations of therapies should be used to address multiple aspects of neu-
roprotection, neuro-inflammation, and regeneration (Marklund and Hillered 2011). 
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Numerous compounds, hormones, and growth factors have been shown to have neu-
roprotective effects with potential value in the treatment of TBI- associated premature 
cognitive decline and dementia. A brief discussion of the most likely candidates for 
success in TBI is included below. These include medications, growth factors, and 
some non-pharmacological therapies.

22.5  Progesterone

Progesterone is an important steroid that plays a role in the female monthly men-
strual cycle as well as conception and early pregnancy. However, progesterone also 
has a role in both genders as a neurosteroid. The original interest in this agent being 
studied for potential treatment in TBI was the noted gender-specific outcomes for 
patients with TBI. Recovery and long-term outcomes were significantly better in 
females. Researchers have demonstrated that the hormone improves functional out-
come after blunt TBI by mitigating cerebral parenchyma damage. It inhibits the 
Acetylcholine receptor and stimulates synthesis of myelin proteins. Rat studies 
showed that systemic application of the neurosteroid still resulted in mitigation of 
the meningeal plasma extravasation (Limmroth et al. 1996). Progesterone is thought 
to promote blood-brain barrier regrowth and repair, decrease the deregulated inflam-
matory cycle, and decrease apoptotic cell death (Guo et al. 2006). The benefits of 
progesterone treatment have been noted to be decreased in the setting of vitamin D 
deficiency (Wei and Xiao 2013).

While progesterone is thought to have more chance at success than other more 
targeted medications because of its pleiotropic effects and observed neuroprotective 
effects in a multitude of injury models, most Phase III trials have demonstrated 
failure of progesterone to be neuroprotective (Stein 2011). ProTECT III trial was a 
blinded study where patients with TBI were randomized to receive progesterone or 
placebo, enrolling patients from 49 different TBI centers. The primary outcome was 
a favorable outcome as per the Glasgow Outcome Scale-Extended and was stopped 
early for futility after 882 patients were enrolled (Howard et al. 2017). The SyNAPSe 
trial was also a blinded and randomized Phase III trial which found no change in 
Glasgow Outcome Scale or mortality (Skolnick et al. 2014).

While some scientists have determined progesterone to be a failed therapy for 
antiaging related to TBI, there are others who believe that the recent clinical trials 
were faulty and cannot truly determine the efficacy of the drug. Specifically, Howard 
et al. (2017) discuss design weaknesses of the recent Phase III trials including sub-
optimal dosing and treatment durations and recommend returning to Phase IIB test-
ing. A Cochrane review in 2016 only included 5 randomized clinical trials with a 
total of 2392 subjects. Only one of the trials was considered to be at low risk of bias. 
The conclusion of the review was that there was no evidence that supported proges-
terone as improving mortality or neurologic function. The review also concluded 
that the patient populations were extremely homogeneous and this could affect their 
ability to apply the results to such a general population (Ma et al. 2016).
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22.6  Vitamin D

Vitamin D can be considered a neural steroid as it is both synthesized and acts on 
the central nervous system. Patients with deficiency in vitamin D show elevated 
levels of inflammatory cytokines such as IL-6 and TNFa. Vitamin D deficiency is 
associated with many age-related systemic disorders such as hypertension, athero-
sclerosis, and cancer. There is also a strong association with functional declines in 
the elderly. Minimizing these effects after TBI is hypothesized to decrease inflam-
matory cytokines and therefore inflammation in the brain after injury (Cekic and 
Stein 2010).

A review of the literature revealed that vitamin D deficiencies are associated with 
worse inflammatory responses and combination therapy with progesterone looks 
promising, but evidence does not support a recommendation to supplement TBI 
patients to definitively prevent the aging effects of TBI (Lawrence and Sharma 
2016). Some scientists suggest that vitamin D supplementation should be a part of 
a holistic approach including a cadre of nutritional supplements and this is associ-
ated with lower mortality rates. They speculate that a well-rounded nutritional panel 
including vitamin D supplementation would lessen the cognitive decline associated 
with TBI.

Hua et al. (2012) showed that vitamin D combined with progesterone enhanced 
memory sparing in rats following TBI. Elderly patients who experience TBI may 
have an even more pronounced acceleration of aging and have been identified as a 
population potentially benefiting from vitamin D treatment more than others. 
Elderly patients treated with both progesterone and vitamin D had faster and more 
significant recovery of cognitive function with a stalling of the accelerated aging 
findings associated with TBI (Stein and Cekic 2011).

22.7  N-Acetyl Cysteine (NAC)

NAC is another medication that is well-known to be safe and well tolerated by 
patients. It is used for cystic fibrosis, acetaminophen toxicity, and renal protection 
prior to high-contrast dye loads during complicated CT scans. NAC has both neu-
roprotective and antioxidant properties. This is partly due to increased levels of 
brain glutathione. Glutathione is a critical intracellular free radical scavenger. 
NAC has been demonstrated in a double-blind placebo-controlled study to reduce 
the effects of mild TBI after blast injury in the military (Hoffer et al. 2017). Eakin 
et al. (2014) used two different injury models and two different species to demon-
strate that early NAC administration reversed behavioral deficits thought to be 
related to cognitive decline. Servicemen and women exposed to significant ord-
nance blast and met criteria for mTBI received either NAC or placebo for 7 days. 
Eighty-one participants were evaluated for multiple symptoms including neuro-
cognitive dysfunction and were three times more likely to be symptom-free at 
7  days if they had gotten NAC (Hoffer et  al. 2013). Hicdonmez et  al. (2006) 

22 Interventions to Prevent Premature Aging After Traumatic Brain Injury



348

showed through autopsy of closed head injury of rats that a single dose of NAC 
showed significantly less trauma- induced oxidative brain damage.

22.8  Phenserine

Phenserine was developed initially as potential treatment for Alzheimer’s dementia 
(AD). It was discovered that phenserine and three active metabolites readily cross 
the BBB and produce many benefits that may mitigate the early aging process in 
both TBI and AD. The benefits appear to be multifactorial. Phenserine has anti- 
inflammatory properties stimulating immune activation of mononuclear cells which 
causes them to produce anti-inflammatory cytokines. Phenserine also suppresses 
glutamate-induced excitotoxicity. Glutamate is an excitatory neurotransmitter that 
ultimately allows influx of Ca2+ and water into cells which then leads to cytotoxic-
ity. Phenserine has also been shown to improve outcome when cells are exposed to 
oxidative stress and also shown anti-apoptotic properties in cells. Phenserine pro-
tects against oxidative stress by upregulating endogenous antioxidant proteins. 
Phenserine has also demonstrated its ability to lower production of amyloid precur-
sor protein in cells which is high in damaged neurons post-TBI. Suppression of the 
production of amyloid precursor protein has been shown to improve recovery of 
cells from TBI by reducing neuronal cell loss, reducing astrocyte production which 
leads to reducing the size of the area affected by TBI, and reducing behavioral 
impairments. Another way in which phenserine may protect against premature 
aging and recovery from TBI is through stimulation of neurogenesis. Neurogenesis, 
or the development of new neural stem cells, is enhanced by the presence of phenser-
ine. It has also been shown to increase neural cell viability and encourage the devel-
opment of neural stem cells into the neuronal cell type as opposed to the glial cell 
type. Phenserine combats the action of amyloid precursor protein on this differen-
tiation (Hoffer et al. 2017).

Treatment of mTBI in animal models reversed injury-induced AD pathways. 
Researchers cannot suggest the use of this medication as a treatment at this time, but 
positive animal research is encouraging (Lian et al. 2012).

22.9  Erythropoietin (EPO)

Erythropoietin (EPO) is a growth factor for hematopoietic cells that is produced in 
the kidney. EPO stimulates the maturation of red blood cells and is approved for 
treatment of anemia. EPO is also produced in the brain in response to injury and has 
shown neuroprotective effects in animal models. Zhou et  al. (2017) showed 
decreased edema in EPO-treated rats compared to saline-treated rats after induced 
TBI. In humans, it has been shown to decrease mortality from TBI, but there was a 
concurrent increase in the risk of venous thromboembolism. EPO reduces the 
inflammatory response of cells and decreases cytokine production. It also increases 
cerebral blood flow and decreases cerebral vasospasm (Margulies and Hicks 2009; 
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Diaz-Arrastia et al. 2014). In contrast, Hellewell et al. (2018) showed no reduction 
in inflammatory brain markers in moderate-to-severe TBI patients with EPO admin-
istration within 24 h of injury.

22.10  Minocycline

Minocycline is in the tetracycline family of antibiotic agents. It has been shown to 
readily cross the BBB.  It has anti-inflammatory, anti-apoptotic, and antioxidant 
activity. Although these effects require dosing higher than standard antibiotic ther-
apy doses, it also has the benefit of preventing infection in patients post-TBI (Diaz- 
Arrastia et al. 2014). Kovesdi et al. (2012) conducted a comprehensive animal study 
testing multiple neurogenic outcomes after mTBI induction and found that 
minocycline- mitigated neurobehavioral abnormalities are associated with prema-
ture aging.  More research is needed to study potential uses of this antibiotic in 
reversal of TBI-related aging.

22.11  Cyclosporine

Cyclosporine’s mechanism of action includes maintaining the mitochondrial mem-
brane and preserving mitochondrial function. This allows the mitochondria to con-
tinue to function in cell metabolism including processing free radicals. It also 
exhibits improvement in axonal injury as well as learning and memory. Its immuno-
suppressive effects may also be beneficial in traumatic brain injury. Cognitive per-
formance has been shown to be improved after cyclosporine administration in both 
TBI and stroke patients (Margulies and Hicks 2009; Diaz-Arrastia et  al. 2014). 
While some researchers continue to explore cyclosporine, Dixon et al. (2016) report 
findings of the operation brain trauma therapy trial and found no benefit, as well as 
a difficult narrow therapeutic window to translate into successful clinical 
treatments.

22.12  Statins

Statins are prescription medications used to decrease serum cholesterol but have 
been shown to have potential benefits with brain-injured patients. The mechanism 
appears to be decrease in brain edema secondary to helping maintain the integrity of 
the BBB as well as increasing cerebral blood flow while decreasing inflammation 
and cell death (Diaz-Arrastia et al. 2014; Margulies and Hicks 2009). Specifically 
statins have been associated with preservation of the hippocampus by several stud-
ies which mediate premature aging (Lim et al. 2017). Clinical researchers have had 
difficulty translating this success into practice.

Sanchez-Aguilar et al. (2013) enrolled 36 patients with moderate-to-severe TBI 
to receive rosuvastatin or placebo for 10 days. The treatment arm was associated 
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with better functional outcomes at 3 and 6  months and inflammatory markers. 
Although this is a small number of patients, results suggested antiaging benefits of 
statins in the subacute injury phase of moderate-to-severe TBI.

In a retrospective review, researchers compared mortality and morbidity of TBI 
patients getting chronic statin therapy who either had therapy continued within 48 h 
or had their statin’s discontinued. Patients who had their statin therapy discontinued 
had four times higher mortality rate. This study demonstrates significant bias as it 
was  not randomized and had a small sample size. While this study cannot imply 
statins as neuroprotective and able to prevent aging, it was hypothesis forming and 
warranted further investigation (Orlando et al. 2013). Following this study, a retro-
spective observational cohort study published in 2017 was conducted where 397 older 
adult patients were studied. The patients who had statins discontinued in the hospital 
tended to have more severe head injuries by GCA. After adjusting for these score dif-
ferences, there was no difference in cognitive decline or other markers. A study ran-
domizing mTBI patients to receive atorvastatin or placebo was unable to demonstrate 
a difference in neurologic protection or recovery (Robertson et al. 2017).

22.13  Glibenclamide

Glibenclamide is a second-generation sulfonylurea marketed under the brand name 
glyburide that is used for the treatment of type II diabetes. It was noted that stroke 
patients who were on glibenclamide for type II diabetes at the time of their stroke 
exhibited better recovery, even if the initial stroke symptoms were similar. 
Glibenclamide’s primary action is at the rather newly discovered Sur1-Trpm4 ion 
channel and via brain Katp channels. It appears to act as a neuroprotective agent by 
decreasing vascular permeability and therefore cerebral edema (Kurland et  al. 
2013). It also has been shown to decrease hemorrhagic conversion of ischemic 
strokes. Glibenclamide reduced the effects of hippocampal injury and showed 
improved outcomes on cognitive testing in both ischemic and hemorrhagic strokes 
and as well in TBI. Glibenclamide also acts by promoting neurogenesis and has 
anti-inflammatory as well as anti-apoptotic properties all mediated by its inhibition 
of Sur1 (Diaz-Arrastia et al. 2014).

22.14  Hypertonic Saline

Hypertonic saline increases plasma volume and mobilizes water across the BBB by 
dehydration of the vascular endothelial cells. In the setting of intracranial hemor-
rhage, this can serve to decrease intracranial pressure and increase cerebral perfu-
sion pressure. Hypertonic saline when given in bolus treatment can reduce ICP, but 
there will be a rebound increase when the effects wane (Asehnoune et al. 2017). 
There is now evidence to support hypertonic saline infusion, termed continuous 
hyperosmolar therapy, in the setting of ICH and TBI in general. Increasing blood 
plasma volume can also increase organ blood flow and create a positive inotropic 
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effect. It should be considered as an adjunct therapy in the prevention of TBI-related 
morbidities (Margulies and Hicks 2009).

22.15  Hypothermia

Hypothermia can reduce the neurologic sequelae of TBI.  It is currently used as 
standard protocol after cardiac arrest to prevent neurologic sequelae. These effects 
are mediated by decreasing brain metabolism after injury as well as reducing axonal 
loss and microvascular dysfunction which often leads to the development of cere-
bral edema. Therapeutic hypothermia may prolong the window for subsequent ther-
apies to be administered. When used in combination with other therapies, such as 
free radical scavengers, it shows promise as an additional treatment for TBI 
(Margulies and Hicks 2009).

22.16  Conclusion

TBI encompasses a varied set of injuries and leads to accelerated cerebral aging 
through structural, neurotransmitter, and cognitive alterations. While several thera-
pies to prevent aging related to TBI have shown promise in Phase II trials, transla-
tion to the clinical use has been difficult.
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Abstract
Inflammation plays a role in the etiology of neurodegenerative diseases such as 
Alzheimer’s, Parkinson’s, and Huntington’s diseases, which have the highest 
mortality rates. It has been argued that the lifetime of macromolecular damage 
caused by chronic inflammation can be the cause of aging process. There are 
studies indicating that aging is also closely related with low-grade chronic 
inflammation, defined as sterile inflammation. Another definition of sterile 
inflammation is pathogen-free inflammation resulting from various environmen-
tal conditions such as mechanical trauma, ischemia, stress, or ultraviolet radia-
tion. The combined effects of inflammation on genome, epigenome, mitochondria, 
a variety of intracellular structures, and cellular membranes need to be defied for 
diverse areas of eventual antiaging interventions. These interventions include 
specific exercise programs, caloric restriction, anti-inflammatory diets and nutri-
tional supplements, and specific cell-based therapies including platelet-rich 
plasma (PRP) and stem cells as both mitigating agents in the aging process. 
Inflammation suppression is one of the most important factors for healthy lon-
gevity. This chapter will focus on the current approaches of anti-inflammatory- 
dependent antiaging strategies.

Keywords
Antiaging strategies · Low-grade inflammation · Healthy longevity · Anti- 
inflammatory diet · Stem cells
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23.1  Aging

Aging is known as a complicated process, affected by both genetic and epigenetic 
modifications (epigenetics/epigenomics), mitochondrial damage, immunosenes-
cence, endocrinosenescence, microbiota, oxidative stress, stochasticity, and 
 environmental factors. Aging affects whole-body systems such as cells, tissues, 
and organs. It may eventually cause severe tissue deterioration. It is unfortunately 
not possible to explain aging with a single mechanism or theory, because aging 
involves multiple processes. These processes are  interpenetrating with inflamma-
tory responses. Currently, there is a question that must be resolved: Is inflammation 
a cause of aging or an effect or both?

23.2  Inflammation

Under normal circumstances, while a small amount of inflammation protects the 
body against various diseases and impasses, chronic inflammation can be the cause 
of various diseases in the body. Figure 23.1 shows the effects of inflammation in 
aging and some targets for increased longevity.

23.3  Mechanisms of Inflammation in Aging

Aging is related with modifications in the immune system which are collectively 
designated as “immunosenescence” (Fulop et al. 2013). Long-term inflammation 
is both a result and a cause of immunosenescence. There is a wide knowledge 
about the impact of aging on cellular components in innate immune system (mac-
rophages, polymorphonuclear leukocytes (PNL), natural killer cells (NK), and 
dendritic cells) and extracellular components composed of recognition molecules 
(CRP, serum amyloid protein, mannose-binding protein). Thymic involution, 
increased serum pro-inflammatory markers, blunted T cell proliferation, and 
shorter telomere lengths are related with chronic stress. These factors are involved 
in inflammation associated with aging or in particular in a number of age-related 
and high-mortality etiologies and, so, related to “inflammaging” (Bauer et  al. 
2015).

Inflammaging is associated with metabolic pathways. Integration of inflamma-
tion and metabolism happens at various times and space scales. If low-grade inflam-
mation arises as a result of metabolic dysfunction due to overnutrition, this is termed 
“metaflammation.” Metaflammation is associated with reduced metabolic rate. 
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23.3.1  DAMPs

Sterile inflammation is a type of inflammation without pathogen and with a large num-
ber of sterile stimuli, including environmental conditions such as mechanical trauma, 
ischemia, stress, or ultraviolet radiation. Aging is also related with sterile inflammation 
(Rock et al. 2010). As a result of such damage-related stimuli, molecular agents called 
collective damage-associated molecular patterns (DAMPs) are secreted. These DAMPs 
promote to the formation of this kind of inflammatory response by stimulating innate 
immune effectors. DMAPs can be found intracellularly or extracellularly. They recog-
nize and function by both pattern recognition receptors (PRRs) and non-PRRs on both 
immune and nonimmune cells. Among the factors strongly contributing to the aging 
process are free reactive oxygen species (ROS) and reactive nitrogen species (RNS), 
which are generated by oxidative stressed cells that cause oxidative damage to biomol-
ecules. These particular oxidative processes stimulate sterile inflammation by releasing 
DAMPs and interact these with PRRs like TLRs and NLRP3.
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Fig. 23.1 Role of inflammation in various target organs playing a key role in the pathophysiology 
of type 2 diabetes and its associated metabolic abnormalities, leading to an increased risk of car-
diovascular disease. CRP C-reactive protein, CVD cardiovascular diseases
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23.3.2  Genetic and Epigenetic Modifications

It is known that genes participated in the regulation of inflammation contribute to 
the genetic basis of aging. Several etiological factors are probably able to contribute 
to elevated low-grade inflammatory activity in tissues such as adipose, muscle, skin 
tissues and organs such as the brain, liver, lung, pancreas, eye, sexual organs, 
immune system, and gut microbiota (Cevenini et al. 2010).

Epigenetics is associated with the phenotype of gene expression control without 
modification of DNA sequences. DNA methylation, chromatin modifications (acet-
ylation, methylation, and phosphorylation of histone proteins), and posttranscrip-
tional modifications have been reported as the key epigenetic modifications in the 
regulation of inflammatory genes (Medzhitov and Horng 2009). This dynamic epi-
genetic layer regulates with environmental factors the expression of genes associ-
ated with disease states. Exposure to long-term toxins, infections, or environmental 
factors causes epigenetic changes leading to the formation of age-related diseases. 
Inflammation accompanied by metabolic dysfunction in aging may also have a 
share in these changes.

23.3.3  MicroRNA

The single-chain, noncoding functional short RNA (21–23 nucleotide) molecules, 
responsible for the regulation of many biological activities, are called microRNA 
(miRNA). Depending on age, it is known that the changes which occur in the tran-
scription are controlled by miRNA. A model of a group of miRNAs called gero- 
miRNAs has been demonstrated in organisms that govern the longevity. Studies in 
the human genome have specially focused on miR-146, miR155, miR-126, miR-21, 
and miR-181a-5p, associated with inflammation and senescence. While miR-181a 
exhibits the same relationship with the anti-inflammatory cytokines, it has an oppo-
site relationship with the pro-inflammatory cytokines.

Such miRNAs play a key function in the interaction between DNA damage 
response (DDR), cell senescence, and inflammation. It is thought that the determi-
nation of miRNA functions is promising in the aging process and the way to delay 
the condition of ARD (Olivieri et al. 2015).

23.3.4  Redox Stress

Oxidative stress describes the corruption in favor of prooxidants of prooxidant- 
antioxidant balance in tissues and the body. ROS, which occurs in the aging pro-
cess and increases, is a cause and a consequence of “redox stress.” Severe oxidative 
stress or damage associated with a highly elevated level of ROS/RNS production 
will inevitably impair the cells’ self-repair ability and thus can lead to cell death. 
Moderate levels of oxidative stress, i.e., positive oxidative stress, induced by a 
moderate level of ROS/RNS, can be triggered by several stressors to protect 
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against further lethal challenges that otherwise would cause cell death and tissue 
injury (Sohal and Orr 2012).

23.3.5  Mitochondrial Damage

In recent years, it has been reported that mitochondrial DNA mutations increase 
with age (Bua et al. 2006). The organs whose function is affected by age-related 
mtDNA mutations are the ovary, testis, and adrenal organs (Wei and Lee 2002). In 
addition, apoptosis or programmed cell death is also defined as a highly regulated 
process leading to the induction of an inflammatory response and cell death without 
harming the surrounding tissue. Mismanagement of apoptosis due to mitochondrial 
dysfunction leads to a number of harmful consequences, such as increased inflam-
mation and tissue injury, especially when it develops with age (Green et al. 2011). 
Mitochondrial dysfunction may modulate inflammatory processes and mitochon-
drial protection attenuates inflammation (Lopez-Armada et al. 2013). Circulating 
levels of mtDNA increase with aging. Furthermore, one study revealed that persons 
that have elevated mtDNA levels have also elevated cytokine (TNF-α, IL-6, 
RANTES, IL-1ra) levels.

23.3.6  Frailty

Frailty is an extension of the physiological aging process, being at the crossroads of 
biological age, and the manifestation of chronic age-related diseases (Fulop et al. 
2010). The inflammatory process of frailty is characterized by increases in the levels 
of pro-inflammatory cytokines, such as IL-6, as well as the CRP level and WBC 
count (Fulop et al. 2015).

23.3.7  Telomere Attrition and Cellular Senescence

Telomeres are the heterochromatic regions consisting of specialized DNA repeat 
sequences (nucleotides of TTAGGG repeats) located at the end of linear chromo-
somes. Telomeres play an essential function in maintaining chromosome stability. 
They protect chromosomes from damage during DNA replication. Telomeric 
DNA sequences differ in structure and function from other DNA sequences, 
besides their biological function. One of the underlying molecular mechanisms of 
biological and cellular aging is thought to be “telomeric attrition (shortening)” 
(Bernadotte et al. 2016). This phenomenon results from aging (repeated cellular 
divisions) due to mechanism of replication (telomeres shorten with every cell 
division) and also from stress, infection, and chronic diseases (Effros 2011). It is 
therefore emphasized that telomeric shortening may be a good biomarker for cel-
lular aging. But, the mechanisms behind these are still not understood (Bernadotte 
et al. 2016).
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23.3.8  Hormesis

The definition of hormesis is a process in which exposure to a lower dose of a 
chemical substance that damages higher doses, or environmental factors, has a 
healthy effect on the cell or organism. Various studies have identified many hor-
metic effects caused by oxidant compounds and inflammation. Three hormetic sce-
narios have been suggested in this case: (1) parallel response pathways, (2) nuclear 
factor erythroid-derived 2-like 2 (Nrf2) inductors and their effects, and (3) obesity 
paradox.

23.3.9  Nuclear Factor-κB (NF-κB) Pathway

It has been shown that pro-inflammatory conditions may cause age-related cellular 
and subcellular  dysfunctions. The nuclear factor-κB (NF-κB), a transcription  factor 
and an intracellular signaling pathway, plays a key role in inflammation by regulat-
ing the expression of several genes involved in inflammation.

23.3.10  Endoplasmic Reticulum (ER)

The function of ER in aging is closely related with inflammation. Recently one 
study have revealed that aged mice have increased ER stress markers (GRP78/BiP, 
C/EBP homologous protein, and X-box binding protein-1) and elevated inflamma-
tory response according to young mice (Ghosh et al. 2014).

23.4  Biomarkers of Aging

23.4.1  Biomarkers of Inflammaging

Advancing age is related with elevated concentrations of all of the inflammation 
biomarkers except IL-1β. There are numerous studies in the literature to describe 
the relationship between inflammation and longevity. Advancing age and body mass 
index (BMI) are associated with higher C-reactive protein (CRP) levels (Ansar and 
Ghosh 2013). Inflammatory mediators, their levels and genetic variants, have been 
related to longevity; so the target inflammatory mechanisms need to be identified to 
develop an effective  strategy (Table 23.1).

23.4.2  Biomarker Panel for Aging

The development of sensitive and specific biomarkers to distinguish and measure 
accurately healthy aging still remains an important goal. However, it is more 
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Table 23.1 Inflammatory mediators in longevity

1. Cytokines
  Pro-inflammatory cytokines
Cytokine Actions
IL-1 Decreased levels with longevity (Bruunsgaard et al. 1999)
IL-6 Increased levels with longevity (Palmeri et al. 2012)
IL-12 Elevated levels related with longevity (Palmeri et al. 2012)
TNF Elevated levels correlate with mortality (Roubenoff et al. 2003)
  Anti-inflammatory 

cytokines
Cytokine Actions
IL-4 Decreased levels with longevity (Palmeri et al. 2012)
TGF-β High levels related with longevity (Forsey et al. 2003)
Soluble TNF receptors 
(sTNFR)

Correlates with mortality (Varadhan et al. 2013)

2. Acute phase proteins
Protein Actions
C-reactive protein Associated with exceptional longevity and mortality (Wassel et al. 

2010)
3. Transcriptional 
factors
Factor Actions
NF-κB Induce aging (Salminen and Kaarniranta 2009)
FOXOs As prolongevity factors (Webb and Brunet 2014)
4. Adipokines
Adipokine Actions
Leptin Transgenic leptin expression is associated with reduced mortality 

and prolonged survival time (Naito et al. 2011)
Adiponectin Higher levels and genetic variants in ADIPOQ contribute to 

longevity (Atzmon et al. 2008)
5. Danger-associated molecular patterns (DAMPs)
HMGB1, histone, S100, 
HSPs

Loss of intracellular DAMPs increases genomic instability, 
epigenetic alteration, telomerase attrition, and reprogrammed 
metabolism, reducing longevity (Huang et al. 2015)

6. Toll-like receptors (TLRs)
TLRs Higher TLR expression in long-lived individuals (Arranz et al. 

2010)
7. Oxidative stress parameters
Parameters Actions
Reactive oxygen species 
(particularly O2

.-)
Primary cause of aging (Beckman and Ames 1998)

Protein carbonylation 
(PCO)

Decreased PCO is related with increased longevity (Bhattacharya 
et al. 2011)

Lipid peroxidation Determine distinctive longevities of different animals (Hulbert 
et al.)

DNA oxidation Related to aging rate (Barja and Herrero 2000)
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 accurate to define a panel for aging instead of a single biomarker. This panel can be 
classified as:

 1. Physical function and anthropometry (walking speed, chair stand, standing bal-
ance, grip strength, body mass index, waist circumference, muscle mass)

 2. Blood-based candidate markers (IL-6, TNF-α, CRP, network analysis of inflam-
matory markers, HbA1c, plasma glucose, adipokines, thyroid hormones, vitamin 
D, NT-proBNP, troponin)

 3. Molecular-/DNA-based markers (DNA/chromosomal damage, telomere length, 
DNA repair)

 4. Novel markers (bilirubin, advanced glycation end products, metallothioneins, 
DNA methylation, microRNAs)

The practicability of measurements and outcome predictions of each of them show 
variability. The biological and molecular mechanisms of aging are quite complex. 
For this reason, it is doubtful that a single biomarker can have a valid measure of 
healthy aging, and further research is needed (Wagner et al. 2016).

23.5  Anti-inflammatory-Dependent Antiaging Strategies

Chronically increased circulating inflammatory markers are common in older per-
sons, but mechanisms are completely unclear. Aging is commonly related to an 
elevated predisposition to illness and death. For this reason, preventive therapeutic 
interventions, antiaging strategies, and successful aging achievement to slow aging 
are urgently needed.

Current knowledge suggests that inflammation biomarkers such as CRP, TNF-α, 
and sTNFR-1 exaggerate initial increase with aging. That being the case, various 
strategies associated with inflammation and aging have been suggested. These strat-
egies are divided into two groups as pharmacological interventions, nutritional 
interventions, and lifestyle regulations (Table 23.2). Aging is a complicated biologi-
cal process that is induced by both intrinsic and extrinsic factors. Although the exact 
descriptive and mechanistic model of aging has yet to be elucidated, researchers 
have focused on developing practical and effective antiaging strategies. Human 
alpha-1 antitrypsin (hAAT) is an anti-inflammatory mediator and plays a major role 
in direct or controlled inflammation, especially with its immunoregulatory, anti- 
inflammatory, and cytoprotective properties. One of the study suggests that hAAT 
functions has potent anti-inflammatory and cytoprotective effects and may be con-
sidered as  therapeutic choice for gene therapy (Yuan et  al. 2018). In the future, 
hAAT may be a novel therapeutic potential promising candidate targets to aging and 
aging-related disabilities.
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23.5.1  Pharmacological Intervention

Old age should be assessed in terms of biological, psychological, and social aging 
as well as chronological aging. The basic measure of chronological aging is the age 
of the person, while the basic measure of biological aging is the age of the person, 
i.e., cardiovascular aging. It is also known that there is a significant relationship 
with chronic silent inflammation and CVD. Thus, people with chronic inflammatory 

Table 23.2 Antiaging strategies

Diet
The Mediterranean diet (MeDi) Correlated with a low morbidity and mortality (Gu et al. 

2010)
Calorie restriction Impacts various cellular pathways, protects against 

cellular damage, improves longevity (Picca et al. 2017)
Isoflavone intake With exercise, have positive effect on antiaging in 

postmenopausal women (Park et al. 2014)
Antioxidant-rich supplementation 
(vitamin C, vitamin E, tocopherols, 
carotenoids, melatonin, etc.)

May be useful to prevent age-related pathophysiological 
conditions (Fusco et al. 2007) and delay oxidative 
stress-associated aging

Drugs
  Activation of telomerase
  TA-65® (a telomerase activator) Reduce short telomeres in percent, have no effects on 

mean telomere length (Harley et al. 2011)
  Ashwagandha root extract Increase telomerase activity (Raguraman and 

Subramaniam 2016)
  Autophagy inducers
  Rapamycin Extends chronological life-span by activating autophagy 

in Saccharomyces cerevisiae (Alvers et al. 2009)
  Senolytic therapeutics
  Dasatinib and quercetin 

combination
Effective in eliminating senescent mouse embryonic 
fibroblasts and delaying age-related symptoms (Zhu 
et al. 2015)

  Navitoclax (Bcl-2 family 
inhibitor)

Senolytic in different types of human senescent cells 
(Zhu et al. 2016)

  Epigenetic modulators
  Histone deacetylase (HDAC) 

inhibitors
Minimization of the initiation and progression of 
age-related diseases, with inflammatory roots such as 
Alzheimer’s disease,are neccesary to ensure health and 
extended life span (Yoon and Eom 2016)

  (4-Phenylbutyrate, trichostatin A 
(TSA), sodium butyrate, 
suberoylanilide hydroxamic acid)

  Anti-inflammatory drugs
  Nonsteroidal anti-inflammatory 

drugs
Lengthen life-span and increase resistance to stress in 
Drosophila (Danilov et al. 2015)

Regular exercise Has multi-system- and cellular-level antiaging effects 
(Garatachea et al. 2015)
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diseases have higher risk for CVD (Esser et al. 2015b). It is important to further 
investigate these promising observations that medical strategies that diminish 
inflammation may be helpful in the treatment of obesity, T2DM, and related CVD 
(Esser et al. 2015a). The prevention and management of cardiometabolic diseases 
require a multifactorial approach in which targeting inflammation may represent a 
valuable therapy. The remarkable complexity of the immune system makes it diffi-
cult to target an individual pathway for the prevention of cardiometabolic diseases. 
Anti-inflammatory therapies raise hope for the prevention of CVD. However, cau-
tion is required. A summary of antiaging strategies that discussed anti-inflammatory 
therapies in the setting of chronic disorders such as T2DM and CVD here is pro-
vided in Table 23.3. Also Fig.  23.2 summarizes impacts of aging and suggested 
drugs associated with CVD and aging.

23.5.1.1  Salicylates
Salicylates are nonsteroidal and anti-inflammatory drugs. Mechanism of salicylates 
on longevity is not clear yet; studies on antithrombotic and antioxidant effects by 
modulating inflammatory molecules are still in progress (Redondo et al. 2003). The 
particular mechanism behind the effect of aspirin on longevity is uncertain. The 
effect on longevity may be due to these functions (Strong et al. 2008), or it might be 
as a result of an alleviation of insulin/IGF-1 signaling by the DAF-16/FOXO tran-
scription factor (Ayyadevara et al. 2013). In one study, C. elegans was shown to 
increase glutathione-S-transferase activity when aspirin therapy was administered, 
which is considered to be an effective factor in long-lived survival (Ayyadevara 
et al. 2013). In addition to its potential longevity-promoting effect (Agüero-Torres 
et al. 2001), salicylates prevent numerous diseases.

Low-dose salicylate intake is related with decreased PGE-M. Salicylate acety-
lates irreversibly COX-1 and modifies the activity of COX-2, thereby inhibiting 
enzymes involved in the conversion of arachidonic acid to pro-inflammatory pros-
taglandins (Abbatecola et al. 2004). Salicylates are involved in enhanced conversion 
of omega-3 fatty acids derived from mediators such as resolvins, protectins, and 

Table 23.3 Anti-inflammatory therapies in the setting of chronic disorders such as T2DM and 
CVD

Drugs Action mechanism
Salicylates Targeting IKK-ß-NF-κB
Etanercept (the TNF receptor: Fc fusion protein); infliximab, 
adalimumab (specific monoclonal antibodies)

Targeting TNF-α

Anakinra, canakinumab, gevokizumab, LY2189102 Targeting IL-1
Tocilizumab Targeting IL-6
Metformin, salicylates, CNX-012-570, ZLN024 AMPK activators
Resveratrol, SRT2104 Sirtuin activators
Rapamycin (everolimus) Mammalian target of rapamycin 

(mTOR) inhibitors
CCX140-B, JNJ-41443532 C-C motif chemokine receptor 

2 antagonists
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other proresolutions. These mediators inhibit production and trafficking of pro- 
inflammatory factors.

23.5.1.2  Rapamycin
Rapamycin is generally used in post-renal transplantation to prevent organ rejection 
(Kahan 2004). It specifically inhibits the mTOR that controls cell proliferation, 
growth, and survival. Rapamycin also can be used as an anti-inflammatory drug for 
various diseases such as chronic kidney disease, atherosclerosis, and lung infection. 
It has also been reported that rapamycin prevents tumors and osteoporosis, furthers 
hyperlipidemia, and prevents atherosclerosis via increasing adipose tissue lipase 
activity (Yoon et al. 2015).

23.5.1.3  Sirtuin Activators
SIRT1 is a gene that plays a role in DNA repair, inflammation, apoptosis, and cell 
senescence. These activators manage age-associated disease as obesity, lung inflam-
mation, and T2DM. Their development may be useful for improving longevity and 
also in alleviating age-related diseases. Melatonin which is found in low levels in 
Alzheimer’s disease has a protective effect against neurotoxic amyloid beta protein 
and reduces the acetylation of SIRT1 substrates (Cheng et  al. 2006; Tajes et  al. 
2009). Caloric reduction in some experiments shows that it increases melatonin 

Fig. 23.2 Most important actors of inflammation used as potential targets for pharmacotherapy in 
type 2 diabetes, associated with metabolic abnormalities, and CVD. Note that the precise sites of 
action of the various compounds remain poorly known and to a large extent only speculative. (*) 
Monoclonal antibodies: canakinumab, gevokizumab, LY2189102; AMPK AMP-activated protein 
kinase, CCR2 C-C motif chemokine receptor 2, CVD cardiovascular disease, IKKb-NFb I(kappa)
B kinase-b nuclear factor-kappaB, mTOR mammalian target of rapamycin, SIRT-1 sirtuin-1
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production in the gastrointestinal tract (Bubenik and Konturek 2011). Treating with 
melatonin of elderly rats decreases intra-abdominal fat, diminishes plasma insulin 
and leptin levels, develops immunocompetence, enhances thymus weight, and 
increases blood concentration of testosterone and thyroid hormones. The other 
effect of melatonin is upregulating the expression of run-related transcription factor 
2 (Runx2) and bone morphogenetic proteins, increasing bone density and volume in 
older rats. The mechanisms behind the aging effect of melatonin are uncertain: mel-
atonin can disrupt bodily rhythms, reduce free radical damage, or reduce age-related 
mitochondrial dysfunction. Melatonin may also increase the incidence and duration 
of tumors. Due to this serious potential side effect, more research is needed before 
melatonin is used as antiaging (Yoon et al. 2015).

23.5.2  Topical Peptides

Natural peptides have several basic roles that result in physiological processes such 
as defense, immune, stress, growth, homeostasis, and reproduction. On the other 
hand, synthetic peptides, less than 500 Da, play a role in extracellular matrix syn-
thesis, pigmentation, innate immunity, and inflammation. These peptides have anti-
oxidative, antimicrobial (Rahnamaeian and Vilcinskas 2015), and whitening effects 
and can be divided into five groups as matricins peptides, carrier peptides, peptide 
mimetics or neurotransmitter-inhibiting peptides, enzyme inhibitor peptides, and 
structural protein digestion. The functions of synthetic peptides are (1) to increase 
skin penetration, (2) to bind specific receptors, (3) stability, and (4) resolution. Also, 
the main function of signal peptides is to initiate a signaling cascade. Carrier pep-
tides carry or stabilize trace elements that are essential for wound healing and enzy-
matic reactions like copper and manganese. Another strategy is contraction of the 
muscle to decrease common aging signs like fine lines and wrinkles. They are 
undertaken by the neurotransmitter released such as acetylcholine. Local synthetic 
peptides act as specific inhibitors of the neurosecretion which mimic the synaptic 
protein SNAP-25 that are known as neurotransmitter inhibitor peptides and pass 
through the skin and loosen muscles, leading to the reduction and softening of aging 
signs. Enzyme inhibitor peptides such as soy oligopeptides, silk fibroin peptide, and 
rice peptides inhibit various enzymes such as tTAT-superoxide dismutase and induce 
hyaluronan synthase and proteinases, direct or indirect pathways.

23.5.3  miRNA-Based Therapy

It can be considered that miRNAs released by cells that activate DDR/SASP also 
signal to non-aging cells that do not spread at the same time and increase the inflam-
mation. The usage of miRNA mimics (miRNA replacement therapy) and miRNA 
inhibitors (antagomiR therapy) has been successful in treating a broad range of 
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diseases including skin diseases like aberrant pigmentation (e.g., miR-434-5p, miR- 
145, miR-25), skin aging (e.g., miR-29, miR-155), UV damage to the skin (e.g., 
miR-141), acne (e.g., miR-143), psoriasis (e.g., miR-203, miR-146a, miR-99), acute 
dermatitis (e.g., miR-146a), and cardiovascular diseases like atherosclerosis (e.g., 
miR-21, miR-145, miR-122), arrhythmogenesis (e.g., miR-328), vascularization 
(e.g., miR-92a, miR-503, miR-126), cardiac hypertrophy, and fibrosis (e.g., miR-
199b, miR-98, let7b) (Olivieri et al. 2015; Lawrence and Ceccoli 2017).

23.5.4  Nutritional Supplementation

Saturated fat consumption is associated with increased CRP, sTNFRII, TNF-α, and 
IL-1β. On the other hand, EPA+DHA supplementation is associated with dimin-
ished CRP and TNF-α; additionally EPA+DHA plus supplements are associated 
with diminished IL-1β. Higher consumption of saturated fat is positively correlated 
with CRP, IL-6, and ICAM-1. Omega-6 is generally pro-inflammatory, whereas 
omega-3 shows inverse association and less inflammatory effects (Marquez et al. 
2010). Alcohol consumption is negatively associated with sTNFRII. It may act as a 
buffer by taking away TNF-α from circulation but also itself is complicated in apop-
totic and pro-inflammatory signaling in response to TNF-α binding (Schumacher 
et al. 2008).

Dietary fiber may decrease inflammation by the various mechanisms such as 
sluggish absorption of glucose and management of insulin sensitivity, inducing 
favorable shifts in gut microbiota (Geng et al. 2011).

It has been shown that curcumin has a positive effect on longevity and reduces 
ROS in C. elegans through antioxidant and anti-inflammatory effects. It has been 
widely known that curcumin has potent  anti-inflammatory and protective effects 
against atherosclerosis and anticancer effects (Rahman and Bagchi 2013).

23.5.5  Vitamins

In humans, 800 mg of vitamin E has been shown to improve cell-mediated immu-
nity when used in healthy elderly people (Meydani et al. 1990). In addition, other 
antiaging properties of vitamin E can be summarized as (1) upregulation of apop-
totic genes and downregulation of apoptotic genes due to aging and (2) protection 
of telomerase shortening caused by hydrogen peroxide by restoring telomerase 
activity in fibroblasts (Park et al. 2008).

Vitamin C also acts as a cofactor in many enzymatic reactions and neutralizes 
free radicals. Vitamin D has a vital function in the immune system, and lack of vita-
min D is known to cause many inflammatory diseases. Interaction of vitamin D3 
with its receptor blocks NF-кB activation and signaling (Panickar and Jewell 2015).
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23.5.6  Calorie Restriction (CR)

CR has the feature of sustaining the mitochondrial biogenesis and increasing resis-
tance of the muscles to inflammation. CR also declines inflammation and insulin 
resistance and exhibits anti-inflammatory activity (López-Lluch and Navas 2016). 
In a recent study, two beneficial effects of resveratrol in terms of inflammation have 
been shown: (1) pro-inflammatory cytokine production can be reduced and (2) liver 
inflammation can be reduced (Tung et al. 2015).

23.5.7  Epigenetic Diets

Recent studies have shown that epigenetic diets can be positively associated with aging. 
“Epigenetic diets” are termed as nutritional interventions caused by epigenetic changes. 
These interventions can be classified as (1) calorie restriction, (2) diet supplementation 
with nutrients involved in one-carbon metabolism, and (3) diet supplementation with 
bioactive food components. All these interventions are thought to contribute to decreas-
ing DNA methylation or hypermethylation. According to current knowledge, global 
and locus-specific DNA methylation levels indicate that human aging is promising. 
This effect can be caused by reduction of intracellular methyl reserve, AdoMet, and/or 
inhibition of DNA methyl transferase enzymes (DNMTs). Experimental studies and 
their current results seem to be promising, but it is still not  clear that a tissue (or even 
cellular) specificity of age-related epigenetic changes and their functional contributions 
to aging are should also be furtherly clarified (Bacalini et al. 2014).

23.5.8  Exercise

Exercise is the phenomenon of aging process. Some of the literature shows that 
exercise has beneficial effect in aging process, but other literatures show adverse 
results but not with unfortunate health effect. In recent years, researchers have sug-
gested that athletes have relatively fewer immune system cells, such as neutrophils, 
lymphocytes, and leukocytes (Moro-García et al. 2014). In other respects, accord-
ing to some studies, long-term exercise helps obtain a high baseline level of antioxi-
dants. It has not been proved that exercise is an antiaging method, which is not 
denied that it is beneficial for health. In an experimental study, it has been shown 
that PGC1-a-dependent mechanism with exercise inhibits the age-related increase 
in systemic IL-6 and TNF-a levels. Exercise enhances antioxidant defense systems. 
Physical activity is negatively associated with CRP and sTNFRII (Yoon et al. 2015).

23.6  Conclusions

Chronically increased circulating inflammatory markers are commonly seen in 
elderly individuals, but its molecular mechanism is still unclear. Age-related 
impaired inflammatory process is usually related to increased predisposition to 
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illness and mortality. It has been known that the persistent low level of inflamma-
tion, seen in elderly individuals, may lead to increased levels of circulating pro-
inflammatory and anti-inflammatory cytokines two- to fourfold. However, the type 
of lifestyle of elderly people (cultural factors in nutrition and type of diet, e.g., 
Mediterranean diet, northern European diet, personal habits such as exercise and 
smoking) may be considered the primary cause for systemic variations in the level 
of systemic pro-inflammatory cytokines.

For this reason, preventive interventions, anti-inflammatory therapeutic strate-
gies, and successful aging achievement are urgently needed to slow down age- 
related inflammatory processes.
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Abstract
Aging is a series of progressive degenerative body changes associated with 
decreased physiological functionality and a decline in the ability to adapt to met-
abolic stress. Geroscience particularly focuses on understanding the mechanisms 
of aging and multiple genetic and pharmacological therapies which have been 
developed in order to modulate the pace of natural aging and to prevent the age- 
related disorders such as cancer, kidney diseases, cardiovascular disorders, and 
many others; these geroprotective and senolytic interventions have shown to be 
beneficial for extending the life span and delaying age-related functional declines 
in rodents. Recent developments in geroscience also contributed to the improve-
ment of quality of life and the extension of expected life span of cats and dogs. 
Like in humans, the life expectancy of cats and dogs varies significantly based on 
racial disparities; breed is an important determinant of life expectancy in pets. 
Other factors such as gender, genetics, environment, and stressors also play an 
important role throughout the aging process. Use of geroprotective agents by 
veterinarians is becoming more common day by day, extending the life span of 
pets and contributing to the establishment of a more peaceful home environment 
by decreasing the disease burden. This chapter will focus on the use of these 
geroprotective and senolytic agents and their overall impact on the prevention of 
age-related degenerative changes and disorders in companion animals: cats and 
dogs.
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24.1  Aging in Cats and Dogs

Although aging pattern of cats and dogs is a little different than of humans, the basic 
principles are similar. Molecular and cellular alterations that occur in aging pets 
cause a decline in physiological functions and tissue damage; this leads to diseases 
and eventually death. The aging process of pets must be well evaluated as the risk 
of developing cardiovascular diseases, cancer, hormonal alterations, and neurode-
generative diseases increases with aging.

Pets are referred as “senior” usually after the age of 7 (Fortney 2004). In dogs, 
life stage classification is convertible due to breed and size. Small-sized dogs after 
11 years of age, medium-sized dogs after 9–10 years of age, and giant breed dogs 
after 7 years of age can also be considered as senior (Chastain 2004). The life expec-
tancy in cats and dogs shows significant variations between breeds; multiple factors 
such as genetics, gender, weight, spaying, environment, stressors, and access to 
quality health care are also important determinants of aging.

24.2  Factors That Influence the Rate of Aging in Companion 
Animals

24.2.1  Sex

According to the most comprehensive study on sex-dependent longevity in cats 
which was conducted with nearly 4000 cats, median longevity of females was 
2 years or about 15% greater than the longevity of all males (15.0 versus 13.0 years) 
(Egenvall et al. 2009). However, the impact of neutering on life span extension was 
greater than the impact of sex (O’Neill et al. 2015). The current information on sex- 
dependent longevity in dogs is slightly more conflicting: one small study (n = 287) 
on laboratory beagles has detected no significant sex differences in longevity (Albert 
et al. 1994), while in a much larger study conducted with thousands of Swedish 
dogs younger than 10 years of age, females were found to have a slightly longer life 
span (Egenvall et al. 2005).

24.2.2  Neutering (Spaying)

Neutering was found to be associated with 0.6 years greater longevity in females 
and 1.7 years greater longevity in males (O’Neill et al. 2015). Early-age neutering 
(<5.5 months of age) is considered to be beneficial as it also decreases the occur-
rence of some diseases. Spain et  al. (2004) have detected that in male cats that 
underwent early-age gonadectomy, the occurrence of abscesses was decreased com-
pared to the cats that were neuterized at an older age. The rate of developing asthma 
and gingivitis was also decreased in cats that underwent early-age gonadectomy. 
Neutering also had some behavioral impacts on cats; aggression toward veterinari-
ans, urine spraying, and hyperactivity were less observed in early-age neuterized 
cats, while hiding and shyness increased.
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24.2.3  Breed and Body Size

Certain diseases seem to develop more commonly in specific dog and cat breeds; this 
difference in prevalence also gave rise to breed-specific causes of deaths. For exam-
ple, death from neoplasia was overrepresented in Golden Retrievers and Boxers, 
whereas cardiac diseases were the leading cause of death in Chihuahuas and Maltese, 
which was expectable as the prevalence of mitral valvular disease was high in toy 
breeds (Fleming et al. 2011). Crossbred cats are found to have a higher median life 
span than purebred cats. Being crossbred, having a lower body weight and being 
neutered were also found to be associated with a longer life (O’Neill et al. 2015).

A correlation between body size and longevity also exists: dogs from smaller 
breeds are found to live longer than dogs from larger breeds in general (Table 24.1). 
Greer et al. (2007) found a negative correlation between height and life span and 
also between weight and life span on 700 dogs. However, according to the same 
study, weight is the main significant predictor of longevity: the correlation between 
life span and adult body mass has been shown to be stronger than the correlation 
between life span and adult height of the breed (Sutter et al. 2007; Chase et al. 2009; 
Greer et al. 2011).

Table 24.1 Average and maximum life span of cats and dogs

Species
Life span (years)

ReferencesAverage Maximum
Cat >27 Comfort (1956)

13–17 21 Spector (1956)
22 Hideki et al. (1988)

15 38 Grimm (2015)
30 http://genomics.senescence.info/species*
24 Cozzi et al. (2017)

Dog 13–17 34 Spector (1956)
>24 Comfort (1956)

10 Eichelberg and Seine (1996)
6.7–8.5 Patronek et al. (1997)
12 Michell (1999)
10 Proschowsky et al. (2003)
12 O’Neill et al. (2013)
12 29 Grimm (2015)

24 http://genomics.senescence.info/
species*

28 Cozzi et al. (2017)
Small- to medium-sized 
dogs

24 Comfort (1960)
10 >15 Li et al. (1996)

Large-sized dogs 14 Comfort (1960)
7 >10 Li et al. (1996)

*http://genomics.senescence.info/species is a website dedicated to genetic research in aging
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24.2.4  Body Weight, Obesity, and Associated Comorbidities

Obesity is becoming more prevalent day by day, not only among humans but also 
among our companion animals: almost 50% of dogs and cats between 5 and 10 years 
of age are overweight or obese (Laflamme 2012). As obesity is also associated with 
a wide variety of morbidities such as diabetes mellitus, cardiovascular disease, 
hypertension, dyslipidemia, gallstone, and even certain forms of cancer, it poses a 
great threat to longevity (Jaso-Friedmann et al. 2008; Laflamme 2012; Zoran 2010; 
German 2006; O’Neill 2016). An increase in adult body weight is also known to be 
associated with a shorter life span (Zoran 2010; O’Neill et al. 2015). Adipose tissue 
inflammation is closely related with aging; this makes obesity a significant factor in 
longevity. In humans, oxidative stress increases as the BMI (body mass index) 
increases; increased oxidative damage and chronic inflammatory status are believed 
to be the underlying mechanism which gave rise to a dysfunctional metabolism seen 
in obese humans, but still there are only very few studies examining the pathophysi-
ologic mechanism in pets (Wonisch et  al. 2012; Tanner et  al. 2007; Grant et  al. 
2011; LaFlamme 2012).

Obesity is mainly caused by an imbalance between energy intake and expendi-
ture; environmental, genetic, and hormonal factors contribute to the development of 
the disease (Radin et al. 2009). Some breeds are more prone to becoming obese, 
whereas some are more resistant to developing obesity: Labrador Retriever, Boxer, 
Cairn Terrier, Scottish Terrier, Shetland Sheepdog, Basset Hound, Cavalier King 
Charles Spaniel, Cocker Spaniel, Dachshund (Miniature Long-Haired), Beagle, and 
some giant breed dogs are under a greater risk, while Greyhounds are more resistant 
(Gossellin et al. 2007; Diez and Nguyen 2006; Zoran 2010). Having a coexisting 
endocrine morbidity (such as hypothyroidism and hyperadrenocorticism), use of 
anticonvulsants or glucocorticosteroids is also a risk factor for developing obesity 
(Murphy et al. 2011; Courcier et al. 2009; Montoya-Alonso et al. 2017). This dis-
ease is known for being more prevalent among neutered pets; it is believed to be 
caused by reduced metabolic rate decrease with the loss of sex hormones (Zoran 
2010; Hoenig 2014).

Obesity was found to be more common in younger female dogs, but as both 
sexes reach an old age (>12 years), obesity also tends to increase with age because 
of reduced metabolic rate (Zoran 2010; German 2006). In cat, males seem to be 
more prone to become obese than females (O’Neill 2016). However, the contribu-
tion of body weight was much less significant than sex for the development of 
obesity (Slingerland et al. 2009).

Interestingly, caregiver-related factors such as the age, income, and lifestyle hab-
its of the caregiver were also found to be important risk factors for the development 
of obesity in their companion animals; the incidence of obesity was higher among 
pets with an elderly caregiver (Edney and Smith 1986). Dog owners who consume 
nutrient-rich, calorie-poor diets had dogs with normal weight, while obese owners 
were found to be more likely to have obese dogs (Heuberger and Wakshlag 2011). 
The caregiver’s misinterpretation of normal pet behavior may also pose a risk for 
the development of obesity in pet, particularly in cats. In fact, increasing the 
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frequency of regular meals as a response to the perceived hunger behavior, in addi-
tion to sharing their own meals and rewarding them with treats, owners may contrib-
ute to the development of obesity (German 2015).

Unlike in humans, obesity may not always result in diabetes mellitus in pets. 
Diabetes in dogs present in a type 1 diabetes-like manner, obese dogs may develop 
insulin resistance, but they do not develop diabetes due to obesity. On the other 
hand, obese cats are very prone to developing DM just like human type 2 diabetes 
(Osto and Lutz 2015; Hoenig 2014; Zoran 2010). The risk for development of dia-
betes increases about twofold in overweight cats and about fourfold in obese cats 
(Laflamme 2012; Hoenig 2014). Obese cats are also known to be prone to have 
comorbidities such as hepatic lipidosis, urinary tract disease, lameness, and derma-
topathies (Raffan 2013).

Some anti-obesity agents have also been recently proposed for the management 
of obesity. Dirlotapide and mitratapide have been recently licensed for the treatment 
of obesity in dogs. As microsomal triglyceride transfer protein inhibitors, these 
drugs function by disabling lipid intake at enterocyte level. These drugs also 
decrease the sensation of appetite. As both the absorption of lipids and the desire to 
eat lessen, a reduction in caloric intake occurs. So, it causes crease decreasing in the 
body up to 20–40% without ill effects (Wren et al. 2007).

24.3  Age-Associated Changes and Diseases in Cats and Dogs

Aging is a multifactorial process which leads to a variable decline in the functions 
of organs and tissues; it is associated with several physiological changes. Behavioral 
changes, body weight changes, decreased physical activity, and reduced vision and 
hearing are commonly encountered in aging cats and dogs (Davies 2012; Landsberg 
and Araujo 2005) (Fig. 24.1).

Chronic inflammation is believed to be the main pathologic event that causes aging 
and age-related diseases. Aging predisposes our companion animals to most of the 
chronic diseases such as atherosclerosis (a common cause of heart attacks, strokes, and 
peripheral vascular disease), endocrine disorders (such as obesity and diabetes), demen-
tias, cancers, arthritis, cataract, age-related muscle dysfunction (sarcopenia), and loss 
of resilience. All these conditions are associated with a sterile, low-grade, chronic 
inflammation which is also seen in aging tissues (Chung et al. 2009; Freeman 2012).

Age-related changes such as increased need for sleep, loss of hearing or sight, 
and slowing down are easily recognized by the caregivers; however signs of poten-
tially life-threatening diseases are often failed to be noticed. Respiratory distress 
and palpable masses can be easily missed in aging pets (Davies 2012). As the signs 
of organ dysfunction easily go unnoticed by an untrained eye, regular veterinary 
visits are beneficial for the early detection and management of age-related diseases. 
Unfortunately, older animals usually suffer from reduced functionality in multiple 
organs with different degrees of dysfunction (Fortney 2004).

The most recognized diseases of geriatric cats were found to be urinary system 
disorders, whereas cardiovascular system disorders were mostly observed in dogs 
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(Ulgen et  al. 2014). The prevalence of cardiopulmonary disease increases with 
advancing age in dogs: degenerative valvular disease, chronic obstructive pulmo-
nary disease, and arrhythmias are particularly common in the geriatric dog (Miller 
et  al. 1989). Chronic kidney disease (CKD) is the most frequent urinary system 
disorder encountered in elderly cats (Quimby et  al. 2013). Particularly diseases 
which affect the kidneys pose an important risk for the development of CKD; 
 systemic hypertension, hyperthyroidism, dental disease, and inflammatory bowel 
disease are some of the known threats (DiBartola et al. 1996; van Hoek and Daminet 
2009; Williams et al. 2010, 2014).

Nutritional needs of cats and dogs change as they age; planning of an adequate 
feeding regime is needed, particularly if an age-related morbidity is seen (Dzanis 
2004). For that reason geriatric cats (>12 years of age) may need a highly digestible 
nutrient-dense diet, or overweight or obese dogs may benefit from diets with lower 
fat and calories (Laflamme 2005). Henegar et al. (2001) showed that feeding dog by 
a high-fat diet causes increased arterial pressure, hyperinsulinemia, activation of the 
renin-angiotensin system, and structural changes in the kidney which may be the 
precursors of more severe glomerular injury associated with prolonged obesity.

As stated earlier, aging cats are under a greater risk of developing diabetes. 
Diabetes in dogs are more like type 1 diabetes, but DM in cat generally present with 
a type 2 diabetes-like syndrome; it is characterized with a relative insulin deficiency 

Fig. 24.1 Expected physiological changes in elderly cats and dogs
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combined with an insulin resistance (Hoenig et al. 2003; Hoenig 2014; Slingerland 
et al. 2009). Obese cats have an altered expression of several insulin signaling genes 
and glucose transporters; they are also resistant to leptin: this gives rise to a defec-
tive glucose transportation. Pathologic changes such as beta cell failure and deposi-
tion of amyloid within pancreas islets are also seen; along with the amyloid 
deposition, a reduction in the concentration of adipokine is also observed. Every 
one of these pathologic events contributes to the development of insulin resistance 
and eventually diabetes. (Hoenig et al. 2003; Zoran 2010). Particularly indoor cats 
are under a greater risk of developing obesity as they have a more sedentary lifestyle 
(Nelson and Reusch 2014; O’Neill 2016).

Obesity is also a risk factor for orthopedic diseases, combined with the degenera-
tion of joints in aging pet; orthopedic diseases are more prevalent among elderly, 
heavy pets (Muir et al. 2004). A recent study by Van Hagen et al. (2005) found a link 
between neutering and hip dysplasia in boxers.

Advancing age creates a predisposition for neoplasias; the incidence of benign 
and malign neoplasia is higher among elderly pets. Cancer-associated deaths are 
also commonly seen in elderly pets. Obesity is a known risk factor for developing 
neoplasias; obese elderly pets are under a greater risk of developing mammary 
tumors and transitional cell carcinoma (German 2006). Most commonly encoun-
tered cancers in cats are lymphoma with feline leukemia, mammary tumors, skin 
cancer, mast cell cancer, and osteosarcoma. Lymphoma, osteosarcoma, mammary 
tumors, and hemangiosarcoma are commonly encountered in dogs (Dobson et al. 
2002; Egenvall et al. 2005; Merlo et al. 2008). Incidence of cancer is three times 
higher in female than in male dogs (Merlo et al. 2008).

Motility disorders are very common in elderly cats and dogs. Gastrointestinal 
diseases which are associated with neoplasia (dog and cat), stomatitis (cat), idio-
pathic megaesophagus (dog), gastric motility disorders (dilatation-volvulus and 
gastroparesis) (dog), lymphocytic-plasmacytic enteritis (dog and cat), and idio-
pathic megacolon (cat) are of major concern in small animals (Neiger 2004).

A decline in the physical or mental health of older dogs can be a challenge for 
the owners due to cognitive and behavioral changes which occur with aging 
(Chapagain et al. 2017). Any pathology can affect the body and cause a behavioral 
change such as posture changes, circling, and vocalization because of chronic pain 
(Houpt and Beaver 1981). In addition to this, in geriatric patients, a dog’s sight 
(such as lens sclerosis, cataracts) and joints can cause both physical and behavioral 
changes (Landsberg  and Araujo 2005; Godfrey 2005; Lascelles and Robertson 
2010). However age-related hearing loss is the most common cause of deafness in 
pets (Houpt and Beaver 1981; Strain 2017).

Cognitive abilities may decline with aging, causing deficits in learning and mem-
ory. Most research on cognitive aging in dogs has focused on the translational 
approaches to human aging and Alzheimer’s disease (AD) (Kaeberlein et al. 2016; 
Head 2013; Adams et al. 2000; Davis and Head 2014). Like in humans, genetics, 
diet, and lifestyle choices influence the prevalence, the pattern of pathologic neuro-
nal changes (particularly senile plaque formation), and the nature of cognitive dys-
function in companion animals. Neuropathological changes present as some 
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behavioral changes such as referring to eating, drinking, grooming, disorientation, 
elimination habits, lack of self-hygiene, sleep-wake cycles, aggression, anxiety, 
aimless activity, excess vocalization, and alteration in social interactions (Golini 
et al. 2009; Gunn-Moore et al. 2007; Landsberg et al. 2012; Landsberg and Malamed 
2017). Changes in social interaction with people and other pets are commonly seen 
in 11–14-year-old cats. Excessive vocalization and aimless activity are common 
among cats older than 15 years (Gunn-Moore et al. 2007). It should also be kept in 
mind that behavioral changes do not always arise from neuropathological events; 
loss in sight due to age-related eye diseases such as cataracts and age-related hear-
ing loss (which is the most common cause of deafness in pets) can also cause behav-
ioral changes (Landsberg et al. 2012; Godfrey 2005; Lascelles and Robertson 2010; 
Houpt and Beaver 1981; Strain 2017).

24.4  Geroprotective Agents That Are Used in Animals

Improving the quality of care and nutrition of pet animals and advanced diagnosis 
and treatment by developing technologies lead to an increase in survival rate 
(Akdoğan Kaymaz et al. 2014).

Our companions, dogs and cats, become a part of our families right on the first 
day that they enter our life; every little suffering of them hurts us deeply. This arises 
two main questions: “What can we do to prevent diseases?” and “How can we make 
them live longer?”

Even though the occurrence of diseases is associated with multiple factors such 
as breed, genetics, size, sex, and aging, it is known that proper nutrition, exercise, 
and quality health care reduce the prevalence of morbidities and increase life expec-
tancy of companion animals.

Geroprotective, in other words, antiaging, interventions also seem promising for 
the prevention of early aging. Mitochondria-permeable or mitochondria-targeted 
antioxidants are one of these agents; they slow down the aging process by reducing 
mitochondrial oxidative stress and by eliminating senescent cells from tissues. 
Edaravone, idebenone, α-lipoic acid, carotenoids, vitamin E and coenzyme Q10, 
MitoQ, SkQ, and astaxanthin (a ketocarotenoid from the xanthophyll family) are 
examples for these agents (Cakatay and Kayalı 2005; Ademowo et  al. 2017; 
Williams et al. 2015). Dietary antioxidants such as vitamin C, vitamin E, selenium, 
and β-carotene and other carotenoids (α-carotene, β-cryptoxanthin, lutein, lyco-
pene, and zeaxanthin) are also very helpful for counteracting oxidative damage and 
senescent cells. For this reason, pet food manufacturers start to improve their senior 
pet food options with the addition of selenium, copper, iron, manganese, vitamins 
(particularly E and C), beta carotene, and lutein. And also those commercial senior 
diets consist of reduced protein, macrominerals (phosphorus and calcium), and salt 
(Hesta et al. 2006; Kim et al. 2000). Chondroprotective agents such as glucosamine 
and chondroitin sulfate are routinely added to diet of senior pets (Dzanis 2004). On 
the other hand, dietary management is also used for the treatment of age-related 
diseases, combined with medicine or not (Chew and Park 2004; Lenox and Bauer 
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2013; Nolan et  al. 2014). When antioxidants and vitamin supplementations are 
combined with cognitive training and regular physical exercise, they are shown to 
be beneficial for reducing brain-derived neurotrophic factor (BDNF), for this reason 
(Fahnestock et al. 2012). These agents are also preferred in the treatment of cogni-
tive dysfunction syndrome (CDS) which presents with aging. Recent studies also 
have shown that long-term supplementation with medium-chain triglycerides can 
improve cognitive function in aged dogs. Carotenoids lutein (L), zeaxanthin (Z), 
and meso-zeaxanthin are known as macular pigment (MP). MP’s constituent carot-
enoids are also important for cognitive function (Chew and Park 2004; Head et al. 
2009; Manteca 2011; Lenox and Bauer 2013; Nolan et al. 2014 Snigdha et al. 2015).

Owner-requested euthanasia is performed often due to chronic illnesses which 
occur with aging. Each caregiver has a different perception about the quality of life; 
they decide on euthanasia based on their perception about the severity of their com-
panion’s diseases, their own cultural values, and their life experiences. Age and 
financial status of the owner and numbers of medicine pills used in the treatment 
also affect their decision (Boyd et  al. 2008; Reynolds et  al. 2010). Total cost of 
planned treatment is also an important factor for the caregivers; aging and age- 
related morbidities are known to raise the financial burden (Kirkland 2013). Because 
of the high rate of euthanasia of aging pets, it is also harder to investigate whether 
senolytic medicines and nutrients are really beneficial or not; an important number 
of aging cats and dogs are euthanized before having chance to try out these 
interventions.

A number of probiotic products are commercially available in shape of powder, 
tablet, capsule, paste, and liquid forms for use in dogs and cats. Some commercial 
dog and cat foods also claim to contain prebiotics and probiotics (Weese and Arroyo 
2003). In dogs, prebiotics such as fructooligosaccharides (FOS) and mannanoligo-
saccharides (MOS) cause an increase in neutrophil activity; hence they may affect 
immune systems or undesirable microbial communities in the gut. Previously, acute 
and chronic enteropathic dysbiosis (disbacteriosis) of dogs and cats was treated 
with probiotics (Kelley et al. 2009; Herstad et al. 2010). A related study conducted 
on shelter cats has shown that probiotic administration leads to a decrease in the 
duration of diarrhea (Bybee et al. 2011).

The owners are sometimes doubtful whether the commercial diets are safe for 
their pet or not; for that reason pet owners have shown increased interest in holistic 
and natural diets containing oats and barley (Di Cerbo et al. 2017). But actually 
quality commercial diets seem to be more suitable with the needs of the aging pets.

Recent advances in geroscience have identified several hallmarks of aging that 
have a role in the molecular mechanisms which may give rise to diseases (Lopez- 
Otin et al. 2013; Pitt and Kaeberlein 2015; Urfer et al. 2017). This discovery initi-
ated the development of therapeutic strategies for delaying age-related disability and 
diseases. Rapamycin (an immunosuppressant and nutrient-responsive mTOR inhibi-
tor agent) and metformin (an antihyperglycemic) are two examples of these agents 
(Castillo-Quan and Blackwell 2016; Kaeberlein et  al. 2016; Pitt and Kaeberlein 
2015). Metformin is regarded as an effective agent to prolong the life span in 
humans, but its effectivity in animals is still not well established. The other agent, 
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rapamycin, at low doses is found to be significantly effective on diminishing the 
mortality and delaying age-related diseases in several studies (Larson et  al. 
2016; Wilkinson et al. 2012; Kaeberlein et al. 2016). “The Dog Aging Project” is 
currently conducting an intervention trial with middle-aged dogs using rapamycin in 
order to enhance longevity and healthy life span (Kaeberlein et  al. 2016; Urfer 
et al. 2017). The main aim of this study was to use dogs as an animal model for 
human aging, presenting an effective geroprotective agent both for humans and their 
companion animals. Dogs are counted as highly valuable for these studies because 
of both their genetic and phenotypic characteristics and social environment that they 
share with humans. Dogs also have much more short life span than humans (approx-
imately 7–10 times); both the benefits and side effects of these agents can be seen 
much more earlier in dogs.

24.5  Conclusion

Numerous studies have focused on not only prolongation of life but also providing 
a disease-free survival. Companion dogs have been considered as an optimal model 
for understanding the variables of morbidity and mortality which are specific for 
aging. On the other hand, these life partners in which we share our homes provide 
great contribution to our physical and mental health and also social communica-
tions. The studies performed in dogs may also play important roles not only in the 
exploration of the structural background of the diseases due to aging but also in the 
improvements in the longevity and quality of life outcomes of these animals and 
their owners. Moreover, these potential advances may prevent unethical euthanasia 
procedures performed upon decision of “owners,” mainly due to the mental and the 
financial burden of age-associated diseases. With studies on aging that continues 
in ethical approach, it will be possible to provide a healthy and long life for both 
companion animals and their caregivers.
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