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Abstract This chapter explores the use of theDuffingnonlinearity and fast dynamics
found in microelectromechanical beam oscillators for reservoir computing applica-
tions. General properties of MEMS are discussed, and the Duffing microscale beam
characteristics are analyzed through analytical models and simulations. The reser-
voir computer is then constructed around a single such nonlinear oscillator through
temporal multiplexing of the input and self-coupling via delayed feedback. The
parameters of the resulting physical system are finally adjusted for optimal perfor-
mance on computing the parity of a binary input stream, as well as on a spoken digit
recognition task.

1 Introduction

Artificial intelligence (AI) and machine learning have progressed tremendously over
recent years and are now the focus of an intense interest worldwide within many
fields, with applications ranging from self-driving cars (Huval et al. 2015) to health
monitoring systems (Witt et al. 2019). This rapid progress has occurred over only a
few years and was driven by algorithmic advances and improvements in computing
hardware (LeCun et al. 2015) that have resulted in much shorter training and vali-
dation times for AI systems. The expectation that better hardware could contribute
to further improving AI systems currently fuels a large research effort to find new
“computing substrates” for AI. While conventional AI is implemented with software
running on general-purpose computers, it is widely accepted that much more effi-
cient hardware implementations of AI must exist; our brains are an existence proof
that some computing architectures can far exceed the density and energy efficiency
of current microelectronics technology. We have published the first demonstration
that microelectromechanical systems (MEMS) were an appropriate substrate for
miniature, low energy consumption AI systems (Coulombe et al. 2017; Dion et al.
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2018). By exploiting the nonlinearity of microfabricated mechanical oscillators, our
approach implements the concept of reservoir computing (RC) (Jaeger and Haas
2004) physically in MEMS. As MEMS can be fabricated to small dimensions and
therefore have high resonance frequencies (up to the GHz van Beek et al. 2007), our
approach has the potential to be used as a highly efficient electrical component to
implement reservoir computing.

AsMEMS are also the mainstream technology for many modern sensors (Khosh-
noud and de Silva 2012), our work further paves the way to the development of a
new class of smart sensors with built-in data processing capabilities. As an example,
we have demonstrated a MEMS displacement sensor which implements reservoir
computing in the mechanical domain (Barazani et al. 2019). As the sensor is moved
randomly between two positions separated by 2 µm at 20.8 Hz, it uses the nonlinear
dynamics of its resonating mechanical structures to compute at every timestep when
the position can change, if it had been in one of the two positions an even or an odd
number of times over the last five timesteps. More recently, we have also demon-
strated a MEMS accelerometer with similar neuromorphic computing capabilities
(Barazani et al. 2020). By using the hardware implementation of reservoir computing
in MEMS, these devices offer both sensing and non-trivial computing functions in
small, highly integrated structures. We envision a number of applications for MEMS
sensors integrating machine learning capabilities through our architecture (Sylvestre
et al. 2018), especially in fields where small, energy-efficient systems are required,
including the Internet of Things, autonomous systems, aswell asmobile andwearable
electronic devices.

This chapter provides a general overview of our neuromorphic computingMEMS
technology. We start with an introduction to MEMS in Sect. 2, including the unique
characteristics of microfabricated devices (relative to conventional devices) which
are leveraged to implement computing functionalities. We discuss the modeling and
analysis of nonlinear MEMS resonators (Sect. 3), leading to an example of a sili-
con beam design which has proven to be useful in experiments. Measurements of
computing performances are presented in Sect. 4, together with observations on the
tuning of the system parameters to optimize performance on different benchmark
tasks.

2 Microelectromechanical Systems

Microelectromechanical systems (MEMS) are miniaturized machines able to sense
or produce displacements at the micrometer and sub-micrometer scales, typically in
the range of 0.1µm to 100µm. MEMS devices comprise structures such as beams
or membranes that are able to move relative to the substrate, providing actuation
(MEMS actuators, e.g., micropumps) or detection capabilities (MEMS sensors, e.g.,
pressure or force meters). However, the design of miniaturized actuators and sensors
requires some modifications if compared to the design of conventional machines.
At the scale of MEMS structures, surface forces (such as electrostatic and adhe-
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sion forces) are dominant compared to volumetric forces (such as gravitational and
inertial forces). For instance, water surface tension forces can completely suppress
MEMSmobility and are sometimes very difficult to avoid (Van Spengen et al. 2003).
On the other hand, MEMS μm-dimensions allow them to be batch produced and
assembled in the same chip as the electronic circuits, resulting in cheaper (lower cost
per unit), faster, and more compact monolithic devices. Furthermore, MEMS tend to
demonstrate higher sensitivity, faster response, and lower energy consumption than
conventional mechanisms (Ananthasuresh 2012). MEMS applications can be quite
diverse and include for example printers ink-jet nozzles, airbag sensors, mirror arrays
in video projectors, focusing systems in smartphone cameras, and accelerometers in
smartphones or personal fitness trackers.

2.1 MEMS Fabrication

In order to manufacture MEMS, traditional fabrication methods such as milling
and extrusion are replaced by processes with increased precision and resolution,
such as photolithography, chemical etching, and plasma etching. MEMS fabrication
utilizes processes adapted from the microelectronics industry, which were mainly
developed for the handling and processing of silicon substrates (Madou 1997; Liu
2006). This sort ofmanufacturing consists ofmultiple steps of deposition and etching
of structural (usually silicon) and sacrificial (usually oxide) thin films. At the end of
the process, the sacrificial material is removed to enable the structural parts to move
relative to the substrate. One simple MEMS fabrication method is the direct etching
of silicon on insulator (SOI) wafers. SOI wafers are standardized stacks composed
of a device structural layer on the top, an oxide sacrificial layer in the middle, and a
handle substrate layer at the bottom. The SOI MEMS fabrication process, illustrated
in Fig. 1, can be roughly summarized into two main steps: (1) etching of the device
layer, after it is patterned using photolithography; and (2) partial removal of the oxide
layer granting motion to the structural parts, which remain connected to the substrate
through the oxide that is not etched away (the anchors). The addition of electrical
contacts to the fabrication flow allows the induction of motion by the application of
electrical voltages. Likewise, measurements of voltage changes can be used to gage
MEMS motion.

2.2 Sensing and Driving Methods

There are several techniques used to provide or detect microscale displacements in
MEMS. The most common operating principles include electrostatic, electrother-
mal, piezoelectric, and piezoresistive (Liu 2006). In the great majority of MEMS
devices, energy conversion involves an input or an output electrical signal, typically
a voltage difference. The electrostatic and electrothermal phenomena, which produce
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Fig. 1 a Initial SOI wafer. b Parts of the device layer are selected to be etched away after pho-
tolithography. c SOI wafer after the etching of the device layer. d Oxide areas to be removed in a
selective etching procedure. e Final device after the oxide removal; the remaining silicon structure
is anchored to the handle and is free to flex or move relative to the handle

forces that are usually negligible in conventionally sized mechanisms, are the most
traditional configurations for driving and sensing in MEMS. Electrothermal MEMS,
for example, produce motion through the thermal expansion of structures (usually
beams) caused by Joule heating due to the application of voltage (Lai et al. 2004). In
the case of electrostatic MEMS, motion is induced by electrostatic forces between
microelectrodes separated by a small gap (Batra et al. 2007). Alternatively, changes
in the gaps caused by an external force can be measured by the capacitance change
between the electrodes.

MEMS accelerometers, some of the most commercially successful MEMS
devices, may present a large variety of design types and working principles (Yazdi
et al. 1998). Typically, external inertial forces displace an inertial mass that is sus-
pended by compliant springs. This motion is then converted to an electrical signal
that is proportional to the magnitude of this displacement. The transduction prin-
ciple is usually capacitive (electrostatic) or piezoresistive (changes in the electrical
resistance due to mechanical deformations). MEMS accelerometers can detect in-
plane or out-of-plane forces depending on their design configurations (Fig. 2). Planar
accelerometers commonly use an interdigitated configuration in order to increase the
total capacitance and therefore the electrostatic sensitivity of the sensor. Higher sensi-
tivity can also be achieved by reducing the accelerometer’s natural frequency, which
could be done by diminishing the suspension’s stiffness. However, this also reduces
the frequency response (bandwidth) of the sensor. Another practice to increase the
sensitivity is to increase the signal-to-noise ratio by reducing the system’s damping.
This is usually done by etching holes along the proof mass or by operating the device
under vacuum.
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Fig. 2 Schematic illustration of two possible configurations of MEMS accelerometers: a the proof
mass moves laterally, enabling the detection of in-plane accelerations, and b the proof mass moves
up and down allowing the device to sense out-of-plane accelerations

2.3 MEMS Dynamics and Nonlinearity

MEMSdevices are frequently designed towork in their dynamic regime, as it happens
for example in MEMS resonators. As vibrating structures, MEMS exhibit much
higher resonance frequencies compared to non-miniaturized mechanisms. This is
because of their much higher k/m ratio, where k is the device elastic constant and
m is its total mass. In MEMS resonators, shifts in the resonance frequency can be
used to detect changes of different physical quantities, enabling the manufacturing
of a variety of sensors such as pressure, force, and temperature sensors (Tilmans
et al. 1992). The resonance frequency of MEMS tends to be very well defined (small
bandwidth) due to their typically large quality factor (Q), which is a measure of the
energy dissipation of oscillating structures. High values of Q indicate low energy
dissipation, which leads to lower energy consumption, higher sensitivity, and lower
noise. Energy dissipation can be classified as intrinsic or extrinsic (Ekinci andRoukes
2005). The former is associated with losses due to the material microstructure while
the latter is mainly related to losses induced by the media surrounding the device.
Extrinsic damping effects such as drag forces or squeezed films (when structures are
too close) are usually the dominant sources of energy dissipation.

Another observed characteristic of MEMS resonators is their nonlinearity.
Micromechanical oscillating structures demonstrate nonlinear behavior when driven
above a certain critical amplitude (Husain et al. 2003; Ekinci and Roukes 2005).
Frequently, the Duffing equation for nonlinear oscillators is used to describe the
motion of MEMS resonators. Essentially, when oscillating at very large amplitudes
(above critical), changes in the structure’s stiffness result in nonlinear shifts of the
resonance frequency. In the case of a clamped–clamped microbeam (i. e. both ends
anchored) vibrating in its flexural mode, large driving amplitudes generate tensile
forces that increase the beam stiffness resulting in an increase of its resonance fre-
quency (Tilmans et al. 1992). The onset of nonlinearity in microstructures has been
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explored elsewhere (Buks and Yurke 2006; Tadokoro et al. 2018). In this study, the
nonlinearity of a clamped–clamped microbeam is used to set up a reservoir comput-
ing system able to perform non-trivial computing tasks.

3 Driven Oscillators with Duffing Nonlinearities

The Duffing model was first introduced to describe the hardening spring effect
observed in mechanical systems (Duffing 1918). It is considered as one of the
most common models used to describe the jump phenomenon observed in highly
deformed mechanical resonators, where a slight change of forcing frequency leads
to an abrupt discontinuous change in the steady-state amplitude (Guckenheimer and
Holmes 2002; Kalmar-Nagy and Balachandran 2011). It keeps a simple mathemat-
ical form and accepts, under some approximations, analytical solutions (Ali 1995;
Worden 1996).

3.1 Duffing Oscillator

Several micromechanical structures behave as nonlinear systems for high levels of
excitation (Ekinci and Roukes 2005; Zaitsev et al. 2012). The Duffing equation with
damping and external harmonic forcing is

ẍ + ω0

Q
ẋ + ω2

0x + βx3 = A cos(�t), (1)

where x, t, ω0, Q, A, �, and β are the displacement, time, undamped angular fre-
quency, quality factor, excitation amplitude, angular excitation frequency, and cubic
stiffness parameter, respectively. Dots denote derivatives with respect to time. As
can be seen, Eq. (1) reduces to the forced damped linear oscillator when the anhar-
monic term is ignored (β = 0). An approximative solution for the position x(t) can
be obtained for small ω0/Q, β, and A values and assuming the forcing is close to
resonance, with� − ω0 also small. Equation (1) can then be viewed as a perturbation
of the autonomous harmonic oscillator. The perturbation technique known as “aver-
aging” gives an approximative steady-state solution x(t) = r cos(�t + φ) where r
is the oscillation amplitude and φ is the phase (see Guckenheimer and Holmes 2002
or Jan 2007 for details). Averaging gives a frequency response curve (Jan 2007),

(−2ω0 (� − ω0) r + 3
4βr

3
)2 + 4

(
ω2
0/Q

)2
r2 − A2 = 0, (2)

which can be solved for r .
Figure3 shows the frequency response curve for β = 0 (from the exact solution of

the linear problem) and curves from averaging for β = ±0.05Hz2/m2. The introduc-
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Fig. 3 Amplitude–frequency response curves for the linear system (β = 0 Hz2/m2) from the exact
solution and by averaging for stiffness parameterβ = ±0.05 Hz2/m2. Stable and unstable solutions
are denoted as solid and dashed lines, respectively. The parameters used to construct these curves
were A = 2.5m/s2, Q = 5 and ω0 = 1 rad/s

Fig. 4 Amplitude–frequency response curve obtained numerically by a sweep up followed by a
sweep down of �; the jump and the hysteresis are apparent. The parameter values used to construct
these response curves were A = 2.5 m/s2, Q = 5, β =0.05m−2 s−2, and ω0 = 1 rad/s

tion of the cubic nonlinearity tilts the curve to the right for β > 0 (hardening spring)
and to the left for β < 0 (softening spring). Furthermore, close to the peak, there are
three possible solutions for a given � (two stable ones and an unstable one, denoted
as a dashed line). Figure4 shows numerical solutions to Eq.1 for β =0.05m−2 s−2,
as the forcing angular frequency� is swept up and down. Once� is increased above
the angular frequency of the peak �↓, the oscillation amplitude abruptly jumps to
the lower branch, which is the only remaining solution. As � is reduced again, the
oscillation amplitude follows the lower stable branch and jumps back to the upper
branch once it reaches the unstable solution, at �↑. Since �↓ > �↑, the nonlinear
system exhibits hysteresis.

Figure5 shows the phase-space plot of three distinct motion regimes. For low
forcing amplitudes or when the anharmonic term is not taken into account in the
Duffing equation (1), the motion of the resonator resembles a linear harmonic device
where the response in phase-space is an ellipse. At intermediate forcing, the system
can havemore complex dynamics due to the stiffening characteristic of the resonator:
there can be more than one harmonic component in the oscillator motion, as studied
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Fig. 5 Phase-space plots obtained from Eq. (1) for three motion conditions: harmonic oscillations
with weak forcing A = 0.2m/s2 and cubic stiffness corresponding to zero (blue line), moderate
forcing A = 0.29 m/s2 with β = 1 Hz2/m2 (black line), and chaotic oscillations at high forcing
level A = 0.5 m/s2, β = 1 Hz2/m2 (red line). The other parameters used to construct these curves
were Q = 3.33, ω0 = 1 rad/s, and � = 1.2 rad/s

inKalmar-Nagy andBalachandran (2011). Large forcing amplitudes lead to a chaotic
motion and the system becomes very sensitive to the initial conditions.

For nonlinear Duffing systems, sudden jumps in the resonance response are
observed, as in Fig. 6. The jump frequency depends on the direction of the fre-
quency sweep and the type of nonlinearity (softening or stiffening) (Malatkar and
Nayfeh 2002). For lightly damped Duffing oscillator, Brennan et al. presented a sim-
ple approximated non-dimensional expression which gives the maximum oscillation
amplitude rmax at the jump frequency �↓ (Brennan et al. 2008). The relationship
between the jump-down frequency and the cubic stiffness can be written in a dimen-
sional form as (Tang et al. 2016)

�2
↓ = 3

4
βr2max + ω2

0 . (3)

Solving for rmax gives the so-called “backbone curve” presented by the dashed line
in Fig. 6. It can be used to predict the frequency response of the system (Cammarano
et al. 2014; Arroyo and Zanette 2016).

3.2 Clamped–Clamped Beams

A clamped–clamped beam is an oscillator exhibiting an anharmonic behavior at
higher excitation amplitudes. Multiple studies have demonstrated that the Duffing
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Fig. 6 Example of backbone curve (dashed line) for a Duffing oscillator swept up in forc-
ing frequency. The parameter values used to construct these response curves were Q = 5, β =
0.05 Hz2/m2, and ω0 = 1 rad/s

Fig. 7 Schematic description of a clamped–clamped beam: l, w, and h correspond to the length,
width, and thickness of the beam

model may describe the nonlinear behaviors observed in the beam dynamics (Ver-
bridge et al. 2006; Antonio et al. 2012; Abdolvand et al. 2016).

Figure7 depicts a simplified schematic of a clamped–clamped structure.

3.2.1 Linear Analysis

The mass–damper–spring system represents the simplest model used to describe
the linear resonator motions. It corresponds to Eq. (1) for which the nonlinear term
β is null. The damper is associated here with energy losses in the system. The
fundamental frequencies of excited clamped–clamped beam can be determined by
solving the differential equation from Euler–Bernoulli beam theory. We assume that
the beam deflection follows the fundamental mode vibration. The expression of the
undamped resonance frequency for a clamped–clamped beam subjected to a lateral
surface excitation can then be written as (Tilmans et al. 1992; Bao 2005)

ω0 = λ2

l2

√
E I

ρwh
, (4)

where I, E, ρ, l, w, and h are quadratic moment, Young’s modulus, mass density,
length, width, and thickness of the beam, respectively. λ is a constant satisfying
cosh(λ)cos(λ) = 1. Equation (4) indicates that the resonance frequency is closely
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related to the mechanical structure geometry. It corresponds, for instance, to 389kHz
for a 300µm silicon beam with a width and a thickness of 4µm and 10µm, respec-
tively (λ = 4.73 in that case).

3.2.2 Nonlinearity Effects

In a clamped–clamped beam, the nonlinear parameter caused by the elongation of
the beam can be approximated from (Postma et al. 2005)

β = E

18ρ

(
2π

l

)4

. (5)

For example, the calculated nonlinear coefficient is equal to 7.75x1023(Hz/m)2

using Eq. (5) for a 300µm silicon beam.
To better understand the nonlinear dynamics of a clamped–clamped beam, a finite

element modeling using the ANSYS software (Theory Reference for theMechanical
2017) was developed. Figure8a) presents a deformed silicon beam in its fundamental
mode. The anchors, substrate, and gages are also considered in the simulation. An
initialmodal simulation is used to identify the resonancemodes of the beam.Using an
explicit time analysis, the system is then excited in the proximity of a resonant peak
by a time-varying lateral force applied in the middle of the beam. This analysis takes
into account the nonlinear phenomena induced by large geometrical deformations
and the mechanical dissipation that occurs during the structure motion.

The simulation results are depicted in Fig. 8b). We first note that the “hardening”
phenomenon, characteristic of Duffing oscillator, is present. Unlike the symmetric
response in the linear case, the peak amplitudes shift to the higher frequencies when
the excitation force increases. The jumps are also observed. The cubic stiffness

Fig. 8 a Displacement mapping of 300µm clamped–clamped silicon beam obtained by ANSYS
modal analysis. b Results of the analysis of transient finite elements on the clamped–clamped beam
for different force amplitudes. The width w and thickness h of the beam were 4µm and 10µm,
respectively
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parameter can be determined from a fit to Eq. (3) and is equal to (1.87 ± 0.26) x 1023

(Hz/m)2. This result is similar to the one obtained theoretically (Eq. (5)).

3.2.3 Damping Effects

The energy dissipation mechanisms of the mechanical system are associated with
damping effects. The parameter indicating the damping and the efficiency of the
resonator systems, the so-called quality factor Q, can be defined as the ratio of
dissipated energy per period, �, to the energy stored in the oscillator (here, kr2/2)
(Tilmans et al. 1992; Bao and Yang 2007)

Q = 2π × kr2/2

�
. (6)

Figure9 depicts the amplitude–frequency curve for three damping conditions
using numerical Duffing solutions (Eq. (1)). The larger damping effect corresponds
to the smaller factor (black line) while the peak amplitude is higher for smaller
damping (blue line). Note that the peak amplitude would be infinite in the absence
of damping.

There are several sources of damping in mechanical structures. A quality factor
Qi can be attributed to each dissipation mechanism. The total quality factor Q can
be written as Matthiessen’s rule (Matthiessen and Vogt 1864; Naeli and Brand 2009)

1

Q
=

∑

i

1

Qi
. (7)

The extrinsic damping caused by the surrounding air can often be ignored for
conventional mechanical systems. However, as air damping is related to the surface
area of the resonator, viscous air damping can be significant for micromechanical

Fig. 9 Effect of damping on the amplitude–frequency response curve: small damping (blue line),
intermediate damping (red line), and high damping (black line). The parameter values used to
construct these response curves were A = 2.5m/rms2, β = 0.05 Hz2/m2, and ω0 = 1 rad/s
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devices. The first damping mechanism highlighted is the drag force. It represents the
effect caused by the surrounding gas on the resonator when the beam is far away from
any surrounding object. From Naeli and Brand (2009), the quality factor describing
gas dissipation in microbeams is

Qd = ρhwω0

3π
(
μ + w

√
ρaμω0/16

) , (8)

where μ is the air dynamic viscosity and ρa is the air mass densities. This factor can
be reduced experimentally by placing mechanical devices under vacuum (Tilmans
and Legtenberg 1994; Gui et al. 1995).

A driving electrodemust be close to the beam in order to electrostatically drive the
mechanical resonator. If the gap d between the beam and the electrode is small com-
pared to the beam thickness h, the main damping mechanism is the “squeezed-film
effect” due to the incompressible character of the gas. This is all the more important
when the gap is reduced. The corresponding analytical expression of squeezed-film
damping is (Starr 1990; Bao 2005)

Qs = ρwd3ω0

μh2
. (9)

For a silicon beamwith (w, h, l) = (4, 10, 300) µm,where the gap d corresponds
to 6µm, one has Qd = 529 and Qs = 2740. From Eq. (7), the combined quality
factor Q is then 457. For additional effects comprising, for instance, the thermoelastic
mechanism, we refer the reader to Verbridge et al. (2006), Naeli and Brand (2009),
and Younis (2010). Note that the anchors in the clamped–clamped beams can also
have a significant effect on the dynamics of the resonator (Lee et al. 2008; Naeli and
Brand 2009).

4 Reservoir Computing in a MEMS

As highlighted in the previous sections, MEMS technology can reliably produce
small and energy-efficient devices exhibiting rich dynamical behaviors often not
accessible for mechanical structures at larger scales. Exploiting these dynamics for
neuromorphic hardware thus seems a promising alternative to computing using con-
ventional electronics, which keep struggling with power dissipation issues. As a
result, the following section explores the use of a micromachined clamped–clamped
silicon beam as the single dynamical node of a delay-coupled reservoir computer
trained to perform simple classification tasks.
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4.1 The MEMS Nonlinear Node

Construction of a hardware reservoir computer (RC) begins with the choice of a
suitable physical node, which should have a nonlinear activation function in order to
be able to model nonlinear processes. The stiffening Duffing behavior of a clamped–
clamped silicon beam oscillating at large amplitudes can provide the nonlinearity
in MEMS RC. An order of magnitude for the minimum oscillation amplitude to
obtain sufficient nonlinear behavior is the amplitude rc associated with the onset of
bistability (Lifshitz and Cross 2010):

rc =
(
4

3

)3/4
√

ω2
0

Qβ
. (10)

For the beam studied in this section, the onset of the nonlinearity is around rc =
150nm.

The beam shown in Fig. 10 was microfabricated on a (100) silicon on insulator
(SOI) substrate with a nominal resistivity of (0.003 ± 0.002) � m and a sacrificial
oxide thickness of 1.5µm. It has a length of L = 500 µm, a width of w = 10µm,
corresponding to the SOI device layer thickness, and an in-plane thickness (normal
to its displacement) of h = 4 µm. The device was wirebonded to a chip carrier and
placed in a Faraday cage for the experiments, but was otherwise unpackaged. This
lack of proper packaging makes the beams sensitive to dust in their environment,
which has the undesirable effect of modifying their resonant frequency over time.
For instance, one beam has had its natural frequency lowered by as much as 20%
over the course of one year. The experimental quality factor of the MEMS was 167
± 2. This value, which is independent of the oscillation amplitude, is comparable to
the analytical value of 204 obtained using Eqs. 7–9 for the nominal dimensions of the
beam. Fabrication tolerances could account for this gap between the two values, as

Fig. 10 SEM image of the MEMS
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Fig. 11 Experimental setup for the reservoir computer. The masking procedure as well as the
delayed feedback loop are implemented in the digital domain, while the post-processing (extraction
of the displacement amplitude) is carried out through custom analog electronics

well as other dissipationmechanisms such as anchor loss and the proximity of the sub-
strate. In the linear regime, the beam naturally oscillated at f0 = 155kHz, compared
to a calculated value of 144.2kHz (Eq.4), although the maximum of the frequency
response shifted to higher frequencies as the drive amplitude was increased, a behav-
ior which corresponds to a stiffening Duffing oscillator. The Duffing parameter for
the beam shown in Fig. 10 was estimated to 1.9 × 1023 Hz2m−2 by adjusting Eq.3
to experimental data of the beam’s response. Equation5 yields a comparable value
of 1.1 × 1023 Hz2m−2.

Among the plethora of possible transduction methods presented in Sect. 2.2,
an appropriate choice for RC MEMS is to drive the beam electrostatically and
sense its displacement piezoresistively. By polarizing a 300µm long drive elec-
trode placed 6µm away from the beam in Fig. 10 with a voltage signal of the form

Vd(t) = V0 cos (2π fd t), a force Fd ∝ V 2
d (t) = V 2

0
2 (1 + cos (4π fd t)) can be applied

between the beamand thefixed electrode such that vibrations of the beamare solicited
at twice the input voltage frequency fd . The piezoresistive transduction of the beam
motion to an electrical signal, carriedout through12µmlongby1.2µmwidepiezore-
sistive strain gages patterned on the device, was chosen for its linearity (to ensure
that nonlinear mapping comes exclusively from the beam’s displacement) and sensi-
tivity (transduction coefficient of ∼102 V/m). Two external resistors were combined
with the two piezoresistive gages, as illustrated in Fig. 11, to form a Wheatstone
bridge, allowing for a differential measurement of the beam’s motion. Compared
to a single-ended measurement, the differential configuration has the advantage of
reducing the system sensitivity to noise in the DC voltage source polarizing the
Wheatstone bridge, but more importantly, it also cancels the feedthrough drive sig-
nal at the readout. This unwanted signal is symmetrically coupled to both readout
points (ends of the piezoresistive gages) through parasitic capacitors (much larger
than the ∼10 fF capacitor formed by the beam and drive electrode) present in the
device, while the displacement signal is of opposite sign in each branch (one gage
stretches when the other gets compressed), so only the latter gets amplified by the
instrumentation amplifier. The differential input stage is followed by a bandpass filter
with a bandwidth of 80kHz to further reduce the noise contribution, and a second
amplification stage brings the displacement signal, initially of a few tens of μV, to a
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level suitable for the envelope detection stage that follows. This last step produces
an appropriate output by extracting the amplitude of the beam displacement signal,
yielding a signal-to-noise ratio (SNR) of 35 dB, essentially limited by the Johnson
noise generated by the resistor bridge.

4.2 Training with Delayed Feedback

The use of a single physical node (Appeltant et al. 2011) greatly simplifies hardware
implementation of an RC by drastically reducing the number of structures to couple
physically, drive, and measure, with the main drawbacks of requiring a more refined
preprocessing scheme and a serialization of the network (and thus of the compu-
tation). Indeed, since a single physical node is available, the reservoir consists of
a virtual network created by time-division multiplexing of the input signal. While
a space-coupled network would possess a multitude of physical nodes (typically
∼ 102) coupled in space and use the ring-down time of the oscillators as a form of
memory (the behavior of the oscillators depends on their history), a delay-coupled
reservoir instead uses this decay time to couple adjacent virtual nodes in the time
domain: the input signal is masked by a function of period τ , which in the simplest
case is a function alternating randomly between two values after each time interval θ.
τ is an integermultiple of θwhich defines the number of virtual nodes (N = τ/θ). By
choosing θ < T , where T = Q/(π f0) = 330 μs is the decay time of the oscillator,
the beam response during a given interval θ depends on its response during previous
intervals. Since the oscillator decay time T is much shorter than the characteristic
time τ of the input, the reservoir activation does not persist between two timesteps
of the input signal, and the virtual network requires an additional feedback loop in
order to have access to some form of memory. A feedback signal is thus added, with
a delay τ and gain α, to the input for the next timestep. As a result, a given virtual
node is driven by a superposition of the (masked) input and of its response to the
input from the previous timestep:

Vd(t) = V0 [u(t)m(t) + αx(t − τ ) + 1] cos (2π fd t) , (11)

where x(t) is the displacement amplitude signal at time t ,m(t) is the temporal mask,
and u(t) is the input signal.

The nonlinear nature of the beam’s amplitude response (Dion et al. 2018) guided
the choice of amplitude modulation of the sinusoidal pump for the RC input. In
the case of a Duffing oscillator, the nonlinearity can be tuned to a certain extent by
adjusting the drive frequency. The resulting system is schematized in Fig. 11. The
input u(t) is first scaled so that it is restricted to the empirically determined range
[0.60, 0.75], then it is sampled and held for a time τ and multiplied by the temporal
binary mask of period τ and characteristic time θ. For the MEMS RC, optimization
of the mask with respect to the RC success rate yielded mask values of 0.45 and 0.70.
The result, u(t) × m(t), is used to modulate the amplitude of the sinusoidal pump
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(Sect. 4.4.2 discusses adjusting the pump in more detail). Sampling the envelope
(ENV) of the displacement signal at a rate θ−1 with an analog to digital converter
(ADC) yields a vector x(t), containing the N virtual node states at timestep t . These
values are then combined linearly to produce a scalar output:

y(t) = wT x(t). (12)

The goal of the training phase is to compute the appropriate vector w of weights
by adjusting them so that the response of the RC to a series of training examples
approximates as well as possible a known target y′(t). If the task for which the RC
is trained is to process a signal which changes at every time period τ , for instance,
then a series of M training periods can be presented to the system, each with an input
value uk = u(kτ ) for k = 1, . . . , M , resulting in M outputs yk = y(kτ ) which can
be compared to the desired outputs y′

k = y′(kτ ) with the mean squared error

1

M

M∑

k=1

(yk − y′
k)

2. (13)

A similar mean squared error can be defined for the classification of input sequences
of different lengths (with y(t) sampled at the end of each input sequence).

The training process is done offline and consists in computing the vector w min-
imizing the mean squared error between y(t) and y′(t). The result is

w = y′XT
(
XXT + γI

)−1
, (14)

wherey′ is the vector of desired outputs andX is amatrixwith each rowcorresponding
to the state x of the virtual nodes after one of the inputs uk from the training set has
been processed. γ is a regularization parameter that increases numerical stability and
prevents overfitting. A value of γ = 10−4 V2 proved adequate for both benchmarks
investigated below.

4.3 Performance Metrics

Following the training phase, it is customary to test the performance of the RC with
inputs that were not part of the training set, so that the generalization capability
of the RC can be assessed. In order to highlight its universal character, the MEMS
RC discussed above was tested on two different benchmarks with the same set of
hyperparameters: a network of N = 400 virtual nodes sampled every θ = 0.1 ms
with a feedback gain α = 1.1 and a beam driven at fd = 80.3kHz, V0 = 72.5 V,
with the piezoresistive gages biased at 2.5V.
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4.3.1 Parity Benchmark

The parity benchmark is a conceptually simple task that can be nonlinear and requires
memory. As such, it is well suited for a first evaluation of the system’s performance.
It consists of computing the parity of n ≥ 1 successive input bits after an initial delay
δ ≥ 0:

Pn,δ(t) =
n−1∏

i=0

u (t − (i + δ)τ ) . (15)

P1,0 is linear and does not require memory, but for δ > 0 or n > 1, the target depends
on the history of the input signal, so the system must be able to store a transformed
version of the input for a finite time. In this chapter, wewill only report results with no
delay, i.e., for Pn = Pn,0. For this task, the input u(t) is a binary sequence randomly
alternating between -1 and +1 at each time t = kτ . It is thus first shifted and scaled
to [0.60, 0.75] before being fed to the RC, as discussed in Sect. 4.2.

Figure12a shows the RC output for this task overlaid on the target after a training
phase of 2000 samples. The performance is quantified by comparing the signs of
the prediction and of the target over the whole 2000 samples of the testing set. The
accuracy of the classification is the same for P2 to P4 since the raw RC output is
thresholded, but the trace is more noisy for P4. By increasing n or δ, the complexity
of the task is increased and this translates to a decrease in the prediction success
rate. This performance drop can be counterbalanced up to a degree by increasing the
number of nodes or the number of training samples, as evidenced by Fig. 14, or by a
finer tuning of the nonlinearity (see Fig. 15). For the network of N = 400 nodes used
to produce Fig. 12a, the mask period is τ = Nθ = 40 ms, such that the bitstream is
processed at a rate of 25 bits/s. On the other hand, a network of 10 virtual nodes is
sufficient to process P2 with less than 1% error, which leads to a classification rate of
103 bits/s. This means that for a given physical node with immutable characteristics,
processing speed can be optimized for a specific task by adjusting the number of
virtual nodes.

4.3.2 Spoken Digit Classification

With the same set of hyperparameters, theMEMSRCwas also trained to classify the
digits zero to nine spokenby sixteen different speakers,male and female, using theTI-
46 dataset (Lieberman 1993). Since sounds have an inherent temporal dependence,
this task seems well adapted to the RC approach, as evidenced by its predominance
as a RC benchmark (Appeltant et al. 2011; Brunner et al. 2013; Coulombe et al.
2017; Dion et al. 2018; Duport et al. 2012; Larger et al. 2012, 2017; Martinenghi
et al. 2012; Paquot et al. 2012; Soriano et al. 2015; Torrejon et al. 2017; Verstraeten
2005). Whether it is obtained through RNNs or by using other means, state-of-the-
art performance for this task is usually accompanied by spectral preprocessing to
model the human ear, such as the Mel-Frequency Cepstral Coefficients (MFCC) or
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Fig. 12 a Performance for the parity benchmark. After a training phase (green), the RC response
(blue) to the input (black) is compared to the target (red). b Confusion matrix for the spoken digit
classification task. Colors indicate the probability that an input digit (columns) is assigned to a given
class (rows) by the RC

the Lyon Passive Ear model (Lyon 1982). For this study, the preprocessing was kept
minimal in anticipation of eventually interfacing the MEMS RC directly with sound
pressure, as opposed to feeding samples from recorded waveforms. Each randomly
selected utterance is first lowpass filtered 30Hz and resampled at 60 samples/s, then
it is normalized and scaled so that the complete sequence of waveforms is restricted
to the range [0.60,0.75]. In order to save processing time, silences before and after
the utterance are cropped, which results in an average of η̄ = 29 samples per word.
After being masked as described in Sect. 4.2, those samples are then fed sequentially
to the reservoir without any pause between them. The output of a given virtual node
for a given utterance is then the mean of its responses over the whole utterance (i.e.,
xi = (1/η)

∑η−1
j=0 x (iθ + jτ ) for node i). Ten output layers are trained for the same

reservoir activation: one boolean classifier is used for each individual digit. Since
there are ten different possible classes for this task, the length M of the training
sequence was increased to 6000 utterances so that the RC is trained on a sufficient
number of examples for each digit.

Figure12b shows that the confusion matrix for this task is almost diagonal,
although some phonetically similar digits such as “1” and “9” or “4” and “5” are
more often misclassified by the RC. The global success rate is (70 ± 2) %, and
slightly better performance (Dion et al. 2018) could be obtained by optimizing the
hyperparameters with respect to this particular task. Despite the fact that the training
procedure lasts a few hours, the trained 400 node RC processes words at a rate of 1
per second, fast enough so that one could envision using such a system for real-time
speech processing.
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4.4 Hyperparameter Optimization

Finding optimal parameters for successful reservoir computing can be a tedious task,
as RC performance typically depends on the appropriate combination of multiple
hyperparameter values. Moreover, these parameters cannot be tuned independently:
modifying one of them can shift the optimal value of other parameters. Choosing
a random set of parameters will most often result in no computational success at
all, and the accuracy landscape may display multiple local minima, making gradient
descent optimization impractical. A gridsearch may seem like a foolproof optimiza-
tion method, but without any indication of the location of the success region, the
search space is vast and of high dimensionality. Besides, the region of non-zero
success can be limited to a rather narrow region, as will become apparent later in
this section, so that if the gridsearch is too coarse, the optimal parameter set can be
missed altogether. Expert knowledge is thus necessary to set bounds for the different
parameters of the gridsearch in a principled way or to perform a manual search in
order to find a starting point with non-trivial success for optimization. To circum-
vent this obstacle, different methods are investigated in the RC literature (Bala et al.
2018), such as using genetic algorithms (Dale et al. 2016; Ferreira and Ludermir
2009, 2011), particle swarm optimization (Zhou 2010; Sergio and Ludermir 2012;
Jubayer Alam Rabin et al. 2013; Salah et al. 2017), differential evolution (Zhang
et al. 2013; Rigamonti et al. 2018; Wang et al. 2018), or hybrid variants thereof
which combine different metaheuristics.

Temporal traces of reservoir activation such as those presented in Fig. 13 can
also guide the initial optimization. By detuning a single parameter such as the drive
frequency fd , the feedback gainα, or the virtual node duration θ, the traces for healthy
and unhealthy reservoirs can be compared and a few empirical criteria for successful
RC can be deducted. Such criteria include the dynamic range and saturation of the
response and its correlation with the input signal.

The optimization of hyperparameters shown below was performed using the par-
ity benchmark, as the total training and testing time is much lower than the spoken
word recognition benchmark: a training example for parity is composed of a sin-
gle sample, while a spoken digit utterance contains tens of samples to feed to the
RC. Nevertheless, the resulting parameter set can be used as a starting point for
optimization with respect to a different task.

4.4.1 Number of Training and Testing Samples, Reservoir Size

The number of examples used for testing is one parameter that can be chosen in a
principled way. Its only effect is on the uncertainty of the performance measurement.
Considering that for all the benchmarks investigated here the testing phase is a series
of Bernoulli trials (i.e., is the sample correctly classified?), the precision of the
obtained success rates can be quantified using a binomial proportion confidence
interval, such as the Agresti–Coull interval (Agresti and Coull 1998). In this specific
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Fig. 13 Normalized drive signal envelope (red) and beam displacement amplitude (black) for a
well-performing RC (top panel) and for various detuned configurations (lower panels). Note that
the beam response is oversampled compared to normal operation where it is only sampled when
the mask value is updated

case, the measurement error decreases as the number of trials and success rate are
increased. A longer testing phase thus increases the measurement accuracy, but it
also increases the acquisition time, making the results more susceptible to the effects
of parameter drifts in the MEMS. This is where cross-validation becomes relevant:
the training data can be reused for testing (and testing data for training), and thus
not increase acquisition time but still get more measurement accuracy. A testing
set of 2000 samples was deemed sufficient for the results presented here, as it is a
good compromise between acquisition speed (∼3min for one complete training and
testing experiment) and accuracy (<2%).

Figure14 shows the P3 to P6 success rate for different pairs of (N , M) values. For
this task, the minimum length of the training set (M) insuring optimal performance
increaseswith the number of virtual nodes (N ) in the explored region, and the number
of nodes needs to be increased as the complexity of the task is increased from P3 to P6
in order to keep a constant success rate. A narrow region, centered around M = N ,
seems to prohibit adequate results. This could be due to overfitting, since this region
does not respect the rule of thumb stating that N should not exceed M/10 to M/2
(Jaeger 2002). Training another output layer on the same data with γ = 10−2 V2 (to
reduce overfitting by increasing regularization) increases performance for M = N
but considerably degrades performance otherwise.Goodperformance is also possible
in a region where N > M , although unless the training set is of limited size, it is
advisable to choose N < M as the speed and energy cost of increasing the number
of nodes is generally higher than using a longer training phase.
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Fig. 14 Interpolated success rate in the number of nodes (N )—number of training samples (M)
plane for P3 to P6 (left to right)

Fig. 15 Success rate in the drive frequency—drive amplitude plane for the P3 to P6 tasks. Note
that this figure was produced earlier than the other figures when the oscillator had a slightly higher
natural frequency. This slow drift of f0 merely translates the features in this figure horizontally

4.4.2 Tuning the Nonlinearity

Figure15 shows that good performance for P3 to P6 is limited to a rather narrow,
tilted band in the drive frequency—drive amplitude plane. The more nonlinear task
P6 requires higher drive amplitudes for optimal success, corresponding to higher
beam oscillation amplitudes and thus a more pronounced impact of the cubic term
in the Duffing equation (Eq.1). Figure13 shows the effect of operating the system
with the wrong combination of drive amplitude and frequency. At 500Hz below the
proper operating frequency, the dynamic range of the readout signal is reduced and
its shape more closely resembles the input due to the more linear behavior of the
beam. Such detuning can occur for example during the MEMS life if a large enough
foreign particle gets attached to (or detached from) the beam, shifting its natural
frequency.
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Fig. 16 The success rate for the parity function strongly depends on both the feedback gain α (a)
and the mask update rate θ (b)

4.4.3 Feedback Strength

By plotting the success rate for the parity benchmark against the feedback strength
α as in Fig. 16a, it can be seen that there is an intermediate value of α providing
optimal results for all the investigated tasks. Below this value of α 	 1.1, the system
has less memory and success eventually vanishes at α = 0. For values of α which
are too large, the RC may not exhibit the fading memory property (Jaeger 2001) (or
it may fade too slowly), and the system also tends to saturate (see bottom panel of
Fig. 13), negatively impacting performances.

4.4.4 Coupling Strength

Figure13 shows the effect of increasing or decreasing θ on the dynamics of the
system.For θ = 0.05ms 
 T , the dynamic range is limited: the beamcannot respond
quickly enough to the rapidly alternating low and high mask bits, and only behaves
appropriately when there is a succession of identical mask values. This translates
into a lower correlation coefficient of 0.05 between the input and output amplitudes,
compared to a correlation coefficient of 0.44 for the optimized RC. For the case
θ = 0.5 ms � T , the response saturates as soon as there are two or more successive
identical mask values, such that the readout (points sampled at the end of each period
θ) essentially only visits two points of the transfer function (low level and high level
saturation). The correlation coefficient is 0.60 and feedback has little effect, as the
signal is less dynamical and more closely tied to the input due to the weak coupling
between adjacent virtual nodes. The weak coupling regime (θ � T ), where a given
virtual node state is only dependent on the state of its neighbor, is analogous to a
linear chain of space-coupled oscillators.

Figure16b shows the success rate for P3 to P6 as a function of θ, which essentially
controls the connectivity matrix of the reservoir. While using a value of θ = 0.2 ms
gives slightly better results, a virtual node duration of θ = 0.1 ms 	 T/3 was used
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for the results presented here as the computation is two times faster (∼2min). For
higher values of θ, the longer acquisition time increases the effect of medium-term
drifts in the system on the results: optimal weights may evolve over time but our
offline training method doesn’t allow adapting them through the acquisition.

5 Conclusion

MEMS devices form the basis of many of today’s sensor technologies and are
expected to play an important role in the development of new technologies related
to artificial intelligence and machine learning, in the context of producing “big data”
from autonomous systems (e.g., self-driving cars) or distributed sensor systems (e.g.,
the Internet of Things). We have presented in this chapter key concepts for using
MEMS to construct neuromorphic computing devices, as well as key experimental
results showing that reservoir computing can be implemented efficiently and robustly
in MEMS. As MEMS can be small, energy-efficient, and function at high speeds,
they could constitute a very attractive hardware substrate for unconventional AI com-
puting. When used as “pure” computing devices (with an analog electrical input and
an analog electrical output), they could implement AI functionalities with perfor-
mance levels exceeding those of conventional electronics (Coulombe et al. 2017).
Perhaps more interestingly, our MEMS devices can implement both neuromorphic
computing and sensing functionalities in the same device. This is a fairly new idea,
which could bring significant gains in system size and energy consumption through
integration: instead of buildingmechatronic systemswith a discrete sensor coupled to
separate signal processing electronics, one could envision building a trainable sensor
which exploits the nonlinearity of its sensing mechanism to implement computing
functions on the measured data. We are developing this idea in MEMS, but similar
ideas might also be relevant for optical sensors and RC systems, for instance.

Deep learning, as the most productive line of research for artificial intelligence
today, relies on training complex systems (artificial neural networks) using large
amounts of data. The separation between data generation and data processing has
traditionally been very clear in such deep neural networks. One might however con-
sider the example of biological brains, which actually integrate the sensing and com-
puting functionalities in some sensory neurons (Pitkow 2015), perhaps as a strategy
to increase efficiency, robustness, or adaptiveness. Nature might have discovered
long ago that such integration was an effective way to build faster, smaller, and
more energy-efficient intelligent biological systems, which are able to respond effi-
ciently to sensory inputs collected from their environment (i.e., systems which are
sophisticated integrated sensing and computing devices).
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