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Abstract In recent years, there has been an increasing interest in using the concept
of physical reservoir computing in robotics. The idea is to employ the robot’s body
and its dynamics as a computational resource. On one hand, this has been driven
by the introduction of mathematical frameworks showing how complex mechanical
structures can be used to build reservoirs. On the other hand, with the recent advances
in smart materials, novel additive manufacturing techniques, and the corresponding
rise of soft robotics, a new and much richer set of tools for designing and build-
ing robots is now available. Despite the increased interest, however, there is still
a wide range of unanswered research questions and a rich area of under-explored
applications. We will discuss the current state of the art, the implications of using
robot bodies as reservoirs, and the great potential and future directions of physical
reservoir computing in robotics.

1 Introduction

Reservoir computing as a term has been coined by Schrauwen et al. (2007). Their
fundamental insightwas that the underlying principles of EchoStateNetworks (ESN)
(Jaeger andHaas 2004) and Liquid StateMachines (LSM) (Maass et al. 2002), which
have been developed independently from each other, are the same. Both use complex,
nonlinear dynamical systems (referred to as reservoirs) as a computational resource.
While LSMs, inspired by the structure of the brain, are using differential equations
describing neurons, ESNs are employing simple, but abstract nodes in form of non-
linear differential equations to achieve the same results. Both use simple, dynamic
building blocks to construct a high-dimensional, stable, but nonlinear dynamical
system, i.e. the reservoir.
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Fig. 1 Comparison of conventional reservoir computing (example is with ESNs nodes) with phys-
ical reservoir computing using mass–spring–damper systems as suggested by Hauser et al. (2011).
Figure adapted from Hauser et al. (2014)

The role of a reservoir can be described as a kernel in the machine learning sense
for support vector machines, see, e.g. Vapnik (1998). Low-dimensional input signals
(typically in form of time series) are fed into the reservoir and projected nonlinearly
into its high-dimensional state space. It is well established that this boosts the com-
putational power of anything that comes after it. For a discussion in more detail in
the context of reservoir computing, we refer to Hauser et al. (2011, 2012, 2014). In
addition, since a reservoir is built up by smaller dynamical systems (i.e. differential
equations), it also integrates information over time. Consequently, loosely speaking,
besides the kernel property, the reservoir exhibits also some form of (fading) mem-
ory. This leads us to an interesting consequence. Since the reservoir is already able
to integrate information and carry out nonlinear mappings, it suffices to add a simple
linear, static readout to obtain a powerful computational device. We only have to find
a set of static, linear weights to combine the signals from the high-dimensional state
space of the reservoir to achieve the desired output (compare Fig. 1).

The resulting setup, i.e. reservoir plus linear readout, is a surprisingly powerful
computational device. It can be used to approximate in principle any computation that
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can be represented by a Volterra series. In practice, this means we can emulate any
smooth (i.e. sufficiently derivable) dynamical system with one equilibrium point.1

The remarkable part of this setup however is how we achieve learning. We don’t
change any parameters of the reservoir (typically it is randomly initialized within
some parameter bounds), but we only have to adapt/find the optimal readout weights.
Since they are a set of fixed (static) values used to linearly combine the states of
the reservoir, we can employ simple linear regression. Note that this means that
we can learn to emulate nonlinear dynamical systems with such a setup by using
simple, linear regression. One could say the integration and nonlinear combination of
information (which are both needed in a nonlinear, dynamical system) are outsourced
to the reservoir or the reservoir is exploited as a computational resource.

From a machine learning perspective, reservoir computing is an alternative
approach to Recurrent Neural Networks (RNN), which are typically employed to
approximate dynamical systems. However, it is well known that the learning process
for RNNs, i.e. to find the optimal connectivity weights, is tedious. There exist various
approaches, e.g. Backpropagation Through Time (BPTT) and its variations, but they
are all prone to get stuck in a local minimum or are known to be slow in their con-
vergence. On the other hand, in reservoir computing, we only have to find a linear,
static set of output weights by employing linear regression, which by definition finds
always the globally optimal solution2 and is very fast.

The step from standard reservoir computing as described above to physical reser-
voir computing is straightforward when we consider which properties a reservoir has
to have to be computationally useful. As pointed out before, the reservoir has (i) the
role of mapping nonlinearly low-dimensional inputs into a higher state space and (ii)
to integrate information over time. Interestingly, these properties are rather abstract
and, as a consequence, a wide range of dynamical systems can be used as a reservoir.
They only have to exhibit nonlinear dynamics with a fading memory property (i.e.
being exponentially stable with one equilibrium point) and a high-dimensional state
space.

For example, in the case of LSMs, a network of spiking neuron models is used
to construct such a system, while in ESNs, randomly connected structures of simple
nonlinear differential equations are employed. This means any nonlinear, exponen-
tially stable (with one equilibrium point), high-dimensional dynamical system can
be potentially used as reservoirs, which naturally includes also real physical systems.

The earliest work demonstrating that this is possible was done by Fernando and
Sojakka (2003). They used the water surface in a bucket as a reservoir to carry
out vowel classification. The input was sound waves exciting the water and the
readout was carried out through the pixelated version of video recordings of thewater
surface. Since then, a wide range of nonlinear physical systems have been proposed
and shown to be useful as reservoirs. Examples include nonlinear effects in lasers

1 The relation between Volterra series and dynamical systems is discussed in Boyd (1985).
2 Linear regression minimizes the quadratic error against the target. Since the error landscape is
quadratic, there is only one (global) minimum. Note that this doesn’t necessarily mean that reservoir
computing setups are always performing better than RNN networks.
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(Smerieri et al. 2012), body dynamics of soft robots (Nakajima et al. 2018a), and
even quantum-mechanical effects (Fujii and Nakajima 2017). Here, in this chapter,
we will concentrate on applications in robots.

In the next section, we will re-introduce the underlying theoretical models that
have contributed to a better understanding of how the dynamics of robot bodies can
be used as reservoirs. In Sect. 3, we discuss the state of the art and give an overview of
existingwork in this area,which is followed by a critical assessment of the advantages
(Sect. 4) and limitations (Sect. 5) of the approach. In Sect. 6, we will highlight the
close connection of physical reservoir computing and the recently emerged research
field of soft robotics. Finally, in Sect. 7, we discuss the future of physical reservoir
computing in robotics and the great potential it holds.

2 Theoretical Models

Physical reservoir computing in robotics has gained a lot of traction recently due to
the introduction of mathematical models proving that certain mechanical structures
can serve as reservoirs. Particularly, two models proposed by Hauser et al. (2011,
2012) were able to demonstrate that complex, mechanical architectures can serve
as powerful reservoirs. They are composed of nonlinear mass–spring–damper sys-
tems which are connected to form a mechanical network (see Fig. 1 on the right).
The motivation to use this approach was that these structures serve as good mod-
els to describe the body of biological systems and soft-bodied robots. Both exhibit
rather complex and nonlinear dynamics that can be exploited in a physical reservoir
computing setup.3

The proposed mathematical frameworks for physical reservoir computing based
onmass–spring–damper systems are an extension of the original work byMaass et al.
(2002, 2007) which show that LSMs can indeed carry out computations. While they
prove the concept usingmodels of spiking neurons and neural connection to construct
a computationally useful structure (i.e. a reservoir), Hauser et al. demonstrated the
same is possible with mechanical structures.

As with the original work, there has been a distinction between the two main
reservoir computing setups. The so-called feedforward setup4 maps an input directly
(through the reservoir and readout) to the desired output, while the feedback setup
also includes feedback loop(s) from the output back into the reservoir. Note that
Fig. 1 shows the setup with explicit feedback loops. We will discuss both approaches
now in more detail.

3 Note that this also means that one could use biological bodies directly as reservoirs as well. One
just has to find a way to read out the (at least partial) dynamic state of the system.
4 Note that the term feedforward highlights here the fact that there are no explicit feedback loops
from the output back into the reservoir. However, the reservoir naturally will still have stable
feedback loops inside the reservoir to achieve the fading memory that is a prerequisite for reservoir
computing.
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2.1 Feedforward Setup

As mentioned before, the mathematical proof for the feedforward setup has been
given by Hauser et al. (2011) and is based on the work by Maass et al. (2002). Both
are based on a seminal paper by Boyd and Chua (1985), which explored the idea
to emulate arbitrary Volterra series. Note that a Volterra series is an elegant way to
approximate nonlinear, differential equations that have one equilibrium point.5

Boyd and Chua showed that any Volterra series can be approximated by a two-
stage process, where the first stage has to be dynamic (include memory), but can be
linear, and a second stage that has to be nonlinear, but can be static. The remarkable
part is that these two stages can be implemented in any way as long as they fulfil
certain properties. Specifically, the first stage has to exhibit the property of fading
memory and there has to exist a pool of subsystems that is rich enough so that
we can guarantee that we can always find two subsystems to separate any possible
input signals (through filtering).6 The second stage needs to be a universal function
approximator, i.e. a system that is able to approximate any smooth enough nonlinear
function with arbitrary precision. As one can see, these properties are very general
and there are a lot of potential candidates that can embody them. Boyd and Chua
gave a number of examples of possible implementations in their originalwork,mostly
from the field of electrical circuits.

To appreciate the importance of their result, it’s crucial to understand the concept
of a Volterra series. Loosely speaking,7 this could be understood as a Taylor series
expansion that includes time. Instead of only approximating smooth, nonlinear func-
tions, a Volterra series can approximate nonlinear dynamical systems. In the context
of reservoir computing, especially physical reservoir computing, this gives us an
elegant way to describe analogue computation. Instead of having to rely on a digital
interpretation and the Turing machine concept, dynamical systems are a powerful
way to describe analogue computational functions in the context of robotics. They
can be used to express, for example, complex sensor functions (e.g. filtering) as well
nonlinear controllers.

The only8 limitation of usingVolterra series as descriptors is they can only approx-
imate nonlinear dynamical systems that have only one exponentially stable equilib-
rium point (or approximate only in the neighbourhood of an equilibrium point).
However, we have to emphasize that this is still a very powerful and rich set of
possible computations that can be represented. It includes nonlinear mappings that
use memory. This means the output will not simply depend on the current input
(that would be a simple function and could be approximated with a standard Arti-

5 Or they approximate only the close neighbourhood of one equilibrium point, i.e. local approxi-
mation. Note that this is different from linear approximation approaches, e.g. expressed through a
Jacobian matrix, since a Volterra series is still capturing nonlinearities.
6 For example, we can achieve separation through different integration time constants.
7 For more rigorous and mathematically sound descriptions, please refer to Boyd and Chua (1985).
8 Note that there are more mathematical details, but for the sake of simplicity, we discuss only the
main points. For a more detailed discussion, we refer to Boyd (1985) and Boyd and Chua (1985).
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ficial Neural Network), but also on the history of input values, which would need a
Recurrent Neural Network (RNN) to approximate it.

The question is now how can we use morphological structures, specifically mass–
spring–damper systems, to approximate the Volterra series. The answer can be
directly derived from Boyd and Chua’s work. They laid out clearly the required
properties for potential building blocks to construct the first stage of the process.
They have to be (exponentially) stable and be able to separate signals as discussed
before. The proof for linear mass–spring–damper systems to have these properties
is straightforward (for more details, see Hauser et al. 2011).

For the second stage, the requirement is that it should be made up of a universal
function approximator. We can use ANNs, which have exactly this property (see
Hornik et al. 1989 for proof). Note that this two-stage setup does not yet resemble a
standard reservoir setup, since the readout is still nonlinear and the first stage consists
of a set of parallel, independent systems. Nevertheless, one can already say that at
least the “memory part” (integration of information) is outsourced to stage one,
i.e. the morphological part. However, a set of parallel mass–spring–damper system
doesn’t look very much like a common robot design,9 nor does it describe well a
biological body.

To get to a reservoir computing setup, we have to push Boyd and Chua’s approach
to the extreme by considering to outsource nonlinearity also to stage one, leaving a
simplified readout that can be static and linear. This leads to networks like the one
shown on the right side of Fig. 1. Note that this push “breaks” Boyd and Chua’s proof
and, so far, there is no mathematical proof for the full network structure (also not in
the original work by Maass et al.). However, the step from the two-stage process to
the full structure is reasonable and simulation results (as well real-world examples
in the case of mechanical structures) demonstrate that it works.

As previously pointed out, the only limitation is that the feedforward setup is
restricted to systems that can be represented by a Volterra series. Since this is already
a very rich class of possible mappings, the question arises, which systems that might
be interesting in robotics don’t fall into this category? This will be answered in the
next section on feedback setups.

2.2 Feedback Setup

Boyd already hinted at this limitation in his Ph.D. thesis (Boyd 1985). Hemade a link
between the Volterra series and nonlinear dynamical systems. He laid out that the
Volterra series can only approximate systems that have only one exponentially stable
equilibrium point. Keeping the discussion in the realm of dynamical systems, it is
then quite straightforwardwhich dynamical systems fall outside of this definition, but
would be still interesting in the context of robotics. First, we can think about multiple

9 Note that, interestingly, Shim and Husbands (2007) suggested a setup which looks very similar
and is used for a feathered flyer and which predates Hauser et al.’s work.
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equilibrium points. Depending on the situation/task, different endpoints might be of
interest. Another type of dynamical systems that go beyond exponentially stable
ones are (nonlinear) limit cycles. These are particularly interesting in the context of
robotics as limit cycles are a way to encode repetitive movements, e.g. in locomotion.
In addition, other nonlinear effects like bifurcation go beyond a Volterra description
as well. This could be potentially helpful if we want to control a qualitative change
in the behaviour. For example, the robot could switch smoothly from a locomotion
movement of its front leg (i.e. limit cycle) to a reaching movement (i.e. equilibrium
point)—all described by one set of differential equations.

Interestingly, it is quite simple to overcome the limitations of the feedforward
setup in reservoir computing. The solution is to counteract the energy loss in the
reservoir. We simply have to add (linear) feedback loops10 from the output of the
setup. Again, in standard reservoir computing, these signals are abstract streams
of information that, through the feedback, will change the state of the reservoir.
However, in physical reservoir computing, the feedback is a real physical value and
provides energy to the mechanical body, e.g. in form of forces.

Although it seems adding a feedback loop is a rather small change compared to
the bigger picture, the previous mathematical models based on Boyd and Chua’s
work are not applicable anymore. Fortunately, there exists a framework that can deal
with feedbacks, i.e. non-fading memory tasks. Maass et al. (2007) employed the
theory of feedback linearization from control theory to prove that neural models can
be modified via static, but nonlinear feedback and readouts to approximate almost
any smooth dynamical system. The limitations are only the smoothness and the
degree of freedoms, i.e. a two-dimensional system as a building block can only
approximate other two-dimensional systems.11 One simplified way is to look at
the standard model to describe an n-dimensional nonlinear differential system, i.e.
ẋ = f (x) + g(x)u with x ∈ R

n . This means we have n integrators which depend on
the previous states through the nonlinear mapping f (x) and on the input through
g(x). Feedback linearization is able to overwrite both functions, i.e. f (x) and g(x)
through applying, loosely speaking, the inverse effect.12 In addition, we can add to
the feedback a nonlinearity that “overwrites” the linearized system with new, desired
dynamics in order to emulate the desired target computation, i.e. dynamic input–
output mapping. Note that this is similar to finding a controller for a linear system
by applying a pole-placement approach. We want the overall system to behave in a
certainway (which is reflectedbydesired eigenvalues of the systemmatrix) andwe try
to find the right feedback controller to achieve that, for example, with Ackermann’s
method.

10 There can be one or multiple feedback loops.
11 Note that one can argue that combing multiple such systems would then again allow us to
approximate systems of higher order as well, see Maass et al. (2007).
12 Note that not every nonlinear system is feedback linearizable. However, there is a formal process
to check for that by applying Lie derivatives. Note that this is equivalent to constructing the con-
trollability matrixC = [B, BA, BA2, . . . , BAn] in linear systems. We refer to the reader to Slotine
and Lohmiller (2001) for an excellent introduction. For a more in-depth discussion, we refer to
Isidori (2001).
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Without going into details, the mathematical proof employed in Hauser et al.
(2012) is demonstrating that certain types of nonlinear mass–spring–damper systems
are feedback linearizable, i.e. can be used as a basic template that can be overwritten
as new desired dynamics.

However, the proof presented by Hauser et al. (as well in the original work by
Maass et al.) is only for one single system, i.e. one mass–spring–damper system, and
it needs static, but still nonlinear feedbacks and readouts. Themathematical proof for
more complex systems is nontrivial due to the complexity. Nevertheless, as before
with the feedforward setup, the step to full network structureswith linear readouts and
linear feedbacks (as in Fig. 1) is reasonable. This is supported bynumerous simulation
results as well as real-world examples that show the usability of the approach.

While the models for the feedforward setup give us some (however) general
guidelines, the models for the feedback setup, unfortunately, are not very insightful
with respect to how to build better reservoirs. Maybe the only point is that such
systems can be rather small in size to be useful. This has been shown and discussed
with simulation examples in Hauser et al. (2012).

In the context of physical reservoir computing in robotics, however, we are very
interested in understanding how to design and build better reservoirs. Therefore, the
following section discusses how abstract concepts in reservoir computing aremapped
onto real physical interpretations in physical reservoir computing setups.

2.3 Connecting Theoretical Models to the Real World

While conventional reservoir computing does not care about the physical significance
of inputs or outputs, naturally, physical reservoir computing is muchmore concerned
with physical meanings. This is particularly true in the context of robotics as we hope
to gain insight into how to design better robot bodies to be exploited as computational
resources.

For example, the input is not just an abstract time series, but is a real physical
quantity that changes over time. Themost natural interpretation in the light of the pro-
posed models, i.e. using mass–spring–damper systems, inputs are forces that work
on the body of the robot. This could be through the interaction of the robot with the
environment, e.g. by grasping an object or by locomoting on the ground. But this
could be also in the context of a sensor setup, where the sensor has to physically inter-
act with the environment to gain information for measurements. Similarly, feedback
signals (as in the feedback setup) can be forces obtained through the environment or
through internal actuators that can change the state of the system.

Both, input and feedback, don’t have to be restricted to forces but can be any
physical entity that changes the state of the reservoir sufficiently to be picked up
by the readouts. This also means that we don’t have to use necessarily mechanical
structures for the reservoir, but we could think also of chemical systems, electro-
magnetic interactions, etc. Of course, a combination of them is valid as well. Smart
material and additivemanufacturing,which both have gained a lot of traction recently,



Physical Reservoir Computing in Robotics 177

will play a crucial role here. We refer the reader to Sects. 6 and 7 for a more in-depth
discussion.

As previously pointed out in the introduction, one of the key properties of a
reservoir is its exponential stability or in other terms fadingmemory.While in abstract
reservoir computing setups one has tomake sure to have stable systems (e.g. it’s quite
common to re-scale the connectivity matrix in ESNs), stability is a natural property
in mechanical structures used for robotics, i.e. stability comes for “free.”

Furthermore, there is a clear connectionbetweenmaterial properties and the fading
memory, i.e. how fast the system forgets its initial state. If we consider linear mass–
spring–damper systems, the real part of the eigenvalue of the systemmatrix describes
how fast, e.g. an impulse input is “faded out.” More precisely, the exponential hull
curve for the response of the system is defined by e−d/m with d being the linear
damping factor andm the mass. This can be considered directly in the design process
by choosing the right material or even by including mechanisms, e.g. through smart
materials, to change the damping to adapt the reservoir and its corresponding fading
memory for different tasks.

Another interesting aspect of physical reservoirs is that often there is not a clear
border that separates them from the environment. Let’s take the example of a fish-
inspired underwater robot that we want to control for locomotion. The input (force)
will come from some form of actuation in the system. This will change the dynamic
state of the fish body. In addition, however, this also introduces changes in the water
environment, which can reflect back onto the fish. This means the water is actually
part of the reservoir and so are nonlinearities in the physical embodiment of the
input (e.g. nonlinear features in the electrical motor) and the readout (e.g. nonlinear
properties of the sensors). This points to the idea of embodiment, which states that a
close interaction of body and environment is fundamental for the rise of intelligent
behaviour (see, e.g. Pfeifer and Bongard 2006).

Another point of difference is that abstract reservoir computing approaches
assume that the readout has access to the full state of the reservoir. However, practi-
cally, in physical reservoir computing setups in robotics most of the time this is not
possible. It turns out that knowing the full state of the reservoir is not necessary and
one can achieve working physical reservoir computing setups with a subset of the
states.

In addition, it is quite typical in robotics to have awider range of sensorsmeasuring
different quantities instead of measuring directly the state of the system. States are
an abstract concept anyway and it’s well established in linear control theory that
systems can be easily transformed into others with the right matrix transformation.
Practically, we can only measure real physical quantities, and the generic reservoir
computing does not allow us any additional signal transformation at the readout.
Practically, we have measurements that might provide redundant information. For
example, two different gyroscopes at different locations on the robot will very likely
produce partially redundant information. But also completely different sensors will
potentially share information about states. Ideally, we want to reduce the amount of
redundant information. Theworst-case scenario would be linearly dependent readout
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signals.13 However, some overlap is fine since linear regression by definitionwill pick
and choose (by assigning the right weights) the best signals to get as close as possible
to the target.14

Another important difference is that physical reservoir computing approaches
are naturally leading us to think in dynamical systems terms instead of abstract
mathematical frameworks. This provides us with some intuition on how to build
intelligent machines based on this concept. For example, Fuechslin et al. (2011)
suggested to look at computation in the physical reservoir computing context as
mechanical structures that implement attractor landscapes. This could help us to
design physical structures with a bias, for example, by having implemented a number
of potential attractor points and limit cycles (which would be different behaviours—
e.g. various locomotion gaits) and corresponding readouts/feedbacks can exploit
them. For a discussion of the potential of this approach, we refer to Hauser and
Corucci (2017).

3 Example Cases from Robotics

There are a number of examples from the literature that have demonstrated the
usefulness of applying physical reservoir computing in robotics. The implemented
computations include abstract mapping (as a proof-of-concept) to applications in
sensing and controlling.

We will first present results from simulations and then discuss real-world plat-
forms.

In the original work by Hauser et al. (2011), a number of example computations
have been presented that might be interesting in the context of robotics. The results
range from learning to emulate a simple Volterra series,15 a model of a nonlinear
pendulum, inverse dynamics of a two-link robot arm, and NARMA systems taken
from Atiya and Parlos (2000) that have been known to be hard to emulate with
recurrent neural networks due to their long-term dependencies, see for example
Hochreiter and Schmidhuber (1997).

An extension of the robot arm example has been introduced in Hauser and Gries-
bacher (2011), where the mechanical reservoir is directly connected to the two-link
robot arm. The setup was able to learn to control itself to move along a desired (figure
eight) end-point trajectory. Later, similar results were achieved using L-systems to
“grow” the structure around the arm (Bernhardsgrütter et al. 2014).

13 Note that this is directly connected to the degradation of the signal separation property discussed
in Sect. 2.1, see Hauser et al. (2014) for a discussion.
14 Note that linear regression is solving the optimization problem to find a set of optimal weights
w∗ that minimize the quadratic error between the target output yt (t) the produced output y(t).
15 The reason being that the theoretical model from Hauser et al. (2011) is based on Volterra series
and it’s a generic way to approximated nonlinear, exponentially stable sets of differential equations.
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Fig. 2 Example cases with real physical platforms. a Octopus arm setup used in Nakajima et al.
(2018a) and (Nakajima et al., 2013), bKitty robot from Pfeifer et al. (2013), c Pneumatically driven,
modular robot arm from Eder et al. (2017)

As pointed out before in Sect. 2, Hauser et al. (2012) also introduced a second
theoretical model dealing with physical reservoir approaches that consider linear
feedback loops from the output back into the reservoir. In the same work, a number
of example cases were presented. They ranged from learning to emulate robustly
various nonlinear limits cycles (e.g. like the van der Pol equations and others) to
switching between different gaits by changing the readout weights. Finally, they also
learned to produce three different limit cycles with the same set of readout weights.
The change from one to another was only driven by a change in input. Specifically,
the otherwise constant input force was switched to one of three different constant
values. This means, depending on how strong the physical reservoir was squeezed,
it reacted with a different limit cycle. This example is particularly interesting as it
points to the possibility to change behaviour (e.g. gaits) triggered by changes in the
environment (through the change in forces acting on the robot, e.g. by putting a heavy
weight on it). For a deeper discussion of this results, we refer to Hauser et al. (2014)
and Fig. 2.

Caluwaerts et al. (2013) were able to show that the complex dynamics of worm-
like structures built based on the tensegrity principles can be used to produce robustly
control signals for the locomotion of the robot. They used also learning to optimize
the locomotion behaviour. In addition, the work showed that the body can be used
as a sensor to classify the ground (flat vs bumpy) by using it as a physical reservoir.
Another simulation work showing the capability of classification with the help of
mechanical structures was introduced by Johnson et al. (2014). They used the same
mass–spring–damper systems as suggested by Hauser et al. (2011) to build a system
that can actively discriminate different shapes.

Still in simulation, but with a different approach to physical reservoir computation
in robotics has been suggested by various people by usingmore structured reservoirs.
Instead of random networks, bio-inspired morphologies were used. Naturally, they
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are more constrained with respect to their potential computational power, but they
work surprisingly well. For example, Sumioka et al. (2011) used a mechanical setup
that was loosely inspired by the muscle–tendon–bone arrangements in the biological
system as a reservoir. Despite the simplicity of the model, they were able to emulate
a Volterra series. Nakajima et al. (2013) built a network of nonlinear mass–spring–
damper systems simulating an octopus arm. The input was applied at the shoulder
and the readout was obtained bymeasuring the strain throughout the body, i.e. similar
to proprio-receptive sensing.

More recently, evenmore structured setups have been shown towork as a reservoir
as well. Yamanaka et al. (2018) demonstrated that a 2D grid structure, representing
a model of a soft cloth, can be used as a reservoir as well. In this particular work, the
authors investigated which stiffness and damping values lead to better performances
for various computational tasks.

While simulation results are interesting in themselves, robotics is a field of
research that ultimately wants to develop frameworks and technologies that can be
used under real-world conditions. The same is true for physical reservoir computing
in robotics. The first step16 has been made by a series of work by Nakajima et al.
They used a silicone-based octopus-inspired robot arm as a reservoir. The input was
in form of rotation of the arm introduced at the shoulder via an electric motor (com-
pare Figs. 2a and 3a). The readout was obtained via strain sensors along both sides of
the octopus arm. Nakajima et al. were able to demonstrate that this setup was able to
learn to emulate timers and various digital functions like delays and parity (demon-
strating the memory capacity of the system), see Nakajima et al. (2014). In the same
work, it has been even shown that the setup is able to learn to produce a control signal
for itself, i.e. the body of the octopus arm is used as a computational resource (i.e.
reservoir) to control robustly the movement of the same arm. Interestingly, when
they interacted with the arm (touching and grasping it during the movement), the
arm started to react to it by naturally looking movements, i.e. it looked as if it tried to
wriggle itself free and sometimes it stopped completely until it was released. While
this interpretation is clearly anthropomorphic, it nevertheless points to the fact that
the feedback loop through the environment plays a crucial role in the behaviour in
such a setup.

Nakajima et al. also emulated with the same setup various NARMA systems with
different complexities and other nonlinear, dynamical mappings (Nakajima et al.
2018a, b) with the goal to systematically explore the limitations of the computational
power, e.g. they quantified the amount of available fading memory by comparing it
to standard ESN.

Zhao et al. (2013) applied the idea of physical reservoir computing to locomotion.
The physical reservoir was constructed out of a bio-inspired assemble of hard and
soft parts (resembling loosely the spinal structure) and randomly distributed pres-
sure sensors (compare Figs. 2b and 3b). The system was able to robustly locomote

16 Note that there had been previous work on physical reservoir computing, e.g. the previously
mentioned “bucket in the water” setup by Fernando and Sojakka (2003), but none in the context of
robotics.
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Fig. 3 Schematics setups for real platform shown in Fig. 2 and discussed in the text. Also compare
to Fig. 1. Figures adapted from Hauser et al. (2014) and Eder et al. (2017)

and change direction. Another locomotion example on a real-world platform was
provided by Caluwaerts et al. (2014) using a mechanical tensegrity structure to learn
an oscillator to control it.

Physical reservoir computing has also been shown to work for other tasks as
well. For example, Eder et al. (2017) used a pneumatically driven robot arm and
its nonlinear dynamics as a reservoir to control the arm (compare Figs. 2c and 3c).
While the results were interesting, they also revealed clearly limitations for using
this approach on this particular platform.

Besides themapping of abstract computations and to learn to control a system, real
physical reservoir computing setups have also been used now for sensing, classifica-
tion, and even modelling. For example, Soter et al. (2018) used a physical reservoir
computing setup extended by an RNN to predict the movement (actually the pixels of
the video of the movement) of an octopus arm solely based on the proprio-receptive
information (bending). It learns “imaging” the visual movement of the arm through
observing its internal states.

Recent work by Judd et al. (2019) was able to use physical reservoir computing to
detect objects in the vicinity of the moving octopus arm without touching them. This
included classification, i.e. is the object there or not, as well regression, i.e. estimation
of where it is located. The results point to the fact that the environment indeed is part
of the reservoir and should play a crucial role when developing intelligent systems
(sensing and control) with physical reservoir computing setups in robotics.

In summary, there is a substantial amount of exciting results, however, there is
also still a wide range of interesting, yet to be explored ideas. To inspired future
researcher working in the field, we discuss in the next section what advantages a
physical reservoir computing approach in robotics might have.
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4 Advantages of Physical Reservoir Computing in Robotics

The application of physical reservoir computing in robotics has a number of remark-
able aspects and advantages.

For example, the readout for conventional reservoir computing is typically the
same for every state, since it’s an abstract mapping. However, in a physical setup, we
need real physical sensors to obtain the information about the state of the system. As
previously pointed out, it’s not trivial to get the information about the full state in a
real robot. However, it turns out that is also not needed. Since the readout weights are
found with the help of linear regression, we can provide a variety of sensory signals.
Linear regression automatically chooses the “best” ones, i.e. the ones that provide
the best information to reduce the error between output and target signal. This also
means that linear regression doesn’t “care” what kind of signal we provide or where
it comes from. This means we can combine sensory information from gyroscopes,
pressure sensors, stretch sensors, and even binary switches. We can even include
and combine sensors that measure in completely different physical domains, e.g. a
force sensor with sensors to measure chemical concentration or temperature. If they
provide useful information, they will get high enough readout weights assigned.17

Another advantage is the inherent robustness of the approach. Examples inHauser
et al. (2012) demonstrated that the learned limit cycles, although only provided with
data from a certain range of the state space, seem to exhibit global stability. We
believe this is due to the inherent global stability of the underlying mass–spring–
damper systems. Obviously, practically there are limitations with respect to global
stability, after all, mechanical structures will eventually break under too high forces.
Nevertheless, this points to the underlying property of inherent stability, which can be
exploited. Maybe frameworks like contraction theory (Lohmiller and Slotine 1998)
or concepts like passivity from control theory, especially more recent extensions like
Forni and Sepulchre (2019), might be able to provide us with a general proof of this
intuition.

Another interesting aspect of robustness is that smaller changes in the reservoir,
like tearing of parts of the robot because of rough use or interaction with the envi-
ronment, can be easily counteracted by slightly changing the weights of the readout
layer. As a result, imprecise design is not a problem. We don’t need a perfectly con-
trolled fabrication process as long as the final result is close enough for being useful.
This points to a very different way to build robots and it suggests a quite radical
break with conventional robotic design approaches (see discussion later in Sect. 7).

Another advantage of reservoir computing in general is that learning through
applying linear regression is very fast. This is particularly important for robotics.
Also, online learning algorithms are thinkable using the wide range of available
tools that implement recursive, online versions of linear regression.

Another particularly interesting advantage is that noise is beneficial for the reser-
voir computing setup that uses feedback. It’s commonpractice in reservoir computing
in general to add noise to learning data when using feedback loops. This helps to

17 Note that a limitation is that the different sensors should provide linearly independent information.
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learn instead of a simple trajectory (e.g. of a limit cycle) an attractor region around
this trajectory making it more robust. Interestingly, while in simulations, noise has
to be added artificially, it seems the noise present in real physical robots is enough
and appropriate.

Finally, looking at robot design from the viewpoint of reservoir computing leads to
novel approaches to build robots and might be a way around the implicit assumption
in the robotics community that we have to build robots such that we can easily model
them. In the context of physical reservoir computing underactuation, i.e. degrees of
freedom or states of the system that are not directly controlled by the input are a
prerequisite for a computationally powerful body. Hence, using more compliant and
soft structures for building robots might be beneficial. A more detailed discussion of
this point is carried out in Sect. 6.

Besides the listed advantages, clearly, the physical implementation of reservoirs
in robot bodies also implies a range of problems and limitations, which are discussed
in the next section.

5 Limitations of Physical Reservoir Computing in Robotics

In general, the implementation of a reservoir in a real, physical body also always
means the introduction of physical limitations. While abstract approaches, e.g. like
ESNs, in principle, don’t have to worry about limitations (assumingwe have the right
dynamical properties to make a useful reservoir), a real body also means real-world
constraints. For example, (stable) mechanical structures always have the effect of
a low-pass filter. Consider a soft structure, i.e. a body with low stiffness. A high-
frequency input will not get transmitted effectively enough through the body. This
means whatever information is provided by this particular input is lost and the reser-
voir is not useful for this kind of computation. On the other hand, very stiff structures
have no problem to transmit high-frequency vibration throughout their bodies. But
this alsomeans it has a very low fadingmemory as every effect is almost immediately
damped out.

Another limitation, which is inherent to any reservoir computing setup in general,
is that we don’t directly control what is happening in the reservoir. The readout
uses linear regression to pick and choose the best signals; however, we have very
little control over how to improve the performance of the reservoir. There has been
some work on improving the performance through changing the structure, but so far
almost none of them have been implemented in real physical systems. We discuss
the potential of such approaches later in Sects. 6 and 7.

In general, the lack of control over the dynamics of the reservoir is a big point of
discussion in a robotics application. Conventional approaches to design and control
robots are particularly keen to build systems that are easily modelled and, therefore,
easily controlled. However, this reduces the computational power of the correspond-
ing morphology and therefore makes them unfit to serve as reservoirs. This is an
interesting tension which is particular to robotics and it’s not clear if these two seem-
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ingly opposite positions can be (or even should be) reconciled. However, since both
have advantages and disadvantages, most likely both will be used as complementary
approaches and they will be implementing different tasks and at different levels in
future robotic systems.

Connected to that is the problem of safety. If we don’t have a good enough model
of the dynamics of the reservoir, we can’t prove the safety or stability of the learned
behaviour. Again, biological systems don’t seem to have a problem with that and
maybe the previously mentioned inherent (seemingly global) stability (see Sect. 4)
might be the key to this problem.

Finally, reservoir computing in principle is based on supervised learning. This
means we have to provide the right input–output data set. While this might be pos-
sible for sensor applications, this is quite tricky for feedback-based setups, e.g. in
locomotion. We often don’t know the best mapping that we should learn to emulate.
One possible solution is to start with a good enough guess and use online adaptation
mechanisms to improve on them, see, e.g. Caluwaerts et al. (2014).

6 Connection to Soft Robotics

As pointed out before, one of the main motivations to use nonlinear mass–spring–
damper systems as a basic building block for the models of mechanical reservoirs
was the observation that soft-bodied robots, as well as bodies of biological systems,
can be described elegantly by a network of such systems.

However, there is a much stronger connection between physical reservoir com-
puting and soft robotics if we have a closer look at the dynamical properties of
soft-bodied structures.18 They typically exhibit complex, nonlinear dynamics, a high-
dimensional state space, underactuation, and noise. These properties are all perceived
as negative in conventional robotics since they make it more difficult to model and
consequently control such systems. However, on the other side, these are the exact
properties that are needed to build computationally powerful reservoirs. So, instead
of avoiding complexity in the dynamics of robots, through the framework of reservoir
computing, we can embrace them and, consequently, exploit them. One could even
claim that reservoir computing is a good candidate to solve the control problem in
soft robotics, see, e.g. Hauser (2016) for a discussion.

In addition, the rise of soft robotics is strongly coupled with the advancements
in material science and additive manufacturing. These two fields of research have
been proven over and over again to be able to extend the already rich set of dynam-
ically interesting building blocks. Most of them have the potential to eventually be
exploited in the context of physical reservoir computing. Most of the so-called smart
materials have highly interesting, nonlinear dynamic behaviours that are potentially

18 In the context of Sect. 6, we discuss only soft robotics structures. However, all the points are
also true for biological systems or hybrid structures, e.g. the mixture of soft artificial structures and
biological tissue.
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beneficial to boost the computational power of a reservoir. In addition, the input
can be “perceived” by the reservoir through mechanisms offered by smart materials.
Direct physical interaction with the environment can be translated into changes in the
dynamics. For example, the stiffness can change in some parts of the body through
physical interaction or a soft robot “bumping” into an object can serve as a reliable
input for the setup to switch behaviour, i.e. to switch to a different attractor space.

Another important point of connection between soft robotics and physical reser-
voir computing is that both research fields emphasize the importance of the embod-
iment. While conventional robotics tries to reduce the influence of the body of the
robots (and the environment) as much as possible, soft robotics embraces the idea to
outsource functionality to the body—and so does physical reservoir computing.

Finally, smartmaterials have the great potential to serve as substrates to implement
future technologies that are capable of extending the notion of physical reservoir
computing. This includes optimization of the reservoir and learning in material.
Some of these future directions are discussed in the following chapter.

7 The Future of Physical Reservoir Computing in Robotics

While there has been quite a lot of excitement around the idea of outsourcing com-
putation to the body of robots in the form of a reservoir, there is still a large under-
explored potential pointing to a number of interesting research questions and corre-
sponding applications.

Foremost, reservoir computing, physical or not, naturally raises the question about
how to optimize the reservoir.While it’s a clear advantage that we don’t have to adapt
parameters in the reservoir during learning, it also limits our control. Linear regres-
sion always finds the optimal solution based on the signal (readouts) it receives.
However, we don’t know how to get better or more information out of our reservoir.
Furthermore, as previously pointed out in Sect. 2, the existing theoretical frame-
works don’t give us any specific design guidelines. We only get very high level
suggestions of what kind of properties we should be looking for in a reservoir—i.e.
high-dimensionality, underactuation, and nonlinear dynamics.19 For a given com-
putational task, e.g. a specific nonlinear controller or specific sensory filter that we
want to emulate, the models don’t give us a direct mapping to (in some sense) opti-
mal reservoir. We don’t know how many mass–spring–damper systems (or systems
of equivalent complexity) are needed to achieve a certain performance. Therefore,
typically, reservoirs are initialized randomly (in simulation) or pre-existing robotic
structures, which had been designed with another functionality in mind, are simply
exploited as a reservoir.

Since optimizing the reservoir is a general challenge that people are addressing,
we might be able to draw inspiration from their results for specific applications in
robotics. For example, in the context of LSMs, some approaches have been sug-

19 And noise in the case of external feedback loops.
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gested. Sussillo and Abbott proposed the First-Order Reduced and Controlled Error
(FORCE) algorithm (Sussillo and Abbott 2009) where they adapt synaptic strengths
by feeding back the error. Another approach in the context of LSMs, in this case,
based on reward-modulated Hebbian learning, has been suggested by Hoerzer et al.
(2014). They use a stochastic approach for the optimization of the reservoir. In the
case of LSMs, which are inspired by brain structures, there is a clear connection to
biological adaptationmechanisms, i.e. neuro-plasticity. However, in the case of phys-
ical reservoir computing in robotics, the picture becomes more blurry as there are
many different ways to change real physical, morphological features, e.g. ranging
from simply changing specific parameters like stiffness to complex growing pro-
cesses. To the best of our knowledge, so far, there have been only simulation results
to address this issue. For example, Hermans et al. (2014, 2015) proposed to use
backpropagation through mechanical structures leading to optimal physical reser-
voirs. While their results are impressive, it would be great to see their approaches
implemented in real physical bodies. While this has been out of the reach for a long
time, mostly due to practical limitations, with the recent rise of soft robotics and
additive manufacturing, we suddenly have a much broader set of tools available to
build physically adaptive systems. There is a big potential for a range of interest-
ing research directions with respect to learning directly in materials to improve the
reservoir. Also, research in protocells, synthetic biology, and even biology (e.g. stem
cells) is all very likely to be able to contribute to this idea. In general, this points
clearly to much more sophisticated physical bodies and we might have to let go of
the idea that we need to control explicitly every single aspect of a robotic system.

Another aspect connected to adaption in the reservoir is that we need more per-
formance measurements that can help us to guide the adaptation process. For a lot of
interesting tasks in robotics, we don’t have a clear-cut target function. For example, if
we have a given body and we want to exploit it for locomotion, we don’t know how
the optimal input–output mapping should look like. However, meaningful perfor-
mance measurements can guide a corresponding adaptation process, either directly
in the body/reservoir and/or at the readout. One promising approach is to use abstract
measurements based on information-theoretic approaches. For example, for themea-
surements based on the concept of Predictive Information, see, e.g. work by Martius
et al. (2013) andMartius (2014). Another possibility, suggested byGhazi-Zahedi and
Rauh (2015) and Ghazi-Zahedi et al. (2017), could be to measure directly how much
computation is outsourced to the morphology (in our case the physical reservoir).
These are just a few examples, but of course, there is a very strong body of work on
statistical approaches in general. A reinterpretation in the light of physical reservoir
computing might provide a number of exciting new approaches.

The idea of changing the body to improve the reservoir has an even wider implica-
tion. If we consider morphological structures (e.g. in form of mechanical systems) as
being capable of representing computational functionality, then concepts like self-
assembly, growing, and self-healing become an entirely new, additional meaning:
Changing the body is changing the computational functionality. Instead of simply
assembling to a morphological structure, which is interesting in itself, we also build
an underlying computational functionality. We assemble also a program. The same
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is also true for growing (Hauser 2019). A system (biological or artificial) capable of
growing is able to construct functionality through this process. In addition, if such a
system has self-healing capability, it wouldn’t simply fix a broken leg, but also the
underlying computational functionality.

In this context, it is interesting to note that there are many different ways to build
a reservoir. One can easily image two reservoirs that are morphologically different
but have the same computational power. This implies the growing process might
have a primary goal, for example, to make a limb for locomotion, while a secondary
goal (with less constraints) could be to construct a reservoir structure. As shown
in real-world physical reservoir computing setups with existing robotic prototypes,
already existing physical bodies can be exploited as reservoir even if during their
design and building process this has not been considered at all.

Another point of discussion is how, in robotic applications, can we get away
from the more homogeneous structures present in classical reservoir computing
approaches. Traditional reservoir computing uses one simple module (e.g. an inte-
grate and fire models in ESN, or spiking neural models in LSM) and then connects
themwith each other. However, the fundamental building blocks are always the same.
In the context of physical reservoir computing and robotics, this seems to be quite an
unnatural approach. Intelligent systems are made of a variety and dynamically differ-
ent body parts. This again can be of great benefit if exploited properly. Unfortunately,
so far this has not been really explored in the community.

One way to investigate this idea could be to include buckling mechanisms or
hysteresis—both are quite common and naturally occurring dynamical features.
Buckling could potentially facilitate the learning of different attractors (e.g. dif-
ferent gaits as in Hauser et al. 2012 or switching between different controllers as in
Füchslin et al. 2013). There has also been very interesting work by Kachman et al.
(2017) who showed from the viewpoint of thermodynamics that dynamical systems
with two (or more) stable states can lead to self-organization under (thermal) noise.
Hysteresis could also be useful, for example, to help to detect changes in the direction
of the input. Note that real muscles have hysteresis and even more complex memory
effects, see, for example Paetsch et al. (2012).

Another field of application of physical reservoir computing in robotics has been
so far under-explored, i.e. the implementationof dynamically complex sensors.While
there has been some work, see Sect. 3, there are still a lot of interesting open research
questions and potential applications. One can think of the implementation of inter-
esting (signal processing) filters, information-based approaches, or adaptive sensing
morphologies that change the sensing modality based on different tasks. This is
especially interesting if we consider adaptation mechanisms to optimize the phys-
ical reservoir (i.e. morphology of the sensor) to improve the sensing performance.
Information-theoretic approaches and research on sensing systems in biological sys-
tems (especially insects)will play a crucial role in this context. Also, the idea of build-
ingmore structuredmorphologies for the reservoir is a valid angle to be explored. For
example, the project “Computing with Spiders’ Webs” (Hauser and Vollrath 2017)
works on spider web-inspired approaches to build physical reservoir computing sen-
sors to measure vibration and flow.
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As one can see there is still a great, unexplored potential in the approach of
physical reservoir computing in the context of robotics. The field is richwith research
opportunities and we are looking very much forward to see novel approaches, more
robots, and exciting research results from the community.
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