
Reservoir Computing in Material
Substrates

Matthew Dale, Julian F. Miller, Susan Stepney, and Martin A. Trefzer

Abstract We overview Reservoir Computing (RC) with physical systems from an
Unconventional Computing (UC) perspective. We discuss challenges present in both
fields, including encoding and representation, or how to manipulate and read infor-
mation; ways to search large and complex configuration spaces of physical systems;
and what makes a “good” computing substrate.

1 Introduction

As of 2018, there are many “flavours” and interpretations of physical reservoir com-
puting systems. A recent review (Tanaka et al. 2019) classifies and groups these
systems according to reservoir types based on physical properties exploited, such as
chemical, optical, andmechanical based. These systems can vary immensely in terms
of architecture, dynamics, degrees of freedom, ease to manipulate, size, complexity,
and internal timescales. However, a general framework for physical reservoir com-
puting and unconventional computing is still missing. The wide variety of potential
computing systems presents several challenges: how best to design physical systems,
how to determine what computational tasks they are best suited to, and how to assess
and compare across different architectures.

In this chapter, we discuss three important aspects for describing any physical
[reservoir] computing system: representation and instantiation; manipulation and
programming; and what makes a “good” computing substrate. Nomatter what future

M. Dale · S. Stepney (B)
Department of Computer Science, University of York, York, UK
e-mail: susan.stepney@york.ac.uk

M. Dale
e-mail: matt.dale@york.ac.uk

J. F. Miller · M. A. Trefzer
Department of Electronic Engineering, University of York, York, UK
e-mail: julian.miller@york.ac.uk

M. A. Trefzer
e-mail: martin.trefzer@york.ac.uk

© Springer Nature Singapore Pte Ltd. 2021
K. Nakajima and I. Fischer (eds.), Reservoir Computing, Natural Computing Series,
https://doi.org/10.1007/978-981-13-1687-6_7

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1687-6_7&domain=pdf
mailto:susan.stepney@york.ac.uk
mailto:matt.dale@york.ac.uk
mailto:julian.miller@york.ac.uk
mailto:martin.trefzer@york.ac.uk
https://doi.org/10.1007/978-981-13-1687-6_7

142 M. Dale et al.

systems emerge, these three aspects will always play a pivotal role in the design and
application of any physical (and virtual) reservoir computing system.

Physical systems tend to have high degrees of freedom or ways to be configured.
Whether each configuration induces a small or large change in dynamical behaviour
is more important to the system’s computing ability. A substrate that can compute
many different problems will possess a high degree of dynamical freedom, with the
ability to instantiate many “reservoirs” in a single substrate.

Here, we use the term reservoir to refer to a specific configuration of some non-
linear system, substrate, or device that facilitates computation.A configuration is a set
of values of the parameters that control and influence the behaviour of the system. For
reservoirs, these parameter values are typically static: they are held constant during
the operation of the reservoir. In a simulated recurrent neural network, parameters
may be weights or global scaling parameters. In an optical delay-based system,
parameters define the sample-and-hold procedure, the length of a fibre optic delay
line, or injection currents that shape the non-linearity of the system. In other systems,
parameters include cell update rules in a cellular automaton, the volume of the reactor
in a chemical reaction system, and the strength of the coupling between neighbouring
oscillators in a mechanical oscillator network.

A reservoir is thus an abstract representation of a physical or simulated system,
which is realised through the instantiation or configuration of physical parameters.

To successfully compute with a reservoir, in general, requires a physical system
with a number of dynamical properties that exist internally, which can be driven by
an external input signal. These properties, either present in a “natural” state or in a
configured state, govern the information processing capabilities and capacity of the
system: how information is stored, transmitted, distributed, and processed.

There are three known basic properties for reservoir computing. The echo state
property (Jaeger 2001a) represents a fading memory, an essential property for learn-
ing time-dependent relationships for the prediction of future states based on previ-
ous states. The separation property represents a system’s ability to project the input
space into the high-dimensional phase space of the system. The approximation prop-
erty (Maass et al. 2002) is the reservoir’s ability to generalise given similar, or noisy,
input signals, that is, to converge to the same attractor in terms of dynamics. Other
“basic” properties may exist that are at present unknown.

Dambre et al. (2012) show that all dynamical systems featuring such properties
possess the same total normalised capacity to process information. They identify
and explain the importance of the non-linearity and memory trade-off for computing
tasks, as well as the detrimental effect noise has on the computational capacity
of dynamical systems. These insights, demonstrated with three dynamical systems,
validate the RC framework’s application to a range of underlying dynamical systems.

What type of dynamical systems the RC framework can be applied to is fairly
broad, covering both discrete and continuous systems. However, common patterns
exist for all systems. In each, information is processed via an intrinsic function, the
physical system dynamics that transforms and maps input signals into observable
system states. The details of how this intrinsic function works are generally irrelevant
to the reservoir’s programming process. The substrate, and subsequent reservoir, is a

Reservoir Computing in Material Substrates 143

black box. The model harnesses potentially unknown physical processes, performing
functions onmacroscopic behaviours resulting fromunseenmicroscopic interactions.

In terms of programming physical and unconventional computers, the configu-
ration, input, and output methods encompass the unconventional “program” of the
system. Unlike conventional programs, instructions induce and exploit the intrinsic
dynamics and state of the systemwithout explicitly telling the system how to do so, or
what to do at the lowest physical level. These programs are typically “learned” rather
than hand-crafted. For example, the training of RC systems can be partitioned into
multiple stages. Substrate parameters may be selected randomly (typically within a
constrained domain) or trained through some optimisation process (Abubakar et al.
2018). The readout stage is typically learnt through linear regression, reducing the
error between the reservoir output and the desired output signal. In most cases, this
layer is simply a linear weighted combination of system states; however, more com-
plex and non-linear readouts (and training methods) are possible.

The variety of intrinsic properties exploitable from physical systems—how they
store and process information—is what makes these systems useful, powerful,
and diverse. With physical systems, there are greater possibilities for faster, less-
expensive, and more energy-efficient computing. This is in part due to less top-down
design, fewer data conversion steps and constraints, removal of traditional data trans-
fer bottlenecks, and architectures that tend to be more robust and less error-prone.
However, there are still many gaps left in our understanding of what makes these
systems compute.

In the remainder of this chapter, we highlight areas of unconventional computing
to discuss and map out challenges and areas still requiring further development.
We outline the importance of representation and instantiation in Sect. 3 and discuss
the programming of reservoirs in Sect. 4. In the final section, we discuss a newly
proposed framework to evaluate what makes a good computing substrate, providing
a new perspective on how to build and compare physical reservoir computers.

2 Computing with Physical Systems

Biological systems vastly outperform certain aspects of classical computing
paradigms, from possessing inherent fault-tolerance to forming highly parallel
machinery. Much of this performance is achieved by exploiting physicality and
embodiment (Stepney 2007), sharing and distributing computational effort through-
out the system, from small-scale micro-organisms to large-scale swarms. Biological
systems exploit physical interactions through feedback with the real world, utilising
features such as morphology and direct and indirect changes to the environment.
Many of these systems comprise simple elements (e.g., molecules and cells) that
emerge and coalesce into more complex (e.g., multi-cell organisms and ecosystems),
but robust, structural layersworking across different spatial and temporal scales. Such
grounding properties (and many more) have enabled these complex systems to thrive
and evolve, adapting and co-evolving with their local ecosystem.

144 M. Dale et al.

In modern science and engineering, there are many attempts to mimic the compu-
tational properties, efficiency, and behaviours of biological systems on conventional
machines. In many ways, such attempts are flawed, or at least inefficient. Techniques
and models attempt to imitate the performance of an embodied system in a non-
embodied abstraction, in a process that requires an often cumbersome and inefficient
transformation to a symbolic representation. In essence, such transformations detract
from many of the physical aspects that make natural systems so powerful.

The limitations of conventional computing paradigms are well defined, and we
are rapidly approaching the limitations of current CMOS technology (Lloyd 2000).
For technology to move forward, many of these limitations need to be overcome, by
using the same classical paradigms or alternative ones.

The conventional von Neumann computing architecture, based on the stored-
program computer concept, although expertly refined over decades, has some fun-
damental inefficiencies. For example, classical computers require the transformation
between high-level languages to low-level machine code, a process that requires lay-
ers of conversion through a compiler stack, making it computationally costly, slow,
and highly susceptible to faults and errors. These systems typically succumb tomany
issues in speed, from both an inability to deal with concurrent computations and the
bottleneck created by the transfer of data between separate memory and processing
entities. Because of these architectural weaknesses, other intertwined issues arise,
such as an increase in power consumption, system size, and design complexity.

2.1 Unconventional Computing

The field of unconventional computing has for many years attempted to address the
limitations of conventional computing by providing alternative architectures, sys-
tems, and models that typically exploit the underlying physics and many-scale inter-
actions of the real world. Many forms of unconventional systems now exist, from the
mathematical reversible and chaos computing concepts to physical–chemical and
neuromorphic computing. Recent collections of theory and practice of unconven-
tional systems include (Adamatzky 2016a, b; Stepney et al. 2018).

Unconventional systems have a long history. Some systems link back to the mid-
twentieth century cybernetics movement, such as Pask’s experiments with electro-
chemical assemblages in ferrous sulphate solutions (Cariani 1993; Pask1959).Others
include Turing’s unorganised machines (A- and B-type random networks) (Turing
1969) constructed from simple components in a random structure capable of learn-
ing. Even further back there are analog computing models and systems such as the
differential analyser (early twentieth century), Babbage’s Difference Engine (nine-
teenth century), slide rules, Orrerys (mechanical models of the solar system), and
astronomical clocks.

Pask’s work—a novel example of unconventional systems and methods at the
time—was conducted exclusively in the physical domain and sought to evolve func-
tional dendrite-like structures by passing current directly through immersed elec-

Reservoir Computing in Material Substrates 145

trodes.To alter the growthof these structures, he selectedwhich electrodes to pass cur-
rent between, with the resulting linkage conductance representing synaptic weights.
In his experiments, Pask manually selected and “evolved” linkages sensitive to per-
turbations caused by sound, or magnetic fields, to create a self-assembling “ear” that
could be trained to discriminate between different frequencies.

Turing’s work, on the other hand, wasmore theoretically based, drawing on analo-
gies with the human brain. What makes Turing’s machines particularly interesting
here is the clear analogies to the current reservoir computing paradigm.

In general, exploiting computation directly at the substrate level, as biological sys-
tems do, is expected to offer advantages over classical computing architectures, such
as exploiting physical andmaterial constraints that could offer solutions “for free”, or
at least computationally cheaper (Stepney 2008). Extracting computation from these
systems and physically programming them, however, is challenging. Sometimes, this
is further complicated by a desire for minimal abstraction: exploiting emergent phys-
ical phenomena directly whilst maintaining a level of programmability that enables
the system to perform a variety of tasks.

Hybrid digital–analog computers potentially solve this programming problem,
where the digital system is trained to extract computation performed implicitly from
an analog substrate. This is typically where many physical reservoir computers align,
with the readout and training often carried out in the digital domain. An excel-
lent example of a programmable hybrid system is Mills’ Kirchhoff–Lukasiewicz
Machines (KLM) (Mills 1995) based on Rubel’s computational model of analog
computation (the extended analog computer Rubel 1993). In Mills’ work, the KLM
device is controlled by a specially designed vector of bits, referred to as the “over-
lay” (Mills 1995). This overlay, representing the semantic “program”, is used to
define the reconfigurable layer that exploits the implicit material function. The com-
putational functions being utilised are therefore a result of the material’s configura-
tion, typically achieved through the selection of inputs, outputs, and control func-
tions/signals. Mills describes this as a paradigm of analogy (Mills 2008), where
the computing device is not explicitly told to perform an operation and provide a
readable output, but rather trained to exploit an implicit function that results from
the material’s configuration. Thus, it is an analogy of the program, rather than an
algorithmic function to be implemented.

For analog computers, the program and architecture may be indistinguishable or
inseparable: to program the machine requires a change in the machine architecture.
However, placing additional layers within the machine’s architecture may reduce
the amount of change required; for example, adding a standardised reconfigurable
“middle” layer or a trainable readout in reservoir computing.

2.2 Configuring Physical Systems to Compute

Conventional computers are designed to be substrate-independent, where a sym-
bolic virtual “machine” is engineered into physical hardware. Yet, not every com-

146 M. Dale et al.

puting problem requires abstraction to a symbolic virtual machine, e.g., filtering,
control problems, and solving differential equations. The digital computing pipeline
from physical-to-abstract-to-physical tends to consume much more power than an
equivalent analog counterpart, be constrained by serial-processing, and present many
vulnerabilities in terms of security and coding errors.

Material/substrate-based computers are machines in which some computational
process, or physical mechanism, may be extracted from a behaviourally diverse
dynamical system. In essence, information processing can be exploited from what
the substrate does naturally, for example, how the system reacts and dynamically
adapts to some input stimulus (Stepney 2008). Informally speaking, this can be
viewed as “kicking” the dynamical system and observing its behaviour to some
given stimulus, where the method of perturbation and observation may vary in type:
electrical, mechanical, optical, etc.

Given some material has potential properties useful for computing, the question
is whether they are extractable, and whether the system can be trained, configured,
or engineered to consistently exploit these properties.

Before the first physical reservoir computers emerged, a computing paradigm
reminiscent of Pask’s self-assembling ear was developed for novel substrates. This
conceptual idea was named “evolution in materio” (EiM) by Miller and Down-
ing (2002). Inspired by Thompson’s seminal work on “intrinsic” hardware evolu-
tion (Thompson 1997), the principal idea is to use artificial evolution as a search
method to find configurations that directly exploit the computational properties of
complex materials.

To date, work with EiM has explored liquid crystal substrates, composites of
randomly dispersed carbon nanotubesmixedwith polymers, carbon nanotubesmixed
with liquid crystal, andnetworks of gold nanoparticles (Broersma et al. 2017;Harding
and Miller 2004; Massey et al. 2016; Miller and Downing 2002). Each of these
substrates is evolved to achieve interesting computational properties on a variety of
specific tasks, without it being known exactly how best to program them to perform
those tasks. Applying evolvedmappings and external “control” signals, the unknown
internal properties of the composites are configured to produce physical solutions to
computational tasks.

Current progress of EiM and physical reservoir computing still remains at the sub-
strate level: single devices/systems and simple architectures. This limits the complex-
ity and types of tasks that are solved. Solvingproblemswith increased complexitywill
require layers of (non-symbolic) abstraction, hierarchy, and possibly multi-substrate
designs,whilstmaintaining substrate-level exploitation and efficiency.How to imple-
ment and program such architectures is still unclear.

Another non-trivial task is how to analyse what is being exploited, intrinsically,
externally, and in terms of general computational and dynamical properties of the
substrate. This closely links with how to determine if a substrate is suitably “rich”
to solve computational tasks; and, if the substrate is suitable, what class of tasks is
appropriate.

At the basic level, a generic methodology to characterise the substrate, suitable
architectures, and higher-level constructs that naturally fit the substrate is missing.

Reservoir Computing in Material Substrates 147

For example, in EiM, often too little is known about the substrate being evolved; in
principle this is the point, but in practice it limits its full potential. Aminimal criterion
for evolution to excel, or for reservoir computing to work, needs to be established.
At the same time, the realistic potential of the substrate needs to be determined and
categorised. This includes whether a substrate is compatible with other substrates,
what role it can fulfil in a hierarchy or high-level program, and what other basic
physical limitations exist.

3 Reservoir Computing with Physical Systems

Akey advantage to using the reservoir computing paradigm is that there is no require-
ment to control individual elements within the system. This makes it applicable to
many complex structures where the exact arrangement and manipulation of inter-
nal elements are either too time-consuming, too delicate/complex to implement, or
impossible to achieve. However, to determine whether a substrate is computationally
exploitable depends upon both underlying physical characteristics and the observable
phase space.

In many cases, a physical substrate is computationally useful only when con-
figured or perturbed. Therefore, forming a useful reservoir requires the tuning of
physical parameters. This itself implies that a single substrate instance can realise a
range of reservoirs of varying quality through different physical configurations.

Using the reservoir model, we argue that any substrate and subsequent configu-
ration is represented by its abstract “quality” in a space of all possible reservoirs,
and that this space is very different from the configuration space. Methods for “pre-
training” reservoirs (or selecting appropriate parameter ranges) to navigate this reser-
voir space are therefore essential tools to find and discover functional, possibly
optimal, reservoirs within all possible material states. Figure1 shows a conceptual
representation of a single substrate’s space of all possible physical configurations
and its abstract reservoir equivalence.

Different substrates have their own such spaces; some perhaps have no functioning
reservoirs; some perhaps possess many configurations in distant regions of the space
that produce ideal properties for reservoir computing.When substrate “richness” and
complexity increases, these complex structured spaces have a greater probability to
be “deceptive” and difficult to navigate. Configurations close to an ideal solution
may themselves be computationally uninteresting; working configurations may be
unstable or critical when perturbed by noise and other external signals.

To create and navigate these spaces, basic mechanisms must be defined: how to
encode and represent information flowing both in and out of the system. Depending
on this, each space will vary drastically. For example, the size and density of func-
tional reservoirs in these spaces will increase or decrease given different encodings.
The combination of multiple encodings and representations will also have an effect,
possibly leading to even larger and richer spaces. A prime example of how encod-
ing affects computability is the delay-based reservoir computing technique using a

148 M. Dale et al.

Optimal reservoirs w.r.t. Kernel “quality”, dynamics (edge
of chaos?), memory capacity, generalisation property

All possible configurations All possible Reservoirs

sub-optimal
reservoirs

Functional
configurations

Fig. 1 Mapping between substrate configuration space and reservoir quality; from Dale (2015)

single non-linear node with delayed feedback, synonymous with optoelectronic and
photonic systems (Appeltant et al. 2011, 2014; Brunner et al. 2013; Paquot et al.
2012). In these systems, the input encoding defines a network of virtual processing
nodes in the time-domain rather than implementing a physical spatial network of
nodes.

3.1 Encoding and Representation in Reservoir Computers

Conventional programs and algorithms represent idealised mathematical objects,
irrespective of their underlying hardware. In a physical system, say a biological
system, computation is embodied and behaviour is challenging, if not impractical,
to capture using a closed mathematical model. As such, trying to program these
embodied systems requires different techniques.

Unconventional computers have the potential to be faster, and/or consume less
power, but in order to do so requires that the model of computation naturally fits the
material rather than imposing an inappropriate model that fights its implementation.
As Caravelli and Carbajal (2018) describe it: “the problem needs to be specified
using the language of the computing device. Using the wrong language increases the
difficulty of the problem, and consequently decreases performance.”

Most unconventional systems have only a primitive, or even no explicit, compu-
tational model. This makes it difficult to build higher-order representations, leaving
the programming side heavily underdeveloped. As a result, programs are typically
stuck at the equivalent assembly language level, with all the problems associated
with a lack of abstraction and usability.

Representation and encoding are therefore critical to future progress; identifying
what representations work best, and designing high-level programs that naturally fit
the reservoir model, need to be further developed.

Reservoir Computing in Material Substrates 149

3.2 Abstraction/Representation (A/R) Theory

To discuss the encoding and representation problem for physical reservoirs, we first
need to define as to when a physical system computes.

In order to distinguish when computation is occurring in a physical system, as
opposed to the system simply just “doing its thing”, Abstraction/Representation
(A/R) theory has been developed (Horsman et al. 2014, 2017, 2018). In A/R theory,
physical computing is the use of a physical system to predict the outcome of an
abstract transformation.

The theory identifies objects in the domain of physical systems (including com-
puters), the domain of abstract objects (including computational models), and the
representation relation which links the two.

The representation relation is primitive andmaps fromphysical to abstract objects,
R : P → M , whereP is the set of physical objects, andM is the set of abstract objects.
When two objects are connected by R, we write them as R : p → mp. The abstract
object mp is then said to be the abstract representation of the physical object p.
Instantiation is a map from abstract object to physical object: ˜R : M → P. When
two objects are connected by ˜R, we write them as ˜R : mp → p. The physical object
p is then said to be the physical instantiation of the abstract object mp.

Abstract evolution maps abstract objects to abstract objects, which we write as
C : mp → m ′

p. If we instantiate mp in p, then its corresponding physical evolution
map is given by H : p → p′. If we now apply R to the outcome state of the physical
evolution, we get its abstract representation mp′ . See Fig. 2.

()

() ()

Real World

Abstract World

COMPUTE

Instantiate Represent

Physical system

Abstract machine
Δ

Problem

Fig. 2 Commuting diagram: mapping between abstract space and physical space. T represents
appropriate theory for encoding and representation.� is translation of abstract problem into abstract
machine. Other definitions are given in the text

150 M. Dale et al.

We now have two abstract objects, m ′
p and mp′ . If these are sufficiently close,

then we say that the physical system has computed the desired result of the abstract
computation. For a well-engineered system, one where we can rely on this sufficient
closeness, we no longer have to compare the two answers, and can take mp′ as the
prediction of the desired result of the computation m ′

p.
To extend the theory to multiple physical systems, as many practical unconven-

tional devices will most likely consist of, the heterotic computing framework has
been developed (Horsman 2015; Kendon et al. 2011, 2015). The term “heterotic”
captures the “hybrid vigour” of complex systems, where the whole is greater than the
sum of its parts. Possible heterotic systems could consist of multiple devices and dif-
ferent computational models combined to create more expressive and programmable
computers.

The concept of hybrid reservoir systems, “mixing and matching” different uncon-
ventional systems, both virtual and physical, is largely unexplored in the literature.
However, on the surface, it looks promising for further research as the benefits of
hierarchical reservoir systems come into light (Dale 2018a; Gallicchio et al. 2017).

3.3 Observing Reservoir States

Here, we define our representationR of physical system states. To interpret a physical
substrate as a reservoir, the definition in Konkoli et al. (2018) is adapted, where the
observed reservoir states x(n) form a combination of the substrate’s implicit function
and its discrete observation:

x(n) = �(E(Winu(t), uconfig(t))) (1)

where �(n) is the observation of the substrate’s macroscopic behaviour and E(t)
the continuous microscopic substrate function when driven by the input u(t). Win

symbolises a set of input weights common in all reservoir systems. The variable
uconfig(t) represents the substrate’s configuration, whether that be through external
control, an input–output mapping, or other method of configuration. Equation1 is a
simple case where no feedback is returned to the system. To add feedback, the input
variables y and feedback weights W f b are added to E(.).

This formalisation of the reservoir states separates the system into contributing
parts, including the observation and configuration method, which as a whole repre-
sents the overall physical reservoir computer.

An exploitable feature of this definition is that there is no need for the input
mechanism to be the same as the observation method. For example, an input may
be encoded as an electrical signal, and the reservoir states observed as deformations
in physical structure. This additional channel of communication leads to an increase
in system bandwidth to exploit, allowing multiple measurement and stimulation
techniques to be used in tandem.

Reservoir Computing in Material Substrates 151

In Eq.1, note that the intrinsic substrate function (E) is presumed to be fixed,
clamped, or set by uconfig. However, depending on the system, E may change when
interacted with or observed (commonly known as the “observer” effect), and may
therefore be non-deterministic.

When physical systems are connected to stimulation and recording equipment,
it is critical not to overlook that the whole interface will, in some way, affect the
computing process, which may or may not be included in the model. In most experi-
mental works, it is imperative that the substrate being exploited is sufficiently isolated
from the rest of the system, e.g., from its controlling equipment and its environment.
In Dale (2018b), it was shown how evolution could find ways to include and exploit
the interfacing equipment as part of the reservoir system. Despite its positive contri-
bution, generally improving performance, the dynamics of the substrate became less
important to the computing system. For cases such as this, we include the� function
in Eq.1, as the observation process itself may affect the system output.

This phenomenon, unique to physical substrates, is a trade-off problem, presenting
itself more within certain systems. If the substrate is fixed permanently to the same
measuring equipment, the contribution of the interface to the overall “computation”
is considered less crucial. However, if the substrate is to be trained on one device
and then applied on another, the substrate under-test should be the main, if not the
only, contributor.

The final output y(n), the last part of the system, is determined by the readout
function g on the observation x(n):

y(n) = g(x(n)) (2)

In many reservoir systems, the readout function g tends to be a linear weighted
combination of system states for RC, and once trained remains static.

As previously mentioned, the readout layer can be implemented within a differ-
ent medium or domain from the reservoir substrate itself. For example, an analog
material may be combined with a digital readout layer. This flexibility adds extra
programmability, and even compatibility with other devices, but may come with
specific costs and benefits.

At present, methods that take advantage of uconfig(t) and g(x(n), n) changing
with time are uncommon. Although this comes at the price of complexity, abstract
programs where both implement functional primitives, providing higher-order rep-
resentations in y(n), are theoretically possible.

4 The Search for Reservoirs

The classical approach to programming and manipulating physical systems requires
(to some extent) a good understanding of the properties and interactions within
that system. This results in the traditional top-down programming approach. Reser-
voir computing and other “intelligent” systems apply alternative mechanisms, e.g.,

152 M. Dale et al.

through training, learning, and heuristics. For each of these programming approaches,
the details of the systemare exploited in a controlledmanner typicallywithout explicit
instructions from a human. For example, the approach has learned by itself where
best to clamp global or local dynamics using a bias signal, or the exact strength and
combination of control signals required to exploit and alter the structure.

The actual “programs” implemented by the substrate and the system as a whole,
however, are different. The previous approaches therefore act as meta-programming
approaches. Following the previous discussion, we can think of these programs as
containingdetails about the encoding and representationof the systemand its physical
parameters. Different programs may exploit the same physical phenomena (e.g.,
electromagnetism, electrochemical, and optoelectronic) but encode and represent
data using only specific physical parameters (e.g., electric fields), or, alternatively,
use different encodings and physical parameters (e.g., magnetic fields and chemical
reactions). This can lead to a combinatorically vast search space of potential computer
programs, e.g., reservoirs on a single device.

Reservoir substrates typically possess fixed dynamics after applying carefully
selected parameters and parameter ranges to exhibit desirable dynamical proper-
ties. Echo State Networks are an exemplar of this tuning problem, requiring global
scaling parameters to induce specific dynamics, such as possessing the echo state
property (Jaeger 2001a). With many unconventional systems, the parameter space is
complex and therefore difficult to navigate. As complexity increases, simple (uncon-
strained) random configurations often result in sub-optimal performance, as the prob-
ability of stumbling upon optimal parameters is low. In general, no matter the sub-
strate, good parameter selection and encoding—the basic program—are essential to
produce high-performing reservoir systems.

In the RC community, many meta-programming approaches have been used to
optimise theparameters of virtual reservoirs. For example, techniques includeparticle
swarm optimisation (Basterrech et al. 2014; Sergio and Ludermir 2012), Bayesian
optimisation (Yperman and Becker 2016), gradient-based information (Yuenyong
2016),multi-objective optimisation (Krause et al. 2010), and evolutionary algorithms
(Chatzidimitriou and Mitkas 2010; Ferreira and Ludermir 2011; Jiang et al. 2008;
Matzner 2017; Qiao et al. 2017). Other heuristics continue to be added; see the recent
survey (Abubakar et al. 2018).

These approaches are simple to apply due to theRC framework’s training partition.
What often separates reservoir computers from other learning systems is this division
in training. Reservoirs are typically generated or configured (partially programmed)
using one technique, and the readout is trained using another (fully programmed),
avoiding challenges when training complex networks.

Using this separation, a physical substrate can be partially programmed, then
quickly retrained/programmed to solve different tasks by manipulating only the
readout. This extra level of programmability provides advantages in time to train
and sometimes performance.

The typical focus when programming is to optimise the substrate to a specific
task. This approach provides little insight into the wider computing ability of such
substrates, however, such as its bottlenecks, strengths, and weaknesses, its “sweet-

Reservoir Computing in Material Substrates 153

spots”, etc. An optimal configuration may solve a specific problem very well, but by
itself, be uninteresting. Exploring the configuration space and abstract space of all
reservoirs/programs could uncover more general characteristics of the system, and
inform us more about what makes it compute and what is computable.

To map large complex spaces, typically with vast numbers of parameters (e.g., for
physical substrates or deep/hierarchical structures) requires efficient searchmethods,
rather than random or grid search. This is where a new class of open-ended Quality
Diversity (QD) algorithms (Pugh et al. 2016) could have a significant impact, improv-
ing design, understanding, and exploration of newphysical computing devices. These
algorithms have experienced great success in the embedded setting of evolutionary
robotics (Mouret and Doncieux 2009, 2012) and hard exploration problems (Ecof-
fet et al. 2019). These algorithms include novelty search with local competition
(NSLC) (Lehman and Stanley 2011), and multi-dimensional archive of phenotypic
elites (MAP-elites) (Mouret and Clune 2015).

The basic concept is to define a low-dimensional feature space, or behaviour
space, separate from the high-dimensional parameter space, within which perfor-
mance and behaviour are explored rather than optimised directly. (However, these
algorithms can also be used to optimise directly, making them a superset of optimisa-
tion algorithmsMouret andClune 2015.)During the search process, novel behaviours
represent markers—points to seed or diverge from, or elites that represent the best
behaviours in the low-dimensional search space, promoting the discovery of new
solutions that would be otherwise too difficult to reach using standard optimisation
algorithms.

These particular algorithms specialise in domains where the fitness landscape—
the space of all solutions with respect to performance— is often deceptive and sparse.
This deceptiveness, in evolutionary algorithm terms, typically relates to the indirect
encoding between the genotype (encoding) and phenotype (physical instantiation),
where information in the genome may affect many parts of the phenotype.

They overcome deceptive spaces in part by tuning the trade-off between explo-
ration and exploitation, promoting diverse solutions aswell as opimising local niches.
As a by-product, the process produces a holistic view of the entire search space, rather
than a single optimised solution. Mouret and Clune refer to these algorithms as a
new class of “Illumination algorithms” (Mouret and Clune 2015), mapping the high-
est performing solutions in each region of the feature space and determining each
region’s overall potential.

In summary, the programming of single substrates for reservoir computing is
sometimes simple, or complex. It is simple when there is a relatively good under-
standing of the substrate parameters, but considerably more complicated when little
is known about parameters and resulting computational properties.

It is important to remember that a physical system’s program encompasses encod-
ing aswell as representation,whichmaybe altered. This in turn results in an enormous
range of potential programs even for a single substrate.

As architectures move from single devices to multiple devices, programming will
become increasingly challenging. To fully utilise such architectures, we first need to
understand more about the computing capabilities of substrates. To do this, we have

154 M. Dale et al.

mentioned one class of search algorithms that focuses on characterising the space of
all reservoirs implemented by a single substrate rather than optimising parameters
towards specific tasks.

5 What Makes a Good Physical Reservoir?

The ability to perform useful information processing is an almost universal charac-
teristic of dynamical systems, provided a fading memory and linearly independent
internal variables are present (Dambre et al. 2012). However, each dynamical system
will tend to suit different tasks, with only some performing well across a range of
tasks.

In terms of all reservoirs realisable by a substrate, many may perform well, given
the selection of suitable parameters. Yet, many will also be unstable and unusable.
This selection process may be easy for well-understood and constrained systems,
but poses a serious challenge when less is known about the substrate and how it will
react to stimulation, or different parameter ranges and encodings.

Until recently, no experimental framework has tried to explore, map, and compare
the complete computational expressiveness—including encodings and
representations—of physical and virtual substrates. That is, no practical method has
been proposed to characterise the substrate and its individual instantiations to build
a comprehensive view of the computing quality of substrates. A/R theory, Sect. 3.2,
is a framework to define physical computing, but it does not provide guidance on
how to determine an appropriate encoding, instantiation, or representation.

To tackle this non-trivial problem, we have developed the CHAracterisation of
Reservoir Computers (CHARC) framework (Dale et al. 2019b). The framework
describes characterisation phases and adaptable levels to measure quality, defined
as the total capacity to realise distinct reservoirs in terms of different dynamical
properties.

5.1 Framework Outline

To characterise a test substrate, two phases must be completed: quality assessment
of a reference substrate (phase one), and characterisation of the test substrate (phase
two). Phase one provides something to compare to and is typically carried out only
once, provided a suitable reference is chosen. The basic structure and flow of each
phase are shown in Fig. 3.

The first level is the definition level (Fig. 3, step 1). Here, the behaviour space of all
abstract reservoirs is defined. This abstract space represents the dynamical behaviour
of the substrate when configured. To create this n-dimensional space, n independent
property measures are identified and used. Each point in this space is a behavioural
representation of a substrate’s configuration according to different measures.

Reservoir Computing in Material Substrates 155

property
measure 1

property
measure 2

property
measure 3

abstract behaviour
/substrate configuration

dynamical boundary

P(1)

P(2)

P(3)

assess novelty
w.r.t. k-nearest neighbours

P(1)

P(2)

P(3)

voxels

generations

co
ve

ra
ge

1. define behaviour space 2. search the space 3. divide the space 4. measure the space
(quality)

Fig. 3 CHARC framework workflow. This is typically carried out for both phases, using the same
framework meta-parameters

More measures of distinct properties should result in greater model reliability
and therefore greater confidence in the quality measure. However, when defining the
behaviour space some properties are difficult, if not impossible, to measure across
all substrates. Any measure used with the framework should represent the observed
behaviour of the system, rather than specific properties related to its implementa-
tion, or measures unpractical/impossible to carry out with physical and/or black-box
systems.

To demonstrate the basic framework structure, three measures are applied in Dale
et al. (2019b) to define the behaviour space: Kernel Rank, Generalisation Rank, and
Memory Capacity.

Kernel rank (KR) measures the reservoir’s ability to produce a rich non-linear
representation of the input. Generalisation rank (GR) is a measure of the reservoir’s
capability to generalise given similar input streams. More information about these
measures can be found in Legenstein and Maass (2007). Low ranking values in
both measures typically represent a system in an ordered regime, and both having
high values equate to chaotic regimes. According to Büsing et al. (2010), the most
interesting reservoirs are found to exhibit a high kernel rank and a low generalisation
rank. However, in terms of matching reservoir dynamics to specific tasks, the right
balance varies.

The measure for memory capacity (MC) in Dale et al. (2019b) captures the linear
short-term memory capacity of a reservoir. The linear measure was first outlined
in Jaeger (2001b) to quantify the echo state property. For the echo state property to
hold, the dynamics of the input-driven reservoir must asymptotically wash out any
information resulting from initial conditions. This property therefore implies a fading
memory exists, characterised by the short-term memory capacity. As demonstrated
in Dambre et al. (2012), other measures quantifying the non-linear, quadratic, and
cross-memory capacities are possible, providing a more complete picture of memory
in dynamical systems.

As explained in Dale et al. (2019b), the three selected measures are important,
but by themselves do not capture every interesting dynamical property of dynamical
systems. Therefore, more measures are still desired. For example, the total capacity

156 M. Dale et al.

measures defined in Dambre et al. (2012) could replace, or add to, the axes of the
behaviour space.

The Exploration level (Fig. 3, step 2) encompasses the search method and map-
ping process. At this level, the mapping between abstract reservoir and substrate
configuration is explored.

Exploration is carried out in the behaviour space using an implementation of
novelty search (Lehman and Stanley 2008). Novelty search, an open-ended genetic
algorithm, navigates the behaviour space searching for novel solutions until some
user-defined termination point, e.g., after so many evolutionary evaluations, or pos-
sibly when the rate of exploration has stalled.

Given enough time (search evaluations), the exploration process can outline the
boundaries of the system dynamics, i.e., the boundary defining what behaviours
are possible and not possible. In Dale et al. (2019b), this is demonstrated for a
physical carbon nanotube composite. Due to the limited behavioural freedom of that
substrate, its boundaries are relatively constrained, showing that any tasks requiring
more than minimal memory requirements tend to be unsuited to the substrate. The
results also demonstrate that exploration can be used to identify the practical use,
if any, of the substrate, or whether the selected method of encoding, representation,
and configuration is appropriate.

The final Evaluation level (Fig. 3, steps 3, 4) defines the mechanisms to evaluate
quality. To measure quality, the behaviour space is divided into voxels/cells. Figure4
demonstrates how the behaviour space may be divided and measured depending on
the experimentally defined quality resolution.

The number and size of voxels/cells depend on the spaces being compared. For
example, the voxel size can be large and coarse, grouping many local behaviours,

(a) Low resolution (b) High resolution

Fig. 4 Example of a 2-D behaviour space divided into different voxel sizes. Each dot represents a
measured behaviour in a generic 2-D behaviour space. Squares represent 2-D voxels

Reservoir Computing in Material Substrates 157

signifying the extent of the region of behaviours discoverable (Fig. 4a), or an increase
in resolution to provide a more fine-grained view of how the space is filled (Fig. 4b).

Overall, the total number of voxels/cells occupied forms the measure of quality.
The quality value therefore represents an approximation of the system’s dynamical
freedom, or the substrate’s capacity to instantiate different distinct reservoirs.

5.2 Characterising Substrate Quality

The initial evaluation and validation of the CHARC framework (Dale et al. 2019b)
assess the quality of three very different dynamical systems: a recurrent neural net-
work, a numerical simulation of a Mackey–Glass oscillator with a delay line, and a
physical carbon nanotube-based substrate.

Artificial recurrent neural networks such as echo state networks (ESN) are consid-
ered state-of-the-art reservoir substrates, so ESNs of various sizes form the reference
substrate. The simulated Mackey–Glass oscillator with a delay line (referred to as
DR in this chapter) is a reservoir substrate known to perform remarkably well across
different reservoir computing benchmarks (Appeltant et al. 2011; Paquot et al. 2012;
Duport et al. 2012). The physical substrate comprising a mixed carbon nanotube–
polymer (poly-butyl-methacrylate) composite (CNT) is known to perform well on
several simple computational tasks (Mohid et al. 2016; Dale et al. 2016b, 2017), but
struggles with some harder reservoir computing benchmarks (Dale et al. 2016a).

Results in Dale et al. (2019b) show the behavioural freedom of each substrate is
significantly differentwhen compared using a voxel size of 10 × 10 × 10 behavioural
units. The quality of each substrate ismeasured as the total number of voxels occupied
after each experimental run of 2000 search generations. Figure5 shows the number
of voxels occupied as the exploration process progresses (every 200 generations),
with error bars displaying the min-max values for 10 independent evolutionary runs.

Fig. 5 Voxel measure of
coverage as the number of
search generations increases.
Test substrates are shown as
solid black lines (DR, CNT),
and reference substrates
(ESNs) are dashed grey
lines. Error bars display the
min-max values for all
search runs. Note the
logarithmic coverage scale

200 600 1000 1400 1800

Generations

100

101

102

103

C
ov

er
ag

e

ESN-25

ESN-50

ESN-100

ESN-200

CNT

DR

158 M. Dale et al.

(a) 200 node ESN (light grey) with DR (dark grey)

(b) 25 node ESN (light grey) with CNT (dark grey)

Fig. 6 Behaviours discovered when exploring the ESN, CNT, and DR substrates. To visually
compare substrates, each test substrate is plotted over the reference substrate with the most similar
quality

The largest measured ESN networks (200 nodes) have the highest quality. The DR
substrate (with 400 virtual nodes) is closely equivalent to the 200 node ESN substrate
in terms of quality. The CNT substrate, on the other hand, had a considerably smaller
quality than an ESN of just 25 nodes.

The quality value alone gives only a single numerical representation of quality. It
is valuable to perform a visual inspection of the explored behaviour space to get a
more nuanced view of a substrate’s performance.

The discovered behaviours of the DR and CNT substrates are shown in Fig. 6. In
the plots, the behaviours for each test substrate are presented in the foreground and
the reference substrate (ESN) with the most similar quality (200 node ESN in Fig. 6a
and 25 node ESN in Fig. 6b) in the background.

The DR behaviours (Fig. 6a) extend into regions that the 200 node ESN cannot
reach, resulting in what appears to be fewer occupied regions than the ESN. How-
ever, this does not imply that such regions cannot be occupied. Given more search
generations, these regions would likely be filled, as similar behaviours are already
discovered.

The CNT substrate (Fig. fig:bsofsubstratesb) struggles to exhibit enough (stable)
internal activity to create a strong non-linear projection, and to effectively store recent

Reservoir Computing in Material Substrates 159

input and state information, agreeing with previous results (Dale et al. 2016a, b,
2017). This suggests why only a limited range of tasks are suitable for the substrate,
and why small ESNs tend to be good models of the substrate.

Overall, the results of the CNT substrate show that, using its current encoding
and representation, only a limited set of behaviours is possible. In future work,
quality might be improved using other types of input stimulus and control signals,
or reading/combining other electrical output signals.

5.3 Using Quality to Assess Substrate Design

In this section, we demonstrate how the CHARC framework can be used to assess,
and potentially inform, the design of future reservoir substrates.

In Rodan and Tiňo (2010) and Rodan and Tino (2011), it is shown that simple
and deterministic connection topologies tend to perform as well as, or better than,
standard (fully connected) randomly generated reservoir networks on a number of
benchmark tasks. If the design of state-of-the-art reservoirs requires only simple
structures and topologies, physical reservoirs become much easier to design and
implement.

To investigate what effect structure and connection complexity have on dynamical
behaviour, CHARC has been applied to neural graphs of varying complexities and
sizes (Dale et al. 2019a). The effect of network topology and connection complexity
(in this case, directed and undirected graphs) is investigated by evaluating three
simulated recurrent network topologies: ring, lattice, and fully connected networks.

The ring topology (Fig. 7a), with the least complexity, has nodes with a single
self-connection and one connection to each of its direct neighbours. The basic ring
topology is the simplest network to implement in physical hardware as the num-
ber of connections required is small. Ring structures have already been applied
to many reservoir computing systems, including minimum complexity echo state
networks (ESN) (Rodan and Tino 2011), DNA reservoirs (deoxyribozyme oscilla-
tors) (Goudarzi et al. 2013), Cycle reservoirs with regular jumps (CRJ) (Rodan and

(a) ring (b) lattice (c) fully-connected

Fig. 7 Network structures investigated in Dale et al. (2019a)

160 M. Dale et al.

Tiňo 2010), and delay-based reservoirs using a single non-linear node with a delay
line (Appeltant et al. 2011; Paquot et al. 2012).

The lattice topology (Fig. 7b) has greater connection complexity. In Dale et al.
(2019a), a square grid of neurons with each connected to its Moore neighbourhood
is defined. In this configuration, each node (except for the perimeter nodes) has eight
connections to neighbours and one self-connection, resulting in a maximum of nine
connections per node. Lattice networks/models are common in physics. Examples
include discrete lattices like the Ising model with variables representing magnetic
dipole moments of atomic spins, and the Gray–Scott reaction–diffusion model to
simulate chemical systems (Pearson 1993). Physical substrates often have a regular
grid of connections. Lattice networks are therefore more realistic representations of
many physical systems that would be considered for reservoir computing.

The fully connected topology (Fig. 7c) has the most connections and is considered
the most complex. This type of network is challenging to implement in physical
hardware.

The results inDale et al. (2019a) show that a directed and fully connected topology
(the ESNnetwork) occupies a greater area of the behaviour space, possessing a higher
quality than the others, independent of size. The other topologies struggle to reach
similar levels of coverage. The behavioural limits of these simpler networks appear
to have been reached.

A common pattern found across all topologies and connection types is that quality
increases with network size. Simpler structures can produce similar quality to more
complex networks simply by increasing network size. A visualisation of how two
network sizes (50 and 200-neuron) cover the behaviour space using each network
topology is given in Fig. 8. ESNs tend to occupy regions the others cannot, such
as chaotic regions (both high KR and high GR), and regions with larger memory
capacities. The ring and the lattice topologies appear to have similar maximummem-
ory capacities; however, lattices typically exhibit greater non-linearity and chaotic
behaviour (higher KR and GR values) than rings.

Directed and undirected connection types are also assessed in Dale et al. (2019a).
Connection type is equally as important as network topology. The coverage of a 100-
neuron ring and lattice is shown in Fig. 9. Each plot shows the directed connection
type (grey) and undirected type (black). Directed connections typically result in
broader dynamical behaviour, producing more “challenging” behaviours (high KR
and high MC). The difficulty in producing such behaviours exists because non-
linearity (KR) and ordered dynamics (MC) are often conflicting.

Adding more accessible parameters (i.e., more connections) does not always lead
to more dynamical behaviours. Networks with fewer free parameters (e.g., directed
rings) could still produce similar qualities to more structurally complex networks
(e.g., undirected lattices). Howweights are structured and directed has amuch greater
effect on the quality of the network (Dale et al. 2019a), supporting similar results
testing different hierarchical structures for reservoir computing (Dale 2018a).

Reservoir Computing in Material Substrates 161

(a) 50-neuron

(b) 200-neuron

Fig. 8 Topology effects. Superimposed behaviour space of a 50-neuron network, b 200 neuron
network. Showing 10 runs of 2000 generations each. Only the directed topologies are shown.
From Dale et al. (2019a)

5.4 CHARC Conclusions

The CHARC framework offers techniques to address several significant challenges
outlined for reservoir computing (Goudarzi and Teuscher 2016). It provides (i) a
framework to describe the computational expressiveness and complexity of substrates
as a function of parameters and behaviours, (ii) a means to assess whether measures
better represent the qualities/properties of the system, and (iii) a measure to assess
the limits of physical RC substrates.

As shown in Dale et al. (2019a, b), the framework has diverse applications. For
example, it can be used to evaluate and compare different substrates and design
choices, such as the role of structure in RC systems, without needing extensive
testing on tasks (see Sect. 5.3). In Dale et al. (2019b), the framework is also used
to model the non-trivial relationships between reservoir properties and performance.
Themodel can reliably predict task performance based on behaviour, across different
substrates, without the need to evaluate tasks directly on the substrate.

The framework could be used in evaluating and determining the benefits of phys-
ical RC implementations against non-physical ones, a question raised in Goudarzi
and Teuscher (2016). The framework could be used to improve substrate design,
or extended to other models of computation (Stepney 2019; Dale et al. 2020). The

162 M. Dale et al.

(a) 100-neuron ring

(b) 100-neuron lattice

Fig. 9 Directed versus undirected topology effects. Superimposed behaviour space of 100-neuron
ring and lattice network. Showing 10 runs of 2000 generations each. From Dale et al. (2019a)

flexibility of the framework allows for iterative improvements and expansion, for
example, extending it to evaluate hybrid models using heterotic computing. With
hybrid models, the behaviour space may be used as a repertoire of functional prim-
itives, or modules, to build or program complex architectures, such as hierarchical
reservoirs (Bürger et al. 2015; Dale 2018a; Gallicchio et al. 2017).

6 Conclusion

In a field that continues to diversify and excel, basic questions and theory in reservoir
computing, and computing with physical systems, are being left behind. The rapid
shift in recent years from virtual reservoir systems to physical ones has resulted in
fundamental theory struggling to keep up with practice, with experiments highlight-
ing the lack in theory, rather than theory proposing experiments.

In this chapter, we have highlighted areas of fundamental theory still undevel-
oped in computing with physical systems, and challenges in building unconven-
tional physical [reservoir] systems.We have discussed the importance of appropriate
encodings and representation, e.g., whether the computational model naturally fits

Reservoir Computing in Material Substrates 163

the computational substrate; programming and parameter selection, including think-
ing beyond single-task optimisation. And we have described a recent framework
that provides some useful techniques to understand physical and reservoir systems,
including amethod to assess and compare the expressiveness of computing substrates,
an exploratorymethod to configure systemswhen little is known about internal work-
ings, ameans to understand how substrate design choices affect behavioural/reservoir
range, and how the abstract behaviour space maps to the physical space.

At present, reservoir computing is not a complete model for physical computing,
however, it does have fundamental properties thatmake it simple, versatile, andhighly
efficient. Physical RC is therefore a stepping stone towards amoremature, principled
general methodology for discovering and exploiting good natural computational
models for material and physical computing.

Acknowledgements We thank the anonymous referees for their constructive comments, which
helped improve this chapter. This workwas supported by theUKEngineering and Physical Sciences
Research Council (EPSRC) SpInspired project [grant number EP/R032823/1].

References

B.Abubakar, I. Idris, I. Rosdiazli,M.S. Sadiq,Applications ofmetaheuristics in reservoir computing
techniques: a review. IEEE Access 6, 58012–58029 (2018)

A. Adamatzky (ed.), Advances in Unconventional Computing: Volume 1: Theory (Springer, 2016a)
A. Adamatzky (ed.), Advances in Unconventional Computing: Volume 2 Prototypes, Models and
Algorithms (Springer, 2016b)

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen,
C.R. Mirasso, I. Fischer, Information processing using a single dynamical node as complex
system. Nat. Commun. 2, 468 (2011)

L. Appeltant, G. Van der Sande, J. Danckaert, I. Fischer, Constructing optimized binary masks for
reservoir computing with delay systems. Sci. Rep. 4, 3629 (2014)

S. Basterrech, E. Alba, V. Snášel, An experimental analysis of the echo state network initialization
using the particle swarm optimization, in Sixth World Congress on Nature and Biologically
Inspired Computing (NaBIC 2014) (IEEE, 2014), pp. 214–219

H. Broersma, J.F. Miller, S. Nichele, Computational matter: evolving computational functions in
nanoscale materials, in Advances in Unconventional Computing (Springer, 2017), pp. 397–428

D. Brunner, M.C. Soriano, C.R. Mirasso, I. Fischer, Parallel photonic information processing at
gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013)

J. Bürger, A. Goudarzi, D. Stefanovic, C. Teuscher, Hierarchical composition of memristive net-
works for real-time computing, in Proceedings of the 2015 IEEE/ACM International Symposium
on Nanoscale Architectures (NANOARCH) (IEEE, 2015), pp. 33–38

L. Büsing, B. Schrauwen, R. Legenstein, Connectivity, dynamics, and memory in reservoir com-
puting with binary and analog neurons. Neural Comput. 22(5), 1272–1311 (2010)

F. Caravelli, J. Carbajal, Memristors for the curious outsiders. Technologies 6(4), 118 (2018)
P.Cariani, To evolve an ear. Epistemological implications ofGordonPask’s electrochemical devices.
Syst. Res. 10(3), 19–33 (1993)

K.C. Chatzidimitriou, P.A. Mitkas, A NEAT way for evolving echo state networks, in Proceedings
of the 19th European Conference on Artificial Intelligence (ECAI 2010) (IOS Press, 2010), pp.
909–914

164 M. Dale et al.

M. Dale, Unconventional reservoir computers: exploiting materials to perform computation, in
Eighth York Doctoral Symposium on Computer Science & Electronics (2015), p. 69

M. Dale, Neuroevolution of hierarchical reservoir computers, in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2018) (ACM, 2018a), pp. 410–417

M. Dale, Reservoir computing in materio. PhD thesis, University of York (2018b)
M. Dale, J.F. Miller, S. Stepney, M.A. Trefzer, Evolving carbon nanotube reservoir computers,
in International Conference on Unconventional Computation and Natural Computation (UCNC
2016) (Springer, 2016a), pp. 49–61

M. Dale, J.F. Miller, S. Stepney, M.A. Trefzer, Reservoir computing in materio: an evaluation of
configuration through evolution, in 2016 IEEE Symposium Series on Computational Intelligence
(SSCI) (2016b), pp. 1–8

M. Dale, J.F. Miller, S. Stepney, M.A. Trefzer, Reservoir computing in materio: a computational
framework for in materio computing, in International Joint Conference on Neural Networks
(IJCNN 2017) (2017), pp. 2178–2185

M. Dale, J. Dewhirst, S. O’Keefe, A. Sebald, S. Stepney, M.A. Trefzer, The role of structure
and complexity on reservoir computing quality, in International Conference on Unconventional
Computation and Natural Computation (UCNC 2019). LNCS, vol. 11493 (Springer, 2019a)

M. Dale, J.F. Miller, S. Stepney, M.A. Trefzer, A substrate-independent framework to characterise
reservoir computers. Proc. R. Soc. A 475(2226), 20180723 (2019b)

M. Dale, S. Stepney, M. Trefzer, Designing computational substrates using open-ended evolution,
in Artificial Life Conference Proceedings (MIT Press, 2020), pp. 665–667

J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, Information processing capacity of dynamical
systems. Sci. Rep. 2, 514 (2012)

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, All-optical reservoir computing.
Opt. Express 20(20), 22783–22795 (2012)

A. Ecoffet, J. Huizinga, J. Lehman, K.O. Stanley, J. Clune, Go-explore: a new approach for hard-
exploration problems (2019), arXiv:1901.10995

A.A. Ferreira, T.B. Ludermir, Comparing evolutionary methods for reservoir computing pre-
training, in International Joint Conference on Neural Networks (IJCNN 2011) (IEEE, 2011),
pp. 283–290

C. Gallicchio, A. Micheli, L. Pedrelli, Deep reservoir computing: a critical experimental analysis.
Neurocomputing 268, 87–99 (2017)

A. Goudarzi, C. Teuscher, Reservoir computing: Quo vadis? in Proceedings of the 3rd ACM Inter-
national Conference on Nanoscale Computing and Communication (ACM, 2016), p. 13

A. Goudarzi, M.R. Lakin, D. Stefanovic, DNA reservoir computing: A novel molecular computing
approach, in DNA Computing and Molecular Programming (DNA 2013) (Springer, 2013), pp.
76–89

S. Harding, J.F. Miller, Evolution in materio: Initial experiments with liquid crystal, in 2004
NASA/DoD Conference on Evolvable Hardware (IEEE, 2004), pp. 298–305

C. Horsman, S. Stepney, R.C. Wagner, V. Kendon, When does a physical system compute? Proc.
R. Soc. A 470(2169), 20140182 (2014)

D.C. Horsman, Abstraction/representation theory for heterotic physical computing. Philos. Trans.
R. Soc. A 373(2046), 20140224 (2015)

D. Horsman, S. Stepney, V. Kendon, The natural science of computation. Commun. ACM 60, 31–34
(2017)

D. Horsman, V. Kendon, S. Stepney, Abstraction/representation theory and the natural science of
computation, in Physical Perspectives on Computation, Computational Perspectives on Physics,
ed. byM.E. Cuffaro, S.C. Fletcher (Cambridge University Press, Cambridge, 2018), pp. 127–149

H. Jaeger, The “echo state” approach to analysing and training recurrent neural networks-with an
erratum note. GMDTechnical Report 148, 34. German National Research Center for Information
Technology, Bonn, Germany (2001a)

H. Jaeger, Short termmemory in echo state networks. GMD-Forschungszentrum Informationstech-
nik (2001b)

http://arxiv.org/abs/1901.10995

Reservoir Computing in Material Substrates 165

F. Jiang, H. Berry, M. Schoenauer, Supervised and evolutionary learning of echo state networks, in
Parallel Problem Solving from Nature (PPSN X) (Springer, 2008), pp. 215–224

V. Kendon, A. Sebald, S. Stepney, M. Bechmann, P. Hines, R.C. Wagner, Heterotic computing, in
International Conference on Unconventional Computation (UCNC 2011) (Springer, 2011), pp.
113–124

V. Kendon, A. Sebald, S. Stepney, Heterotic computing: past, present and future. Philos. Trans. R.
Soc. A: Math. Phys. Eng. Sci. 373(2046), 20140225 (2015)

Z. Konkoli, S. Nichele, M. Dale, S. Stepney, Reservoir computing with computational matter, in
[68] (2018), pp. 269–293

A.F. Krause, V. Dürr, B. Bläsing, T. Schack, Multiobjective optimization of echo state networks for
multiple motor pattern learning, in 18th IEEE Workshop on Nonlinear Dynamics of Electronic
Systems (NDES 2010) (IEEE, 2010)

R. Legenstein, W. Maass, Edge of chaos and prediction of computational performance for neural
circuit models. Neural Netw. 20(3), 323–334 (2007)

Lehman, K.O. Stanley, Exploiting open-endedness to solve problems through the search for novelty,
in ALife XI (2008), pp 329–336

J. Lehman, K.O. Stanley, Evolving a diversity of virtual creatures through novelty search and
local competition, in Proceedings of the 13th annual conference on Genetic and Evolutionary
Computation (GECCO 2011) (ACM, 2011), pp. 211–218

S. Lloyd, Ultimate physical limits to computation. Nature 406(6799), 1047 (2000)
W.Maass, T.Natschläger,H.Markram,Real-time computingwithout stable states: a new framework
for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

M. Massey, A. Kotsialos, D. Volpati, E. Vissol-Gaudin, C. Pearson, L. Bowen, B. Obara, D. Zeze,
C. Groves, M. Petty, Evolution of electronic circuits using carbon nanotube composites. Sci. Rep.
6, 32197 (2016)

F. Matzner, Neuroevolution on the edge of chaos, in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2017) (ACM, 2017), pp. 465–472

J.F. Miller, K. Downing, Evolution in materio: Looking beyond the silicon box, in NASA/DoD
Conference on Evolvable Hardware 2002 (IEEE, 2002), pp. 167–176

J.W. Mills, Polymer processors. Technical report TR580, Department of Computer Science, Uni-
versity of Indiana (1995)

J.W. Mills, The nature of the extended analog computer. Phys. D 237(9), 1235–1256 (2008)
M.Mohid, J.F.Miller, S.L. Harding, G. Tufte,M.K.Massey,M.C. Petty, Evolution-in-materio: solv-
ing computational problems using carbon nanotube-polymer composites. Soft. Comput. 20(8),
3007–3022 (2016)

J.B. Mouret, J. Clune, Illuminating search spaces by mapping elites (2015), arXiv:1504.04909
J.B. Mouret, S. Doncieux, Overcoming the bootstrap problem in evolutionary robotics using behav-
ioral diversity, in IEEE Congress on Evolutionary Computation (CEC 2009) (IEEE, 2009), pp.
1161–1168

J.B. Mouret, S. Doncieux, Encouraging behavioral diversity in evolutionary robotics: an empirical
study. Evol. Comput. 20(1), 91–133 (2012)

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, Optoelec-
tronic reservoir computing. Sci. Rep. 2, 287 (2012)

G. Pask, Physical analogues to the growth of a concept, in Mechanisation of Thought Processes,
National Physical Laboratory Symposium 10, HMSO, vol. II (1959), pp. 877–922

J.E. Pearson, Complex patterns in a simple system. Science 261(5118), 189–192 (1993)
J.K. Pugh, L.B. Soros, K.O. Stanley, Quality diversity: a new frontier for evolutionary computation.
Front. Robot. AI 3, 40 (2016)

J. Qiao, F. Li, H. Han, W. Li, Growing echo-state network with multiple subreservoirs. IEEE Trans.
Neural Netw. Learn. Syst. 28(2), 391–404 (2017)

A. Rodan, P. Tiňo, Simple deterministically constructed recurrent neural networks, in International
Conference on Intelligent Data Engineering and Automated Learning (Springer, 2010), pp. 267–
274

http://arxiv.org/abs/1504.04909

166 M. Dale et al.

A. Rodan, P. Tino, Minimum complexity echo state network. IEEE Trans. Neural Netw. 22(1),
131–144 (2011)

L.A. Rubel, The extended analog computer. Adv. Appl. Math. 14(1), 39–50 (1993)
A.T. Sergio, T.B. Ludermir, PSO for reservoir computing optimization, in International Conference
on Artificial Neural Networks (Springer, 2012), pp. 685–692

S. Stepney, Embodiment, in In Silico Immunology, ed. by D. Flower, J. Timmis (Springer, 2007),
pp. 265–288

S. Stepney, The neglected pillar of material computation. Phys. D 237(9), 1157–1164 (2008)
S. Stepney, Co-designing the computational model and the computing substrate, in International
Conference on Unconventional Computation and Natural Computation (UCNC 2019). LNCS,
vol. 11493 (Springer, 2019)

S. Stepney, S. Rasmussen, M. Amos (eds.), Computational Matter (Springer, 2018)
G. Tanaka, T. Yamane, J.B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, A.
Hirose, Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123
(2019)

A. Thompson, An evolved circuit, intrinsic in silicon, entwined with physics, in Evolvable Systems:
From Biology to Hardware (ICES 1996) (Springer, 1997), pp. 390–405

A.M. Turing, Intelligent machinery, in Machine Intelligence, vol. 5, ed. by B. Meltzer, D. Michie
(Edinburgh University Press, 1969), pp. 3–23 (published after the author’s death)

J. Yperman, T. Becker, Bayesian optimization of hyper-parameters in reservoir computing (2016),
arXiv:1611.05193

S.Yuenyong,On the gradient-based sequential tuning of the echo state network reservoir parameters,
in Pacific Rim International Conference on Artificial Intelligence (Springer, 2016), pp 651–660

http://arxiv.org/abs/1611.05193

	 Reservoir Computing in Material Substrates
	1 Introduction
	2 Computing with Physical Systems
	2.1 Unconventional Computing
	2.2 Configuring Physical Systems to Compute

	3 Reservoir Computing with Physical Systems
	3.1 Encoding and Representation in Reservoir Computers
	3.2 Abstraction/Representation (A/R) Theory
	3.3 Observing Reservoir States

	4 The Search for Reservoirs
	5 What Makes a Good Physical Reservoir?
	5.1 Framework Outline
	5.2 Characterising Substrate Quality
	5.3 Using Quality to Assess Substrate Design
	5.4 CHARC Conclusions

	6 Conclusion
	References

