
Reservoir Computing for Forecasting
Large Spatiotemporal Dynamical
Systems

Jaideep Pathak and Edward Ott

Abstract Forecasting of spatiotemporal chaotic dynamical systems is an important
problem in several scientific fields. Crucial scientific applications such as weather
forecasting and climate modeling depend on the ability to effectively model spa-
tiotemporal chaotic geophysical systems such as the atmosphere and oceans. Recent
advances in the field of machine learning have the potential to be an important tool
for modeling such systems. In this chapter, we review several key ideas and dis-
cuss some reservoir-computing-based architectures for purely data-driven as well as
hybrid data-assisted forecasting of chaotic systems with an emphasis on scalability
to large, high-dimensional systems.

1 Motivation

This chapter is motivated by problems in the forecasting of large, complex, spa-
tiotemporally chaotic systems and by the possibility that machine learning might
be a useful tool for the significant improvement of such forecasts. Examples of the
type of potential tasks we have in mind are forecasting ocean conditions; forecast-
ing conditions in the solar wind, Earth’s magnetosphere, and ionosphere (so-called
‘space weather’, important for Earth-orbiting spacecraft, GPS accuracy, power-grid
disruptions, etc.); forecasting the spatial distribution of plant growth in response to
environmental changes; forecasting the development of forest fires and their response
to fire fighting strategies; and weather forecasting.

Focusing on weather forecasting as perhaps the most important such example,
we note the following two relevant points: (i) weather forecasts impact the lives
of many millions of people, e.g., by providing warnings of destructive events, like
hurricanes or snowstorms; (ii) currently used weather forecasting employs physics-
based models (the equations of fluid dynamics, radiative heat transfer, etc.), plus

J. Pathak (B) · E. Ott
University of Maryland, College Park, MD, USA
e-mail: jpathak@umd.edu

E. Ott
e-mail: edott@umd.edu

© Springer Nature Singapore Pte Ltd. 2021
K. Nakajima and I. Fischer (eds.), Reservoir Computing, Natural Computing Series,
https://doi.org/10.1007/978-981-13-1687-6_6

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1687-6_6&domain=pdf
mailto:jpathak@umd.edu
mailto:edott@umd.edu
https://doi.org/10.1007/978-981-13-1687-6_6


118 J. Pathak and E. Ott

geographical knowledge of mountains, oceans, etc. The models in (ii), however,
have substantial errors, which, for example, may arise due to imperfect modeling
of crucial subgrid-scale dynamics (like clouds, turbulent atmospheric motions, and
interactions with small-scale geographic features).

Can machine learning from data potentially correct such knowledge deficits and
thus contribute to significant improvement of forecasts? For other recent work which
addresses the issue of using machine learning for analyzing and forecasting spa-
tiotemporal dynamical systems, see Brunton et al. (2016), Lusch et al. (2018), Raissi
et al. (2019), Vlachas et al. (2018), and Wan et al. (2018). In this paper, focusing on
reservoir computing, we discuss and summarize some recent research that may be
relevant to this question.

2 Background: Prediction of ‘Small’ Chaotic Systems

Machine Learning (ML) prediction of the ergodic chaotic evolution of a dynamical
system was considered by Jaeger and Haas (2004) in the context of reservoir com-
puting (Jaeger 2001). The basic idea of their scheme is illustrated (in its discrete
time version) in Fig. 1. Given time-series training data u(n), obtained from sampling
measurements of some unknown chaotic dynamical system on an ergodic attractor
(with a sampling time interval �), for n = −T,−T + 1,−T + 2, . . . ,−1, the ML
system is trained to output u(n + 1), when u(n) is the input (Fig. 1). If the vector
state of the unknown dynamical system is denoted by x, we can represent the mea-
surements by a ‘measurement function’ H such that the measurement vector u is
given by

u(n) = H(x(t)), t = n�. (1)

Since the dimension of umay be less than twice the dimension of the attractor of the
dynamical system in x-space, Eq.1 may not be an embedding (Sauer et al. 1991),
and, to compensate for this, it is important that the ML system has memory. That is,
the current state of the ML device depends on its current input and on the history
of the inputs. (Memory can also be realized or supplemented by incorporating time-
delayed measurements as additional components of u(t); however, for simplicity we
will not further consider this possibility here.)

As an example, assume that the goal is to predict the future value of the measure-
ments. Following Jaeger and Haas (2004), when, after the training phase (Fig. 1a),
the time to predict comes, the input from the measured state is no longer available
and, as shown in Fig. 1b, is replaced by the ML system output; i.e., the output is
fed back into the input. Thus, at the beginning step of the forecasting phase, u(0) is
made the input, which, if all goes well, then produces a new (forecasted) output u(1),
which, when fed back, outputs a forecast for u(2), which when fed back outputs a
forecast for u(3), and so on. Of course, there is always some small error in the output
(e.g., if the input is u(0), the output is only approximately u(1)), and due to the



Reservoir Computing for Forecasting Large Spatiotemporal … 119

ML device with
memory

ML device with
memory

(a) (b)

Fig. 1 Schematic illustration of the a training phase, and b prediction phase for a simple ML
forecasting system

assumed chaos of the dynamical system generating the measurements, these errors
build up as the feedback loop is successively traversed. Thus, as is typical for chaotic
processes, the prediction accuracy eventually breaks down. So good prediction can
only be expected for several Lyapunov times.

Note that the closed-loop system shown in Fig. 1a may itself be regarded as an
autonomous dynamical system. Thus in Lu et al. (2018), Lu et al. have employed
dynamical systems theory concepts (especially the concepts of ‘generalized syn-
chronization’ Afraimovich et al. 1986; Kocarev and Parlitz 1996; Pecora et al. 1999;
Rulkov et al. 1995 and Lyapunov exponents Abarbanel 2012; Kantz and Schreiber
2004; Ott 2002; Ott et al. 1994) to analyze conditions on the ML system that make
for good reproduction of the dynamics of the unknown system that produces the data.

With regard to the time step �, one might have the following question. Assuming
that one is interested in forecasting a chaotic process forward by an amount of time
T , why not simply set � = T and do one prediction step (thus eliminating the need
for the closed-loop configuration in Fig. 1b)? The answer is that for typical cases,
one is often interested in prediction times T that may be as large as several Lyapunov
times (a Lyapunov time is a typical time it takes a small orbit perturbation to grow
by a factor of e). In such cases, with � = T , small changes in u(n) can lead to
relatively large changes in u(n + 1). Thus, the functional relationship that the ML
system is trained to learn is relatively complex (‘wiggly’) making its task relatively
hard. Accordingly, it has been found that using smaller � with the feedback loop as
shown in Fig. 1b is advantageous.

One aspect of the forecasting scheme illustrated in Fig. 1 is that the various ver-
sions of ML can in principle be employed. Since memory is typically required, and
is, in any case, expected to be advantageous for prediction tasks, the twomost natural
candidates for consideration are reservoir computing (as in the paper of Jaeger and
Haas 2004) and Long Short-Term Memory (Hochreiter and Schmidhuber 1997) (as
in the paper of Vlachas et al. 2018). In this chapter, we consider reservoir comput-
ing due to its appreciably shorter training times and its potential for advantageous
physical implementations discussed in other chapters of this book.



120 J. Pathak and E. Ott

3 Machine Learning and the Forecasting of Large,
Complex, Spatiotemporally Chaotic Systems

The scheme (Jaeger and Haas 2004) described in Fig. 1 and Sect. 2 works well for
small to moderate size systems. However, we find that straightforward scaling of,
e.g., a reservoir computing implementation of Fig. 1 to very large size results in
requirements that appear to be unfeasible or, at least, very demanding, in practical
terms (e.g., with respect to the reservoir size required, amount of training data, and
computations for training). Thus we seek ways of mitigating this problem. Specifi-
cally, we wish to apply prior physical knowledge of the system to be forecasted and
integrate this prior knowledge with a machine learning approach via a suitable pre-
diction system architecture. In particular, we consider two types of prior knowledge
as described below.

First, we note that information in spatially extended physical systems generally
propagates at a finite speed. Thus, a perturbation applied at some point in space will
not immediately affect the state at some distant point. We refer to this as ‘the locality
of short-term causal interactions’ (LSTCI). Assuming, for illustrative purposes, that
space is one dimensional, if we want to predict the state at time t + � in the region
x0 − l0 < x < x0 + l0 from the state at time t , we only need to consider the state
at time t within the region, x0 − (l0 + d) < x < x0 + (l0 + d), where d is large
enough such that information affecting the prediction of the state in the region,
x0 − l0 < x < x0 + l0, does not propagate fast enough to move a distance d over the
one-step prediction time �. Thus, a parallel approach (Sect. 4) can be employed in
which multiple ML systems predict u in corresponding limited overlapping spatial
regions where the lengths of the overlap between regions are at least d. This will be
discussed in Sect. 4.3 (note that this consideration provides an added motivation for
considering � to be small).

The second type of physical knowledge comes from knowledge-based modeling,
typically in the form of inaccurate partial differential equations like those discussed
in Sect. 2 in the context of weather forecasting. In Sect. 5, we discuss a hybrid tech-
nique that utilizes both an imperfect knowledge-based model and a relatively small
Reservoir Computing ML forecaster (see Wan et al. 2018 for a similar implemen-
tation using Long Short-Term Memory ML). In the training of the hybrid system,
the state variables of both the ML system and the knowledge-based system are com-
bined via a set of adjustable ‘weights’ in such a way as to very closely fit the desired
prediction system outputs as determined by the training data. Thus, we view the
training as being designed to take the best aspects of the predictions of the ML com-
ponent and the knowledge-based component and to combine these good aspects in
a semi-optimal fashion. Indeed, as we later show (Sect. 5), even in a case where
the knowledge-based system error and the relatively small size of the ML compo-
nent were such that each acting alone gave relatively worthless forecasts, that, when
incorporated into our hybrid scheme, excellent forecasts can result. Furthermore, as
we will document elsewhere, the machine learning component typically requires less



Reservoir Computing for Forecasting Large Spatiotemporal … 121

training data for use in the hybrid scheme than would be the case for a much larger,
pure machine learning system.

In Sect. 6, we discuss and illustrate a prediction system architecture for combining
the parallel and hybrid schemes so as to create a methodology that is potentially
scalable to very large complex systems. In this combined scheme, we envision the
knowledge-based component of this combined system to be global and not based on
the LSTCI assumption (e.g., like models currently used for weather prediction).

4 Distributed Parallel Prediction

In this section, we describe how to efficiently train a Reservoir Computer to pre-
dict time-series from high-dimensional spatiotemporal chaotic systems. This scheme
was introduced in Pathak et al. (2018a). As mentioned in Sect. 3, we will exploit
the locality of short-term causal interactions (LSTCI), present in many spatiotem-
poral systems of interest, to divide the computational task over many independent
computing units or ‘cores’. The key idea behind this division is our assumption that
the near-term future of the state of a particular spatial region of the spatiotemporal
system is only affected by dynamics occurring nearby (in a spatial sense), and the
dynamics occurring far away from it has no effect. This assumption presupposes the
absence of short-term long-range interactions in the spatiotemporal system.

For simplicity, in most of what follows, we consider a spatiotemporal dynami-
cal system defined by some set of equations evolving a scalar state variable y(x, t)
forward in time (t) in a one-dimensional spatial domain (x) with periodic boundary
conditions. Thus, x ∈ [0, L) and y(x + L , t) = y(x, t). We assume that the mea-
surement vector u(n), is K−dimensional with each scalar element of u(n) being the
state variable y(x, t), measured at regular intervals of time � and over a uniformly
spaced spatial grid with K grid points: x = (L/K ), (2L/K ), (3L/K ), . . . , L .

4.1 Partitioning the Spatial Grid

We thus have a set of K time series uk(n), 1 ≤ k ≤ K on K grid points where t = n�

and n is an integer. Themeasurement vectoru(n) is thus a K−vectorwhose kth scalar
element is uk(n). As shown in Fig. 2, we then use the K−dimensional measurement
vector u(n) to form a set of M vectors {vi (n)}i=1,2,...,M where each such vector i has
dimension (K/M) + 2l, and its entries consist of the y values at time n in overlapping
regions where each region i has K/M central nodes supplemented by overlap buffer
regions to its left and right of length l nodes each (e.g., in the schematic illustration
shown in Fig. 2, l = 2 and (K/M) = 4). The choice of l is made using our LSTCI
assumption and requiring that the time � prediction of the K/M central nodes of
vector vi (n) is (to a very good approximation) not influenced by nodal states not
included in vi (n).



122 J. Pathak and E. Ott

Fig. 2 Partitioning scheme

The K grid points are also partitioned intoM non-overlapping groups with K/M-
dimensional state vectors, si for i = 1, 2, . . . , K/M , as illustrated in Fig. 2 (from
Fig. 2, we see that vi becomes si when l is set to zero). The task of obtaining the time
� prediction of each such group is assigned to M separate ML systems which will
be trained to learn the local group dynamics and predict the future state of the time
series at those grid points. Making use of our LSTCI assumption, we suppose that �
is small enough that si (n + 1) depends on si (n + 1), but is independent of vi±k(n)

for k ≥ 1.
Note that l and M are ‘hyperparameters’ of our model and can be tuned while

optimizing with respect to factors such as computational cost and prediction results.
We use the term hyperparameters to denote a small set of parameters that are not
adjusted via the training procedure and that characterize gross overall features of the
ML device (e.g., the hyperparameters we deal with are the amount of nonlinearity
and memory, the reservoir size, input coupling strength, and training regularization).
Hyperparameters are often set by the user on an empirical, trial-and-error basis so as
to achieve ‘good’ results on a test data set (typically, the test data set is separate from
the training data set so as to ensure generalization of training). Hyperparameters can
also be set more systematically via optimization techniques.

The above description (e.g., Fig. 2) is for the case of a spatially one-dimensional
system. The generalization to higher dimensions is straightforward and is indicated
for the two-dimensional case in Fig. 3, in which the solid black lines divided space
into square patches labeled by the two subscripts (i, j), the vector si, j (analogous to
si in the one-dimensional case) specifies the system state within patch (i, j), and the
vector vi, j (analogous to vi in the one-dimensional case) specifies the system state in
the expanded overlapping regions indicated by the dashed square in Fig. 3. (A similar
scheme was also used in Zimmermann and Parlitz 2018 to infer unmeasured state
variables.)

4.2 Training

Now specializing in the case of Reservoir Computing, using a simple procedure
outlined in Jaeger and Haas (2004), we generate M reservoir systems each based on
a D � K/M node recurrent artificial neural network characterized by a weighted



Reservoir Computing for Forecasting Large Spatiotemporal … 123

Fig. 3 Spatial regions si, j and vi, j for two-dimensional ML parallel prediction. See also Zimmer-
mann and Parlitz (2018)

Reservoir

(a) (b)

Reservoir

Fig. 4 aOpen-loop ‘training’ configuration; bClosed-loop ‘prediction’ configuration for the reser-
voir computing prediction scheme

adjacency matrix Ai . Assuming that initial start-up transient activity is omitted,
during the training phase, which we take to run from n = −T to n = −1, each of
the M reservoir networks (Fig. 5) evolves according to the following equation:

ri (n + 1) = tanh
[
Airi (n) + Win,ivi (n)

]
, (2)

where ri is the D−vector whose elements are the states (which are here taken to
be scalars) of each of the network nodes, and the D × [(K/M) + 2l] matrix Win,i

couples the i th input training vector vi to nodes of the recurrent reservoir network.
The reservoir states ri (n), −T ≤ n ≤ −1 are stored in a matrix Ri , such that the T



124 J. Pathak and E. Ott

columns of Ri are the vectors ri (n). The state vector ri is then used to produce an
output vector whose dimension is K/M . In the simplest case (not necessarily the
only choice), this is done via a (K/M) × D output coupling matrixWout,i , such that
the output is Wout,iri . We regard the parameters formed by the elements of Win,i

and Ai as fixed and use only the parameters of the output coupling function, i.e.,
the matrix elements ofWout,i for training. That is, we adjustWout,i so that a desired
training output results. In accord with the left panel of Fig. 1, we desire the output to
approximate si (n + 1) when the training input is vi (n),

Wout,iri (n + 1) � si (n + 1), (3)

for −T ≤ n ≤ −1. Calculating a matrix Wout,i that satisfies Eq. (3) is referred to
as ‘training’ the neural network. This is illustrated in Fig. 5. In Eq.3, the training
problem is incompletely defined as we have not specified what exactly we mean by
the ‘�’ sign. The simplest possible choice is to require that the right-hand side and
left-hand side of Eq. (3) be approximately equal in the sense of their �2 norms. Thus,
one might choose the matrixWout,i that minimizes the sum of squared deviations of
the output from its desired target value,

ε =
−1∑

n=−T

‖Wout,iri (n + 1) − si (n + 1)‖2. (4)

However, this can often be problematic, and to avoid overfitting to the training data
and better promote the generalizability of the training to cases beyond the training
data, a regularization procedure is typically employed. To this end, Wout,i is often

Forecast time state

Spatial Grid time state

Fig. 5 Parallelized prediction scheme. (K/M) = 2, l = 1. The open-loop configuration corre-
sponds to this figure with the dashed line ignored. The closed-loop configuration is represented
by the dashed line which indicates that the required inputs to the reservoirs are taken from the
corresponding outputs



Reservoir Computing for Forecasting Large Spatiotemporal … 125

required tominimize ε + εr , where εr is a term that penalizes excessively large values
of the training parameters,

εr = β
∑

j

‖Wout,i‖2: j . (5)

In Eq. (5), ‖·‖: j denotes the �2 norm of the j th column of a matrix and β is a
hyperparameter called the regularization constant that determines the strength of the
regularization term. Note that this minimization is a standard linear regression prob-
lemwith a well-knownmatrix-based solution (e.g., see Eq. (6) below). Alternatively,
if the matrix inverse is computationally onerous (as might be the case for very large
D), one can minimize (ε + εr ) by the steepest descent. Another device, used in what
follows to increase the expressive power of the reservoir computing network without
sacrificing the training simplicity afforded by linear regression is to construct a vector
r∗ from r such that the elements r j of r and r∗

j of r
∗ are related by the following rule:

r∗
j = r2j if j is even and r

∗
j = r j if j is odd. Putting all of this together, we obtain the

expression for Wout,i ,

Wout,i = (
R∗

i R
∗T
i + βI

)−1
R∗

i S
T
i (6)

whereR∗
i is the D × T matrix with columns given by the vectors r∗

i (n), and Si is the
(N/M) × T matrix whose columns are the training data time-series vectors si (n).
Note that each of the individual reservoir systems i is trained independently, and thus
training is parallelized. Furthermore, the input and output dimensions can be much
smaller than the size of the global measurement state. Thus, the individual parallel
reservoirs can bemuch smaller than would be the case without making use of LSTCI.
Having determined Wout,i , we rewrite Eq. (3) as

Wout,ir∗
i (n + 1) = s̃i (n + 1) (7)

where s̃i (n) denotes themachine learning approximation to the true group i state vec-
tor si (n). Similarly, for later reference, wewill also use ṽi to denote the corresponding
approximation to vi .

For later reference, in all of the numerical experiments reported in what follows,
adjacency matrices are random Erdős–Renyi matrices of fixed average degree that
are scaled by multiplication by a constant so as to fix the matrix spectral radius
(magnitude of its largest eigenvalue) at a pre-selected value denoted by ρ, and the
elements of the input coupling matrices are each randomly selected numbers with
uniform probability in [−σ,σ]. Both ρ and σ are hyperparameters. For the tasks we
study, we find that the reservoir computer performance is largely insensitive to the
reservoir network topology. For specificity in the example given in this paper, we
use random Erdős–Renyi networks with an average degree equal to 3.



126 J. Pathak and E. Ott

4.3 Prediction

At the end of theminimization procedure described above, we obtain the set of matri-
cesWout,i that maps the internal state of the reservoir ri (n) at a given instant of time
to a good approximation of the state of the vector u(n). Since ri (n) is dependent on
past inputs (vi (n − k), k ≥ 1), we hope to have trained the reservoir to perform single
step forecasts of step size �. We know this to be true on the training data. Whether
the training generalizes to ‘out-of-sample’ data, i.e., the time series u(n) outside
the interval −T ≤ n ≤ −1 is a separate question. This question will be addressed
empirically by numerical experiments in sections to follow. In the prediction stage,
we re-configure our parallel ML system to generate forecasts for n > 0 (see Fig. 5
as follows):

step 1: s̃i (n) = Wout,ir∗
i (n)

step 2: Construct ṽi (n) from s̃i (n), s̃i±1(n)

step 3: ri (n + 1) = tanh
[
Airi (n) + Win,i ṽi (n)

] (8)

That is, the one-step-ahead output predictions of s j (n + �) for j = i − 1, i, i + 1,
are used to construct a prediction for vi (n + �), which is then fed back to the input
of the reservoir system i , producing a new output prediction of si (n + 2�), and this
process is cyclically repeated. To summarize, the prediction algorithm in Eq.8 has
three key steps. In the first step, we compute the output of each reservoir network
s̃i (n) to get a �-step prediction. Next, we construct the overlapping partitions ṽi (n)

from s̃i (n), s̃i±1(n). The vector ṽi is the feedback from the output of the reservoir
network to the input. Equation8 forms an autonomous dynamical system that predicts
the future states of the dynamical system that it was trained on.

4.4 Re-synchronization

The prediction scheme described in Sect. 4.3 will be expected to generate accurate
predictions for a finite amount of time determined by the fundamental properties
of the chaotic dynamical system being predicted, especially the average error e-
folding time (the inverse of the largest Lyapunov exponent of the chaotic process
of interest Ott 2002). Because of the chaos, the predictions will necessarily diverge
from the ground truth after some amount of time. After the predicted trajectory of the
dynamical system has diverged far enough from the true trajectory, the predictions
made by the reservoir system are no longer accurate enough to be useful. If, after
such a divergence, one wishes to restart prediction from some later time, the reservoir
system does not have to be re-trained in order to generate accurate new predictions.
Rather, we find that it is sufficient to re-synchronize the reservoir network states ri (n)

with the ground truth by simply running the reservoir networks without feedback
according to Eq. (2) for ξ time steps prior to the desired beginning of prediction.



Reservoir Computing for Forecasting Large Spatiotemporal … 127

Importantly, we find that the necessary re-synchronization time is very much smaller
than the necessary training time ξ 	 T . Thus, we emphasize that the output weights
Wout,i do not need to be re-computed for subsequent predictions at later times.

4.5 An Example: A Lorenz 96 Model

We consider one of the classes of ‘toy’ models of atmospheric dynamics proposed in
a 1996 paper of Lorenz (1996) and use it as a testbed for our parallelized prediction
setup. The particular model we use is defined as a set of interacting scalar variables
X j (t), 1 ≤ j ≤ N on a spatially periodic grid (X j+N (t) = X j (t)) with the dynamics
given by the coupled ordinary differential equations,

dX j

dt
= −X j + X j−1X j+1 − X j−1X j−2 + F. (9)

We numerically integrate Eq. (9) using a standard fourth-order Runge–Kutta scheme
and generate simulated time-series data. We sample the simulated data at the time
step intervals � = 0.01 to generate the training data vectors u(n) in the interval
−T ≤ n ≤ −1, where T = 80,000. We also generate a test data set y(n) in the
interval 0 ≤ n ≤ 20,000. The training data set is used to train the reservoir computing
system according to the scheme outlined in Sect. 4 while the test data set is used to
validate the accuracy of the predictions. The validation scheme is as follows:

• Step 1: We generate a random set of 50 ‘initial time points’ nk , 1 ≤ k ≤ 50, such
that 1 ≤ nk ≤ 20,000 − τ − ξ.

• Step 2: The test data y(n) is used to synchronize the reservoirs to the true trajectory
for ξ time steps between nk and nk + ξ according to the synchronization procedure
outlined in Sect. 4.4.

• Step 3: The reservoir network is run in prediction mode according to Eq. (8) for
τ time steps. We evaluate the prediction error in this interval by comparing the
predicted data with the ground truth. The spatially averaged RMS prediction error
at time n is evaluated according to

e(n) = ‖ũ(n) − u(n)‖
√〈‖u(n)‖2〉n

. (10)

• Steps 2 and 3 are repeated for the next point in the set, nk+1.

The reservoir and model hyperparameters are listed in Table1. Figure6 shows the
results of forecasting a single interval. Panel (a) of Fig. 6 shows a direct numerical
solution of Eq. (9) for the value of X j (represented on a color scale) as a function
of spatial position j (vertical axis) and of time �t plotted along the horizontal axis
where � denotes the maximum Lyapunov exponent of the chaotic process. (Note
the wave-like behavior visible in this pattern. This wave-like behavior is purposely



128 J. Pathak and E. Ott

Table 1 Lorenz 96 prediction hyperparameters

Hyperparameter Value Hyperparameter Value

ρ 0.6 D 5000

σ 0.1 T 80,000

ξ 32 β 10−4

l 2 τ 1000

induced by Lorenz’s design of the model so as to mimic the presence of atmospheric
Rossby waves.) The largest Lyapunov exponent for this system with parameters
N = 40, F = 8 is � = 1.4. See Karimi and Paul (2010). Panel (b) shows the error
in the ML prediction starting at time zero, where the error is the ML predicted value
of X j (plotted in panel (b)) minus the ‘true’ value of X j (plotted in panel (a)). We see
that, for this case, a useful forecast (error near zero over a significant spatial region)
is obtained out to about four Lyapunov times. Panel (c) shows the spatially averaged
RMS error e(t) corresponding to panel (b) versus time, showing how that prediction
quality degrades with time. In order to illustrate the typical forecasting quality for
this system and the variance in the forecast quality on different parts of the attractor,
Fig. 7 shows the RMS error for 50 trajectories of length τ (cyan curves) plotted along
with the mean (black curve). Additionally, Fig. 8 shows the effect of changing the
number (M) of parallel reservoirs (and thus, changing the computational power) on
the quality of prediction. We see that longer forecasting times result as M increases.
We emphasize that our results are for the case of perfectly accurate measurements,
and that prediction quality degrades as the measurements are corrupted by noise. For
example, for large enough noise the improvement of prediction with an increase of
M from 5 to 20 seen in Fig. 8 might be absent when the noise becomes the prediction
limiting factor.

4.6 Another Example: The Kuramoto–Sivashinsky Equation

We now report on tests of our parallel reservoir prediction scheme using the
Kuramoto–Sivashinsky system defined by the partial differential equation,

∂y

∂t
+ y

∂y

∂x
+ ∂2y

∂x2
+ ∂4y

∂x4
= 0. (11)

Here, y(x, t) is a scalar field defined on the spatial domain x ∈ [0, L) with periodic
boundary conditions so that y(x + L , t) = y(x, t).Wenumerically integrate Eq. (11)
using a pseudo-spectral scheme described inKassam andTrefethen (2005). The time-
series data is sampled at � = 0.25 and used to create a training data set with T =
80,000 time steps and a test data set of length 20,000 time steps. We follow the same



Reservoir Computing for Forecasting Large Spatiotemporal … 129

20

40

-10

-5

0

5

10

20

40

20

40

0 2 4 6 8 10
0

1

0

0

0

(a)

(b)

(c)

(d)

Fig. 6 Lorenz 96 prediction results for parameter value F = 8, N = 40. Panel a shows the true
trajectory to be predicted by the reservoir. Panel b shows the reservoir predictionwithM = 20 reser-
voirs and a locality parameter l = 2. Panel c shows the difference between the reservoir prediction
and the true trajectory. Panel d shows the normalized RMS error e(t) in the reservoir prediction as
a function of time

validation procedure as outlined in Sect. 4.5 and test the accuracy of our forecasting
results. Figure9 shows the results for a single prediction interval. Figure10 shows
the variability in the prediction accuracy (as measured by the RMS error) on different
intervals of the attractor. The effect of changing the number of reservoirs (M) used
in the prediction setup is qualitatively similar to those resulting from our tests on the
Lorenz 96 model, Eq. (9) shown in Fig. 8.



130 J. Pathak and E. Ott

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 7 RMS error in reservoir predictions over multiple intervals starting from different points on
the attractor. The parameters of the Lorenz model are F = 8 and N = 40. The reservoir system is
composed of M = 20 reservoirs with hyperparameters given in Table1

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 8 RMS error e(n) averaged over 50 prediction intervals in the Lorenz 96 prediction for
parameter value F = 8, N = 40. The number of reservoirs used (M) in the parallel prediction is as
indicated in the legend



Reservoir Computing for Forecasting Large Spatiotemporal … 131

15 200 5 10

-2

-1

0

1

2

0

1

(a)

(b)

(c)

(d)

Fig. 9 Kuramoto–Sivashinsky prediction results. Panel a shows the true trajectory to be predicted
by the reservoir. The periodicity length is L = 100. The K = 256 time series is predicted using
M = 32 reservoir and a locality parameter l = 6. Panel b shows the reservoir prediction. Panel c
shows the difference between the reservoir prediction and the true trajectory, i.e., b minus a. Panel
d shows the normalized RMS error e(t) in the reservoir prediction as a function of time

5 Hybrid Forecasting

We next consider the important and frequently encountered situation where a phys-
ical, knowledge-based model of a dynamical system is available but is imperfect in
the sense that its dynamics deviates from that of the system that it is meant to model.
This kind of model error can significantly degrade the predictions made by such a
knowledge-based model. In this section, we show that machine learning can be a
very useful tool for mitigating deficiencies of typical knowledge-based prediction
systems. The hybrid forecasting configuration used in this section was introduced in
Pathak et al. (2018b).

Figure11 illustrates our scheme for implementing a hybridmachine learning setup
that combines an imperfect knowledge-based model of a dynamical system with a



132 J. Pathak and E. Ott

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 10 RMS error in reservoir predictions over multiple intervals starting from different points on
the attractor. The periodicity length of the KS system is L = 100. The reservoir system is composed
of M = 32 reservoirs with hyperparameters given in Table2

Table 2 Kuramoto–Sivashinsky system prediction hyperparameters

Hyperparameter Value Hyperparameter Value

ρ 0.6 D 5000

σ 1 T 80,000

ξ 32 β 10−4

l 6 τ 1000

reservoir-computing-based machine learning setup. In the next section, we describe
the training and prediction scheme illustrated in Fig. 11.

5.1 Training

We assume that we have a training data set u(n), −T ≤ n ≤ −1, of measurements
from the dynamical system of interest that have been sampled on a time interval
�. Further, we assume that we have an imperfect model of the dynamical system
denoted by M, so that

ũM(n + 1) = M[u(n)] (12)



Reservoir Computing for Forecasting Large Spatiotemporal … 133

Knowledge-Based
Model

Reservoir

Knowledge-Based
Model

Reservoir

(a) (b)

Fig. 11 Hybrid Forecasting Scheme for combining the reservoir prediction with an imperfect
knowledge-based model. During the training phase a, the system is in an open-loop configuration
while in the prediction phase b, the system is in a closed-loop configuration

gives us an approximate �-step prediction of u(n). We construct a reservoir with
D nodes connected according to the adjacency matrix A and denote the state of the
reservoir by r. In the interval −T ≤ n ≤ −1, we evolve the reservoir according to
the equation,

r(n + 1) = tanh(Ar(n) + Winu(n)), (13)

and collect the states r(n) for −T ≤ n ≤ −1. We also collect the imperfect model
forecasts ũM(n + 1) = M[u(n)] for −T ≤ n ≤ −1. Let h(n) be the vector formed
by concatenation of the reservoir state and the imperfect model forecast as h(n) =
[r(n); ũM(n + 1)]. The trained output weights of the hybrid reservoir forecasting
system are calculated similar to Eq. (6) so that

Wouth(n + 1) = ũH (n + 1). (14)

Note that, by the minimization carried out by the training procedure, it is reasonable
to think of this output as a semi-optimal combination of the ML component and the
imperfect knowledge-based component.

5.2 Prediction

After the training weights have been computed, we can start prediction at any time
n0 ≥ 0. For example, if n0 > ξ we do the following steps:

• Step 1: Synchronize the hybrid system to the ground truth for ξ steps by running
the open-loop system, Eqs. 12, 13, from n = n0 − ξ to n = n0.

• Step 2: Predict for the next τ (� ξ) steps using the closed-loop system illustrated
in Fig. 11b and described by the equations,



134 J. Pathak and E. Ott

ũH (n) = Wout[r(n); ũM(n + 1)], (15)

r(n + 1) = tanh(Ar + WinũH (n)). (16)

5.3 An Example: Kuramoto–Sivashinsky Equations

We demonstrate the hybrid prediction setup using the Kuramoto–Sivashinsky equa-
tion. In this section, we consider training data generated by numerically simulating
Eq. (11). Let the imperfect model be given by the following equation:

∂y

∂t
+ y

∂y

∂x
+ (1 + ε)

∂2y

∂x2
+ ∂4y

∂x4
= 0 (17)

with x ∈ [0, L) where L is the periodicity length. In Eq. (17), the parameter ε
describes how closely the equation models the true dynamical system given by
Eq. (11). A larger value of ε indicates a larger model error, and thus, a less accurate
model. We consider a KS system with L = 35. Figure12 illustrates the advantage
of the hybrid forecasting scheme over either a pure machine learning approach or
the imperfect model by itself. The top panel shows the result of the direct numerical
solution of the KS equation (i.e., Eq. 11). The next three panels [(a), (b), (c)] show
the error of the reservoir prediction [panel (a)], of the imperfect model [panel (b)]
and of the hybrid [panel (c)] for a case with a moderate size reservoir (D = 5000
nodes) and a relatively small amount of model error (ε = 0.01). We see from panels
(a)–(c) that the predictions from the reservoir and from the imperfect knowledge-
based model both yield prediction results that are of reasonable value (duration of
useful predictions lasting about 1.5 and 2.3 Lyapunov times, respectively), but that
the hybrid yields a substantially longer duration of useful prediction (about 6.2 Lya-
punov times) than either of its two components. Panels (d), (e), and (f) are for a
situation in which the reservoir is substantially smaller (D = 500) and the error
in the knowledge-based model is substantially greater (ε = 0.1). Panels (d) and (e)
show that for this case, the predictions of both the reservoir and the knowledge-based
model are fairly worthless. Nevertheless, when these two components are combined
in a hybrid, they yield substantial prediction power as indicated in panel (f) (i.e.,
prediction time of about 4.5 Lyapunov times).

6 Parallel/Hybrid Forecasting

For our goal of using machine learning to improve forecasting of large complex
spatiotemporally chaotic systems, we believe that the most useful strategy will be to
combine the parallel approach of Sect. 4 with the hybrid approach of Sect. 5. This
combination (1) will, via the parallelization, effectively exploit the LSTCI properties



Reservoir Computing for Forecasting Large Spatiotemporal … 135

0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

-2

0

2

a

b

c

d

e

f

True Trajectory

Reservoir:

Model:

Hybrid:
(a) + (b)

Hybrid:
(d) + (e)

Reservoir:

Model:

Fig. 12 Top Panel: True trajectory of the KS equation being predicted (Eq. (11) with L = 35).
Panels a–f are forecast errors using the indicated schemes. Panels a and d are prediction errors
using a reservoir-only scheme with the indicated reservoir size. Panels b and e are prediction errors
using only the knowledge-based model with the indicated model error (ε). Panels c and f are the
prediction errors upon using the hybrid scheme that combines the reservoir and the knowledge-
based schemes. Panel c combines a reservoir of size D = 5000 with the knowledge-based model
with error ε = 0.01. Panel f combines a reservoir of size D = 500 with the knowledge-based model
with error ε = 0.1



136 J. Pathak and E. Ott

Global 
Forecast Model

Global 
Forecast Model

Spatial Grid

Hybrid Forecast time
state

time state

time
model forecast

Fig. 13 A suggested architecture for a parallelized hybrid forecasting scheme. The machine learn-
ing component is implemented in a manner similar to Sect. 4, with an additional global forecast
model to assist in the forecast

of the dynamical system and allow for computational efficiency in the machine
learning component with respect to reservoir size, training, and amount of training
data, and (2) will, via our hybrid scheme, provide a very effective platform for
simultaneously utilizing data and first-principles system knowledge embodied by an
imperfect global model.

Figure13 shows a possible implementation of such a parallel/hybrid forecasting
scheme. The spatial grid is partitioned similar to Sect. 4 (Figs. 2, 5). Additionally, a
global knowledge-based forecastmodel (shownas the horizontally oriented long, thin
rectangle) makes predictions which are distributed to the reservoirs and combined
with the machine learning forecasts similar to Sect. 5 (Fig. 11). Since the knowledge-
based predictions are global, if there is any aspect of the dynamics for which our
LSTCI assumption (used in the ML parallelization) is deficient, we expect that the
training process will allow potentially reasonable modeling of such an aspect via the
knowledge-based model. Note that the grid for the ML component need not be the
same as that for the global knowledge-based component, and that theMLgrid density
can be inhomogeneous. This freedom can be utilized by making the ML grid denser
than that of the global knowledge-based component to provide extra resolution, or
by restricting a denser ML component to a limited area for regional forecasting.
The parallel/hybrid forecasting approach outlined here has been examined in further
detail in Wikner et al. (2020).

7 Conclusion

In this chapter, we have considered the situation in which one desires to forecast the
evolution of a large complex spatiotemporally chaotic system forwhich there is some,
possibly incomplete and/or inaccurate, descriptive knowledge that can be used to



Reservoir Computing for Forecasting Large Spatiotemporal … 137

formulate an imperfect computationalmodel. The limitations of such a computational
model may stem from deficiencies in our knowledge of basic processes determining
the systemevolution, or of computational feasibility ofmodeling such processes (e.g.,
in situations where there is a very wide range of relevant scales), or a combination of
these. While a model of this type may have deficiencies, we wish to utilize whatever
capabilities it has to further our end of forecasting.

On the other hand, machine learning purely from past time-series data of an
evolving dynamical system has had success in forecasting for certain situations.
However, when systems are large and complex and the system state description to
be forecasted is correspondingly large and complex, it appears that a purely machine
learning approach might often not be feasible.

Thus, it makes sense to try and combine these two very different approaches. The
combination of the two approaches may potentially be capable of outperforming
either one of them acting alone. Even so, implementation of anML system combined
with a knowledge-based computational model still faces a substantial challenge due
to the size and complexity of the states that we desire to forecast. Thus, in this chapter
we have addressed what we believe are two key issues in this approach to forecasting
large complex spatiotemporally chaotic systems: (i) how to wed (hybridize) machine
learning with an imperfect knowledge-based computational model, and (ii) how to
parallelize the machine learning component in combination with global knowledge-
based code, in a manner feasible for the machine learning component. Our review
of these two key issues leads us to conclude that preliminary results provide a pos-
sible path that may be effective in enabling improved forecasting of large complex
spatiotemporally chaotic systems.

However, we emphasize that many issues remain. The task of weather forecasting
provides a basis for assessing difficulties and directions for future work aimed at
ultimately using this hybrid/parallel approach for forecasting large, complex, spa-
tiotemporal systems. Primary among these is the issue of cyclic prediction and data
assimilation. Typically, a new set of weather forecasts ismade every 6h. At the begin-
ning of each 6h cycle, newmeasurements of the atmospheric state are used to correct
an estimate of the probability distribution of the atmospheric state provided by the
6h forecast from the previous cycle, and the new probability distribution estimate is
used as an initial condition for an atmospheric model, which is then integrated for-
ward to make a new set of probabilistic forecasts. The process by which the previous
forecast is combined with the new data is called ‘data assimilation’. Moreover, the
nature of the data for weather forecasting is itself complex, resulting from measure-
ments with stochastic errors from an array of different types of diagnostic sources
(e.g., balloons, satellites, ground stations, ships, aircraft, and radar), and these data
sources can vary greatly in space and time (e.g., balloon measurements are typically
dense over technologically developed regions, typically less dense over technolog-
ically less developed or more sparsely populated regions, and typically very much
less dense over oceans).



138 J. Pathak and E. Ott

Thus, to proceedpast the preliminarypromising results of this chapter,many issues
such as incorporation of cyclic data assimilation and data source heterogeneity await.
We hope, however, that this chapter will provide a basis for moving forward in this
area.

Acknowledgements We thank our colleagues, particularly Brian Hunt, Michelle Girvan, and
Istvan Szunyogh, for their contributions. We also acknowledge support from DARPA contract
HR00111890044.

References

H. Abarbanel, Analysis of Observed Chaotic Data (Springer Science & Business Media, 2012)
V. Afraimovich, N. Verichev, M.I. Rabinovich, Radiophys. Quantum Electron. 29, 795 (1986)
S.L. Brunton, J.L. Proctor, J.N. Kutz, Proc. Natl. Acad. Sci. 201517384 (2016)
S. Hochreiter, J. Schmidhuber, Neural Comput. 9, 1735 (1997)
H. Jaeger, GMD Technical report 148, 13. German National Research Center for Information
Technology, Bonn, Germany (2001)

H. Jaeger, H. Haas, Science 304, 78 (2004)
H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, vol. 7 (Cambridge University Press, Cam-
bridge, 2004)

A. Karimi, M.R. Paul, Chaos: Interdiscipl. J. Nonlinear Sci. 20, 043105 (2010)
A.-K. Kassam, L.N. Trefethen, SIAM J. Sci. Comput. 26, 1214 (2005)
L. Kocarev, U. Parlitz, Phys. Rev. Lett. 76, 1816 (1996)
E.N. Lorenz, in Proceedings of Seminar on Predictability, vol. 1 (1996)
Z. Lu, B.R. Hunt, E. Ott, Chaos: Interdiscip. J. Nonlinear Sci. 28, 061104 (2018)
B. Lusch, J.N. Kutz, S.L. Brunton, Nat. Ccommun. 9, 4950 (2018)
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002)
E. Ott, T. Sauer, J.A. Yorke, Wiley Series in Nonlinear Science (Wiley, New York, 1994)
J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Phys. Rev. Lett. 120, 024102 (2018a)
J. Pathak, A. Wikner, R. Fussell, S. Chandra, B.R. Hunt, M. Girvan, E. Ott, Chaos: Interdiscip. J.
Nonlinear Sci. 28, 041101 (2018b)

L. Pecora T. Carroll, J. Heagy, Handbook of Chaos Control, vol. 227 (1999)
M. Raissi, P. Perdikaris, G. Karniadakis, J. Comput. Phys. 378, 686 (2019)
N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D. Abarbanel, Phys. Rev. E 51, 980 (1995)
T. Sauer, J.A. Yorke, M. Casdagli, J. Stat. Phys. 65, 579 (1991)
P.R. Vlachas, W. Byeon, Z.Y. Wan, T.P. Sapsis, P. Koumoutsakos, Proc. R. Soc. A 474, 20170844
(2018)

Z.Y. Wan, P. Vlachas, P. Koumoutsakos, T. Sapsis, PloS One 13, e0197704 (2018)
A.Wikner J. Pathak, B.Hunt,M.Girvan, T. Arcomano, I. Szunyogh, A. Pomerance, E. Ott, Combin-
ing machine learning with knowledge-based modeling for scalable forecasting and subgrid-scale
closure of large, complex, spatiotemporal systems (2020), arXiv:2002.05514 [cs.LG]

R.S. Zimmermann, U. Parlitz, Chaos: Interdiscip. J. Nonlinear Sci. 28, 043118 (2018)

http://arxiv.org/abs/2002.05514

	 Reservoir Computing for Forecasting Large Spatiotemporal Dynamical Systems
	1 Motivation
	2 Background: Prediction of `Small' Chaotic Systems
	3 Machine Learning and the Forecasting of Large, Complex, Spatiotemporally Chaotic Systems
	4 Distributed Parallel Prediction
	4.1 Partitioning the Spatial Grid
	4.2 Training
	4.3 Prediction
	4.4 Re-synchronization
	4.5 An Example: A Lorenz 96 Model
	4.6 Another Example: The Kuramoto–Sivashinsky Equation

	5 Hybrid Forecasting
	5.1 Training
	5.2 Prediction
	5.3 An Example: Kuramoto–Sivashinsky Equations

	6 Parallel/Hybrid Forecasting
	7 Conclusion
	References




