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Abstract We present an overview of mathematical aspects of Reservoir Computing
(RC). RC is a machine learning method suitable for physical implementation, which
harnesses a type of synchronization, called Common-Signal-Induced Synchroniza-
tion. A precise criterion for this synchronization is given by a quantity called the
conditional Lyapunov exponent. We describe a class of dynamical systems (physical
systems) that are utilizable for RC in terms of this quantity. Then, two notions char-
acterizing the information processing performance of RC are illustrated: (i) Edge of
Chaos and (ii) Memory-Nonlinearity Trade-off. Based on the notion (ii), a structure
of dynamical systems suitable for RC has been proposed. This structure is called
the mixture reservoir. We review the structure and show its remarkable information
processing performance.

1 Introduction

Recent developments in computer software, in particular machine learning, have
remarkably improved the information processing accuracy such as in speech and
image recognition tasks. On the other hand, in a research field of computer hardware,
it is expected that an ultrafast computer can be realized based on a novel principle,
such as a quantum computer. Reservoir computing (RC) is a machine learning
method suitable for hardware implementation (Jaeger and Haas 2004). Indeed, many
researchers are now actively implementing RC with various physical systems such
as optoelectronic systems (Appeltant et al. 2011; Larger et al. 2017; Nakajima et al.
2018; Nakane et al. 2018; Takano et al. 2018), quantum systems (Fujii and Nakajima
2017), and soft materials (Nakajima et al. 2015). It is expected that utilizing physical
characteristics for RC appropriately may lead to an innovative “computer” achiev-
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ing ultrafast processing speed with low energy consumption (see other chapters for
various physical implementations).

The physical systems utilized for RC are modeled as nonlinear dynamical
systems, and dynamical system theory (Morris et al. 2012) and nonlinear physics
provide us useful mathematical tools. So far, these tools have enabled us to find some
characteristics ofRC aswe introduce below.Nevertheless, at present, our understand-
ing of the working principles behind RC is far from complete. For instance, we don’t
have any clear answer to the following fundamental question: “For a given task,
what characteristics and structures of a dynamical system are crucial for RC?” or
“Does there exist a universal law governing the information processing ability of a
dynamical system for RC less dependent on a task?” If we find clear answers to the
above questions, they are not only of theoretical interest but also practically useful
since they will give design guidelines of RC. Unfortunately, at the present stage,
various physical systems are employed for RC blindly without design guidelines.
So, it is quite important to find the answers.

Here, focusing on characteristics and structures of dynamical systems suitable for
RC, we overview the mathematical tools and theoretical results reported so far. In
Sect. 2, we illustrate a mathematical formulation of RC including its general frame-
work, the surprisingly simple learning method, a class of dynamical systems usable
for RC, and a concrete example. In Sect. 3, two notions characterizing the information
processing performance of RC are illustrated: (i) Edge of Chaos and (ii) Memory-
Nonlinearity Trade-off. Based on the notion (ii), we introduce an effective structure
of dynamical systems for RC with some numerical results.

While RC originated from neuroscience, recently a wide variety of physical phe-
nomena are employed experimentally for the implementations. From a theoreti-
cal viewpoint, understanding of RC would need a multidisciplinary approach from
mathematics, computational science, nonlinear science, neuroscience, and statistical
physics. Here, we would like to introduce an aspect of this attractive research field.

2 Mathematical Formulation of Reservoir Computing

First, we formulate the framework of RC in an abstract form, and then, introduce a
concrete example. Let a set of two sequences D = {s(k), y(k)}Kk=1 be given, where
s(k) and y(k) are one-dimensional input and output signals at time k and there
exists some relation between these two sequences. The data set D is referred to
as training data. The goal of RC is to learn the relation between s and y from the
training data D, and then, after the training period k > K , give an estimation ŷ(k) for
predicting an unknown output y(k) that corresponds to a given new input data s(k).
This is a typical supervised learning and the above estimation is called generalization.
Considering time series prediction as an example, the goal ofRC is to predict s(k + τ)

corresponding to the given input sequence {s(i)}i≤k , i.e., y(k) = s(k + τ), which is
called τ -step ahead prediction.
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Fig. 1 a, b Illustration of RC framework. The red circle represents the input node, the blue dot
circle represents the reservoir, and the green circle represents the output node. c Illustration of the
vectors y, ŷ. d A demonstration of RC. The task is to infer the variable yL (k) of the Lorenz system
from a given sequence of the variable {. . . xL (k − 1), xL (k)} of the same Lorenz system. From top
to bottom, the variables xL , yL , ŷL which is inferred by the reservoir, and the time series of the
reservoir variable ri (i = 1, . . . , 5). e The projection of the orbit (the same data as d)

RC consists of the input/output nodes and a dynamical system driven by the input
sequence {s(k)}, called reservoir. In Fig. 1a, an illustration of the reservoir is shown as
“R” encircled by the blue dot circle. The reservoir is described by an N -dimensional
dynamical system as follows:

r(k) = F(r(k − 1), s(k)), (1)

where r(k) ∈ R
N represents a state of the reservoir at time k which we call reservoir

state, and F : RN × R → R
N is a map describing the dynamics of the reservoir.

In the case of physical implementation, F is determined by the physical law. The
reservoir state r(k) = {ri (k)}Ni=1 evolves in time according to the map F with the
input signal s(k).

The approximation ŷ(k) for the desired output y(k) is obtained by “observation”
of the reservoir state with linear weights:

ŷ(k) :=
N∑

i=1

wiri (k). (2)

This output weight {wi }Ni=1 is optimized so that ŷ(k) � y(k) as explained below.
The determination of the weight {wi }Ni=1 by the training data D is called learning. In
short, RC is the information processing method with learning output weight only.
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In other words, the evolution law, F in the Eq. (1), is not optimized but fixed. Con-
sidering the conventional training methods of neural network where both w and F
are learned, it may be surprising that information processing can be performed by a
task-independent, even randomly generated, evolution law F. Since control of phys-
ical laws is difficult in general, physical implementations of the conventional neural
networks, which require thousands of adjustable parameters and stable controls of
them with high precision, are also difficult. On the other hand, the framework of RC
does not require such control, and therefore is suitable for physical implementations.

The learning of the linear output weights w is just performed via the least squares
method by using the training data D. Let y = (y(1), . . . , y(K ))T be a sequence of the
desired outputs and w = (w1, . . . ,wN )T be a weight vector, and �k j = r j (k) which
is the so-called design matrix. The linear readout (2) can be described as ŷ = �w.
From the condition to minimize the square error E(w) = ‖ y − ŷ‖2 where ‖ · ‖ is the
l2-norm, we obtain the set of equations ∂wi E(w) = 0 (i = 1, . . . , N ) and its solution
as follows:

w = (�T�)−1�T y. (3)

What we need for the learning for RC is just to calculate the inverse matrix of
�T� whose size is the number of the nodes, N × N . Thus, the learning for RC is
computationally cheap. While this formulation is similar to the basic least squares
method, the difference is that the design matrix has information on the whole of
history of the past input signals as �k j = r j (k) = r j (s(k), s(k − 1), . . .). For the
practically important tasks such as time series prediction or speech recognition,
history of the past input signals is essential. Hence, RC enables us to solve the
temporal task requiring the past input signals at a low computational cost.

2.1 A Class of Dynamical System Usable for Reservoir
Computing: Common-Signal-Induced Synchronization

What kind of a dynamical system can we use for RC? The dynamical system utilized
for RC should at least have a property that the same output sequence {y(k)}Tk=1 is
generated when repeatedly given the same input sequence {s(k)}Tk=1, not depending
on the initial condition of the dynamical system. Ifwe use a dynamical system lacking
this property, we have different outputs from RC for the same tasks, depending on
the initial state of the reservoir. Considering speech recognition tasks, the reservoir
computer is useless if it recognizes completely different words for the same voice
input.

In order to formulate this property, let us consider two different initial conditions
r(0), r̃(0) of the reservoir states. These states evolve in time according to the map F
in Eq. (1)with a common input signal s(k). If these different states always converge to
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the same state, not depending on the initial conditions, i.e., ‖r(k) − r̃(k)‖ → 0 (k →
∞), we say the signal-driven dynamical system (1) shows common-signal-induced
synchronization (CSIS). In other words, there exists a certain synchronized state
r∗(k) evolving in time only depending on the input sequence. The synchronized state
attracts states in its neighborhood, i.e., asymptotically stable as mentioned later. The
input sequence determines the synchronized state r∗(k) except the initial transient
period, and also determines uniquely the output sequence: ŷ(k) = ∑

i wir∗
i (k). This

kind of reproducibility to the input signal is also referred to as Echo State Property
(Maass and Markram 2002) or Consistency (Uchida et al. 2004). Any dynamical
system possessing this property can be used for reservoir computing in principle.

This property is exhibited by not only a particular dynamical system but also
general dynamical systems in the following sense. For instance, it can be shown
easily that any dynamical system with a stable fixed point as r(k) = Ar(k − 1) +
s(k) (‖A‖ < 1) shows CSIS. It has been shown that the CSIS occurs in a variety
of limit-cycle oscillators (Teramae and Tanaka 2004) and one-dimensional delay
dynamical systems (Yoshimura et al. 2008a) when they are driven by the white noise
input. Moreover, for the colored noise, the previous study (Yoshimura et al. 2007)
has shown that the CSIS occurs for the various dynamics including the limit cycle,
chaotic dynamics, and one-dimensional time delay system. Considering there exist
stable fixed points and limit cycles in many dissipative dynamical systems, we can
use various physical systems as a reservoir for a resource of information processing.

A mathematical tool from the dynamical system theory, called conditional
Lyapunov exponent, is useful to characterize CSIS (Louis et al. 1991; Teramae
and Tanaka 2004; Yoshimura et al. 2008a, b). The conditional Lyapunov exponent is
defined by the exponential growth/decay rate of the infinitesimal perturbation δr(k)
to the state r(k) as follows:

λ := lim
T→∞

1

T
ln ‖δr(T )‖, (4)

where δr(k) is determined by the variational equation

δr(k) = DFr(k−1),s(k)δr(k − 1) (5)

and DFr(k−1),s(k) denotes the Jacobian matrix of F evaluated at (r(k − 1), s(k)).
Equation (4) can be interpreted as ‖δr(k)‖ ∝ exp(λk), and thus λ < 0 implies the
asymptotic stability, i.e., the common-signal-induced synchronization. Note that the
conditional Lyapunov exponent is a characteristic value with respect to the invariant
measure (distribution) which is determined by not only the dynamical system, the
map F, but also the stochastic property of the input sequence, s(k). The Lyapunov
exponent introduced above is conditioned by the stochastic property of s(k), and
thus, we say the conditional Lyapunov exponent. The characterization of the CSIS
by the conditional Lyapunov exponent has been introduced and often used in the
field of nonlinear physics, and recently, the random dynamical system theory in the



102 M. Inubushi et al.

field of mathematics has justified it rigorously under some conditions (Flandoli et al.
2017). In conclusion, any signal-driven dynamical systemwith a negative conditional
Lyapunov exponent can be used for RC.

2.2 Concrete Example: Echo State Network Model

Echo State Network (ESN) is one of the standard structures of the reservoir that uses
a recurrent neural network as shown in Fig. 1b. Let k (= 1, 2, . . .) be the time and
ri (k) be the state of the i th node (i = 1, 2, . . . , N ) at time k. The reservoir state
evolves in time as follows:

ri (k) = φ

[ N∑

j=1

Ji j r j (k − 1) + vi s(k)

]
, (6)

where φ[·] is called the activation function1 and typically φ[u] = tanh gu is used.
g ∈ R is a parameter. vi and Ji j are connectionweights between nodes in the network,
and importantly, the values of them are fixed once they are determined by random
numbers at the initial. Supervised machine learning is applied only to the output
weight {wi }Ni=1 as noted before.

As an example, we demonstrate a result of an inference task solved by the ESN
model in Fig. 1d, e. The task is to infer the variable yL of the Lorenz equation2 from
another variable xL of the Lorenz equation at the same time (Lu et al. 2017). In other
words, the input and the output are s(k) = xL(k) and y(k) = yL(k), respectively. The
Lorenz equation is deterministic, and there exists some relation between these vari-
ables, xL and yL . ESN learns the relation from the data set D = {xL(k), yL(k)}Kk=1,
and determines the readout weight w for the inference. We remark that the vari-
able yL(k) is determined not solely by the variable xL(k) but the sequence of the
variables: {. . . , xL(k − 1), xL(k)}. In other words, generally, RC can approximate

the function of the sequence of the input signal as y(k) = F
(
{. . . , s(k − 1), s(k)}

)
.

The top figure in Fig. 1d shows the time series of xL(k), and the middle shows those
of yL(k) and ŷL(k). Learning only the readout weight leads to the almost perfect
inference. As a reference, the time series of the reservoir variable ri (i = 1, . . . , 5)
are shown in the bottom figure in Fig. 1d.

1 Note that the activation function φ differs from the design matrix �.
2 The Lorenz equation is a simplified model of the thermal convection: ẋ = −σ x + σ y, ẏ = r x −
y − xz, ż = −bz + xy, where σ, r, b ∈ R are the parameters, and, in the main text and later, the
subscript L represents the variable of the Lorenz equation. The Lorenz equation has been well
studied in the field of nonlinear physics and mathematics as a simple continuous dynamical system
exhibiting chaos. In the researchfield of reservoir computing, theLorenz equation is used for the time
series prediction task, e.g., the input is s(t) = xL (t) and the output is y(t) = xL (t + τ) (τ > 0), and
the inference task of the hidden variable, e.g., the input is s(t) = xL (t) and the output is y(t) = zL (t)
(Lu et al. 2017; Pathak et al. 2017).
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2.3 Geometrical Interpretation of Reservoir Computing

The geometrical interpretation can give insight into the fundamental aspect of RC, in
particular shedding light on the difference between RC and the conventional method
using the recurrent neural network.

Here, let us consider the readout vector ŷ = �w = ∑
i wi r i geometrically, where

r i = (ri (1), . . . , ri (K ))T . The vector ŷ can be regarded as the projection of the vector
y ∈ R

K to the N -dimensional subspace V = Span{r1, . . . , rN } as follows:

ŷ = �(�T�)−1�T y =: P y, (7)

where P : RK → V and we assume K > N since in practice the number of the data
set is larger than that of nodes in the network or the dimension of the dynamical
system utilized for the reservoir.

The reservoir dynamics, where the common-signal-induced synchronizationmust
occur, is determined by the input sequence except the initial transient period, the state
vector r i is a function of “input vector” s = (s(1), s(2), . . . , s(K ))T , i.e., r i = r i (s),
and the subspace V is also the same V = V (s). Considering ESN as a standardmodel
of RC, it can be interpreted that the randomness of the connection weights Ji j , vi
varies the response of each node state to the input signal, and enhances the “degree”
of linear independence of the vectors r i (i = 1, . . . , N ). See the illustration of Fig. 1c.
As an extreme case, if the connection weights are not random, more precisely Ji j
and vi take respective constant values which are independent of i and j , and all
nodes in the network become the same state r ≡ r i . In that case, the dimension of
the subspace V shrinks to one, and apparently, the approximation by the projection
onto V results in failure.

In the conventional method of the recurrent neural network, each connection
weight of Ji j , vi is trained as well as the readout weight w. This corresponds to
generate an appropriate subspace V ′(D) spanned by the basis vectors r i which are
determined by the training data D. Since training Ji j , vi requires a high computational
cost, it is more difficult to employ a large number of nodes compared with themethod
of RC. Therefore, in the conventional method of the recurrent neural network, the
vector y is approximatedwithin the “well-trained low-dimensional” subspaceV ′(D).
On the other hand, in the method of RC, the vector y is projected onto the “randomly
generated high-dimensional” subspace V (s).

When a large amount of data is available for the training, it would be natural
to assume K � N . In that case, projection of the vector y ∈ R

K to the randomly
generated N -dimensional subspace V would be expected to result in a poor approx-
imation. However, even in such a case, RC solves the task well. In order to clarify
the reason, it would be necessary to take into account the fact, at least, that (i) the
well-solved task by RC has a specific structure, e.g., y(k) does not depend on a long
past input s(k − τ) (τ � 1), and (ii) the response characteristics of the reservoir
dynamics, e.g., ri (k) does not depend on a long past input as well.
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3 Characteristics of Dynamical Systems Suitable
for Reservoir Computing

Here we introduce two notions (empirical laws), Edge of Chaos and Memory-
Nonlinearity Trade-off.

3.1 Edge of Chaos

The conditional Lyapunov exponent is useful not only for conditioning dynamical
systems usable for the reservoir, but also for characterizing good dynamical systems
for the reservoirwith respect to information processing. Edge ofChaos is an empirical
law for the good dynamical systems in the following sense. The Edge of Chaos law
has been supported bymany numerical and physical experiments (Bertschinger 2004;
Boedecker et al. 2012).

Let us consider two dynamical systems driven by a common input signal. By
gradually changing a parameter of the dynamical system, it is often observed that a
transition froma synchronized state (λ < 0) to an asynchronized state (λ > 0) occurs.
For the asynchronized state, a distance between nearby orbits diverges exponentially
even if the input signals are the same. The asynchronized state is similar to chaos in
deterministic dynamical systems, and hereafter, we refer to it as chaos. For instance,
in the ESNmodel, we observe the transition by increasing the spectral radius 3 of the
connectionmatrix Ji j . Edge of Chaos is the empirical lawwhere state RC achieves its
highest performance in information processing slightly before the transition point,
i.e., λ < 0 and λ � 0. Many researchers have reported results of numerical and
physical experiments supporting Edge of Chaos4 for various reservoirs and tasks
(Bertschinger 2004; Boedecker et al. 2012).

Here we demonstrate the Edge of Chaos law. Figure2a shows a result of a function
approximation task y(k) = sin(s(k − 1)) solved by the ESN model. In the upper
panel, we show the normalized mean square error (NMSE) in the vertical axis as a
standard value for performance evaluation of RC (Appeltant et al. 2011; Inubushi
and Yoshimura 2017; Rodan and Tino 2011):

NMSE = 〈(y(k) − ŷ(k))2〉T
〈(y(k) − 〈y〉T )2〉T (8)

3 For the matrix J ∈ R
N×N , the definition of the spectral radius is ρ := maxi |μi | where {μi }Ni=1

are the eigenvalues of the matrix J . In the absence of the input signal, the origin of the ESN model
r = 0 is the stationary state (fixed point), and the stability of the stationary state is determined by
the spectral radius ρ.
4 The asynchronized state (λ > 0) is not deterministic chaos, and thus, the terminologies of “edge
of criticality” or “edge of stability” would be more appropriate.
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Fig. 2 aThe upper panel: the normalizedmean square error (NMSE) for the function approximation
task, which is solved by the ESNmodel with N = 100 nodes. The horizontal axis is the parameter g
of the ESNmodel. The vertical axis is NMSE. The lower panel: the conditional Lyapunov exponent.
The horizontal axis is the same as in the upper panel. The transition from CSIS to chaos occurs at
g = 1.25. b The time series of the first component of the state vector, rσ

1 (k) (σ = a, b, c), from the
three different initial conditions rσ

1 (0). The time evolutions of ESNs are described by the same Eq.
(6) with the common input signals, i.e., the differences are only in the initial conditions. From the
top to the bottom, the parameter increases as g = 1.0, 1.2, 1.3, 1.5

where the brackets represent the time average 〈z(t)〉T := 1/T
∑T

t=1 z(t) for any
sequence {z(t)}Tt=1. The horizontal axis is the parameter g of the ESN model (6).
NMSE takes the minimum value at g � 0.7. In the lower panel of Fig. 2a, the con-
ditional Lyapunov exponents λ corresponding to the upper panel are shown. The
conditional Lyapunov exponent increases with increasing g, and, at g � 1.25, we
observe the transition from negative to positive, which corresponds to a transition
from the synchronized state to the chaotic state. See the inset for the enlarged view
around the transition point. The ESN model exhibits the maximum performance for
the function approximation task at g � 0.7, where the conditional Lyapunov expo-
nent is in the vicinity of zero but a negative value (λ � −0.36), i.e., slightly before
the transition point. Our numerical example also supports the law of Edge of Chaos.

To see the transition from the synchronized state to the chaotic state in detail, we
show time series of a variable of the same ESN model with three different initial
conditions, i.e., ra(0) �= rb(0), rb(0) �= rc(0), and rc(0) �= ra(0). The numerical
settings are the same as the case shown in Fig. 2a. Driven by the common signals,
the variables rσ (k) (σ = a, b, c) evolve in time according to (6). As an example,
the time series of the first component of the state vectors, rσ

1 (k) (σ = a, b, c), are
shown in Fig. 2b. From the top to the bottom, the parameter g is changed as g =
1.0, 1.2, 1.3, 1.5.

The conditional Lyapunov exponents at g = 1.0 and g = 1.2 are negative as
shown in Fig. 2a, and correspondingly, the convergence |rσ

1 (k) − rσ ′
1 (k)| → 0 (σ �=

σ ′), i.e., CSIS, is observed in the upper two panels in Fig. 2b. Note that the conver-
gence occurs at g = 1.2 slower than at g = 1.0, which is consistent with the absolute
values of the conditional Lyapunov exponents. On the other hand, the conditional
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Lyapunov exponents at g = 1.3 and g = 1.5 are positive as shown in Fig. 2a, and
correspondingly, CSIS is no longer observed in these two cases in the lower two
panels in Fig. 2b.

As demonstrated in Fig. 2b, the closer to the transition point the ESN is, the slower
the convergence is, which is trivial by definition of the conditional Lyapunov expo-
nent. It is believed that the slow convergence leads to a large “memory capacity”.
For an illustration of this statement, let us assume the case that differences in the
initial conditions rσ (0) (σ = a, b, c) in Fig. 2b are caused by the difference in the
input signal s(0). More precisely, these states evolve in time with the common input
signal from the remote past, i.e., {s(−k)}∞k=1. If the conditional Lyapunov exponent
is negative, they should have converged to the same state rσ (−1) ≡ r(−1). And
then, if there exist differences in the input signal at k = 0 denoted by sσ (0), the
differences in the input signal make different states rσ (0) (σ = a, b, c) according
to (6). Again, ESN receives the common signal {s(k)}∞k=1, and the differences in the
states dissipate; rσ (k) → r(k) (k → ∞) as shown in the top two panels in Fig. 2b.

The memory capacity can be interpreted as an amount of information of the past
input signal that can be reconstructed from the present reservoir state. Some working
definitions of memory capacity, which measure the accuracy of the reconstruction
of the past input signal from the present reservoir state, have been proposed and
investigated so far (Jaeger 2002). The reconstruction needs at least the difference
in the states. For instance, in the top panel in Fig. 2b, it is impossible to distinguish
between the states rσ (k) at k = 100, i.e., rσ (k) ≡ r(k). Therefore, at k = 100, it
is impossible to reconstruct any information of sσ (0) from rσ (k). In this case, it is
natural to interpret that the state of ESN at k = 100 has no memory of, or forgets,
the information in the past input signal sσ (0). As this example shows, the time T
required for the convergence of the states dominates the memory in the sense that the
ESN retains no memory about the past input signals supplied more than T ago. The
time T is roughly estimated by a reciprocal of the conditional Lyapunov exponent
T ∝ 1/λ. In this sense, the memory has been referred to as short term memory as
well.

Approaching the transition point, λ → −0, makes the convergence slow, which
would lead to a large memory capacity of ESN. That is, the ESN retains a memory
of the past input signals of a long time ago. At Edge of Chaos, the memory capacity
attains its maximum, which has been shown by using the dynamic mean field the-
ory (Toyoizumi and Abbott 2011). The memory capacity is essential for solving a
wide variety of tasks such as the speech recognition tasks and the time series predic-
tion tasks (see the next subsection for an explicit example). Therefore, information
processing with RC works well at Edge of Chaos.

Note that in the above argument, we only consider “necessary condition” for the
memory. Namely, if ESN can store some memory, i.e., it is possible to reconstruct
information about the past input sσ (0), then there exists a difference between the
states rσ (k). However, this does not imply the converse, i.e., “if there exists a differ-
ence between states, it is possible to reconstruct the past input”, and also we cannot
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say anything about the accuracy of the reconstruction.5 In this sense, the problem of
memory capacity is subtle. Information theoretic quantity such as the mutual infor-
mation would be more useful than the conditional Lyapunov exponent as discussed
in Inubushi and Yoshimura (2017).

3.2 Memory-Nonlinearity Trade-Off

While the memory of the input signal is important, information processing requires
in general nonlinear transformation of the input signal as well. Here we focus our
attention on the two“functions” of the reservoir necessary for informationprocessing,
i.e., the short term memory and the nonlinear transformation of the input signal. For
the two functions, it is known that there exists a kind of trade-off based on the
linearity/nonlinearity of the reservoir dynamics as follows.

Before explaining the trade-off, we introduce an explicit example of a task that
requires both memory and nonlinear transformation. The task we consider is a
time series prediction. Suppose that we need to predict a future value of a variable
z(t), (z, t ∈ R), and that the variable z(t) is described by an equation dz

dt = G(z),
where G is some nonlinear function. Given a time series, {. . . , z(t − h), z(t)} where
h is a sampling period, the goal is to predict the future value z(t + h). As one
of the numerical schemes of ordinary differential equations, the Adams-Bashforth
method has been often used. The explicit (two-step) formula is z(t + h) = z(t) +
h
(
3
2G(z(t)) − 1

2G(z(t − h))
)

+ O(h3). Considering to predict the value z(t + h)

by RC with the Adams-Bashforth method in mind, the reservoir needs to store the
memory z(t − h) and perform the nonlinear transformationG(z(t − h)). Obviously,
these two functions are both essential for the prediction; however, there is a trade-off
as described below.

First, we introduce a property of the memory capacity of the input signal. Many
researchers have reported so far that the linearity of the reservoir dynamics (themap F

5 In other words, CSIS state r(k) only depends on the recent past input signal, {s(k − j)}Tj=0, and

thus, the state vector r(k) is a function of the set of the input signals, i.e., r(k) = r
[
{s(k − j)}Tj=0

]
.

Using these notations, the above arguments can be expressed as follows: if the derivatives vanish,

∂ r
[
{s(k − j)}Tj=0

]

∂s(k − K )
= 0 (for∀k) (9)

then, in ESN at the time k, there is no information about s(k − K ). However, its inverse, i.e., “if
the above derivative does not vanish, then it is possible to reconstruct the information about the
past input s(k − K )”, is not necessarily true. Considering the chaotic regime as an extreme case,
T → ∞ and the above derivative is not zero in general due to the sensitive dependence on the
initial condition. However, it seems to be difficult to reconstruct the past input from the chaotic
state. Hence, we cannot conclude the negation holds.
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Table 1 Memory-Nonlinear Trade-off. In the column, the functions of the reservoir, the memory
or the nonlinear transformation of the input signal, are shown. In the row, the types of the map F of
the reservoir in (1) (the activation function φ in the ESN model (6)), linear or nonlinear, are shown

Short term memory Nonlinear transformation

Linear © ×
Nonlinear × ©

in (1)) is preferable for the large memory capacity (Dambre et al. 2012; Ganguli et al.
2018; Toyoizumi 2012). In other words, the nonlinearity of the reservoir dynamics
reduces the memory capacity.

Next, we consider the nonlinear transformation of the input signal. Focusing
only on the memory capacity, the best strategy seems to be just using the linear
reservoir; however, apparently, the linear reservoir cannot perform the nonlinear
transformation of the input signal by definition. One of the advantages of RC is to
be able to solve linearly non-separable problems via mapping the input signal into a
higher dimensional space in a nonlinear way. Thus, the nonlinearity of the reservoir
dynamics plays an essential role in general information processing.

Strengthening the nonlinearity of the reservoir increases the ability of the nonlinear
transformation of the input signal, but decreases the memory capacity. On the other
hand, weakening the nonlinearity of the reservoir increases the memory capacity, but
decreases the ability of the nonlinear transformation (Table1). This relation between
these two functions of the reservoir is referred to asMemory-Nonlinearity Trade-off,
which has been supported numerically (Dambre et al. 2012; Inubushi and Yoshimura
2017; Verstraeten et al. 2010).

Herewe give a numerical result illustrating the existence ofMemory-Nonlinearity
Trade-off. For simplicity, we employ the function approximation task y(k) =
sin(πνs(k − τ)), where ν ∈ R, τ ∈ N are the task parameters. The input signal s(k)
is the random variable which is independently and identically drawn from the uni-
form distribution:U(−1,+1) at each time t . Let us consider solving this task by the
readout from the reservoir state at time k. To this end, two functions are needed: stor-
ing the information of the past input signal s(k − τ) for τ steps (short termmemory),
and approximating the sin function (nonlinear transformation). The task parameters
(ν, τ ) control, respectively, the “strength” of the nonlinear transformation and the
memory capacity required for solving the task.

To confirm the trade-off summarized in Table1, we use the ESN model described
in (6) and compare the performance of ESNs with linear function φ[a] = a and
the nonlinear function φ[a] = tanh a. We refer to ESNs with φ[a] = a and with
φ[a] = tanh a, respectively, as linear ESN and nonlinear ESN. Figure3a shows the
results of the direct comparison in the task parameter space (ν, τ ). For a given set
of parameters (ν, τ ), if the error with the linear ESN is lower than that with the
nonlinear ESN, we mark a red square at (ν, τ ) in the diagram. If the error with the
nonlinear ESN is lower than that with the linear ESN, we mark a blue circle. See
Inubushi and Yoshimura (2017) for the details of this diagram.
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Fig. 3 Performance comparison diagram in task parameter space (ν, τ ) (Inubushi and Yoshimura
2017). a Comparison between the linear ESN and nonlinear ESN for the demonstration ofMemory-
NonlinearityTrade-off.bComparison between themixtureESNswith variousmixture rates pwhich
will be discussed in Sect. 4. Figure reproduced and modified with permission from Springer Nature

The results shown in Fig. 3a are summarized as follows: for the task requir-
ing “large memory capacity and weak nonlinear transformation”, e.g., log ν �
−1.0, τ � 4, the linear ESN outperforms the nonlinear one. This observation corre-
sponds to the first row in Table1. For the task requiring “strong nonlinear transforma-
tion and lessmemory capacity”, e.g., log ν � −0.5, τ � 4, the nonlinearESNoutper-
forms the linear one. This observation corresponds to the second row inTable1.While
these results are obtained by employing a particular functional form f (x) = sin x for
the task, we confirmed that qualitatively the same results are obtained by employing
other function forms f (x) = tan x and x(1 − x2). In this sense, the above direct
comparison clearly shows the memory-nonlinearity trade-off, which is consistent
with previous studies (Dambre et al. 2012; Verstraeten et al. 2010).

What is the mechanism behind the trade-off? In Table1, the property in the right
column is trivial by the definition; however, the property in the left column is nontriv-
ial. Thus, the goal is to uncover the dynamical mechanism behind the degradation of
the memory by the nonlinear dynamics of the reservoir. A possible mechanism illus-
trating the phenomenon has been proposed based on the variational Eq. (5) (Inubushi
and Yoshimura 2017).

4 Dynamical Structure Suitable for Reservoir Computing

The simplest method to overcome Memory-Nonlinearity Trade-off would be to use
a dynamical system consisting of both linear dynamics and nonlinear dynamics as
a reservoir (Inubushi and Yoshimura 2017). Here, we introduce the reservoir where
linear dynamics and nonlinear dynamics coexist; hereinafter, we refer to this type of
reservoir as mixture reservoir. Some numerical results are shown to indicate that the
mixture structure is suitable for RC.
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Fig. 4 Performance of themixtureESN for the function approximationwith various task parameters
(Inubushi and Yoshimura 2017). The horizontal axis is the mixture rate p, and the vertical axis is
the approximation error (NMSE). The task parameters are a log ν = 0.0, b log ν = −0.4, and c
log ν = −1.0. The red squares, green circles, and blue triangles correspond to the task parameters
τ = 1, 3, 5, respectively. Figure reproduced and modified with permission from Springer Nature

Let us consider the ESN model consisting of N nodes again as an example of the
mixture reservoir. In order to overcome the trade-off, it is expected to be effective to
use an ESN consisting of “linear node”, having the linear activation function φ[u] =
u, and “nonlinear node”, having the nonlinear activation function φ[u] = tanh u.
More precisely, we connect the linear nodes and the nonlinear nodes with random
weights Ji j , vi . As the conventional ESN model, the only readout weight {wi } is
adjusted by the training data. We refer to this type of ESN as mixture ESN. The
number of the nonlinear nodes is denoted by NNL , and we introduce a mixture rate
by p = NNL/N which plays a key role in the following discussion.

To study the performance of the mixture ESN, we employ the function approxi-
mation task y(k) = sin(πνs(k − τ)) as before. Figure4 shows the numerical results
of the function approximation by the mixture ESN with the total number of nodes
N = 100. The horizontal axis is themixture rate p, and the vertical axis is the approx-
imation error (NMSE). The mixture ESN at p = 0 reduces to the linear ESN, and
that at p = 1 reduces to the nonlinear, i.e., conventional ESN. The task parameters
are (a) log ν = 0.0, (b) log ν = −0.4, and (c) log ν = −1.0. The red squares, green
circles, and blue triangles correspond to the task parameters τ = 1, 3, 5, respectively.

In all of the cases shown in Fig. 4, the mixture ESNs outperform the linear ESN
(p = 0) and the nonlinear ESN (p = 1). In particular, for the task with small τ ,
the approximation error by the mixture ESN is surprisingly reduced in the vicinity
of p = 1, compared with that by the nonlinear ESN. In other words, replacing a
small number of the nonlinear nodes with linear nodes in the conventional ESN
drastically improves the performance. These drastic improvements in performance
are observed in the vicinity of p = 0 as well.

In order to study this remarkable improvement of the performance by introduc-
ing the mixture structure in more detail, we show, in the right panel of Fig. 5, the
performance of a conventional ESN (p = 1) with larger network sizes. The task is
the function approximation task again with ν = 1 and τ = 1, 3, 5. As a reference
for the same task, Fig. 4a is shown in the left panel of Fig. 5. The conventional ESN
shows better performance by increasing the network size (Rodan and Tino 2011)
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Fig. 5 The performance improvements by introducing the mixture structure versus those by
increasing the network size. The left panel is the same as Fig. 4a for the reference. The right
panel represents the performance improvements by increasing the network size from N = 100 to
N = 500, where the vertical axis is NMSE. The dotted lines are the values of NMSE by the mixture
ESNs at the optimal mixture rates for each task (see the left panel)

in general. Indeed, for each task (τ = 1, 3, 5), the approximation errors are reduced
monotonically by increasing the number of nodes (N = 100, 200, 300, 400, 500).
However, the improvement of the performance by introducing the mixture ESN with
fixed network size (N = 100) is considerably more effective than that by increasing
the network sizes with a fixed mixture rate (p = 1). In the right panel of Fig. 5, the
error values at the optimal mixture rates are plotted by dotted lines for each task.
For instance, regarding the task with τ = 5, while the conventional ESN reduces
the error by one-tenth with N = 500 nodes, the mixture ESN at the optimal mixture
rate can reduce the error at the same level (the blue dotted line) with only N = 100
nodes. For the tasks with τ = 1, 3, the mixture ESNs at the optimal mixture rate
clearly outperform the conventional ESN even with N = 500.

It is interesting that the optimal mixture rate popt., where the mixture ESN shows
the best performance, changes depending on the tasks. In fact, as shown in Fig. 4a,
for the tasks with τ = 1, τ = 3, and τ = 5, the optimal mixture rate is popt. � 0.25,
popt. � 0.15, and popt. � 0.1, respectively. Note that the larger the parameter τ is, the
smaller the optimal mixture rate popt. is. This observation is consistent withMemory-
Nonlinearity Trade-off. Since the linear nodes play a role to increase the memory
capacity, a mixture ESN with a larger number of the linear nodes is effective for a
task requiring a larger memory capacity.

To study this dependency, we show a performance comparison diagram in
Fig. 3b (Inubushi and Yoshimura 2017). As shown in Fig. 3a, for a set of given
task parameters (ν, τ ), the optimal mixture rate popt.(ν, τ ) is depicted with dif-
ferent symbols, where the minimal value is numerically found in the set p ∈
{0.00, 0.05, 0.15, 0.25, 0.50, 0.75, 1.00}. See Inubushi and Yoshimura (2017) for
the details. From this diagram, it is clarified that the optimal mixture rate depends on
the task gradually, and, significantly, the mixture ESN (0 < p < 1) outperforms the
linear and nonlinear reservoir (p = 0, 1) over a broad region in the task parameter
space.
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The above numerical results lead to a conjecture that the mixture reservoir is one
of the dynamical structures suitable for RC in general. Does the mixture reservoir
work well, being less dependent on the tasks or details of the reservoir? For studying
this question, we change the topology of the mixture ESN as a detail of the reservoir.
We conducted numerical experiments for two other types of the mixture ESNs with
the random sparse coupling and the ring coupling. In both cases, nonzero elements
of coupling weights Ji j ( �= 0) are determined by random numbers (Yoshimura et al.
2018). The performance of the mixture ESNs with the random sparse coupling and
the ring coupling are shown in Fig. 6 (a) and (b), respectively. The same function
approximation tasks are employed as in Fig. 4. Illustrations are shown in the right
bottom of each graph in Fig. 6, where the nodes colored with yellow represent the
linear nodes. The qualitative features found in the results of the random sparse cou-
pling case and the ring coupling case (Fig. 6a, b) are almost the same as those of the
full coupling case (Fig. 4).

Moreover, to confirm the independence of tasks, it has been reported that some
standard tasks, the time series prediction for Santa Fe Laser data set and the so-
called NARMA task, can be solved by the mixture ESN effectively (Inubushi and
Yoshimura 2017). The mixture ESN is effective also for the time series prediction
task for the Hénon map as shown in Fig. 7 (Yoshimura et al. 2018). In Fig. 7, the
vertical axis shows NMSE for m-step ahead prediction of chaotic signal generated
from Hénon map z(k + 1) = 1 − 1.4z(k)2 + 0.3z(k − 1), i.e., the input is z(k) and
the desired output is z(k + m). The prediction errors with the mixture ESN for the
cases of the full coupling, the random sparse coupling, and the ring coupling are
shown in Fig. 7 (a), (b), and (c), respectively. In all the cases, the mixture ESNs
are effective independently of the network topology. These numerical results so far
support the above conjecture.

Introducing the mixture reservoir significantly improves the information process-
ing performance. This improvement occurs independently of tasks and details of the
reservoir. This suggests that the mixture rate p is an effective hyperparameter for
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the optimization of the reservoir. Considering ESN as an example, it is in general
difficult to predict the response of the reservoir to changes in the parameters such as
g. However, one can expect that decreasing the mixture rate p leads to an increase
in the memory capacity of the reservoir. In this sense, the reservoir response to a
change in the mixture rate is much simpler than that in the other parameters. This
simpleness may make easy the optimization of p.

5 Conclusions and Future Works

In this article, we have given an overview of the mathematical aspects of RC, focus-
ing on the characteristics and structures of the reservoir suitable for information
processing. From this viewpoint, we here discuss two open problems of theoretical
importance.

(i) Characterization of good reservoir:
The reservoirs (physical systems) have many parameters in general, and thus, some
optimization over the parameters is required. Although Edge of Chaos is one of the
crucial laws useful for optimization, the performance of RC cannot be determined
solely by the conditional Lyapunov exponent, which just reduces the dimension of
the parameter space by one. Is there a universal quantity, i.e., weakly dependent on
tasks, that characterizes a good reservoir completely? In other words, does there exist
some general property of dynamical systems which ensures the reservoir computer
with high processing performance?

(ii) Dynamical structure suitable for RC:
While the mixture reservoir would be one of the candidates of the suitable structures
for RC, the quest for more efficient structures is important. For instance, the config-
uration of the linear nodes and the nonlinear nodes in the mixture ESN of our study
is determined randomly. It is expected that optimizing the configuration improves
the performance further. According to the results from on-going numerical exper-
iments, better performance is obtained by a mixture ESN with one-way coupling
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from the nonlinear nodes to the linear nodes. The application of the theoretical find-
ings to physical implementation is also important. For instance, adding some linear
dynamics to the conventional physical reservoir, “physical mixture reservoir” could
outperform the conventional one significantly. Apart from the mixture reservoir, for
instance,DeepESNhas been studied theoretically (seeChapterDeepReservoirCom-
puting), and recently the first physical implementation of a deep reservoir, “photonic
deep RC”, has been reported (Nakajima et al. 2018). It is an interesting future work
to find the suitable structures of dynamical systems for RC combining theoretical
approaches with experimental approaches.

While we have described mainly the mathematical understandings of RC in this
article, finally here we discuss the future development of the whole research field of
RC. First, more and more of the various physical systems will be utilized for RC. As
illustrated in Sect. 2, if the number of nodes (degree of freedom) of the reservoir is the
same as that of the conventional RNN, RC cannot outperform the conventional RNN
in principle. Thus, in our opinion, the RC method shows its true ability when one
implements it by harnessing physical systems with a huge degree of freedom. Hence,
the physical systems with a huge degree of freedom such as nonlinear spatiotem-
poral systems having high scalability would be promising for the future reservoir.
Needless to say, it is expected that the future physical implementation, e.g., using
optical systems, realizes the ultrafast information processing with the low energy
consumption, which is one of the great advantages of RC.

Recently,many researchers in the field other than information science have studied
RC actively as well. Nonlinear physicists in Maryland have proposed the inference
method of dynamical variable (Lu et al. 2017), the prediction method of spatiotem-
poral chaos (Pathak et al. 2018), and the calculation method of Lyapunov exponent
from time series (Pathak et al. 2017). Moreover, these methods have been applied to
study turbulence physics, where a combination of transfer learning approach and RC
is proposed for efficient inference of physical quantities (Inubushi and Goto 2019,
2020a, b). It is expected that these findings will be “re-imported” to information
science in the future.

While there still remain mysterious points in the RC method, it has great advan-
tages of the suitability for physical implementation and simplicity of the training
method. If the theoretical open problems mentioned above are solved, then we can
obtain a solid foundation for design principles for the physical reservoir, which may
lead to the wide practical use of RC in a future society.
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