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Abstract Quantum systems have an exponentially large degree of freedom in the
number of particles and hence provide a rich dynamics that could not be simu-
lated on conventional computers. Quantum reservoir computing is an approach to
use such a complex and rich dynamics on the quantum systems as it is for tempo-
ral machine learning. In this chapter, we explain quantum reservoir computing and
related approaches, quantum extreme learningmachine and quantumcircuit learning,
starting from a pedagogical introduction to quantum mechanics and machine learn-
ing. All these quantummachine learning approaches are experimentally feasible and
effective on the state-of-the-art quantum devices.

1 Introduction

Over the past several decades, we have enjoyed exponential growth of computational
power, namely, Moore’s law. Nowadays even smart phone or tablet PC is much more
powerful than super computers in 1980s. People are still seekingmore computational
power, especially for artificial intelligence (machine learning), chemical and mate-
rial simulations, and forecasting complex phenomena like economics, weather and
climate. In addition to improving computational power of conventional computers,
i.e., more Moore’s law, a new generation of computing paradigm has been started to
be investigated to go beyond Moore’s law. Among them, natural computing seeks
to exploit natural physical or biological systems as computational resource. Quan-
tum reservoir computing is an intersection of two different paradigms of natural
computing, namely, quantum computing and reservoir computing.
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Regarding quantum computing, the recent rapid experimental progress in con-
trolling complex quantum systems motivates us to use quantum mechanical law
as a new principle of information processing, namely, quantum information pro-
cessing (Nielsen and Chuang 2010; Fujii 2015). For example, certain mathematical
problems, such as integer factorisation, which are believed to be intractable on a
classical computer, are known to be efficiently solvable by a sophisticatedly synthe-
sized quantum algorithm (Shor 1994). Therefore, considerable experimental effort
has been devoted to realizing full-fledged universal quantum computers (Barends
et al. 2014; Kelly et al. 2015). In the near feature, quantum computers of size > 50
qubits with fidelity > 99% for each elementary gate would appear to achieve quan-
tum computational supremacy beating simulation on the-state-of-the-art classical
supercomputers (Preskill 2018; Boixo et al. 2018). While this does not directly mean
that a quantum computer outperforms classical computers for a useful task like
machine learning, now applications of such a near-term quantum device for useful
tasks includingmachine learning has been widely explored. On the other hand, quan-
tum simulators (Feynman 1982) are thought to be much easier to implement than
a full-fledged universal quantum computer. In this regard, existing quantum simu-
lators have already shed new light on the physics of complex many-body quantum
systems (Cirac and Zoller 2012; Bloch et al. 2012; Georgescu et al. 2014), and a
restricted class of quantum dynamics, known as adiabatic dynamics, has also been
applied to combinatorial optimisation problems (Kadowaki and Nishimori 1998;
Farhi et al. 2001; Rønnow et al. 2014; Boixo et al. 2014). However, complex real-time
quantum dynamics, which is one of the most difficult tasks for classical computers
to simulate (Morimae et al. 2014; Fujii et al. 2016; Fujii and Tamate 2016) and has
great potential to perform nontrivial information processing, is now waiting to be
harnessed as a resource for more general purpose information processing.

Physical reservoir computing, which is the main subject throughout this book, is
another paradigm for exploiting complex physical systems for information process-
ing. In this framework, the low-dimensional input is projected to a high-dimensional
dynamical system, which is typically referred to as a reservoir, generating transient
dynamics that facilitates the separation of input states (Rabinovich et al. 2008). If the
dynamics of the reservoir involve both adequate memory and nonlinearity (Dambre
et al. 2012), emulating nonlinear dynamical systems only requires adding a linear
and static readout from the high-dimensional state space of the reservoir. A num-
ber of different implementations of reservoirs have been proposed, such as abstract
dynamical systems for echo state networks (ESNs) (Jaeger andHaas 2004) ormodels
of neurons for liquid state machines (Maass et al. 2002). The implementations are
not limited to programs running on the PC but also include physical systems, such
as the surface of water in a laminar state (Fernando and Sojakka 2003), analogue
circuits and optoelectronic systems (Appeltant et al. 2011; Woods and Naughton
2012; Larger et al. 2012; Paquot et al. 2012; Brunner et al. 2013; Vandoorne et al.
2014), and neuromorphic chips (Stieg et al. 2012). Recently, it has been reported that
the mechanical bodies of soft and compliant robots have also been successfully used
as a reservoir (Hauser et al. 2011; Nakajima et al. 2013a, b, 2014, 2015; Caluwaerts
et al. 2014). In contrast to the refinements required by learning algorithms, such as
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in deep learning (LeCun et al. 2015), the approach followed by reservoir computing,
especially when applied to real systems, is to find an appropriate form of physics that
exhibits rich dynamics, thereby allowing us to outsource a part of the computation.

Quantum reservoir computing (QRC) was born in the marriage of quantum com-
puting and physical reservoir computing above to harness complex quantum dynam-
ics as a reservoir for real-time machine learning tasks (Fujii and Nakajima 2017).
Since the idea of QRC has been proposed in Fujii and Nakajima (2017), its proof-
of-principle experimental demonstration for non-temporal tasks (Negoro et al. 2018)
and performance analysis and improvement (Nakajima et al. 2019; Kutvonen et al.
2020; Tran and Nakajima 2020) has been explored. The QRC approach to quantum
tasks such as quantum tomography and quantum state preparation has been recently
garnering attention (Ghosh et al. 2019a, b, 2020). In this book chapter, we will pro-
vide a broad picture of QRC and related approaches starting from a pedagogical
introduction to quantum mechanics and machine learning.

The rest of this paper is organized as follows. In Sect. 2, we will provide a ped-
agogical introduction to quantum mechanics for those who are not familiar to it
and fix our notation. In Sect. 3, we will briefly mention to several machine learning
techniques like, linear and nonlinear regressions, temporal machine learning tasks
and reservoir computing. In Sect. 4, we will explain QRC and related approaches,
quantum extreme learning machine (Negoro et al. 2018) and quantum circuit learn-
ing (Mitarai et al. 2018). The former is a framework to use quantum reservoir for
non-temporal tasks, that is, the input is fed into a quantum system, and generalization
or classification tasks are performed by a linear regression on a quantum enhanced
feature space. In the latter, the parameters of the quantum system are further fine-
tuned via the gradient descent by measuring an analytically obtained gradient, just
like the backpropagation for feedforward neural networks. Regarding QRC, we will
also see chaotic time series predictions as demonstrations. Section 5 is devoted to
conclusion and discussion.

2 Pedagogical Introduction to Quantum Mechanics

In this section, we would like to provide a pedagogical introduction to how quantum
mechanical systems work for those who are not familiar to quantum mechanics. If
you already familiar to quantum mechanics and its notations, please skip to Sect. 3.

2.1 Quantum State

A state of a quantum system is described by a state vector,

|ψ〉 =
⎛
⎜⎝
c1
...

cd

⎞
⎟⎠ (1)
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on a complex d-dimensional system C
d , where the symbol |·〉 is called ket and

indicates a complex columnvector. Similarly, 〈·| is called bra and indicates a complex
row vector, and they are related complex conjugate,

〈ψ | = |ψ〉† = (
c∗
1 . . . c∗

d

)
. (2)

With this notation, we can write an inner product of two quantum state |ψ〉 and |φ〉
by 〈ψ |φ〉. Let us define an orthogonal basis

|1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
...
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, ... |k〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

1
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

, ... |d〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
...
...
...

d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

a quantum state in the d-dimensional system can be described simply by

|ψ〉 =
d∑

i=1

ci |i〉. (4)

The state is said to be a superposition state of |i〉. The coefficients {ci } are complex,
and called complex probability amplitudes. If we measure the system in the basis
{|i〉}, we obtain the measurement outcome i with a probability

pi = |〈i |ψ〉|2 = |ci |2, (5)

and hence the complex probability amplitudes have to be normalized as follows

|〈ψ |ψ〉|2 =
d∑

i=1

|ci |2 = 1. (6)

In other words, a quantum state is represented as a normalized vector on a complex
vector space.

Suppose the measurement outcome i corresponds to a certain physical value ai ,
like energy, magnetization and so on, then the expectation value of the physical
valuable is given by

∑
i

ai pi = 〈ψ |A|ψ〉 ≡ 〈A〉, (7)

where we define an hermitian operator
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A =
∑
i

ai |i〉〈i |, (8)

which is called observable, and has the information of the measurement basis and
physical valuable.

The state vector in quantum mechanics is similar to a probability distribution, but
essentially different form it, since it is much more primitive; it can take complex
value and is more like a square root of a probability. The unique features of the
quantum systems come from this property.

2.2 Time Evolution

The time evolution of a quantum system is determined by a Hamiltonian H , which is
a hermitian operator acting on the system. Let us denote a quantum state at time t = 0
by |ψ(0)〉. The equation of motion for quantum mechanics, so-called Schrödinger
equation, is given by

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉. (9)

This equation can be formally solved by

|ψ(t)〉 = e−i Ht |ψ(0)〉. (10)

Therefore, the time evolution is given by an operator e−i Ht , which is a unitary oper-
ator and hence the norm of the state vector is preserved, meaning the probability
conservation. In general, the Hamiltonian can be time dependent. Regarding the
time evolution, if you are not interested in the continuous time evolution, but in just
its input and output relation, then the time evolution is nothing but a unitary operator
U

|ψout〉 = U |ψin〉. (11)

In quantum computing, the time evolution U is sometimes called quantum gate.

2.3 Qubits

The smallest nontrivial quantum system is a two-dimensional quantum system C
2,

which is called quantum bit or qubit:

α|0〉 + β|1〉, (|α|2 + |β|2 = 1). (12)
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Suppose we have n qubits. The n-qubit system is defined by a tensor product space
(C2)⊗n of each two-dimensional system as follows. A basis of the system is defined
by a direct product of a binary state |xk〉 with xk ∈ {0, 1},

|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉, (13)

which is simply denoted by

|x1x2 · · · xn〉. (14)

Then, a state of the n-qubit system can be described as

|ψ〉 =
∑

x1,x2,...,xn

αx1,x2,...,xn |x1x2 · · · xn〉. (15)

The dimension of the n-qubit system is 2n , and hence the tensor product space is
nothing but a 2n-dimensional complex vector spaceC2n . The dimension of the n-qubit
system increases exponentially in the number n of the qubits.

2.4 Density Operator

Next, I would like to introduce operator formalism of the above quantummechanics.
This describes an exactly the same thing but sometimes the operator formalismwould
be convenient. Let us consider an operator ρ constructed from the state vector |ψ〉:

ρ = |ψ〉〈ψ |. (16)

If you chose the basis of the system {|i〉} for the matrix representation, then the
diagonal elements of ρ corresponds the probability distribution pi = |ci |2 when the
system is measured in the basis {|i〉}. Therefore, the operator ρ is called a density
operator. The probability distribution can also be given in terms of ρ by

pi = Tr[|i〉〈i |ρ], (17)

where Tr is the matrix trace. An expectation value of an observable A is given by

〈A〉 = Tr[Aρ]. (18)

The density operator can handle a more general situation where a quantum state is
sampled form a set of quantum states {|ψk〉} with a probability distribution {qk}. In
this case, if we measure the system in the basis {|i〉〈i |}, the probability to obtain the
measurement outcome i is given by
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pi =
∑
k

qkTr[|i〉〈i |ρk], (19)

where ρk = |ψk〉〈ψk |. By using linearity of the trace function, this reads

pi = Tr[|i〉〈i |
∑
k

qkρk]. (20)

Now, we interpret that the density operator is given by

ρ =
∑
k

qk |ψk〉〈ψk |. (21)

In this way, a density operator can represent classical mixture of quantum states
by a convex mixture of density operators, which is convenient in many cases. In
general, a positive and hermitian operator ρ being subject to Tr[ρ] = 1 can be a
density operator, since it can be interpreted as a convex mixture of quantum states
via spectral decomposition:

ρ =
∑

λi |λi 〉〈λi |, (22)

where {|λi 〉} and {λi } are the eigenstates and eigenvectors, respectively. Because of
Tr[ρ] = 1, we have

∑
i λi = 1.

From its definition, the time evolution of ρ can be given by

ρ(t) = e−i Htρ(0)eiHt (23)

or

ρout = UρinU
†. (24)

Moreover, we can define more general operations for the density operators. For
example, if we apply unitary operators U and V with probabilities p and (1 − p),
respectively, then we have

ρout = pUρU † + (1 − p)VρV †. (25)

As another example, if we perform the measurement of ρ in the basis {|i〉}, and
we forget about the measurement outcome, then the state is now given by a density
operator

∑
i

Tr[|i〉〈i |ρ]|i〉〈i | =
∑
i

|i〉〈i |ρ|i〉〈i |. (26)
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Therefore, if we define a map from a density operator to another, which we call
superoperator,

M(· · · ) =
∑
i

|i〉〈i |(· · · )|i〉〈i |, (27)

the above non-selective measurement (forgetting about the measurement outcomes)
is simply written by

M(ρ). (28)

In general, any physically allowed quantum operationK that maps a density operator
to another can be represented in terms of a set of operators {Ki } being subject to
K †

i Ki = I with an identity operator I :

K(ρ) =
∑
i

KiρK
†
i . (29)

The operators {Ki } are called Kraus operators.

2.5 Vector Representation of Density Operators

Finally, we would like to introduce a vector representation of the above operator
formalism. The operators themselves satisfy axioms of the linear space. Moreover,
we can also define an inner product for two operators, so-called Hilbert–Schmidt
inner product, by

Tr[A†B]. (30)

The operators on the n-qubit system can be spanned by the tensor product of Pauli
operators {I, X,Y, Z}⊗n ,

P(i) =
n⊗

k=1

σi2k−1i2k . (31)

where σi j is the Pauli operators:

I = σ00 =
(
1 0
0 1

)
, X = σ10 =

(
0 1
1 0

)
, Z = σ01 =

(
1 0
0 −1

)
, Y = σ11 =

(
0 −i
i 0

)
. (32)

Since the Pauli operators constitute a complete basis on the operator space, any
operator A can be decomposed into a linear combination of P(i),
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A =
∑
i

aiP(i). (33)

The coefficient ai can be calculated by using the Hilbert–Schmidt inner product as
follows:

ai = Tr[P(i)A]/2n, (34)

by virtue of the orthogonality

Tr[P(i)P(j)]/2n = δi,j. (35)

The number of the n-qubit Pauli operators {P(i)} is 4n , and hence a density operator
ρ of the n-qubit system can be represented as a 4n-dimensional vector

r =
⎛
⎜⎝
r00...0

...

r11...1

⎞
⎟⎠ , (36)

where r00...0 = 1/2n because of Tr[ρ] = 1. Moreover, because P(i) is hermitian, r
is a real vector. The superoperator K is a linear map for the operator, and hence can
be represented as a matrix acting on the vector r:

ρ ′ = K(ρ) ⇔ r′ = K r, (37)

where the matrix element is given by

Kij = Tr[P(i)K (P(j))]/2n. (38)

In this way, a density operator ρ and a quantum operationK on it can be represented
by a vector r and a matrix K , respectively.

3 Machine Learning and Reservoir Approach

In this section, we briefly introduce machine learning and reservoir approaches.

3.1 Linear and Nonlinear Regression

A supervised machine learning is a task to construct a model f (x) from a given set
of teacher data {x ( j), y( j)} and to predict the output of an unknown input x . Suppose
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x is a d-dimensional data, and f (x) is one dimensional, for simplicity. The simplest
model is linear regression, which models f (x) as a linear function with respect to
the input:

f (x) =
d∑

i=1

wi xi + w0. (39)

The weights {wi } and bias w0 are chosen such that an error between f (x) and the
output of the teacher data, i.e. loss, becomes minimum. If we employ a quadratic
loss function for given teacher data {{x ( j)

i }, y( j)}, the problem we have to solve is as
follows:

min{wi }
∑
j

(

d∑
i=0

wi x
( j)
i − y( j))2, (40)

where we introduced a constant node x0 = 1. This corresponds to solving a super-
imposing equations:

y = Xw, (41)

where y j = y( j), X j i = x ( j)
i , and wi = wi . This can be solved by using the Moore–

Penrose pseudo inverse X+, which can be defined from the singular value decompo-
sition of X = UDV T to be

X+ = V DUT . (42)

Unfortunately, the linear regression results in a poor performance in complicated
machine learning tasks, and any kind of nonlinearity is essentially required in the
model. A neural network is a way to introduce nonlinearity to the model, which is
inspired by the human brain. In the neural network, the d-dimensional input data x
is fed into N -dimensional hidden nodes with an N × d input matrix W in:

W inx . (43)

Then, each element of the hidden nodes is now processed by a nonlinear activation
function σ such as tanh, which is denoted by

σ(W inx). (44)

Finally, the output is extracted by an outputweightW out (1 × N dimensionalmatrix):

W outσ(W inx). (45)
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The parameters in W in and W out are trained such that the error between the output
and teacher data becomes minimum. While this optimization problem is highly non-
linear, a gradient based optimization, so-called backpropagation, can be employed.
To improve a representation power of the model, we can concatenate the linear trans-
formation and the activation function as follows:

W outσ
(
W (l) . . . σ

(
W (1)σ (W inx)

))
, (46)

which is called multi-layer perceptron or deep neural network.

3.2 Temporal Task

The above task is not a temporal task, meaning that the input data is not sequential but
given simultaneously like the recognition task of images for hand written language,
pictures and so on. However, for a recognition of spoken language or prediction of
time series like stock market, which are called temporal tasks, the network has to
handle the input data that is given in a sequential way. To do so, the recurrent neural
network feeds the previous states of the nodes back into the states of the nodes at next
step, which allows the network to memorize the past input. In contrast, the neural
network without any recurrency is called a feedforward neural network.

Let us formalize a temporal machine learning task with the recurrent neural net-
work. For given input time series {xk}Lk=1 and target time series {ȳk}Lk=1, a temporal
machine learning is a task to generalize a nonlinear function,

ȳk = f ({x j }kj=1). (47)

For simplicity, we consider one-dimensional input and output time series, but their
generalization to a multi-dimensional case is straightforward. To learn the nonlinear
function f ({x j }kj=1), the recurrent neural network can be employed as a model.
Suppose the recurrent neural network consists of m nodes and is denoted by m-
dimensional vector

r =
⎛
⎜⎝

r1
...

rm

⎞
⎟⎠ . (48)

To process the input time series, the nodes evolve by

r(k + 1) = σ [W r(k) + W inxk], (49)

where W is an m × m transition matrix and W in is an m × 1 input weight matrix.
Nonlinearity comes from the nonlinear function σ applied on each element of the
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nodes. The output time series from the network is defined in terms of a 1 × m readout
weights by

yk = W outr(k). (50)

Then, the learning task is to determine the parameters in W in, W , and W out by using
the teacher data {xk, ȳk}Lk=1 so as to minimize an error between the teacher {ȳk} and
the output {yk} of the network.

3.3 Reservoir Approach

While the representation power of the recurrent neural network can be improved by
increasing the number of the nodes, it makes the optimization process of the weights
hard and unstable. Specifically, the backpropagation-based methods always suffer
from the vanishing gradient problem. The idea of reservoir computing is to resolve
this problem by mapping an input into a complex higher dimensional feature space,
i.e., reservoir, and by performing simple linear regression on it.

Let us first see a reservoir approach on a feedforward neural network, which is
called extreme learning machine (Huang et al. 2006). The input data x is fed into
a network like multi-layer perceptron, where all weights are chosen randomly. The
states of the hidden nodes at some layer are now regarded as basis functions of the
input x in the feature space:

{φ1(x), φ2(x), . . . , φN (x)}. (51)

Now, the output is defined as a linear combination of these

∑
i

wiφi (x) + w0 (52)

and hence the coefficients are determined simply by the linear regression as men-
tioned before. If the dimension and nonlinearity of the the basis functions are high
enough, we can model a complex task simply by the linear regression.

The echo state network is similar but employs the reservoir idea for the recurrent
neural network (Jaeger and Haas 2004; Maass et al. 2002; Verstraeten et al. 2007),
which has been proposed before extreme learning machine appeared. To be specific,
the input weights W in and weight matrix W are both chosen randomly up to an
appropriate normalization. Then, the learning task is done by finding the readout
weights W out to minimize the mean square error

∑
k

(yk − ȳk)
2. (53)



Quantum Reservoir Computing: A Reservoir Approach … 435

This problem can be solved stably by using the pseudo inverse as we mentioned
before.

For both feedforward and recurrent types, the reservoir approach does not need
to tune the internal parameters of the network depending on the tasks as long as it
posses sufficient complexity. Therefore, the system, to which the machine learning
tasks are outsourced, is not necessarily the neural network anymore, but any non-
linear physical system of large degree of freedoms can be employed as a reservoir
for information processing, namely, physical reservoir computing (Fernando and
Sojakka 2003; Appeltant et al. 2011; Woods and Naughton 2012; Larger et al. 2012;
Paquot et al. 2012; Brunner et al. 2013; Vandoorne et al. 2014; Stieg et al. 2012;
Hauser et al. 2011; Nakajima et al. 2013a, b, 2014, 2015; Caluwaerts et al. 2014).

4 Quantum Machine Learning on Near-Term Quantum
Devices

In this section, we will see QRC and related frameworks for quantum machine
learning. Before going deep into the temporal tasks done on QRC, we first explain
how complicated quantum natural dynamics can be exploit as generalization and
classification tasks. This can be viewed as a quantum version of extreme learning
machine (Negoro et al. 2018).While it is an opposite direction to reservoir computing,
we will also see quantum circuit learning (QCL) (Mitarai et al. 2018), where the
parameters in the complex dynamics is further tuned in addition to the linear readout
weights. QCL is a quantum version of a feedforward neural network. Finally, we
will explain quantum reservoir computing by extending quantum extreme learning
machine for temporal learning tasks.

4.1 Quantum Extreme Learning Machine

The idea of quantum extreme learning machine lies in using a Hilbert space, where
quantum states live, as an enhanced feature space of the input data. Let us denote
the set of input and teacher data by {x ( j), ȳ( j)}. Suppose we have an n-qubit system,
which is initialized to

|0〉⊗n. (54)

In order to feed the input data into quantum system, a unitary operation parameterized
by x , say V (x), is applied on the initial state:

V (x)|0〉⊗n . (55)
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For example, if x is one-dimensional data and normalized to be 0 ≤ x ≤ 1, then we
may employ the Y -basis rotation e−iθY with an angle θ = arccos(

√
x):

e−iθY |0〉 = √
x |0〉 + √

1 − x |1〉. (56)

The expectation value of Z with respect to e−iθY |0〉 becomes

〈Z〉 = 2x − 1, (57)

and hence is linearly related to the input x . To enhance the power of quantum
enhanced feature space, the input could be transformed by using a nonlinear function
φ:

θ = arccos(
√

φ(x)). (58)

The nonlinear function φ could be, for example, hyperbolic tangent, Legendre
polynomial, and so on. For simplicity, below we will use the simple linear input
θ = arccos(

√
x).

If we apply the same operation on each of the n qubits, we have

V (x)|0〉⊗n = (
√
x |0〉 + √

1 − x |1〉)⊗n

= (1 − x)n/2
∑
i1,...,in

∏
k

√
x

1 − x

ik

|i1, . . . , in〉. (59)

Therefore, we have coefficients that are nonlinear with respect to the input x because
of the tensor product structure. Still the expectation value of the single-qubit operator
Zk on the kth qubit is 2x − 1. However, if we measure a correlated operator like
Z1Z2, we can obtain a second-order nonlinear output

〈Z1Z2〉 = (2x − 1)2 (60)

with respect to the input x . To measure a correlated operator, it is enough to apply
an entangling unitary operation like CNOT gate �(X) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X :

〈ψ |�1,2(X)Z1�1,2(X)|ψ〉 = 〈ψ |Z1Z2|ψ〉. (61)

In general, an n-qubit unitary operation U transforms the observable Z under the
conjugation into a linear combination of Pauli operators:

U †Z1U =
∑
i

αiP(i). (62)
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Fig. 1 The expectation value 〈Z〉 of the output of a quantum circuit as a function of the input
(x0, x1)

Thus if you measure the output of the quantum circuit after applying a unitary oper-
ation U ,

UV (x)|0〉⊗n, (63)

you can get a complex nonlinear output, which could be represented as a linear
combination of exponentially many nonlinear functions. U should be chosen to be
appropriately complexwith keeping experimental feasibility but not necessarily fine-
tuned.

To see how the output behaves in a nonlinear way with respect to the input, in
Fig. 1, we will plot the output 〈Z〉 for the input (x0, x1) and n = 8, where the inputs
are fed into the quantum state by the Y -rotation with angles

θ2k = k arccos(
√
x0) (64)

θ2k+1 = k arccos(
√
x1) (65)

on the 2kth and (2k + 1)th qubits, respectively. Regarding the unitary operation U ,
random two-qubit gates are sequentially applied on any pairs of two qubits on the
8-qubit system.

Suppose the Pauli Z operator is measured on each qubit as an observable. Then,
we have

zi = 〈Zi 〉, (66)
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for each qubit. In quantum extreme learning machine, the output is defined by taking
linear combination of these n output:

y =
n∑

i=1

wi zi . (67)

Now, the linear readout weights {wi } are tuned so that the quadratic loss function

L =
∑
j

(y( j) − ȳ( j))2 (68)

becomes minimum. As we mentioned previously, this can be solved by using the
pseudo inverse. In short, quantum extreme learning machine is a linear regression on
a randomly chosen nonlinear basis functions, which come from the quantum state in a
space of an exponentially large dimension, namely quantum enhanced feature space.
Furthermore, under some typical nonlinear function and unitary operations settings
to transform the observables, the output in Eq. (67) can approximate any continuous
function of the input. This property is known as the universal approximation property
(UAP), which implies that the quantum extreme learning machine can handle a wide
class of machine learning tasks with at least the same power as the classical extreme
learning machine (Goto et al. 2020).

Here we should note that a similar approach, quantum kernel estimation, has
been taken in Havlicek et al. (2019) and Kusumoto et al. (2021). In quantum extreme
learning machine, a classical feature vector φi (x) ≡ 〈(x)|Zi |(x)〉 is extracted
from observables on the quantum feature space |(x)〉 ≡ V (x)|0〉⊗n . Then, linear
regression is taken by using the classical feature vector.On the other hand, in quantum
kernel estimation, quantum feature space is fully employed by using support vector
machinewith the kernel functions K (x, x ′) ≡ 〈(x)|(x ′)〉, which can be estimated
on a quantum computer. While classification power would be better for quantum
kernel estimation, it requires more quantum computational costs both for learning
and prediction in contrast to quantum extreme learning machine.

In Fig. 2,we demonstrate quantum extreme learning machine for a two-class clas-
sification task of a two-dimensional input 0 ≤ x0, x1 ≤ 1. Class 0 and 1 are defined to
be those being subject to (x0 − 0.5)2 + (x1 − 0.5)2 ≤ 0.15 and> 0.15, respectively.
The linear readout weights {wi } are learned with 1000 randomly chosen training data
and prediction is performed with 1000 randomly chosen inputs. The class 0 and 1 are
determined whether or not the output y is larger than 0.5. Quantum extreme learning
machine with an 8-qubit quantum circuit shown in Fig. 2a succeeds to predict the
class with 95% accuracy. On the other hand, a simple linear regression for (x0, x1)
results in 39%. Moreover, quantum extreme learning machine withU = I , meaning
no entangling gate, also results in poor, 42%. In this way, the feature space enhanced
by quantum entangling operations is important to obtain a good performance in
quantum extreme learning machine.
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Fig. 2 a The quantum circuit for quantum extreme learningmachine. The boxwith thetak indicates
Y -rotations by angles θk . The red and blue boxes correspond to X and Z rotations by random
angles, Each dotted-line box represents a two-qubit gate consisting of two controlled-Z gates and
8 X -rotations and 4 Z -rotations. As denoted by the dashed-line box, the sequence of the 7 dotted
boxes is repeated twice. The readout is defined by a linear combination of 〈Zi 〉 with constant bias
term 1.0 and the input (x0, x1). b (Left) The training data for a two-class classification problem.
(Middle) The readout after learning. (Right) Prediction from the readout with threshold at 0.5

4.2 Quantum Circuit Learning

In the split of reservoir computing, dynamics of a physical system is not fine-tuned
but natural dynamics of the system is harnessed formachine learning tasks. However,
if we see the-state-of-the-art quantum computing devices, the parameter of quantum
operations can be finely tuned as done for universal quantum computing. Therefore,
it is natural to extend quantum extreme learning machine by tuning the parameters
in the quantum circuit just like feedfoward neural networks with backpropagation.

Using parameterized quantum circuits for supervised machine leaning tasks such
as generalization of nonlinear functions and pattern recognitions have been proposed
in Mitarai et al. (2018), Farhi and Neven (2018), which we call quantum circuit
learning. Let us consider the same situationwith quantum extreme learningmachine.
The state before the measurement is given by

UV (x)|0〉⊗n. (69)
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In the case of quantumextreme learningmachine, the unitary operation for a nonlinear
transformation with respect to the input parameter x is randomly chosen. However,
the unitary operation U may also be parameterized:

U ({φk}) =
∏
k

u(φk). (70)

Thereby, the output from the quantum circuit with respect to an observable A

〈A({φk}, x)〉 = 〈0|⊗nV †(x)U ({φk})†ZiU ({φk})V (x)|0〉⊗n (71)

becomes a function of the circuit parameters {φk} in addition to the input x . Then,
the parameters {φk} are tuned so as to minimize the error between teacher data and
the output, for example, by using the gradient just like the output of the feedforward
neural network.

Let us define a teacher dataset {x ( j), y( j)} and a quadratic loss function

L({φk}) =
∑
j

(〈A({φk}, x ( j))〉 − y( j))2. (72)

The gradient of the loss function can be obtained as follows:

∂

∂φl
L({φk}) = ∂

∂φl

∑
j

(〈A({φk}, x ( j))〉 − y( j))2 (73)

=
∑
j

2(〈A({φk}, x ( j))〉 − y( j))
∂

∂φl
〈A({φk}, x ( j))〉. (74)

Therefore, if we can measure the gradient of the observable 〈A({φk}, x ( j))〉, the loss
function can be minimized according to the gradient descent.

If the unitary operation u(φk) is given by

u(φk) = Wke
−i(φk/2)Pk , (75)

whereWk is an arbitrary unitary, and Pk is a Pauli operator. Then, the partial derivative
with respect to the lth parameter can be analytically calculated from the outputs
〈A({φk}, x ( j))〉 with shifting the lth parameter by ±ε (Mitarai et al. 2018; Mitarai
and Fujii 2019):

∂

∂φl
〈A({φk }, x( j))〉

= 1

2 sin ε
(〈A({φ1, . . . , φl + ε, φl+1, . . .}, x( j))〉 − 〈A({φ1, . . . , φl − ε, φl+1, . . .}, x( j))〉).

(76)
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By considering the statistical error tomeasure the observable 〈A〉, ε should be chosen
to be ε = π/2 so as to make the denominator maximum. After measuring the partial
derivatives for all parameters φk and calculating the gradient of the loss function
L({φk}), the parameters are now updated by the gradient descent:

θ
(m+1)
l = θ

(m)
l − α

∂

∂φl
L({φk}). (77)

The idea of using the parameterized quantum circuits for machine learning is
now widespread. After the proposal of quantum circuit learning based on the ana-
lytical gradient estimation above (Mitarai et al. 2018) and a similar idea (Farhi and
Neven 2018), several researches have been performed with various types of param-
eterized quantum circuits (Schuld et al. 2020; Huggins et al. 2019; Chen et al. 2018;
Glasser et al. 2018; Du et al. 2018) and various models and types of machine learning
including generative models (Benedetti et al. 2019a; Liu and Wang 2018) and gen-
erative adversarial models (Benedetti et al. 2019b; Situ et al. 2020; Zeng et al. 2019;
Romero and Aspuru-Guzik 2019). Moreover, an expression power of the parameter-
ized quantum circuits and its advantage against classical probabilistic models have
been investigated (Du et al. 2020). Experimentally feasible ways to measure an ana-
lytical gradient of the parameterized quantumcircuits have been investigated (Mitarai
and Fujii 2019; Schuld et al. 2019; Vidal and Theis 2018). An advantage of using
such a gradient for the parameter optimization has been also argued in a simple set-
ting (Harrowand John 2019),while the parameter tuning becomes difficult because of
the vanishing gradient by an exponentially large Hilbert space (McClean et al. 2018).
Software libraries for optimizing parameterized quantum circuits are nowdeveloping
(Bergholm et al. 2018; Chen et al. 2019). Quantum machine learning on near-term
devices, especially for quantum optical systems, is proposed in Steinbrecher et al.
(2019), Killoran et al. (2019). Quantum circuit learning with parameterized quan-
tum circuits has been already experimentally demonstrated on superconducting qubit
systems (Havlicek et al. 2019; Wilson et al. 2018) and a trapped ion system (Zhu
et al. 2019).

4.3 Quantum Reservoir Computing

Now, we return to the reservoir approach and extend quantum extreme learning
machine from non-temporal tasks to temporal ones, namely, quantum reservoir com-
puting (Fujii and Nakajima 2017). We consider a temporal task, which we explained
in Sect. 3.2. The input is given by a time series {xk}Lk and the purpose is to learn a
nonlinear temporal function:

ȳk = f ({x j }kj ). (78)

To this end, the target time series {ȳk}Lk=1 is also provided as teacher.
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Contrast to the previous setting with non-temporal tasks, we have to fed input into
a quantum system sequentially. This requires us to perform an initialization process
during computation, and hence the quantum state of the system becomesmixed state.
Therefore, in the formulation ofQRC,wewill use the vector representation of density
operators, which was explained in Sect. 2.5.

In the vector representation of density operators, the quantum state of an N -qubit
system is given by a vector in a 4N -dimensional real vector space, r ∈ R

4N . In QRC,
similarly to recurrent neural networks, each element of the 4N -dimensional vector
is regarded as a hidden node of the network. As we seen in Sect. 2.5, any physical
operation can be written as a linear transformation of the real vector by a 4N × 4N

matrix W :

r′ = W r. (79)

Now we see, from Eq. (79), a time evolution similar to the recurrent neural net-
work, r′ = tanh(W r). However, there is no nonlinearity such as tanh in each quantum
operationW . Instead, the time evolutionW can be changed according to the external
input xk , namely Wxk , which contrasts to the conventional recurrent neural network
where the input is fed additively W r + W inxk . This allows the quantum reservoir to
process the input information {xk} nonlinearly, by repetitively feeding the input.

Suppose the input {xk} is normalized such that 0 ≤ xk ≤ 1.As an input, we replace
a part of the qubits to the quantum state. The density operator is given by

ρxk = I + (2xk − 1)Z

2
. (80)

For simplicity, below we consider the case where only one qubit is replaced for the
input. Corresponding matrix Sxk is given by

(Sxk )ji = Tr

{
P(j)

I + (2xk − 1)Z

2
⊗ Trreplace[P(i)]

}
/2N , (81)

where Trreplace indicates a partial trace with respect to the replaced qubit. With this
definition, we have

ρ ′ = Trreplace[ρ] ⊗ ρxk ⇔ r′ = Sxk r. (82)

The unitary time evolution, which is necessary to obtain a nonlinear behavior
with respect to the input valuable xk , is taken as a Hamiltonian dynamics e−i Hτ for
a given time interval τ . Let us denote its representation on the vector space by Uτ :

ρ ′ = e−i Hτ ρeiHτ ⇔ r′ = Uτ r. (83)
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Fig. 3 a Quantum reservoir computing. b Virtual nodes and temporal multiplexing

Then, a unit time step is written as an input-depending linear transformation:

r((k + 1)τ ) = Uτ Sxk r(kτ). (84)

where r(kτ) indicates the hidden nodes at time kτ .
Since the number of the hidden nodes are exponentially large, it is not feasible to

observe all nodes from experiments. Instead, a set of observed nodes {r̄l}Ml=1, which
we call true nodes, is defined by a M × 4N matrix R,

r̄l(kτ) =
∑
i

Rliri(kτ). (85)

The number of true nodes M has to be a polynomial in the number of qubits N . That
is, from exponentially many hidden nodes, a polynomial number of true nodes are
obtained to define the output from QR (see Fig. 3a):

yk =
∑
l

W out
l r̄l(kτ), (86)
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where Wout is the readout weights, which is obtained by using the training data. For
simplicity, we take the single-qubit Pauli Z operator on each qubit as the true nodes,
i.e.,

r̄l = Tr[Zlρ], (87)

so that if there is no dynamics these nodes simply provide a linear output (2xk − 1)
with respect to the input xk .

Moreover, in order to improve the performancewe also perform the temporal mul-
tiplexing. The temporal multiplexing has been found to be useful to extract complex
dynamics on the exponentially large hidden nodes through the restricted number of
the true nodes (Fujii and Nakajima 2017). In temporal multiplexing, not only the
true nodes just after the time evolution Uτ , also at each of the subdivided V time
intervals during the unitary evolution Uτ to construct V virtual nodes, as shown
in Fig. 3b. After each input by Sxk , the signals from the hidden nodes (via the true
nodes) are measured for each subdivided intervals after the time evolution byUvτ/V

(v = 1, 2, . . . V ), i.e.,

r(kτ + (v/V )τ ) ≡ U(v/V )τ Sxk r(kτ). (88)

In total, now we have N × V nodes, and the output is defined as their linear combi-
nation:

yk =
N∑
l=1

V∑
v=1

W out
j,v r̄l(kτ + (v/V )τ ). (89)

By using the teacher data {ȳk}Lk , the linear readout weights W out
j,v can be determined

by using the pseudo inverse. In Fujii and Nakajima (2017), the performance of QRC
has been investigated extensively for both binary and continuous inputs. The result
shows that even if the number of the qubits are small like 5–7 qubits the performance
as powerful as the echo state network of the 100–500 nodes have been reported
both in short term memory and parity check capacities. Note that, although we do
not go into detail in this chapter, the technique called spatial multiplexing (Nakajima
et al. 2019),which exploitsmultiple quantum reservoirswith common input sequence
injected, is also introduced to harness quantumdynamics as a computational resource.
Recently, QRC has been further investigated in Kutvonen et al. (2020), Ghosh et al.
(2019a), Chen and Nurdin (2019). Specifically, in Ghosh et al. (2019a), the authors
use quantum reservoir computing to detect many-body entanglement by estimating
nonlinear functions of density operators like entropy.
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4.4 Emulating Chaotic Attractors Using Quantum Dynamics

To see a performance ofQRC, herewedemonstrate an emulation of chaotic attractors.
Suppose {xk}Lk is a discretized time sequence being subject to a complex nonlinear
equation, which might has a chaotic behavior. In this task, the target, which the
network is to output, is defined to be

ȳk = xk+1 = f ({x j }kj=1). (90)

That is, the system learns the input of the next step. Once the system successfully
learns ȳk , by feeding the output into the input of the next step of the system, the
system evolves autonomously.

Here,we employ the following target time series fromchaotic attractors: (i) Lorenz
attractor,

dx

dt
= a(y − x), (91)

dy

dt
= x(b − z) − y, (92)

dz

dt
= xy − cz, (93)

with (a, b, c) = (10, 28, 8/3), (ii) the chaotic attractor of Mackey–Glass equation,

d

dt
x(t) = β

x(t − τ)

1 + x(t − τ)n
− γ x(t) (94)

with (β, γ, n) = (0.2, 0.1, 10) and τ = 17, (iii) Rössler attoractor,

dx

dt
= −y − z, (95)

dy

dt
= x + ay, (96)

dz

dt
= b + z(x − c), (97)

with (0.2, 0.2, 5.7), and (iv) Hénon map,

xt+1 = 1 − 1.4xt + 0.3xt−1. (98)

Regarding (i)-(iii), the time series is obtained by using the fourth-order Runge–
Kutta method with step size 0.02, and only x(t) is employed as a target. For the time
evolution of quantum reservoir, we employ a fully connected transverse-field Ising
model
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H =
∑
i j

Ji j Xi X j + hZi , (99)

where the coupling strengths are randomly chosen such that Ji j is distributed ran-
domly from [−0.5, 0.5] and h = 1.0. The time interval and the number of the virtual
nodes are chosen to be τ = 4.0 and v = 10 so as to obtain the best performance. The
first 104 steps are used for training. After the linear readout weights are determined,
several 103 steps are predicted by autonomously evolving the quantum reservoir.
The results are shown in Fig. 4 for each of (a) Lorenz attractor, (b) the chaotic attrac-
tor of Mackey–Glass system, (c) Rössler attractor, and (d) Hénon map. All these
results show that training is done well and the prediction is successful for several
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hundreds steps. Moreover, the output from the quantum reservoir also successfully
reconstruct the structures of these chaotic attractors as you can see from the delayed
phase diagram.

5 Conclusion and Discussion

Here, we reviewed quantum reservoir computing and related approaches, quantum
extreme learning machine and quantum circuit learning. The idea of quantum reser-
voir computing comes from the spirit of reservoir computing, i.e., outsourcing infor-
mation processing to natural physical systems. This idea is best suited to quan-
tum machine learning on near-term quantum devices in noisy intermediate quantum
(NISQ) era. Since reservoir computing uses complex physical systems as a feature
space to construct a model by the simple linear regression, this approach would be a
good way to understand the power of a quantum enhanced feature space.

Acknowledgements KF is supported by KAKENHI No.16H02211, JST PRESTO JPMJPR1668,
JSTERATO JPMJER1601, and JSTCREST JPMJCR1673.KN is supported by JSTPRESTOGrant
Number JPMJPR15E7, Japan, by JSPS KAKENHI Grant Numbers JP18H05472, JP16KT0019,
and JP15K16076. KN would like to acknowledge Dr. Quoc Hoan Tran for his helpful comments.
This work is supported by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant No.
JPMXS0118067394.

References

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen,
C.R. Mirasso, I. Fischer, Information processing using a single dynamical node as complex
system. Nat. Commun. 2, 468 (2011)

R. Barends et al., Superconducting quantum circuits at the surface code threshold for fault tolerance.
Nature 508, 500 (2014)

M.Benedetti et al.,Agenerativemodeling approach for benchmarking and training shallowquantum
circuits. NPJ Quantum Inf. 5, 45 (2019a)

M. Benedetti et al., Adversarial quantum circuit learning for pure state approximation. New J. Phys.
21 (2019b)

V. Bergholm et al., PennyLane: automatic differentiation of hybrid quantum-classical computations
(2018), arXiv:1811.04968

I. Bloch, J. Dalibard, S. Nascimbène, Quantum simulations with ultracold quantum gases. Nat.
Phys. 8, 267 (2012)

S. Boixo, T.F. Rønnow, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer,
Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218 (2014)

S. Boixo et al., Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595 (2018)
D. Brunner, M.C. Soriano, C.R. Mirasso, I. Fischer, Parallel photonic information processing at
gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013)
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