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Abstract An idea to use a magnetic nano-dots array for a reservoir computing
is introduced. The mechanism of how the nonlinear calculation is carried out in
the magnetic system is explained by showing the simplest case with three nano-
dots system. The first trial to prove calculation ability and fabrication ability of
the system is demonstrated. Since the proposed reservoir computing system may
utilize integration technology of the magnetic random access memory (MRAM), it
possesses a possibility to realize a large-scale reservoir computing system.

1 Spin-Glass Model and Spin-Glass Reservoir Computing

The Hopfield model (Hopfield 1982) and the Boltzmann machine (Ackley et al.
1985) are well-known mathematical models of recurrent neural networks (RNN).
They are based on a physical model of magnetic material with randomness (Amit
and Gutfreund 1985) called a spin glass. Classical view of the spin is a rotation
of the electron itself that causes magnetic moment of the atoms. In a spin glass,
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each atom acts as a magnet and interacts with each other via a quantum mechan-
ical exchange interaction, J. In terms of neural concepts, the direction of magnetic
dipole moment of an atom can be considered as the electrochemical potential of a
neuron and the interaction J as the synaptic weight. Thus, magnetic materials can
be treated as models of RNN and sophisticated techniques from statistical physics
can be applied to analyze RNNs. In particular, the “infinite range model” (Fig. 1),
where an infinite number of atoms (neurons/nodes) with all inter-atomic exchange
interactions (inter-neuron/inter-node connections), is considered, which simplifies
the problem tremendously because the mean-field approximation from statistical
physics can provide an exact solution for the model. In addition, the Ising spin
model, in which the direction of the magnetic moment is constrained along +z- or

Fig. 1 Infinite range model of a spin glass. Orange disks are atoms with magnetic momentum
vectors (arrows). Black lines express exchange interactions, J, between two atoms. Depending on
the sign of J, connected two magnetic moments prefer parallel or antiparallel configurations. Since
all atoms are connected by lines, the model is regarded as an “infinite range model.” This is an
idealization of the real spin glass, in which the atoms align in a solid and the exchange interactions
are limited between neighboring atoms. In terms of neuromorphic computation, the atoms represent
neurons (nodes), and lines represent axons/synapses complex (undirected inter-connections and
synaptic weights). In the spin-glass system, because of a randomness in the atom positions, J is
distributed. As a consequence, the system has many energy minima. This means that the system has
many quasi-equilibrium states with complicated alignments of magnetic moments. In this chapter,
we aim to use such a system as a reservoir
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Fig. 2 aMRAM.TheMRAMcomprisesmagnetic tunnel junctions (MTJs) and selection transistors
underneath (not shown). As an example, the MTJ can have a magnetic free layer of 20 nm × 20 nm
× 2 nm. The direction of the magnetic moment in the free layer, which is illustrated by the white
arrow in the black layer, corresponds to one bit of binary information. Since the resistance of the
MTJ depends on the relative angle between the free layer magnetic moment and the reference
layer (white arrow in the gray color layer) (Yuasa et al. 2004; Parkin et al. 2004), one may read
out individual bit information electrically. bMagnetic reservoir made of MTJ array. The magnetic
dipole interaction between the magnetic free layers allows linear/nonlinear operations among the
stored information and makes the system an effective reservoir

–z-directions, can also simplify the problem without losing its essential calculation
ability. These generalizations and simplifications of the spin-glass model resulted in
the Hopfield model and Boltzmann machine.

Therefore, one may expect that magnetic materials can serve as good natural
systems to realize RNNs. However, limited researches have been done to produce
RNNs using the spin glasses. This is because individual atomic magnets cannot be
easily controlled. On the other hand, recent developments in the field of electronics
have made it possible to integrate large numbers of nano-sized magnets (hereafter
called “nanomagnets”) to construct a solid-state magnetic random access memory
(MRAM) (Bhatti et al. 2017) (Fig. 2a). In MRAM, one may read out each bit infor-
mation, which is stored as the direction of the magnetic moment in a cell, using
the magnetoresistive effect (Yuasa et al. 2004; Parkin et al. 2004). The cell is called
as a magnetic tunnel junction (MTJ), in which the resistance is dependent on the
relative angle between two magnetic dipole moments in the junction, i.e., of free
layer and reference layer. One may also write-in the information by applying either
a current (Myers et al. 1999) or a voltage (Maruyama et al. 2009). To construct a
stable memory, the interaction between the nanomagnets is removed in the MRAM.
In contrast, here, we intentionally use the interaction between the nanomagnets to
allow the MRAM to work as a spin-glass system and perform as an RNN. Since
nanomagnets are electronically separated in the MRAM, the exchange interaction
between the cells does not exist. However, magnetic dipole interaction exists that
allows nanomagnets to perform linear/nonlinear calculations, as it will be explained
later in this chapter (Fig. 2b). The strengths of the magnetic dipole interactions are
determined from the size of magnetic dipole moments and distance between the
magnets. Therefore, they cannot be modified after the device has been fabricated.
This means that the system can be considered as an RNNwith fixed synaptic weights.
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As a consequence, the framework of reservoir computing (Jaeger and Haas 2004) is
needed to perform machine learning.

As magnetic systems have rich dynamics, usage of dynamic states can increase
the performance of magnetic reservoirs. For example, spin-torque oscillators offer a
relatively high performance when used as a reservoir working at high frequency (see
the chapters by Grollier and Tsunegi). In this chapter, we show that static magnetic
systems have also shown relatively high performance by increasing the number of
nanomagnets. In particular, we show that the voltage control of magnetic anisotropy
(VCMA) offers away to realize a large-scale, high-performance, and energy-efficient
magnetic RNN.

2 Historical Design of the Magnetic Boolean Calculator

A Boolean operation element using dipole-coupled nanomagnets is called a nano-
magnet logic (NML) (Cowburn and Welland 2000). NML comprises nanomagnets
with single magnetic domain states. The binary state is defined by the polarity of the
magnetic moment of the nanomagnet that is similar to MRAM. The nanomagnets
communicate each other via dipole interaction. The magnetic moment of a nano-
magnet aligns parallel to the stray field from surrounding nanomagnets. Since the
direction of the stray field is determined by the major polarity of the surrounding
magnets, the NML gate is basically a majority gate. A transmission line (Cowburn
andWelland 2000), a NAND/NOR gate (Imre et al. 2006; Hikaru and Ryoichi 2011),
a shift register (Hikaru et al. 2017), etc. have been previously realized (Orlov et al.
2008). Figure 3a, b shows a scanning electron microscope (SEM) image of the
NML-NAND/NOR logic gate (Hikaru and Ryoichi 2011) and magnetic force micro-
scope images of a typical operation results, respectively. Until now, NMLs have been
designed to perform only Boolean operations. However, if the analog value of the
magnetic moment vector is used, the NML becomes an attractive candidate for a
physical reservoir.

Fig. 3 a SEM image of the
NML NAND/NOR gate.
bMagnetic force microscope
images of a typical operation
of the NML NAND/NOR
gate (Hikaru and Ryoichi
2011)
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3 Linear and Nonlinear Calculation Using Nanomagnets

The energy (Hamiltonian:H) of a single nanomagnet with uniaxial anisotropy under
an external magnetic field is written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

H = − 1
∣
∣
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where �M is the magnetic moment vector, K̂ is the anisotropy tensor, Ku > 0 is the
uniaxial anisotropy energy par unit volume,V is the volume of the nanomagnet,μ0 is
the magnetic susceptibility of vacuum, and �Hext is the external magnetic field vector.
If we can neglect formation of a magnetic domain inside the nanomagnet, the size

of the magnetic moment,
∣
∣
∣ �M

∣
∣
∣, is the constant whereas it may change the direction.

Here, we assumed a disk-like nanomagnet, where the z-axis is perpendicular to the
plane of the disk (Fig. 4a). Note that �M is stable if its direction minimizes H.

In Fig. 4b, the magnetic hysteresis curves for an external field parallel to �ex + �ez
(45° from the normal line of the disk) are shown. The solid and dotted curves show
the x- and z-components of �M , respectively. When there is no external field, because
of the uniaxial magnetic anisotropy, there are two equilibrium points, which are
indicated as (i) and (i’) in Fig. 4b, i.e., �M = ±M�ez , where �ez is the unit vector in the

Fig. 4 a Schematic diagram of MTJ with perpendicular anisotropy. The free and reference layers
aremade of ferromagneticmaterials and are separated by an insulator layer such asMgO.Employing
a very thin insulator (about 1 nm), one may get a tunneling current through the insulator that is
dependent on the relative angle between the two magnetic moments at both sides of the insulator
layer. To avoid a stray magnetic field from the reference layer, the reference layer comprises two
magnetic layers with opposite magnetic moments. b Magnetic moment as a function of external
magnetic field, which is applied at an angle of 45° from the symmetrical axis of the MTJ. Further
details are provided in the text. cApplicationof a voltage on theMTJ reduces themagnetic anisotropy
energy and coercive force, Hc, through the VCMA
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z-direction. Now, we trace the hysteresis starting from a state with �M = −M�ez . It
means that the x- and z-components of �M are 0 and −M , respectively (Fig. 4b (i)).
When the external magnetic field increases, �M begins to tilt toward the x-direction.
Therefore, bothMx andMz increase (Fig. 4b (ii)). Here, although the energy at point
(ii’) is smaller than that at point (ii), the state remains at point (ii), which corresponds
to a local minimum in the Hamiltonian.When themagnetic field reaches the coercive
force, Hc, the saddle point that separates the two minima disappears. Then, the state
does not stay at (iii) but jumps to (iii’). As a consequence,Mz becomes positive and a
small jump occurs forMx. Although a small jump exists, we can assume thatMx is a
sigmoid-like function ofHext. In an array of nanomagnets, the magnetic field exerted
on a nanomagnet is the sum of all dipole fields made by the other nanomagnets.
Therefore, the nanomagnet calculates a sigmoid-like function of the sumof the dipole
fields. Hence, the nanomagnet has a nonlinear calculation power. In contrast toMx,
Mz shows a large hysteresis. The jump frompoint (iii) to point (iii’) corresponds to the
firing of a neuron that has a certain threshold. After firing, the nanomagnet stores the
information about the sign of the previous external magnetic field until another large
external field is applied. Therefore, a nanomagnet has a memory function. In Fig. 4c,
the effect of voltage application on the hysteresis curve is shown. The application of
a voltage reduces the magnetic anisotropy and correspondingly reduces the coercive
force,Hc. As a consequence, state at point (ii) may jump to point (ii’). By using these
phenomena, the information about the sum of the dipole fields can be written to the
nanomagnet.

The Hamiltonian of an array of nanomagnets is written as follows:

Harray = μ0

⎛
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where
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Here, �Mi , K̂i , Ku,i , and Vi are the magnetic moment vector, anisotropy tensor,
uniaxial anisotropy energy par unit volume, and volume of the nanomagnet at site i,
respectively. D̂dipole,i j , and �ri j are the dipole matrix, and relative position vector at
site i with respect to a nanomagnet at site j, respectively.

By observing the first line in Eq. (2), one may find that the Hamiltonian is similar
to that of the spin glass although it is a classical Hamiltonian with dipole interaction.

From Eq. (2), one can obtain effective magnetic field, �Hef f ct,k , exerted on the kth
nanomagnet as follows:

�Heffect,k = − 1

μ0

∂Harray

∂ �Mk

= �Hani,k +
∑

i �=k

�Hdipole,ki + �Hext
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K̂k
∣
∣
∣ �Mk

∣
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2

�Mk : Anisotropy filed

�Hdipole,ki = D̂dipole,ki �Mi : Dipole field

. (4)

The effective field is a sum of anisotropy field, dipole field, and external field.
The kth magnetic moment is stable if it is parallel to the effective field at the site.
Therefore, it may calculate a sigmoid-like function of the sum of those fields.

A schematic diagram of a dipole magnetic field around a nanomagnet is shown in
Fig. 5a. Because of the field, two nanomagnetswith perpendicularmagneticmoments
couple antiparallelwith each otherwhen the dipole field is smaller than the anisotropy
field. Under large dipole fields, the magnetic moments turn to in-plane and align
parallel to the line that connects the two nanomagnets. If there are three nanomagnets
on a plane, e.g., at the vertices of an equilateral triangle (see Fig. 5b), “frustration”
happens. Then, for a large dipole field, all the magnetic moments turn into the plane
and align circularly; this is called the vortex state.
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Fig. 5 aMagnetic dipole field distribution around a nanomagnet. bA system with three nanomag-
nets, which are placed at the vertices of an equilateral triangle. c A system with three nanomagnets,
where the magnetic moments of magnets 1 and 2 are parallel. d A system with three nanomagnets,
where the magnetic moments of magnets 1 and 2 are antiparallel. Here, magnets 1 and 2 are used
for the input of information and magnet 0 is used for the output. The values 0 and 1 correspond
to the magnetic moments in the −z− and +z-directions, respectively. The arrows beside the disk
represent the magnetic moment vectors

Now, we discuss a realistic case that employs a system with three nanomagnets
(see Fig. 5c, d). Three nanomagnets are placed on a plane and arranged at the vertices
of an isosceles right triangle. A smallmagnetic field toward+x-direction is applied to
break the time-reversal symmetry (see Fig. 5). For this model, we can find a stable set

of
{ �Mi

}
by finding the minima inHarray. Figure 5c, d shows two stable alignments of

the magnetic moments. The z and in-plane components of the magnetic moments are
also shown. Here, as for an example, we employ nanomagnets with radius, thickness,
and saturation magnetization as 20 nm, 2 nm, and 1.3 MA/m, respectively. Magnetic
anisotropy field for perpendicular magnetization without voltage application is about
3.1 mT (2.5 kA/m). Distance between magnet 1 and 2 is 50 ×√

2 nm. In Fig. 5c, the
magnetic moments of both magnets 1 and 2 point toward the +z-direction, which
corresponds to the “1” state. As a consequence, the magnetic moment of magnet
0 points toward the –z-direction (“0” state) because of dipole coupling. The state
is obtained using the following protocol. First, the magnetic moments of magnets
0, 1, and 2 are set to point toward the +x-, +z-, and +z-directions, respectively.
Then, the system is relaxed to find a minimum in Harray near the initial state. After
relaxation, a voltage is applied to reduce the perpendicular anisotropy of magnet
0. The voltage is increased slowly compared with the relaxation time to keep the
system at the energy minimum. After reaching zero anisotropy, the voltage is slowly
removed until it becomes zero. Using this protocol, the information about the dipole
field at the position of magnet 0 is written to magnet 0. The alignment shown in
Fig. 5c is natural because the distances between magnets 0 and 1 and magnets 0 and
2 are smaller than that of magnets 1 and 2. Figure 5d shows a case where themagnetic
moments of magnets 1 and 2 are almost antiparallel. For this case, the frustration of
the systemmakes the perpendicular magnetic moments unstable and all the moments
tilt to make a vortex-like in-plane component. The magnetic moment of magnet 0
prefers the +z-direction as a consequence of the delicate balance of the two dipole
couplings and the external field.
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Table 1 Normalizedoutput of the systemwith three nanomagnets (Fig. 5b, c) and linear calculations
between them. The system provides enough information to calculate AND, OR, and XOR functions
using only linear calculus

M1 = a M2 = b Mz = c Mx = d AND =
1
2 (a + b − d)

OR =
1
2 (a + b + d)

XOR = d

0 0 1 0 0 0 0

0 1 −0.8 1 0 1 1

1 0 0.8 1 0 1 1

1 1 −1 0 1 1 0

M1 = a M2 = b Mx = c AND =
1
2 (a + b − c)

OR =
1
2 (a + b + c)

XOR = c

0 0 0 0 0 0

0 1 1 0 1 1

1 0 1 0 1 1

1 1 0 1 1 0

Without an external magnetic field, the time-reversed states are also stable and
degenerate in energy. Note that, by time reversal, all the magnetic moments are
reversed.With a small external magnetic field, the time-reversal symmetry is broken,
and degeneracy of the time-reversed states is released. As a consequence, the time-
reversed state of the antiparallel alignment of magnets 1 and 2 (Fig. 5d) is not stable.
Instead, a state with reversed perpendicular moments and non-reversed in-plane
momentswith respect to the state shown inFig. 5dbecomes stable. The configurations
of the magnetic moments of all the states are listed in Table 1. The 0 and 1 in the first
and second columns represent the magnetic moments pointing toward the z- and –z-
directions, respectively. The third and fourth columns show the normalized values of
the z- and x-components of the magnetic moment of magnet 0, respectively. By using
those four values, results for the AND, OR, and XOR operations can be obtained
using only linear calculus as shown in the fifth, sixth, and seventh columns of Table 1,
respectively. This means that the systemwith three nanomagnets has linear/nonlinear
calculation ability and can be used as a reservoir for reservoir computation. Note that
such property based on the time-reversal breaking can be obtainedwithout an external
field if a system with four nanomagnets is employed. The breaking of the time-
reversal symmetry can also be incorporated by taking into account magnetization
dynamics with energy dissipation.

4 First Trial of the Dipole-Coupled Nanomagnet Reservoir

As for a first trial, an array system with 8 × 8 × 2 (=128) nanomagnets was tested
using a micromagnetic simulation. Figure 6a, b shows the schematic diagram of
reservoir computing with dipole-coupled nanomagnet reservoir and the schematic
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Fig. 6 a Schematic diagramof reservoir computingwith dipole-coupled nanomagnets.bSchematic
diagram of the top view of the reservoir with dipole-coupled nanomagnets

diagram of the top view of the reservoir with perpendicular magnetic anisotropy
film, respectively. The radius and thickness of the nanomagnets were 20 nm and
0.3 nm, respectively. The gap between the nearest neighbor dots was 10 nm. The
z-components of the normalized static magnetic moments of the nanomagnets were
used as the state of the nodes denoted by mz. The nodes (magnetic moments of
the nanomagnets) are connected via magnetic dipole interactions. As mentioned
previously, the static directions of the magnetic moments of the nanomagnets were
determined from the previous direction of the magnetic moments and the dipole
interaction between the entire nanomagnets in the reservoir. Therefore, the reservoir
can be considered as a recurrent neural network. Some nodes were connected to the
input layer u in the computer, and every nodes were connected to the output matrix
w made in the computer. A dot product of the node state and the output matrix was
stored in the output layer as the output of reservoir computing (o = u •w). Binary
and analog data were stored in the input layer and the output matrix, respectively.

First, when new data were set in the input layer, they were written to the input
nodes (stage 1). To evaluate the system, as will be explained later, we randomly chose
48(=8 × 6) nodes from the 64 nodes of Group I (Fig. 6b) to be the input nodes and
connected them to the input layer. The data in the input layer corresponding to the
directions of magnetic moment were written using a writing method for MRAM.
When the value in the input layer is 0/1, the direction of the magnetic moment of the
input node is set to point toward the −z/+z-direction.

Next, the state of the node was updated. To update the node state, we changed
the magnetic anisotropy of the nanomagnet using the VCMA method. After writing
the data to the input nodes, a bias voltage was applied to the Group II nanomagnets
(stage 2) and then removed (stage 3). By applying an appropriate bias voltage to the
nanomagnets, the magnetic anisotropy of the nanomagnets disappeared. With this
change of magnetic anisotropy, the magnetic moments of the nanomagnets transi-
tioned to the next state. During this transition, linear/nonlinear operations occurred
as the directions of the magnetic moments of the nanomagnets changed.

The node state in stage 3 was connected to the output matrix. The node state (i.e.,
the z-components of themagnetic moments of the nanomagnets) wasmeasured using
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a reading method for MRAM (e.g., a reading method using tunneling magnetore-
sistive effect). A dot product of the node state and the output matrix was stored in
the output layer using an external hardware. Then, a bias voltage was applied to the
Group I nanomagnets (stage 4) and then removed (stage 5). The state of the node
was updated by repeating the processes from stage 1 to stage 5.

In order to evaluate the behavior of the magnetic reservoir, we performed micro-
magnetic simulations. We assumed that the nanomagnets take single-domain states
and we used a single cell for a single nanomagnet in the simulations. The static direc-
tion of the magnetic moment was calculated by solving the Landau–Lifshitz–Gilbert
(LLG) equation using the fourth-order Runge–Kutta method. The LLG equation at
0 K is as follows:

d �Mi

dt
= −γLL �Mi × �Hef f,i − αγLL

∣
∣
∣ �Mi

∣
∣
∣

�Mi ×
( �Mi × �Hef f,i

)
, (5)

α, γ LL, and Ms are the damping constant, gyromagnetic ratio in the Landau–
Lifshitz form, and saturation magnetization of the nanomagnets, respectively. The
simulation parameters used were as follows: α = 0.5, γLL = 2.211

/(
1 + α2

) =
1.7688 m

/
As, and

∣
∣
∣ �Mi

∣
∣
∣/Vi = 1.3 MA/m. Here, we employed large damping

constant to shorten calculation time for the simulation. The large value ofα employed
here does not affect the following results since we only use static states for the RC.
The typical value of the α is from 0.001 to 0.1 for metals.

We performed the NARMA10 task (Atiya and Parlos 2000) to evaluate the perfor-
mance of the reservoir, which was previously to evaluate the performance of reser-
voirs (Appeltant et al. 2011; Nakajima et al. 2015). In the NARMA10 task, the output
of step ys+1 is obtained from the previous inputs us–k and outputs ys–k by the following
equation:

ys+1 = 0.3ys + 0.05ys
(∑9

k=0
ys−k

)
+ 1.5usus−9 + 0.1. (6)

For the input us , random values ranging from 0 to 0.5 were used. The input data
were normalized to an 8-bit unsigned integer before storing in the input layer. In each
step, the 8-bit data was written to the 48 input nodes in the reservoir. This means
that each data bit was simultaneously written to six different nodes. Since only the
current input was written in a single step, the reservoir is requested to have up to 10
short memory to fulfill the NARMA10 task.

We trained the output matrix using 2408 steps of training data with the least-
squares method. The performance of reservoir computing was evaluated using
NRMSE (normalized root-mean-square error) expressed by the following equation:

NRMSE =
√

∑Ntest
s=1(os − ys)

2

Ntestσ 2(ys)
, (7)
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Fig. 7 Typical output result
of reservoir computing with
dipole-coupled
nanomagnets. The solid and
dotted lines show the output
data of reservoir computing
with trained matrix and the
answer data with the
NARMA10 function,
respectively

where Ntest is the number of test data, os and ys are the output data and answer at
step s, respectively, and σ 2(yk) is the variance of the answer.

Figure 7 shows a typical output result of reservoir computing with dipole-coupled
nanomagnets. The solid line shows the output data of reservoir computing with
trained matrix and the dotted line shows the answer data with the NARMA10 func-
tion. The reservoir with the nanomagnet radius of 40 nm, the thickness of 10 nm,
the nearest inter-dot distance of 10 nm, Ku of 0 or 20 kJ/m3, was used in Fig. 7. The
output data of the trained reservoir computing show similar values as compared to
the answer data. We calculated the NRMSE of the reservoir with 602 steps of the
input data. The results show that the NRMSE between the output and answer data is
0.85, which is not low enough compared with those obtained by other methods. This
is because the dipole-coupled nanomagnet reservoir used for the first trial (Fig. 6b)
cannot hold sufficient old input values for the NARMA10 task. By changing the
position of the node connected to the input layer and the updating procedure of the
node state, the short-term memory capacity (Nomura et al. 2018) can be achieved
with an NRMSE of 0.23 in the NARMA10 task with dipole-coupled nanomagnet
reservoir (Zhu et al. 2018).

Figure 8 shows the SEM image of the prototype reservoir with dipole-coupled
nanomagnets. The prototype reservoir comprises 8 × 8 nanomagnets with 2 × 2
contact holes. The distance between the nanomagnet of the prototypic reservoir was
12 nm. The micromagnetic simulations confirm that this structure can be used as a
dipole-coupled nanomagnet reservoir.

5 Guiding Principle for the Future

We showed that the static magnetic moment vector in a dipole-coupled nanomagnet
array behaves as a reservoir. The randomness of the inter-layer/inter-node coupling
may enhance the performance of themagnetic reservoir. In the first trial, we randomly
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Fig. 8 SEM image of the
prototype reservoir

connected the input layer and the nodes in the reservoir. However, inter-node random-
ness was not utilized. Such randomness can be implemented by randomly changing
the size and arrangement of the nanomagnets. Depending on the arrangement of the
nanomagnets, the dipole-coupled nanomagnet array can behave as a spin glass or
spin ice (Jensen et al. 2018). These arrangements can be used as a reservoir.

As described above, the MRAM reading/writing technology can be used to read
the node state. Moreover, the inter-node connection using magnetic dipole coupling
solves the wiring problem in realizing the hardware for RNN. The dipole-coupled
nanomagnet reservoir, which is capable of creating interfaces with semiconductor
technology by various existing technologies, is a candidate for practical use of phys-
ical reservoir computing.With theMRAM technology, onemay fabricate giga-nodes
class reservoir in principle. The guiding principle, however, to obtain better perfor-
mance in a very large reservoir has not yet established. Nonetheless, explorations on
the human brain class (21 giga-neurons) reservoir computing are not a dream.
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