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Abstract Recent developments in reservoir computing based on spintronics tech-
nology are described here. The rapid growth of brain-inspired computing has moti-
vated researchers working in a broad range of scientific field to apply their own
technologies, such as photonics, soft robotics, and quantum computing, to brain-
inspired computing. A relatively new technology in condensed matter physics called
spintronics is also a candidate for application to brain-inspired computing because
the small size of devices (nanometer order), their low energy consumption, their rich
magnetization dynamics, and so on are advantageous for realization of highly inte-
grated network systems. In fact, several interesting functions, such as a spoken-digit
recognition and an associative memory operation, achieved using spintronics tech-
nology have recently been demonstrated. Here, we describe our recent advances in
the development of recurrent neural networks based on spintronics auto-oscillators,
called spin-torque oscillators, such as experimental estimation of the short-term
memory capacity of a vortex-type spin-torque oscillator and numerical simulation
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of reservoir computing using several macromagnetic oscillators. The results demon-
strate the potential high performance of spintronics technology and its applicability
to brain-inspired computing.

1 Introduction

A new candidate element for brain-inspired computing has recently appeared: spin-
tronics, which is the main topic of this chapter. In this section, we provide a brief
introduction to this research field.

1.1 Recurrent Neural Network and Reservoir Computing

The brain has long been a fascinating research target in science. Nonlinear inter-
actions between neurons in the brain via synapses carry and/or store information,
and prompt the growth of living things. Human beings, as well as biological sys-
tems in general, show surprising computational ability due to their brains. The brain
can perform various functions, including (visual and/or audio logic) recognition,
associative memory, prediction from past experiences, action modification, and task
optimization. Moreover, the human brain has notably low power consumption for
computation. If we could replace current computing systems based on the von Neu-
mann architecture by neural networks, our lives would be drastically changed. Brain-
inspired computing aimed at achieving artificial neural networks has attracted much
attention in a wide range of scientific research fields, such as physics, chemistry,
biology, engineering, and nonlinear science.

A crucial task in the advancement of brain-inspired computing is developing an
appropriate model (Gerstner et al. 2014; Goodfellow et al. 2017) and implementing it
in a real system. A class of artificial neural network, called recurrent neural network
(RNN), is an architecture exhibiting a dynamic response to a time sequence of an
input data (Mandic and Chambers 2001). The response of an RNN depends not
only on the input and the system’s weights at a certain time but also on the input at
some previous time. In other words, RNNs store past input information. Thus, RNNs
enable a time sequence of input data such as data on spoken languages and movies
to be classified and calculated.

A reservoir computing system is an RNN in which the internal weights of the net-
work are not changed by learning; only the reservoir-to-output weights are trained
(Maass et al. 2002; Jaeger and Haas 2004; Verstraeten et al. 2007; Appeltant et al.
2011; Nakajima 2020). This approach simplifies the tuning of the weights used for
computing and enables any physical system to be used as a “reservoir.” Various such
systems have been developed, including a photonic architecture with delayed feed-
back (Brunner et al. 2013), a soft robotic reservoir using body dynamics generated
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from a soft silicone arm (inspired by octopus’s arm in water) (Nakajima et al. 2015),
and a quantum reservoir consisting of several qubits (Fujii and Nakajima 2017).

The purpose of this chapter is to introduce a promising new candidate for reservoir
computing: spintronics. Spintronics is a relatively young research field in condensed
matter physics and has been developed by investigating spin-dependent electron
transport in solids with nanometer (nm) scale. Spintronics technology has several
advantages for reservoir computing, such as its applicability to an array structure
with nanoscale dimensions, low energy consumption, and strong nonlinearity. How-
ever, the research targets in spintronics to date have been electronic devices, such as
nonvolatile memory and microwave generators, and the ability of spintronics tech-
nology from the viewpoint of artificial neural networks has not yet been thoroughly
investigated. What is required in reservoir computing is rich (or complex) dynam-
ics of physical systems because the reservoir should show several and distinguish-
able responses to different sequences and/or inputs. The richness (or complexity)
of a dynamical system is quantitatively characterized by its memory and nonlinear
capacities, which characterize, respectively, the amount of information the RNN can
store and its nonlinear computational capability. Here, the capacities are estimated
by examining the response to binary input as done in Jaeger (2002). Short-term
memory capacity is simply characterized how much past information fed into the
system can be stored and reconstructed from the current output of the reservoir with
trained weight. This task can be accomplished even in a linear system, in principle.
Therefore, the nonlinear computational capability on the stored information is fur-
ther characterized by the parity check capacity by predicting the parity of the past
input sequence, which essentially requires nonlinearity. For example, the short-term
memory capacity of a quantum reservoir consisting of several qubits (≥4) with vir-
tual nodes (≥4) was reported to be of the order of 10 (Fujii and Nakajima 2017). In
this chapter, we describe our recent measurements of memory capacity in spintronics
devices (Tsunegi et al. 2018a; Furuta et al. 2018).

We start by describing the history of this research field, and discuss the applica-
bility of spintronics technology to brain-inspired computing.

1.2 History of Spintronics and Key Technologies

An electron has two degrees of freedom, charge and spin. Research on electricity
and magnetics has a long history, and it was unified at the end of the nineteenth
century as classical electromagnetism (Jackson 1999). People began to notice that
both electricity and magnetism originate from a charged particle, but it took time to
widely accept the existence of elementary particles (or atoms and molecules) until
the beginning of the twentieth century. The rapid growth of quantum mechanics
provided a new picture of electrons and of elementary particles, in general, which
resulted in a drastic change in our understanding of the nature. In particular, the
discovery of spin led the transition from classical to quantum physics because it
was the first finding of an internal degree of freedom in elementary particles (Dirac
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1928). Spin has relativistic quantummechanical origin (Weinberg 2005), determines
the statistics of the elementary particles (Pauli 1940), and is related to many physics,
such as the stimulated emission of light (Dirac 1927), the origin of ferromagnetism
(Heisenberg 1928), superconductivity (Bardeen et al. 1957), and the fate of stars
(Chandrasekhar 1984). Importantly, the quantum mechanics has also resulted in the
development of applied physics. Electronics based on semiconductors has provided
many devices useful in everyday life. Magnetic devices as well have become widely
used for such things as a storage device. Charge and spin have been, however, used
separately for electronics and magnetic devices, respectively.

Spintronics (or spin electronics) is both electronics and magnetism at nanoscale
and aims to develop new electronics devices, such as nonvolatile memory [magne-
toresistive random access memory (MRAM)] and microwave generators, in which
spin plays a key role. Quantummechanical interactions between the spins of conduct-
ing electrons inmetals and semiconductors,magnetization in ferromagnets,magnons
(spin-wave quanta) in insulating ferromagnets, light helicity, and so on provide inter-
esting new phenomena in fundamental physics and have opened the door to practical
applications. The growth of spintronics is due to advances in nanostructure fabri-
cation processes. This is because the spin of electrons in condensed matter is not
a conserved quantity. For example, the spin in metals relaxes over the length scale
(the spin diffusion length) (Valet and Fert 1993), which is typically of the order of
nanometers (Bass and Pratt 2007); therefore, nanostructures are necessary to observe
spin-dependent phenomena.

A key phenomenon in spintronics is the tunneling magnetoresistance (TMR)
effect, which was found by Julliere in a magnetic tunnel junction (MTJ) consisting of
Fe/Ge/Co (Julliere 1975). The magnetoresistance effect is a physical phenomenon in
which the resistance of an electrical circuit depends on themagnetization directions of
the ferromagnets. The TMR effect originates from spin-dependent tunneling through
an insulator, and so it is a purely quantummechanical phenomenon. Although several
other magnetoresistance effects, such as anisotropic magnetoresistance and the pla-
nar Hall effect, have been found since the nineteenth century and their origins were
revealed to be quantum mechanical phenomena in the middle of the twentieth cen-
tury (Thomson 1856; Kundt 1893; Pugh and Rostoker 1953; Karplus and Luttinger
1954; McGuire and Potter 1975; Sinitsyn 2008; Nagaosa et al. 2010), the discovery
of the TMR effect in 1975 is often regarded as a beginning of spintronics. Since the
electrons pass through the interfaces between multilayers, the structure of an MTJ is
often called a “current-perpendicular-to-plane (CPP)” structure. The research target
shifted fromMTJs (Julliere 1975; Maekawa and Gäfvert 1982; Maekawa and Shinjo
2002) to giant magnetoresistive (GMR) systems consisting of metallic ferromag-
netic/nonmagnetic multilayers when the relatively large magnetoresistance effect,
called the “GMR effect,” was found in 1988–1989 by Fert and Grünberg indepen-
dently (Baibich et al. 1988; Binasch et al. 1989). The GMR effect was first observed
in a current-in-plane (CIP) structure, in which the electrons move in a direction par-
allel to the metallic interface. It was, however, soon noticed that the CPP structure
shows a larger GMR effect than the CIP structure (Pratt et al. 1991; Zhang and Levy
1991). Research interest shifted to backMTJs when a large TMR effect was found in
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an Fe/AlO/Fe MTJ in 1995 (Miyazaki et al. 1995; Moodera et al. 1995) and a giant
TMR effect was found in an MTJ with an Fe/MgO/Fe MTJ in 2004 (Yuasa et al.
2004a; Parkin et al. 2004; Yuasa et al. 2004b).

A magnetoresistance effect, such as the TMR effect, enables the magnetization
direction in a ferromagnet to be detected by using an electrical circuit. Typical TMR
and GMR devices include two ferromagnets, and the resistance of the circuit is low
(high) when the alignment of their magnetizations is parallel (antiparallel). In addi-
tion, the theoretical prediction of a spin-transfer torque (STT) effect by Slonczewski
and Berger provided a new technology controlling themagnetization direction (Slon-
czewski 1989, 1996; Berger 1996; Slonczewski 2005). After the discovery of mag-
netism, themagnetization direction of a ferromagnet has been controlled by applying
an external magnetic field. The STT effect is a completely different phenomenon,
where an electric current is applied to a ferromagnetic/nonmagnetic/ferromagnetic
trilayer structure. One ferromagnet, the “reference layer,” acts as a polarizer of the
spin angular momentums of the conducting electrons. When these spin-polarized
electrons are injected into the other ferromagnet, the “free layer,” the spins of the
conducting electrons are transferred to the magnetization of the ferromagnet via
quantum mechanical interaction and excite STT (Ralph and Stiles 2008). When the
magnitude of the electric current is sufficiently large, the STT can change the mag-
netization direction in the free layer. Such magnetization reversals were observed in
a GMR device in 2000 (Katine et al. 2000) and in an MTJ in 2005 (Kubota et al.
2005).

In summary, there are two important phenomena in spintronics, the TMR and STT
effects. Themagnetization direction of a nanostructured ferromagnet can be detected
electrically by using the TMR effect and can be changed by using the STT effect.
These are the operation principles for any kind of spintronics device (Locatelli et al.
2014). In fact, as discussed below, brain-inspired computing based on spintronics
technology utilizes these phenomena. There are many other interesting phenomena
in spintronics, such as the spin pumping effect (Silsbee et al. 1979; Tserkovnyak
et al. 2002; Mizukami et al. 2002), the spin Hall effect (Dyakonov and Perel 1971;
Hirsch 1999; Kato et al. 2004), and the topological effect (Murakami et al. 2003).
Readers who are interested in spintronics can easily find good textbooks and review
articles, such as Maekawa (2006), Shinjo (2009), and Maekawa et al. (2012).

1.3 Brain-Inspired Computing Based on Spintronics

There are many advantages of applying spintronics technology to brain-inspired
computing (Grollier et al. 2016). First of all, the small size of spintronics device and
their applicability to an array structure enable development of high-density com-
puting devices. The typical size of an MTJ is of the order of 1nm in thickness and
10–100 nm in diameter (Fukushima et al. 2018; Watanabe et al. 2018). The non-
volatility of the magnetization as memory results in low power consumption during
operation (Dieny et al. 2016). The large output signal due to the giant TMR effect
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is another advantage for electronics applications (Yuasa et al. 2004a; Parkin et al.
2004; Yuasa et al. 2004b; Djayaprawira et al. 2005; Ikeda et al. 2008; Yakushiji et al.
2010; Sukegawa et al. 2013; Kubota et al. 2013; Tsunegi et al. 2016a). The figure of
merit for TMR and GMR devices is the magnetoresistance ratio, which is defined as
(RAP − RP)/RP, where RP and RAP are the resistances of the system for parallel (P)
and antiparallel (AP) magnetization alignments. Currently, the TMR ratio is of the
order of 100%, which results in a visible change in the output signal that is sufficient
to experimentally detect by overcoming noise. Strong nonlinearity of the magneti-
zation dynamics excited by the STT effect (Bertotti et al. 2005, 2007, 2009; Slavin
and Tiberkevich 2009) is desirable for computation calculating a time sequence of
input data. In fact, as mentioned below, we found that an MTJ with TMR and STT
effects is applicable as an element for reservoir computing. The fast relaxation time
of the magnetization dynamics (Zhou et al. 2010; Kudo et al. 2010; Suto et al. 2011;
Nagasawa et al. 2011; Rippard et al. 2013; Jenkins et al. 2016; Taniguchi et al.
2017; Tsunegi et al. 2018b), of the order of 1–100 nanoseconds (ns), is suitable for
fast computing. Application of these features to brain-inspired computing by using
spintronics technology has recently been reported.

An associative memory operation in a network consisting of CIP devices was
reported by Borders, Fukami, and their collaborators in 2017 (Borders et al. 2017).
They used analog switching of the magnetization in a CoNi ferromagnet placed on a
PtMn antiferromagnet as memory for storing the weight of computing. A total of 36
devices were used to demonstrate the associative memory operation of identifying a
word consisting of three alphabetic letters.

Spoken-digit recognition competitive to that of state-of-the-art neural networks
was demonstrated by Torrejon, Grollier, and their collaborators, including some of
the present authors of this chapter, also in 2017 (Torrejon et al. 2017). A vortex
spin-torque oscillator (STO) was used for the computation, and the information
of a sequence of spoken words was stored using the nonlinear dynamics of the
magnetic vortex. A high recognition rate (≥95%) was obtained for spoken digits
(0–9) pronounced by five speakers. The detail of this work is explained in the other
chapter of this book. Vowel recognition with four coupled STOs was also achieved
recently (Romera et al. 2018). In the following sections, we will revisit artificial
neural networks based on an STO.

There have also been several reports of numerical simulation focused on brain-
inspired computing based on a spintronics computing architecture (Furuta et al.
2018; Vodenicarevic et al. 2017; Kudo and Morie 2017; Huang et al. 2017; Nakane
et al. 2018; Chen et al. 2018; Pinna et al. 2018; Arai and Imamura 2018; Nomura
et al. 2018). For example, Kudo and Morie demonstrated pattern recognition using
an array of STOs in 2017 (Kudo and Morie 2017). Nakane and his collaborators
investigated the possibility of reservoir computing based on spin-wave excitation
and detection in 2018 (Nakane et al. 2018). As can be seen, a wide variety of device
designs have been proposed. This is due to the rich physics of nanostructured devices.
The magnetization dynamics in a ferromagnet is usually highly nonlinear. Since
spintronics devices consist of nanomagnets, magnetic interactions, such as dipole
interaction and spinwave, can be used as an operation principle. In addition, electrical
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interaction through the STT effect can also be an operation principle for such devices.
Accordingly, spintronics provides interesting examples of dynamical systems and
therefore can be considered a strong candidate as a fundamental element of brain-
inspired computing, see, for example, a review (Grollier et al. 2020) including both
experiments and theory.

1.4 Spin-Torque Oscillator (STO)

A key device for brain-inspired computing based on spintronics technology is the
STO (Torrejon et al. 2017). An STO typically consists of anMTJ, for which the main
structure is a trilayer (reference layer/insulating barrier/free layer), as illustrated in
Fig. 1a. The typical material for the barrier isMgO (Yuasa et al. 2004a, b; Parkin et al.
2004). As mentioned above, when an electric current is injected into an MTJ, STT
is excited on the magnetization in the free layer. The STT leads to magnetization
dynamics when themagnitude of the electric current is sufficiently large. Themagne-
tization dynamics is typically classified as reversal (Kubota et al. 2005) or oscillation
(Kiselev et al. 2003). Magnetization reversal has been used as an operation principle
for MRAM (Dieny et al. 2016). Magnetization oscillation has been widely studied
for both GMR and TMR structures with the aim of developing practical applications
such as microwave generator, highly sensitive sensors, and phased array radar (Kise-
lev et al. 2003; Rippard et al. 2004; Houssameddine et al. 2007). An STO device
uses this magnetization oscillation in an MTJ for such practical applications.

Since STOs are nonlinear oscillator showing an auto-oscillation (a limit cycle),
there are a dissipation due to friction and source of energy injection, as is any auto-
oscillator in nature (Pikovsky et al. 2003). The source of the energy is the work

Fig. 1 a Schematic diagram of fundamental structure of MTJ connected to electric battery. b
Schematic diagram of MTJ with vortex-type free layer. Each white arrow represents local direction
of magnetic moment m(x). Magnetic moment at center points in the perpendicular direction with
respect to film surface and is called a “vortex core.”Magnetic moments around core lie in film plane.
c Schematic diagram of MTJ with macromagnetic free layer. Almost all local magnetic moments
point in same direction, so local variable m(x) can be replaced with macroscopic variable m. In
both b, c, direction of magnetization in reference layer, which is assumed to be macromagnetic, is
represented as p
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done by the STT, while the dissipation is relaxation minimizing the magnetic energy
of the ferromagnets. The oscillation frequency ranges from 100MHz to 100GHz
depending on the device structure and magnetic configuration, see Sects. 2.1, 2.2,
and 2.3 for more detail. The oscillation of the magnetization in an STO is detected
through the TMR effect. The resistance of the MTJ is R = 1/G, where conductance
G is given by

G = GP + GAP

2
+ GP − GAP

2
cos θ, (1)

where θ is the relative angle between the magnetizations of the free and reference
layers, and GP = 1/RP and GAP = 1/RAP are the conductances for the parallel and
antiparallel magnetization alignments. Therefore, the resistance, or voltage, of the
STO oscillates over time when the magnetization in the free layer is in an auto-
oscillation state. In other words, the oscillation state of the STO can be detected by
electrical measurement.

Our motivation focusing on reservoir computing based on spintronics technology
is as follows. Imagine that we fabricate an array of STOs. Each STO interacts with
the other STOs through magnetic and/or electrical interactions. Such a system may
experience phase synchronization (Slavin and Tiberkevich 2009), in which the phase
differences between the magnetizations saturate to certain values. This synchroniza-
tion phenomenon may be applicable to some portion of brain-inspired computing
(Kudo and Morie 2017). It should be noted, however, that the coupling strength
between the STOs normally cannot be changed after fabrication of the array. This
means that the interconnections (weights) between the elements in the RNN cannot
be tuned for computing. Reservoir computing solves this problem and thus opens
the door to the applicability of STO devices to brain-inspired computing. The highly
nonlinear, and thus complex, dynamics of STOs should provide rich dynamics to a
reservoir and is unnecessary to be tuned for computing. To clarify the applicability
of STO devices to reservoir computing it is necessary to evaluate the performance
capabilities of STOs,which is themain objective of this chapter (Tsunegi et al. 2018a;
Furuta et al. 2018).

2 Methods

In this section,we summarize themethodswe used to evaluate the short-termmemory
and parity check capacities of reservoir computing with STOs.

2.1 Landau–Lifshitz–Gilbert Equation

We start by introducing a theoreticalmodel of themagnetization dynamics frequently
used in the fields of magnetism and spintronics. It is often assumed that the mag-
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netization dynamics in a ferromagnet is described by the Landau–Lifshitz–Gilbert
(LLG) equation with spin-transfer torque (Slonczewski 1996; Landau and Lifshitz
1935):

dm
dt

= −γm × H − γ �Pg(θ)J

2eMsd
m × (p × m) + αm × dm

dt
, (2)

where m is the unit vector pointing in the local magnetization direction. Magnetic
field H consists of both internal and external fields; the internal fields include an
exchange field, anisotropy field, and dipole field. Parameter γ , the “gyromagnetic
ratio,” is related to Bohr magneton μB and Landé g-factor gL via γ = gLμB/�.
Saturation magnetization Ms is the magnetic moment per volume, whereas d is the
thickness of the free layer. Spin polarization P (0 ≤ P < 1) characterizes the strength
of theSTT, and the vectorp (|p| = 1),which is usually parallel to themagnetization of
the reference layer, determines the direction of the STT. The current density flowing
in the MTJ is denoted as J . Factor g(θ), a function of the relative angle between m
and p (cos θ = m · p), determines the angular dependence of the STT. The explicit
form of g(θ) depends on the structure of the spintronics device (Xiao et al. 2004;
Taniguchi et al. 2015). Dimensionless parameter α, the “damping constant,” which
characterizes the strength of the dissipation due to friction of the magnetization
dynamics (Gilbert 2004) and is of the order of 10−3 − 10−2 for typical ferromagnets
used in spintronics devices (Oogane et al. 2006). The magnetization dynamics in a
ferromagnet has been investigated by solving the LLG equation both analytically
(Bertotti et al. 2009) and numerically (Lee et al. 2004).

The LLG equation is a nonlinear differential equation. The first term on the right-
hand side of Eq. (2) is the field-torque term and describes a steady precession (oscil-
lation) of themagnetization around themagnetic field. The second (STT) termmoves
the magnetization parallel or antiparallel to the direction of p depending on the direc-
tion of the electric current. The third term (the damping term) describes the energy
dissipation of the ferromagnet phenomenologically (Gilbert 2004). Auto-oscillation
of magnetization m in an STO is excited when the energy dissipation (∝ α) is can-
celled by the energy supplied by the work done by the STT (Bertotti et al. 2009).
When this condition is satisfied, the auto-oscillation around themagnetic field, which
is described by the field-torque term, is realized. The oscillation trajectory is almost
on a constant energy curve (Bertotti et al. 2009).

2.2 Micro- and Macro-Structures of Nanomagnet

For the following discussions, we need to briefly review the microstructure of the
free layer. As mentioned above and shown in Fig. 1a, the size of the free layer is typ-
ically 10–100 nm in diameter and 1nm in thickness. Such a ferromagnet consists of
numerous magnetic atoms, so its macroscopic magnetization consists of numerous
magnetic moments. The direction of each magnetic moment in equilibrium is deter-
mined to minimize the magnetic energy E , which is related to the magnetic field H
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via H = −δE/δ(Mm) (Lifshitz and Pitaevskii 1980), and consists of the exchange
energy, magnetic anisotropy energy, dipole field energy, and Zeeman energy (Hubert
and Schäfer 1998).

When the free layer, in particular the thickness, is relatively large, the microstruc-
ture of each magnetic moment becomes a vortex so as to minimize the stray field
energy, i.e., the magnetic moment at the center of the area points in the direction per-
pendicular to the cross-sectional area of the free layer whereas themagneticmoments
around the center exhibit a chiral structure, as illustrated in Fig. 1b. In this case,m is
a function of location x inside the free layer. Another micromagnetic structure called
domain wall separates two uniformly magnetized domains. One way to investigate
the magnetization dynamics in such systems is to use the LLG equations to com-
pute the magnetization dynamics of all the magnetic moments simultaneously, i.e.,
by using numerical micromagnetic simulation (Brown and LaBonte 1965; Hayashi
and Goto 1971; Nakatani et al. 1989, 2003; Dussaux et al. 2010). Another way to
investigate the dynamics is to reduce the LLG equation to an equation of motion of
the vortex core. The reduced equation is called Thiele equation, which describes the
motions of the radius and rotation angle in the film plane of the vortex core (Thiele
1973; Guslienko 2006; Liu et al. 2007; Khvalkovskiy et al. 2009; Dussaux et al.
2012; Grimaldi et al. 2014).

On the other hand, when the free layer is relatively small, almost all magnetic
moments point in the same direction so as to minimize the exchange and anisotropy
energies. In this case, we can replace local magnetizationm in Eq. (2) with a macro-
scopic single moment as illustrated in Fig. 1c. This model is called a macromagnetic
or macrospin model. The macromagnetic magnetization in the thin magnetic film
used in spintronics devices usually points in the direction parallel to the film plane.
This is because this in-plane magnetized configuration minimizes the stray field gen-
erated outside the ferromagnet and reduces the magnetic energy. The magnetization
can be, however, oriented in the direction perpendicular to the film plane by con-
trolling the perpendicular anisotropy energy. For example, adding an MgO barrier
neighboring a CoFe ferromagnet induces an interface anisotropy effect (Hine et al.
1979; Yakata et al. 2009; Ikeda et al. 2010; Kubota et al. 2012). Applying an electrical
voltage also changes the perpendicular anisotropy due to interface effect (Weisheit
et al. 2007; Chiba et al. 2008; Maruyama et al. 2009; Nozaki et al. 2010; Shiota
et al. 2012). The perpendicularly magnetized MTJ is of great interest for MRAM
applications because it is suitable for high-density structures.

The number of variables in Eq. (2) for the vortex structure is 2N , whereN is the
number of magnetic moments. In the macromagnetic case, the number of variables
is 2. One might consider that, since vectorm is defined in a three-dimensional space,
the number of variables should be 3N and 3 for the vortex and macromagnetic case.
However, the LLG equation conserves the norm of magnetization m because the
equation satisfies d|m|2/dt = (1/2)m · (dm/dt) = 0, so there is a constraint condi-
tion |m| = 1, which reduces the number of independent variables. This conservation
of the magnetization norm means that the temperature of the system is sufficiently
lower than the Curie temperature of the ferromagnet. According to the Poincaré–
Bendixson theorem (Wiggins 1990), chaos is precluded in a macromagnetic model
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without interaction with other ferromagnets and/or feedback. Magnetization p in the
reference layer is usually assumed to be macromagnetic.

The ferromagnets used in spintronics devices typically have two energy minima
due to uniaxial anisotropy energy. Such a ferromagnet can be used as a bit of memory
devices. The strengths of the STT and damping torque represented in Eq. (2) depend
on the direction of the magnetization. Related to this fact, there are two thresholds,
Jc and Jsw, of current density J in Eq. (2). When J/Jc > 1, the STT exceeds the
damping torque near the equilibrium state and destabilizes the magnetization. When
J/Jsw > 1, the magnetization moves from one equilibrium to another. Note that
auto-oscillation of the magnetization is excited in range J/Jc > 1 and J/Jsw < 1.
To satisfy these conditions, Jsw/Jc should be larger than one. If this condition is not
satisfied, i.e., Jsw/Jc < 1, the MTJ exhibits the switching without showing an auto-
oscillation (Taniguchi et al. 2013; Taniguchi 2015). This means that not all MTJs
exhibit an auto-oscillation. The magnitude relationship between Jc and Jsw depends
on the magnetic field and STT angular dependence.

The oscillation frequencies of a vortex and macromagnetic STO are typically of
the order of 100MHz and 1–10 GHz, respectively. A vortex-type STO was used
for the experimental estimation of short-term memory capacity (Sect. 3) whereas the
macromagnetic model was used for the numerical simulation (Sect. 4).

2.3 Recurrent Neural Network Based on STO

We developed two models of an STO-based RNN. One uses a single vortex-type
STO, while the other uses a single macromagnetic STO or nine macromagnetic
STOs as a reservoir. In both models, the output voltage from the STO is used as
the dynamic response from the reservoir. According to Eq. (1), the resistance, or
voltage, of an STO oscillates due to the oscillation of magnetization m in the free
layer (cos θ = m · p). The output voltage from the STO is given by

vout(t) = va(t) sin [2π f t + ϕout(t)] , (3)

where f is the oscillation frequency of the TMR. Amplitude va and phase ϕout of
the voltage are constant in an auto-oscillation state. On the other hand, when an
additional current (voltage) pulse is applied to the STO, they vary over time. This
is because the additional torque changes the balance between the STT and damping
torque, causing themagnetization tomove a different oscillation state. The relaxation
process for the new oscillation state depends on the sequence of additional voltage
pulses. In otherwords, theSTO in the relaxation process stores past input information.
Therefore, the STO is a candidate for reservoir computing. The ability of a reservoir is
quantitatively characterized by its memory and nonlinear capacities, as mentioned in
Sect. 1.1. Therefore, it is necessary to evaluate the memory and nonlinear capacities
of STO devices.
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Fig. 2 Schematic illustration of input voltage Vin and output signal X (t). The numbers such as k
and k + 1 indicate the pulse numbers. The kth input voltage is Vin,k = Vlow + (Vhigh − Vlow)sin,k ;
the corresponding output signal at the i th node is Xk,i , where sin,k is input binary data. For evaluation
of short-term memory capacity, training data ySTM,k was directly related to input data via ySTM,k =
sin,k . Weight wD,i was determined so as to reproduce ySTM,k (Vin,k−D) from Xk,i . Cases D = 0
and D = 1 are shown in figure. For evaluation of the parity check capacity, training data yPC,k was
related to input binary data (voltage) via Eq. (12) (After Tsunegi et al. 2018a)

2.4 Methods for Evaluating Memory Capacities

Here, we describe methods for evaluating the short-term memory and parity check
capacities.

We first explain, with the help of Fig. 2, how we evaluate short-term memory
capacity. The figure schematically shows how the input is applied to the STO and how
the output is obtained. As mentioned, memory capacity is evaluated by examining
the response to binary input. We first sequentially apply Z -bit random voltage pulses
(Z : integer) to the STO. The input voltage is expressed as Vin,k = Vlow + (Vhigh −
Vlow)sin,k , where Vlow and Vhigh are the lower and higher values of the input voltages,
respectively, whereas sin,k = 0 or 1 is the random binary data. The memory capacity
is evaluated by examining the response of the reservoir to binary input (Jaeger 2002),
and therefore masking procedure (Appeltant et al. 2011) is not applied to the input
data in this work. The total length of the voltage pulses is Z�t , where�t corresponds
to the duration of 1 bit. These input data are called training data. The kth (k =
1, 2, . . . , Z ) pulse is applied from time t = (k − 1)�t to t = k�t .

The STT excited by the input voltage changes the oscillation trajectory of the
magnetization, resulting in a change in the voltage output from the STO, as schemat-
ically shown in Fig. 2. Not only the output voltage but also the STO variables can be
used for the evaluation. For example, in Sect. 3, voltage amplitude va is used as the
output signal, whereas resistance x is used in the simulation described in Sect. 4. In
this section, we denote a general signal output from an STO as X (t). We divide the
output signal from t = (k − 1)�t to t = k�t into N -nodes, where N is the number
of virtual nodes. These virtual nodes are used, along with linear regression, to obtain
the output from the reservoir. For simplicity, we denote the output signal at the i th
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(i = 1, 2, . . . , N ) node as Xk,i , i.e.,

Xk,i = X

(
(k − 1)�t + i

�t

n

)
. (4)

Weight w0,i is then introduced to obtain the output from the reservoir;

N+1∑
i=1

w0,i Xk,i . (5)

The learning task here is to find the weight that minimizes the error between the
output from the reservoir and the training data, which is defined as

Z∑
k=1

(
N+1∑
i=1

w0,i Xk,i − ySTM,k

)2

, (6)

where ySTM,k is the training data used for evaluating short-term memory capacity,
and is related, specifically for the case without any delay, to the input binary data
sin,k ;

ySTM,k = sin,k . (7)

The meaning of the suffix “0” in w0,i in Eq. (6) will be explained below. The term
with subscript i = N + 1 corresponds to the bias term used to tune the constant
value, and Xk,N+1 = 1 in Eq. (6).

Weight w0,i introduced above is determined to reproduce training data ySTM,k

applied during time (k − 1)�t ≤ t ≤ k�t . Since an RNN is an artificial neural net-
work used for classifying and calculating a time sequence of input data, it should
be able to reproduce the past input voltage from the current output signal. To enable
this functionality, Eq. (6) is extended:

Z∑
k=1

(
N+1∑
i=1

wD,i Xk,i − ySTM,k−D

)2

, (8)

where D = 1, 2, 3, .. is the delay.WeightwD,i is set so as to reproduce the (k − D)th
input binary data ySTM,k−D applied during time (k − D − 1)�t ≤ t ≤ (k − D)�t
from output signal X (t) obtained during time (k − 1)�t ≤ t ≤ k�t .

After this learning, other Z ′-random pulse sequences s ′
in,n are applied to the STO

as voltages, where Z ′ is the number of input data instances. The prime symbol is
used to distinguish the quantities related to testing from those related to learning.
Test data y′

STM,n is defined similarly to Eq. (7), i.e., y′
STM,n = s ′

in,n . The output signal
at the i th node responsive to the nth test data is denoted as X ′

n,i . Using the weight
determined by the learning, we define the reconstructed data as
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y′
R,n−D =

N+1∑
i=1

wD,i X
′
n,i , (9)

where Xn,N+1 = 1. Whether the reconstructed data reproduces the test data with
delay D is characterized by correlation coefficient Cor(D) given by

Cor(D) =
∑Z ′

n=1

(
y′
STM,n−D − 〈y′

STM,n−D〉) (
y′
R,n−D − 〈y′

R,n−D〉)√∑Z ′
n=1

(
y′
STM,n−D − 〈y′

STM,n−D〉)2 ∑Z ′
n=1

(
y′
R,n−D − 〈y′

R,n−D〉)2
, (10)

where 〈· · · 〉 is the average value. The short-term memory capacity is estimated as

CSTM =
Z ′∑

D=1

[Cor(D)]2. (11)

The short-term memory capacity characterizes the ability of the reservoir to store
past input as is, which can be done by simply using a linear transformation. The
nonlinear transformation ability for the stored information can be examined by using
a parity check task, where the following task data are used for the learning and testing:

yPC,k−D =
D∑
i=0

sin,k−D+i mod 2. (12)

The ability of the nonlinear transformation is quantitatively evaluated by introducing
parity check capacityCPC, which is defined similarly to Eq. (11). In the evaluation of
parity check capacity, the data input to the STO is again binary voltage data. However,
when the weight is determined, yPC,k−D given by Eq. (12) should be substituted into
the right-hand side of Eqs. (6) and (8). Similarly, during testing, test data y′

PC,n
are defined from the input binary data in accordance with Eq. (12) whereas the
reconstructed data y′

R are obtained from the signal output from the STO and the
weight determined by the learning, as shown in Eq. (9). The parity check capacity
CPC is evaluated from the correlation between the test and reconstructed data.

3 Reservoir Computing with STO (Experiment)

In this section, we report our experimental evaluation of the short-term memory
capacity of a vortex-type STO.
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3.1 Experimental Methods

The STO used in this study was made from an MTJ with a multilayer structure:
sub/buffer/PtMn(15)/CoFe(2.5)/Ru(0.86)/CoFeB(1.6)/CoFe(0.8)/MgO(1.1)/CoFe
(0.5)/ FeB(7.0)/CoFe(0.5)/ MgO(1.0)/Ta/Ru (thickness in nm). The films were pat-
terned into an STO with a diameter of 425nm. The CoFe/Ru/CoFeB/CoFe and
CoFe/FeB/CoFe structures correspond to the free and reference layers, respectively.
A magnetic vortex state, as schematically shown in Fig. 1b, appears in the free layer
in this type of MTJ (Tsunegi et al. 2016a, 2018b).

Figure3a schematically shows the circuit used for evaluating the short-termmem-
ory capacity of the STO.We first prepared random binary bits as input data. The data
were converted into voltage pulses by using an arbitrarywave generator (AWG).Volt-
age pulses with duration �t and a 5 ns lead edge were applied to the STO through a
low-pass filter using a bias-tee with a cutoff frequency of 300MHz. We used filters
corresponding to a Gaussian filter and applied the inverse of the circuit transfer func-
tion to the input voltage to reduce the distortion in preprocessing. The waveform
of the high-frequency output voltage was measured at room temperature using a
real-time oscilloscope (5–10 Gsam/s) using a high-pass filter with a cutoff frequency
of 400MHz. The STO generated an oscillating voltage through auto-oscillation of
the vortex core induced by the perpendicular component (film normal) of the STT
(Dussaux et al. 2010). Therefore, we applied an out-of-plane magnetic field of 725
mT to the oscillator. The voltage output from the STO was separated from the input
voltage by using the high-pass filter and measured with the oscilloscope. Amplitude
va of the output voltage was estimated by using Hilbert transformation and used as
the output signal X for evaluating short-term memory capacity.

Figure3b, c shows examples of the input and output voltages for offset voltage
Voffset = 250mV and �t = 20ns. The input voltage was 200 or 300mV, and the
corresponding oscillation frequency of the STO was 540 or 555MHz, respectively.
The output voltage exhibited a temporal change in magnitude, in accordance with
the change in the input pulse voltage. The amplitude is the envelope of the oscillating
voltage, as shown by the red curve in Fig. 3c. It was used to estimate the short-term
memory capacity.

In our experiments, we used 3500 randombits in total, where the first 500 bitswere
used for the washout, the following 2000 (Z = 2000) bits were used for learning,
and the last 1000 (Z ′ = 1000) bits were used to estimate the short-term memory
capacity. Hereafter, we call this sequence of 3500 bits a “single shot.”

Since the dynamics of the vortex core exhibited randomness due to thermal fluc-
tuation, the initial conditions, as well as the amplitude noise in the output voltage,
differed for every trial. Thus, the output voltage from the STO differed every run
even when the same voltage pulses were used as input. Therefore, we repeated the
single-shot experiment 60 times using fixed training and test data. The amplitude
was averaged, with which the test data was also reconstructed. Using the average
amplitude for both learning and testing should reduce the amplitude noise, leading
to an increase in short-term memory capacity.
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Fig. 3 a Measurement circuit used in experiments. Input data were preprocessed and injected
into the STO through an arbitrary wave generator (AWG) and low-pass filter. Output voltage was
measured with an oscilloscope after passing through the high-pass filter. Amplitude of output
voltage was estimated using Hilbert transformation. Memory capacity was evaluated by comparing
amplitude of output voltage with input data. b Example of sequential input-voltage pulses and c
voltage output from STO. Intensity, offset, and pulse duration of input voltage were Vint = 100 mV,
Voffset = 250 mV, and �t = 20 ns, respectively (After Tsunegi et al. 2018a)

3.2 Short-Term Memory Capacity in Single STO

Figure4a shows comparisons between the test (red solid line) and reconstructed (blue
dotted line) data using 200 nodes in a single-shot experiment with delay D = 1, 2,
or 3. For D = 1, the reconstructed data reproduced the test data almost perfectly,
indicating that the STO remembered the input voltage applied one bit before the
present pulse. In contrast, the ability to reconstruct data was low for D = 2 and 3.
Using the averaging technique improved the reconstruction data for D = 2, as can
be seen in Fig. 4b. These reconstructed data and Eq. (10) were used to evaluate the
correlation coefficients.

Figure5a illustrates the relationship between delay D and correlation Cor(D)

for the single-shot (red solid line) and averaged data (blue dotted line). The short-
term memory capacities estimated from these data and Eq. (11) were nearly 1.0 for
the single-shot experiment and 1.8 for the “averaged 60 times” experiment. These
results indicate that reducing the amplitude noise of the output voltage is important
for increasing short-term memory capacity.

We performed the same experiment but with values of �t other than 20 ns. The
pulse duration dependency of the short-term memory capacity obtained from the
averaged results is plotted in Fig. 5b by circles. The short-term memory capacity
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Fig. 4 Comparisons between test (red solid line) and reconstructed (blue dotted line) data for a
single-shot and b averaged data. Delay D was 1, 2, and 3 from top to bottom (After Tsunegi et al.
2018a)

Fig. 5 a Square of correlation Cor(D) between the test and reconstructed data for single-shot (red
dotted) and averaged (blue solid) data as a function of delay D. b Dependence of memory capacity
in circuit without (red triangles) and with (blue circles) STO on pulse duration �t (After Tsunegi
et al. 2018a)

decreased monotonically with an increase in the pulse duration for the following
reason. When a voltage pulse is applied to the STO, the vortex core starts to relax to
an oscillation orbit (limit cycle) determined by the voltage. Now let us assume that
a voltage pulse is applied at t = t0 and that the next pulse is applied at t = t0 + �t .
If pulse width �t is sufficiently greater than the relaxation time of the vortex core,
the output voltage for t > t0 + �t is not correlated to that for t < t0. Therefore, the
short-termmemory capacity decreases with an increase in the pulse width. The pulse
width should thus be less than the relaxation time of the STO for reservoir computing.
The relaxation time of the STO strongly depends on the type of oscillator. Roughly
speaking, the relaxation time is of the order of 1/(α f ), where α and f are the
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damping constant and oscillation frequency, respectively (Taniguchi et al. 2017).
The relaxation time of a vortex-type STO is of the order of 10−100 ns (Jenkins et al.
2016; Tsunegi et al. 2018b) whereas that of a macromagnetic STO is of the order of
1−10 ns (Kudo et al. 2010; Suto et al. 2011; Nagasawa et al. 2011). Evaluation of
STO relaxation time will be a key issue for designing reservoir computing based on
spintronics technology.

3.3 Contributions from Other Circuit Components

The definition used for short-term memory capacity in this work needs to be men-
tioned. The memory function of reservoir computing arises from the nonlinear
response of the system to the input data. In the present system, not only the STO
but also the other components in the circuit, such as the AWG and low-pass filter
(Fig. 3a), exhibit nonlinear responses to input data. Therefore, the short-termmemory
capacity evaluated above should be, strictly speaking, regarded as that of the whole
system, and includes the contributions from the other components of the circuit.

To validate the existence of the memory function in the STO, we also evaluated
the short-term memory capacity of the system without the oscillator. The results are
plotted in Fig. 5b by triangles. The short-term memory capacity of the circuit with
the STO exceeded that of the circuit without the STO, proving that the STO has
memory functionality.

3.4 Future Directions

Although thefinite value ofmemory capacity found in thiswork supports the potential
applicationof spintronics devices to artificial neural networks, the short-termmemory
capacity is still low compared with that of other systems such as a quantum reservoir
with several qubits and virtual nodes (Fujii and Nakajima 2017). The low memory
capacity of the present system is due to the trade-off between noise reduction of
noise and capacity enhancement. As explained above, the memory of the past input
voltage is stored in the amplitude of the output voltage. Noise in the amplitude of the
output voltage reducesmemory capacity. Therefore, the changes in the output voltage
amplitude between neighboring nodes should be large enough to be distinguished
from the noise. However, a large change in the output voltage amplitude between the
neighboring nodes means fast relaxation, leading to a reduction in memory capacity.
Therefore, solutions that further enhance memory capacity are needed.

A potential solution is to use an STO with delayed feedback (Khalsa et al. 2015;
Tsunegi et al. 2016b), where the information of past input is naturally stored in the
delayed feedback loop, resulting in an increase in short-termmemory capacity (Riou
et al. 2019; Yamaguchi et al. 2020). Another is to use frequency and/or phase locking
of the STO by using forced ormutual synchronization (Marković et al. 2019; Tsunegi
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et al. 2019). This is because locking by synchronization leads to a reduction in the
amplitude and/or phase noise and thus stabilizes the output voltage (Kaka et al. 2005;
Mancoff et al. 2005; Zhou and Akerman 2009; Locatelli et al. 2015; Urazhdin et al.
2016; Awad et al. 2017; Tsunegi et al. 2018c). Investigating such solution is a future
research direction in reservoir computing using spintronics technology.

4 Reservoir Computing with STO (Simulation)

In this section, we discuss the quantitative analysis of the figures-of-merit for reser-
voir computing usingMTJ devices by employingmacromagnetic simulation. Specif-
ically, not only a reservoir computing system with single MTJ but also one with
multiple MTJs is discussed (Furuta et al. 2018).

4.1 Simulation Methods

Figure6a, b shows schematics of the system used for simulating reservoir computing
using MTJs. As mentioned above, an MTJ contains an insulating tunneling barrier
layer with two ferromagnetic layers. For ferromagnetic layer-1 (the reference layer),
the magnetization direction is designed to be fixed. This can be done by the exchange
bias effect using antiferromagnetic materials, such as PtMn and IrMn (Meiklejohn
and Bean 1956), or magnetic anisotropy energy. Here, the magnetization direction
of layer-1 was fixed perpendicular to the film plane. For ferromagnetic layer-2 (the
free layer), the magnetization direction was not fixed and thus could be controlled
by the current (Katine et al. 2000) or voltage (Shiota et al. 2012). The MTJ device
resistance reflects the magnetization direction.

The magnetization dynamics in ferromagnetic layer-2 follows the LLG equation
with STT given by Eq. (2), without thermal fluctuation in the ferromagnetic layers
(Brown 1963). Here, p andm in Eq. (2) correspond to the unit magnetization vectors
for ferromagnetic layers 1 and 2 in Fig. 6(a) and 6(b), respectively. The effective
magnetic field in the present study is given by

H = −Hazzmzez, (13)

where Hazz is a uniaxial perpendicular anisotropy field. The z-component of m is
denoted as mz , and ez is the unit vector parallel to the z-axis. In our definition,
Hazz > 0 (Hazz < 0) shows in-plane (perpendicular) magnetic anisotropy. The angu-
lar dependence of the STT inEq. (2) is g(θ) = 1/(1 + P2 cos θ) (Slonczewski 2005).
The resistance of the MTJ varies with the relative angle between the spins in the free
and pinned layers, R = 1/G [see also Eq. (14)]
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Fig. 6 a Schematic of reservoir system using magnetization dynamics in an MTJ. b System with
multiple MTJs. Magnetization direction of ferromagnetic layer-2 (s2) could be controlled by input
bias voltage Vin; Magnetization direction of ferromagnetic layer-1 (p) is fixed. c Input sin, bias
voltage Vin input to MTJ device, and MTJ device resistance as function of time, which are typical
characteristics during learning and evaluation processes. Virtual nodes [xk,1 to xk,N during kth
binary input] were defined as shown in figure. d MTJ device resistance as function of static input
DC bias voltage. Black and red plots indicate resistance, when uniaxial anisotropy fields were 500
Oe and 1000 Oe, respectively. V0 and V1 are voltages that rendered device resistance constant (After
Furuta et al. 2018)

R = 2RAPRP

(RAP + RP) + (RAP − RP)(m · p)
. (14)

The time evolution of the MTJ resistance is characterized by sequential calculation
using the fourthRunge–Kuttamethod. For evaluating the short-termmemory and par-
ity check capacities, an input pulse voltage, Vin, corresponding to the computational
input, sin(= 0 or 1), was applied to the MTJs, as depicted in Fig. 6c. Figure6(a) and
6(b) shows the schematics of circuits with single and multiple MTJs, respectively. In
this section, the physical parameters are Hazz = 1000 Oe, α = 0.009, RP = 210 	,
and RAP = 390 	. These values almost follow our previous experimental research
(Miwa et al. 2014).

Figure6c shows an example of MTJ device resistance under input voltage Vin.
We used a pulse voltage with binary values of V0(= −44 mV) and V1(= +44 mV)

as Vin. These binary values correspond to 0 and 1 in sin, respectively, in the reservoir
computing learning and evaluation processes. The pulse width (20 ns in Fig. 6c, for
instance) corresponds to the discrete unit time step. Because the device resistance
is scalar, the node dimension is simply one. However, the number of nodes can be
increased by using virtual nodes (Appeltant et al. 2011; Nakajima et al. 2018). As
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Fig. 7 a Input s′
in, test data y

′
STM [Eq. (8)with D = 1], and reconstructed data y′

R used for evaluating
the short-term memory task. b Input s′

in, test data y
′
PC, (Eq. (9) with D = 1), and reconstructed data

y′
R used for evaluating parity check task. c Correlation using Eq. (10); integrated values are defined
as short-term memory capacity (CSTM). d Correlation using Eq. (10); integrated values are defined
as the parity check capacity (CPC). Input-voltage pulse width was 20 ns, and number of virtual
nodes was 50 (After Furuta et al. 2018)

shown in Fig. 6c, the virtual nodes xk,1 to xk,N during the kth binary input are defined,
where output signal xk,i in the figure is the resistance with suffix i = 1, 2, . . . , N
corresponding to the node number. These virtual nodes are further defined as a node
vector xk .

Figure6d depicts the DC bias voltage dependence of the static MTJ device resis-
tance. Under DC bias voltage conditions, the resistance was measured after the
magnetization dynamics were damped. Under positive bias voltage conditions, the
spin-polarized current flowed from the free layer to the pinned layer, and the STT
induced auto-oscillation in m. The relative magnetization angle between p and m
increased, and an antiparallel-like magnetization configuration was realized. This
means that the device resistance increases when a positive bias voltage is applied.
Under negative bias voltage conditions, a parallel-like magnetization configuration
was induced, and the device resistance decreases. For the input pulse voltage depicted
in Fig. 6c, the binary values V0 and V1 are defined as voltages that rendered device
resistance constant. As shown in Fig. 6d, V0 and V1 depended on uniaxial magnetic
anisotropy Hazz .

4.2 Short-Term Memory and Parity Check Capacities
in Single STO

In this section, we present figures-of-merit for reservoir computing using a single
MTJ device. The uniaxial magnetic anisotropy of the free layerm was fixed: Hazz =
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Fig. 8 a, b Results of reservoir computing using single MTJ for short-term memory capacity
(CSTM), and parity check capacity (CPC) as a function of input-voltage pulse width; N is number of
virtual nodes in MTJ. c, d Results of reservoir computing using multiple MTJs for CSTM and CPC
with seven MTJs (M = 7) as function of input-voltage pulse width. Uniaxial magnetic anisotropy
ratio (Hazz,k+1/Hazz,k ) was 1.6 (After Furuta et al. 2018)

1000 Oe. Recall that a positive value of Hazz means that the magnetic cell in the MTJ
is in-plane magnetized. Figure7 shows the simulated data used for evaluating the
short-term memory and parity check capacities for a single MTJ. The input-voltage
pulse width was 20 ns and the number of virtual nodes, N , was 50. Figure7a shows
typical simulation results for input s ′

in, test data for short-term memory task y′
STM,

and reconstructed data y′
R as a function of time. Similarly, Fig. 7b shows input s ′

in,
test data for parity check task y′

PC, and trained output y′
R. Delay D in both figure

was 1. The training and test data for the short-term memory task and parity check
task are defined by Eqs. (7) and (12), respectively. The output was calculated using
the simulated MTJ resistance (see Fig. 6c) and the weight. The weight was trivially
calculated using the definitions given by Eq. (8). Figure7c, d depicts the correlations
[Eq. (10)] between the test and reconstructed data as a function of D. CSTM and CPC

are defined as the numerical integration of the correlation [see Eq. (11)] and as the
capacity using training data for the short-termmemory and parity check, respectively.

Figure8(a) and 8(b) shows the short-term memory CSTM and parity check CPC

capacities, respectively, as functions of the input-voltage pulse width with virtual
nodes N . Both CSTM and CPC increased with the pulse width until it reached ∼ 20
ns. They then remained nearly constant. When the pulse width is less than 20 ns, the
change in the magnetization direction is very small, so the magnetization dynamics
cannot work as a reservoir.
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4.3 Short-Term Memory and Parity Check Capacities
in Multiple STOs

WhenmultipleMTJs are used for reservoir computing, higher figures-of-merit can be
obtained. A schematic of a multiple-MTJ circuit for reservoir computing is depicted
in Fig. 6b. MTJs are placed in parallel, and an identical pulse voltage is applied to all
of them. Spatial multiplexing (Nakajima et al. 2019) is used to construct the nodes for
reservoir computing. The node vector has M × N elements, where M is the number
of MTJs and N is the number of virtual nodes in an MTJ:

xL ,k =
⎛
⎜⎝
xL ,k,1

...

xL ,k,N

⎞
⎟⎠ , (L = 1, 2, . . . , M) , (15)

xk ≡ (
x1,k,1 · · · x1,k,N x2,k,1 · · · x2,k,N · · · xM,k,N

)t
, (16)

where “t” indicates a transposed vector, and xL ,k,i is the signal output from the Lth
MTJ (L = 1, 2, . . . , M) at the i th node (i = 1, 2, . . . , N ) in response to the kth
binary data input (k = 1, 2, . . . , Z ).

We tested various sets of uniaxial anisotropy Hazz of ferromagnetic layer-2 in each
MTJ (see Table1). For instance, when fourMTJs were used and Hazz,k/Hazz,k+1 = 2,
the uniaxial anisotropies of the MTJs were 1000 Oe, 500 Oe, 250 Oe, and 125
Oe. Such variations in anisotropy can be obtained by voltage-controlled magnetic
anisotropy in the MTJs (Maruyama et al. 2009). In this study, thermal fluctuation
in ferromagnetic layer-2 was neglected. For instance, thermal fluctuation energy at
room temperature (26 meV) is negligibly small compared to magnetization energy
MsHazzV/2 (∼ 10 eV) when Hazz = 1000 Oe. Here, Ms and V are the saturation
magnetization and volume of the free layer and were assumed to be 1375 emu/c.c.
and 23500 nm3, respectively (Miwa et al. 2014). Therefore, thermal fluctuation is
comparable to or less than the magnetization energy of ferromagnetic layer-2 for
Hazz < 3Oe. In this region, simulation assuming the ground state is not very accurate,
so a randommagnetic field to reproduce the thermal fluctuation (Brown 1963) should
be included in the simulation. Similar to the procedure for a single MTJ, the binary
values V0 and V1, the voltage input to the MTJs, were determined as shown in
Fig. 6d. Note that V0 and V1 vary as a function of the uniaxial anisotropy field, and
the smallest absolute values of the saturation voltages are used for as V0 and V1 for
reservoir computing with multiple MTJs, i.e., V0 and V1 are determined for the MTJ
with the smallest uniaxial magnetic anisotropy field.

We characterized CSTM and CPC as functions of anisotropy ratio Hazz,k/Hazz,k+1.
In the simulation, the input-voltage pulse width was 20 ns, and the number of virtual
nodes for each MTJ was 50 for all MTJs. The maximum value of CSTM increased
with the number of MTJs (M). Because each MTJ had a different uniaxial magnetic
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Table 1 Sets of uniaxial magnetic anisotropy used for reservoir computing with multiple MTJs

Hazz/Hazz,k+1 Hazz,1 Hazz,2 Hazz,3 · · · Hazz,7

1.0 1000 Oe 1000 Oe 1000 Oe · · · 1000 Oe

1.1 1000 Oe 909.1 Oe 826.4 Oe · · · 564.5 Oe

1.2 1000 Oe 833.3 Oe 694.4 Oe · · · 334.9 Oe

· · · · · · · · · · · · · · · · · ·
2.9 1000 Oe 344.8 Oe 118.9 Oe · · · 1.7 Oe

3.0 1000 Oe 333.3 Oe 111.1 Oe · · · 1.4 Oe

anisotropy field Hazz , it had a different response speed to an external voltage/current.
This variation in the response speed increased the CSTM of the system. In contrast,
the increase in CPC was insignificant compared to that in CSTM because there was no
electric and/ormagnetic interaction between the free layers of theMTJs. For instance,
we found that Hazz,k/Hazz,k+1 = 1.6 was the best condition for maximizingCSTM for
M = 7. As shown in Fig. 8c, the CSTM was maximum around a pulse width of 20 ns.
When the pulse width was smaller, the change in the magnetization direction due to
the STT is too small for performing as a reservoir. When the pulse width was greater
than 20 ns, the magnetization dynamics was almost completely damped during each
unit time step, and such a condition is not preferable for reservoir computing. As
shown in Fig. 8d, the best conditions are not the same for CSTM and CPC. This is
because a relatively long pulse is required to induce nonlinearity in themagnetization
dynamics, in multiple MTJs.

4.4 Comparison with Echo-State Network

We used an echo-state network for comparison (Jaeger and Haas 2004; Jaeger 2001).
An echo-state network is also a kind of RNN, in which the input-to-reservoir weight
Win and internal weights W between nodes are random, whereas the reservoir-to-
output weight is optimized. The node vector at time step k of the echo-state network
is determined in terms of the node vector at the previous step and the input at time
step k. The following function is used as a node vector of the echo-state network,

xESN,k = tanh
(
Wxk−1 + Winsin,k

)
. (17)

The hyperbolic tangent function is used for component-wise projection. Weights W
and Win are given in a matrix and vector, respectively, in which the components
are time-independent random values from −1 to +1. We normalized W by dividing
each component of W by the spectral radius, which is the largest absolute value
of the eigenvalues (singular value) of the weight matrix (Verstraeten et al. 2007).
Weight Win is also normalized by its spectral radius. The CSTM and CPC obtained
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Fig. 9 Plots showingCSTM versusCPC in aMTJ system and b echo-state network. InMTJ system,
pulse width and number of virtual nodes (N ) of each MTJ were fixed to 20 ns and 50, respectively
(After Furuta et al. 2018)

using a multiple MTJ system are plotted in Fig. 9a; the pulse width was 20 ns and
the number of virtual node was 50 for each MTJ. The data points from top to bottom
correspond to increase in Hazz,k/Hazz,k+1 from 1.1 to 3.0. TheCSTM andCPC obtained
using the echo-state network are shown in Fig. 9b. The data points from top to bottom
correspond to increase the spectrum radius of the weight from 0.05 to 2.0. The results
shown in Fig. 9 indicate that high-performance reservoir computing, similar to that
of an echo-state network with 20–30 nodes, can be obtained for reservoir computing
using 5–7MTJs. In terms of the total number of virtual nodes in the system (M × N ),
35 nodes (7 × 5) in an MTJ system are comparable to 20–30 nodes in an echo-state
network. Although CPC increased slightly with M , we can obtain a large CPC if there
are magnetic and/or electrical interactions between the free layers in each MTJ.

5 Conclusion

In this chapter, we have described advances in brain-inspired computing devices
based on spintronics technology. We have reviewed recent experimental and numer-
ical work and reported our efforts in investigating the applicability of spintronics
auto-oscillators (spin-torque oscillators, STOs) to recurrent neural networks. Spin-
tronics devices have several attractive features for brain-inspired computing, such
as low power consumption, applicability to high-density structures, a large output
signal, and highly nonlinear and fast magnetization dynamics. Therefore, spintronics
technology is promising for further development of artificial neural networks. How-
ever, the basic properties of spintronics devices, from the viewpoint of brain-inspired
computing, have not been fully revealed yet. To prove the applicability of spintronics
technology to computing, we need a deep understanding of magnetization dynamics
in nanomagnets.
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We have experimentally evaluated the short-term memory capacity of a reservoir
computing with an STO.We have demonstrated the feasibility of learning and testing
from output voltage by applying a time sequence of random voltage pulses to the
STO. The short-term memory capacity obtained from the average output voltage
was maximized to 1.8 under optimum conditions. Although this value includes the
contribution not only from the STO but also from the other circuit components, the
oscillator was shown to have a finite memory functionality. This indicates that it is
important to reduce the amplitude noise in an STO applied to reservoir computing.
The short-term memory capacity was increased by using a short pulse duration of
20 ns, which is comparable to the relaxation time (10–100 ns) of the oscillator. This
indicates that it is also important to set the duration of the input pulses appropriately.

Using macromagnetic simulation, we demonstrated reservoir computing using
the magnetization dynamics in MTJs. With reservoir computing using 5–7 MTJs,
we can obtain performance similar to that of an echo-state network using hyperbolic
tangent function with 20–30 nodes. Higher performance can be obtained by enabling
magnetic and/or electrical interactions between the free layers in each MTJ.
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