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Abstract Disruptive technology in computational devices is required as the
universal computing machines approach quantum mechanical limits. Integration of
state-of-the-art memristive devices provides optimal scaling of current technologies
beyond this limit through the adoption of neuromorphicmodels.Universal computing
machines pioneered byAlan Turing are strictly based on top-down intelligent design.
Neuromorphic models instead engage in bottom-up programmability by emulating
mammalian brain design and characteristics. Here we show the design, characteriza-
tion, and implementation of a massively parallel memristor neuromorphic network
based on metal chalcogenide atomic switch network (ASN) systems with key char-
acteristics such as short- and long-term potentiation, power-law dynamics, and
scale-free topology.

1 Introduction

Fundamental work by Carver Mead and colleagues (Mead 1990) in the develop-
ment of the concept neuromorphic technology enabled a disruptive paradigm shift
in computing technologies. Unlike other conceptions of machine learning, neuro-
morphic computing attempted to completely emulate neuron functionality within
a physically realizable computing hardware. In doing so, the power-efficiency and
complexity of neurons can be harnessed without bottlenecking data as in CMOS
technology (Backus 1978). Additionally, neuron clusters in the brain can recognize
patterns and are capable of performing unconventional computing similar to Alan
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Turing’s B-machine (Turing 1950). The evolutionary optimization of the brain in
both structure and functionality provides an exciting new zeitgeist in a fast stalling
technology (Waldrop 2016).

Current works using learning dedicated computer hardware provide possible
throttling pass the information bottleneck (Husband et al. 2003; Tour et al. 2003).
Additionally, developments of beyond-CMOS devices such as magnetic tunneling
junctions (Furuta et al. 2018), photoelectronic (Hermans et al. 2015), and memris-
tors (Ascoli et al. 2017; Du et al. 2017; Strukov et al. 2008) explored computing
architectures outside of typical transistor-based models. In 2000, the International
Center for Materials Nanoarchitectonics (MANA) commenced investigation of
viable neuromorphic materials utilizing nanowire mechanisms and constraints for
material design. Specifically, ProfessorMasakazuAono developed the atomic switch
as a nano-equivalent neuron operating under quantum mechanical limits at GHz
speeds (Tsuchiya et al. 2015; Tsuruoka et al. 2017). Aono’s work on atomic
switches developed the underlying principles for integration and development of
nanowires for neuromorphic computing elucidating nanowire plasticity and memory
capabilities. Single transistor-like atomic switches were introduced into memory
storage devices by Nippon Electric Company (NEC 2009) using non-dynamic Cu-
TiO2/TaSiO atomic switches for 32 nm CMOS technology. However, the plasticity
present in neurological functions is inherently non-static and dynamic (Büsing et al.
2010; Lukoševičius and Jaeger 2009). Further development of scalable neuromor-
phic atomic switch devices required a holistic nanoarchitectonic design incorporating
dynamic and nonlinear network behaviors.

An emerging mathematical model developed by Leon Chua sought to integrate
CMOS technology with nonlinear and chaotic systems (Chua 1980, 1988). In 1971,
Chua theorized that, in addition to the 3 fundamental elements in the lumped element
circuit model, there was a 4th element he called the memristor. Complementing the
relations provided by the resistor, capacitor, and inductor, the memristor was able to
relate the magnetic flux with electric charge. In order for circuit theory to utilize this
4th element, the model required adaptation of a purely nonlinear circuit theory more
akin to Turing’s B-machine. Particularly, themodel emphasized harnessing emerging
behaviors due to coupled circuits similar to the ideals of neuromorphic computing.
Here, we present the fabrication of a physical random neural network via growth of
memristive atomic switch networks, harnessing phenomenological fractal growth to
directly imitate neural evolution for neuromorphic computing.

Unlike conventional neuromorphic platforms which require meticulous design,
atomic switch networks (ASN) produced by interconnected nanowires introduce
a unique methodology of controlled evolution. Meticulous design of a system
required a complete model of understanding such as the CMOS computer archi-
tecture modeled by the universal Turing machine. However, it was more practical
to develop a scheme of top-down adaptation than by bottom-up selective modifica-
tion toward the desired function due to hardware limitations. A combined effort of
theoretical predictions and experimental verification is presented here to design a
methodology that was physically practical in implementing a computation referred
to as reservoir computing. A physically realizable recurrent network comprised of
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gapless-type atomic switches with Ag2S as the active material previously demon-
strated device tenability as functionally compatible neurons (Demis et al. 2015, 2016;
Sillin et al. 2013).

An analysis of atomic switch networks at the interface of theory and exper-
iment was accomplished by implementing theoretical paradigms of computation
from the perspective of experimental feasibility. Considerations of physical practi-
cality and CMOS compatibility were given priority over an ideal model with micro-
scopic details. Reservoir computing was implemented on the proposed device to
accomplish a series of error checking parity tasks and activation control to assess its
computational capability.

We proposed to answer the following questions:

1. What is the relationship between the dynamical properties of a random system
and its computational capability as a reservoir?

2. How do these dynamical properties emerge in macroscopic tools available to
an experimentalist?

1.1 The Atomic Switch

Atomic switches were a class of devices that enabled the use of quantum tunneling
for signal transduction. The first experiment to measure the transition from an elec-
tron quantum tunneling to single point contact regime was reported in 1987 using
a scanning tunneling microscope (STM) in ultra-high-vacuum (UHV) on a silver
surface (Möller 1987). Current-distance characteristics showed an abrupt increase in
conductance, G ~ e2

2h ≈ 1
13 k�, at sufficiently small tip-surface gaps, establishing the

quantized unit of conductance. Subsequent theoretical analysis verified that at small
gap distance the effective tunnel barrier collapses prior to point contact via ballistic
electron injection (Lang 1986). Later work demonstrated further jumps of G ~ n 2e2

h ,
where n = 1, 2, 3 . . ., in the conductance occur as the contact area is increased.
Such observations were not limited to STM experiments; even two macroscopic
wires brought in contact also displayed this effect, albeit in a less controlled manner.
Houten et al. provide an excellent review of quantized conduction, which also intro-
duces Landauer’s concept of transmission G = 2e2

h

∑

n
tn , where the term t is the

transmission (van Houten et al. 1996).
In 2002, experiments by Terabe et al. found that Ag atoms could be transported

through a STM tipmade of silver coatedwith silver sulfide and deposited on a surface
in a controlled manner (Terabe et al. 2002). The characteristics of this process also
occurred via quantized conduction, however, the mechanism involved ion migration
under the influence of an electric field, a process called "electroionics", meaning that
in addition to electron motion, ion motion also occurs simultaneously. Normally,
ionic diffusion processes on the macro-scale are considered to be slow, but when
they are induced on the nanometer scale, they are actually quite fast and can occur on
a (sub-) nanosecond scale depending on the geometry and dimensions of the junction.
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In 2005, using junctions fabricated using conventional microelectronics, Terabe et al.
demonstrated atomic switching in silver sulfide junctions with discrete and reversible
quantized jumps from n = 1 to 10. This was the birth of the “atomic switch”. Since
that date, quantized conduction has been observed by a number of researchers in a
wide range of materials including sulfide junctions of copper, tungsten sub-oxides
as well as various metal-doped polymers.

Aside from the fundamental science of their quantization, the interesting elec-
tronic features of atomic switches were hysteresis, on/off conduction ratio, switching
speed and volatility characteristics as well as CMOS compatibility because of their
potential in digital electronic memory applications. Indeed, NEC recently has incor-
porated atomic switch technology into field programmable gate arrays (FPGAs)
(Aramaki et al. 1991; NEC 2009) where a reduction in device footprint, speed, and
energy consumptionwas achieved by replacing certainmemory tasks, normally using
transistors, into the circuitry.

Additional atomic switch functionality was reported in 2011 when studying
switching near-threshold conditions (Ohno et al. 2011; Hasegawa et al. 2011). It was
found that atomic switches have an on-off memorization property of past switching
events. For instance if switching is performed infrequently, the switches remain in the
on-state only briefly whereas if frequent switching events are made in rapid succes-
sion then the on-state persists for a longer time. A series of careful experiments
were able to relate these physical observations to a psychological model of learning
called the Akinson-Schriffin multi-store model (Atkinson and Shiffrin 1968). The
essence of themodel involves sensorymemory (SM), short-termmemory (STM), and
long-term memory (LTM). New information arrives in the brain as sensory memory
and that information was passed to short-term memory. In the absence of similar
information it was forgotten. However, if the process was repeated many times,
the information was moved into long-term memory. In terms of bio-inspiration, the
operational characteristics of the atomic switch under threshold switching were also
related to characteristics of biological synapses. The atomic switch therefore has also
been called a synthetic synapse where memory was represented by conduction state.

The next step in creating a “brain inspired” device was the fabrication of networks
of synthetic synapses (Atomic Switches). Taking the neocortex as a biologically
inspiration, self-assembly was used to incorporate atomic switches into a dense
dendritic tangle of silver nanowires resulting in a density of ~108 connections/cm2

(Avizienis et al. 2013). In response to electrical inputs, which inject energy into the
network, these networks exhibited self-organization and critical power-law dynamics
and spatio-temporal nonlinear outputs at multiple electrodes.

1.2 Neuromorphic Atomic Switch Networks

The clear desire for neuromorphic architectures has led to further investigations and
developments of different synthetic synapse models. Establishing specific connec-
tions between patterns of electrical activity and brain function was a difficult task



Programmable Fading Memory in Atomic Switch … 277

that requires studying general features of neuronal structure in order to determine the
essential properties required to construct a device capable of learning in a physical
sense. These features are believed to include at least synaptic plasticity, allowing
physical reconfiguration of the network to enable functional differentiation and
the development of hierarchical structures in which all possess correlated memory
distributed throughout the dynamically coupled synapses. Therefore, learning and
computational capacity in the brain are connected to dynamic activity and functional
connectivity. Specifically, a near-critical or “edge-of-chaos” operational (Langton
1990) regime has been associated with the fast, correlated response to stimulation
necessary for computation and learning.Developing computationalmachinerywhose
operation results from intrinsic critical dynamics was a complex task; with Atomic
Switch Network (ASN) devices demonstrated such functionality (Fig. 1).

Utilizing the theoretical concepts presented in the previous section, we designed a
neuromorphic device by incorporating atomic switches in a highly recursive intercon-
nected network. The work of Aono (Terabe et al. 2002; Ohno et al. 2011; Hasegawa
et al. 2011) established the fundamental principles and design of atomic switches.
Observation of plasticity and information retention in atomic switches enabled us
to successfully implement them in neuromorphic hardware for reservoir computing
(Demis et al. 2016; Sillin et al. 2013). A number of materials were available and
various functionalities may be tuned depending on the active material. Here, metal-
chalcogenides were chosen due to their ready integration into CMOS technology and
capability for spontaneous fractal growth.

Fig. 1 Network diagram and analogue interface. A circuit schematic is shown in a showing
the platinum circuit (green wires) and readout PC interface (blue circles). The silver network was
placed in the central region (boxed) and a closer inspection of the region wiring is shown in b.
Pre-patterned posts were lithographically placed within the boxed region in c ready for network
growth. The device was interfaced to a National Instruments PXI—e using a custom device housing
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2 Theoretical Constraints and Consideration

The concept of neuromorphic hardware as conceived by Mead (1990) intended to
emulate the problem-solving capability of biology, which has been evolutionary
optimized by nature. Observations of DNA folding and editing (Romero et al. 2017)
demonstrated the capabilities of evolutionary algorithms to enable DNA to execute
complex protein interaction and regulation. Natural selection has inherently opti-
mized these systems in their task-specific function, therebyminimizing energy,maxi-
mizing information transfer, and encoding fault-tolerant and adaptive behaviors (Kim
and Han 2002). Neuromorphic hardware attempted to adapt this architectural design
within the context of circuit theory and analysis. A premier model for computational
design was the human–brain, where complex computation such as speech, multisen-
sory control, and chaotic predictions was commonly executed while operating under
relatively simple rules.

Fundamentally, the brain utilized synaptically interconnected neurons to transfer
and process information. Each neuron operated under the Hebbian fire-diffuse-fire
principal (Hebb 1950; Timofeeva and Coombes 2003) which activated neurons with
a sigmoidal function profile similar to transistors with voltage replacing ions in
the latter case. Unlike contemporary digital transistors, each neuron was heavily
coupled to other elements behaving effectively as a history-dependent nonlinear
device. Circuit network theory has analogous examples of coupled inductive circuits
communicating across devices, but such circuits were typically designed to elim-
inate coupled cross-talk and the overall circuit was linearized in its functionality.
However, simplification of these interactions invariably destroys emergent behaviors
observed in complex systems (Chen and Wang 2003; Goudarzi et al. 2012), which
was capable of accomplishing complex computation. Nonlinear circuit design and
analytical models by Chua (Ascoli et al. 2017; Chua and Wu 1995) attempted to
utilize these complex interactions but have limited integration within information
technology. Instead, machine learning algorithms were implemented in software
which mimics the design and learning rules of biological systems. Here, a combina-
tion of machine learning architecture and nonlinear circuit design is briefly presented
and discussion was restricted within a feedforward network for brevity; however, a
formal and comprehensive discussion has been previously published (Lukoševičius
and Jaeger 2009; Verstraeten et al. 2009).

The neural network machine learning paradigm traditionally attempted to achieve
learning by modification of network topology and connectivity via adjustments
to neuronal coupling strength. The general architecture of a neural network was
designed similar to the human–brain—a collection of nodes or neurons intercon-
nected with synapses to other neurons in a hierarchal layered structure (Graves
et al. 2013; Krizhevsky et al. 2012; Abraham 2005; Schrauwen 2007; Hassoun
1995; Hopfield 1988). Neuronal nodes were typically designed to integrate incoming
signals and transform them using a sigmoidal transfer function. The integration was
the weighted sum of all signals received by the neuron from a predetermined set of
input neurons from the previous layer:
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was a vector whose elements are the transfer functions of
each neuron. The neuron activated according to its designed transfer function, then
propagated the signal to its pre-designated output neurons in the next layer, i.e., layer
1:

⇀

I
1

(t) = N̂1
⇀

I
0

(t) ≡ ⇀

f
1(
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Here, ⇀
w

1

i was the coupling strength between neuron i in layer 1 and all other
neurons. This process was repeated from neuron to neuron in a hierarchal structure
composed of layers or networks of neurons until it arrives at an output neuron layer,

represented by
⇀

I
T

(t), where the user observes and process the final signal I F (t):

⇀
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(t) =
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⇀
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D

(t) ≡ Ô
⇀

I
D

(t) (3)

I F (t) = ŵD · ⇀

I
T

(t). (4)

The operator Ô represented the overall transformation by the network, and ŵD

was the design matrix in the output layer whose rows were the number of observ-
able parameters and columns were the coupling strength to the sensors. While the
above assumed a feedforward architecture, Eq. (3) and onwards may be generalized
for any network if one allows Ô to represent any network transformation. Learning
was achieved by designing the network connections in such a way that the output
signal was transformed into a desired target signal. Each desired computational
process corresponded to a desired signal, I testdesired, for a given input signal, I D(t),
and network transformation, I F (t). The synaptic strength of individual connections
was adjusted in incremental corrective steps according to a learning rule using a
training dataset until the network’s effective function was the desired mathematical
operation. Various learning techniques exist and depend on network type, connec-
tivity structure, neuronal transfer function, I/O implementation, task complexity,
and computational constraints (Büsing et al. 2010; Haimovici et al. 2013; Nedaaee
Oskoee and Sahimi 2011; Sporns 2006). Here, we focused on the linear-regression
learning rule as it was the typical and simplest learning rule:
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ŵD Ô =
([

⇀

I
T

(t)

]†[
⇀

I
T

(t)

])−1[
⇀

I
T

(t)

]†

I trainingdesired (t). (5)

The processwas done recursively by using a number of controlled training datasets
to determine error propagation and correction. Defining a metric for error was
nontrivial and clever designs and calculations of error existed that can drastically
determine learning performance. However, we focused on the most commonly used
and simplest definition of signal error which was the normalized mean squared error
(NMSE) and adopted accuracy as a more intuitive measure of performance.

error ≡
E

[(
I testdesired − I F (t)

)2
]

E
[(
I testdesired − E

[
I testdesired

])2
] ; accuracy ≡ 1 − error (6)

A network’s computational capability was nearly defined by its network size,
size of Ô , while simultaneously increasing the complexity in learning. Unfortu-
nately, implementing such amodel using traditional photolithographymanufacturing
inevitably approached the Abbe diffraction limit (Abbe 1873), which was incapable
of physically addressing elements on similar scale as current software implemented
neural networks. Reservoir computing (Schrauwen et al. 2007; Verstraeten et al.
2009) was a distinguished computational model for scalable neuromorphic hard-
ware as it does not require comprehensive control of the network, omitting the Ô
in (5). Learning algorithms only required training on the output layer of neurons,

ŵD , while the inner “reservoir” neurons, Ô , are unattended and replaced
⇀

I
T

(t) with
I F (t) in (5) (Lukoševičius and Jaeger 2009; Schrauwen et al. 2007; Verstraeten et al.
2009). Here, we utilized the reservoir computing paradigm as the functional model
for computation in our ASN experiments.

2.1 Nonlinear Circuits

Regardless of the network construction or stimulation, a neural network was not
capable of performing complex calculations if individual neurons behaved linearly
(Carbajal et al. 2015). A brief proof of the desire for nonlinearity was by contra
positive and to logically investigate the behavior of a network with purely linear
elements. We constrained discussion using the above mathematical formalismwhere
systems were represented only by neurons, and any post-processing or contributions
from instrumentation were represented as an appropriate neuron layer. Let individual
neurons be definedby the gain of an op-ampcircuit to simulate linearity,which simply
rescales the amplitude of the input signal as in Eq. (7). Suppose the neurons were
fully connected to every other neuron by a fully populated network, maximizing the
rank of the transformationmatrix Ô . Inevitably, a linear combination and convolution
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of such neurons only resulted in a linearly behaving network, regardless of network
connectivity:

let
⇀

I
T

(t) = Ô
⇀

I
D

(t) = λ̂
⇀

I
D

(t), (7)

I F (t) = ŵD · ⇀

I
T

(t) = ŵD · λ̂
⇀

I
D

(t) = ⇀
wDeff · ⇀

I
D

(t), (8)

where the transformation in Eq. (7) was replaced by a linear function, while
the final signal in Eq. (8) was a linear combination of the driving signal with
⇀
wDeff =

N∑

i
wDiλi . The above demonstrated linear neurons’ limited computational

capability and be completely defined by the input signal from Eq. (8), while the
design matrix ⇀

wDeff merely scales the input. To enable the network to implement
complex computation, a neuronal behavior with nonlinear characteristics and robust
mathematical formalism was adopted. Chua’s nonlinear circuit analysis (Chua and
Kennedy 1988) introduced the concept of memristive systems as a neuron-like two-
terminal element with characteristic nonlinear and memory qualities. The memristor
nonlinearly related the integrated voltage (magnetic flux, ϕ) with charge and acts
similar to a charge dependent resistor:

dϕ = MdqorM(q) = dϕ

dt
/
dq

dt
= V/I. (9)

The relation was strictly nonlinear and solved differentially, which required
holistic circuit analysis when the element was incorporated within a network (Chua
1980). A memory attribute was readily illustrated in the memristor’s dependency
on charge accumulation, which was desirable to any learning system. Discovery of
physical memristor devices (Strukov et al. 2008) and complex circuit oscillations
depicting chaotic trajectories (Chua et al. 1993; Chua and Itoh 2008) has enabled
the construction of nonlinear circuits capable of harnessing emergent chaotic behav-
iors. Observations of neurons physically adapted to environmental changes through
a recurrent feedback mechanism (Carbajal et al. 2015) paralleled the oscillatory
behavior found in Chua circuits. Likewise, incorporation of a continuous feedback
enabled adaptive and responsive computing (Hermans et al. 2015).

2.2 Characterization: Power-Law Dynamics

The above mathematical construct illustrated the importance and central role of
the network connectivity and functional topology described by the transformation
Ô within the machine learning platform. As described by Maass and Legenstein
(2005), Maass et al. (2002), neuroscience concluded that a small-world network
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maximized information transfer while minimizing energy usage. This phenomenon
was observed throughout the natural world—occurring in cases such as complex
geological formations, flock behavior, and disease proliferation—and continues to
be a central topic within chaos and network theory. Heuristic evidence concluded that
network design ascribed with such features enable optimal performance. A defining
characteristic of a small-world topology was the length distribution of interacting

elements to behave as a power-law, i.e., the strength of ⇀
w

n

i scales as d
−β, where d is

the interneuron distance:
∣
∣
∣

⇀
w

m

j |d|⇀
w

n

i

∣
∣
∣ ∝ d−βor

∣
∣
∣ f f t

(
⇀
w

m

j

)
|t | f f t

(
⇀
w

n

i

)∣
∣
∣ ∝ f −β, (10)

where the second relation utilized Pontryagin duality, d → c× t with c as the speed
of light, and the Fourier transform of the first. A network adhering to these constraints
was capable of sustained persistent activity even due to small perturbations (Goudarzi
et al. 2012; Haimovici et al. 2013; Sussillo and Abbott 2009) and was in a "critical"
state which allowed for maximal information transfer.

We examined the device for emergent nonlinear properties considered funda-
mental to brain function, which were not observed for individual atomic switches
operating in simpler geometries—namely, recurrent dynamics and the activation of
feedforward sub-networks. The presence of small-world dynamics within the ASN
devices was demonstrated by applying a constant DC bias (Fig. 2a) across a partic-
ular region of the network. This produced persistent, bidirectional fluctuations—both
increases and decreases—in network conductivity. In the absence of complex struc-
tures within the network, conductivity would increase monotonically under constant
DC bias, as in the case of a single atomic switch. Previously reported (Stieg et al.
2012) current fluctuations of this kind are ascribed to recurrent loops in the network

Fig. 2 Dissipative power-law behavior indicative of self-organized criticality. The electrical
current response of a physical and simulated ASN device in a under constant external voltage
bias was used to characterize network activity. Network switching/activity timescales showed
a dissipative power-law response b indicative of a scale-free network
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that create complex couplings between switches, resulting in network dynamics
that chaotically converge to a semi-steady state even under constant bias. A single
switch turning ON did not simply lead to an increased potential drop across the
next junction in a serial chain, but entropically redistributed voltage across many
recurrent connections that can ultimately perturb the system into a new equilibrium
as a net change in network conductivity. These fluctuations were not attributable to
uncorrelated flicker noise, as shown by comparing the Fourier transformed current
responses in Fig. 2b of the devices to constant voltage before and after sulfuriza-
tion. The formation of atomic switch junctions expanded the degree of correlation
in current fluctuations, producing small-world 1/f-like behavior across the entire
sampled range. This behavior was distinct from that of control devices which flat-
tens to white noise and some high energy, high frequency fluctuations attributed to
arcing between neighboring wires.

2.3 Atomic Switch Plasticity

In conjunction with optimizing the reservoir’s transformation capability in Ô , reser-
voir learning inherently required a memory quality and plasticity for selective infor-
mation storing (Jaeger 2001). A powerful feature of atomic switches andmemristive-
like devices was the observation of a brain-like physical phenomena known as
Long-TermPotentiation (LTP) and Short-TermPotentiation (STP). Both function and
memory have been ascribed to STP andLTP dynamics in neurological studies (Maass
and Legenstein 2005;Maass et al. 2002). Neuron signal transduction through potenti-
ation spikes showed timing dependencies which directly encoded information within
the spike’s line shape. Simultaneously, brain functionality and behaviors developed
as neuron ensembles cooperatively spiked to adopt specific emergent behaviors.

These neurological phenomena were observed (Nelson and Abbott 2000; Sussillo
and Abbott 2009) within the active Ag2S region in the atomic switch as aggrega-
tions of Ag+ cations. Observation of a large impedance change in the atomic switch
under an external voltage was attributed to a crystal transition of the active material
Ag2S (Gusev and Sadovnikov 2018). This transition gave rise to aweaklymemristive
behavior prior to the formation of Ag filaments across the interface. In the absence of
continued applied bias, the conductive filaments eventually returned to their stoichio-
metric, thermodynamically favored equilibrium state, reverting the atomic switch to
its initial highOFF resistance (Fig. 3a). Continued application of bias voltage resulted
in a concurrent increase in electric current through the device, which then further
drove migration of silver cations toward the cathode. At the cathode mobile silver
cations were subsequently reduced to Ag0, forming a highly conductive Ag nanofil-
amentary wire. The completion of this filament resulted in a strong transition to
an ON state (Fig. 3a) with a dramatic increase in conductivity (Fig. 3b). Removal
of the applied bias resulted in filament dissolution as the device again returns its
thermodynamic equilibrium state (Fig. 3b). The completion and dissolution of this
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Fig. 3 Spike-time dependent plasticity in a single atomic switch. Continued stimulation of
the atomic switch caused formation of metallic filaments across the gap/active layer in a. The
electrical response became increasingly dominated by tunneling mechanisms derived from single
atom “contact”. A 300 mV spike 5 ms width voltage train at a period of 100 ms in b stimulated the
atomic switch to form a single Ag filament. Single atom contact increased conductance to the ON
state during stimulation while thermodynamic dissolution drove the system back to the OFF state.
In c, the pulse train period was shortened to 10 ms allowing multiple filament formations. Measured
conductancemonotonically increased before reaching a stable conductance state. Filament structure
and stability modulated the electrical response and emerge as empirically determined as Short-Term
Potentiation (STP) in b and Long-Term Potentiation (LTP) in c

filament characterized strongly memristive behavior. Continuous application of a
bias voltage served to increase filament thickness as additional silver cations was
reduced, causing thickening of the metallic filament (Fig. 3c). This dynamic process
has been shown to alter the dissolution time constant and can be externally controlled
by changing the input bias pattern (e.g., pulse frequency). Such changes in volatility
can be interpreted as short-term or long-term potentiation (STP and LTP).

2.4 Resistance Training

The network’s ability to physically encode information within the filament led us
to develop a resistance training algorithm to control the network’s memory capa-
bilities. The dependency of filament formation on voltage history and charge accu-
mulation illustrated memristive behavior within the atomic switch. Circuits utilizing
memristive behavior tend to have complex trajectories with nondeterministic solu-
tions and are classified as Chua circuits (Chua et al. 1993). Initial conditions and
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stochastic fluctuations helped determine the circuit’s trajectories and operational
regime, thereby having statistical control on its operation. The circuit parameters
of impedance, inductance, and capacitance were used to determine the trajecto-
ries of Chua circuits, but other driven systems have included filters, op-amps, and
other sources for noise. Though the atomic switches’ equivalent parameters evolved
with operation, impedance change dominated most of the activity while periphery
parameters were treated using thermodynamic approximations (Sillin et al. 2013). A
resistance training algorithmwas constructed to tune the network operational regime,
while using resistance stability as a thermodynamic approximation of the periphery
parameters in simulated models, see Sect. 2.5.

The resistance training experiments were performed using a precision source
measure unit (National Instruments 4132) and a high-speed switch matrix (National
Instruments 2532) within a PXIe unit (National Instruments 8108), enabling rapid
resistance measurements between any combinations of 16 chosen electrodes. Resis-
tance training was implemented through repetition of a two-step process as shown
in Fig. 4. In the first step, an electrode A was selected randomly and the resistance
between this reference and everyother electrodewasmeasuredusing a small (200mV,
10ms) bipolar pulse in order to minimize influence on network resistances, as shown
in Fig. 4a. The individual resistances of electrode A with each of the other 15 elec-
trodes, RAj, defined the network state by calculating the total resistance between

Fig. 4 Resistance learning algorithm. Determination of network-wide stability/activity under
operating conditions was conducted using a target resistance learning algorithm. A schematic of the
write and verify training scheme, and typical results for an individual training trial. a Sub-threshold
measurement pulses establish the parallel resistance of A, followed by b a larger training/write
pulse between A and B. c The parallel resistance of A is recorded and compared to the target after
each training pulse, when error is minimized the training ceases and the duration of the achieved
target state is recorded as the dwell time
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electrode A and the rest of the network, as though the paths from electrode A to
every other electrode were resistors in parallel:

R(i) =
(∑15

j=0
j �=A

1

RAj

)−1

. (11)

This quantity is hereafter referred to as the “parallel resistance”. In the second
step, a second electrode B was selected randomly, and a large unipolar training pulse
(100 ms, >±200 mV) was applied to influence the parallel resistance of electrode
A, as shown in Fig. 4b. Using the same electrode I/O scheme, the measure/training
cycle was repeated until the parallel resistance of A reached the target resistance. For
all trials the target resistance was predetermined, irrespective of the initial network
resistance.

In order to achieve training, an error function and rule set was devised. This
system was designed to create sensible and consistent voltage adjustments even
when both target resistance and parallel resistance error could vary by several orders
of magnitude. The error function and rule set also correctly accounted for events
in which the parallel resistance overshot the target. Convergence of the parallel
resistance to the target resistance was evaluated using an error function:

E(i) = 1

2

(
R(i)

Rg
− Rg

R(i)

)

, (12)

where Rg was the target resistance, and R(i) was the parallel resistance. The error
E(i) was calculated after each pulse/measure cycle, and adjustments to the training
pulse bias were made by evaluating the relative change in error C(i) = E(i)

E(i−1) from
one cycle to the next using Eqs. (13) and (14), which are described below.

Equation (13) concerned changes in the absolute magnitude of C(i) to evaluate
changes in the absolute magnitude of the training pulse, V(i). If the previous training
pulse resulted in a large decrease in error, |C(i)| would be less than 1. If significantly
less than 1, as determined by an empirically determined threshold, Cm = 0.6, then
the training pulse V(i) was considered productive and no changes were made. If the
previous pulse produced a significant increase in error, |C(i)| would be greater than
1. If |C(i)| was greater than 1

Cm
, the pulse was considered counterproductive and the

training pulse magnitude was reset to a minimum value, Vmin. If |C(i)| was between
Cm and 1

Cm
(i.e., approximately equal to 1) then the error had not significantly changed

as a result of the previous pulse, indicating little influence on the parallel resistance.
The pulse magnitude was then increased by V inc.

V (i + 1) =

⎧
⎪⎨

⎪⎩

V (i), i f |C(i)| < Cm

Vmin, i f |C(i)| > 1
Cm

V (i) + Vinc, i f Cm < |C(i)| < 1
Cm

(13)
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Next, Eq. (14) was used to determine the need for changes to the polarity of the
training pulse. If R(i) and R(i – 1) were both greater or both less than Rg then there
was no overshoot and no need to reverse the bias, which is reflected by positive value
for C(i). However if R(i) changed enough with respect to R(i – 1) that it overshot Rg,
C(i) would be negative. In this case the training pulse voltage V(i) was reversed in
sign, and its magnitude was automatically reset to the minimum pulse bias Vmin.

sgn(V (i + 1) =
{

sgn(V (i)), i f C(i) > 0
−sgn(V (i)), i f C(i) < 0

}

(14)

A single pulse/measurement cycle lasted 1.5 s, and the time required to reach
the target resistance state was defined as the “convergence time”. Upon reaching the
target resistance, training pulses ceased and network resistancesweremeasured every
0.5 s until the parallel resistance decayed away from the target and the error exceeded
0.5 (roughly equivalent to 50% error). This duration was defined as the “dwell time”.
The entire convergence/dwell time sequence constituted a single resistance training
trial, an example of which is presented in Fig. 4c. When a trial completed, new
electrodes would be randomly selected and the training process was repeated after a
30 s delay.

Individual resistance states were the result of conductive silver filaments which
bridge the Ag|Ag2S|Ag gaps, and each filament was vulnerable to thermodynami-
cally driven dissolution. Not surprisingly, a deterministic model of interacting ther-
modynamic variables was not available, and stability of target resistance was hard
to predict. Figure 5a shows the distribution of dwell times for networks at the target
resistance (Rg=200 k�). The distribution suggests a power-law dependency, with

Fig. 5 Dwell times vary widely but depend on the target resistance. In a, networks are repeatedly
trained to 200 k� and their dwell times are recorded. By repeating the training programmany times
on different networks, statistical distributions suggest that the probability P(D) of a dwell time
lasting for durationD follows a power-law relationship. Dwell times are generally 10 s or less, with
occasional states lasting 100 s or more. As in b, at low target resistances, the final configurations are
stable, with over 50% of trials resulting in a final state lifetime of 100 s or more. As target resistance
increases, the final states are proportionately less stable
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dwell times of less than 10 s being most common and occasionally lasting 10 times
longer. This distribution was found to depend heavily on the target resistance value,
as shown in Fig. 5b. When Rg=200 k�, <10 s dwell times accounted for 72% of
trials, but at 2 k�, dwell times of 100 s occur in more than 50% of trials. This is
the expected result given the underlying operational mechanism of individual atomic
switches. Lower resistances were achieved when an individual switch has a thicker
conductive filament across the insulating layer, making them more resistant to ther-
modynamically driven dissolution. In the ASN, lower network resistances are more
likely to have an abundance of parallel filamentary pathways, making the target state
more resilient against changes from an individual filament. These factors of solved
state stability outweigh any effects from repeatedly training the network.

2.5 Simulation of Atomic Switch Network

A complementary study on the effects of global stimulation was done in simulation
to form a microscopic understanding of the device dynamics. The simulated network
was comprised of interconnected atomic switches using a modified state equation
(Joshua Yang et al. 2013; Strukov et al. 2008). A current controlled memristor model
was adopted undergoing ionic drift dynamics at the Ag|Ag2S|Ag interface based
on previously published works (Demis et al. 2015; Sillin et al. 2013; Biolek et al.
2009). The state variable, w(t), represented the doped region produced by migra-
tion of Ag+ mobile ions from pure Ag into the Ag2S layer. Reduction of Ag+ at
the cathode precipitated Ag nanowire formation with its physical dimensions deter-
mining its impedance and characteristic memristive behavior. The atomic switch was
observed to have at least two operational regimes characterized by a low and high
resistance state, ON/OFF, respectively. Simple linear super positioning of the two
states capturedmemristive behavior eloquently and a state variablew(t)was defined:

V (t) =
[

Ron
w(t)

w0
+ Rof f

(

1 − w(t)

w0

)]

I (t). (15)

Above is the classical Ohm’s law equation with w(t), the characteristic filament
length, capturing filament formation, and determined using the ionic drift model:

dw(t)

dt
=

[

μv

Ron

w0
I (t)

]

Ω(w). (16)

A physical restraint was imposed onw(t) to account for finite dimensions through
the use of a window function �:

Ω(w) = w(w0 − w)

w2
0

. (17)
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Modifications were made to the above model to account for nanowires forming
Ag|Ag2S|Ag interfaces. The formulation for voltage-induced α/β phase transition of
the Ag2S from monoclinic acanthite to the more conductive body-centered cubic
argentite was introduced as well as formation/dissolution of conductive filaments
(Gusev and Sadovnikov 2018). Applied voltage triggers the α/β phase transition
creating a more conductive Ag|β-Ag2S|Ag junction and, more importantly, allowed
for Ag cation migration within the Ag2S in the direction of the electric field. Reduc-
tion ofAg cations intoAg0 occurs at the cathode thereby creating substructureswithin
the β-Ag2S to ultimately form conductive filaments. The removal of the applied
voltage no longer induced Ag cation migration and the system was allowed to return
to its thermodynamically favored equilibrium state. A stochastic term and dissolu-
tion term incorporated this thermodynamic behavior to the system. The term further
modeled any variability among the nanowires and the structural stability of the Ag
filament. Stratonovich integrals were employed to solve the stochastic differential
equations. The network was numerically solved as an ordinary differential equation
using standard Kirchhoff’s current laws with each node–node connection considered
as a single atomic switch.

dw(t)

dt
=

[

μv

Ron

w0
I (t)

]

Ω − τ(w(t) − w0) + η(t) (18)

A numerical simulation was constructed based on experimentally determined
parameters to model and verify theoretical propositions. Emulating the construction
of the device, voltage nodes/electrodes were arranged in a square grid and subsequent
node–node connections were introduced to represent nanowires (Fig. 6b). Connec-
tions were categorized either as short-range, within a lattice constant, or long-range
and randomly assigned to produce characteristics of nearest neighbor or random
network topologies (Sillin et al. 2013). The initial strength of each atomic switch was
randomly sampled following a power-law distribution in (10) (Maass and Legenstein
2005) with β = 1.38.

Resistance training was successfully conducted using the simulated ASN device.
Network connectivity was created by randomly distributing 250 connections with
10% of the links constrained to a length of a lattice constant within a 5 × 5 grid. The
grid size was increased as previously published SEM images showed connections
outside the 4× 4 area (Avizienis et al. 2012a, b; Demis et al. 2015; Stieg et al. 2012).
Training pulses were administered between two nodes using the scheme described in
Eqs. (11)–(14). Resistance training in the simulated network proceeded as observed
in the device (Fig. 6) and could involve a direct approach to the target, or through a
series of overshoots. The simulation allowed a complete analysis of every change in
resistance in each link, and Fig. 6b showed the net change that occurred in each link
during the training process. The changes were widespread rather than localized along
a single conductive pathway,which supports the hypothesis that network trainingwas
achieved by global interactions.
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Fig. 6 Resistance learning algorithm convergence of models. A simulated ASN shows similar
behavior in resistance training, and network-wide changes in resistance. A parallel resistance
training program identical to the experimental one was used to successfully train parallel resis-
tance. a Target resistance was 1000 �, error target was 0.1, training pulses were 100 ms in 250 mV
increments, measurement pulses are not necessary in simulation. The effects of resistance training
are presented in b, which shows the net resistance change in each link from start to finish. The
simulation shows network-wide changes in resistance even though training pulses were applied
exclusively from A to B

2.6 Implementation: Error Checking

As an illustration of the ASN’s utility as a reservoir, the benchmark task of deter-
mining bit parity was taken to both measure memory quality and network tenability.
As outlined in Furuta et al. (2018), Natschläger and Bertschinger (2004), the taskwas
a fundamental algorithm in signal processing and error checking.Typical data streams
of bytes of bits required one bit, the parity bit, to record the parity of the overall byte.
Information transfer across multiple servers can corrupt data by inverting one bit
thereby changing the overall parity of the data byte. The parity bit ensured identifi-
cation of corrupted bytes and subsequent repairing to allow for reliable data transfers.
Typical data bytes are 8 bits long, which our experiment adapted as time-separated
binary pulse sequences.

Previously published work (Demis et al. 2015, 2016; Sillin et al. 2013) enabled us
to conclude that reservoir computing was not a universal computing paradigm, but
more similar to aB-machine as imagined byTuring (1950). As such, the reservoir and
task needs to be tailored for optimal utility in performing the parity test. Simulations
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Fig. 7 Error checking task. Presented is an illustration of the parity check used in data transmission
for error checking process. The parity of the number of 1’s within a 5-bit byte is evaluated with a
sliding window 5 bits wide to generate multiple tasks. The initial input shows an odd parity and
evaluated as 0 for the desired target signal. As the 5-bit window moves across the signal, the parity
changes and reflected in the target signal. The above task was encoded as a voltage pulse sequence
into the ASN device where each bit was represented by V0 or V1 voltages in a time-separated series.
Task complexity increased with increasing number of bits per bytes rather than number of bytes as
the check was only executed once per byte

of the ASN were highly leveraged for this purpose for its ease of use, device editing,
and high throughput despite statistically underperforming w.r.t. the ASN device.
A number of simulations were conducted to determine optimal signal encoding,
activation regime, and processing timescales (Fig. 7).

2.7 Simulated ASN Error Checking Results

Implementation of machine learning tasks required the design of an encoding tech-
nique such that signal transduction stimulates the network into an excited state with
the proper mathematical transformation. As outlined in Sect. 2, reservoir computa-
tion can be represented into a mathematical design matrix Ô through spectral anal-
ysis where its rank and eigenvalue determine the complexity of the transformation
(Verstraeten et al. 2009). However, reservoir size limits the reservoir’s computational
capability as the rank of the design matrix cannot exceed the readout layer. This
limitation is typically overcome by ensuring overlap of the design matrix within the
desired mathematical operating regime by applying constraints to network activity.
However, signal transduction can perturb the reservoir outside desired activity and
clever design of transduction was required such that the signal can both encode
information while maintaining the reservoir at a specific state.

Encoding of digital information was explored by modulating the signal in either
the amplitude, frequency, or phase space. For the parity test, digital information
was spread among 8 bits with each bit in a binary state of either 0 or 1. Bytes of
digital information were represented as pulse voltages, Gaussian wave packets, and
phase-shifted sine waves for amplitude, frequency, and phase modulation, respec-
tively. The binary states 0 and 1 were assigned to preset voltage amplitudes (V 0, V 1),
wave packet frequency shifts (f 0, f 1), and phase shifts (ϕ0, ϕ1) and the Euclidean
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distance between the binary states empirically optimized. Inspection of the state
equation in (9) and (16) reveals the dependencies of these parameters w.r.t. network
activity. Indeed, simulation results concluded that the total voltage was the deter-
ministic factor on reservoir activity while changes in frequency and phase negligibly
perturbed the reservoir. An amplitude-modulated encoding procedure was adopted
for all subsequent experiments with voltages ranging from 0.1 to 7.0 V.

Reservoir activity was initialized in simulations using the resistance training algo-
rithm inSect. 2.4 (Sellers 2007). Resistance valueswith short convergence timeswere
desired as the resistance training algorithm invariably encoded unnecessary infor-
mation from the procedure which limited the reservoir’s memory capacity. These
states coincided with resistance values within RON or ROFF as well as states that
had been thermodynamically stable after repeated approaches. Introducing a highly
stochastic signal while maintaining the resistance state was capable of cleansing any
information encoded by the resistance training algorithm and was incorporated into
a post-experiment protocol. Optimal network activity was determined heuristically
while prioritizing reliability over performance.

A typical proportional–integral–derivative (PID) loop algorithm provided a
constant feedback voltage which maintained target reservoir activity. Constant
stimulation by application of the driving signal eventually accumulated charge
and excited the reservoir outside the target resistance state, observed as LTP in
Sect. 2.3. Conversely, STP dynamics concluded that inactivity or sub-threshold volt-
ages unable to counterbalance the thermodynamic inhibitive processes relaxed the
system. Stability of the target resistance state was controlled by a PID feedback
loop by dedicating one of the I/O nodes for this purpose. The feedback applied a
constant DC signal for an integral time equal to the training time. Maintenance of
the resistance state followed identical trends as the resistance training algorithm in
Sect. 2.4.

Optimal training times were determined by maximizing the dwell times at target
resistances and empirically investigated in simulation. Learning was implemented
on the reservoir using a number of training datasets, following the mathematics in
Sect. 2 and details found in Sect. 4.3. Each training set was followed by a testing
dataset to determine the effectiveness of the learning algorithm using the accuracy
in Eq. (6) as a metric of success. The procedure of providing a training dataset for
the learning algorithm and subsequent testing of performance was repeated, while
constraining reservoir activity using the PID feedback loop.

The ASN’s performance dependencies w.r.t. dataset size and number of learning
repetition was investigated in simulation to determine optimal dwell times. Simula-
tions of the ASN device revealed an occurrence of under-learning at 0.250 s (Fig. 8a)
and over-learning at 4.000 s (Fig. 8b). This was observed as drastic increases in the
NMSE at these timescales as well as a deterioration of signal propagation. The occur-
rence of over-learning was theoretically predicted as we approached the network’s
memory capacity by saturating it with training data. Under-learning manifested as
fluctuations in performance across various reservoir sizes due to limited memory
retention times. The over-learning occurred as the learning algorithm became ill-
posed and over-determined with excessive training sets. Optimum dataset lengths
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Fig. 8 Encoding optimization using ASN simulation platform. A simulation of the ASN
device performing the parity check task was conducted to determine optimal operating param-
eters. Temporal memory quality was evaluated w.r.t. the size of the output layer, length of the
learning sequence used a, b, and operating time c. Under-learning was observed at 0.25 s (blue)
length datasets as chaotic performance was measured regardless of network size. Over-learning in
b at 4.00 s (red) as continued increase in the dataset length reduced reservoir performance. Subse-
quent phases of operation c each 1.00 s in duration determined optimal operating time. Omitting the
transient phase (light blue), subsequent phases monotonically increased performance and peaked
at 4.00 s (red) while further operation in phase 5 decreased performance

were discovered to be1.000 swhile optimal total operating time tobe4.000 s (Fig. 8c).
Subsequent experiments were thus encoded as amplitude-modulated datasets 1.000 s
in length with 0.250 s pulse width and learning applied within a 2.000 s window.

2.8 Neuromorphic ASN Device Error Checking Results

The optimal parameters found from simulationwere implemented on theASNdevice
and investigated for routes of optimization. Identical instrumentations were used as
the resistance training algorithm while incorporating a PID feedback mechanism
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for sustaining reservoir activity (Fig. 9a). The error checking task was implemented
over a population of 5 devices using all possible permutations of the 16 I/O elec-
trodes and followed similar trends as depicted in Fig. 9. Initial experimentation on

Fig. 9 Error checking of ASN platform. Schematic of RC using ASN devices: Three I/O elec-
trodes are selected to form the stimulus/control loop for RC: Boolean input streams are delivered
to an individual I/O electrode underlying the ASN network (red); a system ground (blue) enables
real-time monitoring of current flowing through the network controlled by a feedback-driven bias
voltage delivered to (green) a nearby location. The ASN was stimulated with a statistical survey of
pulse widths (n
t) and pulse heights (n
V) ranging from 250 ms to 0.01–7.00 V. Testing occurred
immediately after resistance training with a fixed weight configuration. The datasets above achieved
accuracies a, b between 65 and 78% from ~5,000 trials compared to ~50% from a purely stochastic
reservoir
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individual ASN devices was performed to determine relevant optimal amplitude and
timescales using identical procedures as in simulation. The simulation’s predicted
optimal parameters were corrected to include amplitude scales of 0.01–7.0 V while
other parameters were retained.

Device performance and reliability were heavily dependent on the device’s resis-
tance state following their description in Sect. 2.4. Shorter dwell time devices at
correspondingly higher resistance states performed with increasing reliability and
accuracy, despite implementing similar training and operating times with devices at
lower resistance states. A bimodal distribution of metastable resistance states was
found with dwell times that exceeded 100 s for 3 different devices that followed
similar dynamics to Fig. 5a. The presence of these metastable states and similar
power-law behavior indicated the device activating toward a self-organized critical
state (Goudarzi et al. 2012; Stieg et al. 2012) with the two resistance states centered
at 500 k� and 600 k� possible chaotic attractor states. However, true verification
of device criticality required statistical experimentation using exact and identical
parameters which proved impractical.

Continued trials revealed devices initialized outside of the near-critical resistance
states performed poorly with accuracies below 50%, which prompted subsequent
device testing to operate within the bimodal states to explore device optimization.
Devices initialized below 500 k� (Fig. 9b) performed at 71.35% ± 6.38% accu-
racy while those initialized above 600 k� attained a similar and maximized perfor-
mance of 73% ± 5%. Despite seemingly small differences, this trend manifested
throughout all trials alongside a characteristic high dispersion in the distribution
with kurtosis values of 2.73 and 5.94 for devices at 600 k� and 500 k�, respectively.
Kurtosis values beyond 3 indicated a non-Gaussian distribution and increasingly
became dominant below 500 k�. Rapid bipolar switching manifesting as abrupt
changes in current supply was observed below this range and simulation experiments
revealed increased filaments forming under similar conditions. The non-Gaussian
statistics and filament completion events indicated a shift in the operational char-
acteristics of atomic switches and decreased performance metrics. Consequently,
network resistance state became increasingly complex and divergent thereby driving
network dynamics toward increasingly nonlinear behaviors and outside target func-
tionality. Past results (Demis et al. 2016; Sillin et al. 2013) and similar experiments
(Carbajal et al. 2015; Hermans et al. 2015) clearly indicated the requirement for task-
specific network design. Diverging resistance states, dynamic changes in atomic
switch behaviors, and poor performance concluded the network was being driven
outside of its error checking design.

Further experimentation evaluating other device parameters such as stimula-
tion amplitude, size, and learning timescales resulted in minor changes to network
performance, highlighting the importance of network dynamics. The stability of the
network resistance state was an evident metric in controlling computational capa-
bility and network state. Spontaneous organization of 2 convergent resistance states
highlights the underlying critical dynamics which maximized device performance.
Controlling such device dynamics through the use of mechanisms such as a feedback
loop (Hermans et al. 2015) seems evident for further progress.
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3 Outlook

We concluded that we were able to use network activity and stability via resistance
initialization to describe the network state for a thermodynamically driven reservoir,
the ASN. Due to the task-specificity inherit in machine learning, it was paramount to
characterize and catalogue a reservoir’s "state" that corresponds to task-specific func-
tionalities. Likewise, previous results (Sillin et al. 2013) developed a map for pattern
recognition using higher harmonics. Typical reservoir characterization in the litera-
ture utilized entropy and Shannon theory, which requires repeated experiments under
identical conditions. Current devices utilizing memristor-like reservoirs are difficult
to control with such precision, thus, a desire for an alternative characterization of
reservoir state has been necessary. In general, characterization of reservoir function-
ality has proven difficult for real "edge-of-chaos" systems. Although this requirement
has strictly not been within the reservoir computing framework, the development of
reservoirs with diverse and rich functionality expands the framework’s utility.

Despite limited addressable electrodes, the ASN device was capable of outper-
forming simulated networks as network complexity, density, and critical dynamics
were utilized more effectively in the device. We have presented a clear methodology
to implement reservoir computing on a neuromorphic device by developing observ-
able metrics such as power-law behavior, activation of STP/LTP, and resistance state.
As outlined in Sect. 2, reservoir performance was theoretically predicted to depend
on nonlinear dynamics, network topology, and task design. The commensurate devel-
opment of simulations aided in implementing theoretical models onto neuromorphic
a platform and task evaluation. Previously accomplished tasks such as pattern clas-
sification, bit logic, and T-maze decision-making task highlighted the capabilities of
the atomic switch as an integrated memory and logic component.

4 Methods

Structurally complex networks comprising of highly interconnected, functional
nanostructures are fabricated using varying degrees of top-down and bottom-up
processes, ranging from the random deposition of monodisperse nanowires to the
electroless deposition (ELD) of metallic nanostructures. By identifying the benefits
and limitations of each technique, a nanoarchitectonics approachwas adopted (Demis
et al. 2015, 2016) whereby the size of nucleation sites for ELD was used as a control
parameter for network growth in order tomaximize atomic switch connectivity while
retaining control over network topology. The silver networks were functionalized
to have atomic switch interfaces at the junctions of their component nanostructures.
This process produced a complex network of interacting elements whose operational
properties provide a basis for the memorization and transformation of environmental
information. Further, their inherent volatility results in patterns of robust electrical



Programmable Fading Memory in Atomic Switch … 297

activity. Through this specific combination of nanoscale elements and design prin-
ciples for the production of structurally complex systems, ASN devices provide the
balance of intrinsic memory capacity and nonlinear operation required for advanced
hardware implementations of neuromorphic computing, specifically in the reservoir
computing paradigm.

Patterned seed networks proved themost versatile fabricationmethod, and utilized
a combination of top-down with bottom-up fabrication, a powerful fabrication
method described as nanoarchitectonics. Random neural networks are grown on
a SiO2 substrate with Cu post nucleation sites via electroless deposition producing
a massively interconnected nanowire network with functionally brain-like features
(Avizienis et al. 2012a, b). A patterned 150 nm layer of platinum electrodes are
prepared on the substrate with a 500 nm layer of SU-8 polymer insulating the plat-
inum, only circular nodes 30–50μmin diameter are left exposed for electrical contact
and arranged in a square grid. Standard lithographic techniques using a negative
resist were used to then deposit pre-pattern Cu posts serving as nucleation sites.
Dendritic nanowires are grown via electroless deposition with a 50 mM AgNO3

solution controlling the size and shape of Cu posts to control the topological distri-
butions of the Ag nanowire network (Avizienis et al. 2013). Exposure to sulfur gas
at 10−1 Torr at 130o C for 3 min developed functional Ag|Ag2S|Ag interfaces.

With a density controlled network in mind, our group started using electrochem-
istry to grow a recurrent silver network using copper seeds. Network growth occurs
through an electroless deposition (ELD) reaction through individual atom displace-
ment reactions between Ag+ and Cu0 based on respective electric potentials. A spon-
taneous ELD reaction is preferred over an electric one due to the lack of a need for
external power and the delicate nature of electrochemical reactions. In this partic-
ular case, silver atoms are oxidized while copper is reduced during the galvanic
displacement reaction:

Cu0(s) + 2Ag+(aq) → 2Ag0(s) + Cu2+(aq) Ered = −1.26 V.

Successful implementations of the ELD reaction above allowed us to design a
technique using highly patterned top-down photolithography combined with the
complex spontaneous growth provided from the reaction above. These patterned
seed networks consist of a 2 μm layer of AZ nLOF 2020 (a negative photoresist), a
soft bake, followed by UV photolithography, and a post-exposure bake. This resist is
developed in MF26A, rinsed with isopropanol, and a 300 nm layer of copper is then
deposited and lifted off overnight in acetone. At the end of this process, a patterned
grid of copper posts 300 nm high is left. The size and pitch of these posts were refined
over time to give the most desirable silver crystal growth.

When first designing a purpose-built device to emulate mammalian brain activity,
dendritic silver structures were desired. However, over time it was realized that the
connections provided by these structures were unreliable and difficult to reproduce.
Through changing the size of the copper posts, a morphological transition was found
showing that a seed site of 1× 1μm2 up to 3× 3μm2 leads to fine nanowires. Seeds
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between 3 × 3 μm2 and 10 × 10 μm2 yield a mixture of nanowires with branched
dendritic structures, while posts larger than 10 × 10 μm2 produce only dendrites.

4.1 Design Optimization Results

Directed nanowire growth to create dendritic structures followed diffusion-limited
aggregationwithMullins–Sekerka instabilities. For sparse concentrations of AgNO3,

diffusion-limited aggregation (DLA) dynamics prevail where Ag+ cations displace
Cu0 atoms in discrete non-interacting reactions. Reduced silver atoms accumulate
on the surface of the copper posts and develop, in a steady-state evolution, metallic
nanostructures. Solidification of silver particles undergoing DLA obeys the mathe-
matical formulations of Fick’s Law,modified byMullins–Sekerka instabilities which
describe pattern formation of accumulated metal nanostructures. We describe the
kinetics of formation using ion clusters to describe the heterogeneity of the solu-
tion’s concentration. Clusters of ions diffuse through the solution, creating a wave
of ions that initiate the ELD process at the seed. Starting with Fick’s law to describe
the diffusion:

DAg∇2μAg = ∂μAg

∂t
; DCu∇2μCu = ∂μCu

∂t
; (19)

Here we use DAg and DCu the diffusion constants for AgNO3 and pure copper,
respectively, with as the diffusion potential. As the wavefront of silver reacts with
copper, aggregated silver atoms at the seed sites accumulate, pushing the growth front
toward the wavefront. The solid–liquid interface perturbs the diffusion field, moving
slowly and continuously renormalizing the ion gradient in solution. Growth of the
solid–liquid interface, via the non-equilibrium process of electroless deposition, is
mediated by the continuity equation:

Mvn = [
δμAgDAg∇μAg − δμCuDCu∇μCu

] · n̂. (20)

The miscibility gap,M, and the normal velocity,vn , of the interface, determine the
population exchange during single displacement reactions with δμAg as the fluctua-
tion in chemical potential due to concentration heterogeneity. Growth of the solid–
liquid interface results in the Mullins–Sekerka instability which is due to competing
dynamics between steady silver nanostructure growth and dynamical expansion of
the growth front. Once the rate of metal nanostructure growth exceeds the diffusion
rate, a depletion region emerges that no longer contains enough silver atoms for
sustainable displacement. Regions adjacent to the initial growth front contain suffi-
cient ion concentration to participate in ELD, forming side branches. Depending
on the rate of formation, the chemical potential at the interface is described by the
Gibbs–Thomson boundary condition:
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μ(r0) = −d0ε. (21)

Here, the chemical potential at the interface, μ(r0), is dependent on the surface
curvature, ε, and d0 the characteristic length of the seed. In the simplest case, the value
of Eq. (21) was approximated to be the value of Eq. (20) during equilibrium. The
non-equilibrium process at the solid–solution interface determines a characteristic
length scale:

d0 = γ

M
. (22)

where γ is the surface tension. Solutions to Eqs. (19)–(22) for a planar interface with
small perturbations in ionic concentrations are solved in (Langer 1980). Extending
this model for multiple perturbations will show dendritic growth that we experi-
mentally demonstrate in controlled fabrication of the ASN. Equations (21) and (22)
show parameters of control over the morphology of seed-directed nanowire growth.
The reactivity dependence on curvature can be controlled by varying shape, size,
and pitch of copper seeds. Surface tension and miscibility gap can be controlled
through varying the copper spacing and distribution. Understanding DLA under
Mullins–Sekerka instability conditions provides control and reproducibility over
self-organizing nanowire networks. Pattern formation due to Mullins–Sekerka insta-
bilities presented here is a linear approximation of the dynamical behavior of dendrite
formation. Experimental testing confirmed that when the size of the copper seed is
on the order of 1–5μ Mullins–Sekerka instabilities are suppressed, and the growth
of metallic nanowires continues without nucleation of side branches.

In order to explore the concept of fabrication through self-organization, the math-
ematical principles of diffusion-limited aggregation (DLA) and ELD are combined
to guide a nanoarchitectonics approach using the electroless deposition of silver.
An extensive experimental study of this fabrication method found that the critical
parameter for the growth of nanowires was the size of the copper seed post which
is theoretically predicted in Eq. (22) due to the factors of surface curvature and
surface tension (Avizienis et al. 2013). The diverse wire lengths included long-range
and short-range atomic switches, facilitating both globally and locally distributed
patterns of switching activity in the ASN. Due to the variation in nanowire diam-
eters, we infer each junction to have a variable gap size and subsequent atomic
switch size, thereby increasing the number of available resistance states to the ASN
(Avizienis et al. 2012a, b; Stieg et al. 2012). This fabrication method offers control
over network density and structure by introducing two important parameters: seed
size and spacing, which nucleate wire growth.
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4.2 Hardware and Instrumentation

Electrical characterization of the devices was conducted through current–voltage
(I–V) spectroscopy using a bipotentiostat (Pine Instruments model AFCBP1) in
conjunction with either a data acquisition module (National Instruments USB
6259) or a multiplexed (National Instruments PXI 1073) source-measurement unit
(National Instruments PXI 4130). The maximum bandwidth of the measurement
systems was 1 MHz and 10 kHz enabling 2 Ms and 20 ks s−1 with 16-bit resolution,
respectively. ASN devices were designed to accommodate 64 electrode 40 μm Pt
contacts within a 2.5× 2.5mm2 gridwhere atomic switches were grown. Subsequent
data analyses were carried out using MATLAB 2018b (MathWorks) and Origin 8.1
(OriginLab Corporation).

4.3 Reservoir Computing Implementation

All reservoir experiments were conducted on an 8 × 8 grid containing an estimated
108 atomic switch junctions using the 64 electrodes as I/O interface layers. A single
electrode was selected to inject the electrical input signal, while another electrode
was chosen as the counter electrode as shown in Fig. 9a. The control signal deliv-
ered a feedback voltage to an electrode in proximity to the input electrode. Voltage
signals were simultaneously measured from the remaining 61 electrodes using the
data acquisition module (National Instruments USB 6259). Reservoir computing
was implemented following the mathematics presented in Sect. 2 with the input
layer consisting of only the input electrode and the output layer constructed from the
61 measuring electrodes.
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