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Foreword

Reservoir computing seems simple but is difficult, feels new but is old, opens hori-
zons, and is brutally limiting. I will do my best in this foreword to leave the reader
with many questions—to be answered, or maybe not, in the many chapters of this
richly filled book.

The basic principle of reservoir computing (RC) is simple. Given: a training
input signal utrain(t) paired with a desired target output signal ytrain(t). Wanted:
a filter (transducer) F which, when fed with input utrain(t), generates an output
signal y

∧train
(t) which comes close to the target ytrain(t). Approach: Step 1. Prepare

a high-dimensional dynamical system X (t), the reservoir, which can be driven
by input utrain(t) and in which many state variables xi (t) (where i = 1, . . . , N )
can be observed and recorded. Step 2. Drive this system with input utrain(t) and
record the corresponding reservoir-internal response signals xtraini (t). Step 3. Find
(train, learn, and estimate) a readout functionF which maps every recorded state
vector (xtrain1 (t), . . . , xtrainN (t)) to an output y

∧train
(t)which approximates the training

targets ytrain(t). Finding such a readout F often boils down to a simple linear
regression. Exploitation: feed new input signals u(t) to the reservoir, observe the
reservoir-internal state vectors x(t) = (x1(t), . . . , xN (t)), and compute the output
signal y

∧

(t) = F(x(t)).
This basic scheme is very versatile. One can solve temporal input-output tasks for

time series prediction, dynamical pattern generation, classification and segmentation,
control, de-noising and channel equalization, rare event monitoring, and many more.
One can apply RC to obtain practical engineering solutions in signal processing and
control, robotics, communication technologies, machine learning, and AI; one can
call upon RC models as an explanatory principle in theoretical neuroscience; and
in mathematics, one can use RC as an entry point to identify and analyze a number
of interesting phenomena in high-dimensional dynamical systems. But most impor-
tantly, one can in principle use any kind of nonlinear, high-dimensional dynamical
system for the reservoir X (t), regardless of whether it is an experimental probe of a
freshly engineered nanomaterial, a quantum dot preparation, a replica of an octopus
armmade from soft plastic and suspended in water, or a digital simulation of a neural
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vi Foreword

network all to be found in the scintillating collection of reservoirs that the reader will
find in this book.

But... the closer one becomes involved with RC, the more difficult it gets, and
if the one to embrace it in full contact, it gets almost impossibly difficult. Reser-
voirs are high-dimensional, input-driven, nonlinear, and often stochastic dynamical
systems. A full theory of reservoir dynamics would be a full theory of everything
that evolves in time. Only fragmentary insights into the unbounded phenomenal rich-
ness in general dynamical systems are currently available in mathematics, theoretical
physics and biology, or the general complex systems sciences. Compared to what we
could know about, observe in, and utilize from reservoir dynamics, we currently do
know, see, and use almost nothing. It is easy to program a recurrent neural network
with 100 neurons on a digital computer, declare it a reservoir, apply the basic RC
scheme on a simple modeling task, exclaim “it works!” and call it good. This is how
students worldwide get hooked on RC. However, when one gets pushed out of the
comfort zone of the dozen or so ever-repeated “benchmark” tasks that pervade the
RC literature, then reservoirs turn into feral beasts that take an enormous amount
of patience and experience to tame. This applies, e.g., when the data are noisy or
incomplete, have outliers or are nonstationary, have a wandering baseline or vari-
able amplitude, are high-dimensional, or have multiple spatial or temporal scales,
when stability conditions have to be guaranteed, the task demands continual online
learning, or when the input data consist of rare events spiking out of a zero base-
line. Moreover, problems arise, when there are many possible options for input and
output signal re-coding (there always are), when one’s computer allows only fast
experimentation with small reservoirs, but one wants to extrapolate to large ones, or
when one wants to automate the readout training. The promise of RC, one need not
train the reservoir, turns into a problem: one cannot train the reservoir. There is an
unlimited variability in task specifics, and there is an infinity of dynamical behav-
iors in candidate reservoir systems. In a haystack of possibilities one must find a
reservoir whose native dynamics matches the demands of the task at hand. After two
decades of RC research, we only have the faintest inklings of how to match reservoir
dynamics with task dynamics. Many of my students choose a reservoir computing
theme for their graduating thesis. I dare say that, when after much trial and error,
they ultimately arrive at the point where “it works!” they don’t understand why it
works—and neither do I.

Many contemporary RC papers that I read or review introduce their subject still
with “Reservoir computing is a new approach to train neural networks ...”. Well...
RC may be called “new” compared to Newton’s and Leibniz’s calculus, but by the
standards of the fast-paced innovation cycles in machine learning it is rather old.
The basic RC principle has been discovered and re-discovered many times, and I
continue to become aware of earlier and earlier “first” sightings. This is how it goes
with most ideas that are elementary and useful.

It is not customary to cite references in a foreword, but I take this as an opportunity
to give due credit to RC pathfinders. The earliest perception of the RC principle
that I am aware is Kirby and Day (1990), a 1-page conference abstract that was
subsequentlyworked out byKevinKirby in a paperwhere he giveswhat I consider the
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first concise and comprehensive account of the RC principle (Kirby 1991), with the
readout from the reservoir (which he called context reverberation subsystem) trained
by the perceptron learning algorithm. The problem of finding a “good” reservoir
is clearly identified, and a sentence in the Conclusion section reads like prophesy:
“This may encourage molecular electronic hardware implementations.” Both papers
remained entirely unnoticed (the single Google Scholar cite that I sawwhen I queried
this in 2017 was a self-citation). In the same year 1991, Lambert Schomaker, in
Chapter 7 of his Ph.D. thesis (Schomaker 1991) (separately published in Schomaker
(1992)), described how a target output signal can be obtained by learning a linear
readout from a random ensemble of spiking neural oscillators. I got to know about
this work by an unlikely chance: after I was appointed at the University of Groningen
in 2019, Lambert became my direct senior manager and he told me about his Ph.D.
thesis in a casual conversation. I wonder how many other casual conversations with
other senior colleaguesworldwidewould bring up similar surprises. Both Schomaker
and Kirby refer back to earlier precursor ideas in their texts—clues for further studies
in scientific archeology. The next independent discovery of RC that I know about
occurred in cognitive neuroscience. Peter F. Dominey described a multi-module
(human) brain circuit for sequence generation which included a simplified model of
prefrontal cortex as a reservoir fromwhich trainable readouts send information to the
caudate nucleus (Dominey 1995). Up to the present day, and in close collaboration
with other RC researchers, Dominey has been continuing to work out elaborate
neuro-cognitive architectures with an RC core both for neuroscience modeling and
for robotic/human-maching interaction applications. His chapter in this book gives
a summary of a 25-year-long personal research mission.

The current RC literature mostly localizes the origin of RC in the propositions
of liquid state machines by Wolfgang Maass and my echo state networks (Maass
et al. 2002; Jaeger 2001). Wolfgang and I got to know of each other at the 2001
EU Advanced Course in Computational Neuroscience at the International Center for
Theoretical Physics in Trieste, Italy, August 2001, where to our mutual surprise we
found our own ideas almost identically reflected in the respective other’s. We started
to collaborate, soon joined by Benjamin Schrauwen who coined the term “reservoir
computing” (orwas it his brilliant Ph.D. studentDavidVerstraeten? thefirst published
paper where this term was used seems to be Verstraeten et al. (2005)). Benjamin
rapidly built up an enormously productiveRCresearchgroup at theUniversity ofGent
even before he was awarded his Ph.D. degree. I think several factors came together
why reservoir computing took off only then. First, the three of us teamed up instead
of defending proprietary RC islands. Second, for the first time the mathematical
preconditions that make reservoirs functional were clearly spelled out through the
fading memory and separation property in Wolfgang’s models and the echo state
property and an analysis of a reservoir’smemory capacity in my work. Mathematical
formulae gave authority to awild-looking idea. Third, “it worked” reallywell inmany
demo tasks that met the taste and demands of the time—while training recurrent
neural networks with other then-existing learning algorithms was difficult, unstable,
and slow. The deep learning revolution superseded RC only toward the end of the
2010s when the intricacies of gradient-descent training of recurrent neural networks
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finally became mastered. Reservoir computing research receded into a niche for a
few years.

But RC research re-awakened and sprouted out again from this niche when RC
principles were adopted first in the field of optical computing (see, e.g., chapters by
Kanno et al. andDambre et al.) and swiftly also in other domains of physical reservoir
computing (surveyed in the chapter by Dale et al.). Most chapters in this book are
a testimonial to the refreshing new thrust that RC has given to the wider fields of
unconventional/in-materio/natural/... computing (I have a private list of about 15
different namings that have been branded in the last four decades or so). Materials
scientists and non-digital device engineers from the most diverse makings continue
to discover RC for themselves. As long as RC continues to be freshly discovered by
colleagues in widening circles, there is still truth in when they say, in the introductory
passages of articles, that RC is “... a new approach ...”.

Ah, before I forget: there is one little technical thing that I want to point out to
everyone who uses RC for the first time. So many neural-network-based RC papers
state in their methods section that the spectral radius (largest absolute eigenvalue) of
the network weight matrix should be less than unity to ensure the echo state property,
a necessary condition to make RC work. This is a myth. A spectral radius SR < 1 is
neither sufficient nor necessary for the echo state property (Yildiz et al. 2012), and a
value much larger than 1 often gives the best performance. Please don’t perpetuate
this myth in your work! And while I am at it: another myth is that reservoirs work
best when they are tuned to operate “at the edge of chaos”, or “close to criticality”.
First, it’s a misnomer, because the edge in question here is the edge of the echo
state property, not the edge of chaos. If a reservoir slides across this edge, it doesn’t
necessarily (even not typically) enter a chaotic regime. Second, reservoirs are input-
driven systems, and mathematicians still haven’t entirely agreed on how to define
chaos in input-driven systems. Finally, reservoirs “close to criticality” work well
only for a certain class of learning tasks—the sort of tasks which are invariably re-
iterated in articles on this subject—but reservoirs far on the stable side of that edge
work much better for many other tasks. Cramer et al. (2020) point a spotlight on
this affair. I really can’t understand why this myth remains recited so often, given
the massive counter-evidence from so many practical applications where carefully
optimized reservoirs come out sitting safe and far away from this edge.

RC has the elegance of simplicity, which may be explanation enough why it
inspires researchers in many fields. Of course, there are more substantial reasons
why RC keeps blossoming, for instance, because it connects the neuro- with the
computing sciences in stronger than purely metaphorical ways; or that it opens new
doors for theoretical analyses of high-dimensional dynamical systems; or that mate-
rials scientists today really don’t havemany alternatives tomake their unconventional
substrates “compute”.

But one should be aware that the powers of RC as a stand-alone carrier of “learn-
ing” or “computing” are decisively limited. Biological brains may be using RC in
some places and some ways—it is unlikely that they don’t because evolution will
find and keep any trick that works—but brains use many other dynamical mecha-
nisms and structuring principles and information encoding procedures as well, and I
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don’t think we have an idea yet even of how many. From my perspective of machine
learning,AI and theory of computing, the strongestweakness (what a nice oxymoron)
of pure RC is its inherent blindness to hierarchical multi-scale compositionality of
data structures, processes. and architectures. Here, I understand compositionality in
a strong sense which includes bidirectional interaction between higher modules or
layers and their sub-modules or lower layers. An example are planning architectures
for autonomous agents where higher planning modules generate longer-term plans
that “call” lower sub-plan modules in a top-down direction, and stay informed about
execution progress in a bottom-up direction of communication from the sub-modules.
Another example are the Boltzmann machine or Friston’s free-energy models of
neural processing where higher layers send statistical biases to lower layers, and are
informed about conditional feature distributions from below. In computer science,
the object-oriented programming paradigm is the very manifestation of bidirection-
ally effective compositionality. The top-down actions can be interpreted in a variety
of ways, for instance, as attention control, predictive context settings, or read/write
signals in working memory systems. Such top-down modulations are essential for
full-fledged cognitive information processing, but such bidirectionally effective hier-
archical cognitive architectures cannot be realized by RC alone. Additional struc-
tures and algorithms are needed to coordinate intermodule communication (as in my
attempt in Jaeger (2007) to design a hierarchical RC learning architecture that can
discover temporal features on several timescales), or additional teacher signals for
the individual modules must be created (as in Pascanu and Jaeger (2011) where we
trained a kind of parser for visual text input that had a nested grammatical struc-
ture), or additional control mechanisms must be installed to modulate the reservoir
dynamics “from above” (like conceptors (Jaeger 2017)). It is one of the strongest
strengths of today’s deep learning networks that such multi-directionally organized
architectures, for instance, neural Turing machines, can be trained by “end-to-end”
gradient descent, where the requisite local training signals are automatically gener-
ated. This said, I emphasize that RC can positively be applied with much benefit in
certain multi-scale learning tasks using uni-directionally coupled stacks of reservoirs
where lower, typically faster reservoirs connect upwards to higher, typically slower
reservoirs. Gallicchio and Micheli (in this volume) survey such architectures, which
they call deep RC systems.

RC research keeps advancing in many directions. I want to conclude with my
personal favorite challenges for the next evolutionary steps in RC research:

• Coordinate RCmodules in complex learning and information processing systems
with the aid of additional mechanisms—this theme is also highlighted in the
Conclusion of Dambre et al.’s chapter in this book.

• In physical RC, find ways to realize the readout and its training directly in the
non-digital material substrate, instead of delegating it to a digital host computer.

• Leverage the infinite dimensionality of spatially extended nonlinear excitable
media, extending the readout combination of a finite number of reservoir signals
to an infinite-dimensional integration, convolution, or field transformation. In
physical RC, one might envision spatially continuous two-layer substrates where
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the bottom layer acts as a reservoir and the top layerwould function as a continuous
version of what today are the readout weight matrices.

• Find effective ways to cope with the unpleasant properties of physical reservoirs,
such as device mismatch, parameter drift, temperature sensitivity, low numer-
ical precision and stochasticity, and partial observability. Physical reservoirs may
only become practically useful when appropriate auto-calibration or homeostatic
regulatory mechanisms are realized in combination with numerically robust and
swiftly self-adapting readout processes.

• Rigorously analyze which abstract dynamical characteristics of input and output
data and task specifications should be reflected inwhich characteristics of reservoir
dynamics. Currently available insights are mostly distilled from experimental
studies of timescale profiles or frequency spectra in input data and provide no
comprehensive guides for optimizing reservoir designs.

Many chapters in this collection include historical summaries of major RC research
strands, and all tell enticing stories about what today’s achievements are and are not.
This book lets us see where we stand and invites us to imagine where we can go
further. Being a veteran of the field, I feel enormously grateful for the massive labor
of editors and authors to plant this landmark after 30 years of a voyage that will
continue to feel fresh and young.

Herbert Jaeger
Bernoulli Institute for Mathematics

Computer Science and Artificial Intelligence
Cognitive Systems and Materials Center

(CogniGron)
University of Groningen

Groningen, The Netherlands
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Preface

Reservoir Computing: Theory, Physical Implementations, and Applications is the
first comprehensive book about reservoir computing (RC). RC was introduced in the
early 2000s as a unified framework for recurrent neural network (RNN) training; it
included a number of seminal models, such as echo-state networks (Jaeger 2001) and
liquid state machines (Maass et al. 2002). Although RC originated in computational
neuroscience and machine learning, in recent years, the use of RC has spread, and
it has been introduced into a wide variety of fields, including nonlinear dynamical
systems theory, physics, material science, biological science, and robotics (Fig. 1).
One of the major reasons for this increase in relevance of RC is its conceptual
simplicity. RC capitalizes on the nonlinear responses of a high-dimensional dynam-
ical system, referred to as the reservoir. By restricting the learning process to the
readout layer, RC resolved the difficulties and instabilities of RNN training, which
had conventionally been implemented using the method of gradient descent. Using

Fig. 1 Diagram
summarizing how each field
is connected through the
concept of RC

Machine learning
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dynamics
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gradient descent, all the network weights were trained, according to performance
optimization needs and available training time. The particular RC concept allows us
to exploit many “well-behaving” dynamical systems as reservoirs. This finding has
resulted in important opportunities exploiting not only standard RNN but also many
nonlinear dynamical systems and various physical dynamics found in nature as a
computational resource.

Accordingly, recent RC trends and technologies exhibit two important directions.
The first direction is to extend the framework of RC from the conventional RNN
to a more abstract setup using the terms of nonlinear dynamical systems. With this
broadened perspective, RC is not specific to the field of machine learning anymore
but can be connected to a much wider class of systems. In particular, the connec-
tion and relationship between many technical terms developed in different fields and
originating from different contexts have been revealed and bridged, which makes the
RC technique accessible to various disciplines. For instance, the echo state property,
which was originally proposed in the context of the echo-state networks, can also
be related to generalized synchronization between the input stream and the reser-
voir dynamics. These bridges prove also effective and vital to the following second
direction.

The second direction is the exploitation of physical dynamical systems as reser-
voirs; the framework for doing so is called physical reservoir computing (PRC).
Because of the rapid development of computational technologies and sensing systems
worldwide, novel schemes and devices are required to process massive amounts
of data quickly in real time. In conventional computational architectures, due to
the separation of the processing system and the memory system, there is a limit
to the information processing speed, which is called a von Neumann bottleneck.
This limit could be overcome using an approach inspired by biology or by using
a dynamical-system-based implementation that realizes information processing and
carries a memory of past input streams simultaneously; this is a typical non-von
Neumann architecture. PRC is one of the main candidates for such architectures that
researchers are currently focusing on. Many physical systems and materials have
been already suggested and implemented as reservoir computing substrates. These
systems include a wide range of physical systems exhibiting different spatiotem-
poral scales ranging from mechanical systems to optics, nanomaterials, spintronics,
and quantum many-body systems. They are expected to be the substrates for next-
generation neuromorphic devices that can process information natively at the edge
according to the spatiotemporal scale, which is often termed edge computing. The
variety of physical substrates provides a large diversity in the type of information
processing that can be implemented. It is noticeable that this inspiration of PRC is,
in fact, not a recent invention but has been around for a while since the genesis of
RC approaches. Original attempts to implement PRC can be found in the ideas of
the liquid computer (Natschläger et al. 2002) and the liquid brain (Fernando et al.
2003).

This bookpresents recent developments in the area ofRCand is sub-structured into
two major parts: theory and physical implementations. The book is a compilation of
chapters contributed by different authors, who are leading experts in their respective
fields. In detail, the book is structured as follows:
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The first part (Part I) is devoted to theoretical aspects of RC. It starts with a wide
perspective of aspects on how the real human brain processes information. In W.
Singer’s chapter, by comparing the recent system architecture of artificial intelli-
gence and the real brain comprehensively, the important role of nonlinear dynamics
in the cerebral cortex is discussed. In P. F. Dominey’s chapter, it is argued that
these dynamics generated in the cerebral cortex with structures of recurrency actu-
ally act as a reservoir. Subsequently, based on these properties of the real brain, A.
Subramoney, F. Scherr, and W. Maass propose a novel architecture that can include
meta-learning, called learning-to-learn, into the reservoir using plastic connections
of weights. Deep architectures have also been introduced in the RC framework, and
C. Gallicchio and A. Micheli provide a comprehensive overview of recent develop-
ments of deep reservoir computing. In the chapter by M. Inubushi, K. Yoshimura,
Y. Ikeda, and Y. Nagasawa, the role of common-signal-induced synchronization on
the information processing capability of the reservoir is discussed as a key to guar-
anteeing reproducible input-output relations. Finally, in the chapter by J. S. Pathak
and E. Ott, recent progress on time series forecasting of large-scale spatiotemporal
chaos introducing parallel spatial coupling in RC is presented, and the performance
improvement is discussed in detail.

The second part (from Part II to Part VII) focuses on the physical implementations
of RC, namely, PRC. M. Dale, J. F. Miller, S. Stepney, and M. Trefzer initiate the
discussion on how to classify the appropriate physical substrates for computation in
generic settings and propose a scheme andmeasures to systematically evaluate them.
PRC is then introduced in the context of mechanical systems (Part III). H. Hauser
has reviewed several case studies of PRC applications in robotics and discusses the
importance of embodiment and the effectiveness of the approach for soft robotics.
GuillaumeDion, Anouar Idrissi-El Oudrhiri, Bruno Barazani, Albert Tessier-Poirier,
and Julien Sylvestre present PRC using MEMS.

Part IV begins by focusing on neuromorphic devices. F. Hadaeghi provides a
systematic survey of neuromorphic electronic systems and their applications to RC
and summarizes future challenges. In the chapter by S. Apostel, N. D. Haynes, E.
Schöll, O. D’Huys, and D. J. Gauthier, field-programmable gate array implementa-
tions of an autonomous Boolean network for RC are demonstrated and analyzed in
detail. R. Aguilera, H. O. Sillin, A. Z. Stieg, and J. K. Gimzewski present an atomic
switch network as a substrate of RC implementations. The subsequent three chap-
ters focus on spintronics approaches (Part V). M. Riou, J. Torrejon, and F. Abreu,
et. al. present the recent development of neuromorphic applications for nanoscale
spin-torque oscillators. T. Taniguchi, S. Tsunegi, and S.Miwa, et al. analyze the infor-
mation processing capability (e.g., memory capacity) of a spin-torque oscillator as
a reservoir, and H. Nomura, H. Kubota, and Y. Suzuki demonstrate an approach that
uses a simple magnetic nano-dots array and discuss the possibility of implementing
a larger scale array as a reservoir.

Part VI concentrates on photonic reservoir computing, which exploits optical
systems as reservoirs. K. Kanno and A. Uchida demonstrate that the computa-
tional performance of a photonic reservoir can be improved by introducing a chaotic
input mask signal, and they present an implementation of a miniature size photonic
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integrated circuit. J. Dambre, A. Katumba, C. Ma, S. Sackesyn, F. Laporte, M.
Freiberger, and P. Bienstman provide a brief history of integrated photonic reser-
voirs and introduce recent approaches designed to increase the computational power
of the system.

Part VII is devoted to PRCdevelopments in the field of quantummachine learning.
In recent years, remarkable progress has been made in quantum computation and the
development of quantum computer technology is heating up worldwide. Simultane-
ously, noisy intermediate-scale quantum devices, which include a number of qubits
with no error correction capability and their applications are receiving attention
from many physicists. Part VII begins with the chapter by K. Fujii and K. Naka-
jima that introduces a framework for quantum reservoir computing (QRC) from the
basics. This chapter also introduces several approaches, such as quantum extreme
learningmachine (QELM) and quantumcircuit learning, and demonstrates emulation
tasks of chaotic attractors based on QRC. The chapter by M. Negoro, K. Mitarai,
K. Nakajima, and K. Fujii presents the first implementation of a quantum reser-
voir using nuclear magnetic resonance (NMR) ensemble systems and successfully
demonstrates QELM. The authors also discuss a future scenario for implementing
QRC using NMR ensemble systems.

Last but not the least, we note that the year 2020, in which this book was prepared,
was a difficult and challengingyear formankind in general and for the people involved
in this book in particular. Many problems arose in the face of COVID-19, and the
processes involved in creating this book were significantly delayed. During this
difficult time, all the chapter authors, the Springer editor, the collaborators, and our
families have been incredibly supportive and patient. We would like to sincerely
thank them all and acknowledge their role in making this publication possible. It is
our greatest pleasure to bring out this exciting book into the world.

Tokyo, Japan
Palma, Spain
November 2020

Kohei Nakajima
Ingo Fischer
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Part I
Fundamental Aspects and New

Developments in Reservoir Computing



The Cerebral Cortex: A Delay-Coupled
Recurrent Oscillator Network?

Wolf Singer

Abstract The refinement of machine learning strategies and deep convolutional
networks led to the development of artificial systemswhose functions resemble those
of natural brains, suggesting that the two systems share the same computational prin-
ciples. In this chapter, evidence is reviewed which indicates that the computational
operations of natural systems differ in some important aspects from those imple-
mented in artificial systems. Natural processing architectures are characterized by
recurrence and therefore exhibit high-dimensional, non-linear dynamics. Moreover,
they use learningmechanisms that support self-organization. It is proposed that these
properties allow for computations that are notoriously difficult to realize in artificial
systems. Experimental evidence on the organization and function of the cerebral
cortex is reviewed that supports this proposal.

1 Introduction

The objects of the world, animate and inanimate, are composed of a relatively small
repertoire of elementary components. Their virtually infinite diversity results from the
variability of the relations among the components. Thus, an elegant and economical
strategy for the description and classification of objects is to establish combinatory
codes, to create symbols for the representation of the components and a code for the
relations. The alphabet of 28 symbols suffices to compose world literature. It is for
this reason that evolution has optimized cognitive systems to exploit the power of
combinatorial codes, to represent elementary features of input patterns, to evaluate
and encode the relations between these features and to generate minimally overlap-
ping representations of particular feature constellations for classification. It is for the
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same reason that the design of artificial cognitive systems shares numerous structural
and functional similarities with natural brains (Hochreiter and Schmidhuber 1997;
Kar et al. 2018; Silver et al. 2017, 2018).

In many respects, evolution and man-made artefacts converged to similar solu-
tions for the evaluation of relations and the representation of relational constructs.
Both systems fulfill these functions with serial operations within hierarchically orga-
nized multilayer networks, whose nodes serve as integrators and are coupled through
diverging and converging connections with adjustable gain.

However, there are also substantial differences. These concern the integrative
functions of the nodes, the learning mechanisms required to obtain the desired
input-output functions and above all the connectivity. In natural systems, feed-
forward connections are complemented by massive feed-back (top-down projec-
tions) between layers and extremely dense reciprocal connections between nodes
of the same layer. These re-entry connections are missing in most feed-forward
artificial systems but in natural brains, they are more abundant than feed-forward
connections (Markov et al. 2014; Bastos et al. 2015). This connectivity gives rise
to very complex, high-dimensional, non-stationary dynamics, and there is evidence
that these dynamic properties are exploited for computational strategies. In artificial
systems implementation of these biological principles of computation is still at the
very beginning.

2 Strategies for the Evaluation and Encoding of Relations

One strategy for the analysis and encoding of relations is based on convergent feed-
forward circuits. This strategy is ubiquitous in natural systems.Nodes (neurons) of the
input layer are tuned to respond to particular features of input patterns and their output
connections are made to converge on nodes of the next higher layer. By adjusting the
gain of these converging connections and the threshold of the target node, it is assured
that the latter responds preferentially to only a particular conjunction of features in
the input pattern (Hubel and Wiesel 1968; Barlow 1972). In this way, consistent
relations among features become represented by the activity of conjunction-specific
nodes. By iterating this strategy across multiple layers in hierarchically structured
feed-forward architectures, complex relational constructs (cognitive objects) can be
represented by conjunction-specific nodes of higher order. This basic strategy for the
encoding of relations has been realized independently several times during evolution
in the nervous systems of different phyla (molluscs, insects, vertebrates) and reached
the highest degree of sophistication in the hierarchical arrangement of processing
levels in the cerebral cortex of mammals (Felleman and van Essen 1991; Glasser
et al. 2016; Gross et al. 1972; Tsao et al. 2006; Hirabayashi et al. 2013; Quian
Quiroga et al. 2005). This strategy is also the hallmark of the numerous versions
of artificial neuronal networks designed for the recognition and classification of
patterns (Rosenblatt 1958; Hopfield 1987; DiCarlo and Cox 2007; LeCun et al.
2015). The highly successful recent developments in the field of artificial “deep
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learning networks” (LeCun et al. 2015; Silver et al. 2017, 2018) capitalizes on the
scaling of this principle in large multilayer architectures.

In natural systems a second, complementary strategy to encode relations consists
of the temporary formation of cooperating assemblies of nodes responding collec-
tively to particular constellations of related features. This strategy requires recur-
rent networks, relies on non-linear self-organizing dynamics, is realized in sensory
systems of diverse species, including invertebrates (Laurent 1996; Rabinovich et al.
2001) and is particularly evolved in structures of vertebrate brains such as the
hippocampus and the cerebral cortex. As proposed by Donald Hebb (1949), consis-
tent relations among features can be encoded by forming distributed but functionally
coherent assemblies in which individual, feature coding neurons cooperate. Neurons
coding for features that typically co-occur and thereby define in their specific constel-
lation particular regularities of natural objects get bound together into an assembly
that, as a whole, represents the respective relations among particular features: At low
levels of processing, these would correspond to particular feature constellations such
as are captured by theGestalt—principles for perceptual grouping.At higher levels of
the processing hierarchy, such dynamic assemblies are thought to represent a concrete
perceptual object or a more abstract cognitive object such as a category, a concept or
an action plan. In this case, the binding of specific features is not achieved by conver-
gence of feed-forward connections onto conjunction-specific neurons but by recip-
rocal connections between feature-selective nodes. These connections are endowed
with correlation-dependent synaptic plasticity mechanisms (Hebbian synapses; see
below) and strengthen when the interconnected nodes are frequently co-activated.
Thus, nodes that are often co-activated because the features to which they are tuned
frequently co-occur enhance their mutual interactions. As a result of these coopera-
tive interactions, the vigour and/or coherence of the responses of the respective nodes
is enhanced when they are activated by the respective feature constellation. In this
way, consistent relations among the components of cognitive objects are translated
into the weight distributions of the reciprocal connections between network nodes
and represented by the joint responses of a cooperating assembly of neurons. Accord-
ingly, the information about the presence of a particular constellation of features is
not represented by the activity of a single conjunction-specific neuron but by the
amplified or more coherent or reverberating responses of a distributed assembly of
neurons.

Both relation-encoding strategies have advantages and disadvantages, and evolu-
tion has apparently opted for a combination of the two. Feed-forward architectures
are well suited to evaluate relations between simultaneously present features, and
they raise no stability problems because they lack reverberatory runaway dynamics.
At first sight, one might also expect that they allow for fast processing because
they rely exclusively on a series of simple summation and thresholding operations.
However, discharge rates of cortical neurons are low and can carry only little informa-
tion when integrated over short intervals. This problem could in principle be solved
by configuring nodes as clusters of cells and to average across their activity (popu-
lation coding). However, this strategy is costly in terms of hardware and energy. In
addition, it is hampered by the fact that noise fluctuations of cortical activity are



6 W. Singer

correlated which limits the usefulness of averaging strategies (Averbeck et al. 2006).
As will be discussed in later paragraphs, another possibility to reduce integration
times is to raise the salience of neuronal responses by enhancing the synchronicity
of neuronal discharges rather than their rate (Abeles 1991; Van Rullen et al. 2001,
2005). Another disadvantage of networks consisting exclusively of feed-forward
connections is that they are less apt to handle relations among temporally segregated
events because they lack short-term memory functions. Moreover, they are costly in
terms of hardware requirements. Because specific constellations of features have to
be represented explicitly by conjunction-specific neurons via the convergence of the
respective feed-forward connections and because the dynamic range of the nodes
is limited, a large number of nodes and processing levels are required to cope with
the combinatorial complexity of possible feature constellations characterizing real-
world objects (combinatorial explosion). Consequently, biological systems relying
exclusively on feed-forward architectures can afford representation of only a limited
number of behaviourally relevant relational constructs.

By contrast, assemblies of recurrently coupled, mutually interacting nodes
(neurons) can cope very well with the encoding of temporal relations (sequences)
because such networks exhibit fading memory due to reverberation and therefore
can integrate temporally segregated information. Assembly codes are also much less
costly in terms of hardware requirements, because individual feature-specific nodes
can be recombined in flexible combinations into a very large number of different
assemblies, each representing a different cognitive content (combinatorial code).
In addition, coding space is dramatically widened because information about the
statistical contingencies of features can be encoded not only in the synaptic weights
of feed-forward connections but also in the weights of the recurrent and feed-back
connections. Finally, the encoding of entirely new or the completion of incomplete
relational constructs (associativity) is facilitated by the cooperativity inherent in
recurrently coupled networks that allows for pattern completion and the generation
of novel associations (generative creativity).

However, these advantages of assembly coding have a price. The implemen-
tation of this combinatorial coding strategy requires sophisticated mechanisms to
control the dynamics of the recurrent network because (i) fast formation of assem-
blies requires a delicately regulated level of resting activity, (ii) networks can fall dead
if global excitation drops below a critical level and (iii) they can engage in runaway
dynamics and become epileptic if a critical level of excitation is reached. Nature takes
care of this problem with a number of self-regulating mechanisms involving normal-
ization of synaptic strength (Turrigiano and Nelson 2004), inhibitory interactions
(E/I balance) (Yizhar et al. 2011) and control of global excitability by modulatory
systems, which keep the networkwithin a narrowworking range just below criticality
(Plenz and Thiagarajan 2007; Hahn et al. 2010).

Another and particularly challenging problem, known as the superposition catas-
trophe, is the segregation of simultaneously active assemblies. This problem arises
whenever more than one object is present and when these objects and the relations
among them need to be encoded within the same network layer. If assemblies were
solely distinguished by enhanced activity of the constituting neurons, as proposed



The Cerebral Cortex: A Delay-Coupled … 7

by Hebb (1949), it becomes difficult to distinguish which of the more active neurons
actually belong to which assembly, in particular, if objects share some common
features and overlap in space. In this case, the corresponding feature-selective nodes
would have to be shared by several assemblies (the “binding problem”). It has been
proposed that this problem can be solved by multiplexing, i.e. by segregating the
various assemblies in time (Milner 1992; von der Malsburg and Buhmann 1992; for
reviews, see Singer andGray 1995; Singer 1999). However, if assemblieswere distin-
guished solely by enhanced discharge rate, this option is also problematic because
readout of enhanced discharge rate requires temporal integration in down-stream
structures. Given the low discharge rate of cortical neurons (see above), it might
take several hundreds of milliseconds before the more active members of assemblies
become distinguishable from less active neurons and hence multiplexing is achiev-
able only on a slow time scale. This is incompatible with experimental evidence on
processing speed (Van Rullen et al. 2005). Such slow multiplexing also jeopardizes
the associative capacities of assembly coding as it becomes difficult to establish
relations among simultaneously represented objects. It has been proposed, therefore,
that the neurons temporarily bound into assemblies are distinguished not only by an
increase of their discharge rate but also by the precise synchronization of their action
potentials (Gray et al. 1989; Singer and Gray 1995; Singer 1999). Synchronization
is as effective in enhancing the efficiency of neuronal responses in down-stream
targets as is enhancing discharge rate (Bruno and Sakmann 2006). Thus, activation
of target cells at the subsequent processing stage can be assured by increasing either
the rate or the synchronicity of discharges in the converging input connections. The
advantage of increasing salience by synchronization is that integration intervals for
synchronous inputs are very short, allowing for instantaneous detection of enhanced
salience. Hence, information about the relatedness of responses can be read out
very rapidly. In extremis, single spikes can be labelled as salient and belonging to a
particular assembly if synchronized with a precision in the millisecond range. Thus,
assemblies defined by synchrony rather than rate increases can be multiplexed at a
much faster rate than rate-coded assemblies without becoming confounded.

3 Learning Mechanisms

Artificial and natural systems differ not only with respect to their network architec-
ture and the complexity of computations performed by the nodes but also with regard
to the learningmechanisms. Natural learningmechanisms are exquisitely sensitive to
temporal relations and exploit these for the establishment of associations. In contrast
most artificial systems rely on some sort of supervised learning in which temporal
relations play only aminor role if at all. In these systems, the gain of the feed-forward
connections is iteratively adjusted until the activity patterns at the output layer repre-
sent particular input patterns with minimal overlap. To this end, very large samples
of input patterns are generated, deviations of the output patterns from the desired
result are monitored as “errors” and backpropagated through the network in order to
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change the gain of those connections that contributed most to the error. In multilayer
networks, this is an extremely challenging procedure and the breakthroughs of recent
developments were duemainly to the design of efficient backpropagation algorithms.

These learning strategies differ substantially from those implemented in natural
systems. The learning mechanisms in natural systems exploit the fundamental role
of temporal relations for the definition of relatedness. Events exhibiting consistent
temporal relations tend to be related. Simultaneously occurring events usually have a
commoncause or are interdependent because of interactions. If one event consistently
precedes the other, the first is likely the cause of the latter and if there are no temporal
correlations between the events, they are most likely unrelated. Accordingly, the
molecular mechanisms developed by evolution for the establishment of associations
are exquisitely sensitive to temporal relations between the activity patterns of inter-
connected nodes. The crucial variable that determines the occurrence and polarity
of gain changes of the connections is the temporal relation between discharges in
converging presynaptic inputs and/or between the discharges of presynaptic affer-
ents and the activity of the postsynaptic neuron. In natural systems, most excitatory
connections—feed-forward, feed-back and recurrent—as well as the connections
between excitatory and inhibitory neurons are adaptive and can change their gain as
a function of the correlation between pre- and postsynaptic activities. The molec-
ular mechanisms that translate electrical activity in lasting changes of synaptic gain
evaluate correlation patterns with a precision in the range of tens of milliseconds and
support both strategies for the representation of relations: the experience-dependent
generation of conjunction-specific neurons in feed-forward architectures and the
formation of assemblies.

A large number of empirical studies have led to the formulation of rules that
capture the relation between the polarity of synaptic modifications and the temporal
patterning of activity of the connected neurons. These are addressed as the BCM
(Bienenstock et al. 1982), ABS (Artola et al. 1990) and STDP (Markram et al.
1997; Bi and Poo 1998) rules. Interestingly, these rules apply both to the experience-
dependent selection of circuits during development and to learning-dependent
changes of synaptic gain in the adult.

In summary, synaptic gain increases for (reciprocal) connections among pairs of
cells that are frequently activated in temporal contiguity or when one cell success-
fully drives the respective other or when converging inputs are active in synchrony.
Conversely, synaptic gain decreases for connections among pairs of cells whose
activity is un- or anti-correlated or for connections that discharge shortly after the
target neuron has been driven by other inputs. Inputs alsoweakenwhen they are active
while the target cell is inhibited orwhen they are silent, while the target cell is strongly
activated by other inputs (heterosynaptic depression). Thus, use-dependent synaptic
modifications are not only sensitive to the coherence of converging activity but also
to causal relations. The gain of excitatory connections increases if their activity can
be causally related to the activation of the postsynaptic neuron and weakens when
this is not the case.Moreover, the strong dependence of synapticmodifications on co-
operativity between pre- and postsynaptic activities assigns a particularly important
role to synchronized states. Synchronous activity is expected to provide a particularly
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favourable condition for the strengthening of synaptic connections. This prediction
is supported by the finding that synaptic plasticity in the visual cortex is facilitated by
entrainment of the recurrent network in synchronous gamma oscillations (Galuske
et al. 2019).

These use-dependent synaptic modifications permit the nervous system to learn
about the statistical contingencies of features and events in the external world and to
generate internal models of relational constructs. The fundamental nature of these
learning mechanisms is a likely reason for the striking conservation of the molecular
mechanisms supporting activity-dependent modifications of synaptic transmission.
However, these mechanisms can evaluate temporal relations only over intervals of
a few hundred milliseconds at most. Therefore, additional mechanisms have been
implemented to enable analysis of correlations over longer time spans such as are
required for the detection and encoding of contingencies separated by long intervals.
These involve memory functions at different time scales, ranging from the fading
memory of recurrent networks over short- to long-term memory mechanisms in
devoted structures of the brain.

4 Association of Signals Lacking Temporal Structure

All learning rules identified so far rely on the evaluation of temporal relations between
the activity patterns of the interconnected nodes. Hence, the generation of both
conjunction-specific neurons and assemblies requires that the activity patterns used
for the selective strengthening of connections have temporal structure. This raises the
question on how relations between events that lack temporal structure are analysed
and how these events can become associated selectively by the established, time-
sensitive learning mechanisms. The encoding of relations between external stimuli
poses no problem as long as these stimuli have a temporal structure because sensory
systems signal the temporal structure of stimuli with extreme precision (Buracas et al.
1998; Reinagel and Reid 2002). Simulation studies, partly based on the concept
of synfire chains proposed by Moshe Abeles (1991), confirmed that conventional
integrate-and-fire neurons are capable of transmitting temporal information with the
required precision (Mainen and Sejnowski 1995; Diesmann et al. 1999).

Additional mechanisms are required, however, when selective associations have
to be established between neuronal responses that lack precise temporal structure.
Such is the case for sensory responses to stimuli that lack temporal structure or
for activity that is generated internally in the context of memory recall or imagery.
Evidence for the implementation of such mechanisms is indeed available. These
impose a temporal structure on neuronal responses which allows the brain to utilize
the existing mechanisms of coincidence detection and synaptic plasticity in order to
analyse and store relations between signals that initially lack a temporal structure.
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5 The Generation of Temporally Structured Activity

Neuronal mechanisms capable of generating temporally structured activity are
diverse, abundant and evolutionarily ancient. A common and highly conserved
strategy to generate temporally structured activity is the oscillatory patterning of
activity, the basic principle of parsing time, used in virtually all clocks. Both, certain
neurons, addressed as pacemaker or clock neurons, aswell asmost neuronal networks
have a high propensity to engage in oscillatory activity (Gray and Singer 1989;
Börgers and Kopell 2008; Whittington et al. 2000; Buzsáki and Wang 2012). These
oscillations cover a broad frequency range, from below 0.1 to more than 200 Hz, and
they tend to occur in typical frequency bands that are characteristic for particular
brain structures and brain states. As reviewed recently (Buzsáki et al. 2013), these
frequency bands are surprisingly well conserved across different species and even
across different phyla, suggesting that they reflect some basic dynamics of nerve cells
and/or circuits and are adapted to serve particular cognitive and/or executive func-
tions. Common to all oscillatory processes is that neurons undergo periodic changes
of excitability. Phases of increased excitability, often associated with action poten-
tial generation alter with phases of low excitability (Fries et al. 2007). In addition
to endowing the discharge sequences of individual neurones (nodes) with a precise
temporal structure, this oscillatory modulation is also ideally suited to introduce
precise but variable temporal relations between the discharge patterns of intercon-
nected network nodes. The reason is the propensity of oscillators to resonate and to
be entrainable by periodically modulated inputs. As observed as early as 1665 by
Van Huygens, a Dutch watch maker, very weak interactions suffice to synchronize
coupled oscillators if their preferred frequencies are similar. If the difference between
preferred frequencies increases, stronger coupling is required to assure synchrony
with stable phase locking and if the frequency difference increases beyond a critical
point, synchronization becomes unstable. Phase offset gradually increases, and this
may lead to intermittent phase resetting or a complete breakdownof synchrony. These
complex and highly non-linear relations have been analysed in numerous theoretical
studies (Winfree 1967; Aronson et al. 1990; Kuramoto 1990) and are summarized
in the so-called Arnold tongue regime (Glass and Sun 1994). A graphical represen-
tation of synchronization behaviour relating the difference in preferred frequency
with increasing coupling strength leads to a “tongue”-shaped surface of possible
synchronization regimes, the Arnold tongue.

In addition to coupling strength and preferred oscillation frequency, synchroniza-
tion probability also depends critically on the conduction velocity of the coupling
connections that varies over a wide range in neuronal networks. If conduction delays
exceed a critical value, synchronization breaks down and interactions may lead to
drifting phase behaviour or a complete shutdown of the oscillations of one or all
of the coupled oscillators (Aronson et al. 1990; Reddy et al. 1998; Vicente et al.
2008; Niebur et al. 1991; for a review, see Pajevic et al. 2014). Thus, synchroniza-
tion by reciprocal coupling can only be achieved over larger distances if coupling
connections are fast conducting or if oscillation frequency is reduced.
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6 Synchrony as a Common Signature of Relatedness

Such reciprocal coupling between oscillatory circuits is a common motif in recur-
rently coupled neuronal networks such as the cerebral cortex. Thus, theArnold tongue
formalism should be applicable to describe the relation between coupling strength
and synchronization probability. Experimental evidence from the visual cortex indi-
cates that this is indeed the case. Nodes tuned to features that have a high probability
to co-occur in natural scenes are more strongly coupled than nodes tuned to features
that are rarely contiguous (Pecka et al. 2014; Gilbert and Wiesel 1989; Stettler et al.
2002; Bosking et al. 1997). This selectivity of coupling is to a large extent due
to experience-dependent synaptic plasticity (Singer and Tretter 1976; Löwel and
Singer 1992; Smith et al. 2015) whereby the statistical contingencies of features in
the outer world are translated into the synaptic weight distributions of the recurrent
connections among the feature-selective nodes (Iacaruso et al. 2017). As demon-
strated several decades ago, the consequence of anisotropic coupling strength is that
nodes responding to features that often co-occur and hence are likely related, e.g.
because they are part of a particular cognitive object, synchronize their oscillatory
responses (Gray et al. 1989). Thus, these nodes become distinguishable of members
of an assembly (see above) that signals the relatedness of the respective features.
This observation has been at the origin of the “binding by synchrony hypothesis”
which posits that responses to related features which should be bound according to
commonGestalt—principles become synchronized (for a review, seeSinger andGray
1995; Singer 1999). Thus, precise temporal relations between neuronal discharges
(phase synchrony or consistent phase shifts) appear to serve as a code of related-
ness in a rather general sense. They are used by learning mechanisms to generate
both conjunction-specific neurons and Hebbian assemblies, and they are used during
actual processing of information to label related responses. To use temporal conti-
guity as a general code of relatedness is a parsimonious solution as it permits use of
the same code of relatedness both for signal processing and learning.

In conclusion, the established time-sensitive mechanisms of synaptic plasticity
permit translation of temporal relations into lasting modifications of network archi-
tectures. The required temporal structure of neuronal responses is either inherited
from the temporal structure of stimuli or is generated through anoscillatory patterning
of neuronal responses by internal mechanisms. The latter permit the selective asso-
ciation of neuronal populations whose responses are not time-locked to stimuli but
caused by stimuli lacking temporal structure or are generated internally, e.g. during
imagery or recall of memories. Evidence that this option is likely exploited has been
provided by investigations onmemory consolidation in human subjects (Miltner et al.
1999; Fell et al. 2011; Axmacher et al. 2008) and animals (Yamamoto et al. 2014;
for additional citations see Singer 2017).
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7 Critical Issues

It has been argued that synchronization of oscillatory activity cannot have a func-
tional role because establishing synchrony would be too slow to be compatible with
processing speed. Even more problematic is that synchronous oscillations, when
assessed with conventional Fourier or wavelet analyses, are difficult to detect in
responses to complex stimuli such as cluttered scenes or images lacking clear high-
contrast boundaries (Lima et al. 2010). Moreover, it has been argued that the strong
dependence of oscillation frequency and power on stimulus parameters is incompat-
ible with the idea that spike synchronization can be used to encode semantic relations
as postulated by the “binding by synchrony” hypothesis (Singer 1993; Singer and
Gray 1995) or to gate communication through coherence as postulated by the CTC
hypothesis (Fries 2005). These arguments are made explicit in Atallah and Scanziani
(2009), Burns et al. (2010, 2011), Ray and Maunsell (2010), Jia et al. (2013a, b) and
are reviewed in Ray and Maunsell (2015) and Palmigiano et al. (2017).

However, recent experimental evidence from recordings in awake, behaviourally
trainedmonkeys and simulation studies let these arguments appear in a different light.
They revealed that synchronization phenomena are indeed very volatile and char-
acterized by non-stationarity, frequency variability, short duration and rapid phase
shifts when animals explore natural scenes. But these studies have also shown that
even brief bouts of coherent activity are informative. They allow the decoding of the
contents of working memory (Lundqvist et al. 2016), facilitate the communication
between cortical areas (Siegel et al. 2008, Bastos et al. 2015), support the dynamic
formation of functional networks (Buschman and Miller 2007) and determine the
direction of information flow (Lowet et al. 2017). These experimental observations
are in agreement with the dynamics of simulated recurrently coupled networks of
spiking neurons. Korndörfer et al. (2017) have recently demonstrated that in such
networks, neurons engage very rapidly in synchronous discharges when activated
by structured input, and that the synchronization probability is determined by the
strength of coupling. In this study, no explicit oscillatory properties of the nodes
were implemented but the spiking neurons had the usual refractory period and hence
shared features of relaxation oscillators.

Another comprehensive simulation study investigated the effect of synchroniza-
tion on information transfer in recurrent oscillator networks (Palmigiano et al. 2017).
The authors simulated a delay-coupled recurrent network with spiking excitatory
and inhibitory neurons that shared essential connectivity motifs of the superficial
layers of the cerebral cortex. The discharge statistics of individual neurons (nodes)
were stochastic but the averaged excitability fluctuations of local clusters of neurons
exhibited bursts of synchronous oscillations in the 40 Hz range that lasted only a few
cycles. The interesting and unexpected outcome of measurements of information
transfer in this delay-coupled oscillatory network was that phase shifts could lead
to a rapid reversal of the direction of information transfer. This phase-dependent
gating of information flow was particularly effective and flexible when the network
operated in a regime characterized by transient rather than sustained oscillations.
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The short duration of the oscillatory bursts allowed for fast opening and closing of
transmission channels by frequency tracking. The authors concluded that “features
that at first sight appear to be noncompliant with information routing may actually
provide the brain with a particularly flexible routing mechanism”. A similar conclu-
sion was reached in a study by Lowet et al. (2017) who investigated with massive
parallel recordings the dynamics of synchronized oscillations in the visual cortex of
awake monkeys. The observed dynamics resembled in great detail those reproduced
by the simulated network and confirm essential predictions of the hypothesis that
the superficial layers of the cerebral cortex can be considered as a delay-coupled
recurrent oscillator network, whose dynamics follow the Arnold tongue formalism.

Taken together, both the results of electrophysiological experiments and simu-
lation studies indicate that synchronization of spike discharges can be fast enough
to serve feature binding/perceptual grouping within the short inter-saccadic fixation
intervals (see also Lowet et al. 2016). In addition, the transient and variable nature of
synchronized gamma oscillations characteristic for free viewing conditions and the
processing of complex scenes is advantageous for the numerous functions assigned
to synchronization. The fast fluctuations between synchronized and uncorrelated
states support flexible binding of distributed feature selective nodes into functionally
coherent assemblies (Singer 1999), allow for the rapid and flexible definition of rela-
tions between distributed neuronal responses as is required for attention-dependent
input selection (Fries et al. 2001a) and permit the flexible and selective routing of
signals on the backbone of the fixed connectome, as is required for the task-dependent
formation of functional networks (Roelfsema et al. 1997; Siegel et al. 2008, 2015).
Recent experimental results obtained in awake monkeys by Lowet et al. (2016),
Bosman et al. (2009) on the effect of microsaccades and Brunet et al. (2015) on
oscillations during free viewing of natural scenes are fully compatible with this
view.

Another argument questioning the advantages of assembly codes is that the
readout of assemblies requires again conjunction-specific neurons that receive
convergent input from the nodes constituting an assembly and convert relational
information again into a labelled line code. In this case, so the argument, assembly
codes provide no advantage. However, it is also conceivable that exactly this alterna-
tion between labelled line and assembly coding, i.e. the generation of conjunction-
specific neurons and the formation of assemblies, is an ideal way to capitalize on the
respective advantages of the two strategies for the encoding of relations. Assemblies
can be read out by connecting a subpopulation of assembly nodes to readout neurons.
The activity of these readout neuronswill increasewhen the number and the discharge
rate of the feeding nodes increases and in particular, when the synchrony (coherence)
of the discharges of the respective nodes increases. Thus, in a sense such readout
neurons function both as conjunction-specific neurons and as classifiers. They can
either be used to directly control effectors, in which case the classifier function would
dominate. Or they could serve as nodes of the recurrent network at the next higher
processing level. In this case, they figure as conjunction-specific neurons responding
selectively to the combination of features represented by the dynamic assembly at
the preceding processing level. The problem of processing speed arising in purely
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rate-coded feed-forward architectures vanishes since the synchronous activity of
assemblies can ignite conjunction-specific readout neurons without requiring time-
consuming temporal summation. Because of the exquisite sensitivity of neurons to
coincident input (Salinas and Sejnowski 2000), a single barrage of synchronized
discharges from the nodes of an assembly suffices to drive the conjunction-specific
neurons at the next higher level. In addition, the advantages of recurrent computa-
tion are preserved. The associativity of recurrent connectivity can be exploited to
disambiguate relations among features through flexible binding and to thereby cope
with the combinatorial explosion of possible feature constellations. And the reverber-
ating dynamics of recurrent networks permits to handle the encoding of sequences.
Thus, major downsides of the strategy to encode relations by convergence in feed-
forward architectures are compensated by combining this architecture with recurrent
networks.

Moreover, as far as we understand the system´s coding strategy, processing is
distributed from the very early sensory structures all the way to the motor output.
Thus, there is no bottleneck that would ultimately require explicit condensation and
representation of relational constructs in the activation of individual cells (grand-
mother cells). Rather, the connectome of the cerebral cortex permits to map assem-
blies onto assemblies in an iterative way. Thus, the great advantage of assembly
coding, the ability to cope with the infinite number of possible relations of features
by dynamic binding can be maintained throughout the whole processing stream.

8 Computing in High-Dimensional State Space

Recurrent networks exhibit highly complex non-linear dynamics, especially if the
nodes are configured as oscillators and if the coupling connections impose delays—
as is the case for natural networks. These dynamics provide a very high-dimensional
state space that can be exploited for the implementation of functions that go beyond
those discussed above: the encoding of temporal sequences, the storage and ultra-fast
retrieval of vast amounts of information and the fast and effective classification of
complex spatio-temporal input patterns. In the following, some of these options will
be discussed and substantiated with recently obtained experimental evidence.

The non-linear dynamics of recurrent networks are exploited for computation in
certain AI systems, the respective strategies being addressed as “echo state, reservoir
or liquid computing” (Lukoševičius and Jaeger 2009; Buonomano and Maass 2009;
D’Huys et al. 2012; Soriano et al. 2013). In most cases, the properties of recurrent
networks are simulated in digital computers, whereby only very few of the features
of biological networks are captured. The nodes act as simple integrators and the
coupling connections lack most of the properties of their natural counterparts. They
operate without delay, lack specific topologies and their gain is non-adaptive. More-
over, most artificial recurrent networks lack inhibitory interneurons that constitute
20% of the neurons in natural systems and interact in highly selective ways with the
excitatory neurons. Moreover, as the updating of network states has to be performed
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sequentially according to the clock cycle, many of the analog computations taking
place in natural networks can only be approximated with iterations if at all. There-
fore, attempts are made to emulate the dynamics of recurrent networks with analog
technology. An original and hardware-efficient approach is based on optoelectronics.
Laser diodes serve as oscillating nodes, and these are reciprocally coupled through
glass fibres whose variable length introduces variations of coupling delays (Soriano
et al. 2013). All these implementations have in common to use the characteristic
dynamics of recurrent networks as a medium for the execution of specific compu-
tations. Because the dynamics of recurrent networks resemble to some extent the
dynamics of liquids—hence the term “liquid computing”—the basic principle can be
illustrated by considering the consequences of perturbing a liquid. If objects impact at
different intervals and locations in a pond of water, they generate propagating waves
whose parameters reflect the size, impact speed and location of the objects. The wave
patterns fade with a time constant determined by the viscosity of the liquid, interfere
with one another and create a complex dynamic state. This state can be analysed
by measuring at several locations in the pond the amplitude, frequency and phase
of the respective oscillations and from these variables a trained classifier can subse-
quently reconstruct the exact sequence and nature of the impacting “stimuli”. Similar
effects occur in recurrent networks when subsets of nodes are perturbed by stimuli
that have a particular spatial and temporal structure. The excitation of the stimu-
lated nodes spreads across the network and creates a complex dynamic state, whose
spatio-temporal structure is determined by the constellation of initially excited nodes
and the functional architecture of the coupling connections. This stimulus-specific
pattern continues to evolve beyond the duration of the stimulus due to reverberation
and eventually fades. The network state returns to its initial state. This evolution of the
network dynamics can be traced by assessing the activity changes of the nodes and
is usually represented by time-varying, high-dimensional vectors or trajectories. As
these trajectories differ for different stimulus patterns, segments exhibiting maximal
distance in the high-dimensional state space can be selected to train classifiers for
the identification of the respective stimuli.

This computational strategy has several advantages: (i) Low-dimensional stimulus
events are projected into a high-dimensional state spacewhere non-linearly separable
stimuli become linearly separable; (ii) the high dimensionality of the state space can
allow for themapping ofmore complicated output functions (like theXOR) by simple
classifiers and (iii) information about sequentially presented stimuli persists for some
time in the medium (fading memory). Thus, information about multiple stimuli can
be integrated over time, allowing for the representation of sequences. These prop-
erties make artificial recurrent networks extremely effective for the classification of
input patterns that have both spatial and temporal structures and share overlapping
features in low-dimensional space. Moreover, because these networks self-organize
andproduce spatio-temporally structured activity patterns, they have generative prop-
erties and can be used for pattern completion, the formation of novel associations and
the generation of patterns for the control of movements. Consequently, an increasing
number of AI systems now complement the feed-forward strategy implemented in
deep learning networks with algorithms inspired by recurrent networks. One of these
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powerful and now widely used algorithms is the Long Short-TermMemory (LSTM)
algorithm, introduced decades ago by Hochreiter and Schmidhuber (1997) and used
in systems such as AlphaGo (Silver et al. 2017, 2018). The surprising efficiency of
these systems that excels in certain domains of human performance has nurtured the
notion that brains operate in the same way. If one considers, however, how fast brains
can solve certain tasks despite their comparatively extremely slow components and
how energy-efficient they are, one is led to suspect the implementation of additional
strategies.

And indeed, natural recurrent networks differ from their artificial counterparts in
several important features which is the likely reason for their amazing performance.
In sensory cortices, the nodes are feature-selective, i.e. they can be activated only
by specific spatio-temporal stimulus configurations. The reason is that they receive
convergent input from selected nodes of the respective lower processing level and
thus function as conjunction-specific units in very much the same way as the nodes
in feed-forward multilayer networks. In low areas of the visual system, for example,
the nodes are selective for elementary features such as the location and orientation of
contour borders while in higher areas of the processing hierarchy, the nodes respond
to increasingly complex constellations of elementary features. In addition, the nodes
of natural systems, the neurons, possess an immensely larger spectrum of integrative
and adaptive functions than the nodes currently used in artificial recurrent networks.
And finally, the neurons and/or their embedding microcircuits are endowed with the
propensity to oscillate.

The recurrent connections within the respective layers also differ in important
respects from those implemented in most artificial networks. Because of the slow
velocity of signals conveyed by neuronal axons, interactions occur with variable
delays. These delays cover a broad range and depend on the distance between
interconnected nodes and the conduction velocity of the respective axons. Further-
more and most importantly, the connections are endowed with plastic synapses
whose gain changes according to the correlation rules discussed above. Connec-
tions strengthen between nodes whose activity is often correlated, and they weaken
between nodes whose activity is mostly uncorrelated. As a consequence, coupling
is highly anisotropic. Nodes tuned to features that often co-occur in natural environ-
ments tend to be more strongly coupled than nodes responding to features that rarely
occur simultaneously. Thus, through both experience-dependent pruning of connec-
tions during early development and experience-dependent synaptic plasticity, statis-
tical contingencies between features of the environment get internalized and stored
not only in the synaptic weights of feed-forward connections to feature-selective
nodes but also in the weight distributions of the recurrent connections. Thus, in low
levels of the processing hierarchy the weight distributions of the recurrent coupling
connections reflect statistical contingencies of simple and at higher levels of more
complex constellations of features. In other words, the hierarchy of reciprocally
coupled recurrent networks contains a model of the world that reflects the frequency
of co-occurrence of typical relations among the features/components of composite
perceptual objects. Recent simulation studies have actually shown that the perfor-
mance of an artificial recurrent network is substantially improved if the recurrent
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Fig. 1 Schematic representation of wiring principles in supragranular layers of the visual cortex.
The coloured discs (nodes) stand for cortical columns that are tuned to specific features (here stim-
ulus orientation) and have a high propensity to engage in oscillatory activity due to the intrinsic
circuit motif of recurrent inhibition. These functional columns are reciprocally coupled by a dense
network of excitatory connections that originate mainly from pyramidal cells and terminate both on
pyramidal cells and inhibitory interneurons in the respective target columns. Because of the genet-
ically determined span of these connections, coupling decreases exponentially with the distance
between columns. However, these connections undergo use-dependent selection during develop-
ment and remain susceptible to Hebbian modifications of their gain in the adult. The effect is
that the weight distributions of these connections and hence the coupling strength among func-
tional columns (indicated by thickness of lines) reflect the statistical contingencies of the respective
features in the visual environment (for further details, see text). (From Singer (2018) Neuronal
oscillations: unavoidable and useful? Europ J Neurosci 48:2389–2398.)

connections are made adaptive and can “learn” about the feature contingencies of
the processed patterns (Lazar et al. 2009; Hartmann et al. 2015). A simplified repre-
sentation of the essential features of the delay-coupled oscillator network supposed
to be realized in the superficial layers of the visual cortex is shown in Fig. 1.

9 Information Processing in Natural Recurrent Networks,
a Proposal

Theories of perception, formulated more than a 100 years ago (von Helmholtz 1867)
and a plethora of experimental evidence indicate that perception is the result of a
constructivist process. Sparse and noisy input signals are disambiguated and inter-
preted on the basis of an internal model of the world. This model is used to reduce
redundancy, to detect characteristic relations between features, to bind signals evoked
by features constituting a perceptual object, to facilitate the segregation of figures
from background and to eventually enable identification and classification. The store
containing such an elaborate model must have an immense capacity given that the



18 W. Singer

interpretation of ever-changing sensory input patterns requires knowledge about the
vast number of distinct feature conjunctions characterizing perceptual objects.More-
over, this massive amount of prior knowledge needs to be arranged in a configuration
that permits ultra-fast readout to meet the constraints of processing speed. Primates
perform on average four saccades per second. This implies that new visual infor-
mation is sampled approximately every 250 ms (Maldonado et al. 2008; Ito et al.
2011) and psychophysical evidence indicates that attentional processes sample visual
information at comparable rates (Landau2018). Thus, the priors required for the inter-
pretation of a particular sensory input need to be made available within fractions of
a second.

How the high-dimensional non-linear dynamics of delay-coupled recurrent
networks could be exploited to accomplish these complex functions is discussed
in the following paragraph.

A hallmark of natural recurrent networks such as the cerebral cortex is that they
are spontaneously active. The dynamics of this resting activitymust reflect theweight
distributions of the structured network and hence must harbour the entirety of the
stored “knowledge” about the statistics of feature contingencies, i.e. the latent priors
used for the interpretation of sensory evidence. This predicts that resting activity is
high dimensional and represents a vast but constrained manifold inside the universe
of all theoretically possible dynamical states. Once input signals become available
they are likely to trigger a cascade of effects: They drive in a graded way a subset of
feature-sensitive nodes and thereby perturb the network dynamics. If the evidence
provided by the input patterns matches well the priors stored in the network archi-
tecture, the network dynamics will collapse to a specific substate that provides the
best match with the corresponding sensory evidence. Such a substate is expected to
have a lower dimensionality and to exhibit less variance than the resting activity, to
possess a specific correlation structure and be metastable due to reverberation among
nodes supporting the respective substate. Because these processes occurwithin a very
high-dimensional state space, substates induced by different input patterns are likely
to be well segregated and therefore easy to classify. As the transition from the high-
dimensional resting activity to substates is likely to follow stimulus-specific trajecto-
ries, classification of stimulus-specific patterns should be possible once trajectories
have sufficiently diverged and before they reach a fix point. These points of diver-
gence should be reached faster for input patterns that match particularly well with
the internal priors.

10 Experimental Evidence

Experimental studies testing such a scenario are still rare and have become possible
only with the advent of massive parallel recordings from the network nodes. So far,
however, the few predictions that have been subject to experimental testing appeared
to be confirmed. The covariance structure of resting activity does indeed reflect the
anisotropic layout of the recurrent connections (Kenet et al. 2003; Fries et al. 2001b;
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Bosking et al. 1997), is modified by experience during early development (Smith
et al. 2018) and learning throughout life (Lewis et al. 2009; Kundu et al. 2013) and
recapitulates features of the environment (Berkes et al. 2011). Evidence also indi-
cates that the resting dynamics of cortical networks are high dimensional (Moca et al.
2019) and characteristic of complex systems operating close to criticality (Plenz and
Thiagarajan 2007; Hahn et al. 2010; Priesemann et al. 2014). Multisite recordings
reveal in addition that spontaneous activity is organized in spatio-temporal patterns
such as travelling waves and propagating avalanches whose amplitude distribution
can be fittedwith power law functions (Plenz and Thiagarajan 2007;Hahn et al. 2010;
Ermentrout and Kleinfeld 2001). When the network is activated by sensory stimuli,
this high-dimensional resting state gets constrained. As indicated by a decrease of
the Fano factor and a reduction of fractal dimensionality, the variance and the dimen-
sionality of the dynamics decrease (Churchland et al. 2010; Bányai et al. 2019; Moca
et al. 2019). This is compatible with the formation of metastable, coherent substates.

Confirmed is also the prediction that the stimulus-specific substates outlast the
duration of the stimuli due to network reverberation and that stimulus-specific states
induced by sequences of different stimuli can become superimposed but remain
segregated in high-dimensional space. Responses to successively presented visual
stimuli (letters and numbers) were recorded with matrix electrodes simultaneously
from a random sample of ~60 neurons in the cat primary visual cortex ,and linear
classifiers were trained on short segments (5–100 ms) of the activity vectors of a
training set of responses and then these classifiers were used to identify the nature of
the presented stimuli in a test set (Nikolic et al. 2009). These experiments revealed that
(i) the information about a particular stimulus persists in the activity of the network
for up to a second after the end of the stimulus (fading memory), (ii) the information
about sequentially presented stimuli superimposes so that two subsequent stimuli
and the order of their presentation can be correctly classified with a linear classifier
sometime after the end of the second stimulus, suggesting that the network is capable
of performing non-linear XOR operations and (iii) the information about stimulus
identity is distributed across many neurons (>30) and encoded in the rate vector and
the temporal correlation structure of the responses.

Evidence has also been obtained that sensory signals evoked by natural scenes and
hence matching the priors stored in the network cause a collapse of high-dimensional
network dynamics into metastable subregions of the state space that are stimulus
specific. These substates are distinguished by enhanced coherence (covariance) of
discharge rate and synchronization of oscillatory activity, reduced variability and
lower dimensionality (Churchland et al. 2010; Bányai et al. 2019; Moca et al. 2019).
For low levels of the visual system, a particularly good match with stored priors
is achieved with grating stimuli. Gratings match several Gestalt criteria (priors),
namely those of continuity, colinearity, similarity in feature space (in this case, in
the orientation domain), regularity and—if the grating drifts—common fate. These
stimuli elicit particularly stable and coherent states characterized by sustained, well
synchronized oscillatory activity in the gamma frequency range (Gray and Singer
1989; Gray et al. 1989). This confirms the prediction that stimuli matching partic-
ularly well with stored priors lead to a fast collapse of systems dynamics towards
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stable, highly coherent and low-dimensional substates characterized by synchronous
gamma oscillations (see also Vinck and Bosman 2016). Interestingly, under certain
experimental conditions, stimulus-induced substates seem to develop onlywith some
delay (~100–200 ms) after the initial phasic response of the network nodes. This is
suggested by the fact that classification of stimulus-specific states and segregation
of the principal components of the response vectors are better at later phases of the
response, when the stimulus is no longer present and the amplitude of the responses
alreadydecaying. Stimuli that do notmatch the stored priors (e.g. “unnatural“ stimuli)
evoke substates that are less coherent, and their correlation structure is less stimulus
specific (Banyai et al. 2019). Accordingly, these states are more difficult to classify
(Andreea Lazar, pers. communication).

Evidence also indicates that the cortical network “learns” in a non-supervised way
about stimulus statistics and exploits this knowledge in order to optimally segregate
the representations of different stimuli. Repeated presentation of stimuli has been
shown to cause changes in the network with the consequence that familiar stimuli
evoke substates that are better classifiable than those evoked by less familiar stimuli.
The reason is that substates evoked by familiar stimuli are better segregated in high-
dimensional dynamic space (Lazar et al. 2018). As predicted by the dependence of
the structure of resting state activity on the functional architecture of the recurrent
network (see above), these experience-dependent modifications of the network are
reflected in resting state activity: The vectors specific for highly familiar stimuli are
spontaneously replayed (Lazar pers. communication).

There are also indications that top-down mechanisms related to attention and
expectancy constrain the dynamic space of recurrent networks at lower levels of
processing. Stimuli that are cued as being relevant for behavioural reactions and
reward evoke more strongly synchronized oscillatory responses than behaviourally
irrelevant stimuli (Fries et al. 2001a; Lima et al. 2011). Also, one observes a ramp-up
of the power of synchronized gamma oscillations and a change in the dimensionality
of the network dynamics following the presentation of a cue that instructs the animal
about the sequence of future events (Moca et al. 2019). These top-down influences
are likely to change the correlation structure of the activity vectors in anticipation of
a forthcoming cognitive task, and this preparation could accelerate the formation of
specific substates once sensory evidence becomes available. This possibility awaits
further experimental testing.

11 Learning Mechanisms

As discussed above, the learning mechanisms implemented in biological systems
differ from those used to train artificial networks. Promising alternatives to the back-
propagation algorithm have recently been proposed for the training of recurrent
networks, and these strategies share some features with the learning mechanisms
implemented in natural systems (Bellec et al. 2019). However, essential differences
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remain. The main reason is the lack of hardware solutions that mimic the func-
tions of adaptive (Hebbian) synapses and the gating of synaptic plasticity by global,
value assigning systems. Adaptive synapses are ideally suited to mediate unsuper-
vised learning processes in feed-forward and recurrent networks (see above; for
references, see Galuske et al. 2019). However, they can also support supervised
learning because their adaptive functions are controlled by modulatory systems.
These systems evaluate the outcome of behaviour and are closely related to reward
assigning networks using dopamine as a transmitter (Schultz 2016; Schultz et al.
1997) and to networks controlling arousal and attention, using acetylcholine and
norepinephrine as a transmitter (Singer 1995; Bear and Singer 1986; Galuske et al.
2019). The signals provided by these systems are distributed throughout the brain by
widely branching axonal networks and exert a gating function for synaptic plasticity
both during development and adult learning. These signals interfere with the crucial
variables determining the occurrence and polarity of use-dependent synaptic gain
changes: the membrane potential of neurons and the molecular cascades translating
neuronal activity into long-term changes of synaptic transmission. In the absence of
these modulatory gating signals, synaptic modifications do not occur. This prevents
spurious activity patterns to induce dysfunctional modifications of the functional
architecture of neuronal networks. For lasting changes to occur, it is required that
these systems are tonically active and maintain a critical level of excitability. This is
the case when brains are awake and attentive. In order to gate synaptic changes as a
function of behavioural outcomes, some of the modulatory systems have in addition
a “now print” function. They emit “reward” signals when a particular behaviour had
the desired effect, and this leads to the selective strengthening of synapses that were
involved in bringing about the respective behaviour. As the outcome of a behaviour
can only be evaluated once it is executed and the activation of the involved synapses
has returned to baseline, the now print signal must be able to act retrogradely in
time. This is achieved by a process called “synaptic tagging” (Redondo and Morris
2011; Frey andMorris 1997). Activation patterns that are sufficiently well structured
and coherent to induce synaptic modifications—which is usually the case when
networks have converged to “meaningful” substates—induce short lasting modifi-
cations of synaptic gain, and these are associated with the generation of molecular
tags. In the absence of now print signals, both the gain changes and the tags fade with
time. However, when the now print signals are emitted once the behavioural outcome
is known, the gain change of the tagged synapses becomes consolidated and long
lasting. A further mechanism for the consolidation of synaptic gain changes is replay.
Thismechanism seems to consolidatemodifications irrespective ofwhether they have
been induced by supervised or unsupervised learning. In both cases, the functional
architecture of the networks is altered and reflects the novel weight distributions of
recurrent connections.As alluded to above, the correlation structure of resting activity
does reflect the functional architecture of the recurrent network and evidence is avail-
able both from recordings in the hippocampus and the cerebral cortex; those activity
vectors associated with previous experience are replayed during resting activity and
certain sleep phases, and can be correctly classified (Diba and Buzsáki 2007; Lazar
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pers. communication). In the hippocampus, this replay is associated with an oscilla-
tory patterning of resting activity and compressed in time, i.e. the firing sequences
of distributed neurons characteristic for previous behaviour are reproduced but at
a faster time scale. Evidence is available that this “rehearsal” of activity vectors
produced by previous behaviour (experience) serves the consolidation of memories
(Ego-Stengel and Wilson 2010).

Another important feature of use-dependent synaptic plasticity in natural systems
is that mechanisms are implemented that counteract saturation of synaptic gain and
runaway dynamics. Neurons down-regulate their activity in response to an increase of
excitatory drive. This normalization process preserves the relativeweight distribution
of converging inputs and thus the specificity of learning-dependent synaptic gain
changes but keeps the average discharge rate of neurons constant (Turrigiano and
Nelson 2004).

12 Concluding Remarks

Despite considerable effort, there is still no unifying theory of cortical processing.
As a result, numerous experimentally identified phenomena lack a cohesive theoret-
ical framework. This is particularly true for the dynamic phenomena reviewed here
because they cannot easily be accommodated in the prevailing concepts that empha-
size serial feed-forward processing and labelled line codes. However, the cortical
connectome with its preponderance of reciprocal connections and the rich dynamics
resulting from these reciprocal interactions suggest that additional processing strate-
gies are implemented.Theoretical considerations basedon the connectivity of cortical
networks and recent evidence suggest that neuronal systems, especially theneocortex,
combine two complementary strategies for the analysis and encoding of relations
among the features of composite perceptual objects (feature binding): The generation
of conjunction-specific neurons in hierarchically organized feed-forward architec-
tures (labelled line code) and the formation of dynamically configured assemblies of
transiently cooperating neurons (assembly code).

Here, we have proposed a concept that assigns specific functions to oscillations,
synchrony and the more complex dynamics emerging from a delay-coupled recur-
rent network. This concept is fully compatible with the robust evidence for the
encoding of relations by anatomical convergence (labelled line codes) but comple-
ments this mechanism by a scenario in which the precise temporal relations among
the discharges of coupled neurons serve as complementary code for the definition of
semantic relations both in signal processing and learning. In addition, a computational
strategy is introduced that capitalizes on the high-dimensional coding space offered
by delay-coupled recurrent networks. In this conceptual framework, information is
distributed and encoded both in the discharge rate of individual nodes (labelled lines)
and to a substantial degree also in the precise temporal relations among the discharge
sequences of distributed nodes. The core of the hypothesis is that the dynamic inter-
actions within delay-coupled recurrent oscillator networks (i) endow responses with
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the precise temporal structure required for the encoding (binding) and learning of
semantic relations, (ii) exhibit complex, high-dimensional correlation structures that
reflect the weight distributions of the coupling connections and serve as space for
the storage of a vast amount of information (internal model of the world, priors),
(iii) permit ultra-fast comparison between input patterns and stored priors through
rapid convergence towards stimulus-specific dynamic substates, and iv) allow for
easy classification of the results of this comparison because input-specific substates
occupy well-segregated loci in the high-dimensional state space. The analysis of the
correlation structure of these high-dimensional response vectors is still at the very
beginning. However, methods are now available for massive parallel recording from
large numbers of network nodes in behaving animals. It is to be expected, therefore,
that many of the predictions derivable from the novel concept will be amenable to
experimental testing in the near future.
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Cortico-Striatal Origins of Reservoir
Computing, Mixed Selectivity,
and Higher Cognitive Function

Peter Ford Dominey

Abstract The computational richness and complexity of recurrent neural networks
is well known, and has yet to be fully exploited and understood. It is interesting that
in this context, one of the most prevalent features of the cerebral cortex is its massive
recurrent connectivity. Despite this central principle of cortical organization, it is
only slowly becoming recognized that the cortex is a reservoir. Of course there are
mechanisms in the cortex that allow for plasticity. But the generalmodel of a reservoir
as a recurrent network that creates a high dimensional temporal expansion of its inputs
which can then be harvested for extracting the required output is fully achieved by the
cortex. Future research will find this obvious. This chapter provides a framework for
more clearly understanding this conception of cortex and the corticostriatal system.

1 Introduction

As Jaeger and colleague note (Lukosevicius and Jaeger 2009, Lukoševičius et al.
2012) reservoir computing was independently invented three times, by Dominey in
the context of the primate prefrontal cortex (Dominey 1995; Dominey et al. 1995),
byMaass as the liquid state machine (Maass et al. 2002), and by Jaeger (Jaeger 2001,
Jaeger and Haas 2004) as the echo state network. This chapter reviews the origins of
reservoir computing in the context of the neurophysiology of the primate cortex and
striatum—the corticostriatal system. It further describes how this modeling, initially
developed to simulate detailed electrophysiology of the primate cortex, went on to
simulate human behavior in a number of sensorimotor sequencing tasks, language
comprehension and production, and even narrative processing. The link back to
primate neurophysiology is made, based on the subsequent characterization of a
highly prevalent feature of neural coding in the primate cortex, called mixed selec-
tivity. This is the observation that when agents perform reasonably complex tasks
that have different internal and externally driven states, the single unit responses
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of individual neurons encode non-linear mixtures of these states, thus called mixed
selectivity (Rigotti et al. 2013).

One of the most prevalent characteristics of cortical neuroanatomy is the over-
whelming abundance of very short-distance, local, recurrent connections between
pyramidal cells and inhibitory interneurons (Markov et al. 2011). While we are
so accustomed to seeing this, it didn’t have to be that way. Pyramidal cells might
have received their thalamic inputs and kept to themselves, or communicated only
over long-distance connections. But instead their largest preference is to commu-
nicate with their local neighbors. This must be for something, and that is what we
shall describe here. Part of the clue is the overwhelming aspect of sequential or
temporal structure in our existence. In the rest of this section, we briefly review the
neurophysiological and behavioral phenomena that motivated one flavor of reservoir
computing.

1.1 Initial Motivation—Barone and Joseph

In the 1980s, there was amassive activity and success in characterizing the functional
neuroanatomy of the interactions between cortex and basal ganglia—the corticos-
triatal system—particularly in the domain of fast eye movements, the oculomotor
saccade. Regions of the peri-arcuate frontal cortex including the frontal eye fields
were carefully studied as non-human primates (macaque monkeys) made saccades
to visual targets, and memorized targets, revealing properties related to the visual
targets, memory of the target, the saccade itself (Bruce & Goldberg 1985, Goldberg
and Bushnell 1981). Similarly, the role of the basal ganglia—the caudate nucleus of
the striatum—the input node (Hikosaka 1989, Hikosaka et al. 1989a, b, c), and the
substantia nigra pars reticulata (Hikosaka andWurtz 1983a, b, c, d), relay to the output
structure, the superior colliculus in all aspects of saccades—visual response, delayed
memory response, and saccade response had been very well characterized. One of
the characteristic coding properties observed throughout the cortex, striatum, SNr,
and superior colliculus was a topography of saccade amplitude and direction. That is,
neurons coded for a particular saccade amplitude and direction, and their neighbors
coded for similar metrics. Because the retinal coding and the saccade response to
the target overlap, this coding can be considered in terms of a spatial receptive field,
a motor response field, and a retinal error. We developed the first complete model
of how the cortex and basal ganglia cooperate to produce a variety of oculomotor
saccade behavior that provided a coherent framework for the interpretation of this
neurophysiological data (Dominey and Arbib 1992).

During this period researchers in Lyon France took what was at that time a very
radical step, and examined the role of the corticostriatal system when monkeys were
trained to learn and reproduce spatio-temporal sequences of saccades and manual
button presses to the spatial sequence elements. In this pioneering work, Barone and
Joseph discovered a fascinating coding of space and sequential order (Barone and
Joseph 1989). That is, certain neurons had a spatial preference that was modulated
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by the sequential order. Such coding began to provide clues on how the underlying
system might work. The drive to understand this behavioral neurophysiology was
the principal motivation for the modeling work that led to one branch of reservoir
computing.

1.2 Further Motivation—Temporal Structure

Another clue on how the system works came from additional studies of sequence
learning, this time in humans. In this domain of sequential behavior, a number of
human studies revealed the importance of temporal structure, or rhythm, in the iden-
tity of a behavioral sequence. A classic manifestation of this was observed in the
serial reaction time task, where subjects were asked to respond to stimuli and their
reaction times were measured. Unknown to subjects, the stimuli could be ordered
in more or less complex sequences, and subjects reliably displayed robust learning
of these sequences (Stadler 1993). Interestingly, the temporal structure of delays
imposed between successive stimuli was learned as an integral part of the sequence,
laying another requirement on models of sequence learning.

1.3 Abstract Structure and Language

Looking toward the origins of these capacities for sequence learning, developmental
psychologist developed clever methods to measure sequence learning in infants as
young as nine months old. Saffran et al. (1996) demonstrated that within minutes,
these infants could learn the serial order of sound sequences. Nazzi et al. (1998) tested
nine-month-old children’s ability to discriminate temporal structure of different
language rhythm classes, and again observed a robust ability for discriminating
rhythm classes in these children. Finally, Marcus et al. (1999) tested seven-month-
old infant’s ability to learn abstract patterns of sounds like we-ga-ga or ba-ni-ni that
correspond to an abstract rule ABB. They demonstrated that remarkably, the chil-
dren could then use this learning to discriminate whether new sequences followed an
ABB vs ABA rule. This was exciting evidence that pre-linguistic infants mastered
a form of abstract generative rule, that could be used in the service of language
learning. This again provides further requirements on a neurophysiological system
for sensorimotor sequence learning.
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1.4 Renaissance: Neural Dynamics, Mixed Selectivity,
and Higher Cognitive Function

A final piece of the puzzle of reservoir computing has recently arisen in studies of
primate physiology that extend what was initially observed in Barone and Joseph
(1989). In particular, Rigotti et al. (2013) clearly established the link between this
multidimensional coding of different dimensions of cognitive task execution, and the
ability of the primates to perform the task. As will be developed below, this mixed
selectivity is a signature of the neural dynamics of reservoir computing (Enel et al.
2016, Rigotti et al. 2013).

Given this brief overview of some of the motivations for developing a brain-
inspired sequence learning system, we now take the next step in characterizing the
genesis of the model.

2 Corticostriatal Foundations

The primate corticostriatal system consists in two of the most remarkable aspects of
the primate brain. The first is the undeniable prevalence of local recurrent connections
in the entire cortex, and the second is themassive projection from cortex to the sizable
sub-cortical structure, the striatum, the input node of the basal ganglia.Here,we begin
to examine the neuroanatomy, neurophysiology, and resulting behavior of this system
that lead to the development of one branch of reservoir computing.

2.1 Barone and Joseph, and the Primate Behavioral
Neurophysiology of Sequence Learning

In the heyday of the exploration of the corticostriatal oculomotor system, Barone
and Joseph (1989) recorded neurons in the frontal cortex, around the arcuate sulcus,
near the frontal eye fields where Goldberg and others found saccade related activity.
But they asked a daring new question. Barone and Joseph trained their primates to
observe different spatial sequences of three successively presented spatial targets
on an array in front of the animal. During the static phase of the trial, the animal
was required to maintain the gaze on a central fixation point. Then, in the dynamic
phase, the removal of the fixation point, and simultaneous onset of all three targets
was the signal for the animal to make a saccade to the first target, and then touch it.
Successive presentation of the remaining targets was the go-signal for the second and
final saccades of the three-element sequence. The animals underwent several months
of training in order to learn to perform this task. Their behavior was successively
shaped: First making saccades to a single element, then sequences of two element,
and finally three elements. After the behavior was attained the neural activity was
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Fig. 1 Behavior and neurophysiology in the sequential saccade task.AUpper panel illustrates three
peripheral visual target buttons L, U and R, and the central fixation point. Six possible three-element
sequences were used. Second and third left panels illustrate the temporal success of these stimuli
in the static and dynamic phases. During the static phase, the animal must maintain gaze on the
fixation point. During the dynamic phase, the successive temporal onset of the targets signals the
animal to saccade and then touch the first, second, and third element of the memorized sequence.
B Visual-tonic cell. Traces of action potentials (spikes, neural firing) of a neuron that responded
during the static phase with a spatial selectivity for the upper target, but only when it was first in
the sequence

recorded, using single electrodes that penetrated into the cortex around the arcuate
sulcus.

Half of the 300 cells that they recorded displayed a complex combination of spatial
and sequential dimensions of the task. Visual tonic cells showed a visual response
to a given target location in the static phase. However, this spatial selectivity was
modulated by the rank of that element in the sequence. This is a form of mixed
selectivity (Rigotti et al. 2013) that mixes spatial location and rank in the sequence
during the static phase. Such a unit is illustrated in Fig. 1. Another particularly
interesting type of response was seen in Context cells which responded to a saccade
to a given target (L, U or R) in the dynamic phase, but in a way that was dependent
on where it occurred in the sequence. Such neurons thus displayed a form of mixed
selectivity, mixing spatial location and saccade rank. One can imagine how such units
might be used in a population code to determine the next element in the ongoing
sequence.

2.2 Requirements on the System—Mixture of Inhibition
and Excitation, Modulated by Time

How can we imagine the wiring of a neural network so as to allow the network to
perform the task, and to generate these neural responses that mix spatial location and
sequence rank in doing so? In order to produce neuronswith a response like the visual
tonic cell seen in Fig. 1, we would imagine that neurons should receive excitatory
retinotopic or spatially selective input (for spatial selectivity), and inhibitory input



34 P. F. Dominey

from other spatially selective neurons (for rank selectivity). In Fig. 1, this neuron
would get excitatory input for location U, and inhibitory input from neurons that
themselves get excitatory inputs from L and R. Prewiring such neurons could be
done for a given task, but there must be a more general architectural solution that
can yield these results.

2.3 Primate Cortical Neuroanatomy

The presence of spatial selectivity in these frontal oculomotor areas is well docu-
mented, and is likely due to spatially organized inputs from the parietal cortex
in the dorsal stream (Bruce and Goldberg 1984). This can explain the spatially
selective responses here, but what about the context effects? If we look at cortical
neuroanatomy, one of themost prevalent features is the existence of local short-range
connections between neighboring neurons (Goldman-Rakic 1987; Markov et al.
2011). Via these local recurrent connections, neurons with a visual tonic response to
a given spatial target could project to a local neighbor that has a spatial response to a
different target location. If this projection is inhibitory (via an intervening inhibitory
interneuron), then we have a circuit to produce these context or mixed selective
effects. Here, we have the foundation then for the notion that cortex can be modeled
as a population of neurons that receive excitatory input from an external source, and
that has local recurrent excitatory and inhibitory connections.

2.4 Primate Corticostriatal System—Plasticity

Thequestion remains, howcould representations generated in this cortical network be
used for sequence learning? The first part of the response to this question is derived
from what is perhaps the second most prevalent aspect of cortical neuroanatomy,
which is the massive projection from all of cortex to the striatum, which is the
input nucleus of the basal ganglia (Selemon and Goldman-Rakic 1985). That is, all
of the cerebral cortex projects in an orderly way onto the striatum. What’s more,
there is significant overlap and intermingling of the projections of different cortical
regions into the striatum. Alexander et al. (1986) characterized how this massive
corticostriatal system can be divided into a set of segregated (but partially overlap-
ping)) pathways dedicated to sensorimotor and cognitive functions, based on the
different corticostriatal topography. Of particular interest to us, the saccade-related
neurons in the frontal eye fields, and neurons in the dorsolateral prefrontal cortex
(as recorded by Barone and Joseph) project to overlapping zones in the anterior
part of the caudate nucleus of the striatum (Selemon and Goldman-Rakic 1988).
This means that sequence-related activity in the cortex can project onto oculomotor
saccade output structures in the striatum, thus binding sequence context onto saccade
motor behavior.
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The final element in this puzzle comes from one of the major neurophysiological
properties of the striatum, which is that it is a site for major plasticity, under the
control of reward-related dopamine (Ljungberg et al. 1992; Schultz et al. 1993).
Indeed, under the control of dopamine, corticostriatal synapses are candidates for
long-term depression and long-term potentiation (Calabresi et al. 2007; Centonze
et al. 2001; Di Filippo et al. 2009). That is, through reward-related learning, the
system can learn by trial and error to associate the dynamic state of the recurrent
prefrontal network with the appropriate output in the caudate nucleus of the striatum.

3 Corticostriatal Reservoir Computing

Wenowhave the required ingredients to assemble a neurophysiologically validmodel
of sequence learning that should be able to learn the Barone and Joseph sequencing
task, while at the same time generating and exploiting mixed selectivity (manifest
as visual-tonic and context activity, as observed in the prefrontal neurons by Barone
and Joseph).

3.1 Model Implementation—Birth of the Reservoir

We developed the first model of reservoir computing in Dominey (1995), Dominey
et al. (1995), initially in the context of the primate corticostriatal sequence learning
physiology. The model builds on the initial model of the corticostriatal saccade
system (Dominey and Arbib 1992), by introducing the recurrent PFC system (the
reservoir), and the reward-related learning in PFC-caudate connections (the readout).
Illustrated in Fig. 2, individual cortical and sub-cortical layers were implemented as
5 × 5 arrays of leaky integrator neurons with sigmoidal output functions.

In the oculomotor circuit, visuospatial input enters the system and activates the
posterior parietal cortex which projects with a topographic input to the oculomotor
frontal eye fields (FEF). FEF has an excitatory projection to the caudate, and the
output system, the Superior Colliculus. In parallel, the caudate has a topographic
inhibitory projections to the substantia nigra pars reticulate (SNr), which itself has
a tonic inhibitor activation on the Superior Colliculus (Chevalier and Deniau 1990).
In a standard saccade, FEF activation activates Caudate, which dis-inhibits the tonic
inhibition of SNr on Superior Colliculus. This removal of inhibition, combined with
the excitatory input from FEF, allows the Superior Colliculus to activate and generate
the desired saccade.

Reservoir Genesis: This classic oculomotor circuit was then enhanced with the
ability to make conditional behavior—to choose the correct saccade target from
among several based on learning. We first studied how different visual cues could be
associated with different targets, and we then studied how spatial sequences could
be associated with output saccade sequences, which required the Prefrontal cortex
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Fig. 2 A Corticostriatal model for sequence learning. Classic oculomotor circuit. Spatial input to
Posterior Parietal Cortex, FEF, Caudate, with disinhibition of Superior Colliculus via the dual inhi-
bition of Caudate and SNr, and generation of saccade in Superior Colliculus. Prefrontal sequencing
circuit (reservoir). In parallel, sequence state coding in the recurrent network projects to Caudate.
Through trial and error learning, at each saccade choice time, activation patterns in Prefrontal Cortex
become associated with the correct saccade choice at that time, via reward-related dopamine in the
Caudate that strengthens Prefrontal Cortex—Caudate connections (Modified from Dominey et al.
1995). B PFC neuron activity during static and dynamic phase for the six three-element Up, Left,
Right sequences used in Barone and Joseph (1989) (Modified from Dominey 1995)

sequencing circuit, the reservoir (Dominey et al. 1995). The Prefrontal Cortex is
modeled as recurrent network made of two 5 × 5 layers of neurons. The first, PFC,
receives the topographic input from Parietal Cortex, and project topographically to
the second, PFCD which projects back to the first with random and mixed excita-
tory and inhibitory connections. We had initially considered modeling plasticity in
these internal PFC- PFCD connections. However, a crucial aspect of our modeling
was to respect the temporal structure of the primate behavior. Simulation time steps
correspond to 5 ms of real-time. The sequencing task takes several seconds, with
stimuli presented for hundreds of milliseconds, delays, then onset of the dynamic
phase, with several seconds unfolding as the animal chooses the three successive
sequences. In simulation, this corresponds to an order of 1000 time steps for a single
sequence presentation and recall. Modifying recurrent connections is computation-
ally expensive and non-trivial, if we want to keep track of the role of a recurrent
connection over 1000 time steps into the past (Pearlmutter 1995). We thus choose
to keep the recurrent connections fixed, with a mixture of inhibitory and excitatory
recurrent connections to provide a rich spatio-temporal dynamics within the system,
and to use neural plasticity to bind states of activity in the recurrent network with
the desired responses in the output layer, in our case, corresponding to the caudate
or striatum (Dominey 1995, Dominey et al. 1995). This was the genesis of the first
implementation of reservoir computing. The rich dynamics can be seen in Fig. 2B.
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The PFC layer projects to Caudate, forming the readout. The PFC-Caudate
connections are 1:N and are initialized as random, and they are subject to modi-
fication according to a simple learning rule. Each time the model is asked to make
a choice (by the go-signal, offset of the central target corresponding to the Fixation
Point), when the output activation in the Superior Colliculus reaches a threshold,
that output is evaluated. If it corresponds to the correct choice, the PFC-Caudate
connections to the Caudate neuron involved in that choice are strengthened, other-
wise they are weakened. Then, weight normalization is performed to conserve the
total amount of synaptic weight in the PFC-Caudate weight matrix. This synaptic
plasticity in the PFC-Caudate connections is perfectly justified by synaptic plasticity
under the control of reward-related dopamine (Calabresi et al. 2007; Centonze et al.
2001; Di Filippo et al. 2009).

3.2 Modeling Barone and Joseph (1989)

The model is trained in a progressive manner. Each trial consists of a static phase
where the input sequence is presented and the model generates no output. During
this phase, however, the PFC is driven through a stimulus- driven state activation
trajectory, which is unique for each input sequence. Then during the dynamic phase,
the inhibitory fixation point is removed, the three targets are presented and the model
must chose the correct response, with a positive synaptic change on the PFC-Caudate
weights for the Caudate neuron corresponding to the choice if the choice is correct
and negative synaptic change if incorrect. During initial training, only the correct
target is presented at each go-signal, which allows an initial shaping of the correct
behavior, then in subsequent epochs, all three targets are presented and the model
must choose. Figure 2B illustrates the trajectory of activation of the PFC neurons
during successive trials with each of the six target sequences.

We thus observed that the model could learn the sequencing task, and perform
like the trained primates. We also saw that there was rich activity in the recurrent
PFC network. But what remained, most interesting, was to perform a more detailed
analysis of the activity patterns of individual neurons in the recurrent network, and
compare them to those observed in the primate. Indeed, this approach is specific to
these studies of reservoir computing in the context of understanding the neurophys-
iology of the primate cortex. We analyzed the data in Fig. 2 and categorized cells
as Context, Visual-tonic, signal related, and other. Interestingly, we found the same
proportions of these response types as found in the study of Barone and Joseph.
Figure 3 illustrates typical examples of Visual-Tonic and Context cells from the
primate study of Barone and Joseph and comparison with examples of cell types
from our model. Examining the comparison in detail, it is actually quite striking how
similar the activation patterns of the real and simulated neurons are.
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Fig. 3 Comparison of primate and model PFC neural activity. A Context cell. These cells respond
after the saccade to a particular target, but depend on its rank in the target. Primate andmodel neurons
that respond after saccades to the upper (U) target, but only when it is first in the sequence.BVisual-
Tonic cells display a response to the visual presentation of a target, but depend on its location in
the sequences. Primate and model neurons respond after a given target (U for the primate and L for
the model) but only when it is first in the sequence. In both primate and model there is complex
activity later in the dynamic phase

3.3 Complex Sequence Learning

Motivated by the success of the model in learning the six sequences, performing like
the monkey, and generating neural activity as seen in the primate cortex, we then set
out to further explore the sequence learning capabilities of the system.

Figure 4 illustrates the activation in the PFC reservoir during the presentation of
a complex sequence ABCDABCEABCFABCGABCH that has a repeating subse-
quence (ABC) with different successive successors D, E, F, G, and H. This is a
challenging sequence because it requires a memory of the past 4 elements to deter-
mine the correct choice after ambiguous element C. Observing the last row in panel
4B, where the activation vector for the final choice H is compared to all other states,
we see that the cosine is near 1 or D, E, F and G, all of which had the same repeating
subsequence that preceded, but that each had a different unique element prior to that
subsequence. This indicates that the reservoir has sufficient memory to distinguish
what happened each time before the intervening repeating subsequence ABC.
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Fig. 4 A Reservoir activity in during presentation and execution of a complex sequence. B Simi-
larity matrix comparing the cosines of activation vectors at each choice epoch in the reproduction
phase. Strong filling indicates cosine near 1, corresponding to similar (and potentially confusing)
state vectors

3.4 Temporal Structure

In the initial development of the reservoir (Dominey 1995; Dominey et al. 1995),
a deliberate choice was made to use fixed connections in the recurrent network, so
as to provide rich dynamics that could represent the spatio-temporal structure of
arbitrary problems. The motivation was the difficulty of applying learning rules to
the recurrent connections, which often involve a cut-off of the temporal sensitivity
(Pearlmutter 1995). Thus, one of the most robust and inherent characteristics of the
resulting network is its inherent sensitivity to time, delays, and temporal structure.
This can be observed by stimulating the recurrent network with a brief input, and
then observing the resulting state trajectory in the absence of further external input.
An example of this can be seen in Fig. 5A. There, we can observe the reliable and
reproducible state trajectory following a fixed input that could be used to discriminate
temporal delays. The system was trained to respond with different outputs according
to which one of three delays was imposed following the same initial input, before
the go-signal to respond was provided. This was a first form of interesting temporal
behavior demonstrated by the network (Dominey 1998b).

A second form of temporal behavior is revealed by reduced reaction times for
responses to sequentially presented stimuli, due to increased excitation with signifi-
cant learning.We recall that all of the neurons in the system are leaky integrators with
sigmoid output functions. The leaky integrator must charge to reach firing threshold,
and thus, the delay in this activation is a function of the strength of the inputs. After
significant learning, the PFC-caudate connections become increased and lead to a
faster activation of the caudate neurons, resulting in reduced reaction times in the



40 P. F. Dominey

Fig. 5 Temporal Structure coding in the dynamic reservoir. A Activity in 25 State units (half of
the reservoir population of 50) during and after a short input/perturbation. Prolonged and delayed
activity reflects the reservoir dynamics. Different patterns at T1, T2 and T3 are reliably re-produced
and thus allow the system to learn to discriminate these different time intervals.BHuman andmodel
response times in a serial reaction time task. Blocks 1–6 and 8 use a repeating sequence with each
input element associated with a specific temporal structure. Block 7 uses the same sequence, with
different temporal structure. This increases the response times, as if the sequence itself had been
changed. Block 9 uses a different sequence, also producing increased reaction times

output generated by the system, for well-learned behavior. This allowed us to simu-
late human behavior in tasks where reaction timewas ameasure of sequence learning
(Dominey 1998a, b). The classic paradigm for this is the SRT or serial reaction time
task, where subjects are to respond as quickly as possible to stimuli that are presented
in typically long (several hundred) blocks of responses. Unknown to the subjects,
the stimuli can be organized in more or less complex sequences, and the difference
in reaction times for short blocks of trials that follow the learned sequence, vs. in
a random order, is a measure of learning. A typical profile is illustrated in Fig. 5B.
There, RTs are shown for 6 blocks of 80 trials with the repeating 10-trial sequence
B–C–B–D–C–A–D–A–C–D using temporal structure where elements A and D are
always preceded by RSIs of 200 ms and B and C by RSIs of 1000 ms. In block 7 the
same sequence is used, and the temporal structure is modified by swapping the 200
and 1000 ms delays.

What we observe, both for humans and the temporal recurrent network model, is
that the sequence is learned as a multimodal structure combining serial and temporal
structure. This is a demonstration that the temporal recurrent network (TRN) inher-
ently possesses this sensitivity to serial and temporal structure, due to the dynamic
network properties.
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3.5 Abstract Structure

This allowed us to conclude that the TRN was inherently sensitive to serial and
temporal structure. In the late 1990s, efforts were beingmade to assess human infants
sensitivity to such dimensions of sequential structure. Clever behavioral methods
were adopted to assess sequence learning in infants as young as 7–9 months of age,
by measuring an increase in their rate of sucking on a pacifier in response to novel
stimuli. Thus, the infants could be habituated with audio sequences of a particular
type, and then presented with test sequences that either adhered to or varied from
the habituated sequences, and the behavioral response in case of a changed sequence
was evidence that the infant had learned (Jusczyk 1997). It was thus demonstrated
by Saffran et al. (1996) that 8 month olds could learn sequential structure of simple
3 element sound sequences, and by Nazzi et al. (1998) that they were sensitive to
the temporal rhythmic structure of different language rhythm classes. We adapted
these tasks to the TRN and demonstrated indeed that the model could reproduce
the learning effects that were observed in the children (Dominey and Ramus 2000).
Interestingly, however, there was another dimension of sequential structure that the
TRN model failed to capture.

In a protocol similar to that used by Saffran, Marcus et al. (1999) generated
syllable sequences according to simple rules ABA vs ABB, and then tested whether
the infants could discriminate new sequences as adhering to the learned rules. Thus, in
the test phase, the infant would be exposed to sound sequences that it had never heard
before, but that did (or did not) adhere to the rule that they had learned. Intuitively,
we anticipated that the TRN would fail in this task, because there is no mechanism
or representation that can detect the structure of repetition that characterizes the
difference between ABA and ABB. The TRN can learn sequence identity but not
these underlying rules. In order to account for suchbehavior, the systemwould require
some form of working memory and a recognition function to compare the current
element with previous elements in a sequence. We implemented such a mechanism
that augmented the TRN, thus resulting in a dual model with TRN and ANR for
Abstract RecurrentNetwork (Dominey et al. 2003), that we referred to as theAbstract
Temporal Recurrent network (ATRN) illustrated in Fig. 6.

Using the model illustrated in Fig. 6, we tested the learning of sequences like
ABCBAC, and then tested with sequences like DEFEDF. The STM and recognition
mechanisms perceived both of these sequences as having a structure u u u n-2 n-4 n-3,
where u indicates that the current element is unrecognizedwith respect to the contents
of the STM, and n-x indicates that it is a repetition of the element n-places back in
the STM. Thus, in terms of the abstract structure, the two sequences ABCBAC and
DEFEDF are the same. This allows the system to explain and simulate the results
of abstract structure learning as observed by Marcus. We performed a number of
human experiments and finally concluded that there are dissociable neurophysio-
logical systems (corresponding to the TRN and ARN) for learning the surface and
abstract structure of sensorimotor sequences (Dominey et al. 1998).
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Fig. 6 Combined Temporal and Abstract Recurrent Network. In the ARN, sequence elements are
stored in a short-term memory that always contains the last 5 elements seen. This is compared with
current element, in order to detect repetition structure, as in 123–213. This recognition (abstract)
structure is input to the recurrent State-StateD network, which now can learn the serial order, or the
abstract structure, or both

4 Higher Cognitive Function I—Language

4.1 Language Acquisition and Grammatical Constructions

Given the ability to model infant’s behavior in learning serial, temporal, and abstract
structure of language-like sound sequences (Dominey and Ramus 2000), we felt that
these precursors to language learning could be exploited in the simulation of some
aspects of language acquisition. The question was how to map language processing
into this domain of sequence learning. In response to this we identified a behavioral
paradigm for testing language in aphasic patients, developed by (Caplan et al. 1985)
that was well suited. In this thematic role assignment task, the patients heard a
sentence, and then they had to identify (by pointing to pictures) the agent, object,
and recipient of the action described in the sentence, in that order. Thus, this language
comprehension task had a sequence processing aspect: the sentence was presented as
a sequence of words, then the response was the sequence agent, object, recipient (the
thematic roles) in that order. The challenge was to correctly extract these thematic
roles, which did not necessarily map on to a fixed order in the sentence. In active
sentences like “The giraffe gave the elephant to the monkey”, the nouns giraffe,
elephant and monkey appear already in the required agent, object, recipient order.
However, in sentences like “The elephant was given to the monkey by the giraffe”,
the nouns came in the wrong order, and the participant had to use the grammatical
structure of the sentence to determine the thematic roles. We translated this protocol
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into a sequence learning task, where given an input sequence, the system had to
produce the nouns in the order Agent, Object, Recipient. Here are two examples.

Example 1 Input: The A was given to the B by the C Response: C A B Rule:
ABC-CAB

Example 2 Input: A gave B to C Response: A B C Rule: ABC-ABC

Looking at Examples 1 and 2, the inputs are different. In particular, the presence
and order of the closed class elements was, to and by is different for these two
sentences, and can be used to distinguish between them.

The solution is to send the closed class words to the TRN while the repetitive
structure of the open class words is detected and encoded in the ARN. This way the
structure of the closed class words forms a pattern that can be associated with the
abstract rule. Interestingly, this approach corresponds to a well-validated hypothesis
of linguistic development. The competition hypothesis holds that, across languages,
different cues like word order and grammatical marking, are used to encode thematic
roles (Bates and MacWhinney 1987; Li and Macwhinney 2013). While we initially
had a very clear idea about the neuroanatomy of the corticostriatal system for the
core of the reservoir, the mapping of the additional elements of the language model
onto the neurophysiology required some effort, and the result is revealed in Fig. 7.
This neuroanatomical reality was informed by the proposed models of Friederici and
Hagoort (Friederici 2002, 2012; Hagoort 2005).

Fig. 7 Here, we map the elements of the reservoir and abstract structure processing onto human
neurophysiology. A Grammatical function words and closed class morphology enter from superior
temporal gyrus and enter into the recurrent reservoir in BA47. Open class elements from middle
temporal gyrus enter a semantic working memory in BA45. The grammatical construction that is
uniquely identified by the closed-class driven pattern of activity in BA47 modulates the open class
working memory of BA45 into the structured meaning representation in BA44/46. B Display of
main functional elements of themodel during processing of the sentence “The elephant was given to
themonkey by the dog.”Note theMod1, 2, and 3 neurons thatmodulate their correspondingworking
memory elements, which generates the output sequence “dog, elephant, monkey” corresponding to
the agent object and recipient of the sentence
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In Fig. 7, the TRN function is carried out by STG—BA47 pathway where closed
class grammatical structure is processed in the recurrent network. The ARN with
its short-term memory and matching function is carried out by the MTG—BA45
pathway for open class elements.

It is noteworthy that this proposed hybrid system is able to perform the described
language processing capabilities, but in addition, it can be used to perform non-
linguistic tasks that require the manipulation of abstract structure such as artificial
grammar learning (Dominey and Inui 2009; Dominey et al. 2009).

It is remarkable that the proposedmodel was able to perform thematic role assign-
ment in natural language, and also able to learn non-linguistic abstract sequencing
tasks. This means that from the limited perspective of the model, language has the
same processing status as that of any cognitive sequence system in which configura-
tions of function elements govern the application of systematic transformations, as in
domains includingmusic,mathematics, logical theoremproving and artificial symbol
manipulation tasks (Dominey et al. 2003). This predicts that (1) similar brain activa-
tion should be observed when humans process linguistic and non-linguistic abstract
structure, and (2) impairments that affect abstract structure in language should equally
affect it in non-linguistic processing. These predictions were confirmed using ERP
(Hoen and Dominey 2000), and fMRI (Hoen et al. 2006) in healthy subjects, and by
observing correlated impairments in aphasic patients for abstract and grammatical
structure processing (Dominey et al. 2003; Dominey and Lelekov 2000; Lelekov
et al. 2000).

In the context of human neurophysiology, this research allows us to propose an
additional circuit in the framework of Alexander et al. (1986), that is a language
or grammatical structure circuit (Dominey 2013; Dominey and Inui 2009; Dominey
et al. 2009).

4.2 The Reservoir Convergence

Up to this point, we were exploring language learning with the modeling infrastruc-
ture that had been developed initially to model the primate cortex, including online,
trial by trial learning. In addition, our research team had not yet made the link to
the related work of Jaeger and Maass. But this was about to change. As part of the
European Information andCommunicationTechnologies projectOrganic, Jaeger and
Maass invited our team to join the proposal. One result of this was that we began
to use more powerful simulation tools (Verstraeten et al. 2012), including radically
more efficient learning mechanisms for the cortico-striatal readout, which allowed
the use of much larger training corpora (Hinaut and Dominey 2013). These corpora
were organized as sentence meaning pairs, with sentences coded word by word,
and meaning coded by specification of the mapping between the ordered open class
words, and their semantic roles (as illustrated in Fig. 8).

In this work with Hinaut, for the first time we thus exploited larger corpora, and
advanced training methods that allowed us to demonstrate the ability of the model
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Fig. 8 Language processing reservoir fromHinaut&Dominey (2013).Again, closed class elements
activate neurons that project to the recurrent reservoir BA47. A Open class elements stored in the
BA45 working memory. On the right, a set of four readout neurons per open class element code
its potential role as predicate, agent, object, or recipient (there are actually two of these 4-element
readouts per open class word, to accommodate sentences with two verbs). B Activity of readout
neurons coding the role of SW2, the second semantic word in the sentence. Left, for the sentence
“The boy gave the book to the teacher” we see that neuron coding for the Object role is active from
the outset, that is it predicts the object role, and in this case it is correct. The Right panel illustrates
activity for the sentence “The cat chased the boy that was bit by the dog”. There we see that the
system immediately votes for SW2 to be the object of the first verb. It determines that SW2 is also
the object of the second verb but only after the word “was” appears. This reflects the real-time or
on-line processing, as well as the parallel processing of multiple possibilities in parallel
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to generalize to new constructions that it had not been exposed to before (Hinaut
and Dominey 2013). This was a crucial step in the argument that language could be
processed by reservoirs, as the ability to generalize to new grammatical structures is
a crucial aspect of human language processing. Significantly, the neurophysiological
validity of the comprehension model was confirmed in a human clinical evaluation
(Szalisznyó et al. 2017). Similarly, we were able to demonstrate a link between the
real-time processing of multiple possible sentence parses in the readout neurons of
the reservoir, and language-related ERPs (the P600) observed in human sentence
processing (Hinaut and Dominey 2013). To complete the grammatical construc-
tion story, we applied the mechanism in the opposite sense for language production
(Hinaut et al. 2015).

4.3 Narrative

The key idea in the language processing modeling is that the linear string of words
contains two forms of information. The basic semantic elements are coded in the
semantic or open class words (nouns, verbs, etc.), while the structural relations
between these elements (includingwho didwhat towhom) is coded by cues including
grammatical markers (was, to, by, etc.) and word order, as specified in the cue
competition model (Bates and MacWhinney 1987; Li and Macwhinney 2013). This
approach has been limited to the grammatical construction. At the level of the
construction, grammatical words specify the relations between open class (semantic)
elements in one or two events. For example, “The dog that chased the cat bit the
boy” and “The dog was chased by the cat that bit the boy” express two quite different
meanings that are coded by the grammatical function words.

Considering narrative, we can extend the notion of grammatical construction to
that of narrative construction, where narrative function words (before, after, because,
since, then, etc.) define relations between open class elements across multiple events
in a situation model. This is illustrated in Fig. 9, where the Narrative Cx Model uses
separate reservoirs for comprehension and production, and mapping to and from
a representation of multiple related events in the Situation Model. The narrative
comprehension reservoir is very similar to the sentence comprehension reservoir, but
it has two sets of readout neurons, coding events and narrative relations, respectively.
The coding in events is as in the sentence model, that is, readout neurons specify the
semantic role for each open class element in the sentence. The coding of narrative
relations consists of an additional set of readout neurons that encode the narrative
function words. In the system developed by Mealier et al. (2017), these narrative
relations were extracted and used to create narrative links in the situation model.
Thus, in processing the narrated sentence “I gave you the toy because you wanted
it”, the system creates the causal link labeled “because” between the representations
for the given event and the want event, as schematically illustrated above.
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Fig. 9 Human–robot interaction generates events that are stored in the ABM. These are used to
generate a graph where events are linked by temporal and causal relations to build the situation
model. Human narration is processed by the Narrative Construction (NCx) comprehension model
which extracts events and narrative function words. These are automatically mapped onto events in
the Situationmodel, and the narrative relations are added to the SM, thus producing narrative enrich-
ment. In the opposite sense, a SM created from observation can be narrated by extracting events
and narrative relations from the SM into the NCx production model, to generate the corresponding
sentence(s) in a narrative to communicate the SM. See Mealier et al. (2017) for details

5 Higher Cognitive Function II. Executive Function Mixed
Selectivity

When a reservoir has been trained to perform such high-level cognitive functions, it
is of interest to understand the underlying neural dynamics. We initiated such anal-
yses in our comparison of primate neurophysiology underlying complex sequential
behavior from Barone and Joseph (1989), and the comparison with the single-unit
activity in our reservoir model that performed the same task (Dominey et al. 1995).
One of the characteristics of the neural activity in the primate cortex and in the model
was the complex mixture of different aspects of the task dimensions, in particular
spatial location and sequential order. This form of complex neural activity has been
recently examined more closely and characterized as mixed selectivity.

5.1 Revelation of Mixed Selectivity in Primate Cortex

In groundbreaking work that has had major impact in creating a new way of consid-
ering cortical activity, Rigotti et al. (2013) characterized mixed selectivity in the
activity of single units in primate cortex, anddemonstrated the necessity of this coding
for successful execution of tasks requiring higher cognitive function. In a task that
required seeing a sequence of two visual images and then having to either recognize
or recall those images, they observed that frontal cortical neurons encoded complex
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non-linear mixtures of image identity, rank in the sequence, and the task that was to
be performed. Interestingly, they showed that the higher the dimensionality of the
population coding, the better the performance on the task. This research revealed that
the phenomenon of mixing task-related aspects in single-unit activity (like Barone
and Joseph’s location and rank mixing) is a required and inherent property of cortical
activity during complex task performance.

5.2 Explore Exploit

We set out to examine reservoir dynamics and mixed selectivity in a complex task
that requires exploration and exploitation. We based this approach on the research of
Quilodran et al. (2008), who trained macaque monkeys to perform a task, illustrated
in Fig. 10A, where one of four spatial targets was rewarded, and the subject had
to explore by trial and error to find the rewarded target. After the first reward, the
exploration phase ended and the subject could repeat that target for a reward several
times in the exploitation phase, before the signal to change indicated the beginning of
a new exploration. Quilodran et al. described neural responses related to feedback in
the exploration, and the shift between exploration and exploitation. In a reanalysis of
the data, we (Enel et al. 2016) determined that the dACC neurons display significant
mixed selectivity.ANOVAon the factors target choice, phase, and task epoch revealed
a broad distribution of neurons that had significant main effects (i.e., selectivity for
one of the three task variables), and two and three-way interactions. Thus, 16%
of dACC neurons displayed a dynamic mixed selectivity, revealed by a significant
three-way interaction.

5.3 Modeling Explore Exploit

We trained a 1000 unit reservoir model (illustrated in Fig. 10) to perform the
explore/exploit task. Essentially themodel learns to shift (explore) when no rewarded
is provided, to stay (exploit) when the choice is rewarded, and when exploring, to not
start with the same target that was just rewarded. The model learns to perform this
task well (Enel et al. 2016). We then analyzed the neural activity within the reser-
voir and compared this to the dACC neurons. The similarity in the neural coding
was striking. The distribution of neurons that coded the epoch (explore/exploit),
the task phase, and the target choice, between the model and the dACC were quite
similar. Most striking, however, was the similar distribution of the different inter-
actions between epoch, phase, and choice. These observations argue that the cortex
behaves computationally as a reservoir (Fig. 11).
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Fig. 10 Reservoir processing of Explore-Exploit task. A Task—subject must search for one of
four targets that is rewarded (explore). After the first reward, the subject can repeat several times
(exploit), until the Signal To Change. BMapping of this task to reservoir: inputs are Fixation point,
lever, targets, reward, and signal to changes. Readout Outputs are saccade and touch to the four
possible targets. C Timing of inputs, reservoir activity (in a few sample cells) and outputs over
several trials, with two correct rewarded trials, then the signal to change, and a search of three trials
before the new rewarded target is found and repeated

5.4 Adaptation in the Face of Diversity

It has been noted that living cortex is plastic, and that adaptive change is likely a
central component of cortical physiology. In contrast, by definition, reservoirs are
not plastic. From our perspective, this is not a statement that living cortex is not
plastic, but rather an approach to investigate how far we can explain nature in the
simplified model of the reservoir. Within this context there are clearly methods to
investigate the role of plasticity. Because phase (exploration vs. exploitation) is so
central to this task, we investigated the introduction of an adaptation in the form of
a neuron that could learn to fire during the exploration phase, and be silent during
exploitation. The activity of this phase neuron is illustrated in Fig. 12. We also
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Fig. 11 Simple task-related activity, and non-linear mixed selectivity in reservoir and primate
cingulate cortex. A and B, single units from Model and dACC that illustrate simple phase and
choice responses. C Model and dACC units with choice selectivity that is modulated by phase
(mixed selectivity). D Model and dACC units that display complex mixed selectivity for task
epoch, and phase

Fig. 12 A Decoding of a phase neuron (active during search but not repeat) from reservoir and
dACC.B Performance of models with and without phase neuron.When phase neuron feeds its task-
crucial input back into the reservoir, less than half the number of neurons are required to perform
the task

demonstrated that a similar phase neuron can be trained to decode the phase from
the population of 85 neurons recorded in the primate dACC. This is despite fact
that within the recorded neurons, no single unit was found that displayed this phase
encoding behavior. Most interestingly, when this phase information was fed back
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into the reservoir, a dramatic improvement in performance could be realized, as
revealed by a significant reduction in the number of neurons required in the reservoir
to perform the task. Similar benefits of introducing such memory state neurons into
the reservoir context has been elegantly demonstrated by Pascanu and Jaeger (2011).

5.5 From Main Effects to Mixed Selectivity

In the initial days of primate neurophysiology, tasks were often reduced to a single
behavioral dimension, e.g., making a saccade to a spatial target, and the scientist
typically then interrogated single units to determine if they encode the task-related
variable. In such cases, many neurons are found to encode the main effect—that
is, the neuron has an easily identifiable response to a clearly relevant aspect of the
task, e.g., saccade amplitude and direction (Bruce and Goldberg 1985). However,
had the animal been performing a more complex task, as in the saccade sequencing
task, then more complex responses could have been looked for, and would likely
have been found, as observed by Barone and Joseph. In our own work, we observed
that the primate cortex and the reservoir indeed display both task-related responses,
and complex, dynamic mixed selectivity (Enel et al. 2016). Interestingly, while it is
difficult to interpret the function of mixed selectivity in single units, when they are
interrogated as a population, the crucial role of mixed selectivity is revealed. It repre-
sents a high dimensional projection of task variables and their history, from which
diverse pertinent aspects of the problem at hand can be read out of the population
(Rigotti et al. 2013; Sussillo and Barak 2013).

6 Cortico-Hippocampal Interaction for Synthesis of Novel
Adaptive Experiences

The previous section indicates that the recurrent reservoir maintains a representation
of state, including externally visible and hidden internal states as required performing
a complex task. Here, we explore another property of reservoir computing, which is
the ability to concatenate reservoir state trajectories. When a reservoir with output
feedback learns an input sequence, it will traverse a trajectory of internal states.
If the end of one state trajectory overlaps with the beginning of another, then the
reservoir, when launched on the first will naturally follow it and then continue—via
the overlap—into the second trajectory. We recently examined how this property
could explain a form of optimization behavior observed in navigating rodents.
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When rats are placed in a large (e.g., 1 m diameter) open space with 5–6 baited
food wells irregularly distributed in space, they display an interesting form of spatial
optimization. The initial trials typically yield trajectories that are not well organized
and meandering. Over successive trials, the trajectories become more structured,
and finally spatially optimal. This has been characterized as a form of solving the
traveling salesman optimization problem (de Jong et al. 2011). During this kind of
behavior, activation of hippocampal place cells encodes the position of the animal
as it navigates (Moser et al. 2008). Interestingly, between trials, hippocampal place
cell activations also recalls previous navigation paths, and future plans.We simulated
aspects of these processes by training a reservoir to auto-generate spatial sequences of
place cell activation patterns, corresponding to the trajectories illustrated in Fig. 13i
(Cazin et al. 2018), in a network where input to the network was the current loca-
tion in a place cell code, and the readout codes the next location in the navigation
sequence, also in a place cell code. The novelty was that the model was trained on the
replay of short “snippets” of place cell activation sequences that were drawn from
its recent navigation trajectories. For illustration, short paths linking the marked
rewards are colored red, while long and inefficient paths are marked in blue. We
introduced a place cell activation replay mechanism that favors replay of rewarded
locations, and also propagates reward backwards along the spatial trajectory. This
is illustrated in Fig. 13ii. Because there is a limited reward propagation budget, for
long and inefficient sequences there is not enough reward and the sequence will thus
be under-represented in the replay. For short efficient sequences between rewards,
there is ample reward, and so the sequence will be well represented in the replay
that is used to train the reservoir. This is illustrated in the replay profile in Fig. 13iv,
which illustrates that snippets on short trajectories between rewards will have a high
probability of being replayed. This means that in the end the reservoir is selectively

Fig. 13 Reservoir synthesizes an efficient trajectory from multiple ambiguous inputs. i Three
spatial navigation sequences between baited feeders (marked). Red indicates “efficient” paths, and
blue “non-efficient”. ii Reward propagation from rewarded locations forms a spatial gradient. iii
Illustration of spatial gradient that favors efficient trajectories. iv.Histogramof generated trajectories
illustrates that efficient subsequences have been regrouped to form the overall efficient sequence
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exposed predominantly to the efficient subsequences, and can concatenate them to
creatively generate the composite optimal sequence that was never seen in its entirety
during training.

This work thus introduces a simple form of reinforcement learning into the
reservoir computing domain, which may have important impact in future research.

7 Discussion

In 1995, we set out to build a neural network model that respected the neuroanatomy
of the primate corticostriatal system, that could learn to perform a visuospatial
sequencing task as defined in the primate (Barone and Joseph 1989), and that could
explain the complex mix of space and time that was represented in the prefrontal
neurons of animals that performed this task. In order to avoid the computational
complexity of learning in recurrent connections, we chose to keep these connections
fixed (with rich dynamics) and to have plasticity only in the corticostriatal (readout)
connections (Dominey 1995; Dominey et al. 1995). Historically, this was the first
implementation of reservoir computing.

The resulting model was a success according to our objectives. We then set out
to explore the computational capabilities of this system, and began to discover its
versatility. In this review, we have seen sensitivity to serial, temporal and abstract
structure, the ability to learn and generalize over patterns of grammatical elements for
learning grammatical constructions as form to meaning mappings. We have seen the
application to complex non-linguistic tasks in the context of exploration/exploitation,
and in optimization in spatial navigation. Strikingly, in all of these contexts, the
reservoir (and sometimes the readout) activity has been demonstrated to bear striking
likeness to that observed in the living cortex. This contributes to the position that
cortex is a system of reservoirs organized in parallel interdigitated subsystems, and
that progress in future understandingof humancognitionwill bemade through further
development and analysis of cooperating reservoir systems.

One of the main areas where we have still not completed this demonstration is in
the domain of meaning, but there is hope. Embodied theories of cognition hold that
meaning is constituted of reactivation of sensorimotor experiential traces, generating
a form of simulation of the intended meaning (Barsalou 2008; Barsalou et al. 2003).
This has been revealed in human brain imagery studies that identify the system
used for understanding images and sentences that depict everyday human activity,
as corresponding to a widespread activation of the sensorimotor system, the spatial
cognition system and representations of self and others (Jouen et al. 2018, 2015).

From the reservoir perspective, we can consider that meaning is a dynamic neural
state trajectory that traverses a sequence of neural states that is similar to those
traversed in the actual experience of a given event. This can be considered in the
context of perception and prediction during actions, such that at the same time that
the nervous system is navigating a complex high dimensional space in real-time, it
is predicting the perceived outcome of its own actions and of those of other agents in
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the world. This predictive mechanism will thus be the same for real-time predictive
control, and for off-line simulation of lived experiences. The system should contin-
uously be predicting/generating commands for what will happen next. This should
be modulated by external contextual cues as well as internal contextual cues. Highly
sensorized and actuated humanoid robots are an obvious candidate for providing
such a framework, and our current research addresses the generation of meaning in
reservoir networks in this context (Mealier et al. 2017; Moulin-Frier et al. 2018).

8 Conclusions

The power of recurrent connections has been clearly demonstrated in the research
reported in the different chapters of this volume. When we see that the cortex is a
massive system built up of locally constructed reservoir circuits, that are also inter-
connected by a vast network of longer connections, and that all of this cortex projects
with a rich segregated yet interleaving topography to the striatum to allow for highly
rich readout—when we appreciate all this, we see a massive computing potential in
the cortico-striatal system. However, we also see that we must fashion our thinking
about neural computation so as to be able to fathom how this very characteristic
organization can be marshaled to allow the highly precise and abstract thought that
the human is capable of. Executive function, working memory, variable binding and
passing (or their functional equivalents) are all implemented in this framework, and
we still havework to construct the integrated computational framework to accomplish
this (Graves et al. 2014). In this context, Jaeger (2017) has developed the conceptor
framework that allows the imposition of a form of biasing structure on reservoirs,
which thus allows the management and control of reservoir dynamics for multiple
different stored patterns. Such mechanisms provide a direction for future research
on how reservoir dynamics can be controlled for precision cognitive functions.

The parallel corticostriatal circuits described by (Alexander et al. 1986) implement
a set of cooperating reservoirs for diverse sensorimotor and cognitive functions. We
extended this to include a language or grammatical structure circuit (Dominey 2013;
Dominey and Inui 2009; Dominey et al. 2009), and an executive function circuit
(Enel et al. 2016). Future research should investigate the interaction of multiple such
parallel and overlapping reservoir systems and their cooperationwithin an integrated,
real-time cognitive system.
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Reservoirs Learn to Learn

Anand Subramoney, Franz Scherr, and Wolfgang Maass

Abstract The common procedure in reservoir computing is to take a “found”
reservoir, such as a recurrent neural network with randomly chosen synaptic weights
or a complex physical device, and to adapt the weights of linear readouts from this
reservoir for a particular computing task. We address the question of whether the
performance of reservoir computing can be significantly enhanced if one instead
optimizes some (hyper)parameters of the reservoir, not for a single task but for the
range of all possible tasks in which one is potentially interested, before the weights
of linear readouts are optimized for a particular computing task. After all, networks
of neurons in the brain are also known to be not randomly connected. Rather, their
structure and parameters emerge from complex evolutionary and developmental pro-
cesses, arguably in away that enhances the speed and accuracy of subsequent learning
of any concrete task that is likely to be essential for the survival of the organism. We
apply the Learning-to-Learn (L2L) paradigm to mimic this two-tier process, where a
set of (hyper)parameters of the reservoir are optimized for a whole family of learning
tasks. We found that this substantially enhances the performance of reservoir com-
puting for the families of tasks that we considered. Furthermore, L2L enables a new
form of reservoir learning that tends to enable even faster learning, where not even
the weights of readouts need to be adjusted for learning a concrete task. We present
demos and performance results of these new forms of reservoir computing for reser-
voirs that consist of networks of spiking neurons and are hence of particular interest
from the perspective of neuroscience and implementations in spike-based neuromor-
phic hardware. We leave it as an open question of what performance advantage the
new methods that we propose provide for other types of reservoirs.

1 Introduction

Onemotivation for the introduction of the liquid computingmodel (Maass et al. 2002)
was to understand how complex neural circuits in the brain, or cortical columns, are
able to support the diverse computing and learning tasks which the brain has to solve.
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It was shown that recurrent networks of spiking neurons (RSNNs) with randomly
chosen weights, including models for cortical columns with given connection prob-
ability between laminae and neural populations, could in fact support a large number
of different learning tasks, where only the synaptic weights to readout neurons were
adapted for a specific task (Maass et al. 2004; Haeusler and Maass 2006). Inde-
pendently from that, a similar framework (Jaeger 2001) was developed for artificial
neural networks, and both methods were subsumed under the umbrella of reservoir
computing (Verstraeten et al. 2007). Our methods for training reservoirs that are dis-
cussed in this paper have so far only been tested for reservoirs consisting of spiking
neurons, as in the liquid computing model.

Considering the learning capabilities of the brain, it is fair to assume that synaptic
weights of these neural networks are not just randomly chosen, but shaped through
a host of processes—from evolution, over development to preceding learning expe-
riences. These processes are likely to aim at improving the learning and computing
capability of the network. Hence we asked whether the performance of reservoirs
can also be improved by optimizing the weights of recurrent connections within the
recurrent network for a large range of learning tasks. The Learning-to-Learn (L2L)
setup offers a suitable framework for examining this question. This framework builds
on a long tradition of investigating L2L, also referred to as meta-learning, in cogni-
tive science, neuroscience, and machine learning (Abraham and Bear 1996; Wang
et al. 2016, 2018; Hochreiter et al. 2001). The formal model from Hochreiter et al.
(2001) and Wang et al. (2016) and related recent work in machine learning assume
that learning (or optimization) takes place in two interacting loops (see Fig. 1A). The
outer loop aims at capturing the impact of adaptation on a larger time scale (such as
evolution, development, and prior learning in the case of brains). It optimizes a set
of parameters �, for a—in general infinitely large—family F of learning tasks. Any
learning or optimization method can be used for that. For learning a particular task
C from F in the inner loop, the neural network can adapt those of its parameters
which do not belong to the hyperparameters � that are controlled by the outer loop.
These are in our first demo (Sect. 2) the weights of readout neurons. In our second
demo in Sect. 3, we assume that—like in Wang et al. (2016, 2018) and Hochreiter
et al. (2001)—ALL weights from, to, and within the neural network, in particular

Fig. 1 Learning-to-Learn setup: A Schematic of the nested optimization that is carried out in
Learning-to-Learn (L2L). B Learning architecture that is used to obtain optimized reservoirs
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also the weights of readout neurons, are controlled by the outer loop. In this case, just
the dynamics of the network can be used to maintain information from preceding
examples for the current learning task in order to produce a desirable output for the
current network input. One exciting feature of this L2L approach is that all synaptic
weights of the network can be used to encode a really efficient network learning
algorithm. It was recently shown in Bellec et al. (2018b) that this form of L2L can
also be applied to RSNNs. We discuss in Sect. 3 also the interesting fact that L2L
induces priors and internal models into reservoirs.

The structure of this article is as follows: We address in Sect. 2 the first form of
L2L, where synaptic weights to readout neurons can be trained for each learning task,
exactly like in the standard reservoir computing paradigm. We discuss in Sect. 3 the
more extreme form of L2L where ALL synaptic weights are determined by the outer
loop of L2L, so that no synaptic plasticity is needed for learning in the inner loop. In
Sect. 4, we give full technical details for the demos given in Sects. 2 and 3. Finally,
in Sect. 5, we will discuss implications of these results and list a number of related
open problems.

2 Optimizing Reservoirs to Learn

In the typical workflow of solving a task in reservoir computing, we have to address
twomain issues: (1) a suitable reservoir has to be generated and (2) a readout function
has to be determined that maps the state of the reservoir to a target output. In the fol-
lowing, we address the first issue by a close investigation of how we can improve the
process of obtaining suitable reservoirs. For this purpose, we consider here RSNNs
as the implementation of the reservoir and its state refers to the activity of all units
within the network. In order to generate an instance of such a reservoir, one usually
specifies a particular network architecture of the RSNN and then generates the cor-
responding synaptic weights at random. Those remain fixed throughout learning of
a particular task. Clearly, one can tune this random creation process to better suit the
needs of the considered task. For example, one can adapt the probability distribu-
tion from which weights are drawn. However, it is likely that a reservoir, generated
according to a coarse random procedure, is far from perfect at producing reservoir
states that are really useful for the readout.

A more principled way of generating a suitable reservoir is to optimize their
dynamics for the range of tasks to be expected, such that a readout can easily extract
the information it needs.

Description of optimized reservoirs: The main characteristic of our approach is
to view the weight of every synaptic connection of the RSNN that implements the
reservoir as hyperparameters � and to optimize them for the range of tasks. In
particular, � includes both recurrent and input weights (W rec, W in), but also the
initialization of the readout W out,init . This viewpoint allows us to tune the dynamics
of the reservoir to give rise to particularly useful reservoir states. Learning of a
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particular task can then be carried out as usual, where commonly a linear readout
is learned, for example by the method of least squares or even simpler by gradient
descent.

As previously described, two interacting loops of optimization are introduced,
consisting of an inner loop and an outer loop (Fig. 1A). The inner loop consists here
of tasks C that require to map an input time series xC(t) to a target time series
yC(t) (see Fig. 2A). To solve such tasks, xC(t) is passed as a stream to the reservoir,
which then processes these inputs, and produces reservoir states hC(t). The emerging
features are then used for target prediction by a linear readout:

ŷC(t) = W out
C [xC(t), hC(t)]T . (1)

On this level of the inner loop, only the readoutweightsW out
C are learned. Specifically,

we chose here a particularly simple plasticity rule acting upon these weights, given
by gradient descent:

�W out
C = η

(

yC(t) − ŷC(t)
)

· hC(t)T , (2)

which can be applied continuously, or changes can be accumulated. Note that the
initialization of readout weights is provided as a hyperparameter W out,init and η
represents a learning rate.

On the other hand, the outer loop is concernedwith improving the learning process
in the inner loop for an entire family of tasksF . This goal is formalized using an opti-
mization objective that acts upon the hyperparameters � = {W in,W rec,W out,init}:

min
�

EC∼F

[ ∫

t

∥

∥

∥ yC(t) − ŷC(t)
∥

∥

∥

2

2
dt

]

(3)

subject to �W out
C = η

(

yC(t) − ŷC(t)
)

· hC(t)T (readout learning). (4)

Regressing Volterra filters: Models of reservoir computing typically get applied to
tasks that exhibit nontrivial temporal relationships in the mapping from input signal
xC(t) to target yC(t). Such tasks are suitable because reservoirs have a property of
fading memory: Recent events leave a footprint in the reservoir dynamics which can
later be extracted by appropriate readouts. Theory guarantees that a large enough
reservoir can retain all relevant information. In practice, one is bound to a dynamical
systemof limited size and hence, it is likely that a reservoir, optimized for thememory
requirements and time scales of the specific task family at hand, will perform better
than a reservoir that was generated at random.

We consider a task family F where each task C is determined by a randomly
chosen Volterra filter (Volterra 2005). Here, the target yC(t) arises by application of
a randomly chosen second-order Volterra filter (Volterra 2005) to the input xC(t):

yC (t) =
∫

τ
k1C (τ )xC (t − τ ) dτ +

∫

τ1

∫

τ2

k2C (τ1, τ2)xC (t − τ1)xC (t − τ2) dτ1dτ2 , (5)
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Fig. 2 Learning to learn a nonlinear transformation of a time series: A Different tasks Ci
arise by sampling second-order Volterra kernels according to a random procedure. Input time series
xC (t) are given as a sum of sines with random properties. To exhibit the variability in the Volterra
kernels, we show three examples where different Volterra kernels are applied to the same input. B
Learning performance in the inner loop using the learning rule (2), both for the case of a reservoir
with random weights and for a reservoir that was trained in the outer loop by L2L. Performance
at the indicated time window is shown in Panel C. C Sample performance of a random reservoir
and of an optimized reservoir after readouts have been trained for 10 s. Network activity shows 40
neurons out of 800

see Fig. 2A. The input signal xC(t) is given as a sum of two sines with different
frequencies and with random phase and amplitude. The kernel used in the filter
is also sampled randomly according to a predefined procedure for each task C , see
Sect. 4.3, and exhibits a typical temporal time scale. Here, the reservoir is responsible
to provide suitable features that typically arise for such second-order Volterra filters.
In this way, readout weightsW out

C , which are adapted according to Eq. (2), can easily
extract the required information.

Implementation: The simulations were carried out in discrete time, with steps of
1ms length. We used a network of 800 recurrently connected neurons with leaky
integrate-and-fire (LIF) dynamics. Such neurons are equipped with a membrane
potential in which they integrate input current. If this potential crosses a certain
threshold, they emit a spike and themembranevoltage is reset, seeSect. 4.1 for details.
The reservoir state was implemented as a concatenation of the exponentially filtered
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spike trains of all neurons (with a time constant of τreadout = 20ms). Learning of
the linear readout weights in the inner loop was implemented using gradient descent
as outlined in Eq. (2). We accumulated weight changes in chunks of 1000ms and
applied them at the end. The objective for the outer loop, as given in Eq. (3), was
optimized using backpropagation through time (BPTT), which is an algorithm to
perform gradient descent in recurrent neural networks. Observe that this is possible
because the dynamics of the plasticity in Eq. (2) is itself differentiable and can
therefore be optimized by gradient descent. Because the threshold function that
determines the neuron outputs is not differentiable, a heuristicwas required to address
this problem. Details can be found in Sect. 4.2.

Results: The reservoir that emerged from outer-loop training was compared against
a reference baseline, whose weights were not optimized for the task family, but had
otherwise exactly the same structure and learning rule for the readout. In Fig. 2B,
we report the learning performance on unseen task instances from the family F ,
averaged over 200 different tasks. We find that the learning performance of the
optimized reservoir is substantially improved as compared to the random baseline.

This becomes even more obvious when one compares the quality of the fit on a
concrete example as shown in Fig. 2C. Whereas the random reservoir fails to make
consistent predictions about the desired output signal based on the reservoir state, the
optimized reservoir is able to capture all important aspects of the target signal. This
occurred just 10 s within learning the specific task, because the optimized reservoir
was already confronted before with tasks of a similar structure, and could capture
through the outer-loop optimization the smoothness of the Volterra kernels and the
relevant time dependencies in its recurrent weights.

3 Reservoirs Can Also Learn Without Changing Synaptic
Weights to Readout Neurons

We next asked whether reservoirs could also learn a specific task without changing
any synaptic weight, not even weights to readout neurons. It was shown in Hochreiter
et al. (2001) that LSTMnetworks can learn nonlinear functions froma teacherwithout
modifying their recurrent or readout weights. It has recently been argued in Wang
et al. (2018) that the pre-frontal cortex (PFC) accumulates knowledge during fast
reward-based learning in its short-term memory, without using synaptic plasticity,
see the text to supplementary Fig. 3 in Wang et al. (2018). The experimental results
of Perich et al. (2018) also suggest a prominent role of network dynamics and short-
term memory for fast learning in the motor cortex. Inspired by these results from
biology and machine learning, we explored the extent to which recurrent networks
of spiking neurons can learn using just their internal dynamics, without synaptic
plasticity.

In this section, we show that one can generate reservoirs through L2L that are
able to learn with fixed weights, provided that the reservoir receives feedback about
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Fig. 3 L2L setupwith reservoirs that learn using their internal dynamics A Learning architec-
ture for RSNN reservoirs. All the weights are only updated in the outer-loop training using BPTT.B
Supervised regression tasks are implemented as neural networks with randomly sampled weights:
target networks (TN). C Sample input/output curves of TNs on a 1D subset of the 2D input space,
for different weight and bias values

the prediction target as input. In addition, relying on the internal dynamics of the
reservoir to learn allows the reservoir to learn as fast as possible for a given task, i.e.,
the learning speed is not determined by any predetermined learning rate.

Target networks as the task family F : We chose the task family to demonstrate
that reservoirs can use their internal dynamics to regress complex nonlinear functions
and are not limited to generating or predicting temporal patterns. This task family
also allows us to illustrate and analyze the learning process in the inner loop more
explicitly. We defined the family of tasks F using a family of nonlinear functions
that are each defined by a target feed-forward network (TN) as illustrated in Fig. 3B.
Specifically, we chose a class of continuous functions of two real-valued variables
(x1, x2) as the familyF of tasks. This class was defined as the family of all functions
that can be computed by a two-layer artificial neural network of sigmoidal neurons
with 10 neurons in the hidden layer and weights and biases in the range [−1, 1]. Thus
overall, each such target network (TN) from F was defined through 40 parameters
in the range [−1, 1]: 30 weights and 10 biases. Random instances of target networks
were generated for each episode by randomly sampling the 40 parameters in the
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Fig. 4 Learning to learn a nonlinear function that is defined by an unknown target network
(TN): A Performance of the reservoir in learning a new TN during training in the outer loop of
L2L. B Performance of the optimized reservoir during testing compared to a random reservoir and
the linear baseline. C Learning performance within a single inner-loop episode of the reservoir for
1000 new TNs (mean and one standard deviation). Performance is compared to that of a random
reservoir. D Performance for a single sample TN, a red cross marks the step after which output
predictions became very good for this TN. The spike raster for this learning process is the one
depicted in (F). E The internal model of the reservoir (as described in the text) is shown for the first
few steps of inner-loop learning. The reservoir starts by predicting a smooth function and updates
its internal model in just 5 steps to correctly predict the target function. F Network input (top row,
only 100 of 300 neurons shown), internal spike-based processing with low firing rates in the neuron
populations (middle row), and network output (bottom row) for 25 steps of 20 ms each.G Learning
performance of backpropagation for the same 1000 TNs as in C, working directly on the ANN from
Fig. 3B, with a prior for small weights, with the best hyperparameters from a grid search
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above range. Most of the functions that are computed by TNs from the class F are
nonlinear, as illustrated in Fig. 3C for the case of inputs (x1, x2) with x1 = x2.

Learning setup: In an inner-loop learning episode, the reservoir was shown as a
sequence of pairs of inputs (x1, x2) and delayed targets C(x ′

1, x
′
2) sampled from the

nonlinear function generated by one random instance of the TN. After each such
pair was presented, the reservoir was trained to produce a prediction Ĉ(x1, x2) of
C(x1, x2). The task of the reservoir was to produce predictions with a low error. In
other words, the task of the reservoir was to perform nonlinear regression on the
presented pairs of inputs and targets and produce predictions of low error on new
inputs. The reservoir was optimized in the outer loop to learn this fast and well.

When giving an input x1, x2 for which the reservoir had to produce prediction
Ĉ(x1, x2), we could not also give the target C(x1, x2) for that same input at the same
time. This is because, the reservoir could then “cheat” by simply producing this
value C(x1, x2) as its prediction Ĉ(x1, x2). Therefore, we gave the target value to
the reservoir with a delay, after it had generated the prediction Ĉ(x1, x2). Giving the
target value as input to the reservoir is necessary, as otherwise, the reservoir has no
way of figuring out the specific underlying nonlinear function for which it needs to
make predictions.

Learning is carried out simultaneously in two loops as before (see Fig. 1A). Like in
Hochreiter et al. (2001),Wang et al. (2016), andDuan et al. (2016), we let all synaptic
weights of N , including the recurrent, input, and readout weights, to belong to the
set of hyperparameters that are optimized in the outer loop. Hence, the network is
forced to encode all results from learning the current task C in its internal state, in
particular in its firing activity. Thus, the synaptic weights of the neural network N
are free to encode an efficient algorithm for learning arbitrary tasks C from F .

Implementation: We considered a reservoir N consisting of 300 LIF neurons with
full connectivity. The neuron model is described in Methods Sect. 4.1. All neurons
in the reservoir received input from a population X of 300 external input neurons.
A linear readout receiving inputs from all neurons in the reservoir was used for the
output predictions. The reservoir received a stream of three types of external inputs
(see top row of Fig. 4F): the values of x1, x2, and of the output C(x ′

1, x
′
2) of the TN

for the preceding input pair x ′
1, x

′
2 (set to 0 at the first trial), each represented through

population coding in an external population of 100 spiking neurons. It produced
outputs in the form of weighted spike counts during 20 ms windows from all neurons
in the network (see bottom row of Fig. 4F). The weights for this linear readout were
trained, like all weights inside the reservoir, in the outer loop, and remained fixed
during learning of a particular TN.

The training procedure in the outer loop of L2L was as follows: Network training
was divided into training episodes. At the start of each training episode, a newTNwas
randomly chosen and used to generate target values C(x1, x2) ∈ [0, 1] for randomly
chosen input pairs (x1, x2). 400 of these input pairs and targets were used as training
data and presented one per step to the reservoir during the episode, where each
step lasted 20 ms. The reservoir parameters were updated using BPTT to minimize
the mean-squared error between the reservoir output and the target in the training
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set, using gradients computed over batches of 10 such episodes, which formed one
iteration of the outer loop. In other words, each weight update included gradients
calculated on the input/target pairs from 10 different TNs. This training procedure
forced the reservoir to adapt its parameters in a way that supported learning of many
different TNs, rather than specializing in predicting the output of a single TN. After
training, the weights of the reservoir remained fixed, and it was required to learn
the input/output behavior of TNs from F that it had never seen before in an online
manner by just using its fading memory and dynamics. See Methods (Sect. 4.4) for
further details of the implementation.

Results: The reservoir achieves low mean-squared error (MSE) for learning new
TNs from the family F , significantly surpassing the performance of an optimal
linear approximator (linear regression) that was trained on all 400 pairs of inputs and
target outputs, see gray bar in Fig. 4B. One sample of a generic learning process is
shown in Fig. 4D.

Each sequence of examples evokes an “internal model” of the current target func-
tion in the internal dynamics of the reservoir. We make the current internal model of
the reservoir visible by probing its prediction C(x1, x2) for hypothetical new inputs
for evenly spaced points (x1, x2) in the entire domain, without allowing it to modify
its internal state (otherwise, inputs usually advance the network state according to
the dynamics of the network). Figure4E shows the fast evolution of internal models
of the reservoir for the TN during the first trials (visualized for a 1D subset of the 2D
input space). One sees that the internal model of the reservoir is from the beginning a
smooth function, of the same type as the ones defined by the TNs in F . Within a few
trials, this smooth function approximated the TN quite well. Hence ,the reservoir
had acquired during the training in the outer loop of L2L a prior for the types of
functions that are to be learned, that was encoded in its synaptic weights. This prior
was in fact quite efficient, as Fig. 4C, D, E shows, compared to that of a random
reservoir. The reservoir was able to learn a TN with substantially fewer trials than a
generic learning algorithm for learning the TN directly in an artificial neural network
as shown in Fig. 4G: backpropagation with a prior that favored small weights and
biases. In this case, the target input was given as feedback to the reservoir throughout
the episode, and we compare the training error achieved by the reservoir with that
of a FF network trained using backpropagation. A reservoir with a long short-term
memory mechanismwhere we could freeze the memory after low error was achieved
allowed us to stop giving the target input after the memory was frozen (results not
shown). This long short-term memory mechanism was in the form of neurons with
adapting thresholds as described in Bellec et al. (2018a, b). These results suggest that
L2L is able to install some form of prior knowledge about the task in the reservoir.
We conjectured that the reservoirs fit internal models for smooth functions to the
examples it received.

We tested this conjecture in a second,much simpler, L2L scenario.Here, the family
F consisted of all sine functions with arbitrary phase and amplitudes between 0.1
and 5. The reservoir also acquired an internal model for sine functions in this setup
from training in the outer loop, as shown in Bellec et al. (2018b). Even when we
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selected examples in an adversarial manner, which happened to be in a straight line,
this did not disturb the prior knowledge of the reservoir.

Altogether the network learning that was induced through L2L in the reservoir is
of particular interest from the perspective of the design of learning algorithms, since
we are not aware of previously documented methods for installing structural priors
for online learning of a RSNN.

4 Methods

4.1 Leaky Integrate-and-Fire Neurons

We used leaky integrate-and-fire (LIF) models of spiking neurons, where the mem-
brane potential Vj (t) of neuron j evolves according to

Vj (t + 1) = ρ j Vj (t) + (1 − ρ j ) Rm I j (t) − Bj (t) z j (t), (6)

where Rm is the membrane resistance, ρ j is the decay constant defined using the

membrane time constant τ j as ρ j = e
−�t
τ j , and �t is the time step of simulation. A

neuron j spikes as soon at its normalized membrane potential v j (t) = Vj (t)−Bj (t)
Bj (t)

is
above its firing threshold vth. At each spike time t , the membrane potential Vj (t) is
reset by subtracting the current threshold value Bj (t). After each spike, the neuron
enters a strict refractory period during which it cannot spike.

4.2 Backpropagation Through Time

We introduced a version of backpropagation through time (BPTT) in Bellec et al.
(2018b) which allows us to back-propagate the gradient through the discontinuous
firing event of spiking neurons. The firing is formalized through a binary step function
H applied to the scaled membrane voltage v(t). The gradient is propagated through
this step function with a pseudo-derivative as in Courbariaux et al. (2016) and Esser
et al. (2016), but with a dampened amplitude at each spike.

Specifically, the derivative of the spiking z j (t) with respect to the normalized

membrane potential v j (t) = Vj (t)−Bj (t)
Bj (t)

is defined as

dz j (t)

dv j (t)
:= γ max{0, 1 − |v j (t)|}. (7)

In this way, the architecture and parameters of an RSNN can be optimized for a given
computational task.
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4.3 Optimizing Reservoirs to Learn

Reservoir model: Our reservoir consisted of 800 recurrently connected leaky
integrate-and-fire (LIF) neurons according to the dynamics defined above. The net-
work simulation is carried out in discrete timesteps of �t = 1ms. The membrane
voltage decay was uniform across all neurons and was computed to correspond to a
time constant of 20ms (ρ j = 0.368). The normalized spike threshold was set to 0.02
and a refractory period of 5ms was introduced. Synapses had delays of 5ms. In the
beginning of the experiment, input W in and recurrent weights W rec were initialized
according to the Gaussian distributions with zero mean and standard deviations of
1√
3
and 1√

800
, respectively. Similarly, the initial values of the readout W out,init were

also optimized in the outer loop and were randomly initialized at the beginning of the
experiment according to a uniform distribution, as proposed in Glorot and Bengio
(2010).

Readout learning: The readout was iteratively adapted according to Eq. (2). It
received as input the input xC(t) itself and the features hC(t) from the reservoir,
whichwere given as exponentially filtered spike trains: hC, j (t) = ∑

t ′≤t κ
t−t ′ zC, j (t ′).

Here, κ = e
−�t

τreadout is the decay of leaky readout neurons. Weight changes were com-
puted at each timestep and accumulated. After every second, these changes were
used to actually modify the readout weights. Thus, formulated in discrete time, the
plasticity of the readout weights in a task C took the following form:

�W out
C = η

t
∑

t ′=t−1000ms

(

yC(t ′) − ŷC(t ′)
)

· hC(t ′)T , (8)

where η is a learning rate.

Outer-loop optimization: To optimize input and recurrent weights of the reservoir
in the outer loop, we simulated the learning procedure described above for m = 40
different tasks in parallel. After each 3s, the simulation was paused and the outer-
loop objective was evaluated. Note that the readout weights were updated 3 times
within these 3 s according to our scheme. The outer-loop objective, as given in Eq.3,
is approximated by

L = 1

m

m
∑

n=1

t
∑

t ′=t−2000ms

∥

∥

∥ yn(t
′) − ŷn(t

′)
∥

∥

∥

2

2
+ Lreg . (9)

We found that learning is improved if one includes only the last two seconds of
simulation. This is because the readout weights seem fixed and unaffected by the
plasticity of Eq.2 in the first second, as BPTT cannot see beyond the truncation
of 3 s. The cost function L was then minimized using a variant of gradient descent
(Adam (Kingma andBa 2014)), where a learning rate of 0.001was used. The required
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gradient ∇L was computed with BPTT using the 3 s chunks of simulation and was
clipped if the L2-norm exceeded a value of 1000.

Regularization: In order to encourage the model to settle into a regime of plausible
firing rates, we add to the outer-loop cost function a term that penalizes excessive
firing rates:

Lreg = α

800
∑

j=1

( f j − 20Hz)2, (10)

with the hyperparameter α = 1200. We compute the firing rate of a neuron f j based
on the number of spikes in the past 3 s.

Task details:We describe here the procedure according towhich the input time series
xC(t) and target time series yC(t) were generated. The input signal was composed
of a sum of two sines with random phase φn ∈ [0, π

2 ] and amplitude An ∈ [0.5, 1],
both sampled uniformly in the given interval.

xC(t) =
2

∑

n=1

An sin

(

2π
t

Tn
+ φn

)

, (11)

with periods of T1 = 0.323 s and T2 = 0.5 s.
The corresponding target function yC(t) was then computed by an application of

a random second-order Volterra filter to xC(t) according to Eq. (5). Each task uses
a different kernel in the Volterra filter and we explain here the process by which we
generate the kernels k1 and k2. Recall that we truncate the kernels after a time lag of
500ms. Together with the fact that we simulate in discrete time steps of 1ms, we can
represent k1 as a vector with 500 entries and k2 as a matrix of dimension 500 × 500.

Sampling k1: We parametrize k1 as a normalized sum of two different exponential
filters with random properties:

k̃1(t) =
2

∑

n=1

an exp

(

− t

bn

)

, (12)

k1(t) = k̃1(t)

‖k̃1‖1
, (13)

with an being sampled uniformly in [−1, 1], and bn drawn randomly in [0.1 s, 0.3 s].
For normalization, we use the sum of all entries of the filter in the discrete represen-
tation (t ∈ {0, 0.001, 0.002, . . . , 0.499}).

Sampling k2:We construct k2 to resemble a Gaussian bell shape centered at t = 0,
with a randomized “covariance”matrix�, whichwe parametrize such thatwe always
obtain a positive definite matrix:
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� =
[√

1 + u2 + v2 + u v

v
√
1 + u2 + v2 − u

]

, (14)

where u, v are sampled uniformly in [−12, 12]. With this, we defined the kernel k2

according to

k̃2(t1, t2) = exp

(

− 1

24

[

t1, t2
]

�−1

[

t1
t2

])

, (15)

k2(t1, t2) = k̃2(t1, t2)

‖k̃2‖1
· 14. (16)

The normalization term here is again given by the sum of all entries of the matrix in
the discrete time representation ([t1, t2] ∈ {0, 0.001, 0.002, . . . , 0.499}2).

4.4 Reservoirs Can Also Learn Without Changing Synaptic
Weights to Readout Neurons

Reservoir model: The reservoir model used here was the same as that in Sect. 4.3,
but with 300 neurons.

Input encoding: Analog values were transformed into spiking trains to serve as
inputs to the reservoir as follows: For each input component, 100 input neurons are
assigned valuesm1, . . .m100 evenly distributed between theminimum andmaximum
possible value of the input. Each input neuron has a Gaussian response field with a
particular mean and standard deviation, where the means are uniformly distributed
between the minimum and maximum values to be encoded, and with a constant
standard deviation. More precisely, the firing rate ri (in Hz) of each input neuron i is

given by ri = rmax exp
(

− (mi−zi )2

2σ2

)

, where rmax = 200 Hz, mi is the value assigned

to that neuron, zi is the analog value to be encoded, and σ = (mmax−mmin)

1000 , mmin with
mmax being the minimum and maximum values to be encoded.

Setup and training schedule: The output of the reservoir was a linear readout that
received as input the mean firing rate of each of the neurons per step, i.e., the number
of spikes divided by 20 for the 20 ms time window that constitutes a step.

The network training proceeded as follows: A new target function was randomly
chosen for each episode of training, i.e., the parameters of the target function are
chosen uniformly randomly from within the ranges above.

Each episode consisted of a sequence of 400 steps, each lasting for 20 ms. In each
step, one training example from the current function to be learned was presented
to the reservoir. In such a step, the inputs to the reservoir consisted of a randomly
chosen vector x = (x1, x2) as described earlier. In addition, at each step, the reservoir
also got the target value C(x ′

1, x
′
2) from the previous step, i.e., the value of the target
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calculated using the target function for the inputs given at the previous step (in the
first step,C(x ′

1, x
′
2) is set to 0). The previous target input was provided to the reservoir

during all steps of the episode.
All the weights of the reservoir were updated using our variant of BPTT, once

per iteration, where an iteration consisted of a batch of 10 episodes, and the weight
updates were accumulated across episodes in an iteration. The ADAM (Kingma and
Ba2014) variant of gradient descentwas usedwith standard parameters and a learning
rate of 0.001. The loss function for training was the mean-squared error (MSE) of
the predictions over an iteration (i.e., over all the steps in an episode and over the
entire batch of episodes in an iteration), with the optimization problem written as

min
�

EC∼F

[

∑

t

(

C(xt1, x
t
2;�) − ̂C(xt1, x

t
2;�)

)2
]

. (17)

In addition, a regularization term was used to maintain a firing rate of 20 Hz as in
Eq.10, with α = 30. In this way, we induce the reservoir to use sparse firing. We
trained the reservoir for 5000 iterations.

Parameter values: The parameters of the leaky integrate-and-fire neurons were as
follows: 5 ms neuronal refractory period, delays spread uniformly between 0 and
5ms, membrane time constant τ j = τ = 20ms (ρ j = ρ = 0.368) for all neurons j ,
and vth = 0.03 V baseline threshold voltage. The dampening factor for training was
γ = 0.4 in Eq.7.

Comparison with Linear baseline: The linear baseline was calculated using linear
regression with L2 regularization with a regularization factor of 100 (determined
using grid search), using the mean spiking trace of all the neurons. The mean spiking
trace was calculated as follows: First, the neuron traces were calculated using an
exponential kernel with 20 ms width and a time constant of 20 ms. Then, for every
step, the mean value of this trace was calculated to obtain the mean spiking trace.
In Fig. 4B, for each episode consisting of 400 steps, the mean spiking trace from
a subset of 320 steps was used to train the linear regressor, and the mean spiking
trace from the remaining 80 steps was used to calculate the test error. The reported
baseline is the mean of the test error over one batch of 1000 episodes with error bars
of one standard deviation.

The total test MSE was 0.0056 ± 0.0039 (linear baseline MSE was 0.0217 ±
0.0046) for the TN task.

Comparison with random reservoir: In Fig. 4B, C, a reservoir with randomly ini-
tialized input, recurrent, and readout weights was tested in the same way as the
optimized reservoir—with the same sets of inputs, and without any synaptic plas-
ticity in the inner loop. The plotted curves are the average of over 8000 different
TNs.

Comparison with backprop: The comparison was done for the case where the
reservoir was trained on the function family defined by target networks. A feed-
forward (FF) network with 10 hidden neurons and 1 output was constructed. The
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input to this FF network were the analog values that were used to generate the spiking
input and targets for the reservoir. Therefore, the FF had 2 inputs, one for each of x1
and x2. The error reported in Fig. 4G is the mean training error over 1000 TNs with
error bars of one standard deviation.

The FF network was initialized with the Xavier normal initialization (Glorot and
Bengio 2010) (which had the best performance, compared to the Xavier uniform and
plain uniformbetween [−1, 1]).Adam (Kingma andBa2014)withAMSGrad (Reddi
et al. 2018) was used with parameters η = 10−1,β1 = 0.7,β2 = 0.9, andC = 10−5.
These were the optimal parameters as determined by a grid search. Together with the
Xavier normal initialization and the weight regularization parameter C , the training
of the FF favored small weights and biases.

5 Discussion

We have presented a new form of reservoir computing, where the reservoir is opti-
mized for subsequent fast learning of any particular task from a large—in general
even infinitely large—family of possible tasks. We adapted for that purpose the well-
known L2L method from machine learning. We found that for the case of reservoirs
consisting of spiking neurons, this two-tier process does in fact enhance subsequent
reservoir learning performance substantially in terms of precision and speed of learn-
ing. We propose that similar advantages can be gained for other types of reservoirs,
e.g., recurrent networks of artificial neurons or physical embodiments of reservoirs
(see Tanaka et al. 2019 for a recent review) for which some of their parameters can
be set to specific values. If one does not have a differentiable computer model for
such a physically implemented reservoir, one would have to use a gradient-free opti-
mization method for the outer loop, such as simulated annealing or stochastic search,
see Bohnstingl et al. (2019) for the first step in that direction.

We have explored in Sect. 3 a variant of this method, where not even the weights to
readout neurons need to be adapted for learning specific tasks. Instead, the weights of
recurrent connections within the reservoir can be optimized so that the reservoir can
learn a task from a given familyF of tasks bymaintaining learned information for the
current task in its working memory, i.e., in its network state. This state may include
values of hidden variables such as current values of adaptive thresholds, as in the case
of LSNNs (Bellec et al. 2018b). It turns out that L2L without any synaptic plasticity
in the inner loop enables the reservoir to learn faster than the optimal learningmethod
from machine learning for the same task: Backpropagation applied directly to the
target network architecture which generated the nonlinear transformation, compare
panels C and G of Fig. 4. We also have demonstrated in Fig. 4E (and in Bellec et al.
2018b) that the L2L method can be viewed as installing a prior in the reservoir. This
observation raises the question of what types of priors or rules can be installed in
reservoirs with this approach. For neurorobotics applications, it would be especially
important to be able to install safety rules in a neural network controller that cannot
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be overridden by subsequent learning. We believe that L2L methods could provide
valuable tools for that.

Another open question is whether biologically more plausible and computation-
ally more efficient approximations to BPTT, such as e-prop (Bellec et al. 2019b),
can be used instead of BPTT for optimizing a reservoir in the outer loop of L2L. In
addition, it was shown in Bellec et al. (2019a) that if one allows that the reservoir
adapts weights of synaptic connections within a recurrent neural network via e-prop,
even one-shot learning of new arm movements becomes feasible.
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Deep Reservoir Computing

Claudio Gallicchio and Alessio Micheli

Abstract This chapter surveys the recent advancements on the extension of Reser-
voir Computing toward deep architectures, which is gaining increasing research
attention in the neural networks community.Within this context, we focus on describ-
ing themajor features ofDeepEcho StateNetworks based on the hierarchical compo-
sition ofmultiple reservoirs. The intent is to provide a useful reference to guide appli-
cations and further developments of this efficient and effective class of approaches
to deal with times-series and more complex data within a unified description and
analysis.

Keywords Deep reservoir computing · Deep Echo State Networks · Deep
Recurrent Neural Networks

1 Introduction

In recent years, the study of deep neural network architectures for temporal data has
been an attractive area of research in the neural networks community (Angelov and
Sperduti 2016;Goodfellowet al. 2016; Schmidhuber 2015). Investigations in the field
of hierarchically organized Recurrent Neural Networks (RNNs) showed that deep
RNNs are able to develop internal states that are multiple time-scale representations
of the temporal information. This is a much desired feature, e.g., when approaching
complex tasks especially in domains related to human cognition, like speech and
text processing (Graves et al. 2013; Hermans and Schrauwen 2013). In addition,
the interest in studying hierarchical RNN models finds strong motivation also from
the different, but related, perspective of computational neuroscience, from which
we know that a “deep” hierarchical organization of recurrent neural units is a major
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pattern in the neocortex (e.g., Churchland and Sejnowski 1992; Gerstner and Kistler
2002). In this sense, information processing in deep RNN architectures has a strong
biological motivation.

Recently, within the umbrella of randomized neural network approaches
(Gallicchio and Scardapane 2020; Gallicchio et al. 2017a, 2018d; Scardapane and
Wang 2017), the Reservoir Computing (RC) (Lukoševičius and Jaeger 2009; Ver-
straeten et al. 2007) paradigm offered a novel perspective to the analysis and design
of deep RNNs. In particular, in the context of discrete-time reservoirs, the intro-
duction of the Deep Echo State Network (DeepESN) model (Gallicchio and Micheli
2016; Gallicchio et al. 2017b) has allowed the study of the properties of layered RNN
architectures separately from the learning aspects. Remarkably, such studies pointed
out that the structured state space organization with multiple time-scale dynamics in
deep RNNs is intrinsic to the nature of compositionality of recurrent neural models.
The interest in the study of the DeepESN model is hence twofold. On the one hand,
sheds light on the intrinsic properties of state dynamics of layered RNNs (Gallicchio
and Micheli 2017a, 2018c; Gallicchio et al. 2018c). On the other hand, it enables
the design of efficiently trained deep neural networks for temporal data, capable
of improving on previous state-of-the-art results in complex tasks (Gallicchio et al.
2018b).

From a historical perspective, before the explicit introduction of the DeepESN
model in Gallicchio et al. (2017b), preliminary studies on hierarchical RC models
targeted ad-hoc constructed architectures, where different modules were trained for
the discovery of temporal features at different scales on synthetic data (Jaeger 2007).
Moreover, ad-hoc constructed modular networks made up of multiple ESN modules
have also been investigated in the speech processing area (Triefenbach et al. 2010,
2013). More recently, the advantages of multilayered RC networks have been exper-
imentally studied on time-series benchmarks in the RC area (Malik et al. 2017).
Different from the above mentioned works, the studies on DeepESN considered in
the following aim to address some fundamental questions pertaining to the true nature
of layering as a factor of architectural RNN design (Gallicchio and Micheli 2018c).
Such basic questions can be essentially summarized as follows:

(i) Why stacking layers of recurrent units?
(ii) What is the inherent architectural effect of layering in RNNs (independently

from learning)?
(iii) Can we extend the advantages of depth in RNN design using efficiently trained

RC approaches?
(iv) Can we exploit the insights from such analysis to address the automatic design

of deep recurrent models (including fundamental parameters such as the archi-
tectural form, the number of layers, the number of units in each layer, etc.)?

This chapter is intended both to draw a line of recent developments in response to
the above mentioned key research questions and to provide an up-to-date overview
on the progress and on the perspectives in the studies of DeepESNs. The rest of
this contribution is organized as follows. The DeepESN model is introduced and
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discussed in Sect. 2, both from the architectural and the dynamical systemviewpoints.
The progressive advances in the study of DeepESN field are summarized in Sect. 3,
while further developments related to other hierarchical reservoir models are recalled
in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Deep Echo State Network

This section is intended to provide an introduction to the major characteristics of
deep RC models. In particular, we focus on discrete-time reservoir systems, i.e., we
frame our analysis adopting the formalism of Echo State Networks (ESNs) (Jaeger
2001; Jaeger and Haas 2004). In this context, we illustrate the main properties of
deep reservoir architectures in Sect. 2.1, while in Sect. 2.2 we analyze the behavior
of deep reservoirs from the point of view of dynamical systems.

2.1 Architecture

As for the standard shallow ESN model (Jaeger 2001; Jaeger and Haas 2004), a
DeepESN (Gallicchio et al. 2017b) is composed by a dynamical reservoir system,
which embeds the input history into a rich state representation, and by a feed-forward
readout part, which exploits the state encoding provided by the reservoir to compute
the output. Crucially, the reservoir of a DeepESN is organized into a hierarchy of
stacked recurrent layers, where the output of each layer acts as input for the next
one. At each time step t , the state computation proceeds by following the pipeline of
recurrent layers, from the first one, which is directly fed by the external input, up to
the highest one in the reservoir architecture (i.e., the farthest one from the external
input). The layered reservoir architecture of a DeepESN is illustrated in Fig. 1. In
our notation, we use NU to denote the external input dimension, NL to indicate the
number of reservoir layers, and we assume, for the only sake of simplicity, that each
reservoir layer has NR recurrent units. Moreover, we use u(t) ∈ R

NU to denote the
external input at time step t , while x(i)(t) ∈ R

NR is the state of the reservoir layer i
at time step t . In general, we use the superscript (i) to indicate that an item is related
to the i th reservoir in the stack. At each time step t , the composition of the states in
all the reservoir layers, i.e. x(t) = (

x(1)(t), . . . , x(NL )(t)
) ∈ R

NR NL , gives the global
state of the network.

Assuming leaky integrator reservoir units (Jaeger et al. 2007) in each layer and
omitting the bias terms for the ease of notation, the state transition functions in the
reservoir layers can be described as follows: For the first layer, we have

x(1)(t) = (1 − a(1))x(1)(t − 1) + a(1)f(W(1)u(t) + Ŵ(1)x(1)(t − 1)), (1)

while for successive layers i > 1 the state update is given by
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Fig. 1 Reservoir architecture of a Deep Echo State Network

x(i)(t) = (1 − a(i))x(i)(t − 1) + a(i)f(W(i)x(i−1)(t) + Ŵ(i)x(i)(t − 1)). (2)

In the above Eqs. 1 and 2, W(1) ∈ R
NR×NU denotes the input weight matrix, W(i) ∈

R
NR×NR (for i > 1) is theweightmatrix for inter-layer connections from layer (i − 1)

to layer i , Ŵ(i) ∈ R
NR×NR is the recurrent weight matrix for layer i , a(i) ∈ [0, 1] is

the leaking rate for layer i and f denotes the element-wise applied activation function
for the recurrent reservoir units (typically, the tanh non-linearity is used).

Remark 1 In light of themathematical description introduced inEqs. 1 and2,we can
see that the standard (shallow) ESNmodel can be seen as a special case of DeepESN,
obtained whenever a single reservoir layer is considered, i.e., for NL = 1.

Interestingly, as graphically illustrated in Fig. 2, we can observe that the reservoir
architecture of a DeepESN can be characterized, with respect to the shallow counter-
part, by interpreting it as a constrained version of standard shallow ESN/RNN with
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the same total number of recurrent units. In particular, the following constraints are
applied in order to obtain a layered architecture:

• all the connections from the input layer to reservoir layers at a level higher than 1
are removed (influencing the way in which the external input information is seen
by recurrent units progressively more distant from the input layer);

• all the connections from higher layers to lower ones are removed (which affects
the flow of information and the dynamics of sub-parts of the network’s state);

• all the connections from each layer to higher layers different from the next one in
the pipeline are removed (which affects the flow of information and the dynamics
of sub-parts of the network’s state).

The above mentioned constraints, that graphically correspond to layering, have been
explicitly and extensively discussed in our previous work in Gallicchio et al. (2017b).
Under this point of view, the DeepESN architecture can be seen as a simplification
of the corresponding single-layer ESN, leading to a reduction in the absolute num-
ber of recurrent weights which, assuming full-connected reservoirs at each layer,
is quadratic in both the number of recurrent units per layer and the total number
of layers (Gallicchio et al. 2018c). As detailed in the above points, however, note
that this peculiar architectural organization influences the way in which the tempo-
ral information is processed by the different sub-parts of the hierarchical reservoir,
composed of recurrent units that are progressively more distant from the external
input.

Furthermore, different from the case of a standardESN/RNN, the state information
transmission between consecutive layers in a DeepESN presents no temporal delays.
In this respect, we can make the following considerations:

• the aspect of sequentiality between layers operation is already present and dis-
cussed in previous works in the literature on deep RNN (see, e.g., El Hihi et al.
1996; Graves et al. 2013; Hermans and Schrauwen 2013; Schmidhuber 1992),
which actually stimulated the investigation on the intrinsic role of layering in such
hierarchically organized recurrent network architectures;

• this choice allows the model to process the temporal information at each time step
in a “deep” temporal fashion, i.e., through a hierarchical composition of multiple
levels of recurrent units;

• in particular, notice that the use of (hyperbolic tangent) non-linearities applied
individually to each layer during the state computation does not allow to describe
the DeepESN dynamics by means of an equivalent shallow system.

Based on the above observations, a major research question naturally arises and
drives the motivation to the studies reported in Sect. 3, i.e., how and to what extent,
do the described constraints that rule the layered construction and the hierarchical
representation in deep recurrent models have an influence on their dynamics?

As regards the output computation, although different choices are possible for the
pattern of connectivity between the reservoir layers and the output module (see, e.g.,
Hermans and Schrauwen 2013; Pascanu et al. 2014), a typical setting consists of
feeding at each time step t the state of all reservoir layers (i.e., the global state of the
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Fig. 2 The layered reservoir
architecture of DeepESN as
a constrained version of a
shallow reservoir. Compared
to the shallow case with the
same total number of
recurrent units, in a stacked
DeepESN architecture the
following connections are
removed: from the input to
reservoir levels at height > 1
(blue dashed arrows), from
higher to lower reservoir
levels (green dash dotted
arrows), from each reservoir
at level i to all reservoirs at
levels higher than i + 1
(orange dotted arrows)

DeepESN) to the output layer, as illustrated in Fig. 3. Note that this choice enables the
readout component to give different weights to the dynamics developed at different
layers, thereby allowing to exploit the potential variety of state representations in the
stack of reservoirs. Under this setting, denoting by NY the size of the output space,
in the typical case of linear readout, the output at time step t is computed as

y(t) = Woutx(t) = Wout
(
x(1), . . . , x(NL )

)
, (3)

where Wout ∈ R
NY×NR NL is the readout weight matrix that is adapted on a training

set, typically in closed form through direct methods such as pseudo-inversion or
ridge-regression.

As in the standard RC framework, all the reservoir parameters, i.e., the weights
in matrices W(i) and Ŵ(i), are left untrained after initialization under stability con-
straints given by the Echo State Property (Gallicchio and Micheli 2017a; Jaeger
2001; Yildiz et al. 2012). This aspect is related to the analysis of dynamical regimes
of stacked reservoir systems, and it is detailed in Sect. 2.2.
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Fig. 3 Readout organization
for DeepESN in which at
each time step the reservoir
states of all layers are used
as input for the output layer

2.2 Dynamics of Deep Reservoirs and Echo State Property

The computation carried out by the stack of reservoirs of a DeepESN can be analyzed
from a dynamical system viewpoint in terms of input-driven discrete-time non-linear
dynamical systems. In particular,we can see that the dynamics of the first layer, driven
by the external input, are ruled by a function F (1):

F (1) : RNR × R
NU → R

NR

x(1)(t) = F (1)(x(1)(t − 1),u(t)).
(4)
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The dynamical behavior of each successive layer i > 1 is driven by the state of the
previous layer in the pipeline, which determines a dependence (through multiple
non-linearities) of x(i)(t) from the states of the hierarchy computed at the previous
time step from the first layer up to level i , i.e., x(1)(t − 1), . . . , x(i)(t − 1), as well
as from the input. This is expressed by a function F (i), as follows:

F (i) : RNR × · · · × R
NR

︸ ︷︷ ︸
i times

×R
NU → R

NR

x(i)(t) = F (i)(x(1)(t − 1), . . . , x(i)(t − 1),u(t)).

(5)

Note that for both Eqs. 4 and 5, the specific shape of the state transition functions
has been described in terms of leaky integrator reservoir units respectively in Eqs. 1
and 2, and are parametrized by the weight values in matrices W(i) and Ŵ(i), for
i = 1, . . . , NL .

When we turn into considering the global state of the DeepESN as the com-
position of the reservoir states in all the levels of the hierarchy, i.e., x(t) =(
x(1)(t), . . . , x(NL )(t)

) ∈ R
NR NL , we can see that the state dynamics are ruled by

a global state transition function F . This function can be defined as a composition
of the layer-wise applied functions F (i), i.e., F = (

F (1), . . . , F (NL )). At each time
step t , function F computes the next state of the entire deep reservoir system based
on the external input information and on the previous state of the deep reservoir, as
follows:

F : RNR × · · · × R
NR

︸ ︷︷ ︸
NL times

×R
NU → R

NR × · · · × R
NR

︸ ︷︷ ︸
NL times

x(t) = F(x(t),u(t))
= (

F (1)(x(1)(t − 1),u(t)), . . . , F (NL )(x(1)(t − 1), . . . , x(NL )(t − 1),u(t))
)
.

(6)
As in the case of standard shallow RC architectures, in order to avoid training of

the reservoir connections, the state dynamics of a deep reservoir system described
by Eq.6 should exhibit global asymptotic (Lyapunov) stability, as prescribed by the
Echo State Property (ESP) (Jaeger 2001; Yildiz et al. 2012). This aspect has been
analyzed in detail in Gallicchio andMicheli (2017a), where the well known algebraic
conditions for the ESP have been extended to cope with the case of deep reservoirs.
Herewe recall the statements of Theorems 1 and 2 inGallicchio andMicheli (2017a),
which provide practical means for initialization of DeepESNs. Note that, as in the
shallow case, when analyzing the behavior of deep reservoirs we shall assume that
both the input space and the reservoir state spaces in all the layers are compact sets.1

Theorem 1 (Necessary Condition for the ESP of DeepESN) Consider a DeepESN
whose dynamics are ruled byEq.6, implemented in terms of leaky integrator reservoir

1 The latter set of conditions is ensured when the reservoir state transition functions in Eqs. 1 and 2
are squashing non-linearities, such is the case, e.g., of tanh.
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units as in Eqs.1 and 2, and assume that the null sequence is an admissible input
for the system. Then a necessary condition for the ESP to hold is provided by the
following equation:

max
i=1,...,NL

ρ(i) = max
i=1,...,NL

ρ
(
(1 − a(i))I + a(i)Ŵ(i)

)
< 1, (7)

where ρ(·) denotes the spectral radius operator (i.e., the maximum absolute eigen-
value of its matrix argument), and I is the identity matrix of size NR.

Theorem 2 (Sufficient Condition for the ESP of DeepESN) Consider a DeepESN
whose dynamics are ruled byEq.6, implemented in terms of leaky integrator reservoir
units as in Eqs.1 and 2, with tanh non-linearity as activation function. If theDeepESN
is featured by globally contractive dynamics then it satisfies the ESP. Accordingly, a
sufficient condition for the ESP to hold is given by the following equation:

max
i=1,...,NL

C (i) < 1, (8)

where C (i) denotes the Lipschitz constant of the state transition function F (i) of the
i th reservoir level, and it is computed as follows:

C (i) =
⎧
⎨

⎩

(1 − a(1)) + a(1)‖Ŵ(1)‖ i f i = 1

(1 − a(i)) + a(i)
(
C (i−1)‖W(i)‖ + ‖Ŵ(i)‖) i f i > 1,

(9)

where ‖ · ‖ is the matrix norm induced by the L2-norm defined on the corresponding
state spaces.

The proofs of both Theorems 1 and 2 are given in Gallicchio and Micheli (2017a).
A simple approach to initialize the reservoir weights in DeepESN is then to ran-

domly draw the elements in W(i) and Ŵ(i), e.g., from a uniform distribution in
[−1, 1], and then rescale them in order to meet one of the conditions expressed by
Theorems 1 or 2. As for standard shallow reservoirs, the sufficient condition is often
too restrictive in practice, and the necessary one is commonly adopted in DeepESN
applications.

Remark 2 The necessary and the sufficient conditions for the ESP of DeepESN
expressed by Theorems 1 and 2 generalize the corresponding conditions for shallow
reservoirs given in standard RC literature (Jaeger 2001; Yildiz et al. 2012), respec-
tively obtained from Eqs. 7 and 9 by considering reservoir architectures with just one
layer, i.e., for NL = 1.

An interesting insight that we can get from the formulations of the conditions in The-
orems 1 and 2, is that adding progressively more reservoir layers to the architecture
of a DeepESN can never lower either the degree of stability (max operator in Eq.7)
or the Lipschitz constant (max operator in Eq.8) of the global deep reservoir system.
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This essentially translates into a propensity of deeper recurrent neural systems to
show longer memory spans even in the absence of training of the recurrent connec-
tions (as observed by several numerical simulations in Gallicchio andMicheli 2017a;
Gallicchio et al. 2017b). This insight is also confirmed by more in-depth studies on
local Lyapunov exponents of DeepESN states, reported in Gallicchio et al. (2018c).
In particular, the results of the analysis given in Gallicchio et al. (2018c) indicate that
in conditions of an equal number of recurrent units, deeper reservoir architectures are
more easily shifted nearby the edge of stability (or criticality), a dynamical regime
close to a stable-unstable transition, where recurrent neural systems are known to
develop richer temporal representations of their driving input signals (Legenstein
and Maass 2007a, b).

3 Advances

In this section, we briefly survey the recent advances in the study of the Deep-
ESN model. The works described in the following, by addressing the key questions
summarized in the Introduction, provide general support to the significance of the
DeepESN, and also critically discuss its advantages and drawbacks. An updated
overview on the advancements in DeepESN research is also available in Gallicchio
and Micheli (2018a).

Multiple time-scale representation. TheDeepESNmodel has been introduced in
Gallicchio et al. (2017b), which extends the preliminary work in Gallicchio and
Micheli (2016). The analysis provided in these papers revealed, through empirical
investigations, the hierarchical structure of temporal data representations devel-
oped by the layered reservoir architecture of a DeepESN. Specifically, the stacked
composition of recurrent reservoir layers was shown to enable a multiple time-
scale representation of the temporal information, naturally ordered along the net-
work’s hierarchy. Besides, in Gallicchio et al. (2017b), layering proved effective
also as a way to enhance the effect of knownRC factors of network design, includ-
ing unsupervised reservoir adaptation bymeans of Intrinsic Plasticity (Schrauwen
et al. 2008). The resulting effects have been analyzed also in terms of state entropy
and memory.

Multiple frequency representation. The hierarchically structured state represen-
tation in DeepESNs has been investigated by means of frequency analysis in Gal-
licchio et al. (2019b), which specifically considered the case of recurrent units
with linear activation functions. Results pointed out the intrinsic multiple fre-
quency representation in DeepESN states, where, even in the simplified linear
setting, progressively higher layers focus on progressively lower frequencies. In
Gallicchio et al. (2019b), the potentiality of the deep RC approach has also been
exploited in predictive experiments, showing that DeepESNs outperform state-
of-the-art results on the class of Multiple Superimposed Oscillator (MSO) tasks
by several orders of magnitude.
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Echo State Property. The fundamental RC conditions related to the Echo State
Property (ESP) have been generalized to the case of deep RC networks in Gal-
licchio and Micheli (2017a). Specifically, through the study of stability and con-
tractivity of nested dynamical systems, the theoretical analysis in Gallicchio and
Micheli (2017a) gives a sufficient condition and a necessary condition for the
Echo State Property to hold in case of deep RNN architectures. Remarkably, the
work in Gallicchio and Micheli (2017a) provides a relevant conceptual and prac-
tical tool for the definition, validity and usage of DeepESN in an “autonomous”
(i.e., self-sufficient) way with respect to the standard ESN model.

Local Lyapunov Exponents. The study of DeepESN dynamics under a dynami-
cal system perspective has been pursued inGallicchio et al. (2017c, 2018c), which
provide a theoretical and practical framework for the study of stability of layered
recurrent dynamics in terms of local Lyapunov exponents. The analysis along
this research direction provided interesting insights in terms of the quality of the
developed system dynamics, showing the natural beneficial effects due to layer-
ing. This aspect is graphically illustrated in Fig. 4, which shows the maximum
local Lyapunov exponent (MLLE) of reservoir systems at the increase of the total
number of recurrent units, for the case of deep architectures (where the available
recurrent units are arranged in layers of 10 units each) and shallow ones (where
all the available recurrent units form a single layer). The MLLE is important to
characterize the regime of dynamical stability of reservoir systems: values smaller
than 0 denote a stable behavior, values greater than 0 indicate instability, and 0
identifies the edge of stability (or criticality) condition where dynamical recurrent
systems are known to show richer representations of temporal data (Legenstein
and Maass 2007a, b). As Fig. 4 indicates, compared to shallow ESN settings in
the condition of an equal number of recurrent units, DeepESNs consistently show
higher values of the MLLE, closer to the edge of stability, i.e., richer dynamics.
The natural enrichment of reservoir quality in deep reservoir settings has an inter-
esting aftereffect in terms of short-term memory ability of the networks. Figure5
shows the Memory Capacity (MC) score (as defined in Jaeger (2001)) achieved
by DeepESN and shallow ESN under the same conditions considered for Fig. 4,
indicating the consistent improvement brought by the layered setting. The inter-
ested reader can find a more in-depth discussion on the MLLE, MC, and their
relation in the context of DeepESNs in Gallicchio et al. (2018c).

Design of Deep Recurrent Neural Networks. The study of the frequency spec-
trum of deep reservoirs enabled us to address one of the fundamental open issues
in deep learning, namely how to choose the number of layers in a deep RNN archi-
tecture. Starting from the analysis of the intrinsic differentiation of the filtering
effects of successive levels in a stacked RNN architecture, the work in Gallic-
chio et al. (2018b) proposed an automatic method for the design of DeepESNs.
Noticeably, the proposed approach allows to tailor the DeepESN architecture to
the characteristics of the input signals, consistently relieving the cost of the model
selection process, and leading to new state-of-the-art results in speech and music
processing tasks.
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Deep Reservoirs for Structured Domains. A first extension of the deep RC
framework for learning in structured domains has been presented in Gallicchio
and Micheli (2018b, 2019), which introduced the Deep Tree Echo State Network
(DeepTESN) model. The new model points out that it is possible to combine the
concepts of deep learning, learning for trees and RC training efficiency, taking
advantages of the layered architectural organization and from the composition-
ality of the structured representations both in terms of efficiency and in terms of
effectiveness.
In particular, experimental results in Gallicchio and Micheli (2018b, 2019) con-
cretely demonstrate that deep RC models for trees can outperform the accuracy
achieved by state-of-the-art approaches for learning in structured domains in chal-
lenging problems in the areas of document processing and computational biology,
at the same time being extremely advantageous in terms of required training times.
Overall, DeepESN provides the first instance of an extremely efficient approach
for the design of deep neural networks for learning in cases where the input data is
represented in the form of tree structures. Besides, from a theoretical perspective,
the work in Gallicchio and Micheli (2019) also provides an in-depth analysis of
asymptotic stability of untrained (non-linear) state transition systems operating on
discrete tree structures. This results in a generalization of the ESP of conventional
reservoirs, proposed under the name of Tree Echo State Property (Gallicchio and
Micheli 2019).
The Deep RC approach has been proved extremely advantageous also in the case
of learning in domains of graph data, enabling the development of Fast and Deep
Graph Neural Networks (FDGNNs) in Gallicchio and Micheli (2020). The con-
cept of reservoirs operating on discrete graph structures has been first introduced
in Gallicchio (2010) and revolves around the computation of a state embedding
for each vertex in an input graph. In particular, the state for a vertex v is com-
puted as a function of the input information attached to the vertex v itself (i.e., a
vector of features that takes the role of external input in the system), and of the
state computed for the neighbors of v (a concept that takes the role of “previous
time-step” in the case of conventional RC systems for time-series). The stability
of the resulting dynamics can be studied by generalizing the mathematical means
described in Sect. 2.2, leading to the definition of Graph Embedding Stability
(GES), a stability property for neural embedding systems on graphs introduced
in Gallicchio and Micheli (2020), to which the interested reader is referred for
further information. Besides the introduction of GES, the work in Gallicchio and
Micheli (2020) illustrates how to design a deep RC system for graphs, where each
layer builds its embedding on the basis of the state information produced in the
previous layer. The FDGNN approach was shown to reach (and even outperform)
state-of-the-art accuracy on known benchmarks for graph classification, compar-
ingwellwithmany literature approaches, especially based on convolutional neural
networks and kernel for graphs. Inheriting the ease of training algorithms from
the RC paradigm, the approach is also extremely faster than literature models,
enabling a sensible speed-up in the required training times (up to ≈ 3 orders of
magnitude in the experiments reported in Gallicchio and Micheli (2020)).
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Applications. For what regards the experimental analysis in applications, Deep-
ESNs were shown to bring several advantages in both cases of synthetic and
real-world tasks. Specifically, DeepESNs outperformed shallow reservoir archi-
tectures (under fair conditions on the number of total recurrent units and, as such,
on the number of trainable readout parameters) on the Mackey-Glass next-step
prediction task (Gallicchio and Micheli 2018c), on the short-term MC task (Gal-
licchio 2018; Gallicchio et al. 2017b), on MSO tasks (Gallicchio et al. 2019b),
as well as on a Frequency Based Classification task (Gallicchio et al. 2018b),
purposely designed to assess multiple frequency representation abilities. As per-
tains to real-world problems, the DeepESN approach recently proved effective in
a variety of domains, including Ambient Assisted Living (AAL) (Gallicchio and
Micheli 2017b), medical diagnosis (Gallicchio et al. 2018a), speech and poly-
phonic music processing (Gallicchio et al. 2018b, 2019a), metereological fore-
casting (Alizamir et al. 2020; Kim and King 2020), solar irradiance prediction (Li
et al. 2020), energy consumption and wind power generation prediction (Hu et al.
2020), short-term traffic forecasting (Del Ser et al. 2020), destination prediction
(Song et al. 2020) car parking and bike-sharing in urban computing (Kim and
King 2020), financial market predictions (Kim and King 2020), and industrial
applications (for blast furnace off-gas) (Colla et al. 2019; Dettori et al. 2020).

Software. Software implementations for DeepESNs applications have recently
been made publicly available, with references (Gallicchio et al. 2017b, 2018b)
representing citation requests for the use of the developed libraries. TheDeepESN
software is provided in the following forms:

• Deep Echo State Network (DeepESN) MATLAB Toolbox
available through the MATLAB Add-On Explorer, and directly at the link https://
it.mathworks.com/matlabcentral/fileexchange/69402-deepesn;

• DeepESN Numpy Library (DeepESNpy)
available at https://github.com/lucapedrelli/DeepESN.

• DeepRC TensorFlow Library (DeepRC-TF)
available at https://github.com/gallicch/DeepRC-TF.

4 Other Hierarchical Reservoir Computing Models

In this section, we briefly summarize further developments in the field of hierarchical
RC architectures, successive to the introduction of the DeepESN model. The works
described below further contribute to provide an integrated view on the research lines
attempting at bridging the gap between the areas of RC and deep learning.

Outside the ESN formalism, hierarchicalmodularity in reservoirmodels construc-
tion has been recently explored (Zajzon et al. 2018) in the strictly related field of
Liquid State Machines (Maass et al. 2002), where reservoirs are implemented using
spiking neural networks. In particular, results in Zajzon et al. (2018) indicate that

https://it.mathworks.com/matlabcentral/fileexchange/69402-deepesn
https://it.mathworks.com/matlabcentral/fileexchange/69402-deepesn
https://github.com/lucapedrelli/DeepESN
https://github.com/gallicch/DeepRC-TF
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Fig. 4 MLLE of deep and shallow reservoir systems for increasing number of total recurrent units.
In the deep case, the available reservoir units are organized into a layered architecture, with 10 units
in each layer. In the shallow case, the available reservoir units are arranged into a shallow architecture
with a single layer. The values of MLLE are computed as described in Gallicchio et al. (2018c),
using the same input time-series, where individual elements were drawn from a uniform distribution
in [−0.8, 0.8]. Results correspond to a simple network setting, with input scaling ‖W(1)‖ = 1, and
in which all the reservoir layers share the same hyper-parametrization: spectral radius ρ(i) = 0.9
(for all layers i) and inter-layer scaling ‖W(i)‖ = 0.5 (for layers i > 1). For each configuration,
results are averaged (and the standard deviation is computed) over 10 network guesses (with the
same values of hyper-parameters, but different seed for random weights initialization)
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Fig. 5 Average test MC achieved by deep and shallow reservoir systems for increasing number of
total recurrent units (the higher the better). In the deep case, the available reservoir units are organized
into a layered architecture, with 10 units in each layer. In the shallow case, the available reservoir
units are arranged into a shallow architecture with a single layer. The values of MC are computed
using the same task settings reported in Gallicchio et al. (2018c), and the same experimental settings
considered for Fig. 4
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information propagation across the layers might be difficult in deep organizations of
spiking neural networks, and a way to overcome this difficulty might consist of using
specific patterns of inter-reservoir connectivity in the form of structural mappings
with topographic projections between successive layers.

Hierarchical multilayered architectures have been explored also in the context
of reservoir systems implemented as cellular automata (CA) (Von Neumann 1996;
Wolfram 1984), which can offer some potential advantages per se, e.g., in terms
of further reductions of computational complexity (see, e.g., Yilmaz 2014). In this
context, the preliminarywork inNichele andMolund (2017) shows promising results
of 2-layered architectures with CA reservoirs applied to a 5-bit memorization task.

It is known that one of the potentially more costly aspects in the design of RC
models is given by the optimization of reservoir hyper-parameters to the specificity
of the task at hand. This kind of difficulty, already challenging in the case of shallow
reservoirs (Lukoševičius and Jaeger 2009), can be amplified when more reservoir
layers are considered. An interesting research line in this concern is thus given by
the application of evolutionary algorithms for the optimization of hyper-parameter
values of hierarchical reservoirs. A first attempt in this direction is described in Dale
(2018), where a steady-state genetic algorithm called Microbial GA (Harvey 2009)
is adopted.

A further line of research involves the study of hybrid neural networks archi-
tectures that exploit the composition of deep models with shallow RC networks.
An instance is represented by the recently introduced Deep Belief ESN (Sun et al.
2017), in which an ESN module is stacked on top of a Deep Belief Network (DBN).
The DBN essentially operates a hierarchical non-linear transformation on the input
data, while the final output is given by the (shallow) ESN layer. The components of
the architecture are trained individually, employing a mixture of unsupervised and
supervised learning inwhich theDBN is trained by contrastive divergence (following
a greedy layer-wise approach), and the ESN is trained by pseudo-inversion. Finally,
as generally analyzed in the context of deep RNN construction (Pascanu et al. 2014),
depth can enter the design of recurrent neural models in several disguises. In the field
of RC, we foresee that the synergy between the benefits of modular compositionality
both in the recurrent part (deep reservoir) and in the output part (deep readout) could
result in breakthrough application results in challenging real-world tasks. The first
step along this research direction has been pursued in Bianchi et al. (2018), in which a
bidirectional (shallow) reservoir network is coupled with a deep readout component,
showing promising results both on benchmark datasets and on a real-world task in
the area of medical diagnosis.

Finally, it is worth mentioning recent works that attempt at implementing the
DeepESN concept in neuromorphic hardware, especially in photonics, see, e.g., Lug-
nan et al. (2020), Freiberger et al. (2019).
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5 Conclusions

In this chapter, we have provided a brief overviewof the extension of theRCapproach
towards the deep learning framework. Focusing the analysis in the context of discrete-
time reservoir models, we have described the salient features of the DeepESNmodel.
Noticeably, DeepESNs enable the analysis of the intrinsic properties of state dynam-
ics in deep RNN architectures, i.e., the study of the bias due to layering in the design
of RNNs. At the same time, DeepESNs allow to transfer the striking advantages
of the RC methodology to the case of deep recurrent architectures, leading to an
efficient approach for designing deep neural networks for temporal data.

The analysis of the distinctive characteristics and dynamical properties of the
DeepESN model has been carried out, first empirically, in terms of entropy of state
dynamics and system memory. Then, it has been conducted through more abstract
theoretical investigations that allowed the derivation of the fundamental conditions
for the ESP of deep networks, as well as the characterization of the developed dynam-
ical regimes in terms of local Lyapunov exponents. Besides, studies on the frequency
analysis of DeepESN dynamics allowed the development of a grounded algorithm
for the automatic setup of (the number of layers of) a DeepESN. Current develop-
ments already include model variants and applications to both synthetic and real-
world tasks. Besides, extensions of the deep RC approach to learning in structured
domains have been introduced with DeepTESN (for trees) and FDGNN (for graphs).
Finally, a glimpse of the developments in the study of hierarchical RC-based models
successive to the introduction of DeepESN has been provided.

The authors hope that the development of these kinds of architectures and their
extensions, in particular towards learning in structureddomains, can foster the spread-
ing of RC models both in research and applied fields.
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On the Characteristics and Structures
of Dynamical Systems Suitable
for Reservoir Computing

Masanobu Inubushi, Kazuyuki Yoshimura, Yoshiaki Ikeda,
and Yuto Nagasawa

Abstract We present an overview of mathematical aspects of Reservoir Computing
(RC). RC is a machine learning method suitable for physical implementation, which
harnesses a type of synchronization, called Common-Signal-Induced Synchroniza-
tion. A precise criterion for this synchronization is given by a quantity called the
conditional Lyapunov exponent. We describe a class of dynamical systems (physical
systems) that are utilizable for RC in terms of this quantity. Then, two notions char-
acterizing the information processing performance of RC are illustrated: (i) Edge of
Chaos and (ii) Memory-Nonlinearity Trade-off. Based on the notion (ii), a structure
of dynamical systems suitable for RC has been proposed. This structure is called
the mixture reservoir. We review the structure and show its remarkable information
processing performance.

1 Introduction

Recent developments in computer software, in particular machine learning, have
remarkably improved the information processing accuracy such as in speech and
image recognition tasks. On the other hand, in a research field of computer hardware,
it is expected that an ultrafast computer can be realized based on a novel principle,
such as a quantum computer. Reservoir computing (RC) is a machine learning
method suitable for hardware implementation (Jaeger and Haas 2004). Indeed, many
researchers are now actively implementing RC with various physical systems such
as optoelectronic systems (Appeltant et al. 2011; Larger et al. 2017; Nakajima et al.
2018; Nakane et al. 2018; Takano et al. 2018), quantum systems (Fujii and Nakajima
2017), and soft materials (Nakajima et al. 2015). It is expected that utilizing physical
characteristics for RC appropriately may lead to an innovative “computer” achiev-
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ing ultrafast processing speed with low energy consumption (see other chapters for
various physical implementations).

The physical systems utilized for RC are modeled as nonlinear dynamical
systems, and dynamical system theory (Morris et al. 2012) and nonlinear physics
provide us useful mathematical tools. So far, these tools have enabled us to find some
characteristics ofRC aswe introduce below.Nevertheless, at present, our understand-
ing of the working principles behind RC is far from complete. For instance, we don’t
have any clear answer to the following fundamental question: “For a given task,
what characteristics and structures of a dynamical system are crucial for RC?” or
“Does there exist a universal law governing the information processing ability of a
dynamical system for RC less dependent on a task?” If we find clear answers to the
above questions, they are not only of theoretical interest but also practically useful
since they will give design guidelines of RC. Unfortunately, at the present stage,
various physical systems are employed for RC blindly without design guidelines.
So, it is quite important to find the answers.

Here, focusing on characteristics and structures of dynamical systems suitable for
RC, we overview the mathematical tools and theoretical results reported so far. In
Sect. 2, we illustrate a mathematical formulation of RC including its general frame-
work, the surprisingly simple learning method, a class of dynamical systems usable
for RC, and a concrete example. In Sect. 3, two notions characterizing the information
processing performance of RC are illustrated: (i) Edge of Chaos and (ii) Memory-
Nonlinearity Trade-off. Based on the notion (ii), we introduce an effective structure
of dynamical systems for RC with some numerical results.

While RC originated from neuroscience, recently a wide variety of physical phe-
nomena are employed experimentally for the implementations. From a theoreti-
cal viewpoint, understanding of RC would need a multidisciplinary approach from
mathematics, computational science, nonlinear science, neuroscience, and statistical
physics. Here, we would like to introduce an aspect of this attractive research field.

2 Mathematical Formulation of Reservoir Computing

First, we formulate the framework of RC in an abstract form, and then, introduce a
concrete example. Let a set of two sequences D = {s(k), y(k)}Kk=1 be given, where
s(k) and y(k) are one-dimensional input and output signals at time k and there
exists some relation between these two sequences. The data set D is referred to
as training data. The goal of RC is to learn the relation between s and y from the
training data D, and then, after the training period k > K , give an estimation ŷ(k) for
predicting an unknown output y(k) that corresponds to a given new input data s(k).
This is a typical supervised learning and the above estimation is called generalization.
Considering time series prediction as an example, the goal ofRC is to predict s(k + τ)

corresponding to the given input sequence {s(i)}i≤k , i.e., y(k) = s(k + τ), which is
called τ -step ahead prediction.
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Fig. 1 a, b Illustration of RC framework. The red circle represents the input node, the blue dot
circle represents the reservoir, and the green circle represents the output node. c Illustration of the
vectors y, ŷ. d A demonstration of RC. The task is to infer the variable yL (k) of the Lorenz system
from a given sequence of the variable {. . . xL (k − 1), xL (k)} of the same Lorenz system. From top
to bottom, the variables xL , yL , ŷL which is inferred by the reservoir, and the time series of the
reservoir variable ri (i = 1, . . . , 5). e The projection of the orbit (the same data as d)

RC consists of the input/output nodes and a dynamical system driven by the input
sequence {s(k)}, called reservoir. In Fig. 1a, an illustration of the reservoir is shown as
“R” encircled by the blue dot circle. The reservoir is described by an N -dimensional
dynamical system as follows:

r(k) = F(r(k − 1), s(k)), (1)

where r(k) ∈ R
N represents a state of the reservoir at time k which we call reservoir

state, and F : RN × R → R
N is a map describing the dynamics of the reservoir.

In the case of physical implementation, F is determined by the physical law. The
reservoir state r(k) = {ri (k)}Ni=1 evolves in time according to the map F with the
input signal s(k).

The approximation ŷ(k) for the desired output y(k) is obtained by “observation”
of the reservoir state with linear weights:

ŷ(k) :=
N∑

i=1

wiri (k). (2)

This output weight {wi }Ni=1 is optimized so that ŷ(k) � y(k) as explained below.
The determination of the weight {wi }Ni=1 by the training data D is called learning. In
short, RC is the information processing method with learning output weight only.
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In other words, the evolution law, F in the Eq. (1), is not optimized but fixed. Con-
sidering the conventional training methods of neural network where both w and F
are learned, it may be surprising that information processing can be performed by a
task-independent, even randomly generated, evolution law F. Since control of phys-
ical laws is difficult in general, physical implementations of the conventional neural
networks, which require thousands of adjustable parameters and stable controls of
them with high precision, are also difficult. On the other hand, the framework of RC
does not require such control, and therefore is suitable for physical implementations.

The learning of the linear output weights w is just performed via the least squares
method by using the training data D. Let y = (y(1), . . . , y(K ))T be a sequence of the
desired outputs and w = (w1, . . . ,wN )T be a weight vector, and �k j = r j (k) which
is the so-called design matrix. The linear readout (2) can be described as ŷ = �w.
From the condition to minimize the square error E(w) = ‖ y − ŷ‖2 where ‖ · ‖ is the
l2-norm, we obtain the set of equations ∂wi E(w) = 0 (i = 1, . . . , N ) and its solution
as follows:

w = (�T�)−1�T y. (3)

What we need for the learning for RC is just to calculate the inverse matrix of
�T� whose size is the number of the nodes, N × N . Thus, the learning for RC is
computationally cheap. While this formulation is similar to the basic least squares
method, the difference is that the design matrix has information on the whole of
history of the past input signals as �k j = r j (k) = r j (s(k), s(k − 1), . . .). For the
practically important tasks such as time series prediction or speech recognition,
history of the past input signals is essential. Hence, RC enables us to solve the
temporal task requiring the past input signals at a low computational cost.

2.1 A Class of Dynamical System Usable for Reservoir
Computing: Common-Signal-Induced Synchronization

What kind of a dynamical system can we use for RC? The dynamical system utilized
for RC should at least have a property that the same output sequence {y(k)}Tk=1 is
generated when repeatedly given the same input sequence {s(k)}Tk=1, not depending
on the initial condition of the dynamical system. Ifwe use a dynamical system lacking
this property, we have different outputs from RC for the same tasks, depending on
the initial state of the reservoir. Considering speech recognition tasks, the reservoir
computer is useless if it recognizes completely different words for the same voice
input.

In order to formulate this property, let us consider two different initial conditions
r(0), r̃(0) of the reservoir states. These states evolve in time according to the map F
in Eq. (1)with a common input signal s(k). If these different states always converge to
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the same state, not depending on the initial conditions, i.e., ‖r(k) − r̃(k)‖ → 0 (k →
∞), we say the signal-driven dynamical system (1) shows common-signal-induced
synchronization (CSIS). In other words, there exists a certain synchronized state
r∗(k) evolving in time only depending on the input sequence. The synchronized state
attracts states in its neighborhood, i.e., asymptotically stable as mentioned later. The
input sequence determines the synchronized state r∗(k) except the initial transient
period, and also determines uniquely the output sequence: ŷ(k) = ∑

i wir∗
i (k). This

kind of reproducibility to the input signal is also referred to as Echo State Property
(Maass and Markram 2002) or Consistency (Uchida et al. 2004). Any dynamical
system possessing this property can be used for reservoir computing in principle.

This property is exhibited by not only a particular dynamical system but also
general dynamical systems in the following sense. For instance, it can be shown
easily that any dynamical system with a stable fixed point as r(k) = Ar(k − 1) +
s(k) (‖A‖ < 1) shows CSIS. It has been shown that the CSIS occurs in a variety
of limit-cycle oscillators (Teramae and Tanaka 2004) and one-dimensional delay
dynamical systems (Yoshimura et al. 2008a) when they are driven by the white noise
input. Moreover, for the colored noise, the previous study (Yoshimura et al. 2007)
has shown that the CSIS occurs for the various dynamics including the limit cycle,
chaotic dynamics, and one-dimensional time delay system. Considering there exist
stable fixed points and limit cycles in many dissipative dynamical systems, we can
use various physical systems as a reservoir for a resource of information processing.

A mathematical tool from the dynamical system theory, called conditional
Lyapunov exponent, is useful to characterize CSIS (Louis et al. 1991; Teramae
and Tanaka 2004; Yoshimura et al. 2008a, b). The conditional Lyapunov exponent is
defined by the exponential growth/decay rate of the infinitesimal perturbation δr(k)
to the state r(k) as follows:

λ := lim
T→∞

1

T
ln ‖δr(T )‖, (4)

where δr(k) is determined by the variational equation

δr(k) = DFr(k−1),s(k)δr(k − 1) (5)

and DFr(k−1),s(k) denotes the Jacobian matrix of F evaluated at (r(k − 1), s(k)).
Equation (4) can be interpreted as ‖δr(k)‖ ∝ exp(λk), and thus λ < 0 implies the
asymptotic stability, i.e., the common-signal-induced synchronization. Note that the
conditional Lyapunov exponent is a characteristic value with respect to the invariant
measure (distribution) which is determined by not only the dynamical system, the
map F, but also the stochastic property of the input sequence, s(k). The Lyapunov
exponent introduced above is conditioned by the stochastic property of s(k), and
thus, we say the conditional Lyapunov exponent. The characterization of the CSIS
by the conditional Lyapunov exponent has been introduced and often used in the
field of nonlinear physics, and recently, the random dynamical system theory in the
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field of mathematics has justified it rigorously under some conditions (Flandoli et al.
2017). In conclusion, any signal-driven dynamical systemwith a negative conditional
Lyapunov exponent can be used for RC.

2.2 Concrete Example: Echo State Network Model

Echo State Network (ESN) is one of the standard structures of the reservoir that uses
a recurrent neural network as shown in Fig. 1b. Let k (= 1, 2, . . .) be the time and
ri (k) be the state of the i th node (i = 1, 2, . . . , N ) at time k. The reservoir state
evolves in time as follows:

ri (k) = φ

[ N∑

j=1

Ji j r j (k − 1) + vi s(k)

]
, (6)

where φ[·] is called the activation function1 and typically φ[u] = tanh gu is used.
g ∈ R is a parameter. vi and Ji j are connectionweights between nodes in the network,
and importantly, the values of them are fixed once they are determined by random
numbers at the initial. Supervised machine learning is applied only to the output
weight {wi }Ni=1 as noted before.

As an example, we demonstrate a result of an inference task solved by the ESN
model in Fig. 1d, e. The task is to infer the variable yL of the Lorenz equation2 from
another variable xL of the Lorenz equation at the same time (Lu et al. 2017). In other
words, the input and the output are s(k) = xL(k) and y(k) = yL(k), respectively. The
Lorenz equation is deterministic, and there exists some relation between these vari-
ables, xL and yL . ESN learns the relation from the data set D = {xL(k), yL(k)}Kk=1,
and determines the readout weight w for the inference. We remark that the vari-
able yL(k) is determined not solely by the variable xL(k) but the sequence of the
variables: {. . . , xL(k − 1), xL(k)}. In other words, generally, RC can approximate

the function of the sequence of the input signal as y(k) = F
(
{. . . , s(k − 1), s(k)}

)
.

The top figure in Fig. 1d shows the time series of xL(k), and the middle shows those
of yL(k) and ŷL(k). Learning only the readout weight leads to the almost perfect
inference. As a reference, the time series of the reservoir variable ri (i = 1, . . . , 5)
are shown in the bottom figure in Fig. 1d.

1 Note that the activation function φ differs from the design matrix �.
2 The Lorenz equation is a simplified model of the thermal convection: ẋ = −σ x + σ y, ẏ = r x −
y − xz, ż = −bz + xy, where σ, r, b ∈ R are the parameters, and, in the main text and later, the
subscript L represents the variable of the Lorenz equation. The Lorenz equation has been well
studied in the field of nonlinear physics and mathematics as a simple continuous dynamical system
exhibiting chaos. In the researchfield of reservoir computing, theLorenz equation is used for the time
series prediction task, e.g., the input is s(t) = xL (t) and the output is y(t) = xL (t + τ) (τ > 0), and
the inference task of the hidden variable, e.g., the input is s(t) = xL (t) and the output is y(t) = zL (t)
(Lu et al. 2017; Pathak et al. 2017).
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2.3 Geometrical Interpretation of Reservoir Computing

The geometrical interpretation can give insight into the fundamental aspect of RC, in
particular shedding light on the difference between RC and the conventional method
using the recurrent neural network.

Here, let us consider the readout vector ŷ = �w = ∑
i wi r i geometrically, where

r i = (ri (1), . . . , ri (K ))T . The vector ŷ can be regarded as the projection of the vector
y ∈ R

K to the N -dimensional subspace V = Span{r1, . . . , rN } as follows:

ŷ = �(�T�)−1�T y =: P y, (7)

where P : RK → V and we assume K > N since in practice the number of the data
set is larger than that of nodes in the network or the dimension of the dynamical
system utilized for the reservoir.

The reservoir dynamics, where the common-signal-induced synchronizationmust
occur, is determined by the input sequence except the initial transient period, the state
vector r i is a function of “input vector” s = (s(1), s(2), . . . , s(K ))T , i.e., r i = r i (s),
and the subspace V is also the same V = V (s). Considering ESN as a standardmodel
of RC, it can be interpreted that the randomness of the connection weights Ji j , vi
varies the response of each node state to the input signal, and enhances the “degree”
of linear independence of the vectors r i (i = 1, . . . , N ). See the illustration of Fig. 1c.
As an extreme case, if the connection weights are not random, more precisely Ji j
and vi take respective constant values which are independent of i and j , and all
nodes in the network become the same state r ≡ r i . In that case, the dimension of
the subspace V shrinks to one, and apparently, the approximation by the projection
onto V results in failure.

In the conventional method of the recurrent neural network, each connection
weight of Ji j , vi is trained as well as the readout weight w. This corresponds to
generate an appropriate subspace V ′(D) spanned by the basis vectors r i which are
determined by the training data D. Since training Ji j , vi requires a high computational
cost, it is more difficult to employ a large number of nodes compared with themethod
of RC. Therefore, in the conventional method of the recurrent neural network, the
vector y is approximatedwithin the “well-trained low-dimensional” subspaceV ′(D).
On the other hand, in the method of RC, the vector y is projected onto the “randomly
generated high-dimensional” subspace V (s).

When a large amount of data is available for the training, it would be natural
to assume K � N . In that case, projection of the vector y ∈ R

K to the randomly
generated N -dimensional subspace V would be expected to result in a poor approx-
imation. However, even in such a case, RC solves the task well. In order to clarify
the reason, it would be necessary to take into account the fact, at least, that (i) the
well-solved task by RC has a specific structure, e.g., y(k) does not depend on a long
past input s(k − τ) (τ � 1), and (ii) the response characteristics of the reservoir
dynamics, e.g., ri (k) does not depend on a long past input as well.
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3 Characteristics of Dynamical Systems Suitable
for Reservoir Computing

Here we introduce two notions (empirical laws), Edge of Chaos and Memory-
Nonlinearity Trade-off.

3.1 Edge of Chaos

The conditional Lyapunov exponent is useful not only for conditioning dynamical
systems usable for the reservoir, but also for characterizing good dynamical systems
for the reservoirwith respect to information processing. Edge ofChaos is an empirical
law for the good dynamical systems in the following sense. The Edge of Chaos law
has been supported bymany numerical and physical experiments (Bertschinger 2004;
Boedecker et al. 2012).

Let us consider two dynamical systems driven by a common input signal. By
gradually changing a parameter of the dynamical system, it is often observed that a
transition froma synchronized state (λ < 0) to an asynchronized state (λ > 0) occurs.
For the asynchronized state, a distance between nearby orbits diverges exponentially
even if the input signals are the same. The asynchronized state is similar to chaos in
deterministic dynamical systems, and hereafter, we refer to it as chaos. For instance,
in the ESNmodel, we observe the transition by increasing the spectral radius 3 of the
connectionmatrix Ji j . Edge of Chaos is the empirical lawwhere state RC achieves its
highest performance in information processing slightly before the transition point,
i.e., λ < 0 and λ � 0. Many researchers have reported results of numerical and
physical experiments supporting Edge of Chaos4 for various reservoirs and tasks
(Bertschinger 2004; Boedecker et al. 2012).

Here we demonstrate the Edge of Chaos law. Figure2a shows a result of a function
approximation task y(k) = sin(s(k − 1)) solved by the ESN model. In the upper
panel, we show the normalized mean square error (NMSE) in the vertical axis as a
standard value for performance evaluation of RC (Appeltant et al. 2011; Inubushi
and Yoshimura 2017; Rodan and Tino 2011):

NMSE = 〈(y(k) − ŷ(k))2〉T
〈(y(k) − 〈y〉T )2〉T (8)

3 For the matrix J ∈ R
N×N , the definition of the spectral radius is ρ := maxi |μi | where {μi }Ni=1

are the eigenvalues of the matrix J . In the absence of the input signal, the origin of the ESN model
r = 0 is the stationary state (fixed point), and the stability of the stationary state is determined by
the spectral radius ρ.
4 The asynchronized state (λ > 0) is not deterministic chaos, and thus, the terminologies of “edge
of criticality” or “edge of stability” would be more appropriate.
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Fig. 2 aThe upper panel: the normalizedmean square error (NMSE) for the function approximation
task, which is solved by the ESNmodel with N = 100 nodes. The horizontal axis is the parameter g
of the ESNmodel. The vertical axis is NMSE. The lower panel: the conditional Lyapunov exponent.
The horizontal axis is the same as in the upper panel. The transition from CSIS to chaos occurs at
g = 1.25. b The time series of the first component of the state vector, rσ

1 (k) (σ = a, b, c), from the
three different initial conditions rσ

1 (0). The time evolutions of ESNs are described by the same Eq.
(6) with the common input signals, i.e., the differences are only in the initial conditions. From the
top to the bottom, the parameter increases as g = 1.0, 1.2, 1.3, 1.5

where the brackets represent the time average 〈z(t)〉T := 1/T
∑T

t=1 z(t) for any
sequence {z(t)}Tt=1. The horizontal axis is the parameter g of the ESN model (6).
NMSE takes the minimum value at g � 0.7. In the lower panel of Fig. 2a, the con-
ditional Lyapunov exponents λ corresponding to the upper panel are shown. The
conditional Lyapunov exponent increases with increasing g, and, at g � 1.25, we
observe the transition from negative to positive, which corresponds to a transition
from the synchronized state to the chaotic state. See the inset for the enlarged view
around the transition point. The ESN model exhibits the maximum performance for
the function approximation task at g � 0.7, where the conditional Lyapunov expo-
nent is in the vicinity of zero but a negative value (λ � −0.36), i.e., slightly before
the transition point. Our numerical example also supports the law of Edge of Chaos.

To see the transition from the synchronized state to the chaotic state in detail, we
show time series of a variable of the same ESN model with three different initial
conditions, i.e., ra(0) �= rb(0), rb(0) �= rc(0), and rc(0) �= ra(0). The numerical
settings are the same as the case shown in Fig. 2a. Driven by the common signals,
the variables rσ (k) (σ = a, b, c) evolve in time according to (6). As an example,
the time series of the first component of the state vectors, rσ

1 (k) (σ = a, b, c), are
shown in Fig. 2b. From the top to the bottom, the parameter g is changed as g =
1.0, 1.2, 1.3, 1.5.

The conditional Lyapunov exponents at g = 1.0 and g = 1.2 are negative as
shown in Fig. 2a, and correspondingly, the convergence |rσ

1 (k) − rσ ′
1 (k)| → 0 (σ �=

σ ′), i.e., CSIS, is observed in the upper two panels in Fig. 2b. Note that the conver-
gence occurs at g = 1.2 slower than at g = 1.0, which is consistent with the absolute
values of the conditional Lyapunov exponents. On the other hand, the conditional
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Lyapunov exponents at g = 1.3 and g = 1.5 are positive as shown in Fig. 2a, and
correspondingly, CSIS is no longer observed in these two cases in the lower two
panels in Fig. 2b.

As demonstrated in Fig. 2b, the closer to the transition point the ESN is, the slower
the convergence is, which is trivial by definition of the conditional Lyapunov expo-
nent. It is believed that the slow convergence leads to a large “memory capacity”.
For an illustration of this statement, let us assume the case that differences in the
initial conditions rσ (0) (σ = a, b, c) in Fig. 2b are caused by the difference in the
input signal s(0). More precisely, these states evolve in time with the common input
signal from the remote past, i.e., {s(−k)}∞k=1. If the conditional Lyapunov exponent
is negative, they should have converged to the same state rσ (−1) ≡ r(−1). And
then, if there exist differences in the input signal at k = 0 denoted by sσ (0), the
differences in the input signal make different states rσ (0) (σ = a, b, c) according
to (6). Again, ESN receives the common signal {s(k)}∞k=1, and the differences in the
states dissipate; rσ (k) → r(k) (k → ∞) as shown in the top two panels in Fig. 2b.

The memory capacity can be interpreted as an amount of information of the past
input signal that can be reconstructed from the present reservoir state. Some working
definitions of memory capacity, which measure the accuracy of the reconstruction
of the past input signal from the present reservoir state, have been proposed and
investigated so far (Jaeger 2002). The reconstruction needs at least the difference
in the states. For instance, in the top panel in Fig. 2b, it is impossible to distinguish
between the states rσ (k) at k = 100, i.e., rσ (k) ≡ r(k). Therefore, at k = 100, it
is impossible to reconstruct any information of sσ (0) from rσ (k). In this case, it is
natural to interpret that the state of ESN at k = 100 has no memory of, or forgets,
the information in the past input signal sσ (0). As this example shows, the time T
required for the convergence of the states dominates the memory in the sense that the
ESN retains no memory about the past input signals supplied more than T ago. The
time T is roughly estimated by a reciprocal of the conditional Lyapunov exponent
T ∝ 1/λ. In this sense, the memory has been referred to as short term memory as
well.

Approaching the transition point, λ → −0, makes the convergence slow, which
would lead to a large memory capacity of ESN. That is, the ESN retains a memory
of the past input signals of a long time ago. At Edge of Chaos, the memory capacity
attains its maximum, which has been shown by using the dynamic mean field the-
ory (Toyoizumi and Abbott 2011). The memory capacity is essential for solving a
wide variety of tasks such as the speech recognition tasks and the time series predic-
tion tasks (see the next subsection for an explicit example). Therefore, information
processing with RC works well at Edge of Chaos.

Note that in the above argument, we only consider “necessary condition” for the
memory. Namely, if ESN can store some memory, i.e., it is possible to reconstruct
information about the past input sσ (0), then there exists a difference between the
states rσ (k). However, this does not imply the converse, i.e., “if there exists a differ-
ence between states, it is possible to reconstruct the past input”, and also we cannot
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say anything about the accuracy of the reconstruction.5 In this sense, the problem of
memory capacity is subtle. Information theoretic quantity such as the mutual infor-
mation would be more useful than the conditional Lyapunov exponent as discussed
in Inubushi and Yoshimura (2017).

3.2 Memory-Nonlinearity Trade-Off

While the memory of the input signal is important, information processing requires
in general nonlinear transformation of the input signal as well. Here we focus our
attention on the two“functions” of the reservoir necessary for informationprocessing,
i.e., the short term memory and the nonlinear transformation of the input signal. For
the two functions, it is known that there exists a kind of trade-off based on the
linearity/nonlinearity of the reservoir dynamics as follows.

Before explaining the trade-off, we introduce an explicit example of a task that
requires both memory and nonlinear transformation. The task we consider is a
time series prediction. Suppose that we need to predict a future value of a variable
z(t), (z, t ∈ R), and that the variable z(t) is described by an equation dz

dt = G(z),
where G is some nonlinear function. Given a time series, {. . . , z(t − h), z(t)} where
h is a sampling period, the goal is to predict the future value z(t + h). As one
of the numerical schemes of ordinary differential equations, the Adams-Bashforth
method has been often used. The explicit (two-step) formula is z(t + h) = z(t) +
h
(
3
2G(z(t)) − 1

2G(z(t − h))
)

+ O(h3). Considering to predict the value z(t + h)

by RC with the Adams-Bashforth method in mind, the reservoir needs to store the
memory z(t − h) and perform the nonlinear transformationG(z(t − h)). Obviously,
these two functions are both essential for the prediction; however, there is a trade-off
as described below.

First, we introduce a property of the memory capacity of the input signal. Many
researchers have reported so far that the linearity of the reservoir dynamics (themap F

5 In other words, CSIS state r(k) only depends on the recent past input signal, {s(k − j)}Tj=0, and

thus, the state vector r(k) is a function of the set of the input signals, i.e., r(k) = r
[
{s(k − j)}Tj=0

]
.

Using these notations, the above arguments can be expressed as follows: if the derivatives vanish,

∂ r
[
{s(k − j)}Tj=0

]

∂s(k − K )
= 0 (for∀k) (9)

then, in ESN at the time k, there is no information about s(k − K ). However, its inverse, i.e., “if
the above derivative does not vanish, then it is possible to reconstruct the information about the
past input s(k − K )”, is not necessarily true. Considering the chaotic regime as an extreme case,
T → ∞ and the above derivative is not zero in general due to the sensitive dependence on the
initial condition. However, it seems to be difficult to reconstruct the past input from the chaotic
state. Hence, we cannot conclude the negation holds.
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Table 1 Memory-Nonlinear Trade-off. In the column, the functions of the reservoir, the memory
or the nonlinear transformation of the input signal, are shown. In the row, the types of the map F of
the reservoir in (1) (the activation function φ in the ESN model (6)), linear or nonlinear, are shown

Short term memory Nonlinear transformation

Linear © ×
Nonlinear × ©

in (1)) is preferable for the large memory capacity (Dambre et al. 2012; Ganguli et al.
2018; Toyoizumi 2012). In other words, the nonlinearity of the reservoir dynamics
reduces the memory capacity.

Next, we consider the nonlinear transformation of the input signal. Focusing
only on the memory capacity, the best strategy seems to be just using the linear
reservoir; however, apparently, the linear reservoir cannot perform the nonlinear
transformation of the input signal by definition. One of the advantages of RC is to
be able to solve linearly non-separable problems via mapping the input signal into a
higher dimensional space in a nonlinear way. Thus, the nonlinearity of the reservoir
dynamics plays an essential role in general information processing.

Strengthening the nonlinearity of the reservoir increases the ability of the nonlinear
transformation of the input signal, but decreases the memory capacity. On the other
hand, weakening the nonlinearity of the reservoir increases the memory capacity, but
decreases the ability of the nonlinear transformation (Table1). This relation between
these two functions of the reservoir is referred to asMemory-Nonlinearity Trade-off,
which has been supported numerically (Dambre et al. 2012; Inubushi and Yoshimura
2017; Verstraeten et al. 2010).

Herewe give a numerical result illustrating the existence ofMemory-Nonlinearity
Trade-off. For simplicity, we employ the function approximation task y(k) =
sin(πνs(k − τ)), where ν ∈ R, τ ∈ N are the task parameters. The input signal s(k)
is the random variable which is independently and identically drawn from the uni-
form distribution:U(−1,+1) at each time t . Let us consider solving this task by the
readout from the reservoir state at time k. To this end, two functions are needed: stor-
ing the information of the past input signal s(k − τ) for τ steps (short termmemory),
and approximating the sin function (nonlinear transformation). The task parameters
(ν, τ ) control, respectively, the “strength” of the nonlinear transformation and the
memory capacity required for solving the task.

To confirm the trade-off summarized in Table1, we use the ESN model described
in (6) and compare the performance of ESNs with linear function φ[a] = a and
the nonlinear function φ[a] = tanh a. We refer to ESNs with φ[a] = a and with
φ[a] = tanh a, respectively, as linear ESN and nonlinear ESN. Figure3a shows the
results of the direct comparison in the task parameter space (ν, τ ). For a given set
of parameters (ν, τ ), if the error with the linear ESN is lower than that with the
nonlinear ESN, we mark a red square at (ν, τ ) in the diagram. If the error with the
nonlinear ESN is lower than that with the linear ESN, we mark a blue circle. See
Inubushi and Yoshimura (2017) for the details of this diagram.
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Fig. 3 Performance comparison diagram in task parameter space (ν, τ ) (Inubushi and Yoshimura
2017). a Comparison between the linear ESN and nonlinear ESN for the demonstration ofMemory-
NonlinearityTrade-off.bComparison between themixtureESNswith variousmixture rates pwhich
will be discussed in Sect. 4. Figure reproduced and modified with permission from Springer Nature

The results shown in Fig. 3a are summarized as follows: for the task requir-
ing “large memory capacity and weak nonlinear transformation”, e.g., log ν �
−1.0, τ � 4, the linear ESN outperforms the nonlinear one. This observation corre-
sponds to the first row in Table1. For the task requiring “strong nonlinear transforma-
tion and lessmemory capacity”, e.g., log ν � −0.5, τ � 4, the nonlinearESNoutper-
forms the linear one. This observation corresponds to the second row inTable1.While
these results are obtained by employing a particular functional form f (x) = sin x for
the task, we confirmed that qualitatively the same results are obtained by employing
other function forms f (x) = tan x and x(1 − x2). In this sense, the above direct
comparison clearly shows the memory-nonlinearity trade-off, which is consistent
with previous studies (Dambre et al. 2012; Verstraeten et al. 2010).

What is the mechanism behind the trade-off? In Table1, the property in the right
column is trivial by the definition; however, the property in the left column is nontriv-
ial. Thus, the goal is to uncover the dynamical mechanism behind the degradation of
the memory by the nonlinear dynamics of the reservoir. A possible mechanism illus-
trating the phenomenon has been proposed based on the variational Eq. (5) (Inubushi
and Yoshimura 2017).

4 Dynamical Structure Suitable for Reservoir Computing

The simplest method to overcome Memory-Nonlinearity Trade-off would be to use
a dynamical system consisting of both linear dynamics and nonlinear dynamics as
a reservoir (Inubushi and Yoshimura 2017). Here, we introduce the reservoir where
linear dynamics and nonlinear dynamics coexist; hereinafter, we refer to this type of
reservoir as mixture reservoir. Some numerical results are shown to indicate that the
mixture structure is suitable for RC.
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Fig. 4 Performance of themixtureESN for the function approximationwith various task parameters
(Inubushi and Yoshimura 2017). The horizontal axis is the mixture rate p, and the vertical axis is
the approximation error (NMSE). The task parameters are a log ν = 0.0, b log ν = −0.4, and c
log ν = −1.0. The red squares, green circles, and blue triangles correspond to the task parameters
τ = 1, 3, 5, respectively. Figure reproduced and modified with permission from Springer Nature

Let us consider the ESN model consisting of N nodes again as an example of the
mixture reservoir. In order to overcome the trade-off, it is expected to be effective to
use an ESN consisting of “linear node”, having the linear activation function φ[u] =
u, and “nonlinear node”, having the nonlinear activation function φ[u] = tanh u.
More precisely, we connect the linear nodes and the nonlinear nodes with random
weights Ji j , vi . As the conventional ESN model, the only readout weight {wi } is
adjusted by the training data. We refer to this type of ESN as mixture ESN. The
number of the nonlinear nodes is denoted by NNL , and we introduce a mixture rate
by p = NNL/N which plays a key role in the following discussion.

To study the performance of the mixture ESN, we employ the function approxi-
mation task y(k) = sin(πνs(k − τ)) as before. Figure4 shows the numerical results
of the function approximation by the mixture ESN with the total number of nodes
N = 100. The horizontal axis is themixture rate p, and the vertical axis is the approx-
imation error (NMSE). The mixture ESN at p = 0 reduces to the linear ESN, and
that at p = 1 reduces to the nonlinear, i.e., conventional ESN. The task parameters
are (a) log ν = 0.0, (b) log ν = −0.4, and (c) log ν = −1.0. The red squares, green
circles, and blue triangles correspond to the task parameters τ = 1, 3, 5, respectively.

In all of the cases shown in Fig. 4, the mixture ESNs outperform the linear ESN
(p = 0) and the nonlinear ESN (p = 1). In particular, for the task with small τ ,
the approximation error by the mixture ESN is surprisingly reduced in the vicinity
of p = 1, compared with that by the nonlinear ESN. In other words, replacing a
small number of the nonlinear nodes with linear nodes in the conventional ESN
drastically improves the performance. These drastic improvements in performance
are observed in the vicinity of p = 0 as well.

In order to study this remarkable improvement of the performance by introduc-
ing the mixture structure in more detail, we show, in the right panel of Fig. 5, the
performance of a conventional ESN (p = 1) with larger network sizes. The task is
the function approximation task again with ν = 1 and τ = 1, 3, 5. As a reference
for the same task, Fig. 4a is shown in the left panel of Fig. 5. The conventional ESN
shows better performance by increasing the network size (Rodan and Tino 2011)
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Fig. 5 The performance improvements by introducing the mixture structure versus those by
increasing the network size. The left panel is the same as Fig. 4a for the reference. The right
panel represents the performance improvements by increasing the network size from N = 100 to
N = 500, where the vertical axis is NMSE. The dotted lines are the values of NMSE by the mixture
ESNs at the optimal mixture rates for each task (see the left panel)

in general. Indeed, for each task (τ = 1, 3, 5), the approximation errors are reduced
monotonically by increasing the number of nodes (N = 100, 200, 300, 400, 500).
However, the improvement of the performance by introducing the mixture ESN with
fixed network size (N = 100) is considerably more effective than that by increasing
the network sizes with a fixed mixture rate (p = 1). In the right panel of Fig. 5, the
error values at the optimal mixture rates are plotted by dotted lines for each task.
For instance, regarding the task with τ = 5, while the conventional ESN reduces
the error by one-tenth with N = 500 nodes, the mixture ESN at the optimal mixture
rate can reduce the error at the same level (the blue dotted line) with only N = 100
nodes. For the tasks with τ = 1, 3, the mixture ESNs at the optimal mixture rate
clearly outperform the conventional ESN even with N = 500.

It is interesting that the optimal mixture rate popt., where the mixture ESN shows
the best performance, changes depending on the tasks. In fact, as shown in Fig. 4a,
for the tasks with τ = 1, τ = 3, and τ = 5, the optimal mixture rate is popt. � 0.25,
popt. � 0.15, and popt. � 0.1, respectively. Note that the larger the parameter τ is, the
smaller the optimal mixture rate popt. is. This observation is consistent withMemory-
Nonlinearity Trade-off. Since the linear nodes play a role to increase the memory
capacity, a mixture ESN with a larger number of the linear nodes is effective for a
task requiring a larger memory capacity.

To study this dependency, we show a performance comparison diagram in
Fig. 3b (Inubushi and Yoshimura 2017). As shown in Fig. 3a, for a set of given
task parameters (ν, τ ), the optimal mixture rate popt.(ν, τ ) is depicted with dif-
ferent symbols, where the minimal value is numerically found in the set p ∈
{0.00, 0.05, 0.15, 0.25, 0.50, 0.75, 1.00}. See Inubushi and Yoshimura (2017) for
the details. From this diagram, it is clarified that the optimal mixture rate depends on
the task gradually, and, significantly, the mixture ESN (0 < p < 1) outperforms the
linear and nonlinear reservoir (p = 0, 1) over a broad region in the task parameter
space.



112 M. Inubushi et al.

The above numerical results lead to a conjecture that the mixture reservoir is one
of the dynamical structures suitable for RC in general. Does the mixture reservoir
work well, being less dependent on the tasks or details of the reservoir? For studying
this question, we change the topology of the mixture ESN as a detail of the reservoir.
We conducted numerical experiments for two other types of the mixture ESNs with
the random sparse coupling and the ring coupling. In both cases, nonzero elements
of coupling weights Ji j ( �= 0) are determined by random numbers (Yoshimura et al.
2018). The performance of the mixture ESNs with the random sparse coupling and
the ring coupling are shown in Fig. 6 (a) and (b), respectively. The same function
approximation tasks are employed as in Fig. 4. Illustrations are shown in the right
bottom of each graph in Fig. 6, where the nodes colored with yellow represent the
linear nodes. The qualitative features found in the results of the random sparse cou-
pling case and the ring coupling case (Fig. 6a, b) are almost the same as those of the
full coupling case (Fig. 4).

Moreover, to confirm the independence of tasks, it has been reported that some
standard tasks, the time series prediction for Santa Fe Laser data set and the so-
called NARMA task, can be solved by the mixture ESN effectively (Inubushi and
Yoshimura 2017). The mixture ESN is effective also for the time series prediction
task for the Hénon map as shown in Fig. 7 (Yoshimura et al. 2018). In Fig. 7, the
vertical axis shows NMSE for m-step ahead prediction of chaotic signal generated
from Hénon map z(k + 1) = 1 − 1.4z(k)2 + 0.3z(k − 1), i.e., the input is z(k) and
the desired output is z(k + m). The prediction errors with the mixture ESN for the
cases of the full coupling, the random sparse coupling, and the ring coupling are
shown in Fig. 7 (a), (b), and (c), respectively. In all the cases, the mixture ESNs
are effective independently of the network topology. These numerical results so far
support the above conjecture.

Introducing the mixture reservoir significantly improves the information process-
ing performance. This improvement occurs independently of tasks and details of the
reservoir. This suggests that the mixture rate p is an effective hyperparameter for
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the optimization of the reservoir. Considering ESN as an example, it is in general
difficult to predict the response of the reservoir to changes in the parameters such as
g. However, one can expect that decreasing the mixture rate p leads to an increase
in the memory capacity of the reservoir. In this sense, the reservoir response to a
change in the mixture rate is much simpler than that in the other parameters. This
simpleness may make easy the optimization of p.

5 Conclusions and Future Works

In this article, we have given an overview of the mathematical aspects of RC, focus-
ing on the characteristics and structures of the reservoir suitable for information
processing. From this viewpoint, we here discuss two open problems of theoretical
importance.

(i) Characterization of good reservoir:
The reservoirs (physical systems) have many parameters in general, and thus, some
optimization over the parameters is required. Although Edge of Chaos is one of the
crucial laws useful for optimization, the performance of RC cannot be determined
solely by the conditional Lyapunov exponent, which just reduces the dimension of
the parameter space by one. Is there a universal quantity, i.e., weakly dependent on
tasks, that characterizes a good reservoir completely? In other words, does there exist
some general property of dynamical systems which ensures the reservoir computer
with high processing performance?

(ii) Dynamical structure suitable for RC:
While the mixture reservoir would be one of the candidates of the suitable structures
for RC, the quest for more efficient structures is important. For instance, the config-
uration of the linear nodes and the nonlinear nodes in the mixture ESN of our study
is determined randomly. It is expected that optimizing the configuration improves
the performance further. According to the results from on-going numerical exper-
iments, better performance is obtained by a mixture ESN with one-way coupling
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from the nonlinear nodes to the linear nodes. The application of the theoretical find-
ings to physical implementation is also important. For instance, adding some linear
dynamics to the conventional physical reservoir, “physical mixture reservoir” could
outperform the conventional one significantly. Apart from the mixture reservoir, for
instance,DeepESNhas been studied theoretically (seeChapterDeepReservoirCom-
puting), and recently the first physical implementation of a deep reservoir, “photonic
deep RC”, has been reported (Nakajima et al. 2018). It is an interesting future work
to find the suitable structures of dynamical systems for RC combining theoretical
approaches with experimental approaches.

While we have described mainly the mathematical understandings of RC in this
article, finally here we discuss the future development of the whole research field of
RC. First, more and more of the various physical systems will be utilized for RC. As
illustrated in Sect. 2, if the number of nodes (degree of freedom) of the reservoir is the
same as that of the conventional RNN, RC cannot outperform the conventional RNN
in principle. Thus, in our opinion, the RC method shows its true ability when one
implements it by harnessing physical systems with a huge degree of freedom. Hence,
the physical systems with a huge degree of freedom such as nonlinear spatiotem-
poral systems having high scalability would be promising for the future reservoir.
Needless to say, it is expected that the future physical implementation, e.g., using
optical systems, realizes the ultrafast information processing with the low energy
consumption, which is one of the great advantages of RC.

Recently,many researchers in the field other than information science have studied
RC actively as well. Nonlinear physicists in Maryland have proposed the inference
method of dynamical variable (Lu et al. 2017), the prediction method of spatiotem-
poral chaos (Pathak et al. 2018), and the calculation method of Lyapunov exponent
from time series (Pathak et al. 2017). Moreover, these methods have been applied to
study turbulence physics, where a combination of transfer learning approach and RC
is proposed for efficient inference of physical quantities (Inubushi and Goto 2019,
2020a, b). It is expected that these findings will be “re-imported” to information
science in the future.

While there still remain mysterious points in the RC method, it has great advan-
tages of the suitability for physical implementation and simplicity of the training
method. If the theoretical open problems mentioned above are solved, then we can
obtain a solid foundation for design principles for the physical reservoir, which may
lead to the wide practical use of RC in a future society.
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Reservoir Computing for Forecasting
Large Spatiotemporal Dynamical
Systems

Jaideep Pathak and Edward Ott

Abstract Forecasting of spatiotemporal chaotic dynamical systems is an important
problem in several scientific fields. Crucial scientific applications such as weather
forecasting and climate modeling depend on the ability to effectively model spa-
tiotemporal chaotic geophysical systems such as the atmosphere and oceans. Recent
advances in the field of machine learning have the potential to be an important tool
for modeling such systems. In this chapter, we review several key ideas and dis-
cuss some reservoir-computing-based architectures for purely data-driven as well as
hybrid data-assisted forecasting of chaotic systems with an emphasis on scalability
to large, high-dimensional systems.

1 Motivation

This chapter is motivated by problems in the forecasting of large, complex, spa-
tiotemporally chaotic systems and by the possibility that machine learning might
be a useful tool for the significant improvement of such forecasts. Examples of the
type of potential tasks we have in mind are forecasting ocean conditions; forecast-
ing conditions in the solar wind, Earth’s magnetosphere, and ionosphere (so-called
‘space weather’, important for Earth-orbiting spacecraft, GPS accuracy, power-grid
disruptions, etc.); forecasting the spatial distribution of plant growth in response to
environmental changes; forecasting the development of forest fires and their response
to fire fighting strategies; and weather forecasting.

Focusing on weather forecasting as perhaps the most important such example,
we note the following two relevant points: (i) weather forecasts impact the lives
of many millions of people, e.g., by providing warnings of destructive events, like
hurricanes or snowstorms; (ii) currently used weather forecasting employs physics-
based models (the equations of fluid dynamics, radiative heat transfer, etc.), plus
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geographical knowledge of mountains, oceans, etc. The models in (ii), however,
have substantial errors, which, for example, may arise due to imperfect modeling
of crucial subgrid-scale dynamics (like clouds, turbulent atmospheric motions, and
interactions with small-scale geographic features).

Can machine learning from data potentially correct such knowledge deficits and
thus contribute to significant improvement of forecasts? For other recent work which
addresses the issue of using machine learning for analyzing and forecasting spa-
tiotemporal dynamical systems, see Brunton et al. (2016), Lusch et al. (2018), Raissi
et al. (2019), Vlachas et al. (2018), and Wan et al. (2018). In this paper, focusing on
reservoir computing, we discuss and summarize some recent research that may be
relevant to this question.

2 Background: Prediction of ‘Small’ Chaotic Systems

Machine Learning (ML) prediction of the ergodic chaotic evolution of a dynamical
system was considered by Jaeger and Haas (2004) in the context of reservoir com-
puting (Jaeger 2001). The basic idea of their scheme is illustrated (in its discrete
time version) in Fig. 1. Given time-series training data u(n), obtained from sampling
measurements of some unknown chaotic dynamical system on an ergodic attractor
(with a sampling time interval �), for n = −T,−T + 1,−T + 2, . . . ,−1, the ML
system is trained to output u(n + 1), when u(n) is the input (Fig. 1). If the vector
state of the unknown dynamical system is denoted by x, we can represent the mea-
surements by a ‘measurement function’ H such that the measurement vector u is
given by

u(n) = H(x(t)), t = n�. (1)

Since the dimension of umay be less than twice the dimension of the attractor of the
dynamical system in x-space, Eq.1 may not be an embedding (Sauer et al. 1991),
and, to compensate for this, it is important that the ML system has memory. That is,
the current state of the ML device depends on its current input and on the history
of the inputs. (Memory can also be realized or supplemented by incorporating time-
delayed measurements as additional components of u(t); however, for simplicity we
will not further consider this possibility here.)

As an example, assume that the goal is to predict the future value of the measure-
ments. Following Jaeger and Haas (2004), when, after the training phase (Fig. 1a),
the time to predict comes, the input from the measured state is no longer available
and, as shown in Fig. 1b, is replaced by the ML system output; i.e., the output is
fed back into the input. Thus, at the beginning step of the forecasting phase, u(0) is
made the input, which, if all goes well, then produces a new (forecasted) output u(1),
which, when fed back, outputs a forecast for u(2), which when fed back outputs a
forecast for u(3), and so on. Of course, there is always some small error in the output
(e.g., if the input is u(0), the output is only approximately u(1)), and due to the
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ML device with
memory

ML device with
memory

(a) (b)

Fig. 1 Schematic illustration of the a training phase, and b prediction phase for a simple ML
forecasting system

assumed chaos of the dynamical system generating the measurements, these errors
build up as the feedback loop is successively traversed. Thus, as is typical for chaotic
processes, the prediction accuracy eventually breaks down. So good prediction can
only be expected for several Lyapunov times.

Note that the closed-loop system shown in Fig. 1a may itself be regarded as an
autonomous dynamical system. Thus in Lu et al. (2018), Lu et al. have employed
dynamical systems theory concepts (especially the concepts of ‘generalized syn-
chronization’ Afraimovich et al. 1986; Kocarev and Parlitz 1996; Pecora et al. 1999;
Rulkov et al. 1995 and Lyapunov exponents Abarbanel 2012; Kantz and Schreiber
2004; Ott 2002; Ott et al. 1994) to analyze conditions on the ML system that make
for good reproduction of the dynamics of the unknown system that produces the data.

With regard to the time step �, one might have the following question. Assuming
that one is interested in forecasting a chaotic process forward by an amount of time
T , why not simply set � = T and do one prediction step (thus eliminating the need
for the closed-loop configuration in Fig. 1b)? The answer is that for typical cases,
one is often interested in prediction times T that may be as large as several Lyapunov
times (a Lyapunov time is a typical time it takes a small orbit perturbation to grow
by a factor of e). In such cases, with � = T , small changes in u(n) can lead to
relatively large changes in u(n + 1). Thus, the functional relationship that the ML
system is trained to learn is relatively complex (‘wiggly’) making its task relatively
hard. Accordingly, it has been found that using smaller � with the feedback loop as
shown in Fig. 1b is advantageous.

One aspect of the forecasting scheme illustrated in Fig. 1 is that the various ver-
sions of ML can in principle be employed. Since memory is typically required, and
is, in any case, expected to be advantageous for prediction tasks, the twomost natural
candidates for consideration are reservoir computing (as in the paper of Jaeger and
Haas 2004) and Long Short-Term Memory (Hochreiter and Schmidhuber 1997) (as
in the paper of Vlachas et al. 2018). In this chapter, we consider reservoir comput-
ing due to its appreciably shorter training times and its potential for advantageous
physical implementations discussed in other chapters of this book.
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3 Machine Learning and the Forecasting of Large,
Complex, Spatiotemporally Chaotic Systems

The scheme (Jaeger and Haas 2004) described in Fig. 1 and Sect. 2 works well for
small to moderate size systems. However, we find that straightforward scaling of,
e.g., a reservoir computing implementation of Fig. 1 to very large size results in
requirements that appear to be unfeasible or, at least, very demanding, in practical
terms (e.g., with respect to the reservoir size required, amount of training data, and
computations for training). Thus we seek ways of mitigating this problem. Specifi-
cally, we wish to apply prior physical knowledge of the system to be forecasted and
integrate this prior knowledge with a machine learning approach via a suitable pre-
diction system architecture. In particular, we consider two types of prior knowledge
as described below.

First, we note that information in spatially extended physical systems generally
propagates at a finite speed. Thus, a perturbation applied at some point in space will
not immediately affect the state at some distant point. We refer to this as ‘the locality
of short-term causal interactions’ (LSTCI). Assuming, for illustrative purposes, that
space is one dimensional, if we want to predict the state at time t + � in the region
x0 − l0 < x < x0 + l0 from the state at time t , we only need to consider the state
at time t within the region, x0 − (l0 + d) < x < x0 + (l0 + d), where d is large
enough such that information affecting the prediction of the state in the region,
x0 − l0 < x < x0 + l0, does not propagate fast enough to move a distance d over the
one-step prediction time �. Thus, a parallel approach (Sect. 4) can be employed in
which multiple ML systems predict u in corresponding limited overlapping spatial
regions where the lengths of the overlap between regions are at least d. This will be
discussed in Sect. 4.3 (note that this consideration provides an added motivation for
considering � to be small).

The second type of physical knowledge comes from knowledge-based modeling,
typically in the form of inaccurate partial differential equations like those discussed
in Sect. 2 in the context of weather forecasting. In Sect. 5, we discuss a hybrid tech-
nique that utilizes both an imperfect knowledge-based model and a relatively small
Reservoir Computing ML forecaster (see Wan et al. 2018 for a similar implemen-
tation using Long Short-Term Memory ML). In the training of the hybrid system,
the state variables of both the ML system and the knowledge-based system are com-
bined via a set of adjustable ‘weights’ in such a way as to very closely fit the desired
prediction system outputs as determined by the training data. Thus, we view the
training as being designed to take the best aspects of the predictions of the ML com-
ponent and the knowledge-based component and to combine these good aspects in
a semi-optimal fashion. Indeed, as we later show (Sect. 5), even in a case where
the knowledge-based system error and the relatively small size of the ML compo-
nent were such that each acting alone gave relatively worthless forecasts, that, when
incorporated into our hybrid scheme, excellent forecasts can result. Furthermore, as
we will document elsewhere, the machine learning component typically requires less
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training data for use in the hybrid scheme than would be the case for a much larger,
pure machine learning system.

In Sect. 6, we discuss and illustrate a prediction system architecture for combining
the parallel and hybrid schemes so as to create a methodology that is potentially
scalable to very large complex systems. In this combined scheme, we envision the
knowledge-based component of this combined system to be global and not based on
the LSTCI assumption (e.g., like models currently used for weather prediction).

4 Distributed Parallel Prediction

In this section, we describe how to efficiently train a Reservoir Computer to pre-
dict time-series from high-dimensional spatiotemporal chaotic systems. This scheme
was introduced in Pathak et al. (2018a). As mentioned in Sect. 3, we will exploit
the locality of short-term causal interactions (LSTCI), present in many spatiotem-
poral systems of interest, to divide the computational task over many independent
computing units or ‘cores’. The key idea behind this division is our assumption that
the near-term future of the state of a particular spatial region of the spatiotemporal
system is only affected by dynamics occurring nearby (in a spatial sense), and the
dynamics occurring far away from it has no effect. This assumption presupposes the
absence of short-term long-range interactions in the spatiotemporal system.

For simplicity, in most of what follows, we consider a spatiotemporal dynami-
cal system defined by some set of equations evolving a scalar state variable y(x, t)
forward in time (t) in a one-dimensional spatial domain (x) with periodic boundary
conditions. Thus, x ∈ [0, L) and y(x + L , t) = y(x, t). We assume that the mea-
surement vector u(n), is K−dimensional with each scalar element of u(n) being the
state variable y(x, t), measured at regular intervals of time � and over a uniformly
spaced spatial grid with K grid points: x = (L/K ), (2L/K ), (3L/K ), . . . , L .

4.1 Partitioning the Spatial Grid

We thus have a set of K time series uk(n), 1 ≤ k ≤ K on K grid points where t = n�

and n is an integer. Themeasurement vectoru(n) is thus a K−vectorwhose kth scalar
element is uk(n). As shown in Fig. 2, we then use the K−dimensional measurement
vector u(n) to form a set of M vectors {vi (n)}i=1,2,...,M where each such vector i has
dimension (K/M) + 2l, and its entries consist of the y values at time n in overlapping
regions where each region i has K/M central nodes supplemented by overlap buffer
regions to its left and right of length l nodes each (e.g., in the schematic illustration
shown in Fig. 2, l = 2 and (K/M) = 4). The choice of l is made using our LSTCI
assumption and requiring that the time � prediction of the K/M central nodes of
vector vi (n) is (to a very good approximation) not influenced by nodal states not
included in vi (n).
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Fig. 2 Partitioning scheme

The K grid points are also partitioned intoM non-overlapping groups with K/M-
dimensional state vectors, si for i = 1, 2, . . . , K/M , as illustrated in Fig. 2 (from
Fig. 2, we see that vi becomes si when l is set to zero). The task of obtaining the time
� prediction of each such group is assigned to M separate ML systems which will
be trained to learn the local group dynamics and predict the future state of the time
series at those grid points. Making use of our LSTCI assumption, we suppose that �
is small enough that si (n + 1) depends on si (n + 1), but is independent of vi±k(n)

for k ≥ 1.
Note that l and M are ‘hyperparameters’ of our model and can be tuned while

optimizing with respect to factors such as computational cost and prediction results.
We use the term hyperparameters to denote a small set of parameters that are not
adjusted via the training procedure and that characterize gross overall features of the
ML device (e.g., the hyperparameters we deal with are the amount of nonlinearity
and memory, the reservoir size, input coupling strength, and training regularization).
Hyperparameters are often set by the user on an empirical, trial-and-error basis so as
to achieve ‘good’ results on a test data set (typically, the test data set is separate from
the training data set so as to ensure generalization of training). Hyperparameters can
also be set more systematically via optimization techniques.

The above description (e.g., Fig. 2) is for the case of a spatially one-dimensional
system. The generalization to higher dimensions is straightforward and is indicated
for the two-dimensional case in Fig. 3, in which the solid black lines divided space
into square patches labeled by the two subscripts (i, j), the vector si, j (analogous to
si in the one-dimensional case) specifies the system state within patch (i, j), and the
vector vi, j (analogous to vi in the one-dimensional case) specifies the system state in
the expanded overlapping regions indicated by the dashed square in Fig. 3. (A similar
scheme was also used in Zimmermann and Parlitz 2018 to infer unmeasured state
variables.)

4.2 Training

Now specializing in the case of Reservoir Computing, using a simple procedure
outlined in Jaeger and Haas (2004), we generate M reservoir systems each based on
a D � K/M node recurrent artificial neural network characterized by a weighted
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Fig. 3 Spatial regions si, j and vi, j for two-dimensional ML parallel prediction. See also Zimmer-
mann and Parlitz (2018)

Reservoir

(a) (b)

Reservoir

Fig. 4 aOpen-loop ‘training’ configuration; bClosed-loop ‘prediction’ configuration for the reser-
voir computing prediction scheme

adjacency matrix Ai . Assuming that initial start-up transient activity is omitted,
during the training phase, which we take to run from n = −T to n = −1, each of
the M reservoir networks (Fig. 5) evolves according to the following equation:

ri (n + 1) = tanh
[
Airi (n) + Win,ivi (n)

]
, (2)

where ri is the D−vector whose elements are the states (which are here taken to
be scalars) of each of the network nodes, and the D × [(K/M) + 2l] matrix Win,i

couples the i th input training vector vi to nodes of the recurrent reservoir network.
The reservoir states ri (n), −T ≤ n ≤ −1 are stored in a matrix Ri , such that the T
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columns of Ri are the vectors ri (n). The state vector ri is then used to produce an
output vector whose dimension is K/M . In the simplest case (not necessarily the
only choice), this is done via a (K/M) × D output coupling matrixWout,i , such that
the output is Wout,iri . We regard the parameters formed by the elements of Win,i

and Ai as fixed and use only the parameters of the output coupling function, i.e.,
the matrix elements ofWout,i for training. That is, we adjustWout,i so that a desired
training output results. In accord with the left panel of Fig. 1, we desire the output to
approximate si (n + 1) when the training input is vi (n),

Wout,iri (n + 1) � si (n + 1), (3)

for −T ≤ n ≤ −1. Calculating a matrix Wout,i that satisfies Eq. (3) is referred to
as ‘training’ the neural network. This is illustrated in Fig. 5. In Eq.3, the training
problem is incompletely defined as we have not specified what exactly we mean by
the ‘�’ sign. The simplest possible choice is to require that the right-hand side and
left-hand side of Eq. (3) be approximately equal in the sense of their �2 norms. Thus,
one might choose the matrixWout,i that minimizes the sum of squared deviations of
the output from its desired target value,

ε =
−1∑

n=−T

‖Wout,iri (n + 1) − si (n + 1)‖2. (4)

However, this can often be problematic, and to avoid overfitting to the training data
and better promote the generalizability of the training to cases beyond the training
data, a regularization procedure is typically employed. To this end, Wout,i is often

Forecast time state

Spatial Grid time state

Fig. 5 Parallelized prediction scheme. (K/M) = 2, l = 1. The open-loop configuration corre-
sponds to this figure with the dashed line ignored. The closed-loop configuration is represented
by the dashed line which indicates that the required inputs to the reservoirs are taken from the
corresponding outputs
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required tominimize ε + εr , where εr is a term that penalizes excessively large values
of the training parameters,

εr = β
∑

j

‖Wout,i‖2: j . (5)

In Eq. (5), ‖·‖: j denotes the �2 norm of the j th column of a matrix and β is a
hyperparameter called the regularization constant that determines the strength of the
regularization term. Note that this minimization is a standard linear regression prob-
lemwith a well-knownmatrix-based solution (e.g., see Eq. (6) below). Alternatively,
if the matrix inverse is computationally onerous (as might be the case for very large
D), one can minimize (ε + εr ) by the steepest descent. Another device, used in what
follows to increase the expressive power of the reservoir computing network without
sacrificing the training simplicity afforded by linear regression is to construct a vector
r∗ from r such that the elements r j of r and r∗

j of r
∗ are related by the following rule:

r∗
j = r2j if j is even and r

∗
j = r j if j is odd. Putting all of this together, we obtain the

expression for Wout,i ,

Wout,i = (
R∗

i R
∗T
i + βI

)−1
R∗

i S
T
i (6)

whereR∗
i is the D × T matrix with columns given by the vectors r∗

i (n), and Si is the
(N/M) × T matrix whose columns are the training data time-series vectors si (n).
Note that each of the individual reservoir systems i is trained independently, and thus
training is parallelized. Furthermore, the input and output dimensions can be much
smaller than the size of the global measurement state. Thus, the individual parallel
reservoirs can bemuch smaller than would be the case without making use of LSTCI.
Having determined Wout,i , we rewrite Eq. (3) as

Wout,ir∗
i (n + 1) = s̃i (n + 1) (7)

where s̃i (n) denotes themachine learning approximation to the true group i state vec-
tor si (n). Similarly, for later reference, wewill also use ṽi to denote the corresponding
approximation to vi .

For later reference, in all of the numerical experiments reported in what follows,
adjacency matrices are random Erdős–Renyi matrices of fixed average degree that
are scaled by multiplication by a constant so as to fix the matrix spectral radius
(magnitude of its largest eigenvalue) at a pre-selected value denoted by ρ, and the
elements of the input coupling matrices are each randomly selected numbers with
uniform probability in [−σ,σ]. Both ρ and σ are hyperparameters. For the tasks we
study, we find that the reservoir computer performance is largely insensitive to the
reservoir network topology. For specificity in the example given in this paper, we
use random Erdős–Renyi networks with an average degree equal to 3.
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4.3 Prediction

At the end of theminimization procedure described above, we obtain the set of matri-
cesWout,i that maps the internal state of the reservoir ri (n) at a given instant of time
to a good approximation of the state of the vector u(n). Since ri (n) is dependent on
past inputs (vi (n − k), k ≥ 1), we hope to have trained the reservoir to perform single
step forecasts of step size �. We know this to be true on the training data. Whether
the training generalizes to ‘out-of-sample’ data, i.e., the time series u(n) outside
the interval −T ≤ n ≤ −1 is a separate question. This question will be addressed
empirically by numerical experiments in sections to follow. In the prediction stage,
we re-configure our parallel ML system to generate forecasts for n > 0 (see Fig. 5
as follows):

step 1: s̃i (n) = Wout,ir∗
i (n)

step 2: Construct ṽi (n) from s̃i (n), s̃i±1(n)

step 3: ri (n + 1) = tanh
[
Airi (n) + Win,i ṽi (n)

] (8)

That is, the one-step-ahead output predictions of s j (n + �) for j = i − 1, i, i + 1,
are used to construct a prediction for vi (n + �), which is then fed back to the input
of the reservoir system i , producing a new output prediction of si (n + 2�), and this
process is cyclically repeated. To summarize, the prediction algorithm in Eq.8 has
three key steps. In the first step, we compute the output of each reservoir network
s̃i (n) to get a �-step prediction. Next, we construct the overlapping partitions ṽi (n)

from s̃i (n), s̃i±1(n). The vector ṽi is the feedback from the output of the reservoir
network to the input. Equation8 forms an autonomous dynamical system that predicts
the future states of the dynamical system that it was trained on.

4.4 Re-synchronization

The prediction scheme described in Sect. 4.3 will be expected to generate accurate
predictions for a finite amount of time determined by the fundamental properties
of the chaotic dynamical system being predicted, especially the average error e-
folding time (the inverse of the largest Lyapunov exponent of the chaotic process
of interest Ott 2002). Because of the chaos, the predictions will necessarily diverge
from the ground truth after some amount of time. After the predicted trajectory of the
dynamical system has diverged far enough from the true trajectory, the predictions
made by the reservoir system are no longer accurate enough to be useful. If, after
such a divergence, one wishes to restart prediction from some later time, the reservoir
system does not have to be re-trained in order to generate accurate new predictions.
Rather, we find that it is sufficient to re-synchronize the reservoir network states ri (n)

with the ground truth by simply running the reservoir networks without feedback
according to Eq. (2) for ξ time steps prior to the desired beginning of prediction.
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Importantly, we find that the necessary re-synchronization time is very much smaller
than the necessary training time ξ 	 T . Thus, we emphasize that the output weights
Wout,i do not need to be re-computed for subsequent predictions at later times.

4.5 An Example: A Lorenz 96 Model

We consider one of the classes of ‘toy’ models of atmospheric dynamics proposed in
a 1996 paper of Lorenz (1996) and use it as a testbed for our parallelized prediction
setup. The particular model we use is defined as a set of interacting scalar variables
X j (t), 1 ≤ j ≤ N on a spatially periodic grid (X j+N (t) = X j (t)) with the dynamics
given by the coupled ordinary differential equations,

dX j

dt
= −X j + X j−1X j+1 − X j−1X j−2 + F. (9)

We numerically integrate Eq. (9) using a standard fourth-order Runge–Kutta scheme
and generate simulated time-series data. We sample the simulated data at the time
step intervals � = 0.01 to generate the training data vectors u(n) in the interval
−T ≤ n ≤ −1, where T = 80,000. We also generate a test data set y(n) in the
interval 0 ≤ n ≤ 20,000. The training data set is used to train the reservoir computing
system according to the scheme outlined in Sect. 4 while the test data set is used to
validate the accuracy of the predictions. The validation scheme is as follows:

• Step 1: We generate a random set of 50 ‘initial time points’ nk , 1 ≤ k ≤ 50, such
that 1 ≤ nk ≤ 20,000 − τ − ξ.

• Step 2: The test data y(n) is used to synchronize the reservoirs to the true trajectory
for ξ time steps between nk and nk + ξ according to the synchronization procedure
outlined in Sect. 4.4.

• Step 3: The reservoir network is run in prediction mode according to Eq. (8) for
τ time steps. We evaluate the prediction error in this interval by comparing the
predicted data with the ground truth. The spatially averaged RMS prediction error
at time n is evaluated according to

e(n) = ‖ũ(n) − u(n)‖
√〈‖u(n)‖2〉n

. (10)

• Steps 2 and 3 are repeated for the next point in the set, nk+1.

The reservoir and model hyperparameters are listed in Table1. Figure6 shows the
results of forecasting a single interval. Panel (a) of Fig. 6 shows a direct numerical
solution of Eq. (9) for the value of X j (represented on a color scale) as a function
of spatial position j (vertical axis) and of time �t plotted along the horizontal axis
where � denotes the maximum Lyapunov exponent of the chaotic process. (Note
the wave-like behavior visible in this pattern. This wave-like behavior is purposely



128 J. Pathak and E. Ott

Table 1 Lorenz 96 prediction hyperparameters

Hyperparameter Value Hyperparameter Value

ρ 0.6 D 5000

σ 0.1 T 80,000

ξ 32 β 10−4

l 2 τ 1000

induced by Lorenz’s design of the model so as to mimic the presence of atmospheric
Rossby waves.) The largest Lyapunov exponent for this system with parameters
N = 40, F = 8 is � = 1.4. See Karimi and Paul (2010). Panel (b) shows the error
in the ML prediction starting at time zero, where the error is the ML predicted value
of X j (plotted in panel (b)) minus the ‘true’ value of X j (plotted in panel (a)). We see
that, for this case, a useful forecast (error near zero over a significant spatial region)
is obtained out to about four Lyapunov times. Panel (c) shows the spatially averaged
RMS error e(t) corresponding to panel (b) versus time, showing how that prediction
quality degrades with time. In order to illustrate the typical forecasting quality for
this system and the variance in the forecast quality on different parts of the attractor,
Fig. 7 shows the RMS error for 50 trajectories of length τ (cyan curves) plotted along
with the mean (black curve). Additionally, Fig. 8 shows the effect of changing the
number (M) of parallel reservoirs (and thus, changing the computational power) on
the quality of prediction. We see that longer forecasting times result as M increases.
We emphasize that our results are for the case of perfectly accurate measurements,
and that prediction quality degrades as the measurements are corrupted by noise. For
example, for large enough noise the improvement of prediction with an increase of
M from 5 to 20 seen in Fig. 8 might be absent when the noise becomes the prediction
limiting factor.

4.6 Another Example: The Kuramoto–Sivashinsky Equation

We now report on tests of our parallel reservoir prediction scheme using the
Kuramoto–Sivashinsky system defined by the partial differential equation,

∂y

∂t
+ y

∂y

∂x
+ ∂2y

∂x2
+ ∂4y

∂x4
= 0. (11)

Here, y(x, t) is a scalar field defined on the spatial domain x ∈ [0, L) with periodic
boundary conditions so that y(x + L , t) = y(x, t).Wenumerically integrate Eq. (11)
using a pseudo-spectral scheme described inKassam andTrefethen (2005). The time-
series data is sampled at � = 0.25 and used to create a training data set with T =
80,000 time steps and a test data set of length 20,000 time steps. We follow the same



Reservoir Computing for Forecasting Large Spatiotemporal … 129

20

40

-10

-5

0

5

10

20

40

20

40

0 2 4 6 8 10
0

1

0

0

0

(a)

(b)

(c)

(d)

Fig. 6 Lorenz 96 prediction results for parameter value F = 8, N = 40. Panel a shows the true
trajectory to be predicted by the reservoir. Panel b shows the reservoir predictionwithM = 20 reser-
voirs and a locality parameter l = 2. Panel c shows the difference between the reservoir prediction
and the true trajectory. Panel d shows the normalized RMS error e(t) in the reservoir prediction as
a function of time

validation procedure as outlined in Sect. 4.5 and test the accuracy of our forecasting
results. Figure9 shows the results for a single prediction interval. Figure10 shows
the variability in the prediction accuracy (as measured by the RMS error) on different
intervals of the attractor. The effect of changing the number of reservoirs (M) used
in the prediction setup is qualitatively similar to those resulting from our tests on the
Lorenz 96 model, Eq. (9) shown in Fig. 8.
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Fig. 7 RMS error in reservoir predictions over multiple intervals starting from different points on
the attractor. The parameters of the Lorenz model are F = 8 and N = 40. The reservoir system is
composed of M = 20 reservoirs with hyperparameters given in Table1
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Fig. 8 RMS error e(n) averaged over 50 prediction intervals in the Lorenz 96 prediction for
parameter value F = 8, N = 40. The number of reservoirs used (M) in the parallel prediction is as
indicated in the legend
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Fig. 9 Kuramoto–Sivashinsky prediction results. Panel a shows the true trajectory to be predicted
by the reservoir. The periodicity length is L = 100. The K = 256 time series is predicted using
M = 32 reservoir and a locality parameter l = 6. Panel b shows the reservoir prediction. Panel c
shows the difference between the reservoir prediction and the true trajectory, i.e., b minus a. Panel
d shows the normalized RMS error e(t) in the reservoir prediction as a function of time

5 Hybrid Forecasting

We next consider the important and frequently encountered situation where a phys-
ical, knowledge-based model of a dynamical system is available but is imperfect in
the sense that its dynamics deviates from that of the system that it is meant to model.
This kind of model error can significantly degrade the predictions made by such a
knowledge-based model. In this section, we show that machine learning can be a
very useful tool for mitigating deficiencies of typical knowledge-based prediction
systems. The hybrid forecasting configuration used in this section was introduced in
Pathak et al. (2018b).

Figure11 illustrates our scheme for implementing a hybridmachine learning setup
that combines an imperfect knowledge-based model of a dynamical system with a
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Fig. 10 RMS error in reservoir predictions over multiple intervals starting from different points on
the attractor. The periodicity length of the KS system is L = 100. The reservoir system is composed
of M = 32 reservoirs with hyperparameters given in Table2

Table 2 Kuramoto–Sivashinsky system prediction hyperparameters

Hyperparameter Value Hyperparameter Value

ρ 0.6 D 5000

σ 1 T 80,000

ξ 32 β 10−4

l 6 τ 1000

reservoir-computing-based machine learning setup. In the next section, we describe
the training and prediction scheme illustrated in Fig. 11.

5.1 Training

We assume that we have a training data set u(n), −T ≤ n ≤ −1, of measurements
from the dynamical system of interest that have been sampled on a time interval
�. Further, we assume that we have an imperfect model of the dynamical system
denoted by M, so that

ũM(n + 1) = M[u(n)] (12)
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Fig. 11 Hybrid Forecasting Scheme for combining the reservoir prediction with an imperfect
knowledge-based model. During the training phase a, the system is in an open-loop configuration
while in the prediction phase b, the system is in a closed-loop configuration

gives us an approximate �-step prediction of u(n). We construct a reservoir with
D nodes connected according to the adjacency matrix A and denote the state of the
reservoir by r. In the interval −T ≤ n ≤ −1, we evolve the reservoir according to
the equation,

r(n + 1) = tanh(Ar(n) + Winu(n)), (13)

and collect the states r(n) for −T ≤ n ≤ −1. We also collect the imperfect model
forecasts ũM(n + 1) = M[u(n)] for −T ≤ n ≤ −1. Let h(n) be the vector formed
by concatenation of the reservoir state and the imperfect model forecast as h(n) =
[r(n); ũM(n + 1)]. The trained output weights of the hybrid reservoir forecasting
system are calculated similar to Eq. (6) so that

Wouth(n + 1) = ũH (n + 1). (14)

Note that, by the minimization carried out by the training procedure, it is reasonable
to think of this output as a semi-optimal combination of the ML component and the
imperfect knowledge-based component.

5.2 Prediction

After the training weights have been computed, we can start prediction at any time
n0 ≥ 0. For example, if n0 > ξ we do the following steps:

• Step 1: Synchronize the hybrid system to the ground truth for ξ steps by running
the open-loop system, Eqs. 12, 13, from n = n0 − ξ to n = n0.

• Step 2: Predict for the next τ (� ξ) steps using the closed-loop system illustrated
in Fig. 11b and described by the equations,
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ũH (n) = Wout[r(n); ũM(n + 1)], (15)

r(n + 1) = tanh(Ar + WinũH (n)). (16)

5.3 An Example: Kuramoto–Sivashinsky Equations

We demonstrate the hybrid prediction setup using the Kuramoto–Sivashinsky equa-
tion. In this section, we consider training data generated by numerically simulating
Eq. (11). Let the imperfect model be given by the following equation:

∂y

∂t
+ y

∂y

∂x
+ (1 + ε)

∂2y

∂x2
+ ∂4y

∂x4
= 0 (17)

with x ∈ [0, L) where L is the periodicity length. In Eq. (17), the parameter ε
describes how closely the equation models the true dynamical system given by
Eq. (11). A larger value of ε indicates a larger model error, and thus, a less accurate
model. We consider a KS system with L = 35. Figure12 illustrates the advantage
of the hybrid forecasting scheme over either a pure machine learning approach or
the imperfect model by itself. The top panel shows the result of the direct numerical
solution of the KS equation (i.e., Eq. 11). The next three panels [(a), (b), (c)] show
the error of the reservoir prediction [panel (a)], of the imperfect model [panel (b)]
and of the hybrid [panel (c)] for a case with a moderate size reservoir (D = 5000
nodes) and a relatively small amount of model error (ε = 0.01). We see from panels
(a)–(c) that the predictions from the reservoir and from the imperfect knowledge-
based model both yield prediction results that are of reasonable value (duration of
useful predictions lasting about 1.5 and 2.3 Lyapunov times, respectively), but that
the hybrid yields a substantially longer duration of useful prediction (about 6.2 Lya-
punov times) than either of its two components. Panels (d), (e), and (f) are for a
situation in which the reservoir is substantially smaller (D = 500) and the error
in the knowledge-based model is substantially greater (ε = 0.1). Panels (d) and (e)
show that for this case, the predictions of both the reservoir and the knowledge-based
model are fairly worthless. Nevertheless, when these two components are combined
in a hybrid, they yield substantial prediction power as indicated in panel (f) (i.e.,
prediction time of about 4.5 Lyapunov times).

6 Parallel/Hybrid Forecasting

For our goal of using machine learning to improve forecasting of large complex
spatiotemporally chaotic systems, we believe that the most useful strategy will be to
combine the parallel approach of Sect. 4 with the hybrid approach of Sect. 5. This
combination (1) will, via the parallelization, effectively exploit the LSTCI properties
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Fig. 12 Top Panel: True trajectory of the KS equation being predicted (Eq. (11) with L = 35).
Panels a–f are forecast errors using the indicated schemes. Panels a and d are prediction errors
using a reservoir-only scheme with the indicated reservoir size. Panels b and e are prediction errors
using only the knowledge-based model with the indicated model error (ε). Panels c and f are the
prediction errors upon using the hybrid scheme that combines the reservoir and the knowledge-
based schemes. Panel c combines a reservoir of size D = 5000 with the knowledge-based model
with error ε = 0.01. Panel f combines a reservoir of size D = 500 with the knowledge-based model
with error ε = 0.1



136 J. Pathak and E. Ott

Global 
Forecast Model

Global 
Forecast Model

Spatial Grid

Hybrid Forecast time
state

time state

time
model forecast

Fig. 13 A suggested architecture for a parallelized hybrid forecasting scheme. The machine learn-
ing component is implemented in a manner similar to Sect. 4, with an additional global forecast
model to assist in the forecast

of the dynamical system and allow for computational efficiency in the machine
learning component with respect to reservoir size, training, and amount of training
data, and (2) will, via our hybrid scheme, provide a very effective platform for
simultaneously utilizing data and first-principles system knowledge embodied by an
imperfect global model.

Figure13 shows a possible implementation of such a parallel/hybrid forecasting
scheme. The spatial grid is partitioned similar to Sect. 4 (Figs. 2, 5). Additionally, a
global knowledge-based forecastmodel (shownas the horizontally oriented long, thin
rectangle) makes predictions which are distributed to the reservoirs and combined
with the machine learning forecasts similar to Sect. 5 (Fig. 11). Since the knowledge-
based predictions are global, if there is any aspect of the dynamics for which our
LSTCI assumption (used in the ML parallelization) is deficient, we expect that the
training process will allow potentially reasonable modeling of such an aspect via the
knowledge-based model. Note that the grid for the ML component need not be the
same as that for the global knowledge-based component, and that theMLgrid density
can be inhomogeneous. This freedom can be utilized by making the ML grid denser
than that of the global knowledge-based component to provide extra resolution, or
by restricting a denser ML component to a limited area for regional forecasting.
The parallel/hybrid forecasting approach outlined here has been examined in further
detail in Wikner et al. (2020).

7 Conclusion

In this chapter, we have considered the situation in which one desires to forecast the
evolution of a large complex spatiotemporally chaotic system forwhich there is some,
possibly incomplete and/or inaccurate, descriptive knowledge that can be used to
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formulate an imperfect computationalmodel. The limitations of such a computational
model may stem from deficiencies in our knowledge of basic processes determining
the systemevolution, or of computational feasibility ofmodeling such processes (e.g.,
in situations where there is a very wide range of relevant scales), or a combination of
these. While a model of this type may have deficiencies, we wish to utilize whatever
capabilities it has to further our end of forecasting.

On the other hand, machine learning purely from past time-series data of an
evolving dynamical system has had success in forecasting for certain situations.
However, when systems are large and complex and the system state description to
be forecasted is correspondingly large and complex, it appears that a purely machine
learning approach might often not be feasible.

Thus, it makes sense to try and combine these two very different approaches. The
combination of the two approaches may potentially be capable of outperforming
either one of them acting alone. Even so, implementation of anML system combined
with a knowledge-based computational model still faces a substantial challenge due
to the size and complexity of the states that we desire to forecast. Thus, in this chapter
we have addressed what we believe are two key issues in this approach to forecasting
large complex spatiotemporally chaotic systems: (i) how to wed (hybridize) machine
learning with an imperfect knowledge-based computational model, and (ii) how to
parallelize the machine learning component in combination with global knowledge-
based code, in a manner feasible for the machine learning component. Our review
of these two key issues leads us to conclude that preliminary results provide a pos-
sible path that may be effective in enabling improved forecasting of large complex
spatiotemporally chaotic systems.

However, we emphasize that many issues remain. The task of weather forecasting
provides a basis for assessing difficulties and directions for future work aimed at
ultimately using this hybrid/parallel approach for forecasting large, complex, spa-
tiotemporal systems. Primary among these is the issue of cyclic prediction and data
assimilation. Typically, a new set of weather forecasts ismade every 6h. At the begin-
ning of each 6h cycle, newmeasurements of the atmospheric state are used to correct
an estimate of the probability distribution of the atmospheric state provided by the
6h forecast from the previous cycle, and the new probability distribution estimate is
used as an initial condition for an atmospheric model, which is then integrated for-
ward to make a new set of probabilistic forecasts. The process by which the previous
forecast is combined with the new data is called ‘data assimilation’. Moreover, the
nature of the data for weather forecasting is itself complex, resulting from measure-
ments with stochastic errors from an array of different types of diagnostic sources
(e.g., balloons, satellites, ground stations, ships, aircraft, and radar), and these data
sources can vary greatly in space and time (e.g., balloon measurements are typically
dense over technologically developed regions, typically less dense over technolog-
ically less developed or more sparsely populated regions, and typically very much
less dense over oceans).
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Thus, to proceedpast the preliminarypromising results of this chapter,many issues
such as incorporation of cyclic data assimilation and data source heterogeneity await.
We hope, however, that this chapter will provide a basis for moving forward in this
area.
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Reservoir Computing in Material
Substrates

Matthew Dale, Julian F. Miller, Susan Stepney, and Martin A. Trefzer

Abstract We overview Reservoir Computing (RC) with physical systems from an
Unconventional Computing (UC) perspective. We discuss challenges present in both
fields, including encoding and representation, or how to manipulate and read infor-
mation; ways to search large and complex configuration spaces of physical systems;
and what makes a “good” computing substrate.

1 Introduction

As of 2018, there are many “flavours” and interpretations of physical reservoir com-
puting systems. A recent review (Tanaka et al. 2019) classifies and groups these
systems according to reservoir types based on physical properties exploited, such as
chemical, optical, andmechanical based. These systems can vary immensely in terms
of architecture, dynamics, degrees of freedom, ease to manipulate, size, complexity,
and internal timescales. However, a general framework for physical reservoir com-
puting and unconventional computing is still missing. The wide variety of potential
computing systems presents several challenges: how best to design physical systems,
how to determine what computational tasks they are best suited to, and how to assess
and compare across different architectures.

In this chapter, we discuss three important aspects for describing any physical
[reservoir] computing system: representation and instantiation; manipulation and
programming; and what makes a “good” computing substrate. Nomatter what future
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systems emerge, these three aspects will always play a pivotal role in the design and
application of any physical (and virtual) reservoir computing system.

Physical systems tend to have high degrees of freedom or ways to be configured.
Whether each configuration induces a small or large change in dynamical behaviour
is more important to the system’s computing ability. A substrate that can compute
many different problems will possess a high degree of dynamical freedom, with the
ability to instantiate many “reservoirs” in a single substrate.

Here, we use the term reservoir to refer to a specific configuration of some non-
linear system, substrate, or device that facilitates computation.A configuration is a set
of values of the parameters that control and influence the behaviour of the system. For
reservoirs, these parameter values are typically static: they are held constant during
the operation of the reservoir. In a simulated recurrent neural network, parameters
may be weights or global scaling parameters. In an optical delay-based system,
parameters define the sample-and-hold procedure, the length of a fibre optic delay
line, or injection currents that shape the non-linearity of the system. In other systems,
parameters include cell update rules in a cellular automaton, the volume of the reactor
in a chemical reaction system, and the strength of the coupling between neighbouring
oscillators in a mechanical oscillator network.

A reservoir is thus an abstract representation of a physical or simulated system,
which is realised through the instantiation or configuration of physical parameters.

To successfully compute with a reservoir, in general, requires a physical system
with a number of dynamical properties that exist internally, which can be driven by
an external input signal. These properties, either present in a “natural” state or in a
configured state, govern the information processing capabilities and capacity of the
system: how information is stored, transmitted, distributed, and processed.

There are three known basic properties for reservoir computing. The echo state
property (Jaeger 2001a) represents a fading memory, an essential property for learn-
ing time-dependent relationships for the prediction of future states based on previ-
ous states. The separation property represents a system’s ability to project the input
space into the high-dimensional phase space of the system. The approximation prop-
erty (Maass et al. 2002) is the reservoir’s ability to generalise given similar, or noisy,
input signals, that is, to converge to the same attractor in terms of dynamics. Other
“basic” properties may exist that are at present unknown.

Dambre et al. (2012) show that all dynamical systems featuring such properties
possess the same total normalised capacity to process information. They identify
and explain the importance of the non-linearity and memory trade-off for computing
tasks, as well as the detrimental effect noise has on the computational capacity
of dynamical systems. These insights, demonstrated with three dynamical systems,
validate the RC framework’s application to a range of underlying dynamical systems.

What type of dynamical systems the RC framework can be applied to is fairly
broad, covering both discrete and continuous systems. However, common patterns
exist for all systems. In each, information is processed via an intrinsic function, the
physical system dynamics that transforms and maps input signals into observable
system states. The details of how this intrinsic function works are generally irrelevant
to the reservoir’s programming process. The substrate, and subsequent reservoir, is a
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black box. The model harnesses potentially unknown physical processes, performing
functions onmacroscopic behaviours resulting fromunseenmicroscopic interactions.

In terms of programming physical and unconventional computers, the configu-
ration, input, and output methods encompass the unconventional “program” of the
system. Unlike conventional programs, instructions induce and exploit the intrinsic
dynamics and state of the systemwithout explicitly telling the system how to do so, or
what to do at the lowest physical level. These programs are typically “learned” rather
than hand-crafted. For example, the training of RC systems can be partitioned into
multiple stages. Substrate parameters may be selected randomly (typically within a
constrained domain) or trained through some optimisation process (Abubakar et al.
2018). The readout stage is typically learnt through linear regression, reducing the
error between the reservoir output and the desired output signal. In most cases, this
layer is simply a linear weighted combination of system states; however, more com-
plex and non-linear readouts (and training methods) are possible.

The variety of intrinsic properties exploitable from physical systems—how they
store and process information—is what makes these systems useful, powerful,
and diverse. With physical systems, there are greater possibilities for faster, less-
expensive, and more energy-efficient computing. This is in part due to less top-down
design, fewer data conversion steps and constraints, removal of traditional data trans-
fer bottlenecks, and architectures that tend to be more robust and less error-prone.
However, there are still many gaps left in our understanding of what makes these
systems compute.

In the remainder of this chapter, we highlight areas of unconventional computing
to discuss and map out challenges and areas still requiring further development.
We outline the importance of representation and instantiation in Sect. 3 and discuss
the programming of reservoirs in Sect. 4. In the final section, we discuss a newly
proposed framework to evaluate what makes a good computing substrate, providing
a new perspective on how to build and compare physical reservoir computers.

2 Computing with Physical Systems

Biological systems vastly outperform certain aspects of classical computing
paradigms, from possessing inherent fault-tolerance to forming highly parallel
machinery. Much of this performance is achieved by exploiting physicality and
embodiment (Stepney 2007), sharing and distributing computational effort through-
out the system, from small-scale micro-organisms to large-scale swarms. Biological
systems exploit physical interactions through feedback with the real world, utilising
features such as morphology and direct and indirect changes to the environment.
Many of these systems comprise simple elements (e.g., molecules and cells) that
emerge and coalesce into more complex (e.g., multi-cell organisms and ecosystems),
but robust, structural layersworking across different spatial and temporal scales. Such
grounding properties (and many more) have enabled these complex systems to thrive
and evolve, adapting and co-evolving with their local ecosystem.
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In modern science and engineering, there are many attempts to mimic the compu-
tational properties, efficiency, and behaviours of biological systems on conventional
machines. In many ways, such attempts are flawed, or at least inefficient. Techniques
and models attempt to imitate the performance of an embodied system in a non-
embodied abstraction, in a process that requires an often cumbersome and inefficient
transformation to a symbolic representation. In essence, such transformations detract
from many of the physical aspects that make natural systems so powerful.

The limitations of conventional computing paradigms are well defined, and we
are rapidly approaching the limitations of current CMOS technology (Lloyd 2000).
For technology to move forward, many of these limitations need to be overcome, by
using the same classical paradigms or alternative ones.

The conventional von Neumann computing architecture, based on the stored-
program computer concept, although expertly refined over decades, has some fun-
damental inefficiencies. For example, classical computers require the transformation
between high-level languages to low-level machine code, a process that requires lay-
ers of conversion through a compiler stack, making it computationally costly, slow,
and highly susceptible to faults and errors. These systems typically succumb tomany
issues in speed, from both an inability to deal with concurrent computations and the
bottleneck created by the transfer of data between separate memory and processing
entities. Because of these architectural weaknesses, other intertwined issues arise,
such as an increase in power consumption, system size, and design complexity.

2.1 Unconventional Computing

The field of unconventional computing has for many years attempted to address the
limitations of conventional computing by providing alternative architectures, sys-
tems, and models that typically exploit the underlying physics and many-scale inter-
actions of the real world. Many forms of unconventional systems now exist, from the
mathematical reversible and chaos computing concepts to physical–chemical and
neuromorphic computing. Recent collections of theory and practice of unconven-
tional systems include (Adamatzky 2016a, b; Stepney et al. 2018).

Unconventional systems have a long history. Some systems link back to the mid-
twentieth century cybernetics movement, such as Pask’s experiments with electro-
chemical assemblages in ferrous sulphate solutions (Cariani 1993; Pask1959).Others
include Turing’s unorganised machines (A- and B-type random networks) (Turing
1969) constructed from simple components in a random structure capable of learn-
ing. Even further back there are analog computing models and systems such as the
differential analyser (early twentieth century), Babbage’s Difference Engine (nine-
teenth century), slide rules, Orrerys (mechanical models of the solar system), and
astronomical clocks.

Pask’s work—a novel example of unconventional systems and methods at the
time—was conducted exclusively in the physical domain and sought to evolve func-
tional dendrite-like structures by passing current directly through immersed elec-
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trodes.To alter the growthof these structures, he selectedwhich electrodes to pass cur-
rent between, with the resulting linkage conductance representing synaptic weights.
In his experiments, Pask manually selected and “evolved” linkages sensitive to per-
turbations caused by sound, or magnetic fields, to create a self-assembling “ear” that
could be trained to discriminate between different frequencies.

Turing’s work, on the other hand, wasmore theoretically based, drawing on analo-
gies with the human brain. What makes Turing’s machines particularly interesting
here is the clear analogies to the current reservoir computing paradigm.

In general, exploiting computation directly at the substrate level, as biological sys-
tems do, is expected to offer advantages over classical computing architectures, such
as exploiting physical andmaterial constraints that could offer solutions “for free”, or
at least computationally cheaper (Stepney 2008). Extracting computation from these
systems and physically programming them, however, is challenging. Sometimes, this
is further complicated by a desire for minimal abstraction: exploiting emergent phys-
ical phenomena directly whilst maintaining a level of programmability that enables
the system to perform a variety of tasks.

Hybrid digital–analog computers potentially solve this programming problem,
where the digital system is trained to extract computation performed implicitly from
an analog substrate. This is typically where many physical reservoir computers align,
with the readout and training often carried out in the digital domain. An excel-
lent example of a programmable hybrid system is Mills’ Kirchhoff–Lukasiewicz
Machines (KLM) (Mills 1995) based on Rubel’s computational model of analog
computation (the extended analog computer Rubel 1993). In Mills’ work, the KLM
device is controlled by a specially designed vector of bits, referred to as the “over-
lay” (Mills 1995). This overlay, representing the semantic “program”, is used to
define the reconfigurable layer that exploits the implicit material function. The com-
putational functions being utilised are therefore a result of the material’s configura-
tion, typically achieved through the selection of inputs, outputs, and control func-
tions/signals. Mills describes this as a paradigm of analogy (Mills 2008), where
the computing device is not explicitly told to perform an operation and provide a
readable output, but rather trained to exploit an implicit function that results from
the material’s configuration. Thus, it is an analogy of the program, rather than an
algorithmic function to be implemented.

For analog computers, the program and architecture may be indistinguishable or
inseparable: to program the machine requires a change in the machine architecture.
However, placing additional layers within the machine’s architecture may reduce
the amount of change required; for example, adding a standardised reconfigurable
“middle” layer or a trainable readout in reservoir computing.

2.2 Configuring Physical Systems to Compute

Conventional computers are designed to be substrate-independent, where a sym-
bolic virtual “machine” is engineered into physical hardware. Yet, not every com-
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puting problem requires abstraction to a symbolic virtual machine, e.g., filtering,
control problems, and solving differential equations. The digital computing pipeline
from physical-to-abstract-to-physical tends to consume much more power than an
equivalent analog counterpart, be constrained by serial-processing, and present many
vulnerabilities in terms of security and coding errors.

Material/substrate-based computers are machines in which some computational
process, or physical mechanism, may be extracted from a behaviourally diverse
dynamical system. In essence, information processing can be exploited from what
the substrate does naturally, for example, how the system reacts and dynamically
adapts to some input stimulus (Stepney 2008). Informally speaking, this can be
viewed as “kicking” the dynamical system and observing its behaviour to some
given stimulus, where the method of perturbation and observation may vary in type:
electrical, mechanical, optical, etc.

Given some material has potential properties useful for computing, the question
is whether they are extractable, and whether the system can be trained, configured,
or engineered to consistently exploit these properties.

Before the first physical reservoir computers emerged, a computing paradigm
reminiscent of Pask’s self-assembling ear was developed for novel substrates. This
conceptual idea was named “evolution in materio” (EiM) by Miller and Down-
ing (2002). Inspired by Thompson’s seminal work on “intrinsic” hardware evolu-
tion (Thompson 1997), the principal idea is to use artificial evolution as a search
method to find configurations that directly exploit the computational properties of
complex materials.

To date, work with EiM has explored liquid crystal substrates, composites of
randomly dispersed carbon nanotubesmixedwith polymers, carbon nanotubesmixed
with liquid crystal, andnetworks of gold nanoparticles (Broersma et al. 2017;Harding
and Miller 2004; Massey et al. 2016; Miller and Downing 2002). Each of these
substrates is evolved to achieve interesting computational properties on a variety of
specific tasks, without it being known exactly how best to program them to perform
those tasks. Applying evolvedmappings and external “control” signals, the unknown
internal properties of the composites are configured to produce physical solutions to
computational tasks.

Current progress of EiM and physical reservoir computing still remains at the sub-
strate level: single devices/systems and simple architectures. This limits the complex-
ity and types of tasks that are solved. Solvingproblemswith increased complexitywill
require layers of (non-symbolic) abstraction, hierarchy, and possibly multi-substrate
designs,whilstmaintaining substrate-level exploitation and efficiency.How to imple-
ment and program such architectures is still unclear.

Another non-trivial task is how to analyse what is being exploited, intrinsically,
externally, and in terms of general computational and dynamical properties of the
substrate. This closely links with how to determine if a substrate is suitably “rich”
to solve computational tasks; and, if the substrate is suitable, what class of tasks is
appropriate.

At the basic level, a generic methodology to characterise the substrate, suitable
architectures, and higher-level constructs that naturally fit the substrate is missing.
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For example, in EiM, often too little is known about the substrate being evolved; in
principle this is the point, but in practice it limits its full potential. Aminimal criterion
for evolution to excel, or for reservoir computing to work, needs to be established.
At the same time, the realistic potential of the substrate needs to be determined and
categorised. This includes whether a substrate is compatible with other substrates,
what role it can fulfil in a hierarchy or high-level program, and what other basic
physical limitations exist.

3 Reservoir Computing with Physical Systems

Akey advantage to using the reservoir computing paradigm is that there is no require-
ment to control individual elements within the system. This makes it applicable to
many complex structures where the exact arrangement and manipulation of inter-
nal elements are either too time-consuming, too delicate/complex to implement, or
impossible to achieve. However, to determine whether a substrate is computationally
exploitable depends upon both underlying physical characteristics and the observable
phase space.

In many cases, a physical substrate is computationally useful only when con-
figured or perturbed. Therefore, forming a useful reservoir requires the tuning of
physical parameters. This itself implies that a single substrate instance can realise a
range of reservoirs of varying quality through different physical configurations.

Using the reservoir model, we argue that any substrate and subsequent configu-
ration is represented by its abstract “quality” in a space of all possible reservoirs,
and that this space is very different from the configuration space. Methods for “pre-
training” reservoirs (or selecting appropriate parameter ranges) to navigate this reser-
voir space are therefore essential tools to find and discover functional, possibly
optimal, reservoirs within all possible material states. Figure1 shows a conceptual
representation of a single substrate’s space of all possible physical configurations
and its abstract reservoir equivalence.

Different substrates have their own such spaces; some perhaps have no functioning
reservoirs; some perhaps possess many configurations in distant regions of the space
that produce ideal properties for reservoir computing.When substrate “richness” and
complexity increases, these complex structured spaces have a greater probability to
be “deceptive” and difficult to navigate. Configurations close to an ideal solution
may themselves be computationally uninteresting; working configurations may be
unstable or critical when perturbed by noise and other external signals.

To create and navigate these spaces, basic mechanisms must be defined: how to
encode and represent information flowing both in and out of the system. Depending
on this, each space will vary drastically. For example, the size and density of func-
tional reservoirs in these spaces will increase or decrease given different encodings.
The combination of multiple encodings and representations will also have an effect,
possibly leading to even larger and richer spaces. A prime example of how encod-
ing affects computability is the delay-based reservoir computing technique using a
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Optimal reservoirs w.r.t. Kernel “quality”, dynamics (edge 
of chaos?), memory capacity, generalisation property 

All possible configurations All possible Reservoirs

sub-optimal
reservoirs

Functional 
configurations

Fig. 1 Mapping between substrate configuration space and reservoir quality; from Dale (2015)

single non-linear node with delayed feedback, synonymous with optoelectronic and
photonic systems (Appeltant et al. 2011, 2014; Brunner et al. 2013; Paquot et al.
2012). In these systems, the input encoding defines a network of virtual processing
nodes in the time-domain rather than implementing a physical spatial network of
nodes.

3.1 Encoding and Representation in Reservoir Computers

Conventional programs and algorithms represent idealised mathematical objects,
irrespective of their underlying hardware. In a physical system, say a biological
system, computation is embodied and behaviour is challenging, if not impractical,
to capture using a closed mathematical model. As such, trying to program these
embodied systems requires different techniques.

Unconventional computers have the potential to be faster, and/or consume less
power, but in order to do so requires that the model of computation naturally fits the
material rather than imposing an inappropriate model that fights its implementation.
As Caravelli and Carbajal (2018) describe it: “the problem needs to be specified
using the language of the computing device. Using the wrong language increases the
difficulty of the problem, and consequently decreases performance.”

Most unconventional systems have only a primitive, or even no explicit, compu-
tational model. This makes it difficult to build higher-order representations, leaving
the programming side heavily underdeveloped. As a result, programs are typically
stuck at the equivalent assembly language level, with all the problems associated
with a lack of abstraction and usability.

Representation and encoding are therefore critical to future progress; identifying
what representations work best, and designing high-level programs that naturally fit
the reservoir model, need to be further developed.
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3.2 Abstraction/Representation (A/R) Theory

To discuss the encoding and representation problem for physical reservoirs, we first
need to define as to when a physical system computes.

In order to distinguish when computation is occurring in a physical system, as
opposed to the system simply just “doing its thing”, Abstraction/Representation
(A/R) theory has been developed (Horsman et al. 2014, 2017, 2018). In A/R theory,
physical computing is the use of a physical system to predict the outcome of an
abstract transformation.

The theory identifies objects in the domain of physical systems (including com-
puters), the domain of abstract objects (including computational models), and the
representation relation which links the two.

The representation relation is primitive andmaps fromphysical to abstract objects,
R : P → M , whereP is the set of physical objects, andM is the set of abstract objects.
When two objects are connected by R, we write them as R : p → mp. The abstract
object mp is then said to be the abstract representation of the physical object p.
Instantiation is a map from abstract object to physical object: ˜R : M → P. When
two objects are connected by ˜R, we write them as ˜R : mp → p. The physical object
p is then said to be the physical instantiation of the abstract object mp.

Abstract evolution maps abstract objects to abstract objects, which we write as
C : mp → m ′

p. If we instantiate mp in p, then its corresponding physical evolution
map is given by H : p → p′. If we now apply R to the outcome state of the physical
evolution, we get its abstract representation mp′ . See Fig. 2.

( )

( ) ( )

Real World

Abstract World

COMPUTE

Instantiate Represent

Physical system

Abstract machine
Δ

Problem

Fig. 2 Commuting diagram: mapping between abstract space and physical space. T represents
appropriate theory for encoding and representation.� is translation of abstract problem into abstract
machine. Other definitions are given in the text
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We now have two abstract objects, m ′
p and mp′ . If these are sufficiently close,

then we say that the physical system has computed the desired result of the abstract
computation. For a well-engineered system, one where we can rely on this sufficient
closeness, we no longer have to compare the two answers, and can take mp′ as the
prediction of the desired result of the computation m ′

p.
To extend the theory to multiple physical systems, as many practical unconven-

tional devices will most likely consist of, the heterotic computing framework has
been developed (Horsman 2015; Kendon et al. 2011, 2015). The term “heterotic”
captures the “hybrid vigour” of complex systems, where the whole is greater than the
sum of its parts. Possible heterotic systems could consist of multiple devices and dif-
ferent computational models combined to create more expressive and programmable
computers.

The concept of hybrid reservoir systems, “mixing and matching” different uncon-
ventional systems, both virtual and physical, is largely unexplored in the literature.
However, on the surface, it looks promising for further research as the benefits of
hierarchical reservoir systems come into light (Dale 2018a; Gallicchio et al. 2017).

3.3 Observing Reservoir States

Here, we define our representationR of physical system states. To interpret a physical
substrate as a reservoir, the definition in Konkoli et al. (2018) is adapted, where the
observed reservoir states x(n) form a combination of the substrate’s implicit function
and its discrete observation:

x(n) = �(E(Winu(t), uconfig(t))) (1)

where �(n) is the observation of the substrate’s macroscopic behaviour and E(t)
the continuous microscopic substrate function when driven by the input u(t). Win

symbolises a set of input weights common in all reservoir systems. The variable
uconfig(t) represents the substrate’s configuration, whether that be through external
control, an input–output mapping, or other method of configuration. Equation1 is a
simple case where no feedback is returned to the system. To add feedback, the input
variables y and feedback weights W f b are added to E(.).

This formalisation of the reservoir states separates the system into contributing
parts, including the observation and configuration method, which as a whole repre-
sents the overall physical reservoir computer.

An exploitable feature of this definition is that there is no need for the input
mechanism to be the same as the observation method. For example, an input may
be encoded as an electrical signal, and the reservoir states observed as deformations
in physical structure. This additional channel of communication leads to an increase
in system bandwidth to exploit, allowing multiple measurement and stimulation
techniques to be used in tandem.



Reservoir Computing in Material Substrates 151

In Eq.1, note that the intrinsic substrate function (E) is presumed to be fixed,
clamped, or set by uconfig. However, depending on the system, E may change when
interacted with or observed (commonly known as the “observer” effect), and may
therefore be non-deterministic.

When physical systems are connected to stimulation and recording equipment,
it is critical not to overlook that the whole interface will, in some way, affect the
computing process, which may or may not be included in the model. In most experi-
mental works, it is imperative that the substrate being exploited is sufficiently isolated
from the rest of the system, e.g., from its controlling equipment and its environment.
In Dale (2018b), it was shown how evolution could find ways to include and exploit
the interfacing equipment as part of the reservoir system. Despite its positive contri-
bution, generally improving performance, the dynamics of the substrate became less
important to the computing system. For cases such as this, we include the� function
in Eq.1, as the observation process itself may affect the system output.

This phenomenon, unique to physical substrates, is a trade-off problem, presenting
itself more within certain systems. If the substrate is fixed permanently to the same
measuring equipment, the contribution of the interface to the overall “computation”
is considered less crucial. However, if the substrate is to be trained on one device
and then applied on another, the substrate under-test should be the main, if not the
only, contributor.

The final output y(n), the last part of the system, is determined by the readout
function g on the observation x(n):

y(n) = g(x(n)) (2)

In many reservoir systems, the readout function g tends to be a linear weighted
combination of system states for RC, and once trained remains static.

As previously mentioned, the readout layer can be implemented within a differ-
ent medium or domain from the reservoir substrate itself. For example, an analog
material may be combined with a digital readout layer. This flexibility adds extra
programmability, and even compatibility with other devices, but may come with
specific costs and benefits.

At present, methods that take advantage of uconfig(t) and g(x(n), n) changing
with time are uncommon. Although this comes at the price of complexity, abstract
programs where both implement functional primitives, providing higher-order rep-
resentations in y(n), are theoretically possible.

4 The Search for Reservoirs

The classical approach to programming and manipulating physical systems requires
(to some extent) a good understanding of the properties and interactions within
that system. This results in the traditional top-down programming approach. Reser-
voir computing and other “intelligent” systems apply alternative mechanisms, e.g.,
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through training, learning, and heuristics. For each of these programming approaches,
the details of the systemare exploited in a controlledmanner typicallywithout explicit
instructions from a human. For example, the approach has learned by itself where
best to clamp global or local dynamics using a bias signal, or the exact strength and
combination of control signals required to exploit and alter the structure.

The actual “programs” implemented by the substrate and the system as a whole,
however, are different. The previous approaches therefore act as meta-programming
approaches. Following the previous discussion, we can think of these programs as
containingdetails about the encoding and representationof the systemand its physical
parameters. Different programs may exploit the same physical phenomena (e.g.,
electromagnetism, electrochemical, and optoelectronic) but encode and represent
data using only specific physical parameters (e.g., electric fields), or, alternatively,
use different encodings and physical parameters (e.g., magnetic fields and chemical
reactions). This can lead to a combinatorically vast search space of potential computer
programs, e.g., reservoirs on a single device.

Reservoir substrates typically possess fixed dynamics after applying carefully
selected parameters and parameter ranges to exhibit desirable dynamical proper-
ties. Echo State Networks are an exemplar of this tuning problem, requiring global
scaling parameters to induce specific dynamics, such as possessing the echo state
property (Jaeger 2001a). With many unconventional systems, the parameter space is
complex and therefore difficult to navigate. As complexity increases, simple (uncon-
strained) random configurations often result in sub-optimal performance, as the prob-
ability of stumbling upon optimal parameters is low. In general, no matter the sub-
strate, good parameter selection and encoding—the basic program—are essential to
produce high-performing reservoir systems.

In the RC community, many meta-programming approaches have been used to
optimise theparameters of virtual reservoirs. For example, techniques includeparticle
swarm optimisation (Basterrech et al. 2014; Sergio and Ludermir 2012), Bayesian
optimisation (Yperman and Becker 2016), gradient-based information (Yuenyong
2016),multi-objective optimisation (Krause et al. 2010), and evolutionary algorithms
(Chatzidimitriou and Mitkas 2010; Ferreira and Ludermir 2011; Jiang et al. 2008;
Matzner 2017; Qiao et al. 2017). Other heuristics continue to be added; see the recent
survey (Abubakar et al. 2018).

These approaches are simple to apply due to theRC framework’s training partition.
What often separates reservoir computers from other learning systems is this division
in training. Reservoirs are typically generated or configured (partially programmed)
using one technique, and the readout is trained using another (fully programmed),
avoiding challenges when training complex networks.

Using this separation, a physical substrate can be partially programmed, then
quickly retrained/programmed to solve different tasks by manipulating only the
readout. This extra level of programmability provides advantages in time to train
and sometimes performance.

The typical focus when programming is to optimise the substrate to a specific
task. This approach provides little insight into the wider computing ability of such
substrates, however, such as its bottlenecks, strengths, and weaknesses, its “sweet-
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spots”, etc. An optimal configuration may solve a specific problem very well, but by
itself, be uninteresting. Exploring the configuration space and abstract space of all
reservoirs/programs could uncover more general characteristics of the system, and
inform us more about what makes it compute and what is computable.

To map large complex spaces, typically with vast numbers of parameters (e.g., for
physical substrates or deep/hierarchical structures) requires efficient searchmethods,
rather than random or grid search. This is where a new class of open-ended Quality
Diversity (QD) algorithms (Pugh et al. 2016) could have a significant impact, improv-
ing design, understanding, and exploration of newphysical computing devices. These
algorithms have experienced great success in the embedded setting of evolutionary
robotics (Mouret and Doncieux 2009, 2012) and hard exploration problems (Ecof-
fet et al. 2019). These algorithms include novelty search with local competition
(NSLC) (Lehman and Stanley 2011), and multi-dimensional archive of phenotypic
elites (MAP-elites) (Mouret and Clune 2015).

The basic concept is to define a low-dimensional feature space, or behaviour
space, separate from the high-dimensional parameter space, within which perfor-
mance and behaviour are explored rather than optimised directly. (However, these
algorithms can also be used to optimise directly, making them a superset of optimisa-
tion algorithmsMouret andClune 2015.)During the search process, novel behaviours
represent markers—points to seed or diverge from, or elites that represent the best
behaviours in the low-dimensional search space, promoting the discovery of new
solutions that would be otherwise too difficult to reach using standard optimisation
algorithms.

These particular algorithms specialise in domains where the fitness landscape—
the space of all solutions with respect to performance— is often deceptive and sparse.
This deceptiveness, in evolutionary algorithm terms, typically relates to the indirect
encoding between the genotype (encoding) and phenotype (physical instantiation),
where information in the genome may affect many parts of the phenotype.

They overcome deceptive spaces in part by tuning the trade-off between explo-
ration and exploitation, promoting diverse solutions aswell as opimising local niches.
As a by-product, the process produces a holistic view of the entire search space, rather
than a single optimised solution. Mouret and Clune refer to these algorithms as a
new class of “Illumination algorithms” (Mouret and Clune 2015), mapping the high-
est performing solutions in each region of the feature space and determining each
region’s overall potential.

In summary, the programming of single substrates for reservoir computing is
sometimes simple, or complex. It is simple when there is a relatively good under-
standing of the substrate parameters, but considerably more complicated when little
is known about parameters and resulting computational properties.

It is important to remember that a physical system’s program encompasses encod-
ing aswell as representation,whichmaybe altered. This in turn results in an enormous
range of potential programs even for a single substrate.

As architectures move from single devices to multiple devices, programming will
become increasingly challenging. To fully utilise such architectures, we first need to
understand more about the computing capabilities of substrates. To do this, we have
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mentioned one class of search algorithms that focuses on characterising the space of
all reservoirs implemented by a single substrate rather than optimising parameters
towards specific tasks.

5 What Makes a Good Physical Reservoir?

The ability to perform useful information processing is an almost universal charac-
teristic of dynamical systems, provided a fading memory and linearly independent
internal variables are present (Dambre et al. 2012). However, each dynamical system
will tend to suit different tasks, with only some performing well across a range of
tasks.

In terms of all reservoirs realisable by a substrate, many may perform well, given
the selection of suitable parameters. Yet, many will also be unstable and unusable.
This selection process may be easy for well-understood and constrained systems,
but poses a serious challenge when less is known about the substrate and how it will
react to stimulation, or different parameter ranges and encodings.

Until recently, no experimental framework has tried to explore, map, and compare
the complete computational expressiveness—including encodings and
representations—of physical and virtual substrates. That is, no practical method has
been proposed to characterise the substrate and its individual instantiations to build
a comprehensive view of the computing quality of substrates. A/R theory, Sect. 3.2,
is a framework to define physical computing, but it does not provide guidance on
how to determine an appropriate encoding, instantiation, or representation.

To tackle this non-trivial problem, we have developed the CHAracterisation of
Reservoir Computers (CHARC) framework (Dale et al. 2019b). The framework
describes characterisation phases and adaptable levels to measure quality, defined
as the total capacity to realise distinct reservoirs in terms of different dynamical
properties.

5.1 Framework Outline

To characterise a test substrate, two phases must be completed: quality assessment
of a reference substrate (phase one), and characterisation of the test substrate (phase
two). Phase one provides something to compare to and is typically carried out only
once, provided a suitable reference is chosen. The basic structure and flow of each
phase are shown in Fig. 3.

The first level is the definition level (Fig. 3, step 1). Here, the behaviour space of all
abstract reservoirs is defined. This abstract space represents the dynamical behaviour
of the substrate when configured. To create this n-dimensional space, n independent
property measures are identified and used. Each point in this space is a behavioural
representation of a substrate’s configuration according to different measures.
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Fig. 3 CHARC framework workflow. This is typically carried out for both phases, using the same
framework meta-parameters

More measures of distinct properties should result in greater model reliability
and therefore greater confidence in the quality measure. However, when defining the
behaviour space some properties are difficult, if not impossible, to measure across
all substrates. Any measure used with the framework should represent the observed
behaviour of the system, rather than specific properties related to its implementa-
tion, or measures unpractical/impossible to carry out with physical and/or black-box
systems.

To demonstrate the basic framework structure, three measures are applied in Dale
et al. (2019b) to define the behaviour space: Kernel Rank, Generalisation Rank, and
Memory Capacity.

Kernel rank (KR) measures the reservoir’s ability to produce a rich non-linear
representation of the input. Generalisation rank (GR) is a measure of the reservoir’s
capability to generalise given similar input streams. More information about these
measures can be found in Legenstein and Maass (2007). Low ranking values in
both measures typically represent a system in an ordered regime, and both having
high values equate to chaotic regimes. According to Büsing et al. (2010), the most
interesting reservoirs are found to exhibit a high kernel rank and a low generalisation
rank. However, in terms of matching reservoir dynamics to specific tasks, the right
balance varies.

The measure for memory capacity (MC) in Dale et al. (2019b) captures the linear
short-term memory capacity of a reservoir. The linear measure was first outlined
in Jaeger (2001b) to quantify the echo state property. For the echo state property to
hold, the dynamics of the input-driven reservoir must asymptotically wash out any
information resulting from initial conditions. This property therefore implies a fading
memory exists, characterised by the short-term memory capacity. As demonstrated
in Dambre et al. (2012), other measures quantifying the non-linear, quadratic, and
cross-memory capacities are possible, providing a more complete picture of memory
in dynamical systems.

As explained in Dale et al. (2019b), the three selected measures are important,
but by themselves do not capture every interesting dynamical property of dynamical
systems. Therefore, more measures are still desired. For example, the total capacity
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measures defined in Dambre et al. (2012) could replace, or add to, the axes of the
behaviour space.

The Exploration level (Fig. 3, step 2) encompasses the search method and map-
ping process. At this level, the mapping between abstract reservoir and substrate
configuration is explored.

Exploration is carried out in the behaviour space using an implementation of
novelty search (Lehman and Stanley 2008). Novelty search, an open-ended genetic
algorithm, navigates the behaviour space searching for novel solutions until some
user-defined termination point, e.g., after so many evolutionary evaluations, or pos-
sibly when the rate of exploration has stalled.

Given enough time (search evaluations), the exploration process can outline the
boundaries of the system dynamics, i.e., the boundary defining what behaviours
are possible and not possible. In Dale et al. (2019b), this is demonstrated for a
physical carbon nanotube composite. Due to the limited behavioural freedom of that
substrate, its boundaries are relatively constrained, showing that any tasks requiring
more than minimal memory requirements tend to be unsuited to the substrate. The
results also demonstrate that exploration can be used to identify the practical use,
if any, of the substrate, or whether the selected method of encoding, representation,
and configuration is appropriate.

The final Evaluation level (Fig. 3, steps 3, 4) defines the mechanisms to evaluate
quality. To measure quality, the behaviour space is divided into voxels/cells. Figure4
demonstrates how the behaviour space may be divided and measured depending on
the experimentally defined quality resolution.

The number and size of voxels/cells depend on the spaces being compared. For
example, the voxel size can be large and coarse, grouping many local behaviours,

(a) Low resolution (b) High resolution

Fig. 4 Example of a 2-D behaviour space divided into different voxel sizes. Each dot represents a
measured behaviour in a generic 2-D behaviour space. Squares represent 2-D voxels
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signifying the extent of the region of behaviours discoverable (Fig. 4a), or an increase
in resolution to provide a more fine-grained view of how the space is filled (Fig. 4b).

Overall, the total number of voxels/cells occupied forms the measure of quality.
The quality value therefore represents an approximation of the system’s dynamical
freedom, or the substrate’s capacity to instantiate different distinct reservoirs.

5.2 Characterising Substrate Quality

The initial evaluation and validation of the CHARC framework (Dale et al. 2019b)
assess the quality of three very different dynamical systems: a recurrent neural net-
work, a numerical simulation of a Mackey–Glass oscillator with a delay line, and a
physical carbon nanotube-based substrate.

Artificial recurrent neural networks such as echo state networks (ESN) are consid-
ered state-of-the-art reservoir substrates, so ESNs of various sizes form the reference
substrate. The simulated Mackey–Glass oscillator with a delay line (referred to as
DR in this chapter) is a reservoir substrate known to perform remarkably well across
different reservoir computing benchmarks (Appeltant et al. 2011; Paquot et al. 2012;
Duport et al. 2012). The physical substrate comprising a mixed carbon nanotube–
polymer (poly-butyl-methacrylate) composite (CNT) is known to perform well on
several simple computational tasks (Mohid et al. 2016; Dale et al. 2016b, 2017), but
struggles with some harder reservoir computing benchmarks (Dale et al. 2016a).

Results in Dale et al. (2019b) show the behavioural freedom of each substrate is
significantly differentwhen compared using a voxel size of 10 × 10 × 10 behavioural
units. The quality of each substrate ismeasured as the total number of voxels occupied
after each experimental run of 2000 search generations. Figure5 shows the number
of voxels occupied as the exploration process progresses (every 200 generations),
with error bars displaying the min-max values for 10 independent evolutionary runs.

Fig. 5 Voxel measure of
coverage as the number of
search generations increases.
Test substrates are shown as
solid black lines (DR, CNT),
and reference substrates
(ESNs) are dashed grey
lines. Error bars display the
min-max values for all
search runs. Note the
logarithmic coverage scale
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(a) 200 node ESN (light grey) with DR (dark grey)

(b) 25 node ESN (light grey) with CNT (dark grey)

Fig. 6 Behaviours discovered when exploring the ESN, CNT, and DR substrates. To visually
compare substrates, each test substrate is plotted over the reference substrate with the most similar
quality

The largest measured ESN networks (200 nodes) have the highest quality. The DR
substrate (with 400 virtual nodes) is closely equivalent to the 200 node ESN substrate
in terms of quality. The CNT substrate, on the other hand, had a considerably smaller
quality than an ESN of just 25 nodes.

The quality value alone gives only a single numerical representation of quality. It
is valuable to perform a visual inspection of the explored behaviour space to get a
more nuanced view of a substrate’s performance.

The discovered behaviours of the DR and CNT substrates are shown in Fig. 6. In
the plots, the behaviours for each test substrate are presented in the foreground and
the reference substrate (ESN) with the most similar quality (200 node ESN in Fig. 6a
and 25 node ESN in Fig. 6b) in the background.

The DR behaviours (Fig. 6a) extend into regions that the 200 node ESN cannot
reach, resulting in what appears to be fewer occupied regions than the ESN. How-
ever, this does not imply that such regions cannot be occupied. Given more search
generations, these regions would likely be filled, as similar behaviours are already
discovered.

The CNT substrate (Fig. fig:bsofsubstratesb) struggles to exhibit enough (stable)
internal activity to create a strong non-linear projection, and to effectively store recent
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input and state information, agreeing with previous results (Dale et al. 2016a, b,
2017). This suggests why only a limited range of tasks are suitable for the substrate,
and why small ESNs tend to be good models of the substrate.

Overall, the results of the CNT substrate show that, using its current encoding
and representation, only a limited set of behaviours is possible. In future work,
quality might be improved using other types of input stimulus and control signals,
or reading/combining other electrical output signals.

5.3 Using Quality to Assess Substrate Design

In this section, we demonstrate how the CHARC framework can be used to assess,
and potentially inform, the design of future reservoir substrates.

In Rodan and Tiňo (2010) and Rodan and Tino (2011), it is shown that simple
and deterministic connection topologies tend to perform as well as, or better than,
standard (fully connected) randomly generated reservoir networks on a number of
benchmark tasks. If the design of state-of-the-art reservoirs requires only simple
structures and topologies, physical reservoirs become much easier to design and
implement.

To investigate what effect structure and connection complexity have on dynamical
behaviour, CHARC has been applied to neural graphs of varying complexities and
sizes (Dale et al. 2019a). The effect of network topology and connection complexity
(in this case, directed and undirected graphs) is investigated by evaluating three
simulated recurrent network topologies: ring, lattice, and fully connected networks.

The ring topology (Fig. 7a), with the least complexity, has nodes with a single
self-connection and one connection to each of its direct neighbours. The basic ring
topology is the simplest network to implement in physical hardware as the num-
ber of connections required is small. Ring structures have already been applied
to many reservoir computing systems, including minimum complexity echo state
networks (ESN) (Rodan and Tino 2011), DNA reservoirs (deoxyribozyme oscilla-
tors) (Goudarzi et al. 2013), Cycle reservoirs with regular jumps (CRJ) (Rodan and

(a) ring (b) lattice (c) fully-connected

Fig. 7 Network structures investigated in Dale et al. (2019a)
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Tiňo 2010), and delay-based reservoirs using a single non-linear node with a delay
line (Appeltant et al. 2011; Paquot et al. 2012).

The lattice topology (Fig. 7b) has greater connection complexity. In Dale et al.
(2019a), a square grid of neurons with each connected to its Moore neighbourhood
is defined. In this configuration, each node (except for the perimeter nodes) has eight
connections to neighbours and one self-connection, resulting in a maximum of nine
connections per node. Lattice networks/models are common in physics. Examples
include discrete lattices like the Ising model with variables representing magnetic
dipole moments of atomic spins, and the Gray–Scott reaction–diffusion model to
simulate chemical systems (Pearson 1993). Physical substrates often have a regular
grid of connections. Lattice networks are therefore more realistic representations of
many physical systems that would be considered for reservoir computing.

The fully connected topology (Fig. 7c) has the most connections and is considered
the most complex. This type of network is challenging to implement in physical
hardware.

The results inDale et al. (2019a) show that a directed and fully connected topology
(the ESNnetwork) occupies a greater area of the behaviour space, possessing a higher
quality than the others, independent of size. The other topologies struggle to reach
similar levels of coverage. The behavioural limits of these simpler networks appear
to have been reached.

A common pattern found across all topologies and connection types is that quality
increases with network size. Simpler structures can produce similar quality to more
complex networks simply by increasing network size. A visualisation of how two
network sizes (50 and 200-neuron) cover the behaviour space using each network
topology is given in Fig. 8. ESNs tend to occupy regions the others cannot, such
as chaotic regions (both high KR and high GR), and regions with larger memory
capacities. The ring and the lattice topologies appear to have similar maximummem-
ory capacities; however, lattices typically exhibit greater non-linearity and chaotic
behaviour (higher KR and GR values) than rings.

Directed and undirected connection types are also assessed in Dale et al. (2019a).
Connection type is equally as important as network topology. The coverage of a 100-
neuron ring and lattice is shown in Fig. 9. Each plot shows the directed connection
type (grey) and undirected type (black). Directed connections typically result in
broader dynamical behaviour, producing more “challenging” behaviours (high KR
and high MC). The difficulty in producing such behaviours exists because non-
linearity (KR) and ordered dynamics (MC) are often conflicting.

Adding more accessible parameters (i.e., more connections) does not always lead
to more dynamical behaviours. Networks with fewer free parameters (e.g., directed
rings) could still produce similar qualities to more structurally complex networks
(e.g., undirected lattices). Howweights are structured and directed has amuch greater
effect on the quality of the network (Dale et al. 2019a), supporting similar results
testing different hierarchical structures for reservoir computing (Dale 2018a).
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(a) 50-neuron

(b) 200-neuron

Fig. 8 Topology effects. Superimposed behaviour space of a 50-neuron network, b 200 neuron
network. Showing 10 runs of 2000 generations each. Only the directed topologies are shown.
From Dale et al. (2019a)

5.4 CHARC Conclusions

The CHARC framework offers techniques to address several significant challenges
outlined for reservoir computing (Goudarzi and Teuscher 2016). It provides (i) a
framework to describe the computational expressiveness and complexity of substrates
as a function of parameters and behaviours, (ii) a means to assess whether measures
better represent the qualities/properties of the system, and (iii) a measure to assess
the limits of physical RC substrates.

As shown in Dale et al. (2019a, b), the framework has diverse applications. For
example, it can be used to evaluate and compare different substrates and design
choices, such as the role of structure in RC systems, without needing extensive
testing on tasks (see Sect. 5.3). In Dale et al. (2019b), the framework is also used
to model the non-trivial relationships between reservoir properties and performance.
Themodel can reliably predict task performance based on behaviour, across different
substrates, without the need to evaluate tasks directly on the substrate.

The framework could be used in evaluating and determining the benefits of phys-
ical RC implementations against non-physical ones, a question raised in Goudarzi
and Teuscher (2016). The framework could be used to improve substrate design,
or extended to other models of computation (Stepney 2019; Dale et al. 2020). The
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(a) 100-neuron ring

(b) 100-neuron lattice

Fig. 9 Directed versus undirected topology effects. Superimposed behaviour space of 100-neuron
ring and lattice network. Showing 10 runs of 2000 generations each. From Dale et al. (2019a)

flexibility of the framework allows for iterative improvements and expansion, for
example, extending it to evaluate hybrid models using heterotic computing. With
hybrid models, the behaviour space may be used as a repertoire of functional prim-
itives, or modules, to build or program complex architectures, such as hierarchical
reservoirs (Bürger et al. 2015; Dale 2018a; Gallicchio et al. 2017).

6 Conclusion

In a field that continues to diversify and excel, basic questions and theory in reservoir
computing, and computing with physical systems, are being left behind. The rapid
shift in recent years from virtual reservoir systems to physical ones has resulted in
fundamental theory struggling to keep up with practice, with experiments highlight-
ing the lack in theory, rather than theory proposing experiments.

In this chapter, we have highlighted areas of fundamental theory still undevel-
oped in computing with physical systems, and challenges in building unconven-
tional physical [reservoir] systems.We have discussed the importance of appropriate
encodings and representation, e.g., whether the computational model naturally fits
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the computational substrate; programming and parameter selection, including think-
ing beyond single-task optimisation. And we have described a recent framework
that provides some useful techniques to understand physical and reservoir systems,
including amethod to assess and compare the expressiveness of computing substrates,
an exploratorymethod to configure systemswhen little is known about internal work-
ings, ameans to understand how substrate design choices affect behavioural/reservoir
range, and how the abstract behaviour space maps to the physical space.

At present, reservoir computing is not a complete model for physical computing,
however, it does have fundamental properties thatmake it simple, versatile, andhighly
efficient. Physical RC is therefore a stepping stone towards amoremature, principled
general methodology for discovering and exploiting good natural computational
models for material and physical computing.
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Physical Reservoir Computing
in Robotics

Helmut Hauser

Abstract In recent years, there has been an increasing interest in using the concept
of physical reservoir computing in robotics. The idea is to employ the robot’s body
and its dynamics as a computational resource. On one hand, this has been driven
by the introduction of mathematical frameworks showing how complex mechanical
structures can be used to build reservoirs. On the other hand, with the recent advances
in smart materials, novel additive manufacturing techniques, and the corresponding
rise of soft robotics, a new and much richer set of tools for designing and build-
ing robots is now available. Despite the increased interest, however, there is still
a wide range of unanswered research questions and a rich area of under-explored
applications. We will discuss the current state of the art, the implications of using
robot bodies as reservoirs, and the great potential and future directions of physical
reservoir computing in robotics.

1 Introduction

Reservoir computing as a term has been coined by Schrauwen et al. (2007). Their
fundamental insightwas that the underlying principles of EchoStateNetworks (ESN)
(Jaeger andHaas 2004) and Liquid StateMachines (LSM) (Maass et al. 2002), which
have been developed independently from each other, are the same. Both use complex,
nonlinear dynamical systems (referred to as reservoirs) as a computational resource.
While LSMs, inspired by the structure of the brain, are using differential equations
describing neurons, ESNs are employing simple, but abstract nodes in form of non-
linear differential equations to achieve the same results. Both use simple, dynamic
building blocks to construct a high-dimensional, stable, but nonlinear dynamical
system, i.e. the reservoir.
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Fig. 1 Comparison of conventional reservoir computing (example is with ESNs nodes) with phys-
ical reservoir computing using mass–spring–damper systems as suggested by Hauser et al. (2011).
Figure adapted from Hauser et al. (2014)

The role of a reservoir can be described as a kernel in the machine learning sense
for support vector machines, see, e.g. Vapnik (1998). Low-dimensional input signals
(typically in form of time series) are fed into the reservoir and projected nonlinearly
into its high-dimensional state space. It is well established that this boosts the com-
putational power of anything that comes after it. For a discussion in more detail in
the context of reservoir computing, we refer to Hauser et al. (2011, 2012, 2014). In
addition, since a reservoir is built up by smaller dynamical systems (i.e. differential
equations), it also integrates information over time. Consequently, loosely speaking,
besides the kernel property, the reservoir exhibits also some form of (fading) mem-
ory. This leads us to an interesting consequence. Since the reservoir is already able
to integrate information and carry out nonlinear mappings, it suffices to add a simple
linear, static readout to obtain a powerful computational device. We only have to find
a set of static, linear weights to combine the signals from the high-dimensional state
space of the reservoir to achieve the desired output (compare Fig. 1).

The resulting setup, i.e. reservoir plus linear readout, is a surprisingly powerful
computational device. It can be used to approximate in principle any computation that
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can be represented by a Volterra series. In practice, this means we can emulate any
smooth (i.e. sufficiently derivable) dynamical system with one equilibrium point.1

The remarkable part of this setup however is how we achieve learning. We don’t
change any parameters of the reservoir (typically it is randomly initialized within
some parameter bounds), but we only have to adapt/find the optimal readout weights.
Since they are a set of fixed (static) values used to linearly combine the states of
the reservoir, we can employ simple linear regression. Note that this means that
we can learn to emulate nonlinear dynamical systems with such a setup by using
simple, linear regression. One could say the integration and nonlinear combination of
information (which are both needed in a nonlinear, dynamical system) are outsourced
to the reservoir or the reservoir is exploited as a computational resource.

From a machine learning perspective, reservoir computing is an alternative
approach to Recurrent Neural Networks (RNN), which are typically employed to
approximate dynamical systems. However, it is well known that the learning process
for RNNs, i.e. to find the optimal connectivity weights, is tedious. There exist various
approaches, e.g. Backpropagation Through Time (BPTT) and its variations, but they
are all prone to get stuck in a local minimum or are known to be slow in their con-
vergence. On the other hand, in reservoir computing, we only have to find a linear,
static set of output weights by employing linear regression, which by definition finds
always the globally optimal solution2 and is very fast.

The step from standard reservoir computing as described above to physical reser-
voir computing is straightforward when we consider which properties a reservoir has
to have to be computationally useful. As pointed out before, the reservoir has (i) the
role of mapping nonlinearly low-dimensional inputs into a higher state space and (ii)
to integrate information over time. Interestingly, these properties are rather abstract
and, as a consequence, a wide range of dynamical systems can be used as a reservoir.
They only have to exhibit nonlinear dynamics with a fading memory property (i.e.
being exponentially stable with one equilibrium point) and a high-dimensional state
space.

For example, in the case of LSMs, a network of spiking neuron models is used
to construct such a system, while in ESNs, randomly connected structures of simple
nonlinear differential equations are employed. This means any nonlinear, exponen-
tially stable (with one equilibrium point), high-dimensional dynamical system can
be potentially used as reservoirs, which naturally includes also real physical systems.

The earliest work demonstrating that this is possible was done by Fernando and
Sojakka (2003). They used the water surface in a bucket as a reservoir to carry
out vowel classification. The input was sound waves exciting the water and the
readout was carried out through the pixelated version of video recordings of thewater
surface. Since then, a wide range of nonlinear physical systems have been proposed
and shown to be useful as reservoirs. Examples include nonlinear effects in lasers

1 The relation between Volterra series and dynamical systems is discussed in Boyd (1985).
2 Linear regression minimizes the quadratic error against the target. Since the error landscape is
quadratic, there is only one (global) minimum. Note that this doesn’t necessarily mean that reservoir
computing setups are always performing better than RNN networks.
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(Smerieri et al. 2012), body dynamics of soft robots (Nakajima et al. 2018a), and
even quantum-mechanical effects (Fujii and Nakajima 2017). Here, in this chapter,
we will concentrate on applications in robots.

In the next section, we will re-introduce the underlying theoretical models that
have contributed to a better understanding of how the dynamics of robot bodies can
be used as reservoirs. In Sect. 3, we discuss the state of the art and give an overview of
existingwork in this area,which is followed by a critical assessment of the advantages
(Sect. 4) and limitations (Sect. 5) of the approach. In Sect. 6, we will highlight the
close connection of physical reservoir computing and the recently emerged research
field of soft robotics. Finally, in Sect. 7, we discuss the future of physical reservoir
computing in robotics and the great potential it holds.

2 Theoretical Models

Physical reservoir computing in robotics has gained a lot of traction recently due to
the introduction of mathematical models proving that certain mechanical structures
can serve as reservoirs. Particularly, two models proposed by Hauser et al. (2011,
2012) were able to demonstrate that complex, mechanical architectures can serve
as powerful reservoirs. They are composed of nonlinear mass–spring–damper sys-
tems which are connected to form a mechanical network (see Fig. 1 on the right).
The motivation to use this approach was that these structures serve as good mod-
els to describe the body of biological systems and soft-bodied robots. Both exhibit
rather complex and nonlinear dynamics that can be exploited in a physical reservoir
computing setup.3

The proposed mathematical frameworks for physical reservoir computing based
onmass–spring–damper systems are an extension of the original work byMaass et al.
(2002, 2007) which show that LSMs can indeed carry out computations. While they
prove the concept usingmodels of spiking neurons and neural connection to construct
a computationally useful structure (i.e. a reservoir), Hauser et al. demonstrated the
same is possible with mechanical structures.

As with the original work, there has been a distinction between the two main
reservoir computing setups. The so-called feedforward setup4 maps an input directly
(through the reservoir and readout) to the desired output, while the feedback setup
also includes feedback loop(s) from the output back into the reservoir. Note that
Fig. 1 shows the setup with explicit feedback loops. We will discuss both approaches
now in more detail.

3 Note that this also means that one could use biological bodies directly as reservoirs as well. One
just has to find a way to read out the (at least partial) dynamic state of the system.
4 Note that the term feedforward highlights here the fact that there are no explicit feedback loops
from the output back into the reservoir. However, the reservoir naturally will still have stable
feedback loops inside the reservoir to achieve the fading memory that is a prerequisite for reservoir
computing.
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2.1 Feedforward Setup

As mentioned before, the mathematical proof for the feedforward setup has been
given by Hauser et al. (2011) and is based on the work by Maass et al. (2002). Both
are based on a seminal paper by Boyd and Chua (1985), which explored the idea
to emulate arbitrary Volterra series. Note that a Volterra series is an elegant way to
approximate nonlinear, differential equations that have one equilibrium point.5

Boyd and Chua showed that any Volterra series can be approximated by a two-
stage process, where the first stage has to be dynamic (include memory), but can be
linear, and a second stage that has to be nonlinear, but can be static. The remarkable
part is that these two stages can be implemented in any way as long as they fulfil
certain properties. Specifically, the first stage has to exhibit the property of fading
memory and there has to exist a pool of subsystems that is rich enough so that
we can guarantee that we can always find two subsystems to separate any possible
input signals (through filtering).6 The second stage needs to be a universal function
approximator, i.e. a system that is able to approximate any smooth enough nonlinear
function with arbitrary precision. As one can see, these properties are very general
and there are a lot of potential candidates that can embody them. Boyd and Chua
gave a number of examples of possible implementations in their originalwork,mostly
from the field of electrical circuits.

To appreciate the importance of their result, it’s crucial to understand the concept
of a Volterra series. Loosely speaking,7 this could be understood as a Taylor series
expansion that includes time. Instead of only approximating smooth, nonlinear func-
tions, a Volterra series can approximate nonlinear dynamical systems. In the context
of reservoir computing, especially physical reservoir computing, this gives us an
elegant way to describe analogue computation. Instead of having to rely on a digital
interpretation and the Turing machine concept, dynamical systems are a powerful
way to describe analogue computational functions in the context of robotics. They
can be used to express, for example, complex sensor functions (e.g. filtering) as well
nonlinear controllers.

The only8 limitation of usingVolterra series as descriptors is they can only approx-
imate nonlinear dynamical systems that have only one exponentially stable equilib-
rium point (or approximate only in the neighbourhood of an equilibrium point).
However, we have to emphasize that this is still a very powerful and rich set of
possible computations that can be represented. It includes nonlinear mappings that
use memory. This means the output will not simply depend on the current input
(that would be a simple function and could be approximated with a standard Arti-

5 Or they approximate only the close neighbourhood of one equilibrium point, i.e. local approxi-
mation. Note that this is different from linear approximation approaches, e.g. expressed through a
Jacobian matrix, since a Volterra series is still capturing nonlinearities.
6 For example, we can achieve separation through different integration time constants.
7 For more rigorous and mathematically sound descriptions, please refer to Boyd and Chua (1985).
8 Note that there are more mathematical details, but for the sake of simplicity, we discuss only the
main points. For a more detailed discussion, we refer to Boyd (1985) and Boyd and Chua (1985).
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ficial Neural Network), but also on the history of input values, which would need a
Recurrent Neural Network (RNN) to approximate it.

The question is now how can we use morphological structures, specifically mass–
spring–damper systems, to approximate the Volterra series. The answer can be
directly derived from Boyd and Chua’s work. They laid out clearly the required
properties for potential building blocks to construct the first stage of the process.
They have to be (exponentially) stable and be able to separate signals as discussed
before. The proof for linear mass–spring–damper systems to have these properties
is straightforward (for more details, see Hauser et al. 2011).

For the second stage, the requirement is that it should be made up of a universal
function approximator. We can use ANNs, which have exactly this property (see
Hornik et al. 1989 for proof). Note that this two-stage setup does not yet resemble a
standard reservoir setup, since the readout is still nonlinear and the first stage consists
of a set of parallel, independent systems. Nevertheless, one can already say that at
least the “memory part” (integration of information) is outsourced to stage one,
i.e. the morphological part. However, a set of parallel mass–spring–damper system
doesn’t look very much like a common robot design,9 nor does it describe well a
biological body.

To get to a reservoir computing setup, we have to push Boyd and Chua’s approach
to the extreme by considering to outsource nonlinearity also to stage one, leaving a
simplified readout that can be static and linear. This leads to networks like the one
shown on the right side of Fig. 1. Note that this push “breaks” Boyd and Chua’s proof
and, so far, there is no mathematical proof for the full network structure (also not in
the original work by Maass et al.). However, the step from the two-stage process to
the full structure is reasonable and simulation results (as well real-world examples
in the case of mechanical structures) demonstrate that it works.

As previously pointed out, the only limitation is that the feedforward setup is
restricted to systems that can be represented by a Volterra series. Since this is already
a very rich class of possible mappings, the question arises, which systems that might
be interesting in robotics don’t fall into this category? This will be answered in the
next section on feedback setups.

2.2 Feedback Setup

Boyd already hinted at this limitation in his Ph.D. thesis (Boyd 1985). Hemade a link
between the Volterra series and nonlinear dynamical systems. He laid out that the
Volterra series can only approximate systems that have only one exponentially stable
equilibrium point. Keeping the discussion in the realm of dynamical systems, it is
then quite straightforwardwhich dynamical systems fall outside of this definition, but
would be still interesting in the context of robotics. First, we can think about multiple

9 Note that, interestingly, Shim and Husbands (2007) suggested a setup which looks very similar
and is used for a feathered flyer and which predates Hauser et al.’s work.
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equilibrium points. Depending on the situation/task, different endpoints might be of
interest. Another type of dynamical systems that go beyond exponentially stable
ones are (nonlinear) limit cycles. These are particularly interesting in the context of
robotics as limit cycles are a way to encode repetitive movements, e.g. in locomotion.
In addition, other nonlinear effects like bifurcation go beyond a Volterra description
as well. This could be potentially helpful if we want to control a qualitative change
in the behaviour. For example, the robot could switch smoothly from a locomotion
movement of its front leg (i.e. limit cycle) to a reaching movement (i.e. equilibrium
point)—all described by one set of differential equations.

Interestingly, it is quite simple to overcome the limitations of the feedforward
setup in reservoir computing. The solution is to counteract the energy loss in the
reservoir. We simply have to add (linear) feedback loops10 from the output of the
setup. Again, in standard reservoir computing, these signals are abstract streams
of information that, through the feedback, will change the state of the reservoir.
However, in physical reservoir computing, the feedback is a real physical value and
provides energy to the mechanical body, e.g. in form of forces.

Although it seems adding a feedback loop is a rather small change compared to
the bigger picture, the previous mathematical models based on Boyd and Chua’s
work are not applicable anymore. Fortunately, there exists a framework that can deal
with feedbacks, i.e. non-fading memory tasks. Maass et al. (2007) employed the
theory of feedback linearization from control theory to prove that neural models can
be modified via static, but nonlinear feedback and readouts to approximate almost
any smooth dynamical system. The limitations are only the smoothness and the
degree of freedoms, i.e. a two-dimensional system as a building block can only
approximate other two-dimensional systems.11 One simplified way is to look at
the standard model to describe an n-dimensional nonlinear differential system, i.e.
ẋ = f (x) + g(x)u with x ∈ R

n . This means we have n integrators which depend on
the previous states through the nonlinear mapping f (x) and on the input through
g(x). Feedback linearization is able to overwrite both functions, i.e. f (x) and g(x)
through applying, loosely speaking, the inverse effect.12 In addition, we can add to
the feedback a nonlinearity that “overwrites” the linearized system with new, desired
dynamics in order to emulate the desired target computation, i.e. dynamic input–
output mapping. Note that this is similar to finding a controller for a linear system
by applying a pole-placement approach. We want the overall system to behave in a
certainway (which is reflectedbydesired eigenvalues of the systemmatrix) andwe try
to find the right feedback controller to achieve that, for example, with Ackermann’s
method.

10 There can be one or multiple feedback loops.
11 Note that one can argue that combing multiple such systems would then again allow us to
approximate systems of higher order as well, see Maass et al. (2007).
12 Note that not every nonlinear system is feedback linearizable. However, there is a formal process
to check for that by applying Lie derivatives. Note that this is equivalent to constructing the con-
trollability matrixC = [B, BA, BA2, . . . , BAn] in linear systems. We refer to the reader to Slotine
and Lohmiller (2001) for an excellent introduction. For a more in-depth discussion, we refer to
Isidori (2001).
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Without going into details, the mathematical proof employed in Hauser et al.
(2012) is demonstrating that certain types of nonlinear mass–spring–damper systems
are feedback linearizable, i.e. can be used as a basic template that can be overwritten
as new desired dynamics.

However, the proof presented by Hauser et al. (as well in the original work by
Maass et al.) is only for one single system, i.e. one mass–spring–damper system, and
it needs static, but still nonlinear feedbacks and readouts. Themathematical proof for
more complex systems is nontrivial due to the complexity. Nevertheless, as before
with the feedforward setup, the step to full network structureswith linear readouts and
linear feedbacks (as in Fig. 1) is reasonable. This is supported bynumerous simulation
results as well as real-world examples that show the usability of the approach.

While the models for the feedforward setup give us some (however) general
guidelines, the models for the feedback setup, unfortunately, are not very insightful
with respect to how to build better reservoirs. Maybe the only point is that such
systems can be rather small in size to be useful. This has been shown and discussed
with simulation examples in Hauser et al. (2012).

In the context of physical reservoir computing in robotics, however, we are very
interested in understanding how to design and build better reservoirs. Therefore, the
following section discusses how abstract concepts in reservoir computing aremapped
onto real physical interpretations in physical reservoir computing setups.

2.3 Connecting Theoretical Models to the Real World

While conventional reservoir computing does not care about the physical significance
of inputs or outputs, naturally, physical reservoir computing is muchmore concerned
with physical meanings. This is particularly true in the context of robotics as we hope
to gain insight into how to design better robot bodies to be exploited as computational
resources.

For example, the input is not just an abstract time series, but is a real physical
quantity that changes over time. Themost natural interpretation in the light of the pro-
posed models, i.e. using mass–spring–damper systems, inputs are forces that work
on the body of the robot. This could be through the interaction of the robot with the
environment, e.g. by grasping an object or by locomoting on the ground. But this
could be also in the context of a sensor setup, where the sensor has to physically inter-
act with the environment to gain information for measurements. Similarly, feedback
signals (as in the feedback setup) can be forces obtained through the environment or
through internal actuators that can change the state of the system.

Both, input and feedback, don’t have to be restricted to forces but can be any
physical entity that changes the state of the reservoir sufficiently to be picked up
by the readouts. This also means that we don’t have to use necessarily mechanical
structures for the reservoir, but we could think also of chemical systems, electro-
magnetic interactions, etc. Of course, a combination of them is valid as well. Smart
material and additivemanufacturing,which both have gained a lot of traction recently,
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will play a crucial role here. We refer the reader to Sects. 6 and 7 for a more in-depth
discussion.

As previously pointed out in the introduction, one of the key properties of a
reservoir is its exponential stability or in other terms fadingmemory.While in abstract
reservoir computing setups one has tomake sure to have stable systems (e.g. it’s quite
common to re-scale the connectivity matrix in ESNs), stability is a natural property
in mechanical structures used for robotics, i.e. stability comes for “free.”

Furthermore, there is a clear connectionbetweenmaterial properties and the fading
memory, i.e. how fast the system forgets its initial state. If we consider linear mass–
spring–damper systems, the real part of the eigenvalue of the systemmatrix describes
how fast, e.g. an impulse input is “faded out.” More precisely, the exponential hull
curve for the response of the system is defined by e−d/m with d being the linear
damping factor andm the mass. This can be considered directly in the design process
by choosing the right material or even by including mechanisms, e.g. through smart
materials, to change the damping to adapt the reservoir and its corresponding fading
memory for different tasks.

Another interesting aspect of physical reservoirs is that often there is not a clear
border that separates them from the environment. Let’s take the example of a fish-
inspired underwater robot that we want to control for locomotion. The input (force)
will come from some form of actuation in the system. This will change the dynamic
state of the fish body. In addition, however, this also introduces changes in the water
environment, which can reflect back onto the fish. This means the water is actually
part of the reservoir and so are nonlinearities in the physical embodiment of the
input (e.g. nonlinear features in the electrical motor) and the readout (e.g. nonlinear
properties of the sensors). This points to the idea of embodiment, which states that a
close interaction of body and environment is fundamental for the rise of intelligent
behaviour (see, e.g. Pfeifer and Bongard 2006).

Another point of difference is that abstract reservoir computing approaches
assume that the readout has access to the full state of the reservoir. However, practi-
cally, in physical reservoir computing setups in robotics most of the time this is not
possible. It turns out that knowing the full state of the reservoir is not necessary and
one can achieve working physical reservoir computing setups with a subset of the
states.

In addition, it is quite typical in robotics to have awider range of sensorsmeasuring
different quantities instead of measuring directly the state of the system. States are
an abstract concept anyway and it’s well established in linear control theory that
systems can be easily transformed into others with the right matrix transformation.
Practically, we can only measure real physical quantities, and the generic reservoir
computing does not allow us any additional signal transformation at the readout.
Practically, we have measurements that might provide redundant information. For
example, two different gyroscopes at different locations on the robot will very likely
produce partially redundant information. But also completely different sensors will
potentially share information about states. Ideally, we want to reduce the amount of
redundant information. Theworst-case scenario would be linearly dependent readout
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signals.13 However, some overlap is fine since linear regression by definitionwill pick
and choose (by assigning the right weights) the best signals to get as close as possible
to the target.14

Another important difference is that physical reservoir computing approaches
are naturally leading us to think in dynamical systems terms instead of abstract
mathematical frameworks. This provides us with some intuition on how to build
intelligent machines based on this concept. For example, Fuechslin et al. (2011)
suggested to look at computation in the physical reservoir computing context as
mechanical structures that implement attractor landscapes. This could help us to
design physical structures with a bias, for example, by having implemented a number
of potential attractor points and limit cycles (which would be different behaviours—
e.g. various locomotion gaits) and corresponding readouts/feedbacks can exploit
them. For a discussion of the potential of this approach, we refer to Hauser and
Corucci (2017).

3 Example Cases from Robotics

There are a number of examples from the literature that have demonstrated the
usefulness of applying physical reservoir computing in robotics. The implemented
computations include abstract mapping (as a proof-of-concept) to applications in
sensing and controlling.

We will first present results from simulations and then discuss real-world plat-
forms.

In the original work by Hauser et al. (2011), a number of example computations
have been presented that might be interesting in the context of robotics. The results
range from learning to emulate a simple Volterra series,15 a model of a nonlinear
pendulum, inverse dynamics of a two-link robot arm, and NARMA systems taken
from Atiya and Parlos (2000) that have been known to be hard to emulate with
recurrent neural networks due to their long-term dependencies, see for example
Hochreiter and Schmidhuber (1997).

An extension of the robot arm example has been introduced in Hauser and Gries-
bacher (2011), where the mechanical reservoir is directly connected to the two-link
robot arm. The setup was able to learn to control itself to move along a desired (figure
eight) end-point trajectory. Later, similar results were achieved using L-systems to
“grow” the structure around the arm (Bernhardsgrütter et al. 2014).

13 Note that this is directly connected to the degradation of the signal separation property discussed
in Sect. 2.1, see Hauser et al. (2014) for a discussion.
14 Note that linear regression is solving the optimization problem to find a set of optimal weights
w∗ that minimize the quadratic error between the target output yt (t) the produced output y(t).
15 The reason being that the theoretical model from Hauser et al. (2011) is based on Volterra series
and it’s a generic way to approximated nonlinear, exponentially stable sets of differential equations.
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Fig. 2 Example cases with real physical platforms. a Octopus arm setup used in Nakajima et al.
(2018a) and (Nakajima et al., 2013), bKitty robot from Pfeifer et al. (2013), c Pneumatically driven,
modular robot arm from Eder et al. (2017)

As pointed out before in Sect. 2, Hauser et al. (2012) also introduced a second
theoretical model dealing with physical reservoir approaches that consider linear
feedback loops from the output back into the reservoir. In the same work, a number
of example cases were presented. They ranged from learning to emulate robustly
various nonlinear limits cycles (e.g. like the van der Pol equations and others) to
switching between different gaits by changing the readout weights. Finally, they also
learned to produce three different limit cycles with the same set of readout weights.
The change from one to another was only driven by a change in input. Specifically,
the otherwise constant input force was switched to one of three different constant
values. This means, depending on how strong the physical reservoir was squeezed,
it reacted with a different limit cycle. This example is particularly interesting as it
points to the possibility to change behaviour (e.g. gaits) triggered by changes in the
environment (through the change in forces acting on the robot, e.g. by putting a heavy
weight on it). For a deeper discussion of this results, we refer to Hauser et al. (2014)
and Fig. 2.

Caluwaerts et al. (2013) were able to show that the complex dynamics of worm-
like structures built based on the tensegrity principles can be used to produce robustly
control signals for the locomotion of the robot. They used also learning to optimize
the locomotion behaviour. In addition, the work showed that the body can be used
as a sensor to classify the ground (flat vs bumpy) by using it as a physical reservoir.
Another simulation work showing the capability of classification with the help of
mechanical structures was introduced by Johnson et al. (2014). They used the same
mass–spring–damper systems as suggested by Hauser et al. (2011) to build a system
that can actively discriminate different shapes.

Still in simulation, but with a different approach to physical reservoir computation
in robotics has been suggested by various people by usingmore structured reservoirs.
Instead of random networks, bio-inspired morphologies were used. Naturally, they
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are more constrained with respect to their potential computational power, but they
work surprisingly well. For example, Sumioka et al. (2011) used a mechanical setup
that was loosely inspired by the muscle–tendon–bone arrangements in the biological
system as a reservoir. Despite the simplicity of the model, they were able to emulate
a Volterra series. Nakajima et al. (2013) built a network of nonlinear mass–spring–
damper systems simulating an octopus arm. The input was applied at the shoulder
and the readout was obtained bymeasuring the strain throughout the body, i.e. similar
to proprio-receptive sensing.

More recently, evenmore structured setups have been shown towork as a reservoir
as well. Yamanaka et al. (2018) demonstrated that a 2D grid structure, representing
a model of a soft cloth, can be used as a reservoir as well. In this particular work, the
authors investigated which stiffness and damping values lead to better performances
for various computational tasks.

While simulation results are interesting in themselves, robotics is a field of
research that ultimately wants to develop frameworks and technologies that can be
used under real-world conditions. The same is true for physical reservoir computing
in robotics. The first step16 has been made by a series of work by Nakajima et al.
They used a silicone-based octopus-inspired robot arm as a reservoir. The input was
in form of rotation of the arm introduced at the shoulder via an electric motor (com-
pare Figs. 2a and 3a). The readout was obtained via strain sensors along both sides of
the octopus arm. Nakajima et al. were able to demonstrate that this setup was able to
learn to emulate timers and various digital functions like delays and parity (demon-
strating the memory capacity of the system), see Nakajima et al. (2014). In the same
work, it has been even shown that the setup is able to learn to produce a control signal
for itself, i.e. the body of the octopus arm is used as a computational resource (i.e.
reservoir) to control robustly the movement of the same arm. Interestingly, when
they interacted with the arm (touching and grasping it during the movement), the
arm started to react to it by naturally looking movements, i.e. it looked as if it tried to
wriggle itself free and sometimes it stopped completely until it was released. While
this interpretation is clearly anthropomorphic, it nevertheless points to the fact that
the feedback loop through the environment plays a crucial role in the behaviour in
such a setup.

Nakajima et al. also emulated with the same setup various NARMA systems with
different complexities and other nonlinear, dynamical mappings (Nakajima et al.
2018a, b) with the goal to systematically explore the limitations of the computational
power, e.g. they quantified the amount of available fading memory by comparing it
to standard ESN.

Zhao et al. (2013) applied the idea of physical reservoir computing to locomotion.
The physical reservoir was constructed out of a bio-inspired assemble of hard and
soft parts (resembling loosely the spinal structure) and randomly distributed pres-
sure sensors (compare Figs. 2b and 3b). The system was able to robustly locomote

16 Note that there had been previous work on physical reservoir computing, e.g. the previously
mentioned “bucket in the water” setup by Fernando and Sojakka (2003), but none in the context of
robotics.
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Fig. 3 Schematics setups for real platform shown in Fig. 2 and discussed in the text. Also compare
to Fig. 1. Figures adapted from Hauser et al. (2014) and Eder et al. (2017)

and change direction. Another locomotion example on a real-world platform was
provided by Caluwaerts et al. (2014) using a mechanical tensegrity structure to learn
an oscillator to control it.

Physical reservoir computing has also been shown to work for other tasks as
well. For example, Eder et al. (2017) used a pneumatically driven robot arm and
its nonlinear dynamics as a reservoir to control the arm (compare Figs. 2c and 3c).
While the results were interesting, they also revealed clearly limitations for using
this approach on this particular platform.

Besides themapping of abstract computations and to learn to control a system, real
physical reservoir computing setups have also been used now for sensing, classifica-
tion, and even modelling. For example, Soter et al. (2018) used a physical reservoir
computing setup extended by an RNN to predict the movement (actually the pixels of
the video of the movement) of an octopus arm solely based on the proprio-receptive
information (bending). It learns “imaging” the visual movement of the arm through
observing its internal states.

Recent work by Judd et al. (2019) was able to use physical reservoir computing to
detect objects in the vicinity of the moving octopus arm without touching them. This
included classification, i.e. is the object there or not, as well regression, i.e. estimation
of where it is located. The results point to the fact that the environment indeed is part
of the reservoir and should play a crucial role when developing intelligent systems
(sensing and control) with physical reservoir computing setups in robotics.

In summary, there is a substantial amount of exciting results, however, there is
also still a wide range of interesting, yet to be explored ideas. To inspired future
researcher working in the field, we discuss in the next section what advantages a
physical reservoir computing approach in robotics might have.



182 H. Hauser

4 Advantages of Physical Reservoir Computing in Robotics

The application of physical reservoir computing in robotics has a number of remark-
able aspects and advantages.

For example, the readout for conventional reservoir computing is typically the
same for every state, since it’s an abstract mapping. However, in a physical setup, we
need real physical sensors to obtain the information about the state of the system. As
previously pointed out, it’s not trivial to get the information about the full state in a
real robot. However, it turns out that is also not needed. Since the readout weights are
found with the help of linear regression, we can provide a variety of sensory signals.
Linear regression automatically chooses the “best” ones, i.e. the ones that provide
the best information to reduce the error between output and target signal. This also
means that linear regression doesn’t “care” what kind of signal we provide or where
it comes from. This means we can combine sensory information from gyroscopes,
pressure sensors, stretch sensors, and even binary switches. We can even include
and combine sensors that measure in completely different physical domains, e.g. a
force sensor with sensors to measure chemical concentration or temperature. If they
provide useful information, they will get high enough readout weights assigned.17

Another advantage is the inherent robustness of the approach. Examples inHauser
et al. (2012) demonstrated that the learned limit cycles, although only provided with
data from a certain range of the state space, seem to exhibit global stability. We
believe this is due to the inherent global stability of the underlying mass–spring–
damper systems. Obviously, practically there are limitations with respect to global
stability, after all, mechanical structures will eventually break under too high forces.
Nevertheless, this points to the underlying property of inherent stability, which can be
exploited. Maybe frameworks like contraction theory (Lohmiller and Slotine 1998)
or concepts like passivity from control theory, especially more recent extensions like
Forni and Sepulchre (2019), might be able to provide us with a general proof of this
intuition.

Another interesting aspect of robustness is that smaller changes in the reservoir,
like tearing of parts of the robot because of rough use or interaction with the envi-
ronment, can be easily counteracted by slightly changing the weights of the readout
layer. As a result, imprecise design is not a problem. We don’t need a perfectly con-
trolled fabrication process as long as the final result is close enough for being useful.
This points to a very different way to build robots and it suggests a quite radical
break with conventional robotic design approaches (see discussion later in Sect. 7).

Another advantage of reservoir computing in general is that learning through
applying linear regression is very fast. This is particularly important for robotics.
Also, online learning algorithms are thinkable using the wide range of available
tools that implement recursive, online versions of linear regression.

Another particularly interesting advantage is that noise is beneficial for the reser-
voir computing setup that uses feedback. It’s commonpractice in reservoir computing
in general to add noise to learning data when using feedback loops. This helps to

17 Note that a limitation is that the different sensors should provide linearly independent information.
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learn instead of a simple trajectory (e.g. of a limit cycle) an attractor region around
this trajectory making it more robust. Interestingly, while in simulations, noise has
to be added artificially, it seems the noise present in real physical robots is enough
and appropriate.

Finally, looking at robot design from the viewpoint of reservoir computing leads to
novel approaches to build robots and might be a way around the implicit assumption
in the robotics community that we have to build robots such that we can easily model
them. In the context of physical reservoir computing underactuation, i.e. degrees of
freedom or states of the system that are not directly controlled by the input are a
prerequisite for a computationally powerful body. Hence, using more compliant and
soft structures for building robots might be beneficial. A more detailed discussion of
this point is carried out in Sect. 6.

Besides the listed advantages, clearly, the physical implementation of reservoirs
in robot bodies also implies a range of problems and limitations, which are discussed
in the next section.

5 Limitations of Physical Reservoir Computing in Robotics

In general, the implementation of a reservoir in a real, physical body also always
means the introduction of physical limitations. While abstract approaches, e.g. like
ESNs, in principle, don’t have to worry about limitations (assumingwe have the right
dynamical properties to make a useful reservoir), a real body also means real-world
constraints. For example, (stable) mechanical structures always have the effect of
a low-pass filter. Consider a soft structure, i.e. a body with low stiffness. A high-
frequency input will not get transmitted effectively enough through the body. This
means whatever information is provided by this particular input is lost and the reser-
voir is not useful for this kind of computation. On the other hand, very stiff structures
have no problem to transmit high-frequency vibration throughout their bodies. But
this alsomeans it has a very low fadingmemory as every effect is almost immediately
damped out.

Another limitation, which is inherent to any reservoir computing setup in general,
is that we don’t directly control what is happening in the reservoir. The readout
uses linear regression to pick and choose the best signals; however, we have very
little control over how to improve the performance of the reservoir. There has been
some work on improving the performance through changing the structure, but so far
almost none of them have been implemented in real physical systems. We discuss
the potential of such approaches later in Sects. 6 and 7.

In general, the lack of control over the dynamics of the reservoir is a big point of
discussion in a robotics application. Conventional approaches to design and control
robots are particularly keen to build systems that are easily modelled and, therefore,
easily controlled. However, this reduces the computational power of the correspond-
ing morphology and therefore makes them unfit to serve as reservoirs. This is an
interesting tension which is particular to robotics and it’s not clear if these two seem-
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ingly opposite positions can be (or even should be) reconciled. However, since both
have advantages and disadvantages, most likely both will be used as complementary
approaches and they will be implementing different tasks and at different levels in
future robotic systems.

Connected to that is the problem of safety. If we don’t have a good enough model
of the dynamics of the reservoir, we can’t prove the safety or stability of the learned
behaviour. Again, biological systems don’t seem to have a problem with that and
maybe the previously mentioned inherent (seemingly global) stability (see Sect. 4)
might be the key to this problem.

Finally, reservoir computing in principle is based on supervised learning. This
means we have to provide the right input–output data set. While this might be pos-
sible for sensor applications, this is quite tricky for feedback-based setups, e.g. in
locomotion. We often don’t know the best mapping that we should learn to emulate.
One possible solution is to start with a good enough guess and use online adaptation
mechanisms to improve on them, see, e.g. Caluwaerts et al. (2014).

6 Connection to Soft Robotics

As pointed out before, one of the main motivations to use nonlinear mass–spring–
damper systems as a basic building block for the models of mechanical reservoirs
was the observation that soft-bodied robots, as well as bodies of biological systems,
can be described elegantly by a network of such systems.

However, there is a much stronger connection between physical reservoir com-
puting and soft robotics if we have a closer look at the dynamical properties of
soft-bodied structures.18 They typically exhibit complex, nonlinear dynamics, a high-
dimensional state space, underactuation, and noise. These properties are all perceived
as negative in conventional robotics since they make it more difficult to model and
consequently control such systems. However, on the other side, these are the exact
properties that are needed to build computationally powerful reservoirs. So, instead
of avoiding complexity in the dynamics of robots, through the framework of reservoir
computing, we can embrace them and, consequently, exploit them. One could even
claim that reservoir computing is a good candidate to solve the control problem in
soft robotics, see, e.g. Hauser (2016) for a discussion.

In addition, the rise of soft robotics is strongly coupled with the advancements
in material science and additive manufacturing. These two fields of research have
been proven over and over again to be able to extend the already rich set of dynam-
ically interesting building blocks. Most of them have the potential to eventually be
exploited in the context of physical reservoir computing. Most of the so-called smart
materials have highly interesting, nonlinear dynamic behaviours that are potentially

18 In the context of Sect. 6, we discuss only soft robotics structures. However, all the points are
also true for biological systems or hybrid structures, e.g. the mixture of soft artificial structures and
biological tissue.
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beneficial to boost the computational power of a reservoir. In addition, the input
can be “perceived” by the reservoir through mechanisms offered by smart materials.
Direct physical interaction with the environment can be translated into changes in the
dynamics. For example, the stiffness can change in some parts of the body through
physical interaction or a soft robot “bumping” into an object can serve as a reliable
input for the setup to switch behaviour, i.e. to switch to a different attractor space.

Another important point of connection between soft robotics and physical reser-
voir computing is that both research fields emphasize the importance of the embod-
iment. While conventional robotics tries to reduce the influence of the body of the
robots (and the environment) as much as possible, soft robotics embraces the idea to
outsource functionality to the body—and so does physical reservoir computing.

Finally, smartmaterials have the great potential to serve as substrates to implement
future technologies that are capable of extending the notion of physical reservoir
computing. This includes optimization of the reservoir and learning in material.
Some of these future directions are discussed in the following chapter.

7 The Future of Physical Reservoir Computing in Robotics

While there has been quite a lot of excitement around the idea of outsourcing com-
putation to the body of robots in the form of a reservoir, there is still a large under-
explored potential pointing to a number of interesting research questions and corre-
sponding applications.

Foremost, reservoir computing, physical or not, naturally raises the question about
how to optimize the reservoir.While it’s a clear advantage that we don’t have to adapt
parameters in the reservoir during learning, it also limits our control. Linear regres-
sion always finds the optimal solution based on the signal (readouts) it receives.
However, we don’t know how to get better or more information out of our reservoir.
Furthermore, as previously pointed out in Sect. 2, the existing theoretical frame-
works don’t give us any specific design guidelines. We only get very high level
suggestions of what kind of properties we should be looking for in a reservoir—i.e.
high-dimensionality, underactuation, and nonlinear dynamics.19 For a given com-
putational task, e.g. a specific nonlinear controller or specific sensory filter that we
want to emulate, the models don’t give us a direct mapping to (in some sense) opti-
mal reservoir. We don’t know how many mass–spring–damper systems (or systems
of equivalent complexity) are needed to achieve a certain performance. Therefore,
typically, reservoirs are initialized randomly (in simulation) or pre-existing robotic
structures, which had been designed with another functionality in mind, are simply
exploited as a reservoir.

Since optimizing the reservoir is a general challenge that people are addressing,
we might be able to draw inspiration from their results for specific applications in
robotics. For example, in the context of LSMs, some approaches have been sug-

19 And noise in the case of external feedback loops.
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gested. Sussillo and Abbott proposed the First-Order Reduced and Controlled Error
(FORCE) algorithm (Sussillo and Abbott 2009) where they adapt synaptic strengths
by feeding back the error. Another approach in the context of LSMs, in this case,
based on reward-modulated Hebbian learning, has been suggested by Hoerzer et al.
(2014). They use a stochastic approach for the optimization of the reservoir. In the
case of LSMs, which are inspired by brain structures, there is a clear connection to
biological adaptationmechanisms, i.e. neuro-plasticity. However, in the case of phys-
ical reservoir computing in robotics, the picture becomes more blurry as there are
many different ways to change real physical, morphological features, e.g. ranging
from simply changing specific parameters like stiffness to complex growing pro-
cesses. To the best of our knowledge, so far, there have been only simulation results
to address this issue. For example, Hermans et al. (2014, 2015) proposed to use
backpropagation through mechanical structures leading to optimal physical reser-
voirs. While their results are impressive, it would be great to see their approaches
implemented in real physical bodies. While this has been out of the reach for a long
time, mostly due to practical limitations, with the recent rise of soft robotics and
additive manufacturing, we suddenly have a much broader set of tools available to
build physically adaptive systems. There is a big potential for a range of interest-
ing research directions with respect to learning directly in materials to improve the
reservoir. Also, research in protocells, synthetic biology, and even biology (e.g. stem
cells) is all very likely to be able to contribute to this idea. In general, this points
clearly to much more sophisticated physical bodies and we might have to let go of
the idea that we need to control explicitly every single aspect of a robotic system.

Another aspect connected to adaption in the reservoir is that we need more per-
formance measurements that can help us to guide the adaptation process. For a lot of
interesting tasks in robotics, we don’t have a clear-cut target function. For example, if
we have a given body and we want to exploit it for locomotion, we don’t know how
the optimal input–output mapping should look like. However, meaningful perfor-
mance measurements can guide a corresponding adaptation process, either directly
in the body/reservoir and/or at the readout. One promising approach is to use abstract
measurements based on information-theoretic approaches. For example, for themea-
surements based on the concept of Predictive Information, see, e.g. work by Martius
et al. (2013) andMartius (2014). Another possibility, suggested byGhazi-Zahedi and
Rauh (2015) and Ghazi-Zahedi et al. (2017), could be to measure directly how much
computation is outsourced to the morphology (in our case the physical reservoir).
These are just a few examples, but of course, there is a very strong body of work on
statistical approaches in general. A reinterpretation in the light of physical reservoir
computing might provide a number of exciting new approaches.

The idea of changing the body to improve the reservoir has an even wider implica-
tion. If we consider morphological structures (e.g. in form of mechanical systems) as
being capable of representing computational functionality, then concepts like self-
assembly, growing, and self-healing become an entirely new, additional meaning:
Changing the body is changing the computational functionality. Instead of simply
assembling to a morphological structure, which is interesting in itself, we also build
an underlying computational functionality. We assemble also a program. The same
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is also true for growing (Hauser 2019). A system (biological or artificial) capable of
growing is able to construct functionality through this process. In addition, if such a
system has self-healing capability, it wouldn’t simply fix a broken leg, but also the
underlying computational functionality.

In this context, it is interesting to note that there are many different ways to build
a reservoir. One can easily image two reservoirs that are morphologically different
but have the same computational power. This implies the growing process might
have a primary goal, for example, to make a limb for locomotion, while a secondary
goal (with less constraints) could be to construct a reservoir structure. As shown
in real-world physical reservoir computing setups with existing robotic prototypes,
already existing physical bodies can be exploited as reservoir even if during their
design and building process this has not been considered at all.

Another point of discussion is how, in robotic applications, can we get away
from the more homogeneous structures present in classical reservoir computing
approaches. Traditional reservoir computing uses one simple module (e.g. an inte-
grate and fire models in ESN, or spiking neural models in LSM) and then connects
themwith each other. However, the fundamental building blocks are always the same.
In the context of physical reservoir computing and robotics, this seems to be quite an
unnatural approach. Intelligent systems are made of a variety and dynamically differ-
ent body parts. This again can be of great benefit if exploited properly. Unfortunately,
so far this has not been really explored in the community.

One way to investigate this idea could be to include buckling mechanisms or
hysteresis—both are quite common and naturally occurring dynamical features.
Buckling could potentially facilitate the learning of different attractors (e.g. dif-
ferent gaits as in Hauser et al. 2012 or switching between different controllers as in
Füchslin et al. 2013). There has also been very interesting work by Kachman et al.
(2017) who showed from the viewpoint of thermodynamics that dynamical systems
with two (or more) stable states can lead to self-organization under (thermal) noise.
Hysteresis could also be useful, for example, to help to detect changes in the direction
of the input. Note that real muscles have hysteresis and even more complex memory
effects, see, for example Paetsch et al. (2012).

Another field of application of physical reservoir computing in robotics has been
so far under-explored, i.e. the implementationof dynamically complex sensors.While
there has been some work, see Sect. 3, there are still a lot of interesting open research
questions and potential applications. One can think of the implementation of inter-
esting (signal processing) filters, information-based approaches, or adaptive sensing
morphologies that change the sensing modality based on different tasks. This is
especially interesting if we consider adaptation mechanisms to optimize the phys-
ical reservoir (i.e. morphology of the sensor) to improve the sensing performance.
Information-theoretic approaches and research on sensing systems in biological sys-
tems (especially insects)will play a crucial role in this context. Also, the idea of build-
ingmore structuredmorphologies for the reservoir is a valid angle to be explored. For
example, the project “Computing with Spiders’ Webs” (Hauser and Vollrath 2017)
works on spider web-inspired approaches to build physical reservoir computing sen-
sors to measure vibration and flow.
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As one can see there is still a great, unexplored potential in the approach of
physical reservoir computing in the context of robotics. The field is richwith research
opportunities and we are looking very much forward to see novel approaches, more
robots, and exciting research results from the community.
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Reservoir Computing in MEMS

Guillaume Dion, Anouar Idrissi-El Oudrhiri, Bruno Barazani,
Albert Tessier-Poirier, and Julien Sylvestre

Abstract This chapter explores the use of theDuffingnonlinearity and fast dynamics
found in microelectromechanical beam oscillators for reservoir computing applica-
tions. General properties of MEMS are discussed, and the Duffing microscale beam
characteristics are analyzed through analytical models and simulations. The reser-
voir computer is then constructed around a single such nonlinear oscillator through
temporal multiplexing of the input and self-coupling via delayed feedback. The
parameters of the resulting physical system are finally adjusted for optimal perfor-
mance on computing the parity of a binary input stream, as well as on a spoken digit
recognition task.

1 Introduction

Artificial intelligence (AI) and machine learning have progressed tremendously over
recent years and are now the focus of an intense interest worldwide within many
fields, with applications ranging from self-driving cars (Huval et al. 2015) to health
monitoring systems (Witt et al. 2019). This rapid progress has occurred over only a
few years and was driven by algorithmic advances and improvements in computing
hardware (LeCun et al. 2015) that have resulted in much shorter training and vali-
dation times for AI systems. The expectation that better hardware could contribute
to further improving AI systems currently fuels a large research effort to find new
“computing substrates” for AI. While conventional AI is implemented with software
running on general-purpose computers, it is widely accepted that much more effi-
cient hardware implementations of AI must exist; our brains are an existence proof
that some computing architectures can far exceed the density and energy efficiency
of current microelectronics technology. We have published the first demonstration
that microelectromechanical systems (MEMS) were an appropriate substrate for
miniature, low energy consumption AI systems (Coulombe et al. 2017; Dion et al.
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2018). By exploiting the nonlinearity of microfabricated mechanical oscillators, our
approach implements the concept of reservoir computing (RC) (Jaeger and Haas
2004) physically in MEMS. As MEMS can be fabricated to small dimensions and
therefore have high resonance frequencies (up to the GHz van Beek et al. 2007), our
approach has the potential to be used as a highly efficient electrical component to
implement reservoir computing.

AsMEMS are also the mainstream technology for many modern sensors (Khosh-
noud and de Silva 2012), our work further paves the way to the development of a
new class of smart sensors with built-in data processing capabilities. As an example,
we have demonstrated a MEMS displacement sensor which implements reservoir
computing in the mechanical domain (Barazani et al. 2019). As the sensor is moved
randomly between two positions separated by 2 µm at 20.8 Hz, it uses the nonlinear
dynamics of its resonating mechanical structures to compute at every timestep when
the position can change, if it had been in one of the two positions an even or an odd
number of times over the last five timesteps. More recently, we have also demon-
strated a MEMS accelerometer with similar neuromorphic computing capabilities
(Barazani et al. 2020). By using the hardware implementation of reservoir computing
in MEMS, these devices offer both sensing and non-trivial computing functions in
small, highly integrated structures. We envision a number of applications for MEMS
sensors integrating machine learning capabilities through our architecture (Sylvestre
et al. 2018), especially in fields where small, energy-efficient systems are required,
including the Internet of Things, autonomous systems, aswell asmobile andwearable
electronic devices.

This chapter provides a general overview of our neuromorphic computingMEMS
technology. We start with an introduction to MEMS in Sect. 2, including the unique
characteristics of microfabricated devices (relative to conventional devices) which
are leveraged to implement computing functionalities. We discuss the modeling and
analysis of nonlinear MEMS resonators (Sect. 3), leading to an example of a sili-
con beam design which has proven to be useful in experiments. Measurements of
computing performances are presented in Sect. 4, together with observations on the
tuning of the system parameters to optimize performance on different benchmark
tasks.

2 Microelectromechanical Systems

Microelectromechanical systems (MEMS) are miniaturized machines able to sense
or produce displacements at the micrometer and sub-micrometer scales, typically in
the range of 0.1µm to 100µm. MEMS devices comprise structures such as beams
or membranes that are able to move relative to the substrate, providing actuation
(MEMS actuators, e.g., micropumps) or detection capabilities (MEMS sensors, e.g.,
pressure or force meters). However, the design of miniaturized actuators and sensors
requires some modifications if compared to the design of conventional machines.
At the scale of MEMS structures, surface forces (such as electrostatic and adhe-
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sion forces) are dominant compared to volumetric forces (such as gravitational and
inertial forces). For instance, water surface tension forces can completely suppress
MEMSmobility and are sometimes very difficult to avoid (Van Spengen et al. 2003).
On the other hand, MEMS μm-dimensions allow them to be batch produced and
assembled in the same chip as the electronic circuits, resulting in cheaper (lower cost
per unit), faster, and more compact monolithic devices. Furthermore, MEMS tend to
demonstrate higher sensitivity, faster response, and lower energy consumption than
conventional mechanisms (Ananthasuresh 2012). MEMS applications can be quite
diverse and include for example printers ink-jet nozzles, airbag sensors, mirror arrays
in video projectors, focusing systems in smartphone cameras, and accelerometers in
smartphones or personal fitness trackers.

2.1 MEMS Fabrication

In order to manufacture MEMS, traditional fabrication methods such as milling
and extrusion are replaced by processes with increased precision and resolution,
such as photolithography, chemical etching, and plasma etching. MEMS fabrication
utilizes processes adapted from the microelectronics industry, which were mainly
developed for the handling and processing of silicon substrates (Madou 1997; Liu
2006). This sort ofmanufacturing consists ofmultiple steps of deposition and etching
of structural (usually silicon) and sacrificial (usually oxide) thin films. At the end of
the process, the sacrificial material is removed to enable the structural parts to move
relative to the substrate. One simple MEMS fabrication method is the direct etching
of silicon on insulator (SOI) wafers. SOI wafers are standardized stacks composed
of a device structural layer on the top, an oxide sacrificial layer in the middle, and a
handle substrate layer at the bottom. The SOI MEMS fabrication process, illustrated
in Fig. 1, can be roughly summarized into two main steps: (1) etching of the device
layer, after it is patterned using photolithography; and (2) partial removal of the oxide
layer granting motion to the structural parts, which remain connected to the substrate
through the oxide that is not etched away (the anchors). The addition of electrical
contacts to the fabrication flow allows the induction of motion by the application of
electrical voltages. Likewise, measurements of voltage changes can be used to gage
MEMS motion.

2.2 Sensing and Driving Methods

There are several techniques used to provide or detect microscale displacements in
MEMS. The most common operating principles include electrostatic, electrother-
mal, piezoelectric, and piezoresistive (Liu 2006). In the great majority of MEMS
devices, energy conversion involves an input or an output electrical signal, typically
a voltage difference. The electrostatic and electrothermal phenomena, which produce
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(a) (b)

(d)

(c)

(e) Motion

Oxide anchor
Silicon

Oxide

Handle

Fig. 1 a Initial SOI wafer. b Parts of the device layer are selected to be etched away after pho-
tolithography. c SOI wafer after the etching of the device layer. d Oxide areas to be removed in a
selective etching procedure. e Final device after the oxide removal; the remaining silicon structure
is anchored to the handle and is free to flex or move relative to the handle

forces that are usually negligible in conventionally sized mechanisms, are the most
traditional configurations for driving and sensing in MEMS. Electrothermal MEMS,
for example, produce motion through the thermal expansion of structures (usually
beams) caused by Joule heating due to the application of voltage (Lai et al. 2004). In
the case of electrostatic MEMS, motion is induced by electrostatic forces between
microelectrodes separated by a small gap (Batra et al. 2007). Alternatively, changes
in the gaps caused by an external force can be measured by the capacitance change
between the electrodes.

MEMS accelerometers, some of the most commercially successful MEMS
devices, may present a large variety of design types and working principles (Yazdi
et al. 1998). Typically, external inertial forces displace an inertial mass that is sus-
pended by compliant springs. This motion is then converted to an electrical signal
that is proportional to the magnitude of this displacement. The transduction prin-
ciple is usually capacitive (electrostatic) or piezoresistive (changes in the electrical
resistance due to mechanical deformations). MEMS accelerometers can detect in-
plane or out-of-plane forces depending on their design configurations (Fig. 2). Planar
accelerometers commonly use an interdigitated configuration in order to increase the
total capacitance and therefore the electrostatic sensitivity of the sensor. Higher sensi-
tivity can also be achieved by reducing the accelerometer’s natural frequency, which
could be done by diminishing the suspension’s stiffness. However, this also reduces
the frequency response (bandwidth) of the sensor. Another practice to increase the
sensitivity is to increase the signal-to-noise ratio by reducing the system’s damping.
This is usually done by etching holes along the proof mass or by operating the device
under vacuum.
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Fig. 2 Schematic illustration of two possible configurations of MEMS accelerometers: a the proof
mass moves laterally, enabling the detection of in-plane accelerations, and b the proof mass moves
up and down allowing the device to sense out-of-plane accelerations

2.3 MEMS Dynamics and Nonlinearity

MEMSdevices are frequently designed towork in their dynamic regime, as it happens
for example in MEMS resonators. As vibrating structures, MEMS exhibit much
higher resonance frequencies compared to non-miniaturized mechanisms. This is
because of their much higher k/m ratio, where k is the device elastic constant and
m is its total mass. In MEMS resonators, shifts in the resonance frequency can be
used to detect changes of different physical quantities, enabling the manufacturing
of a variety of sensors such as pressure, force, and temperature sensors (Tilmans
et al. 1992). The resonance frequency of MEMS tends to be very well defined (small
bandwidth) due to their typically large quality factor (Q), which is a measure of the
energy dissipation of oscillating structures. High values of Q indicate low energy
dissipation, which leads to lower energy consumption, higher sensitivity, and lower
noise. Energy dissipation can be classified as intrinsic or extrinsic (Ekinci andRoukes
2005). The former is associated with losses due to the material microstructure while
the latter is mainly related to losses induced by the media surrounding the device.
Extrinsic damping effects such as drag forces or squeezed films (when structures are
too close) are usually the dominant sources of energy dissipation.

Another observed characteristic of MEMS resonators is their nonlinearity.
Micromechanical oscillating structures demonstrate nonlinear behavior when driven
above a certain critical amplitude (Husain et al. 2003; Ekinci and Roukes 2005).
Frequently, the Duffing equation for nonlinear oscillators is used to describe the
motion of MEMS resonators. Essentially, when oscillating at very large amplitudes
(above critical), changes in the structure’s stiffness result in nonlinear shifts of the
resonance frequency. In the case of a clamped–clamped microbeam (i. e. both ends
anchored) vibrating in its flexural mode, large driving amplitudes generate tensile
forces that increase the beam stiffness resulting in an increase of its resonance fre-
quency (Tilmans et al. 1992). The onset of nonlinearity in microstructures has been
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explored elsewhere (Buks and Yurke 2006; Tadokoro et al. 2018). In this study, the
nonlinearity of a clamped–clamped microbeam is used to set up a reservoir comput-
ing system able to perform non-trivial computing tasks.

3 Driven Oscillators with Duffing Nonlinearities

The Duffing model was first introduced to describe the hardening spring effect
observed in mechanical systems (Duffing 1918). It is considered as one of the
most common models used to describe the jump phenomenon observed in highly
deformed mechanical resonators, where a slight change of forcing frequency leads
to an abrupt discontinuous change in the steady-state amplitude (Guckenheimer and
Holmes 2002; Kalmar-Nagy and Balachandran 2011). It keeps a simple mathemat-
ical form and accepts, under some approximations, analytical solutions (Ali 1995;
Worden 1996).

3.1 Duffing Oscillator

Several micromechanical structures behave as nonlinear systems for high levels of
excitation (Ekinci and Roukes 2005; Zaitsev et al. 2012). The Duffing equation with
damping and external harmonic forcing is

ẍ + ω0

Q
ẋ + ω2

0x + βx3 = A cos(�t), (1)

where x, t, ω0, Q, A, �, and β are the displacement, time, undamped angular fre-
quency, quality factor, excitation amplitude, angular excitation frequency, and cubic
stiffness parameter, respectively. Dots denote derivatives with respect to time. As
can be seen, Eq. (1) reduces to the forced damped linear oscillator when the anhar-
monic term is ignored (β = 0). An approximative solution for the position x(t) can
be obtained for small ω0/Q, β, and A values and assuming the forcing is close to
resonance, with� − ω0 also small. Equation (1) can then be viewed as a perturbation
of the autonomous harmonic oscillator. The perturbation technique known as “aver-
aging” gives an approximative steady-state solution x(t) = r cos(�t + φ) where r
is the oscillation amplitude and φ is the phase (see Guckenheimer and Holmes 2002
or Jan 2007 for details). Averaging gives a frequency response curve (Jan 2007),

(−2ω0 (� − ω0) r + 3
4βr

3
)2 + 4

(
ω2
0/Q

)2
r2 − A2 = 0, (2)

which can be solved for r .
Figure3 shows the frequency response curve for β = 0 (from the exact solution of

the linear problem) and curves from averaging for β = ±0.05Hz2/m2. The introduc-



Reservoir Computing in MEMS 197

Fig. 3 Amplitude–frequency response curves for the linear system (β = 0 Hz2/m2) from the exact
solution and by averaging for stiffness parameterβ = ±0.05 Hz2/m2. Stable and unstable solutions
are denoted as solid and dashed lines, respectively. The parameters used to construct these curves
were A = 2.5m/s2, Q = 5 and ω0 = 1 rad/s

Fig. 4 Amplitude–frequency response curve obtained numerically by a sweep up followed by a
sweep down of �; the jump and the hysteresis are apparent. The parameter values used to construct
these response curves were A = 2.5 m/s2, Q = 5, β =0.05m−2 s−2, and ω0 = 1 rad/s

tion of the cubic nonlinearity tilts the curve to the right for β > 0 (hardening spring)
and to the left for β < 0 (softening spring). Furthermore, close to the peak, there are
three possible solutions for a given � (two stable ones and an unstable one, denoted
as a dashed line). Figure4 shows numerical solutions to Eq.1 for β =0.05m−2 s−2,
as the forcing angular frequency� is swept up and down. Once� is increased above
the angular frequency of the peak �↓, the oscillation amplitude abruptly jumps to
the lower branch, which is the only remaining solution. As � is reduced again, the
oscillation amplitude follows the lower stable branch and jumps back to the upper
branch once it reaches the unstable solution, at �↑. Since �↓ > �↑, the nonlinear
system exhibits hysteresis.

Figure5 shows the phase-space plot of three distinct motion regimes. For low
forcing amplitudes or when the anharmonic term is not taken into account in the
Duffing equation (1), the motion of the resonator resembles a linear harmonic device
where the response in phase-space is an ellipse. At intermediate forcing, the system
can havemore complex dynamics due to the stiffening characteristic of the resonator:
there can be more than one harmonic component in the oscillator motion, as studied
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Fig. 5 Phase-space plots obtained from Eq. (1) for three motion conditions: harmonic oscillations
with weak forcing A = 0.2m/s2 and cubic stiffness corresponding to zero (blue line), moderate
forcing A = 0.29 m/s2 with β = 1 Hz2/m2 (black line), and chaotic oscillations at high forcing
level A = 0.5 m/s2, β = 1 Hz2/m2 (red line). The other parameters used to construct these curves
were Q = 3.33, ω0 = 1 rad/s, and � = 1.2 rad/s

inKalmar-Nagy andBalachandran (2011). Large forcing amplitudes lead to a chaotic
motion and the system becomes very sensitive to the initial conditions.

For nonlinear Duffing systems, sudden jumps in the resonance response are
observed, as in Fig. 6. The jump frequency depends on the direction of the fre-
quency sweep and the type of nonlinearity (softening or stiffening) (Malatkar and
Nayfeh 2002). For lightly damped Duffing oscillator, Brennan et al. presented a sim-
ple approximated non-dimensional expression which gives the maximum oscillation
amplitude rmax at the jump frequency �↓ (Brennan et al. 2008). The relationship
between the jump-down frequency and the cubic stiffness can be written in a dimen-
sional form as (Tang et al. 2016)

�2
↓ = 3

4
βr2max + ω2

0 . (3)

Solving for rmax gives the so-called “backbone curve” presented by the dashed line
in Fig. 6. It can be used to predict the frequency response of the system (Cammarano
et al. 2014; Arroyo and Zanette 2016).

3.2 Clamped–Clamped Beams

A clamped–clamped beam is an oscillator exhibiting an anharmonic behavior at
higher excitation amplitudes. Multiple studies have demonstrated that the Duffing
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Fig. 6 Example of backbone curve (dashed line) for a Duffing oscillator swept up in forc-
ing frequency. The parameter values used to construct these response curves were Q = 5, β =
0.05 Hz2/m2, and ω0 = 1 rad/s

Fig. 7 Schematic description of a clamped–clamped beam: l, w, and h correspond to the length,
width, and thickness of the beam

model may describe the nonlinear behaviors observed in the beam dynamics (Ver-
bridge et al. 2006; Antonio et al. 2012; Abdolvand et al. 2016).

Figure7 depicts a simplified schematic of a clamped–clamped structure.

3.2.1 Linear Analysis

The mass–damper–spring system represents the simplest model used to describe
the linear resonator motions. It corresponds to Eq. (1) for which the nonlinear term
β is null. The damper is associated here with energy losses in the system. The
fundamental frequencies of excited clamped–clamped beam can be determined by
solving the differential equation from Euler–Bernoulli beam theory. We assume that
the beam deflection follows the fundamental mode vibration. The expression of the
undamped resonance frequency for a clamped–clamped beam subjected to a lateral
surface excitation can then be written as (Tilmans et al. 1992; Bao 2005)

ω0 = λ2

l2

√
E I

ρwh
, (4)

where I, E, ρ, l, w, and h are quadratic moment, Young’s modulus, mass density,
length, width, and thickness of the beam, respectively. λ is a constant satisfying
cosh(λ)cos(λ) = 1. Equation (4) indicates that the resonance frequency is closely
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related to the mechanical structure geometry. It corresponds, for instance, to 389kHz
for a 300µm silicon beam with a width and a thickness of 4µm and 10µm, respec-
tively (λ = 4.73 in that case).

3.2.2 Nonlinearity Effects

In a clamped–clamped beam, the nonlinear parameter caused by the elongation of
the beam can be approximated from (Postma et al. 2005)

β = E

18ρ

(
2π

l

)4

. (5)

For example, the calculated nonlinear coefficient is equal to 7.75x1023(Hz/m)2

using Eq. (5) for a 300µm silicon beam.
To better understand the nonlinear dynamics of a clamped–clamped beam, a finite

element modeling using the ANSYS software (Theory Reference for theMechanical
2017) was developed. Figure8a) presents a deformed silicon beam in its fundamental
mode. The anchors, substrate, and gages are also considered in the simulation. An
initialmodal simulation is used to identify the resonancemodes of the beam.Using an
explicit time analysis, the system is then excited in the proximity of a resonant peak
by a time-varying lateral force applied in the middle of the beam. This analysis takes
into account the nonlinear phenomena induced by large geometrical deformations
and the mechanical dissipation that occurs during the structure motion.

The simulation results are depicted in Fig. 8b). We first note that the “hardening”
phenomenon, characteristic of Duffing oscillator, is present. Unlike the symmetric
response in the linear case, the peak amplitudes shift to the higher frequencies when
the excitation force increases. The jumps are also observed. The cubic stiffness

Fig. 8 a Displacement mapping of 300µm clamped–clamped silicon beam obtained by ANSYS
modal analysis. b Results of the analysis of transient finite elements on the clamped–clamped beam
for different force amplitudes. The width w and thickness h of the beam were 4µm and 10µm,
respectively
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parameter can be determined from a fit to Eq. (3) and is equal to (1.87 ± 0.26) x 1023

(Hz/m)2. This result is similar to the one obtained theoretically (Eq. (5)).

3.2.3 Damping Effects

The energy dissipation mechanisms of the mechanical system are associated with
damping effects. The parameter indicating the damping and the efficiency of the
resonator systems, the so-called quality factor Q, can be defined as the ratio of
dissipated energy per period, �, to the energy stored in the oscillator (here, kr2/2)
(Tilmans et al. 1992; Bao and Yang 2007)

Q = 2π × kr2/2

�
. (6)

Figure9 depicts the amplitude–frequency curve for three damping conditions
using numerical Duffing solutions (Eq. (1)). The larger damping effect corresponds
to the smaller factor (black line) while the peak amplitude is higher for smaller
damping (blue line). Note that the peak amplitude would be infinite in the absence
of damping.

There are several sources of damping in mechanical structures. A quality factor
Qi can be attributed to each dissipation mechanism. The total quality factor Q can
be written as Matthiessen’s rule (Matthiessen and Vogt 1864; Naeli and Brand 2009)

1

Q
=

∑

i

1

Qi
. (7)

The extrinsic damping caused by the surrounding air can often be ignored for
conventional mechanical systems. However, as air damping is related to the surface
area of the resonator, viscous air damping can be significant for micromechanical

Fig. 9 Effect of damping on the amplitude–frequency response curve: small damping (blue line),
intermediate damping (red line), and high damping (black line). The parameter values used to
construct these response curves were A = 2.5m/rms2, β = 0.05 Hz2/m2, and ω0 = 1 rad/s



202 G. Dion et al.

devices. The first damping mechanism highlighted is the drag force. It represents the
effect caused by the surrounding gas on the resonator when the beam is far away from
any surrounding object. From Naeli and Brand (2009), the quality factor describing
gas dissipation in microbeams is

Qd = ρhwω0

3π
(
μ + w

√
ρaμω0/16

) , (8)

where μ is the air dynamic viscosity and ρa is the air mass densities. This factor can
be reduced experimentally by placing mechanical devices under vacuum (Tilmans
and Legtenberg 1994; Gui et al. 1995).

A driving electrodemust be close to the beam in order to electrostatically drive the
mechanical resonator. If the gap d between the beam and the electrode is small com-
pared to the beam thickness h, the main damping mechanism is the “squeezed-film
effect” due to the incompressible character of the gas. This is all the more important
when the gap is reduced. The corresponding analytical expression of squeezed-film
damping is (Starr 1990; Bao 2005)

Qs = ρwd3ω0

μh2
. (9)

For a silicon beamwith (w, h, l) = (4, 10, 300) µm,where the gap d corresponds
to 6µm, one has Qd = 529 and Qs = 2740. From Eq. (7), the combined quality
factor Q is then 457. For additional effects comprising, for instance, the thermoelastic
mechanism, we refer the reader to Verbridge et al. (2006), Naeli and Brand (2009),
and Younis (2010). Note that the anchors in the clamped–clamped beams can also
have a significant effect on the dynamics of the resonator (Lee et al. 2008; Naeli and
Brand 2009).

4 Reservoir Computing in a MEMS

As highlighted in the previous sections, MEMS technology can reliably produce
small and energy-efficient devices exhibiting rich dynamical behaviors often not
accessible for mechanical structures at larger scales. Exploiting these dynamics for
neuromorphic hardware thus seems a promising alternative to computing using con-
ventional electronics, which keep struggling with power dissipation issues. As a
result, the following section explores the use of a micromachined clamped–clamped
silicon beam as the single dynamical node of a delay-coupled reservoir computer
trained to perform simple classification tasks.
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4.1 The MEMS Nonlinear Node

Construction of a hardware reservoir computer (RC) begins with the choice of a
suitable physical node, which should have a nonlinear activation function in order to
be able to model nonlinear processes. The stiffening Duffing behavior of a clamped–
clamped silicon beam oscillating at large amplitudes can provide the nonlinearity
in MEMS RC. An order of magnitude for the minimum oscillation amplitude to
obtain sufficient nonlinear behavior is the amplitude rc associated with the onset of
bistability (Lifshitz and Cross 2010):

rc =
(
4

3

)3/4
√

ω2
0

Qβ
. (10)

For the beam studied in this section, the onset of the nonlinearity is around rc =
150nm.

The beam shown in Fig. 10 was microfabricated on a (100) silicon on insulator
(SOI) substrate with a nominal resistivity of (0.003 ± 0.002) � m and a sacrificial
oxide thickness of 1.5µm. It has a length of L = 500 µm, a width of w = 10µm,
corresponding to the SOI device layer thickness, and an in-plane thickness (normal
to its displacement) of h = 4 µm. The device was wirebonded to a chip carrier and
placed in a Faraday cage for the experiments, but was otherwise unpackaged. This
lack of proper packaging makes the beams sensitive to dust in their environment,
which has the undesirable effect of modifying their resonant frequency over time.
For instance, one beam has had its natural frequency lowered by as much as 20%
over the course of one year. The experimental quality factor of the MEMS was 167
± 2. This value, which is independent of the oscillation amplitude, is comparable to
the analytical value of 204 obtained using Eqs. 7–9 for the nominal dimensions of the
beam. Fabrication tolerances could account for this gap between the two values, as

Fig. 10 SEM image of the MEMS
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Fig. 11 Experimental setup for the reservoir computer. The masking procedure as well as the
delayed feedback loop are implemented in the digital domain, while the post-processing (extraction
of the displacement amplitude) is carried out through custom analog electronics

well as other dissipationmechanisms such as anchor loss and the proximity of the sub-
strate. In the linear regime, the beam naturally oscillated at f0 = 155kHz, compared
to a calculated value of 144.2kHz (Eq.4), although the maximum of the frequency
response shifted to higher frequencies as the drive amplitude was increased, a behav-
ior which corresponds to a stiffening Duffing oscillator. The Duffing parameter for
the beam shown in Fig. 10 was estimated to 1.9 × 1023 Hz2m−2 by adjusting Eq.3
to experimental data of the beam’s response. Equation5 yields a comparable value
of 1.1 × 1023 Hz2m−2.

Among the plethora of possible transduction methods presented in Sect. 2.2,
an appropriate choice for RC MEMS is to drive the beam electrostatically and
sense its displacement piezoresistively. By polarizing a 300µm long drive elec-
trode placed 6µm away from the beam in Fig. 10 with a voltage signal of the form

Vd(t) = V0 cos (2π fd t), a force Fd ∝ V 2
d (t) = V 2

0
2 (1 + cos (4π fd t)) can be applied

between the beamand thefixed electrode such that vibrations of the beamare solicited
at twice the input voltage frequency fd . The piezoresistive transduction of the beam
motion to an electrical signal, carriedout through12µmlongby1.2µmwidepiezore-
sistive strain gages patterned on the device, was chosen for its linearity (to ensure
that nonlinear mapping comes exclusively from the beam’s displacement) and sensi-
tivity (transduction coefficient of ∼102 V/m). Two external resistors were combined
with the two piezoresistive gages, as illustrated in Fig. 11, to form a Wheatstone
bridge, allowing for a differential measurement of the beam’s motion. Compared
to a single-ended measurement, the differential configuration has the advantage of
reducing the system sensitivity to noise in the DC voltage source polarizing the
Wheatstone bridge, but more importantly, it also cancels the feedthrough drive sig-
nal at the readout. This unwanted signal is symmetrically coupled to both readout
points (ends of the piezoresistive gages) through parasitic capacitors (much larger
than the ∼10 fF capacitor formed by the beam and drive electrode) present in the
device, while the displacement signal is of opposite sign in each branch (one gage
stretches when the other gets compressed), so only the latter gets amplified by the
instrumentation amplifier. The differential input stage is followed by a bandpass filter
with a bandwidth of 80kHz to further reduce the noise contribution, and a second
amplification stage brings the displacement signal, initially of a few tens of μV, to a
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level suitable for the envelope detection stage that follows. This last step produces
an appropriate output by extracting the amplitude of the beam displacement signal,
yielding a signal-to-noise ratio (SNR) of 35 dB, essentially limited by the Johnson
noise generated by the resistor bridge.

4.2 Training with Delayed Feedback

The use of a single physical node (Appeltant et al. 2011) greatly simplifies hardware
implementation of an RC by drastically reducing the number of structures to couple
physically, drive, and measure, with the main drawbacks of requiring a more refined
preprocessing scheme and a serialization of the network (and thus of the compu-
tation). Indeed, since a single physical node is available, the reservoir consists of
a virtual network created by time-division multiplexing of the input signal. While
a space-coupled network would possess a multitude of physical nodes (typically
∼ 102) coupled in space and use the ring-down time of the oscillators as a form of
memory (the behavior of the oscillators depends on their history), a delay-coupled
reservoir instead uses this decay time to couple adjacent virtual nodes in the time
domain: the input signal is masked by a function of period τ , which in the simplest
case is a function alternating randomly between two values after each time interval θ.
τ is an integermultiple of θwhich defines the number of virtual nodes (N = τ/θ). By
choosing θ < T , where T = Q/(π f0) = 330 μs is the decay time of the oscillator,
the beam response during a given interval θ depends on its response during previous
intervals. Since the oscillator decay time T is much shorter than the characteristic
time τ of the input, the reservoir activation does not persist between two timesteps
of the input signal, and the virtual network requires an additional feedback loop in
order to have access to some form of memory. A feedback signal is thus added, with
a delay τ and gain α, to the input for the next timestep. As a result, a given virtual
node is driven by a superposition of the (masked) input and of its response to the
input from the previous timestep:

Vd(t) = V0 [u(t)m(t) + αx(t − τ ) + 1] cos (2π fd t) , (11)

where x(t) is the displacement amplitude signal at time t ,m(t) is the temporal mask,
and u(t) is the input signal.

The nonlinear nature of the beam’s amplitude response (Dion et al. 2018) guided
the choice of amplitude modulation of the sinusoidal pump for the RC input. In
the case of a Duffing oscillator, the nonlinearity can be tuned to a certain extent by
adjusting the drive frequency. The resulting system is schematized in Fig. 11. The
input u(t) is first scaled so that it is restricted to the empirically determined range
[0.60, 0.75], then it is sampled and held for a time τ and multiplied by the temporal
binary mask of period τ and characteristic time θ. For the MEMS RC, optimization
of the mask with respect to the RC success rate yielded mask values of 0.45 and 0.70.
The result, u(t) × m(t), is used to modulate the amplitude of the sinusoidal pump
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(Sect. 4.4.2 discusses adjusting the pump in more detail). Sampling the envelope
(ENV) of the displacement signal at a rate θ−1 with an analog to digital converter
(ADC) yields a vector x(t), containing the N virtual node states at timestep t . These
values are then combined linearly to produce a scalar output:

y(t) = wT x(t). (12)

The goal of the training phase is to compute the appropriate vector w of weights
by adjusting them so that the response of the RC to a series of training examples
approximates as well as possible a known target y′(t). If the task for which the RC
is trained is to process a signal which changes at every time period τ , for instance,
then a series of M training periods can be presented to the system, each with an input
value uk = u(kτ ) for k = 1, . . . , M , resulting in M outputs yk = y(kτ ) which can
be compared to the desired outputs y′

k = y′(kτ ) with the mean squared error

1

M

M∑

k=1

(yk − y′
k)

2. (13)

A similar mean squared error can be defined for the classification of input sequences
of different lengths (with y(t) sampled at the end of each input sequence).

The training process is done offline and consists in computing the vector w min-
imizing the mean squared error between y(t) and y′(t). The result is

w = y′XT
(
XXT + γI

)−1
, (14)

wherey′ is the vector of desired outputs andX is amatrixwith each rowcorresponding
to the state x of the virtual nodes after one of the inputs uk from the training set has
been processed. γ is a regularization parameter that increases numerical stability and
prevents overfitting. A value of γ = 10−4 V2 proved adequate for both benchmarks
investigated below.

4.3 Performance Metrics

Following the training phase, it is customary to test the performance of the RC with
inputs that were not part of the training set, so that the generalization capability
of the RC can be assessed. In order to highlight its universal character, the MEMS
RC discussed above was tested on two different benchmarks with the same set of
hyperparameters: a network of N = 400 virtual nodes sampled every θ = 0.1 ms
with a feedback gain α = 1.1 and a beam driven at fd = 80.3kHz, V0 = 72.5 V,
with the piezoresistive gages biased at 2.5V.
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4.3.1 Parity Benchmark

The parity benchmark is a conceptually simple task that can be nonlinear and requires
memory. As such, it is well suited for a first evaluation of the system’s performance.
It consists of computing the parity of n ≥ 1 successive input bits after an initial delay
δ ≥ 0:

Pn,δ(t) =
n−1∏

i=0

u (t − (i + δ)τ ) . (15)

P1,0 is linear and does not require memory, but for δ > 0 or n > 1, the target depends
on the history of the input signal, so the system must be able to store a transformed
version of the input for a finite time. In this chapter, wewill only report results with no
delay, i.e., for Pn = Pn,0. For this task, the input u(t) is a binary sequence randomly
alternating between -1 and +1 at each time t = kτ . It is thus first shifted and scaled
to [0.60, 0.75] before being fed to the RC, as discussed in Sect. 4.2.

Figure12a shows the RC output for this task overlaid on the target after a training
phase of 2000 samples. The performance is quantified by comparing the signs of
the prediction and of the target over the whole 2000 samples of the testing set. The
accuracy of the classification is the same for P2 to P4 since the raw RC output is
thresholded, but the trace is more noisy for P4. By increasing n or δ, the complexity
of the task is increased and this translates to a decrease in the prediction success
rate. This performance drop can be counterbalanced up to a degree by increasing the
number of nodes or the number of training samples, as evidenced by Fig. 14, or by a
finer tuning of the nonlinearity (see Fig. 15). For the network of N = 400 nodes used
to produce Fig. 12a, the mask period is τ = Nθ = 40 ms, such that the bitstream is
processed at a rate of 25 bits/s. On the other hand, a network of 10 virtual nodes is
sufficient to process P2 with less than 1% error, which leads to a classification rate of
103 bits/s. This means that for a given physical node with immutable characteristics,
processing speed can be optimized for a specific task by adjusting the number of
virtual nodes.

4.3.2 Spoken Digit Classification

With the same set of hyperparameters, theMEMSRCwas also trained to classify the
digits zero to nine spokenby sixteen different speakers,male and female, using theTI-
46 dataset (Lieberman 1993). Since sounds have an inherent temporal dependence,
this task seems well adapted to the RC approach, as evidenced by its predominance
as a RC benchmark (Appeltant et al. 2011; Brunner et al. 2013; Coulombe et al.
2017; Dion et al. 2018; Duport et al. 2012; Larger et al. 2012, 2017; Martinenghi
et al. 2012; Paquot et al. 2012; Soriano et al. 2015; Torrejon et al. 2017; Verstraeten
2005). Whether it is obtained through RNNs or by using other means, state-of-the-
art performance for this task is usually accompanied by spectral preprocessing to
model the human ear, such as the Mel-Frequency Cepstral Coefficients (MFCC) or
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Fig. 12 a Performance for the parity benchmark. After a training phase (green), the RC response
(blue) to the input (black) is compared to the target (red). b Confusion matrix for the spoken digit
classification task. Colors indicate the probability that an input digit (columns) is assigned to a given
class (rows) by the RC

the Lyon Passive Ear model (Lyon 1982). For this study, the preprocessing was kept
minimal in anticipation of eventually interfacing the MEMS RC directly with sound
pressure, as opposed to feeding samples from recorded waveforms. Each randomly
selected utterance is first lowpass filtered 30Hz and resampled at 60 samples/s, then
it is normalized and scaled so that the complete sequence of waveforms is restricted
to the range [0.60,0.75]. In order to save processing time, silences before and after
the utterance are cropped, which results in an average of η̄ = 29 samples per word.
After being masked as described in Sect. 4.2, those samples are then fed sequentially
to the reservoir without any pause between them. The output of a given virtual node
for a given utterance is then the mean of its responses over the whole utterance (i.e.,
xi = (1/η)

∑η−1
j=0 x (iθ + jτ ) for node i). Ten output layers are trained for the same

reservoir activation: one boolean classifier is used for each individual digit. Since
there are ten different possible classes for this task, the length M of the training
sequence was increased to 6000 utterances so that the RC is trained on a sufficient
number of examples for each digit.

Figure12b shows that the confusion matrix for this task is almost diagonal,
although some phonetically similar digits such as “1” and “9” or “4” and “5” are
more often misclassified by the RC. The global success rate is (70 ± 2) %, and
slightly better performance (Dion et al. 2018) could be obtained by optimizing the
hyperparameters with respect to this particular task. Despite the fact that the training
procedure lasts a few hours, the trained 400 node RC processes words at a rate of 1
per second, fast enough so that one could envision using such a system for real-time
speech processing.
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4.4 Hyperparameter Optimization

Finding optimal parameters for successful reservoir computing can be a tedious task,
as RC performance typically depends on the appropriate combination of multiple
hyperparameter values. Moreover, these parameters cannot be tuned independently:
modifying one of them can shift the optimal value of other parameters. Choosing
a random set of parameters will most often result in no computational success at
all, and the accuracy landscape may display multiple local minima, making gradient
descent optimization impractical. A gridsearch may seem like a foolproof optimiza-
tion method, but without any indication of the location of the success region, the
search space is vast and of high dimensionality. Besides, the region of non-zero
success can be limited to a rather narrow region, as will become apparent later in
this section, so that if the gridsearch is too coarse, the optimal parameter set can be
missed altogether. Expert knowledge is thus necessary to set bounds for the different
parameters of the gridsearch in a principled way or to perform a manual search in
order to find a starting point with non-trivial success for optimization. To circum-
vent this obstacle, different methods are investigated in the RC literature (Bala et al.
2018), such as using genetic algorithms (Dale et al. 2016; Ferreira and Ludermir
2009, 2011), particle swarm optimization (Zhou 2010; Sergio and Ludermir 2012;
Jubayer Alam Rabin et al. 2013; Salah et al. 2017), differential evolution (Zhang
et al. 2013; Rigamonti et al. 2018; Wang et al. 2018), or hybrid variants thereof
which combine different metaheuristics.

Temporal traces of reservoir activation such as those presented in Fig. 13 can
also guide the initial optimization. By detuning a single parameter such as the drive
frequency fd , the feedback gainα, or the virtual node duration θ, the traces for healthy
and unhealthy reservoirs can be compared and a few empirical criteria for successful
RC can be deducted. Such criteria include the dynamic range and saturation of the
response and its correlation with the input signal.

The optimization of hyperparameters shown below was performed using the par-
ity benchmark, as the total training and testing time is much lower than the spoken
word recognition benchmark: a training example for parity is composed of a sin-
gle sample, while a spoken digit utterance contains tens of samples to feed to the
RC. Nevertheless, the resulting parameter set can be used as a starting point for
optimization with respect to a different task.

4.4.1 Number of Training and Testing Samples, Reservoir Size

The number of examples used for testing is one parameter that can be chosen in a
principled way. Its only effect is on the uncertainty of the performance measurement.
Considering that for all the benchmarks investigated here the testing phase is a series
of Bernoulli trials (i.e., is the sample correctly classified?), the precision of the
obtained success rates can be quantified using a binomial proportion confidence
interval, such as the Agresti–Coull interval (Agresti and Coull 1998). In this specific
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Fig. 13 Normalized drive signal envelope (red) and beam displacement amplitude (black) for a
well-performing RC (top panel) and for various detuned configurations (lower panels). Note that
the beam response is oversampled compared to normal operation where it is only sampled when
the mask value is updated

case, the measurement error decreases as the number of trials and success rate are
increased. A longer testing phase thus increases the measurement accuracy, but it
also increases the acquisition time, making the results more susceptible to the effects
of parameter drifts in the MEMS. This is where cross-validation becomes relevant:
the training data can be reused for testing (and testing data for training), and thus
not increase acquisition time but still get more measurement accuracy. A testing
set of 2000 samples was deemed sufficient for the results presented here, as it is a
good compromise between acquisition speed (∼3min for one complete training and
testing experiment) and accuracy (<2%).

Figure14 shows the P3 to P6 success rate for different pairs of (N , M) values. For
this task, the minimum length of the training set (M) insuring optimal performance
increaseswith the number of virtual nodes (N ) in the explored region, and the number
of nodes needs to be increased as the complexity of the task is increased from P3 to P6
in order to keep a constant success rate. A narrow region, centered around M = N ,
seems to prohibit adequate results. This could be due to overfitting, since this region
does not respect the rule of thumb stating that N should not exceed M/10 to M/2
(Jaeger 2002). Training another output layer on the same data with γ = 10−2 V2 (to
reduce overfitting by increasing regularization) increases performance for M = N
but considerably degrades performance otherwise.Goodperformance is also possible
in a region where N > M , although unless the training set is of limited size, it is
advisable to choose N < M as the speed and energy cost of increasing the number
of nodes is generally higher than using a longer training phase.
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Fig. 14 Interpolated success rate in the number of nodes (N )—number of training samples (M)
plane for P3 to P6 (left to right)

Fig. 15 Success rate in the drive frequency—drive amplitude plane for the P3 to P6 tasks. Note
that this figure was produced earlier than the other figures when the oscillator had a slightly higher
natural frequency. This slow drift of f0 merely translates the features in this figure horizontally

4.4.2 Tuning the Nonlinearity

Figure15 shows that good performance for P3 to P6 is limited to a rather narrow,
tilted band in the drive frequency—drive amplitude plane. The more nonlinear task
P6 requires higher drive amplitudes for optimal success, corresponding to higher
beam oscillation amplitudes and thus a more pronounced impact of the cubic term
in the Duffing equation (Eq.1). Figure13 shows the effect of operating the system
with the wrong combination of drive amplitude and frequency. At 500Hz below the
proper operating frequency, the dynamic range of the readout signal is reduced and
its shape more closely resembles the input due to the more linear behavior of the
beam. Such detuning can occur for example during the MEMS life if a large enough
foreign particle gets attached to (or detached from) the beam, shifting its natural
frequency.
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Fig. 16 The success rate for the parity function strongly depends on both the feedback gain α (a)
and the mask update rate θ (b)

4.4.3 Feedback Strength

By plotting the success rate for the parity benchmark against the feedback strength
α as in Fig. 16a, it can be seen that there is an intermediate value of α providing
optimal results for all the investigated tasks. Below this value of α 	 1.1, the system
has less memory and success eventually vanishes at α = 0. For values of α which
are too large, the RC may not exhibit the fading memory property (Jaeger 2001) (or
it may fade too slowly), and the system also tends to saturate (see bottom panel of
Fig. 13), negatively impacting performances.

4.4.4 Coupling Strength

Figure13 shows the effect of increasing or decreasing θ on the dynamics of the
system.For θ = 0.05ms 
 T , the dynamic range is limited: the beamcannot respond
quickly enough to the rapidly alternating low and high mask bits, and only behaves
appropriately when there is a succession of identical mask values. This translates
into a lower correlation coefficient of 0.05 between the input and output amplitudes,
compared to a correlation coefficient of 0.44 for the optimized RC. For the case
θ = 0.5 ms � T , the response saturates as soon as there are two or more successive
identical mask values, such that the readout (points sampled at the end of each period
θ) essentially only visits two points of the transfer function (low level and high level
saturation). The correlation coefficient is 0.60 and feedback has little effect, as the
signal is less dynamical and more closely tied to the input due to the weak coupling
between adjacent virtual nodes. The weak coupling regime (θ � T ), where a given
virtual node state is only dependent on the state of its neighbor, is analogous to a
linear chain of space-coupled oscillators.

Figure16b shows the success rate for P3 to P6 as a function of θ, which essentially
controls the connectivity matrix of the reservoir. While using a value of θ = 0.2 ms
gives slightly better results, a virtual node duration of θ = 0.1 ms 	 T/3 was used
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for the results presented here as the computation is two times faster (∼2min). For
higher values of θ, the longer acquisition time increases the effect of medium-term
drifts in the system on the results: optimal weights may evolve over time but our
offline training method doesn’t allow adapting them through the acquisition.

5 Conclusion

MEMS devices form the basis of many of today’s sensor technologies and are
expected to play an important role in the development of new technologies related
to artificial intelligence and machine learning, in the context of producing “big data”
from autonomous systems (e.g., self-driving cars) or distributed sensor systems (e.g.,
the Internet of Things). We have presented in this chapter key concepts for using
MEMS to construct neuromorphic computing devices, as well as key experimental
results showing that reservoir computing can be implemented efficiently and robustly
in MEMS. As MEMS can be small, energy-efficient, and function at high speeds,
they could constitute a very attractive hardware substrate for unconventional AI com-
puting. When used as “pure” computing devices (with an analog electrical input and
an analog electrical output), they could implement AI functionalities with perfor-
mance levels exceeding those of conventional electronics (Coulombe et al. 2017).
Perhaps more interestingly, our MEMS devices can implement both neuromorphic
computing and sensing functionalities in the same device. This is a fairly new idea,
which could bring significant gains in system size and energy consumption through
integration: instead of buildingmechatronic systemswith a discrete sensor coupled to
separate signal processing electronics, one could envision building a trainable sensor
which exploits the nonlinearity of its sensing mechanism to implement computing
functions on the measured data. We are developing this idea in MEMS, but similar
ideas might also be relevant for optical sensors and RC systems, for instance.

Deep learning, as the most productive line of research for artificial intelligence
today, relies on training complex systems (artificial neural networks) using large
amounts of data. The separation between data generation and data processing has
traditionally been very clear in such deep neural networks. One might however con-
sider the example of biological brains, which actually integrate the sensing and com-
puting functionalities in some sensory neurons (Pitkow 2015), perhaps as a strategy
to increase efficiency, robustness, or adaptiveness. Nature might have discovered
long ago that such integration was an effective way to build faster, smaller, and
more energy-efficient intelligent biological systems, which are able to respond effi-
ciently to sensory inputs collected from their environment (i.e., systems which are
sophisticated integrated sensing and computing devices).
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Neuromorphic Electronic Systems
for Reservoir Computing

Fatemeh Hadaeghi

Abstract This chapter provides a comprehensive survey of the researches andmoti-
vations for hardware implementation of reservoir computing (RC) on neuromorphic
electronic systems. Due to its computational efficiency and the fact that training
amounts to a simple linear regression, both spiking and non-spiking implementa-
tions of reservoir computing on neuromorphic hardware have been developed. Here,
a review of these experimental studies is provided to illustrate the progress in this
area and to address the technical challenges which arise from this specific hard-
ware implementation. Moreover, to deal with the challenges of computation on such
unconventional substrates, several lines of potential solutions are presented based on
advances in other computational approaches in machine learning.

1 Introduction

The term “neuromorphic computing” refers to a variety of brain-inspired computers,
architectures, devices, and models that are used in the endeavor to mimic biolog-
ical neural networks (Mead and Ismail 2012). In contrast to von Neumann archi-
tectures, biologically inspired neuromorphic computing systems are promising for
being highly connected and parallel, incorporating learning and adaptation, collo-
cating memory and processing, and requiring low power. By creating parallel arrays
of connected synthetic neurons that are asynchronous, real-time, and data- or event-
driven, neuromorphic devices offer an expedient substrate tomodel neuroscience the-
ories aswell as implementing computational paradigms to solve challengingmachine
learning problems.

The accustomed growth rates of digital computing performance levels (Moore’s
Law) are showing signs of flattening out (Kish 2002). Furthermore, the explod-
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ing energy demand of digital computing devices and algorithms is approaching the
limits of what is socially and environmentally tolerable (Dreslinski et al. 2010). Neu-
romorphic technologies suggest escape routes from both predicaments due to their
potentials for unclocked parallelism and minimal energy consumption of spiking
dynamics. Moreover, neuromorphic systems have also received increased attention
due to their scalability and small device footprint (Schuman et al. 2017).

Significant keys to such advancements are remarkable progress in material sci-
ence and nanotechnology, low-voltage analog CMOS design techniques, and the-
oretical and computational neuroscience. At the device level, using the new mate-
rials and nanotechnologies for building extremely compact and low-power solid-
state nanoscale devices has paved the way toward on-chip synapses with charac-
teristic properties observed in biological synapses. For instance, “memory resis-
tor” or the memristor, a nonlinear nanoscale electronic element with volatile and
non-volatile modes, is ubiquitously used in neuromorphic circuits to store multiple
bits of information and to emulate dynamic weights with intrinsic plasticity fea-
tures (e.g., spike-time-dependent plasticity (STDP)) (Yang et al. 2013; Moon et al.
2019). It has been argued that a hybrid memristor–CMOS neuromorphic circuit
may represent a proper building block for implementing biological-inspired prob-
abilistic/stochastic/approximate computing paradigms that are robust to memristor
device variability and fault-tolerant by design (Indiveri et al. 2013; Adam et al.
2017; Jo et al. 2010). Similarly, conductive-bridging RAM (CBRAM) (Suri et al.
2012a), which is a non-volatile memory technology, atomic switches (Aono and
Hasegawa 2010)—nanodevices implemented using metal-oxide-based memristors
or memristive materials—and tin oxide nanoparticles (Phuong et al. 2020) have also
been fabricated to implement both short-term plasticity (STP) and long-term plas-
ticity (LTP) in neuromorphic systems (Avizienis et al. 2012; Sillin et al. 2013). Both
atomic switches and CBRAM have nano dimensions, are fast, and consume low
energy (Schuman et al. 2017). Spike- time-dependent-depression and -potentiation
observed in biological synapses have also been emulated by phase-change memory
(PCM) elements in hybrid neuromorphic architectures where CMOS “neuronal” cir-
cuits are integrated with nanoscale “synaptic” devices. PCM elements are commonly
used to achieve high density and scalability; they are compatible with CMOS circuits
and show good endurance (Suri et al. 2012b; Ambrogio et al. 2016). Programmable
metallization cells (PMCs) (Yu and Philip Wong 2010) and oxide-resistive memory
(OXRAM) (Yu et al. 2011) are another types of resistive memory technologies that
have been demonstrated to present STDP-like characteristics. Beyond the CMOS
technologies, spintronic devices and optical (photonic) components have also been
considered for neuromorphic implementation (Schuman et al. 2017; Tanaka et al.
2019).

At the hardware level, a transition away from purely digital systems to mixed
analog/digital implementation to purely analog, unclocked, spiking neuromorphic
microchips has led to the emergence of more biological-like models of neurons and
synapses together with a collection of more biologically plausible adaptation and
learning mechanisms. Digital systems are usually synchronous or clock-based, rely
on Boolean logic-based gates and discrete values for computation, and tend to need
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more power. Analog systems, in contrast, tend to rely more on the continuous values
and inherent physical characteristics of electronic devices for computation and more
closely resemble the biological brain, which takes the advantages of physical prop-
erties rather than Boolean logic for computation (Indiveri and Liu 2015). Analog
systems, however, are significantly vulnerable to various types of thermal and elec-
trical noise and artifacts. It is, therefore, argued that only computational paradigms
that are robust to noise and faults may be proper candidates for analog implemen-
tation. Hence, among the wide diversity of computational models, a leading role is
emerging for mixed analog/digital or purely analog implementation of artificial neu-
ral networks (ANNs). Two main trends in this arena are the exploit of low-energy,
spiking neural dynamics for “deep learning” solutions (Merolla et al. 2014), and
“reservoir computing” methods (Jaeger and Haas 2004).

At the network and system level, new discoveries in neuroscience research are
being gradually incorporated into hardware models, and mathematical theory frame-
works are being developed to guide the algorithms and hardware developments. A
constructive paradigm shift has also occurred from strict structural replication of neu-
ronal systems toward the hardware implementation of systemic/functional models of
the biological brain (James et al. 2017). Consequently, over the past decade, a wide
variety of model types have been implemented in electronic multi-neuron computing
platforms to solve pattern recognition and machine learning tasks (Indiveri and Liu
2015; Misra and Saha 2010).

As mentioned above, among these computational frameworks, reservoir comput-
ing (RC) has been variously considered as a strategy to implement useful compu-
tations on such unconventional hardware platforms. An RC architecture comprises
three major parts: the input layer feeds the input signal into a random, large, fixed
recurrent neural network that constitutes the reservoir, from which the neurons in
the output layer read out the desired output signal. In contrast to traditional (and
“deep”) recurrent neural networks (RNNs) training methods, the input-to-reservoir
and the recurrent reservoir-to-reservoir weights in an RC system are left unchanged
after a random initialization, and only the reservoir-to-output weights are optimized
during training.Within computational neuroscience, RC is best known as liquid state
machines (LSMs) (Maass et al. 2002), whereas the approach is known as echo state
networks (ESNs) (Jaeger and Haas 2004) in machine learning. Reflecting the differ-
ent objectives in these fields, LSM models are typically built around more or less
detailed, spiking neuron models with biologically plausible parametrizations, while
ESNsmostly use highly abstracted rate models for their neurons. Due to its computa-
tional efficiency, simplicity, and lenient requirements, both spiking and non-spiking
implementations of reservoir computing on neuromorphic hardware exist. However,
proper solutions are still lacking to address a variety of technological and informa-
tion processing problems. For instance, regarding the choice of hardware, variations
of stochasticity due to device mismatch, temporal drift, and aging must be taken
into account; in the case of exploiting the spiking neurons, an appropriate encoding
scheme needs to be developed to transform the input signal into spike trains; the
speed of physical processes may require further adjustment to achieve online learn-
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ing and real-time information processing; depending on the available technology,
compatible local learning rules must be developed for on-chip learning.

Here, a review of recent experimental studies is provided to illustrate the progress
in neuromorphic electronic systems for RC and to address the above-mentioned
technical challenges which arise from such hardware implementations. Moreover,
to deal with challenges of computation on such unconventional substrate, several
lines of potential solutions are presented based on advances in other computational
approaches in machine learning. In the remaining part of this chapter, we present an
overview of the current approaches to implement reservoir computing model on dig-
ital neuromorphic processors, purely analog neuromorphic microchips, and mixed
digital/analog neuromorphic systems. Since neuromorphic computing attempts to
implement more biological-like models of neurons and synapses, spiking imple-
mentations of RC will be highlighted.

2 RC on Digital Neuromorphic Processors

Field programmable gate arrays (FPGAs) and application-specific integrated circuit
(ASIC) chips—two categories of digital systems—have been very commonly utilized
for neuromorphic implementations. To facilitate the application of computational
frameworks in both embedded and stand-alone systems, FPGAs and ASICs offer
considerable flexibility, reconfigurability, robustness, and fast prototyping (Wang
et al. 2017).

As illustrated in Fig. 1, an FPGA-based reservoir computer consists of neuronal
units, a neuronal arithmetic section, input/output encoding/decoding components,
an on-chip learning algorithm, memory control, numerous memory blocks such as
RAMs and/or memristors wherein the neuronal and synaptic information is stored,
and a Read/Write interface to access to these memory blocks. Realizing spiking
reservoir computing on such substrates entails tackling a number of critical issues
related to spike coding, memory organization, parallel processing, on-chip learning,
and tradeoffs between area, precision, and power overheads. Moreover, in real-world
applications such as speech recognition and biosignal processing, spiking dynamics
might be inherently faster than real-time performance. In this section, an overview of
experimental studies is provided to illustrate how these challenges have so far been
addressed in the literature.

In the first digital implementation of spiking RC, Schrauwen et al. (2007) sug-
gested storing the neuronal information in RAM, exploiting non-plastic exponential
synapses, and performing neuronal and synaptic operations serially. In this clock-
based simulation, each time step consists of several operations such as addingweights
to the membrane or synapse accumulators, adding the synapse accumulators to the
membrane, decaying these accumulators, threshold detection, and membrane reset.
On a real-time speech processing task, this study shows that in contrast to “serial
processing, parallel arithmetic” (Upegui et al. 2005) and “parallel processing, serial
arithmetic” (Schrauwen and Van Campenhout 2006), serial implementations of both



Neuromorphic Electronic Systems for Reservoir Computing 225

Fig. 1 A top-level schematic of an FPGA-based neuromporphic reservoir computer

arithmetic operations that define the dynamics of the neuron model and processing
operations associated with synaptic dynamics yield to slower operations and low
hardware costs. Although this architecture can be considered as the first compact
digital neuromorphic RC system to solve a speech recognition task, the advantage
of distributed computing is not explored in this framework. Moreover, for larger
networks and in more sophisticated tasks, a sequential processor—which calculates
every neuronal unit separately to simulate a single time step of the network—does
not seem to be efficient. Stochastic arithmetic was, therefore, exploited to parallelize
the calculations and obtain a considerable speedup (Verstraeten et al. 2005).

More biologically plausible models of spiking neurons (e.g., Hodgkin–Huxley,
Morris–Lecar, and Izhikevich models (Gerstner and Kistler 2002) are too sophisti-
cated to be efficiently implemented on hardware and have many parameters which
need to be tuned. On the other hand, the simple hardware-friendly spiking neuron
models, such as leaky-integrate-and-fire (LIF) (Gerstner and Kistler 2002), often
have hard thresholding that makes supervised training difficult in spiking neural net-
works (SNNs). In spiking reservoir computing, however, the training of the readout
mechanism amounts only to solving a linear regression problem, where the target
output is a trainable linear combination of the neural signals within the reservoir.
Linear regression is easily solved by standard linear algebra algorithms when arbi-
trary real-valued combination weights are admitted. However, for on-chip learning,
the weights will be physically realized by states of electronic synapses, which cur-
rently can be reliably set only to a very small number of discrete values. It has
been recently proved that computing optimal discrete readout weights in reservoir
computing is NP-hard, and approximate (or heuristic) methods must be exploited to
obtain high-quality solutions in a reasonable time for practical uses (Hadaeghi and
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Jaeger 2019). The spike-based learning algorithm proposed by Zhang et al. (2015)
is an example of such approximate solutions for FPGA implementations. In contrast
to offline learning methods, the proposed online learning rule avoids any interme-
diate data storage. Besides, through this abstract learning process, each synaptic
weight is adjusted based on only the firing activities of the corresponding pre- and
post-synaptic neurons, independent of the global communications across the neural
network. In a speech recognition task, it has been shown that due to this locality, the
overhead of hardware implementation (e.g., synaptic and membrane voltage preci-
sion) can be reduced without drastic effects on its performance (Zhang et al. 2015).
This biological-inspired supervised learning algorithm was later exploited in devel-
oping an RC-based general-purpose neuromorphic architecture where training the
task-specific output neurons is integrated into the reconfigurable FPGA platform
(Wang et al. 2015). The effects of catastrophic failures such as broken synapses,
dead neurons, random errors as well as errors in arithmetic operations (e.g., com-
parison, adding and shifting) in similar architecture were addressed in (Jin and Li
2017) where the reservoir consists of excitatory and inhibitory LIF neurons that are
randomly connected with non-plastic synapses governed by second-order response
functions. The simulation results suggest that at least an 8-bit resolution is needed
for the efficacy of plastic synapses if the spike-based learning algorithm proposed
by Zhang et al. (2015) is applied for training the readout weights. The recognition
performance only degrades slightly when the precision of fixed synaptic weights and
membrane voltage for reservoir neurons are reduced down to 6 bits.

To realize the on-chip learning on digital systems with extremely low-bit preci-
sion (binary values), Jin et al. (2016) suggested an online pruning algorithm based on
variances of firing activities to sparsify the readout connections. Cores to this recon-
figuration scheme are the STDP learning rule, firing activitymonitoring, and variance
estimation. The readout synapses projected from low-variance reservoir neurons are
then powered off to save energy. To reduce the energy consumption of the hardware
in FPGA, the reservoir computer developed by Wang et al. (2016, 2017) utilizes
firing activity-based power gating by turning off the neurons that seldom fire for a
particular benchmark and applies approximate arithmetic computing (Shao and Li
2015) to speed up the runtime in a speech recognition task.

Exploiting the spatial locality in a reservoir consisting of excitatory and inhibitory
LIF neurons, a fully parallel design approach was also presented for real-time
biomedical signal processing in Polepalli et al. (2016a, b). In this design, the mem-
ory blocks were replaced by distributed memory to circumvent the long access time
due to wire delay. Being inspired by new discoveries in neuroscience, Smith et al.
(2017) developed a spiking temporal processing unit (STPU) to efficiently imple-
ment more biologically plausible synaptic response functions in digital architec-
tures. STPU offers a local temporal memory buffer including an arbitrary number of
memory cells to model delayed synaptic transmission between neurons. This allows
multiple connections between neurons with different synaptic latencies. Utilizing
excitatory and inhibitory LIF neurons with different time scales and exploiting the
second-order response function to model synaptic transmission, the effects of the
input signal in a spoken digit recognition task will only slowly “wash out” over time,
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enabling the reservoir to provide sufficient dynamical short-term memory capacity.
In order to create a similar short-term memory on a reconfigurable digital platform
with extremely low-bit resolutions, an STDP mechanism was proposed by Jin et al.
(2016) for on-chip reservoir tuning. Applying this local learning rule to the reservoir
synapses together with a data-driven binary quantization algorithm creates sparse
connectivities within the reservoir in a self-organized fashion, leading to significant
energy reduction. Stochastic activity-based STDP approach (Jin and Li 2016), struc-
tural plasticity-basedmechanism (Roy andBasu 2016), and correlation-based neuron
gating rule (Liu et al. 2018) have also been introduced for efficient low-resolution
tuning of the reservoir in hardware. Neural processes, however, require a large num-
ber ofmemory resources for storing various parameters, such as synaptic weights and
internal neural states, and lead to a heavy clock distribution loading and a significant
power dissipation. To tackle this problem, Liu et al. (2018) suggested partitioning
the memory elements inside each neuron where separate elements are activated at
different phases of neural processing. This leads to an activity-based clock gating
mechanism with a granularity of a partitioned memory group inside each neuron.

Another technique for power reduction is incorporating memristive crossbars
into digital neuromorphic hardware to perform synaptic operations in on-chip/online
learning and to store the synapticweights in offline learning (Soures et al. 2017;Moon
et al. 2019; Midya et al. 2019). In general, a two-terminal memristor device can be
programmed by applying a large enough potential difference across its terminals,
where the state change of the device is dependent on the magnitude, duration, and
polarity of the potential difference. The device resistance states, representing synaptic
weights, will vary between a high-resistance state (HRS) and a low-resistance state
(LRS), depending on the polarity of the voltage applied. At a system level, various
sources of noise (e.g., random telegraph, thermal noise, and 1/f noise) arise from
non-ideal behavior in memristive devices and distort the process of reading from
the synapses and updating the synaptic weights. Given theoretical models for these
stochastic noise processes, the effects of different manifestations of memristor read
and write noise on the accuracy of neuromorphic RC in a classification task were
investigated in Soures et al. (2017). Other hardware feasible RC structures with
memristor double crossbar array have also been proposed in Hassan et al. (2017),
Moon et al. (2019), Midya et al. (2019), andWlaźlak et al. (2020) and were tested on
a real-time time series prediction/classification tasks. These studies not only confirm
that reservoir computing can properly cope with low-precision environments and
noisydata, but they also experimentally demonstrate howRCbenefits frommemristor
device variation to secure a more random heterogeneous weight distribution leading
to a more diverse response for similar inputs. Although memristive crossbars are
area- and energy-efficient, the digital circuitry to control the read/write logic to the
crossbars is extremely power-hungry, thus preventing the use of memristors in large-
scale memory systems.

In RC literature, it has also been shown that in time series prediction tasks, a
cyclic reservoir—where neurons are distributed on a ring and connected with the
same synaptic weights to produce the cyclic rotations of the input vector—is able to
operate with an efficiency comparable to the standard RC models (Rodan and Tino
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2011; Appeltant et al. 2011). In order to minimize the required hardware resources,
therefore, single cyclic reservoir systemswith stochastic spiking neuronswere imple-
mented for real-time time series prediction and classification tasks (Alomar et al.
2016a; Wlaźlak et al. 2020). The architectures show a high level of scalability and
prediction performance comparable to the software simulations. In non-spiking reser-
voir computing implementations on reconfigurable digital systems, the reservoir has
sometimes been configured according to a ring topology, and the readout weights are
trained through gradient descent algorithm or ridge regression (Antonik et al. 2015;
Yi et al. 2016; Alomar et al. 2016b).

3 RC on Analog Neuromorphic Microchips

Digital platforms, tools, and simulators offer robust and practical solutions to a wide
range of engineering problems and provide convenient approaches to explore the
quantitative behavior of neural networks. However, they do not seem to be ideal
substrates for simulating the detailed large-scale models of neural systems where
density, energy efficiency, and resilience are important. Besides, the observation that
the brain operates on analog principles and relies on the inherent physical charac-
teristics of the neuronal system for computation motivated the investigations in the
field of neuromorphic engineering. Following the pioneering work conducted by
Carver Mead (Mead and Ismail 2012)—therein biologically inspired electronic sen-
sors were integrated with analog circuits, and an address-event-based asynchronous
continuous-time communications protocol was introduced—over the last decade,
mixed analog/digital and purely analog very large scale integration (VLSI) circuits
have been fabricated to emulate the electrophysiological behavior of biological neu-
rons and synapses and to offer amedium inwhich neuronal networks can be presented
directly in hardware rather than simply simulated on general-purpose computers
(Indiveri et al. 2011). However, the fact that such platforms provide only a qualita-
tive approximation to the exact performance of digitally simulated neural systems
may preclude them from being the ideal substrate for solving engineering problems
and achieving machine learning tasks where detailed quantitative investigations are
essential. In addition to the low resolution, realizing global asynchrony and dealing
with noisy and unreliable components seem to be formidable technical hurdles. An
architectural solution can be partly provided by reservoir computing due to its bio-
inspired principle, robustness to the imperfect substrate, and the fact that only readout
weights need to be trained (Schürmann et al. 2005). Similar to other analog and digital
computing chips, transistors are the building blocks of analog neuromorphic devices.
It has been experimentally shown that in the “subthreshold” region of operation, the
current–voltage characteristic curve of the transistor is exponential and analogous
to the exponential dependence of active populations of voltage-gated ionic channels
as a function of the potential across the membrane of a neuron. This similarity has
paved the way toward the fabrication of compact analog circuits that implement elec-
tronic models of voltage-sensitive conductance-based neurons and synapses as well
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Fig. 2 A schematic of (DPI) neuron circuit (reproduced from Indiveri et al. (2011))

as computational circuitry to perform logarithmic functions, amplification, thresh-
olding, multiplication, inhibition, and winner-take-all selection (Liu and Delbruck
2010; Donahue et al. 2015). An example of biophysically realistic neural electronic
circuits is depicted in Fig. 2. This differential pair integrator (DPI) neuron circuit con-
sists of four components: (1) the inputDPI filter (ML1–ML3) including the integrating
membrane capacitor Cmem models the neuron’s leak conductance which produces
exponential subthreshold dynamics in response to constant input currents, (2) a spike
event generating amplifier (MA1–MA6) together with a positive-feedback circuit rep-
resent both sodium channel activation and inactivation dynamics, (3) a spike reset
circuit with address-event representation (AER) handshaking signals and refractory
period functionality (MR1–MR6) emulates the potassium conductance functionality,
and (4) a spike-frequency adaptation mechanism implemented by an additional DPI
filter (MG1–MG6) produces an after hyper-polarizing current proportional to the neu-
ron’s mean firing rate. See Indiveri et al. (2011) for an insightful review of different
design methodologies used for silicon neuron fabrication.

In conjunction with circuitry that operates in subthresholdmode, exploitingmem-
ristive devices to model synaptic dynamics is a common approach in analog neuro-
morphic systems for power efficiency and performance boosting purposes (Indiveri
and Liu 2015; Avizienis et al. 2012). In connection with the fully analog implemen-
tation of RC, it has been shown that by creating a functional reservoir consisting
of numerous neurons connected through atomic nano-switches, the functional char-
acteristics required for implementing biologically inspired computational method-
ologies in a synthetic experimental system can be displayed (Avizienis et al. 2012).
A memristor crossbar structure has also been fabricated to connect the analog non-
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spiking reservoir neurons—which are distributed on a ring topology—to the output
node (Donahue et al. 2015; Merkel et al. 2014). In this CMOS-compatible cross-
bar, multiple weight states are achieved using multiple bi-stable memristors (with
only two addressable resistance states). The structural simplicity of this architecture
paves the way to independent control of each synaptic element. However, the discrete
nature of memristive weights places a limit on the accuracy of reservoir computing;
thus the number of weight states per synapse, that are required for satisfactory accu-
racy, must be determined beforehand. Besides, appropriate learning algorithms for
on-chip training purpose have not yet been implemented for fully analog reservoir
computing. Another significant design challenge associated with memristor devices
is cycle-to-cycle variability in the resistance values even within a single memristor.
With the same reservoir structure, therefore, Yang et al. (2016) showed by connecting
memristor devices in series or parallel, a staircase memristor model could be con-
structed which not only has a delayed-switching effect between several somewhat
stable resistance levels, but also can provide more reliable state values if a specific
resistance level is required. This model of synaptic delay is particularly relevant for
time delay reservoir methodologies (Appeltant et al. 2011).

From the information processing point of view, the ultimate aim of neuromor-
phic systems is to carry out neural computation in an energy-efficient way. However,
firstly, the quantities relevant to the computation have to be expressed in terms of the
spikes that spiking neurons communicate with. One of the key components in both
digital and analog neuromorphic reservoir computers is, therefore, a neural encoder
which transforms the input signals into spike trains. Although the nature of the neu-
ral code (or neural codes) is an unresolved topic of research in neuroscience, based
on what is known from biology, a number of neural information encodings have
been proposed (Grüning and Bohte 2014). Among them, hardware prototypes of
rate encoding, temporal encoding, inter-spike interval encoding, and latency (or rank
order) encoding schemes have been implemented, mostly on digital platforms (Yi
et al. 2016; Yang et al. 2016; Bichler et al. 2012; Zhao et al. 2016). Digital configu-
rations, however, require large hardware overheads associated with analog-to-digital
converters, operational amplifiers, digital buffers, and electronic synchronizers and
will increase the cost of implementation. Particularly, in analog reservoir computers,
fabricating a fully analog encoding spike generator is of crucial importance both
to speed the process up and to optimize the required energy and hardware costs.
Examples of such generators have been mainly proposed for analog implementation
of delayed feedback reservoirs (Zhao et al. 2016; Li et al. 2017).

4 RC on Mixed Digital/Analog Neuromorphic Systems

The majority of analog neuromorphic systems designed to solve machine learn-
ing/signal processing problems tend to rely on digital components, for instance, for
pre-processing, encoding spike generation, storing the synaptic weights values, and
on-chip programmability/learning (Murray and Smith 1988; Azghadi et al. 2013;
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Briiderle et al. 2010). Inter-chip and chip-to-chip communications are also primar-
ily digital in some analog neuromorphic platforms (Murray and Smith 1988; Aamir
et al. 2016; Chicca et al. 2006).Mixed analog/digital architectures are, therefore, very
common in neuromorphic systems. These electronic chips often provide a universal
substrate with an extensive configuration space to emulate different types of neurons,
synapses, and network typologies. On the hardware developed in Pfeil et al. (2013),
for instance, together with five other neural network models, a spiking reservoir
model consisting of excitatory and inhibitory populations and a readout tempotron
neuron was implemented and trained to classify spike train segments in a continu-
ous data stream. The hardware offers on-chip spike-based learning mechanisms to
compensate for fixed-pattern noise.

In the context of hardware reservoir computing and inspired by the nonlinear prop-
erties of dendrites in biological neurons, Roy et al. (2014) proposed a readout learning
mechanism which returns binary values for synaptic weights such that the “choice”
of connectivity can be implemented in a mixed analog/digital platform with the
address-event representation (AER) protocols where the connection matrix is stored
in digital memory. Relying on the same communication protocol and exploiting the
reconfigurable online learning spiking neuromorphic processor (ROLLS chip) intro-
duced in Qiao et al. (2015), a reservoir computer was later designed and fabricated to
detect spike-patterns in bio-potential and local field potential (LFP) recordings (Cor-
radi and Indiveri 2015). The ROLLS neuromorphic processor (Fig. 3) contains 256
adaptive exponential integrate-and-fire (spiking) neurons implemented with mixed-
signal analog/digital circuits. The neurons are connected to an array of 256× 256
learning synapse circuits for modeling long-term plasticity mechanisms, an array of
256× 256 programmable synapses with short-term plasticity circuits, and 256× 2
row of “virtual synapses” for modeling excitatory and inhibitory synapses that have
shared synaptic weights and time constants. The reservoir in this model comprises
128 randomly connected spiking neurons that receive spike event inputs from a neural
recording system and aim to enhance the temporal properties of input patterns. The
readout layer is afterward trained by applying a spike-based Hebbian-like learning
rule previously proposed in Brader et al. (2007). The results of this study suggest
that the device mismatch and the limited precision of the analog circuits result in
a diversity of neuronal responses that might be beneficial in a population coding
scheme within the reservoir computing framework.

Later, in another implementation of reservoir computing on mixed analog/digital
substrates endowed with learning abilities, the neuronal circuits were chosen to be
analog for power and area efficiency considerations, and an on-chip learning mech-
anism based on recursive least squares (RLS) algorithm was implemented on an
FPGA platform (Yi et al. 2016). The proposed architecture was then applied to mod-
eling a multiple-input multiple-output orthogonal frequency division multiplexing
(MIMO-OFDM) system.

Acompletely on-chip feasible design forRChas alsobeenproposed inKudithipudi
et al. (2016), where non-spiking reservoir neurons are distributed in a hybrid topol-
ogy and memristive nano synapses are used in the output or regression layer. The
proposed hybrid topology consists of a ring RC and a center neuron connected to
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Fig. 3 Architecture of ROLLS neuromorphic processor (reproduced from Qiao et al. (2015))

all the reservoir neurons which transmit the information about the state of the whole
reservoir to each neuron. To fabricate non-spiking silicon neurons, current-mode
differential amplifiers operating in their subthreshold regime are used to emulate the
hyperbolic tangent rate model behavior. In practice, it has been shown that a random
distribution of weights in input-to-reservoir and reservoir synapses can be obtained
by employing mismatches in transistors threshold voltages to design subthreshold
bipolar synapses.

In order to create a functional spiking reservoir on the Dynap-se board (Moradi
et al. 2018), a “Reservoir Transfer Method” was also proposed to transfer the func-
tional ESN-type reservoir into a reservoir with analog unclocked spiking neurons (He
et al. 2019). The Dynap-se board is a multicore neuromorphic processor chip that
employs hybrid analog/digital circuits for emulating synapse and neuron dynamics
together with asynchronous digital circuits for managing the address-event traffic. It
offers 4000 adaptive exponential integrate-and-fire (spiking) neurons implemented
with mixed-signal analog/digital circuits with 64/4k fan-in/out. From the computa-
tional point of view, implementing efficient algorithms on this neuromorphic system
encounters general problems such as bit resolution, device mismatch, uncharacter-
ized neural models, inaccessible state variables, and physical system noise. Realizing
the reservoir computing on this substrate, additionally, leads to an important prob-
lem associated with fine-tuning the reservoir to obtain the memory span required
for a specific machine learning problem. The reservoir transfer method proposes a
theoretical framework to learn ternary weights in a reservoir of spiking neurons by
transferring features from awell-tuned echo state network simulated on software (He
et al. 2019). Empirical results from an ECG signal monitoring task showed that this
reservoir with ternary weights is able to not only integrate information over a time
span longer than the timescale of individual neurons but also function as an infor-
mation processing medium with performance close to a standard, high precision,
deterministic, non-spiking ESN (He et al. 2019).



Neuromorphic Electronic Systems for Reservoir Computing 233

5 Conclusion

Reservoir computing appears to be a particularly widespread and versatile approach
to harness unconventional nonlinear physical phenomena into useful computations.
Spike-based neuromorphic microchips, on the other hand, promise one or two orders
of magnitude less energy consumption than traditional digital microchips. Imple-
mentation of reservoir computing methodologies on neuromorphic hardware, there-
fore, has been an attractive practice in neuromorphic system design. Here, a review of
experimental studies was provided to illustrate the progress in this area and to address
the computational bottlenecks which arise from specific hardware implementations.
Moreover, to deal with the challenges of computation on such unconventional sub-
strates, several lines of potential solutions were presented based on advances in other
computational approaches in machine learning.
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Reservoir Computing Using Autonomous
Boolean Networks Realized
on Field-Programmable Gate Arrays

Stefan Apostel, Nicholas D. Haynes, Eckehard Schöll, Otti D’Huys,
and Daniel J. Gauthier

Abstract In this chapter, we consider realizing a reservoir computer on an electronic
chip that allows for many tens of network nodes whose connection topology can be
quickly reconfigured. The reservoir computer displays analog-like behavior and has
the potential to perform computations beyond that of a classic Turning machine. In
detail, we present our preliminary results of using a physical reservoir computer for
performing the task of identifying written digits. The reservoir is realized on a com-
mercially available electronic device known as a field-programmable gate array on
which we create an autonomous Boolean network for information processing. Even
though the network nodes are Boolean logic elements, they display analog behavior
because there is no master clock that controls the nodes. In addition, the electronic
signals related to the written-digit images are injected into the reservoir at high
speed, leading to the possibility of full-image classification on the nanosecond time
scale. We explore the dynamics of the autonomous Boolean networks in response to
injected signals and, based on these results, investigate the performance of the reser-
voir computer on the written-digit task. For a wide range of reservoir structures, we
obtain a typical performance of∼90% for correctly identifying a written digit, which
exceeds that obtained by a linear classifier. This work paves the way for achieving
low-power, high-speed reservoir computing on readily available field-programmable
gate arrays, which are well matched to existing computing infrastructure.
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1 Introduction

As demonstrated by the breadth of contributions in this volume, there is great interest
in reservoir computing (Jaeger and Haas 2004), from fundamental studies of their
properties to using them for a wide range of applications. While many studies use
a standard Turing-von Neumann computer to simulate a reservoir computer (RC),
physical RCs have the potential to demonstrate beyond-Turing computing and may
increase the information processing speed. One challenge in building a physical RC
is fabricating a large enough reservoir, whichmay require 100s to 1,000s of nonlinear
input-output nodes, and a large number of interconnects (links) between the nodes.

A highly successful alternative that is capable of operating at high speeds is to
realize a RC using a single nonlinear node with time-delay feedback with a large
number of ‘virtual’ nodes determined by the ratio of the delay time to the charac-
teristic time scale of the node. Such platforms have been used for a wide variety of
machine learning tasks, such as classifying spoken words (Appeltant et al. 2011) at
high speed (Larger et al. 2017), nonlinear channel equalization (Paquot et al. 2012),
and classifying serial digital data (Haynes et al. 2015). Unfortunately, this approach
requires complex temporal time delaying and multiplexing of the input information
(masking) and injection into the loop (Appeltant et al. 2014; Röhm and Lüdge 2018).
In principle, this masking could be done in real time using dedicated hardware as
has been demonstrated recently (Penkovsky et al. 2018), but most demonstrations to
date perform this preprocessing offline thereby slowing down the overall operation
rate of the RC.

A different, potentially scalable, approach is to use nonlinear optical micro-ring
resonators fabricated on a planar photonic chip (Denis-Le Coarer et al. 2018; Mesar-
itakis et al. 2015), or arrays of linear micro-ring resonators or swirls where the
nonlinearity is provided by the square-law detectors (that is, detectors that respond
to the intensity of the light rather than the field) in the read-out layer (Katumba et al.
2018; Vandoorne et al. 2014; Vinckier et al. 2015; Zhang et al. 2014). This technol-
ogy is currently limited to a small (∼16) number of resonators because of optical
loss and the network connectivity is limited by the planar geometry. But this platform
may find future application as the quality of photonic chips improves.

Here, we focus on an approach using a commercially available electronic device
known as a field-programmable gate array (FPGA), which greatly simplifies the
creation of a reservoir in comparison to the photonic approaches discussed above.
FPGAs are also much easier to reconfigure in comparison to custom-built boards
with discrete logic (Mason et al. 2004; Zhang et al. 2009) (that is, devices using a
collection of single-chip logic gates soldered on the board). Rosin (2015) pioneered
the application of FPGAs to realize autonomous time-delay Boolean networks (Ghil
and Mullhaupt 1985). Here, the FPGA is configured to realize a reservoir, where the
FPGA logic elements serve as the network nodes that nominally perform a Boolean
operation on the inputs. The term autonomous indicates that the logic elements are
not gated by a master clock; they process new edges as soon as they arrive on the
inputs to the logic elements. Furthermore, because the network is autonomous, signals
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traveling along the links have a finite propagation speed so that the link delays must
be accounted for. The autonomous nature of the complex network allows for the
possibility of beyond-Turing computation (Ghil et al. 2008). Autonomous Boolean
networks on FPGAs have been used previously for reservoir computing and applied
to high-speed pattern recognition of digital serial data patterns (Haynes et al. 2015)
and high-speed forecasting of chaotic dynamics (Canaday et al. 2018). The FPGAcan
also operate in the clockedmode, thus realizing a finite statemachine and offering the
possibility of accelerating the software simulation of RCs. This approach has been
applied to channel equalization (Antonik 2018; Antonik et al. 2015; Skibinsky-Gitlin
et al. 2018; Yi et al. 2016) and speech recognition (Alomar et al. 2015; Penkovsky
et al. 2018).

In this chapter, we describe our preliminary studies on using an FPGA-based RC
for performing a classification task: identifying images containing human-written
digits (the MNIST task). While RCs are most suited for processing time-dependent
signals, performing a classification task on images presents interesting challenges,
such as identifying efficientmethods for injecting data into the reservoir.We also take
this opportunity to study the dynamics of autonomous Boolean networks (ABNs) in
response to a perturbation, such as a phase transition as the node in degree varies.
This study helps guide the choice of metaparameters for the RC.

In the next section, we present the reservoir concept with an associated mathe-
matical model, describe our experimental studies of the dynamics of ABNs as the
network parameters vary in Sect. 3, realize an RC on an FPGA and use it for the
written digit (MNIST) task in Sect. 4, and discuss future directions and conclude in
Sect. 5 (Apostel 2017). We briefly discuss using FPGAs and describe our experi-
mental workflow in the Appendix.

2 Reservoir Computers Based on Autonomous Boolean
Networks

One aspect that distinguishes RCs from other artificial neural networks is that each
node is itself a dynamical system. Glass and colleagues (Edwards and Glass 2006)
have studied extensively the dynamics of autonomous Boolean networks using a
model where node i is described by a continuous variable xi whose behavior is
governed by a first-order differential equation with decay rate γi and driven by a
Boolean function fi of the node inputs. The function fi is defined via a look-up table
as described below and can take on essentially any Boolean function consistent with
the number of inputs to the node. In the context of our work, the decay rate γi models
the finite rise-time of the FPGA logic elements due to their input capacitance and
inductance and are nominally identical for all nodes with γi ∼ 2π/(0.41ns). When
signals propagating from node j to i experience delay τi, j , the so-called Glass model
can be extended to a set of delay differential equations (Edwards et al. 2007). Delays
appear in our FPGA-based system because the signals propagate at a finite velocity
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Fig. 1 Illustration of the reservoir computer architecture

along the link wires, where a typical delay time between nearby logic elements is
only a few 10’s of picoseconds. To purposefully add more delay, we use pairs of
series-connected NOT gates along the network links, where we obtain a delay of
∼0.52ns per pair of gates (Lohmann et al. 2017). We use special care in writing
the hardware description language used to configure the FPGA (described in greater
detail in the Appendix) to make sure that the logic gates used to create delay are not
removed from our design.

Adopting this theoretical approach for reservoir computing with time-delay
ABNs, illustrated in Fig. 1, the dynamics of the RC are given by Gauthier (2018)

dxi
dt

= −γi xi + γi fi

⎛
⎝

J∑
j=1

W in
i, j u j (t) +

N∑
n=1

Wi,nxn(t − τi,n)

⎞
⎠ , i = 1, . . . , N (1)

ym (t) =
N∑

n=1

W out
m,nxn , m = 1, . . . , M. (2)

Here, u j (t) are the J signals input to the RC, which are connected to the N reservoir
nodes with random fixed weightsW in

i, j ,Wi,n are the random fixed internal weights of
the reservoir, ym(t) are the M outputs of the RC with trained (morphable) weights
Wm,n . Often, theW ’s are sparse so that the typical node in-degree (number of inputs)
Ki is small. The reservoir embeds the input data to a higher-dimension phase space
when N > J because of the nonlinear response of the node, known as dimension
expansion and often a key requirement for effective information processing. Because
of the time delays, the phase-space dimension of the reservoir is infinite, which can be
seen by considering that the initial conditions of the time-delay differential equations
must be specified over the real interval of the maximum link delay.

Evaluating fi is particularly simplewhen the arguments u j and xn areBoolean, but
theW ’s are real. Here, the multiplications and additions appearing in the argument of
fi can be done a single time after the W ’s are chosen, thereby defining the Boolean
look-up table (LUT). Thereafter, only the LUT is used and no further operations
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are required. This procedure maps perfectly onto the structure of the FPGA logic
elements, which are based on LUTs, as discussed in the Appendix.

Models similar to Eq. (1) have been used to understand the dynamics of time-
delay ABNs representing simple genetic regulatory networks are realized on an
FPGA, for example, and can capture the extremely long transient behavior observed
experimentally (D’Huys et al. 2016; Haynes et al. 2015; Lohmann et al. 2017).While
we do not consider solutions to Eq.1 here, we include it for completeness because it
is a good starting point for a theoretical analysis of FPGA-based RCs.

For the classification task considered here, we adjustW out
k,n using a finite-size train-

ing data set so that the resulting output properly classifies each input in a least-square
sense, known as supervised learning. Specifically, the output weight matrix Wout is
determined by injecting a finite-length input training data set U(t) and recording the
network dynamics X(t). Here, we assume that the state of the network is sampled
at equal discrete time intervals �t so that the matrices are finite dimensional. Based
on these observations, we modify Wout to minimize the error of the output Y (the
classes) to the expected output Yexpected, resulting in

Wout = YexpectedXT
(
XXT + β2I

)−1
, (3)

where β is a regularization parameter, I is the identity matrix, and T indicates the
transpose. A nonzero value of β ensures that the norm of Wout does not become
large, prevents sensitivity of the training to noise, and improves the generalizability
of the RC to different inputs. We stress that X(t) is a concatenation of the network
dynamics over all input data, which is a collection of image data described below
in Sect. 4.1. We can also find a solution to Eq. (3) using gradient-descent methods,
which are helpful when the matrix dimensions are large. Gradient-descent routines
are readily found in modern toolkits developed by the deep learning community, and
they can operate at high speed using graphical processing units. Another approach
is to use recursive least-squares.

3 Dynamics of Random Autonomous Boolean Networks

Before discussing the performance of the RC applied to the MNIST classification
task, we explore the dynamics of time-delay ABNs realized on an FPGA for different
network parameters.We seek to identify a phase transition fromordered to disordered
(chaotic) behavior and compare our observation to the prediction for clockedBoolean
networks. Identifying the location of the phase transition is important because the
performance of the RC is expected to be highest near the border of the transition
from order to chaos (Yildiz et al. 2012).
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3.1 Dynamics of Clocked Random Boolean Networks

There exists a considerable literature on the dynamics of clocked random Boolean
networks, and we briefly summarize some of the findings here. A clocked random
Boolean network (RBN) is typically taken to consist of N nodes each of which
receives exactly K inputs. The Boolean node function fi is defined in terms of a
random LUT, where the probability of an entry in the LUT taking on the value 0 (1)
is p (1 − p) and is often called the node bias (Derrida and Pomeau 1986; Flyvbjerg
1988; Luque and Solé 2000).

For a clocked RBNwith random and fixed (quenched) functions and connections,
the network is a deterministic system with a finite number of states (a finite-state
machine) and must show periodic behavior with a maximum period of 2N . Different
network behaviors are observed as K and p varies. One behavior is called ordered
when the dynamics go to a fixed point or to a low-period periodic orbit. Another
behavior, often called chaotic, is when the period approaches its maximum value
and the specific periodic orbit followed is sensitive to a change in the initial value of
a single network node. Of course, chaos cannot exist in an RBN because all behaviors
are periodic, but the term is suggested because of the sensitivity of the dynamics on
the initial conditions. Using an annealed network approach (Derrida and Pomeau
1986), the order-chaos transition is given by

Kc = 1

2p(1 − p)
(4)

in the limit N → ∞ and shown in Fig. 2.

Fig. 2 Order-chaos phase
transition in a clocked RBN
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3.2 Dynamics of ABNs on an FPGA

Guided by the results on clocked RBNs, we investigate experimentally the dynamics
of random ABNs on an FPGA. Here, we measure the Booleanized state of each
node at discrete (clocked) time intervals using the finite-state machine described in
the Appendix. We choose a subset of networks from the full range of possibilities
described by Eq.1 so we can make a comparison to the previous work on clocked
networks. In particular, we consider networks with N = 64 each having exactly K
inputs and outputs so that Wi,n appearing in Eq.1 is quite sparse. Here, we consider
only K ≤ 4. Each node is assigned a random and fixed Boolean function fi with
bias p under the restriction that fi = 0 when all the inputs are zero so that the
network is in the quiescent state (no self-oscillation) when the FPGA is first turned
on or reset to this value. This restriction limits the bias to pmax = 1 − 1/2K , but is
advantageous for realizing an RC because it results in a well-defined initial state of
the reservoir. In addition, to slow down the network dynamics (Canaday et al. 2018)
to better match the rate at which we can inject data into the RC (see the next section),
and to more closely match the clock RNB theory, we use a nominally constant link
delay τi,n = 12.8 ± 0.5ns. Here, the link time delay is set by using pairs of series-
connected NOT gates, where each pair of gates causes a delay of∼0.52ns (Lohmann
et al. 2017). For this study, we investigate the dynamics of 6,000 randomly chosen
networks.

The initial condition of the network is set using an OR logic gate at the output of
each node as illustrated in Fig. 3. Initially, the state of all nodes is set to 0 to reset the
network, and then the desired initial condition is set during a 5-ns-long window and
passed to the link delay lines. This is accomplished using the OR gate, where u j (t)
appears at the output while the node is in the state 0. Once signals appear at the input
of the node from other network nodes (after a delay time τ j,s), any signals related
to u j (t) still being injected into the node will be ‘blended’ with the incoming node
signals via the OR gate.

In general, setting the initial conditions to a random binary value will destabilize
the initial stable network state where all nodes are equal to 0, giving rise to a transient
that can last for a time beyond our data-collection window for p ∼ 0.5. After initial-
izing the network, wemeasure the state of each node every 5ns for 200 samples (1µs
total record length), and transfer the data to a computer for analysis. The network is

K inputs

τi,j

τr,j

K outputs

Node j
LUT

Input
uj(t)

OR

Fig. 3 Using an OR gate on the output of node j to inject the input data for the node, illustrated
here for K = 2. The signal emanating from the OR gate passes to the delay-line links to nodes i
and r



246 S. Apostel et al.

reset to the 0 state at the end of data collection for initial condition. For each network
realization, we use 1,000 randomly chosen initial conditions and repeat the experi-
ment 50 times for each initial condition. We do not attempt to study the duration of
the transient beyond 1µs because it is not relevant for reservoir computing although
we note the extremely long (second to minutes) chaotic time transient times have
been observed in simple Boolean networks with similar bias (Haynes et al. 2015).

One issue that arises when using an FPGA is that a randomly assigned node LUT
may have the same output (0 or 1) regardless of the inputs. In this case, the optimizer
within the compiler that converts the Verilog hardware description language to a
bitstream to configure the FPGA removes such nodes from the network. This is
more pronounced for low and high biases and the actual network synthesized on the
chip has fewer than 64 nodes when the network is pruned by the optimizer (typically,
only a few nodes are pruned). In the figures presented below, we use different color
symbols to indicate networks that have been pruned by the compiler. This behavior
does not change the network dynamics or time scales because such a nodewould have
been inactive. Nodes with high bias (p ∼ 1) may also be inactive, but we already
exclude nodes with high bias as discussed above.

We observe a wide range of network dynamics as we vary p and K . Again moti-
vated by the research on clocked RBNs, we initially search for the network to settle
down to a fixed-point behavior where all network nodes take on a constant value
(frozen dynamics) after a transient time.While we only measure the network dynam-
ics at discrete times, it is unlikely that fast oscillations in between the measurement
times would escape unnoticed. We search for fixed-point behavior by measuring the
Hamming distance between the state of the network at time t0 with its values at all
later times up to the limit of our 200 samples. Here, the Hamming distance between
two Boolean vectors A and B is defined as

H(A, B) =
N∑
i=1

Ai ⊕ Bi . (5)

Figure4 shows the number of time steps required for the dynamics of the ABN
to reach a fixed point (network realizations where a fixed point is never observed
are not shown). We also show the probability for a network to reach a fixed point.
Qualitatively consistent with the predictions shown in Fig. 2 for a clocked RBN
with the same network structure as our ANB, we observe longer transients as p
approaches 0.5 from above and below, and the range of biases that do not show
fixed-point behavior widens as K increases. Of course, we are only considering
fixed-point behavior and so these results only suggest the location of the order-chaos
boundary, although we find that chaotic behavior tends to be observed when the
probability for observing a fixed point drops near zero around p = 0.5

Over the range of p where the probability of observing a fixed point is nearly
zero (the region around p ∼ 0.5 where the green line is near zero), we observe
fast, complex behavior after an initial short transient that depends sensitively on the
initial conditions, likely a manifestation of chaos in the ABN (Zhang et al. 2009) as
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Fig. 4 Length of transient for cases when theABN reaches a stable fixed point for different network
parameters. Blue symbols indicate unmodified networks and red symbols indicate optimizer-pruned
networks. The green solid line shows the probability that a network reaches a stable fixed point

Fig. 5 Dynamics of a Boolean networks with N = 64, K = 4, and p = 0.55 for a clocked network
simulated numerically and b an autonomous network on the FPGA averaged over 50 experimental
runs with the same initial conditions for each. Boolean 0 (1) is colored cyan (magenta). This network
realization has no pruned nodes

shown in Fig. 5b. Here, the dynamics is so fast that our finite sampling rate is too
low to faithfully record the dynamics. As seen in Fig. 5a, the behavior predicted by
a discrete-time model using the same LUT and initial conditions is similar to our
observations of the ABN on the first few time steps, but disagrees thereafter. This
disagreement is perhaps not too surprising because the discrete map is a finite-state
machine and hence cannot display chaos (the dynamics eventually has to repeat). The
fact that we observe chaos gives a hint that an RC realized with an ABN reservoir
on an FPGA could display beyond-Turing computation, although observing chaos is
not a necessary or sufficient condition for beyond-Turning computation.
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Fig. 6 Average value of the network nodes for different network parameters

Close inspection of Fig. 5b reveals apparent horizontal stripes, indicating that the
average value of the nodes takes on different values. For this data set, the average
value of the nodes range from 〈xi 〉 = 0.36 to 0.74, with an average for all nodes of
〈x〉 = 0.57 ± 0.07, which is consistent with the value of p. We currently do not have
an explanation for the appearance of these patterns.

We find that another qualitative measure of the order-chaos boundary can be
obtained by measuring 〈x〉 for different network parameters as shown in Fig. 6. Here,
we perform the average from time steps 150 through 200 to minimize the effects of
the transients. At p = 0, we expect that 〈x〉 = 0 because all nodes in the network
are inactive regardless of their input. As p increases, we see that 〈x〉 remains near
zero until an apparent transition to complex behavior indicated by a rapid rise in 〈x〉.
The value p at this transition is smaller as K increases, consistent with the phase-
transition behavior of clocked RBNs shown in Fig. 2. We also show a line indicating
〈x〉 = p, which is expected for a RBNwith N , K → ∞. As K increases, the average
node value approaches this line, which is an interesting result because our network
is quite different from an RBN. Specifically, we are using an ABN, we restrict the
node LUTs so that the all-zero state is a solution, and N and K are not all that large.

4 Reservoir Computing with ABNs on an FPGA

The experiments described in the previous section demonstrate that an ABN-based
reservoir can be constructed on an FPGA whose behavior can be adjusted from
ordered to chaotic simply by adjusting the node bias and in-degree. Operating near
or within the chaotic domain demonstrates that the reservoir embeds the dynamics in
a high-dimensional phase space, one crucial characteristic needed for reservoir com-
puting. It is also widely believed that the reservoir must display other characteristics
when data is input to the reservoir, including (Jaeger and Haas 2004):



Reservoir Computing Using Autonomous Boolean … 249

• Separation of different input states. Input data in different classes should have
distinct output dynamics.

• Generalization of similar inputs to similar outputs. Different input data within
a class should have similar output dynamics.

• Fading memory. The output dynamics should be correlatedwith the input dynam-
ics over a time known as the consistency window, but this temporal correlation
should fade.

Based on these properties, an RC is well suited for classification or prediction
based on correlations in data over time because it inherently has temporal memory.
For classification tasks on static image data such as the MNIST data set, the cor-
relations are inherently spatial. Thus, we break the image up into sub-images and
feed them rapidly into the reservoir (at the 200MHz limit imposed by our write and
read procedure) to create spatial-temporal correlations. While this process is a bit
contrived, it may be well suited for processing high-speed video imagery data where
the data is usually generated in a progressive scan of the image.

In the next section, we introduce the MNIST classification task and modifications
we make to the input data to make a better match to our reservoir characteristics,
then inject this data into ABNs to verify the behaviors described above. Finally, we
describe the performance of an FPGA-based RC for the classification task.

4.1 The MNIST Classification Task

The MNIST database (MNIST 2021) of handwritten digits is a collection of 60,000
training samples and 10,000 test samples of handwritten digits from 0 to 9. Each
written digit in the original data set, referred to as NIST after the U.S. federal agency
that collected the data, is represented by black-and-white 20 × 20-pixel, which was
modified (MNIST) by centering the image and padding with white space, resulting
in a gray-scale 28 × 28-pixel image. Figure7 shows four sample MNIST images for
each written digit.

Fig. 7 Four examples for each digit of the MNIST data set shown as gray-scale images



250 S. Apostel et al.

As mentioned above, we seek to inject sub-images into the reservoir to exploit
its fading memory. There is a trade-off in using too many sub-images because the
time interval for injecting data may be longer than the reservoir consistency window.
We also want to use sub-images with no more than pixels than reservoir nodes. To
reduce the parameter space, we choose to map each pixel to a single reservoir node
and thus to have a sub-image size of 64 pixels. Thus, in this case, the input layer is
the sub-image and we use a restricted connectivity of the input layer to the reservoir:
each input node only connects to a single reservoir node. For cases when there is not
enough image data to fill a full 64-element input data vector, we pad the data with
zeros. When the reservoir is pruned by the Verilog compiler, the corresponding pixel
is not mapped into the reservoir and hence this information is lost.

For most of the studies presented below, we reduce theMNIST images to 16 × 16
pixels distributed over 4 sub-images. We tested many methods for creating sub-
images, such as vertical or horizontal image segments, or using random masks. We
find no statistically significant differences in the performance of the RC for the
MNIST classification task for different protocols for sub-images creation; the data
shown below uses vertical image segments.

The data is injected into the network using the samemethod described in Sect. 3.2
above using an OR gate at the output of each node (see Fig. 3) controlled by our data
write/read FSM described in the Appendix. Here, the data is loaded into the links,
which have a nominal propagation delay of 12.8ns. A sub-image is input every 5ns
(200MHz input data rate) and hence some of the data is ‘blended’ with the reservoir
dynamics if the total image time exceeds the link delay time. For example, it takes
4 × (5 ns) = 20ns to inject a full image with 4 sub-images so that the first sub-image
is fully blended with the reservoir dynamics, the second sub-image is blended with
the reservoir dynamics for∼2.2ns, while the last two sub-images are presented fully
for 5ns. We did not realize this shortcoming of our method until after substantial
data collection. This represents a limitation of this initial study and the error rates of
the RC presented in Sect. 4 below are likely lower bounds. This limitation will be
addressed in future studies.

Figure8 illustrates the steps involved to create the reduced image. This first step
is to determine an image ‘focus,’ which is an image coordinate determined by an
average of the pixel coordinates weighted by their respective gray-scale value. The
intersection of the solid-blue lines shown in Fig. 8a shows the image focus, which
is not necessarily the center of the image indicated by the intersection of the black
dashed lines. Next, we determine exterior white pixels to remove the excess padding.
We then create a grid of q × q pixels within this region centered on the focus with
q = 8 − 20, but q = 16 typically. A resulting pixel is labeled by filling each pixel like
a ‘bucket’ by adding the value overlapping area × gray-scale weight (0–255) from
each originalMNIST pixel to the new grid pixel. The new pixel will be set to Boolean
1 (0) if the filled value reaches (does not reach) a threshold set at approximately the
half-gray-scale point. This process is depicted in Fig. 8b with Boolean 1 shown as
blue and the bucket gray scale shown as an underlay.
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Fig. 8 a Determining the focus of the MNIST image. b Creating a reduced image shown here for
the case of 16×16 pixels

4.2 Dynamics of ABNs with Data Injection: The Consistency
Window

As mentioned above, an important feature of an RC is to separate data from different
classes and to give similar output for data from the same class. Even if the reservoir is
operating in the chaotic state, the transient dynamics can still be used for classification
when the output data is restricted to the consistency window (Haynes et al. 2015;
Uchida et al. 2004).

Haynes et al. (2015) proposed using theHamming distance for Boolean data given
in Eq. (5) as a measure for the consistency window. We follow the same approach
here. Figure9 shows examples of the dynamics of the average Hamming distance,
where the bias is set in the ordered regime (panel a) so that the dynamics evolves to a
fixed point for all inputs and the other for a bias in the chaotic regime (panel b). Here,
a random Boolean initial condition is injected into the network for a single 5-ns-long
period, which destabilizes the network dynamics. This is repeated many times for
the same and different initial conditions. The consistency window w quantifies the
interval over which similar and different inputs can be distinguished.

Also apparent in this plot is the fading memory property of the ABNs. Beyond
the consistency window, the output state is uncorrelated with the input state in both
the ordered and chaotic regimes.

We repeat this experiment for a large number of randomly chosen reservoirs as a
function of network parameters. We determine w by finding the intersection point of
lines fit to the early part of the data. This procedure can result in values greater than
the 200 steps over which we collect data when the slopes are shallow. As seen in
Fig. 10, the consistency window sharply peaks for bias values at the ordered-chaotic
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Fig. 9 Temporal evolution of the normalized Hamming distance using two randomly selected
data sets with 64 pixels injected into the reservoir for 5ns. The blue symbols indicate repeated
injection of the same data and finding the Hamming distance for each trial, and the red symbols
indicate the difference between this data set and a randomly chosen second data set for a K = 2
and p = 0.387 and b K = 4 and p = 0.476. The black dashed lines are fits of the data to straight
lines, the intersection point of which are used to indicate the end of the consistency window, about
∼30 time steps for both sets of data

Fig. 10 Average consistency window for as a function of network parameters. Blue symbols indi-
cate unmodified networks and red symbols indicate optimizer-pruned networks

boundary (see Fig. 4) and approaches zero for small p. In the chaotic regime,w takes
on it smallest value around p = 0.5 of∼50 time steps for K = 3 and∼35 time steps
for K = 4.

We also explore the dynamics of the network where all nodes execute the XOR
function, which corresponds to p = 0.5. This is motivated by the previous work of
Haynes et al. (2015) who realized an RC for serial digital data pattern recognition
using a singleXORnodewith self-feedback over two linkswith different time delays.
The results of this study are contained in the tight cluster of blue data points in Fig. 10
at p = 0.5 andw ∼ 35 for K = 2,w ∼ 25 for K = 3, andw ∼ 20 for K = 4. Given
that these point clusters are below the ‘U’-shaped band of points appearing above
the point cluster, corresponding to the random networks, indicates that the random
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networks outperform theXORnetworkwith regard to the consistencywindow,which
may improve the performance of the RC.

The results presented in this section demonstrate that a random ABN satisfies
the criteria of separation, generalization, and fading memory that is believed to be
required for reservoir computing.

4.3 Realizing an RC for the MNIST Classification Task

In this section, we report on the performance of the RC on the MNIST classification
task using the following procedures. We use the first 42,000 images from theMNIST
data set and reduce the images to 16 × 16pixels using the procedure given inSect. 4.1.
We use less than the total MNIST image database size to reduce the computational
cost of our experiments and subsequent analysis. The output of the reservoir for each
written-digit image is a series of 200 time steps for each of the 64 reservoir nodes. The
resulting data for the output state of the network is transferred to a personal computer,
then to the Open Science Grid (see the Appendix) for training the RC output weights.
Even in binary format, the file size for the network output state (42,000 images × 32
bytes/image × 200 time steps) is 672 MB for a single reservoir realization. For this
reason, we only choose 800 random networks when measuring RC performance as
a function of network parameters rather than the 6,000 used in Sect. 3.2 above.

These data are used to determine W out
m,n using a ridge-regression regularization

parameter β2 = 10−3. The 10-element class output vector Yexpected has a value of 1
for the corresponding image and -1 for the remaining elements. The output data for
each image is reshaped into a single feature vector with a total length 64 × 200 =
12,800 elements with a total featurematrixX inR12,800×42,000; performing thematrix
inversion given in Eq.3 with this data set pushes the limits of our accessible computer
hardware in terms of memory to store the matrices and computation time.

The classification performance for each individual written digit is evaluated using
the cross-validation method. Here, our selected data set of 42,000 written-digit
images is split into 5 equal-size groups of 8,400 images each. The training of W out

m,n
is repeated 5 times using 4 groups for the training and the remaining for testing the
performance of the RC using this ‘unseen’ data set. After repeating this procedure
for all groups, the percent of correct classifications for each written digit is calcu-
lated (that is, the fraction of classification attempts that was completed correctly).
This procedure is then repeated for each of the 800 random reservoirs and for each
network parameter. The performance P is defined as the average of the percentage
correct score for each written digit.

4.3.1 Exploring Fading Memory in the RC

In the previous section, our observations indicate the presence of fading memory
(see Fig. 9) as quantified by a single metric given by the consistency window. A
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Fig. 11 Fading memory of two example random reservoirs with a K = 4 and p = 0.912 and b
K = 4 and p = 0.553

more nuanced measure for how the fading memory affects the performance on the
MNIST task is obtained by varying the range of time steps used in the classification
task (that is, the location and length of the block of data X(t) used during RC
training). We expect that the initial data is highly correlated with the input data and
hence it contains limited new information that can be used for classification. At the
other extreme, there is a loss of correlation at later times as the network short-term
memory fades. We adjust the location and length of the data block by repeating the
classification task using data only from a start time step in the range 0 < tstart < 70
until a final time step of tend = 70 to determine the classification performance P .
That is, X only has data from observation times tstart to tend. At the final time step,
there is almost no data recorded from the reservoir, explaining the small dip apparent
for the last data point of Fig. 11b).

Figure11 shows two characteristic dependencies of the performance as a function
of tstart . The performance starts high, followed by a rapid decrease, followed by a
long decaying tail. To compare performance across the random networks, we find
empirically that the initial high-performance section is well-fit with a Gaussian dis-
tribution, which characterizes the duration of ‘short-term memory.’ The longer tail
is well-fit by a power-law of the form

P(tstart) = c(tstart)
−α + 0.1 (6)

and quantifies the ‘long-term’ memory of the reservoir. As tstart → ∞, P → 0.1,
corresponding to a random guess of the 10 written-digit classes. As seen in the
figure, the fits to these two functions is reasonable.

From the Gaussian fit, we extract a short-term memory coefficient σ equal to the
1/e half-width of theGaussian function in units of start samples used for classification
and gives a characteristic time scale for the short-term memory. Already after a few
time steps, the performance drops substantially, for which the output data contains
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Fig. 12 Short-term memory of the RC for different reservoir parameters

Fig. 13 Long-term memory of the RC for different reservoir parameters

only partial information of the input image (recall we insert data into the network over
4 time steps for the 16 × 16-pixel images). Figure12 shows the short-term memory
as a function of the network parameters. Similar to the time to reach a fixed point
shown in Fig. 4, the short-term memory increases near the ordered-chaotic transition
boundary, but remains high throughout the chaotic regime for K = 2. For K = 2 and
3, there is less scatter in the data, the domain of long memory time increases with K ,
the memory scale peaks at the transition boundary, and there exists a minima in the
memory time at p ∼ 0.5 between the peaks, although the dependence is fairly flat.
The longer short-term memory time for K = 2 may suggest a reason for the slightly
higher best performance found for this network connectivity described below in
Sect. 4.

From the power-law fit, we extract a long-term memory coefficient M defined
as the time at which the performance drops to 0.11. This is a measure of the time
needed for almost all information to vanish from the system. As seen from Fig. 13,
M is peaked near the ordered-chaotic boundary, with a larger separation between the
two boundaries as K increases, and takes on a minimum value in the chaotic domain
when p ∼ 0.5. Interestingly, it is possible to create networks with longmemory (10’s
of samples corresponding to >50ns) even for reservoirs with biases as low as 0.1
when K > 2, likely due to the large number of recurrent loops in the network and
the relatively long link time delays.
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Fig. 14 Power-law exponent for long-term memory in the RC for different network parameters

It is not possible to give an appropriate scale for the long-term memory because
it appears to be well described by a power law, which has no scale. As a substitute,
we determine the power-law exponent α for different network parameters as shown
in Fig. 14. For a power-law with a negative exponent (α > 0 in Eq.6), its integral is
finite for α > 1 and will diverge otherwise. The exponent becomes large for p → 0
and p → 1, which is due to fact that these networks reach a fix point within a few
time steps and almost all nodes are in the inactive (active) state for low (high) bias.
For p close to the phase transition, α < 1, suggesting the existence of substantial
long-term memory and hence long-term retention of information in the network. For
p ∼ 0.5, α ≈ 2 for all K , demonstrating that the long-term memory is nearly absent
(α > 1) and fairly insensitive to K , whereas the short-termmemory is more sensitive
to this parameter.

4.3.2 RC Performance for Different Reservoir Parameters

The previous sections demonstrate that an FPGA-based RC shows a fairly strong
dependence of the consistency window and memory on network parameters K and
p. Based on the vast literature on RCs that states it is important to optimize the
consistency window and fading memory, we find a surprising lack of dependence of
the RC performance on K and p for the MNIST task as seen in Fig. 15. As in our
previous plots, the red symbols correspond to networks whose inactive nodes are
pruned by the Verilog compiler and optimizer. These pruned networks tend to have
lower performance; the lowest performer outliers have only a few active nodes and
hence there is little information available for classifying the written digits. For fully
realized networks with no pruning, indicated by the blue symbols, the performance
is only weakly dependent on K and p, although the domain of well-performing
networks increases with K . Interestingly, we obtain good performance throughout
the chaotic domain and well into the ordered domains (Yildiz et al. 2012).

Zooming in on the high-performance, un-pruned networks (Fig. 16), some struc-
ture is evident with the largest spread of 4% for K = 2. Evident is a slight peaking
in performance near the ordered-chaotic boundaries, although the spread in the data
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Fig. 15 The classification performance for various network parameters. The black line at P ≈
0.82 indicates the score of the linear classifier for comparison. Blue symbols indicate unmodified
networks and red symbols indicate optimizer-pruned networks

Fig. 16 Higher resolution plots of the data shown in Fig. 15, but only including the results from
full (un-pruned) networks

is comparable to the peak sizes. Even within the middle of the chaotic domain,
we find some networks that perform nearly as well as the best performers near the
ordered-chaotic boundaries, especially for K = 3 and 4.

4.3.3 RC Performance Dependence on Output Data Sample Size

We find that it is not necessary to use the data characterizing the network dynamics
X(t) collected over the entire 200 time steps. As above, we use the cross-validation
method but with the smaller recorded network data. Figure17 shows the dependence
of the performance on the number of time steps used in the training where we always
start with the first time step. The performance saturates only after ∼10 time steps
(corresponding to a interval of only 50ns). Note that all nodes are connected to
the input layer and hence are activated immediately, but information injected to a
node does not fully spread fully throughout the network because of the substantial
link-time delay (∼13ns). This suggests that the recurrent connections, which allow
for arbitrarily long loops in the reservoir, may not be as important for the MNIST
classification task.
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Fig. 17 Performance score as a function of the length of the data record used for training the RC
for K = 2 and p = 0.222. The black dashed line represents the performance of a linear classifier

Table 1 Observed RC best performance on the MNIST task

K PK (%) Optimum p

2 90.5 p = 0.688

3 89.9 p = 0.668

4 89.0 p = 0.229

4.3.4 Best Results

After an exhaustive search over network parameters, we find the highest performance
over all p, finding the results given in Table1. For comparison, we find that a linear
classifier (no reservoir) has P ≈ 82.4% for all K and thus the RC has better perfor-
mance in all cases. For a linear classifier with the full 28×28 image, LeCun et al.
(1998) obtained P = 88%. Our results with a compressed image still outperform a
full-image linear classifier. Furthermore, the image data is processed by the reservoir
within 1µs, suggesting high-speed prediction could be possible if the weights are
applied in real time on the FPGA (after off-line completion of the training of the out-
put weights), which we will explore in future studies. The best performing networks
occurred for p near the ordered-chaotic transition, although the dependence on p is
weak as discussed in Sect. 4.3.2 above.

The performance in a typical classification experiment is about 90%. In particular,
the classification results were quite different for each written digit. Figure18a shows
the average classification accuracy Pi for each written digit i over all experiments.
When the classification fails (that is, the actual digit injected into the RC is mis-
classified), the RC will incorrectly classify the data as a different digit. Figure18b
shows the probability that the RC selects a digit for the case when it mis-classified
the image.

The digit ‘1’ is classified with the highest accuracy with a score of P1 = 94.6%,
while digit ‘5’ has the worst result of P5 = 76.0%, nearly a 20% difference from
the best digit. Surprisingly, digit ‘1’ is selected with much higher probability when
the RC fails to correctly classify an image. The digit selected least during a mis-
classification are ‘0,’ ‘2,’ and ‘6.’
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Fig. 18 a Average classification accuracy over all experiments and b mis-classification of the
written-digit images

Fig. 19 The confusion
matrix visualizing the error
for each digit

To go deeper into understanding the errors, Fig. 19 shows the confusion matrix
quantifying how often a certain digit is mis-identified as a function of the input digit.
Here, the rows of the matrix are normalized to one; in each row, a blue color indicates
that this digit is hardly chosen while magenta pixels contribute the most to the error
probability.

From the confusion matrix, we see that if a digit is mis-classified as another digit
with high likelihood, the same can be said about the other digit. The most obvious
mis-classification pairs are 4↔ 9, 7↔9, 1↔7, and 3↔5. Given the similarities of the
strokes to write these numbers, their confusion is sensible. However, it is surprising
that the pair 3↔8 is not pronounced.
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Fig. 20 Classification performance variation with the number of pixels representing the written
digit. The colored lines are for 4 randomly chosen reservoirs, while the black line is for the linear
classifier. The parameters are as follows: K = 2, p = 0.5 (red), 0.566 (green), 0.719 (blue), 0.352
(yellow); K = 3, p = 0.758 (red), 0.521 (green), 0.170 (blue), 0.482 (yellow); and K = 4, p =
0.176 (red), 0.244 (green), 0.297 (blue), 0.743 (yellow)

We now turn to investigate the influence of the image size on the performance.
For images compressed to a very small number of pixels, there is loss of information
because the coarse representation will effectively merge features in the written digit.
On the other hand, once the image has ∼ 13 × 13 pixels, some of the data input to
the reservoir is lost because of the shortcoming of the way in which we inject data
into the reservoir as discussed above in Sect. 3.2. Figure20 shows the performance
of four different randomly chosen reservoirs for each connectivity K . In addition,
we show the performance of the linear classifier for the same data sets.

We see that the FPGA-based reservoirs always outperform the linear classifier for
all image sizes. As expected based on increased image resolution, the performance
of the linear classifier increased monotonically but there is a noticeable decrease in
the slope beyond ∼ 12 × 12-pixel image size. On the other hand, the RC classifier
performance peaks around a ∼ 14 × 14-pixel image size and then decreases some-
what. This decrease is likely due to the fact that only part of these images are input
to the reservoir by our method for data injection as mentioned above and discussed
in Sect. 3.2, a limitation we will address in future studies. However, for all cases, the
performance is above the linear classifier.

4.3.5 Parallel RCs

One method to possibly improve the performance of our reservoir computer is to
use multiple reservoirs, which we explore here in some preliminary studies. Similar
to deep learning artificial neural networks, a hierarchical structure can allow for
forecasting dynamical systems with different time scales or to focus the network
on different temporal or spatial features (Jaeger 2007). Also, a serial cascaded of
RCs improves the chaotic time series prediction performance (Webb 2008). A recent
review summarizes variations on these architectures (Tanaka et al. 2018).



Reservoir Computing Using Autonomous Boolean … 261

Fig. 21 Classification performance for parallel RCs that each classify all written digits (blue line)
and the best combination of reservoirs where each only classifies a subset of the digits (green line)

Specific to theMNIST task, Jalalvand et al. (2015) showed improved performance
of an RC using multiple RCs in a parallel, serial, or parallel-serial geometries. Their
work is based on a software simulation with each RC having ∼10,000 reservoir
nodes, but only feeding in a single column of pixel data from the original MNIST
28×28-pixel images. It is not apparent whether a similar approach will work here
where we consider using ABNs with link time delays, whereas (Jalalvand et al.
2015) considers nodes with a hyperbolic tangent nonlinearity and no link delays.
There is some hope for an improvement using a parallel approach because specific
reservoir realizations perform somewhat better on some digits than others. We use
the data collected from the different reservoir realizations in a parallel configuration
with 	 RCs where we choose the 	 best reservoirs. The results are combined using a
majority vote for classification. As seen in Fig. 21, there is a modest increase in the
performance, peaking at P = 91.8% with 	 ∼ 8.

To obtain a sense of a possible optimal FPGA-based reservoir with 64 nodes, we
search through our database of results to find the 	 reservoirs that perform the best
for a single digit. The performance of this hypothetical machine is shown by the
green line. Better performance can likely only be obtained by increasing the various
resources as discussed in the next section.

5 Discussion and Conclusions

In this chapter, we demonstrate that an FPGA-based RC can perform the written-
digit classification task. The performance over a wide range of reservoir parameters
exceeds that of a linear classifier, although the error rate is still relatively high in
comparison to the state-of-the-art deep learning feed-forward artificial neural net-
works with fully trained weights. One way to improve the performance of our RC
is to increase the number of connections of the input data to the reservoir and to
increase the number of reservoir nodes; in other related studies, we find that the per-
formance scales approximately as the square root of the number of input connections
and reservoir nodes. In the future, we will also investigate full on-chip training and



262 S. Apostel et al.

classification (Yi et al. 2016), which should lead to extremely fast operation of an RC.
The FPGA platform is an especially appealing RC physical substrate because it is
commercially available, operates at low power, runs at high speed, easily integrated
with traditional computer infrastructure, and can potentially lead to beyond-Turing
computing because we run the reservoir in the autonomous mode.
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Appendix: FPGAs and project workflow

Brief introduction to FPGAs
An extensive discussion on using FPGAs for experiments on autonomous Boolean
networks, including hardware description language metacode, can be found in Rosin
(2015), D’Huys et al. (2016), Lohmann et al. (2017), and Canaday et al. (2018).
Briefly, FPGAs contain more than 105 programmable logic elements (LE) that can
be linked via programmable connections. The logic elements are based on CMOS
technology and are arranged in a grid system. Each of these elements consists of a
look-up table (LUT) with four inputs for the Altera Cyclone IV chip family used
here (EP4CE115F29C7N, Terasic DE2-115 demonstration board), a flip-flop and a
multiplexer. Figure22 illustrates the layout of a logic element.

The multiplexer is used to switch between clocked and unclocked (autonomous)
mode and the flip-flop provides the clocked output. The look-up table can be used
to define an operation for K inputs, so having a length of 2K bits and thus can be

Fig. 22 Structure of a single logic element on the FPGA. The figure is adapted from Rosin (2015)
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Fig. 23 Illustration of the transition between the six states of the FSM

used to realize up to 22
K
different Boolean functions. The Altera Cyclone IV logic

elements used in this FPGA have a maximum input number of K = 4 so a total
number of 65,536 different operations can be performed by a single LE. This makes
it easy to create an arbitrary setup on the device. Their relatively low costs and
their operation time on the nanosecond time scale are ideally suited for reservoir
computing applications.

The network is defined using the hardware description language Verilog, which
instructs the FPGA how to configure itself, including the function of the nodes and
the network links. This code is compiled using the proprietary software Quartus II,
version 14.0 (Quartus 2021). The resulting bitstream is loaded onto the FPGA, which
causes the configuration of the RC. See the references above for details. Unique to
this project is the way in which the input and output state data are handled and
interfaced with the autonomous network forming the reservoir. We use a finite-state
machine (FSM) synthesized from clocked logic and communicates with a personal
computer (PC) via a USB controller chip (FTDI part #FT232H), which is connected
directly to the FPGA pins via the GPIO connector on the demonstration board.

The FSM has the distinct states: idle, receive, acquire, send, program,
and reset whose possible transitions are depicted in Fig. 23. It starts in the idle
state and remains without any action as long as it does not receive any input over the
USB connection via the PC. After a signal is detected on the USB, the FSM changes
to the receive state. Next, the first available byte read from the USB determines
the next state of the FSM. The program state reads a number of bytes from the
USB connection and stores it onto the RAM onboard the chip. This number is set
in the Verilog code defining the reservoir (see below) and can only be changed by
recompiling the Verilog code. The data transferred to the FPGA in this manner sets
the initial state for a reservoir.

When the state changes to acquire, all nodes in the reservoir are set to the
value zero and the data from the RAM that was transferred during the program
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process is fed into the reservoir. Because the FSM operates with clocked logic, the
initial state is inserted over one clock cycle with the length of 5ns (corresponding
to a data rate of 200MHz). After this data insertion, the reservoir runs freely and
autonomously. The only restrictions for the dynamics arise from the finite response
time of electric elements within the FPGA. On every clock cycle (5ns period), a
snapshot of the reservoir is taken by saving the current value of each node to the
RAM. In this fashion, a series of 200 samples is captured and stored. Note that the
dynamics in between clock cycles can’t be measured using this method.

After all data is collected, the FSM is set to the send state, which will send all the
data stored in the RAM to the USB connection and is available to a Python program
running on the PC. The same reservoir can be used to collect data for the same input
word by sending several acquire commands or a new input word can be used just
by changing the initial-state RAM contents without having to recompile the Verilog
code and transferring the resulting bitstream to the FPGA.

The Verilog code for the FSM has not been presented in our previous publications
so we give the module below for completeness.

1 /*

2 Master FSM monitors bytes sent from the PC to

3 look for command signals

4 Valid command signals are:

5 Begin aquiring data

6 Send data from RAM to PC

7 Program input words

8 Reset

9 When a valid command is recognized, the FSM flips

10 a signal bit that other modules are monitoring

11 */

12

13 module master_fsm(CLOCK_50, KEY, rcvd_sig,

byte_from_pc, acquire_signal, send_signal,

prog_word_signal, reset);

15

16 // Parameters

17 parameter IDLE = 0, RCVD = 1, ACQD_I = 2,

ACQD_II = 3, SEND_I = 4, SEND_II = 5, PROG_I = 6,

PROG_II = 7, RST_I = 8, RST_II = 9;

18

19 // Internal elements

20 input CLOCK_50;

21 input KEY;

22 input rcvd_sig;

23 input [7:0] byte_from_pc;

24
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25 output acquire_signal;

26 output send_signal;

27 output prog_word_signal;

28 output reset;

29

30 reg [3:0] state;

31 reg [5:0] count;

32

33 wire hardware_reset;

34

35 reg acq_sig, send_sig, prog_sig, rst_sig;

36 assign acquire_signal = acq_sig;

37 assign send_signal = send_sig;

38 assign prog_word_signal = prog_sig;

39 assign hardware_reset = ˜KEY;

40 assign reset = hardware_reset | rst_sig;

41

42 // The finite-state machine

43 always @(*)

44 begin

45 case (state)

46 IDLE:

47 begin

48 acq_sig <= 1’b0;

49 send_sig <= 1’b0;

50 prog_sig <= 1’b0;

51 rst_sig <= 1’b0;

52 end

53 RCVD:

54 begin

55 acq_sig <= 1’b0;

56 send_sig <= 1’b0;

57 prog_sig <= 1’b0;

58 rst_sig <= 1’b0;

59 end

60 ACQD_I:

61 begin

62 acq_sig <= 1’b1;

63 send_sig <= 1’b0;

64 prog_sig <= 1’b0;

65 rst_sig <= 1’b0;

66 end

67 ACQD_II:

68 begin

69 acq_sig <= 1’b1;
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70 send_sig <= 1’b0;

71 prog_sig <= 1’b0;

72 rst_sig <= 1’b0;

73 end

74 SEND_I:

75 begin

76 acq_sig <= 1’b0;

77 send_sig <= 1’b1;

78 prog_sig <= 1’b0;

79 st_sig <= 1’b0;

80 end

81 SEND_II:

82 begin

83 acq_sig <= 1’b0;

84 send_sig <= 1’b1;

85 prog_sig <= 1’b0;

86 rst_sig <= 1’b0;

87 end

88 PROG_I:

89 begin

90 acq_sig <= 1’b0;

91 send_sig <= 1’b0;

92 prog_sig <= 1’b1;

93 rst_sig <= 1’b0;

94 end

95 PROG_II:

96 begin

97 acq_sig <= 1’b0;

98 send_sig <= 1’b0;

99 prog_sig <= 1’b1;

100 rst_sig <= 1’b0;

101 end

102 RST_I:

103 begin

104 acq_sig <= 1’b0;

105 send_sig <= 1’b0;

106 prog_sig <= 1’b0;

107 rst_sig <= 1’b1;

108 end

109 RST_II:

110 begin

111 acq_sig <= 1’b0;

112 send_sig <= 1’b0;

113 prog_sig <= 1’b0;

114 rst_sig <= 1’b1;
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115 end

116 default:

117 begin

118 acq_sig <= 1’b0;

119 send_sig <= 1’b0;

120 prog_sig <= 1’b0;

121 rst_sig <= 1’b0;

122 end

123 endcase

124 end

125

126 always @(posedge CLOCK_50 or posedge

hardware_reset)

127 begin

128 if (hardware_reset)

129 state <= IDLE;

130 else

131 case (state)

132 IDLE:

133 begin

134 if (rcvd_sig)

135 state <= RCVD;

136 else

137 state <= IDLE;

138 end

139 RCVD:

140 begin

141 case (byte_from_pc[7:0])

142 8’b00000001: state <= ACQD_I;

143 8’b00000010: state <= SEND_I;

144 8’b00001000: state <= PROG_I;

145 8’b00010000: state <= RST_I;

146 default:

147 state <= IDLE;

148 endcase

149 end

150 ACQD_I:

151 state <= ACQD_II;

152 ACQD_II:

153 state <= IDLE;

154 SEND_I:

155 state <= SEND_II;

156 SEND_II:

157 state <= IDLE;

158 PROG_I:
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159 state <= PROG_II;

160 PROG_II:

161 state <= IDLE;

162 RST_I:

163 state <= RST_II;

164 RST_II:

165 state <= IDLE;

166 default:

167 state <= IDLE;

168 endcase

169 end

170

171 endmodule

Experimental pipeline
Creating networks, running the experiments, and analyzing the results presented in
this chapter was simplified by automating the process with the following feature
specifications:

• The system runs in an automated fashion with as few manual steps as possible
• The system is separated into the distinct steps: creating the network; compiling
the network; running the experiment; and analyzing the data

• Scalability: Each individual step has any number of computers that can be added
or removed to or from the system at any time to run tasks in parallel

• Extensibility: New methods for running experiments or analyzing data can be
added at any time and all connectedmachineswill automatically receive all updates

• Supervision:The system is accompaniedby awebsite that always shows the current
state of all ongoing actions

The code for this project is extensive; we provide it on a repository on an as-is
basis for those interested in exploring or extending the system (GitHub 2021).

The entire system is implemented in Python and runs on a centralized server
set up for us by the Duke University Physics Department IT staff. The core of the
system is based on a MySQL database that provides tables for reservoir, experiment
and analysis. All tables contain the data unique to each step of the workflow, such
as the number of reservoir nodes, number of delay elements, network connectivity,
number of written-image input words, and experimental repetitions. The pipeline is
controlled by two additional fields: status and tag, which are assigned to all items.
The status is an integer number that indicates open, running, successful, error, or
canceled. All sub-systems have a unique identifier that creates a tag on each item,
which allows us to determine which machine creates a certain item. The run-time
order is usually random and depends on the internal ordering of the database. If some
items are preferred over others, we assign a priority tag to force a schedule order.

It is challenging to interact with the Quartus II system to automate creating
different reservoirs in an automated manner. Therefore, this step was completed by
a user who creates a new python script to add new reservoirs. This process was
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facilitated as much as possible by providing many functions to create random nodes
and links and assign a bias to node functions. Finally, the Verilog code defining the
reservoir is created with appropriate metadata to identify the reservoir.

After uploading a compiled bitstrea file, a new entry is inserted into the database
with a unique id and all attributes extracted from the reservoir file. The new item
is created as status open and has no tag assigned. For this step, a compile daemon
checks for new reservoirs, specifically looking for status open. If a new item is found,
it is updated to status running with the tag of the machine that claimed the reservoir,
thus preventing any other machine from taking the same item. The daemon then
downloads the reservoir file from the server and uses the Quartus II software to
compile it. If the process ends successfully, the new file is then uploaded back to the
server and the status becomes successful. Otherwise, the status is set to error and a
file containing the error message is uploaded instead.

To run experiments, an input creation function must exist. This function defines
the initial values of the network nodes. If a new function is required by a user, it
is developed and added to the system. Developing the project is managed by the
versioning software git, which has its repository on the Duke University centralized
data storage system.

Creating a new experiment is undertaken by inserting the experimental definition
for an existing reservoir with input method and all required parameters into the
databasewith status open.An experiment daemon similar to reservoir daemon checks
for new experiments that have their status open, but additionally requires the used
reservoir to have status successful. It then assigns status running and sets the tag
identifier. If a new experiment is found, the daemon checks if an update has been
made to the code via the git repository and updates if necessary. Next, the input
creation function is called with all parameters and returns the defined number of
different input words. These initialize the network and each input is run with the set
repetition number. The entire data is stored in a single binary file that is uploaded if
the collection succeeds. An error message is uploaded in case of an error.

To analyze the data, we use the Open Science Grid (OSG) (OSG 2021), which is
a giant computer cluster that includes machines from many universities all over the
United States of America. This platform allows us to start hundreds of jobs at the
same time and distributes thework to all connectedmachines, thus providingmassive
computational power. However, this resource is not always reliable and sometimes
fails.

To account for this possibility, we use an analysis daemon that runs on local
machines as a fall back. All analysis code is developed in advance and synchronized
with git repository. The local and OSG daemons check for open analyses that have
successful experiments as their predecessor, and verifies that the latest version of the
code is in use. For the OSG, the data is uploaded and a configuration file sent with
all analysis parameters. When the analysis completes successfully, the results files
are uploaded back to the Duke University data storage system and all data on the
OSG belonging to this analysis is deleted. In case of an error, the data remains on
the OSG for further investigation. In any case, the status is set to the result.
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Programmable Fading Memory
in Atomic Switch Systems for Error
Checking Applications

Renato Aguilera, Henry O. Sillin, Adam Z. Stieg, and James K. Gimzewski

Abstract Disruptive technology in computational devices is required as the
universal computing machines approach quantum mechanical limits. Integration of
state-of-the-art memristive devices provides optimal scaling of current technologies
beyond this limit through the adoption of neuromorphicmodels.Universal computing
machines pioneered byAlan Turing are strictly based on top-down intelligent design.
Neuromorphic models instead engage in bottom-up programmability by emulating
mammalian brain design and characteristics. Here we show the design, characteriza-
tion, and implementation of a massively parallel memristor neuromorphic network
based on metal chalcogenide atomic switch network (ASN) systems with key char-
acteristics such as short- and long-term potentiation, power-law dynamics, and
scale-free topology.

1 Introduction

Fundamental work by Carver Mead and colleagues (Mead 1990) in the develop-
ment of the concept neuromorphic technology enabled a disruptive paradigm shift
in computing technologies. Unlike other conceptions of machine learning, neuro-
morphic computing attempted to completely emulate neuron functionality within
a physically realizable computing hardware. In doing so, the power-efficiency and
complexity of neurons can be harnessed without bottlenecking data as in CMOS
technology (Backus 1978). Additionally, neuron clusters in the brain can recognize
patterns and are capable of performing unconventional computing similar to Alan
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Turing’s B-machine (Turing 1950). The evolutionary optimization of the brain in
both structure and functionality provides an exciting new zeitgeist in a fast stalling
technology (Waldrop 2016).

Current works using learning dedicated computer hardware provide possible
throttling pass the information bottleneck (Husband et al. 2003; Tour et al. 2003).
Additionally, developments of beyond-CMOS devices such as magnetic tunneling
junctions (Furuta et al. 2018), photoelectronic (Hermans et al. 2015), and memris-
tors (Ascoli et al. 2017; Du et al. 2017; Strukov et al. 2008) explored computing
architectures outside of typical transistor-based models. In 2000, the International
Center for Materials Nanoarchitectonics (MANA) commenced investigation of
viable neuromorphic materials utilizing nanowire mechanisms and constraints for
material design. Specifically, ProfessorMasakazuAono developed the atomic switch
as a nano-equivalent neuron operating under quantum mechanical limits at GHz
speeds (Tsuchiya et al. 2015; Tsuruoka et al. 2017). Aono’s work on atomic
switches developed the underlying principles for integration and development of
nanowires for neuromorphic computing elucidating nanowire plasticity and memory
capabilities. Single transistor-like atomic switches were introduced into memory
storage devices by Nippon Electric Company (NEC 2009) using non-dynamic Cu-
TiO2/TaSiO atomic switches for 32 nm CMOS technology. However, the plasticity
present in neurological functions is inherently non-static and dynamic (Büsing et al.
2010; Lukoševičius and Jaeger 2009). Further development of scalable neuromor-
phic atomic switch devices required a holistic nanoarchitectonic design incorporating
dynamic and nonlinear network behaviors.

An emerging mathematical model developed by Leon Chua sought to integrate
CMOS technology with nonlinear and chaotic systems (Chua 1980, 1988). In 1971,
Chua theorized that, in addition to the 3 fundamental elements in the lumped element
circuit model, there was a 4th element he called the memristor. Complementing the
relations provided by the resistor, capacitor, and inductor, the memristor was able to
relate the magnetic flux with electric charge. In order for circuit theory to utilize this
4th element, the model required adaptation of a purely nonlinear circuit theory more
akin to Turing’s B-machine. Particularly, themodel emphasized harnessing emerging
behaviors due to coupled circuits similar to the ideals of neuromorphic computing.
Here, we present the fabrication of a physical random neural network via growth of
memristive atomic switch networks, harnessing phenomenological fractal growth to
directly imitate neural evolution for neuromorphic computing.

Unlike conventional neuromorphic platforms which require meticulous design,
atomic switch networks (ASN) produced by interconnected nanowires introduce
a unique methodology of controlled evolution. Meticulous design of a system
required a complete model of understanding such as the CMOS computer archi-
tecture modeled by the universal Turing machine. However, it was more practical
to develop a scheme of top-down adaptation than by bottom-up selective modifica-
tion toward the desired function due to hardware limitations. A combined effort of
theoretical predictions and experimental verification is presented here to design a
methodology that was physically practical in implementing a computation referred
to as reservoir computing. A physically realizable recurrent network comprised of
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gapless-type atomic switches with Ag2S as the active material previously demon-
strated device tenability as functionally compatible neurons (Demis et al. 2015, 2016;
Sillin et al. 2013).

An analysis of atomic switch networks at the interface of theory and exper-
iment was accomplished by implementing theoretical paradigms of computation
from the perspective of experimental feasibility. Considerations of physical practi-
cality and CMOS compatibility were given priority over an ideal model with micro-
scopic details. Reservoir computing was implemented on the proposed device to
accomplish a series of error checking parity tasks and activation control to assess its
computational capability.

We proposed to answer the following questions:

1. What is the relationship between the dynamical properties of a random system
and its computational capability as a reservoir?

2. How do these dynamical properties emerge in macroscopic tools available to
an experimentalist?

1.1 The Atomic Switch

Atomic switches were a class of devices that enabled the use of quantum tunneling
for signal transduction. The first experiment to measure the transition from an elec-
tron quantum tunneling to single point contact regime was reported in 1987 using
a scanning tunneling microscope (STM) in ultra-high-vacuum (UHV) on a silver
surface (Möller 1987). Current-distance characteristics showed an abrupt increase in
conductance, G ~ e2

2h ≈ 1
13 k�, at sufficiently small tip-surface gaps, establishing the

quantized unit of conductance. Subsequent theoretical analysis verified that at small
gap distance the effective tunnel barrier collapses prior to point contact via ballistic
electron injection (Lang 1986). Later work demonstrated further jumps of G ~ n 2e2

h ,
where n = 1, 2, 3 . . ., in the conductance occur as the contact area is increased.
Such observations were not limited to STM experiments; even two macroscopic
wires brought in contact also displayed this effect, albeit in a less controlled manner.
Houten et al. provide an excellent review of quantized conduction, which also intro-
duces Landauer’s concept of transmission G = 2e2

h

∑

n
tn , where the term t is the

transmission (van Houten et al. 1996).
In 2002, experiments by Terabe et al. found that Ag atoms could be transported

through a STM tipmade of silver coatedwith silver sulfide and deposited on a surface
in a controlled manner (Terabe et al. 2002). The characteristics of this process also
occurred via quantized conduction, however, the mechanism involved ion migration
under the influence of an electric field, a process called "electroionics", meaning that
in addition to electron motion, ion motion also occurs simultaneously. Normally,
ionic diffusion processes on the macro-scale are considered to be slow, but when
they are induced on the nanometer scale, they are actually quite fast and can occur on
a (sub-) nanosecond scale depending on the geometry and dimensions of the junction.
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In 2005, using junctions fabricated using conventional microelectronics, Terabe et al.
demonstrated atomic switching in silver sulfide junctions with discrete and reversible
quantized jumps from n = 1 to 10. This was the birth of the “atomic switch”. Since
that date, quantized conduction has been observed by a number of researchers in a
wide range of materials including sulfide junctions of copper, tungsten sub-oxides
as well as various metal-doped polymers.

Aside from the fundamental science of their quantization, the interesting elec-
tronic features of atomic switches were hysteresis, on/off conduction ratio, switching
speed and volatility characteristics as well as CMOS compatibility because of their
potential in digital electronic memory applications. Indeed, NEC recently has incor-
porated atomic switch technology into field programmable gate arrays (FPGAs)
(Aramaki et al. 1991; NEC 2009) where a reduction in device footprint, speed, and
energy consumptionwas achieved by replacing certainmemory tasks, normally using
transistors, into the circuitry.

Additional atomic switch functionality was reported in 2011 when studying
switching near-threshold conditions (Ohno et al. 2011; Hasegawa et al. 2011). It was
found that atomic switches have an on-off memorization property of past switching
events. For instance if switching is performed infrequently, the switches remain in the
on-state only briefly whereas if frequent switching events are made in rapid succes-
sion then the on-state persists for a longer time. A series of careful experiments
were able to relate these physical observations to a psychological model of learning
called the Akinson-Schriffin multi-store model (Atkinson and Shiffrin 1968). The
essence of themodel involves sensorymemory (SM), short-termmemory (STM), and
long-term memory (LTM). New information arrives in the brain as sensory memory
and that information was passed to short-term memory. In the absence of similar
information it was forgotten. However, if the process was repeated many times,
the information was moved into long-term memory. In terms of bio-inspiration, the
operational characteristics of the atomic switch under threshold switching were also
related to characteristics of biological synapses. The atomic switch therefore has also
been called a synthetic synapse where memory was represented by conduction state.

The next step in creating a “brain inspired” device was the fabrication of networks
of synthetic synapses (Atomic Switches). Taking the neocortex as a biologically
inspiration, self-assembly was used to incorporate atomic switches into a dense
dendritic tangle of silver nanowires resulting in a density of ~108 connections/cm2

(Avizienis et al. 2013). In response to electrical inputs, which inject energy into the
network, these networks exhibited self-organization and critical power-law dynamics
and spatio-temporal nonlinear outputs at multiple electrodes.

1.2 Neuromorphic Atomic Switch Networks

The clear desire for neuromorphic architectures has led to further investigations and
developments of different synthetic synapse models. Establishing specific connec-
tions between patterns of electrical activity and brain function was a difficult task
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that requires studying general features of neuronal structure in order to determine the
essential properties required to construct a device capable of learning in a physical
sense. These features are believed to include at least synaptic plasticity, allowing
physical reconfiguration of the network to enable functional differentiation and
the development of hierarchical structures in which all possess correlated memory
distributed throughout the dynamically coupled synapses. Therefore, learning and
computational capacity in the brain are connected to dynamic activity and functional
connectivity. Specifically, a near-critical or “edge-of-chaos” operational (Langton
1990) regime has been associated with the fast, correlated response to stimulation
necessary for computation and learning.Developing computationalmachinerywhose
operation results from intrinsic critical dynamics was a complex task; with Atomic
Switch Network (ASN) devices demonstrated such functionality (Fig. 1).

Utilizing the theoretical concepts presented in the previous section, we designed a
neuromorphic device by incorporating atomic switches in a highly recursive intercon-
nected network. The work of Aono (Terabe et al. 2002; Ohno et al. 2011; Hasegawa
et al. 2011) established the fundamental principles and design of atomic switches.
Observation of plasticity and information retention in atomic switches enabled us
to successfully implement them in neuromorphic hardware for reservoir computing
(Demis et al. 2016; Sillin et al. 2013). A number of materials were available and
various functionalities may be tuned depending on the active material. Here, metal-
chalcogenides were chosen due to their ready integration into CMOS technology and
capability for spontaneous fractal growth.

Fig. 1 Network diagram and analogue interface. A circuit schematic is shown in a showing
the platinum circuit (green wires) and readout PC interface (blue circles). The silver network was
placed in the central region (boxed) and a closer inspection of the region wiring is shown in b.
Pre-patterned posts were lithographically placed within the boxed region in c ready for network
growth. The device was interfaced to a National Instruments PXI—e using a custom device housing
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2 Theoretical Constraints and Consideration

The concept of neuromorphic hardware as conceived by Mead (1990) intended to
emulate the problem-solving capability of biology, which has been evolutionary
optimized by nature. Observations of DNA folding and editing (Romero et al. 2017)
demonstrated the capabilities of evolutionary algorithms to enable DNA to execute
complex protein interaction and regulation. Natural selection has inherently opti-
mized these systems in their task-specific function, therebyminimizing energy,maxi-
mizing information transfer, and encoding fault-tolerant and adaptive behaviors (Kim
and Han 2002). Neuromorphic hardware attempted to adapt this architectural design
within the context of circuit theory and analysis. A premier model for computational
design was the human–brain, where complex computation such as speech, multisen-
sory control, and chaotic predictions was commonly executed while operating under
relatively simple rules.

Fundamentally, the brain utilized synaptically interconnected neurons to transfer
and process information. Each neuron operated under the Hebbian fire-diffuse-fire
principal (Hebb 1950; Timofeeva and Coombes 2003) which activated neurons with
a sigmoidal function profile similar to transistors with voltage replacing ions in
the latter case. Unlike contemporary digital transistors, each neuron was heavily
coupled to other elements behaving effectively as a history-dependent nonlinear
device. Circuit network theory has analogous examples of coupled inductive circuits
communicating across devices, but such circuits were typically designed to elim-
inate coupled cross-talk and the overall circuit was linearized in its functionality.
However, simplification of these interactions invariably destroys emergent behaviors
observed in complex systems (Chen and Wang 2003; Goudarzi et al. 2012), which
was capable of accomplishing complex computation. Nonlinear circuit design and
analytical models by Chua (Ascoli et al. 2017; Chua and Wu 1995) attempted to
utilize these complex interactions but have limited integration within information
technology. Instead, machine learning algorithms were implemented in software
which mimics the design and learning rules of biological systems. Here, a combina-
tion of machine learning architecture and nonlinear circuit design is briefly presented
and discussion was restricted within a feedforward network for brevity; however, a
formal and comprehensive discussion has been previously published (Lukoševičius
and Jaeger 2009; Verstraeten et al. 2009).

The neural network machine learning paradigm traditionally attempted to achieve
learning by modification of network topology and connectivity via adjustments
to neuronal coupling strength. The general architecture of a neural network was
designed similar to the human–brain—a collection of nodes or neurons intercon-
nected with synapses to other neurons in a hierarchal layered structure (Graves
et al. 2013; Krizhevsky et al. 2012; Abraham 2005; Schrauwen 2007; Hassoun
1995; Hopfield 1988). Neuronal nodes were typically designed to integrate incoming
signals and transform them using a sigmoidal transfer function. The integration was
the weighted sum of all signals received by the neuron from a predetermined set of
input neurons from the previous layer:
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propagated the signal to its pre-designated output neurons in the next layer, i.e., layer
1:

⇀

I
1

(t) = N̂1
⇀

I
0

(t) ≡ ⇀

f
1(

ŵ1 · ⇀

I
D

(t)

)

(2)

Here, ⇀
w

1

i was the coupling strength between neuron i in layer 1 and all other
neurons. This process was repeated from neuron to neuron in a hierarchal structure
composed of layers or networks of neurons until it arrives at an output neuron layer,

represented by
⇀

I
T

(t), where the user observes and process the final signal I F (t):

⇀

I
T

(t) =
∀∏

k

N̂k
⇀

I
D

(t) ≡ Ô
⇀

I
D

(t) (3)

I F (t) = ŵD · ⇀

I
T

(t). (4)

The operator Ô represented the overall transformation by the network, and ŵD

was the design matrix in the output layer whose rows were the number of observ-
able parameters and columns were the coupling strength to the sensors. While the
above assumed a feedforward architecture, Eq. (3) and onwards may be generalized
for any network if one allows Ô to represent any network transformation. Learning
was achieved by designing the network connections in such a way that the output
signal was transformed into a desired target signal. Each desired computational
process corresponded to a desired signal, I testdesired, for a given input signal, I D(t),
and network transformation, I F (t). The synaptic strength of individual connections
was adjusted in incremental corrective steps according to a learning rule using a
training dataset until the network’s effective function was the desired mathematical
operation. Various learning techniques exist and depend on network type, connec-
tivity structure, neuronal transfer function, I/O implementation, task complexity,
and computational constraints (Büsing et al. 2010; Haimovici et al. 2013; Nedaaee
Oskoee and Sahimi 2011; Sporns 2006). Here, we focused on the linear-regression
learning rule as it was the typical and simplest learning rule:
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ŵD Ô =
([

⇀

I
T

(t)

]†[
⇀

I
T

(t)

])−1[
⇀

I
T

(t)

]†

I trainingdesired (t). (5)

The processwas done recursively by using a number of controlled training datasets
to determine error propagation and correction. Defining a metric for error was
nontrivial and clever designs and calculations of error existed that can drastically
determine learning performance. However, we focused on the most commonly used
and simplest definition of signal error which was the normalized mean squared error
(NMSE) and adopted accuracy as a more intuitive measure of performance.

error ≡
E

[(
I testdesired − I F (t)

)2
]

E
[(
I testdesired − E

[
I testdesired

])2
] ; accuracy ≡ 1 − error (6)

A network’s computational capability was nearly defined by its network size,
size of Ô , while simultaneously increasing the complexity in learning. Unfortu-
nately, implementing such amodel using traditional photolithographymanufacturing
inevitably approached the Abbe diffraction limit (Abbe 1873), which was incapable
of physically addressing elements on similar scale as current software implemented
neural networks. Reservoir computing (Schrauwen et al. 2007; Verstraeten et al.
2009) was a distinguished computational model for scalable neuromorphic hard-
ware as it does not require comprehensive control of the network, omitting the Ô
in (5). Learning algorithms only required training on the output layer of neurons,

ŵD , while the inner “reservoir” neurons, Ô , are unattended and replaced
⇀

I
T

(t) with
I F (t) in (5) (Lukoševičius and Jaeger 2009; Schrauwen et al. 2007; Verstraeten et al.
2009). Here, we utilized the reservoir computing paradigm as the functional model
for computation in our ASN experiments.

2.1 Nonlinear Circuits

Regardless of the network construction or stimulation, a neural network was not
capable of performing complex calculations if individual neurons behaved linearly
(Carbajal et al. 2015). A brief proof of the desire for nonlinearity was by contra
positive and to logically investigate the behavior of a network with purely linear
elements. We constrained discussion using the above mathematical formalismwhere
systems were represented only by neurons, and any post-processing or contributions
from instrumentation were represented as an appropriate neuron layer. Let individual
neurons be definedby the gain of an op-ampcircuit to simulate linearity,which simply
rescales the amplitude of the input signal as in Eq. (7). Suppose the neurons were
fully connected to every other neuron by a fully populated network, maximizing the
rank of the transformationmatrix Ô . Inevitably, a linear combination and convolution
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of such neurons only resulted in a linearly behaving network, regardless of network
connectivity:

let
⇀

I
T

(t) = Ô
⇀

I
D

(t) = λ̂
⇀

I
D

(t), (7)

I F (t) = ŵD · ⇀

I
T

(t) = ŵD · λ̂
⇀

I
D

(t) = ⇀
wDeff · ⇀

I
D

(t), (8)

where the transformation in Eq. (7) was replaced by a linear function, while
the final signal in Eq. (8) was a linear combination of the driving signal with
⇀
wDeff =

N∑

i
wDiλi . The above demonstrated linear neurons’ limited computational

capability and be completely defined by the input signal from Eq. (8), while the
design matrix ⇀

wDeff merely scales the input. To enable the network to implement
complex computation, a neuronal behavior with nonlinear characteristics and robust
mathematical formalism was adopted. Chua’s nonlinear circuit analysis (Chua and
Kennedy 1988) introduced the concept of memristive systems as a neuron-like two-
terminal element with characteristic nonlinear and memory qualities. The memristor
nonlinearly related the integrated voltage (magnetic flux, ϕ) with charge and acts
similar to a charge dependent resistor:

dϕ = MdqorM(q) = dϕ

dt
/
dq

dt
= V/I. (9)

The relation was strictly nonlinear and solved differentially, which required
holistic circuit analysis when the element was incorporated within a network (Chua
1980). A memory attribute was readily illustrated in the memristor’s dependency
on charge accumulation, which was desirable to any learning system. Discovery of
physical memristor devices (Strukov et al. 2008) and complex circuit oscillations
depicting chaotic trajectories (Chua et al. 1993; Chua and Itoh 2008) has enabled
the construction of nonlinear circuits capable of harnessing emergent chaotic behav-
iors. Observations of neurons physically adapted to environmental changes through
a recurrent feedback mechanism (Carbajal et al. 2015) paralleled the oscillatory
behavior found in Chua circuits. Likewise, incorporation of a continuous feedback
enabled adaptive and responsive computing (Hermans et al. 2015).

2.2 Characterization: Power-Law Dynamics

The above mathematical construct illustrated the importance and central role of
the network connectivity and functional topology described by the transformation
Ô within the machine learning platform. As described by Maass and Legenstein
(2005), Maass et al. (2002), neuroscience concluded that a small-world network
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maximized information transfer while minimizing energy usage. This phenomenon
was observed throughout the natural world—occurring in cases such as complex
geological formations, flock behavior, and disease proliferation—and continues to
be a central topic within chaos and network theory. Heuristic evidence concluded that
network design ascribed with such features enable optimal performance. A defining
characteristic of a small-world topology was the length distribution of interacting

elements to behave as a power-law, i.e., the strength of ⇀
w

n

i scales as d
−β, where d is

the interneuron distance:
∣
∣
∣
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)∣
∣
∣ ∝ f −β, (10)

where the second relation utilized Pontryagin duality, d → c× t with c as the speed
of light, and the Fourier transform of the first. A network adhering to these constraints
was capable of sustained persistent activity even due to small perturbations (Goudarzi
et al. 2012; Haimovici et al. 2013; Sussillo and Abbott 2009) and was in a "critical"
state which allowed for maximal information transfer.

We examined the device for emergent nonlinear properties considered funda-
mental to brain function, which were not observed for individual atomic switches
operating in simpler geometries—namely, recurrent dynamics and the activation of
feedforward sub-networks. The presence of small-world dynamics within the ASN
devices was demonstrated by applying a constant DC bias (Fig. 2a) across a partic-
ular region of the network. This produced persistent, bidirectional fluctuations—both
increases and decreases—in network conductivity. In the absence of complex struc-
tures within the network, conductivity would increase monotonically under constant
DC bias, as in the case of a single atomic switch. Previously reported (Stieg et al.
2012) current fluctuations of this kind are ascribed to recurrent loops in the network

Fig. 2 Dissipative power-law behavior indicative of self-organized criticality. The electrical
current response of a physical and simulated ASN device in a under constant external voltage
bias was used to characterize network activity. Network switching/activity timescales showed
a dissipative power-law response b indicative of a scale-free network
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that create complex couplings between switches, resulting in network dynamics
that chaotically converge to a semi-steady state even under constant bias. A single
switch turning ON did not simply lead to an increased potential drop across the
next junction in a serial chain, but entropically redistributed voltage across many
recurrent connections that can ultimately perturb the system into a new equilibrium
as a net change in network conductivity. These fluctuations were not attributable to
uncorrelated flicker noise, as shown by comparing the Fourier transformed current
responses in Fig. 2b of the devices to constant voltage before and after sulfuriza-
tion. The formation of atomic switch junctions expanded the degree of correlation
in current fluctuations, producing small-world 1/f-like behavior across the entire
sampled range. This behavior was distinct from that of control devices which flat-
tens to white noise and some high energy, high frequency fluctuations attributed to
arcing between neighboring wires.

2.3 Atomic Switch Plasticity

In conjunction with optimizing the reservoir’s transformation capability in Ô , reser-
voir learning inherently required a memory quality and plasticity for selective infor-
mation storing (Jaeger 2001). A powerful feature of atomic switches andmemristive-
like devices was the observation of a brain-like physical phenomena known as
Long-TermPotentiation (LTP) and Short-TermPotentiation (STP). Both function and
memory have been ascribed to STP andLTP dynamics in neurological studies (Maass
and Legenstein 2005;Maass et al. 2002). Neuron signal transduction through potenti-
ation spikes showed timing dependencies which directly encoded information within
the spike’s line shape. Simultaneously, brain functionality and behaviors developed
as neuron ensembles cooperatively spiked to adopt specific emergent behaviors.

These neurological phenomena were observed (Nelson and Abbott 2000; Sussillo
and Abbott 2009) within the active Ag2S region in the atomic switch as aggrega-
tions of Ag+ cations. Observation of a large impedance change in the atomic switch
under an external voltage was attributed to a crystal transition of the active material
Ag2S (Gusev and Sadovnikov 2018). This transition gave rise to aweaklymemristive
behavior prior to the formation of Ag filaments across the interface. In the absence of
continued applied bias, the conductive filaments eventually returned to their stoichio-
metric, thermodynamically favored equilibrium state, reverting the atomic switch to
its initial highOFF resistance (Fig. 3a). Continued application of bias voltage resulted
in a concurrent increase in electric current through the device, which then further
drove migration of silver cations toward the cathode. At the cathode mobile silver
cations were subsequently reduced to Ag0, forming a highly conductive Ag nanofil-
amentary wire. The completion of this filament resulted in a strong transition to
an ON state (Fig. 3a) with a dramatic increase in conductivity (Fig. 3b). Removal
of the applied bias resulted in filament dissolution as the device again returns its
thermodynamic equilibrium state (Fig. 3b). The completion and dissolution of this
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Fig. 3 Spike-time dependent plasticity in a single atomic switch. Continued stimulation of
the atomic switch caused formation of metallic filaments across the gap/active layer in a. The
electrical response became increasingly dominated by tunneling mechanisms derived from single
atom “contact”. A 300 mV spike 5 ms width voltage train at a period of 100 ms in b stimulated the
atomic switch to form a single Ag filament. Single atom contact increased conductance to the ON
state during stimulation while thermodynamic dissolution drove the system back to the OFF state.
In c, the pulse train period was shortened to 10 ms allowing multiple filament formations. Measured
conductancemonotonically increased before reaching a stable conductance state. Filament structure
and stability modulated the electrical response and emerge as empirically determined as Short-Term
Potentiation (STP) in b and Long-Term Potentiation (LTP) in c

filament characterized strongly memristive behavior. Continuous application of a
bias voltage served to increase filament thickness as additional silver cations was
reduced, causing thickening of the metallic filament (Fig. 3c). This dynamic process
has been shown to alter the dissolution time constant and can be externally controlled
by changing the input bias pattern (e.g., pulse frequency). Such changes in volatility
can be interpreted as short-term or long-term potentiation (STP and LTP).

2.4 Resistance Training

The network’s ability to physically encode information within the filament led us
to develop a resistance training algorithm to control the network’s memory capa-
bilities. The dependency of filament formation on voltage history and charge accu-
mulation illustrated memristive behavior within the atomic switch. Circuits utilizing
memristive behavior tend to have complex trajectories with nondeterministic solu-
tions and are classified as Chua circuits (Chua et al. 1993). Initial conditions and
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stochastic fluctuations helped determine the circuit’s trajectories and operational
regime, thereby having statistical control on its operation. The circuit parameters
of impedance, inductance, and capacitance were used to determine the trajecto-
ries of Chua circuits, but other driven systems have included filters, op-amps, and
other sources for noise. Though the atomic switches’ equivalent parameters evolved
with operation, impedance change dominated most of the activity while periphery
parameters were treated using thermodynamic approximations (Sillin et al. 2013). A
resistance training algorithmwas constructed to tune the network operational regime,
while using resistance stability as a thermodynamic approximation of the periphery
parameters in simulated models, see Sect. 2.5.

The resistance training experiments were performed using a precision source
measure unit (National Instruments 4132) and a high-speed switch matrix (National
Instruments 2532) within a PXIe unit (National Instruments 8108), enabling rapid
resistance measurements between any combinations of 16 chosen electrodes. Resis-
tance training was implemented through repetition of a two-step process as shown
in Fig. 4. In the first step, an electrode A was selected randomly and the resistance
between this reference and everyother electrodewasmeasuredusing a small (200mV,
10ms) bipolar pulse in order to minimize influence on network resistances, as shown
in Fig. 4a. The individual resistances of electrode A with each of the other 15 elec-
trodes, RAj, defined the network state by calculating the total resistance between

Fig. 4 Resistance learning algorithm. Determination of network-wide stability/activity under
operating conditions was conducted using a target resistance learning algorithm. A schematic of the
write and verify training scheme, and typical results for an individual training trial. a Sub-threshold
measurement pulses establish the parallel resistance of A, followed by b a larger training/write
pulse between A and B. c The parallel resistance of A is recorded and compared to the target after
each training pulse, when error is minimized the training ceases and the duration of the achieved
target state is recorded as the dwell time
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electrode A and the rest of the network, as though the paths from electrode A to
every other electrode were resistors in parallel:

R(i) =
(∑15

j=0
j �=A

1

RAj

)−1

. (11)

This quantity is hereafter referred to as the “parallel resistance”. In the second
step, a second electrode B was selected randomly, and a large unipolar training pulse
(100 ms, >±200 mV) was applied to influence the parallel resistance of electrode
A, as shown in Fig. 4b. Using the same electrode I/O scheme, the measure/training
cycle was repeated until the parallel resistance of A reached the target resistance. For
all trials the target resistance was predetermined, irrespective of the initial network
resistance.

In order to achieve training, an error function and rule set was devised. This
system was designed to create sensible and consistent voltage adjustments even
when both target resistance and parallel resistance error could vary by several orders
of magnitude. The error function and rule set also correctly accounted for events
in which the parallel resistance overshot the target. Convergence of the parallel
resistance to the target resistance was evaluated using an error function:

E(i) = 1

2

(
R(i)

Rg
− Rg

R(i)

)

, (12)

where Rg was the target resistance, and R(i) was the parallel resistance. The error
E(i) was calculated after each pulse/measure cycle, and adjustments to the training
pulse bias were made by evaluating the relative change in error C(i) = E(i)

E(i−1) from
one cycle to the next using Eqs. (13) and (14), which are described below.

Equation (13) concerned changes in the absolute magnitude of C(i) to evaluate
changes in the absolute magnitude of the training pulse, V(i). If the previous training
pulse resulted in a large decrease in error, |C(i)| would be less than 1. If significantly
less than 1, as determined by an empirically determined threshold, Cm = 0.6, then
the training pulse V(i) was considered productive and no changes were made. If the
previous pulse produced a significant increase in error, |C(i)| would be greater than
1. If |C(i)| was greater than 1

Cm
, the pulse was considered counterproductive and the

training pulse magnitude was reset to a minimum value, Vmin. If |C(i)| was between
Cm and 1

Cm
(i.e., approximately equal to 1) then the error had not significantly changed

as a result of the previous pulse, indicating little influence on the parallel resistance.
The pulse magnitude was then increased by V inc.

V (i + 1) =

⎧
⎪⎨

⎪⎩

V (i), i f |C(i)| < Cm

Vmin, i f |C(i)| > 1
Cm

V (i) + Vinc, i f Cm < |C(i)| < 1
Cm

(13)
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Next, Eq. (14) was used to determine the need for changes to the polarity of the
training pulse. If R(i) and R(i – 1) were both greater or both less than Rg then there
was no overshoot and no need to reverse the bias, which is reflected by positive value
for C(i). However if R(i) changed enough with respect to R(i – 1) that it overshot Rg,
C(i) would be negative. In this case the training pulse voltage V(i) was reversed in
sign, and its magnitude was automatically reset to the minimum pulse bias Vmin.

sgn(V (i + 1) =
{

sgn(V (i)), i f C(i) > 0
−sgn(V (i)), i f C(i) < 0

}

(14)

A single pulse/measurement cycle lasted 1.5 s, and the time required to reach
the target resistance state was defined as the “convergence time”. Upon reaching the
target resistance, training pulses ceased and network resistancesweremeasured every
0.5 s until the parallel resistance decayed away from the target and the error exceeded
0.5 (roughly equivalent to 50% error). This duration was defined as the “dwell time”.
The entire convergence/dwell time sequence constituted a single resistance training
trial, an example of which is presented in Fig. 4c. When a trial completed, new
electrodes would be randomly selected and the training process was repeated after a
30 s delay.

Individual resistance states were the result of conductive silver filaments which
bridge the Ag|Ag2S|Ag gaps, and each filament was vulnerable to thermodynami-
cally driven dissolution. Not surprisingly, a deterministic model of interacting ther-
modynamic variables was not available, and stability of target resistance was hard
to predict. Figure 5a shows the distribution of dwell times for networks at the target
resistance (Rg=200 k�). The distribution suggests a power-law dependency, with

Fig. 5 Dwell times vary widely but depend on the target resistance. In a, networks are repeatedly
trained to 200 k� and their dwell times are recorded. By repeating the training programmany times
on different networks, statistical distributions suggest that the probability P(D) of a dwell time
lasting for durationD follows a power-law relationship. Dwell times are generally 10 s or less, with
occasional states lasting 100 s or more. As in b, at low target resistances, the final configurations are
stable, with over 50% of trials resulting in a final state lifetime of 100 s or more. As target resistance
increases, the final states are proportionately less stable
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dwell times of less than 10 s being most common and occasionally lasting 10 times
longer. This distribution was found to depend heavily on the target resistance value,
as shown in Fig. 5b. When Rg=200 k�, <10 s dwell times accounted for 72% of
trials, but at 2 k�, dwell times of 100 s occur in more than 50% of trials. This is
the expected result given the underlying operational mechanism of individual atomic
switches. Lower resistances were achieved when an individual switch has a thicker
conductive filament across the insulating layer, making them more resistant to ther-
modynamically driven dissolution. In the ASN, lower network resistances are more
likely to have an abundance of parallel filamentary pathways, making the target state
more resilient against changes from an individual filament. These factors of solved
state stability outweigh any effects from repeatedly training the network.

2.5 Simulation of Atomic Switch Network

A complementary study on the effects of global stimulation was done in simulation
to form a microscopic understanding of the device dynamics. The simulated network
was comprised of interconnected atomic switches using a modified state equation
(Joshua Yang et al. 2013; Strukov et al. 2008). A current controlled memristor model
was adopted undergoing ionic drift dynamics at the Ag|Ag2S|Ag interface based
on previously published works (Demis et al. 2015; Sillin et al. 2013; Biolek et al.
2009). The state variable, w(t), represented the doped region produced by migra-
tion of Ag+ mobile ions from pure Ag into the Ag2S layer. Reduction of Ag+ at
the cathode precipitated Ag nanowire formation with its physical dimensions deter-
mining its impedance and characteristic memristive behavior. The atomic switch was
observed to have at least two operational regimes characterized by a low and high
resistance state, ON/OFF, respectively. Simple linear super positioning of the two
states capturedmemristive behavior eloquently and a state variablew(t)was defined:

V (t) =
[

Ron
w(t)

w0
+ Rof f

(

1 − w(t)

w0

)]

I (t). (15)

Above is the classical Ohm’s law equation with w(t), the characteristic filament
length, capturing filament formation, and determined using the ionic drift model:

dw(t)

dt
=

[

μv

Ron

w0
I (t)

]

Ω(w). (16)

A physical restraint was imposed onw(t) to account for finite dimensions through
the use of a window function �:

Ω(w) = w(w0 − w)

w2
0

. (17)
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Modifications were made to the above model to account for nanowires forming
Ag|Ag2S|Ag interfaces. The formulation for voltage-induced α/β phase transition of
the Ag2S from monoclinic acanthite to the more conductive body-centered cubic
argentite was introduced as well as formation/dissolution of conductive filaments
(Gusev and Sadovnikov 2018). Applied voltage triggers the α/β phase transition
creating a more conductive Ag|β-Ag2S|Ag junction and, more importantly, allowed
for Ag cation migration within the Ag2S in the direction of the electric field. Reduc-
tion ofAg cations intoAg0 occurs at the cathode thereby creating substructureswithin
the β-Ag2S to ultimately form conductive filaments. The removal of the applied
voltage no longer induced Ag cation migration and the system was allowed to return
to its thermodynamically favored equilibrium state. A stochastic term and dissolu-
tion term incorporated this thermodynamic behavior to the system. The term further
modeled any variability among the nanowires and the structural stability of the Ag
filament. Stratonovich integrals were employed to solve the stochastic differential
equations. The network was numerically solved as an ordinary differential equation
using standard Kirchhoff’s current laws with each node–node connection considered
as a single atomic switch.

dw(t)

dt
=

[

μv

Ron

w0
I (t)

]

Ω − τ(w(t) − w0) + η(t) (18)

A numerical simulation was constructed based on experimentally determined
parameters to model and verify theoretical propositions. Emulating the construction
of the device, voltage nodes/electrodes were arranged in a square grid and subsequent
node–node connections were introduced to represent nanowires (Fig. 6b). Connec-
tions were categorized either as short-range, within a lattice constant, or long-range
and randomly assigned to produce characteristics of nearest neighbor or random
network topologies (Sillin et al. 2013). The initial strength of each atomic switch was
randomly sampled following a power-law distribution in (10) (Maass and Legenstein
2005) with β = 1.38.

Resistance training was successfully conducted using the simulated ASN device.
Network connectivity was created by randomly distributing 250 connections with
10% of the links constrained to a length of a lattice constant within a 5 × 5 grid. The
grid size was increased as previously published SEM images showed connections
outside the 4× 4 area (Avizienis et al. 2012a, b; Demis et al. 2015; Stieg et al. 2012).
Training pulses were administered between two nodes using the scheme described in
Eqs. (11)–(14). Resistance training in the simulated network proceeded as observed
in the device (Fig. 6) and could involve a direct approach to the target, or through a
series of overshoots. The simulation allowed a complete analysis of every change in
resistance in each link, and Fig. 6b showed the net change that occurred in each link
during the training process. The changes were widespread rather than localized along
a single conductive pathway,which supports the hypothesis that network trainingwas
achieved by global interactions.
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Fig. 6 Resistance learning algorithm convergence of models. A simulated ASN shows similar
behavior in resistance training, and network-wide changes in resistance. A parallel resistance
training program identical to the experimental one was used to successfully train parallel resis-
tance. a Target resistance was 1000 �, error target was 0.1, training pulses were 100 ms in 250 mV
increments, measurement pulses are not necessary in simulation. The effects of resistance training
are presented in b, which shows the net resistance change in each link from start to finish. The
simulation shows network-wide changes in resistance even though training pulses were applied
exclusively from A to B

2.6 Implementation: Error Checking

As an illustration of the ASN’s utility as a reservoir, the benchmark task of deter-
mining bit parity was taken to both measure memory quality and network tenability.
As outlined in Furuta et al. (2018), Natschläger and Bertschinger (2004), the taskwas
a fundamental algorithm in signal processing and error checking.Typical data streams
of bytes of bits required one bit, the parity bit, to record the parity of the overall byte.
Information transfer across multiple servers can corrupt data by inverting one bit
thereby changing the overall parity of the data byte. The parity bit ensured identifi-
cation of corrupted bytes and subsequent repairing to allow for reliable data transfers.
Typical data bytes are 8 bits long, which our experiment adapted as time-separated
binary pulse sequences.

Previously published work (Demis et al. 2015, 2016; Sillin et al. 2013) enabled us
to conclude that reservoir computing was not a universal computing paradigm, but
more similar to aB-machine as imagined byTuring (1950). As such, the reservoir and
task needs to be tailored for optimal utility in performing the parity test. Simulations
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Fig. 7 Error checking task. Presented is an illustration of the parity check used in data transmission
for error checking process. The parity of the number of 1’s within a 5-bit byte is evaluated with a
sliding window 5 bits wide to generate multiple tasks. The initial input shows an odd parity and
evaluated as 0 for the desired target signal. As the 5-bit window moves across the signal, the parity
changes and reflected in the target signal. The above task was encoded as a voltage pulse sequence
into the ASN device where each bit was represented by V0 or V1 voltages in a time-separated series.
Task complexity increased with increasing number of bits per bytes rather than number of bytes as
the check was only executed once per byte

of the ASN were highly leveraged for this purpose for its ease of use, device editing,
and high throughput despite statistically underperforming w.r.t. the ASN device.
A number of simulations were conducted to determine optimal signal encoding,
activation regime, and processing timescales (Fig. 7).

2.7 Simulated ASN Error Checking Results

Implementation of machine learning tasks required the design of an encoding tech-
nique such that signal transduction stimulates the network into an excited state with
the proper mathematical transformation. As outlined in Sect. 2, reservoir computa-
tion can be represented into a mathematical design matrix Ô through spectral anal-
ysis where its rank and eigenvalue determine the complexity of the transformation
(Verstraeten et al. 2009). However, reservoir size limits the reservoir’s computational
capability as the rank of the design matrix cannot exceed the readout layer. This
limitation is typically overcome by ensuring overlap of the design matrix within the
desired mathematical operating regime by applying constraints to network activity.
However, signal transduction can perturb the reservoir outside desired activity and
clever design of transduction was required such that the signal can both encode
information while maintaining the reservoir at a specific state.

Encoding of digital information was explored by modulating the signal in either
the amplitude, frequency, or phase space. For the parity test, digital information
was spread among 8 bits with each bit in a binary state of either 0 or 1. Bytes of
digital information were represented as pulse voltages, Gaussian wave packets, and
phase-shifted sine waves for amplitude, frequency, and phase modulation, respec-
tively. The binary states 0 and 1 were assigned to preset voltage amplitudes (V 0, V 1),
wave packet frequency shifts (f 0, f 1), and phase shifts (ϕ0, ϕ1) and the Euclidean
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distance between the binary states empirically optimized. Inspection of the state
equation in (9) and (16) reveals the dependencies of these parameters w.r.t. network
activity. Indeed, simulation results concluded that the total voltage was the deter-
ministic factor on reservoir activity while changes in frequency and phase negligibly
perturbed the reservoir. An amplitude-modulated encoding procedure was adopted
for all subsequent experiments with voltages ranging from 0.1 to 7.0 V.

Reservoir activity was initialized in simulations using the resistance training algo-
rithm inSect. 2.4 (Sellers 2007). Resistance valueswith short convergence timeswere
desired as the resistance training algorithm invariably encoded unnecessary infor-
mation from the procedure which limited the reservoir’s memory capacity. These
states coincided with resistance values within RON or ROFF as well as states that
had been thermodynamically stable after repeated approaches. Introducing a highly
stochastic signal while maintaining the resistance state was capable of cleansing any
information encoded by the resistance training algorithm and was incorporated into
a post-experiment protocol. Optimal network activity was determined heuristically
while prioritizing reliability over performance.

A typical proportional–integral–derivative (PID) loop algorithm provided a
constant feedback voltage which maintained target reservoir activity. Constant
stimulation by application of the driving signal eventually accumulated charge
and excited the reservoir outside the target resistance state, observed as LTP in
Sect. 2.3. Conversely, STP dynamics concluded that inactivity or sub-threshold volt-
ages unable to counterbalance the thermodynamic inhibitive processes relaxed the
system. Stability of the target resistance state was controlled by a PID feedback
loop by dedicating one of the I/O nodes for this purpose. The feedback applied a
constant DC signal for an integral time equal to the training time. Maintenance of
the resistance state followed identical trends as the resistance training algorithm in
Sect. 2.4.

Optimal training times were determined by maximizing the dwell times at target
resistances and empirically investigated in simulation. Learning was implemented
on the reservoir using a number of training datasets, following the mathematics in
Sect. 2 and details found in Sect. 4.3. Each training set was followed by a testing
dataset to determine the effectiveness of the learning algorithm using the accuracy
in Eq. (6) as a metric of success. The procedure of providing a training dataset for
the learning algorithm and subsequent testing of performance was repeated, while
constraining reservoir activity using the PID feedback loop.

The ASN’s performance dependencies w.r.t. dataset size and number of learning
repetition was investigated in simulation to determine optimal dwell times. Simula-
tions of the ASN device revealed an occurrence of under-learning at 0.250 s (Fig. 8a)
and over-learning at 4.000 s (Fig. 8b). This was observed as drastic increases in the
NMSE at these timescales as well as a deterioration of signal propagation. The occur-
rence of over-learning was theoretically predicted as we approached the network’s
memory capacity by saturating it with training data. Under-learning manifested as
fluctuations in performance across various reservoir sizes due to limited memory
retention times. The over-learning occurred as the learning algorithm became ill-
posed and over-determined with excessive training sets. Optimum dataset lengths
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Fig. 8 Encoding optimization using ASN simulation platform. A simulation of the ASN
device performing the parity check task was conducted to determine optimal operating param-
eters. Temporal memory quality was evaluated w.r.t. the size of the output layer, length of the
learning sequence used a, b, and operating time c. Under-learning was observed at 0.25 s (blue)
length datasets as chaotic performance was measured regardless of network size. Over-learning in
b at 4.00 s (red) as continued increase in the dataset length reduced reservoir performance. Subse-
quent phases of operation c each 1.00 s in duration determined optimal operating time. Omitting the
transient phase (light blue), subsequent phases monotonically increased performance and peaked
at 4.00 s (red) while further operation in phase 5 decreased performance

were discovered to be1.000 swhile optimal total operating time tobe4.000 s (Fig. 8c).
Subsequent experiments were thus encoded as amplitude-modulated datasets 1.000 s
in length with 0.250 s pulse width and learning applied within a 2.000 s window.

2.8 Neuromorphic ASN Device Error Checking Results

The optimal parameters found from simulationwere implemented on theASNdevice
and investigated for routes of optimization. Identical instrumentations were used as
the resistance training algorithm while incorporating a PID feedback mechanism
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for sustaining reservoir activity (Fig. 9a). The error checking task was implemented
over a population of 5 devices using all possible permutations of the 16 I/O elec-
trodes and followed similar trends as depicted in Fig. 9. Initial experimentation on

Fig. 9 Error checking of ASN platform. Schematic of RC using ASN devices: Three I/O elec-
trodes are selected to form the stimulus/control loop for RC: Boolean input streams are delivered
to an individual I/O electrode underlying the ASN network (red); a system ground (blue) enables
real-time monitoring of current flowing through the network controlled by a feedback-driven bias
voltage delivered to (green) a nearby location. The ASN was stimulated with a statistical survey of
pulse widths (n
t) and pulse heights (n
V) ranging from 250 ms to 0.01–7.00 V. Testing occurred
immediately after resistance training with a fixed weight configuration. The datasets above achieved
accuracies a, b between 65 and 78% from ~5,000 trials compared to ~50% from a purely stochastic
reservoir
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individual ASN devices was performed to determine relevant optimal amplitude and
timescales using identical procedures as in simulation. The simulation’s predicted
optimal parameters were corrected to include amplitude scales of 0.01–7.0 V while
other parameters were retained.

Device performance and reliability were heavily dependent on the device’s resis-
tance state following their description in Sect. 2.4. Shorter dwell time devices at
correspondingly higher resistance states performed with increasing reliability and
accuracy, despite implementing similar training and operating times with devices at
lower resistance states. A bimodal distribution of metastable resistance states was
found with dwell times that exceeded 100 s for 3 different devices that followed
similar dynamics to Fig. 5a. The presence of these metastable states and similar
power-law behavior indicated the device activating toward a self-organized critical
state (Goudarzi et al. 2012; Stieg et al. 2012) with the two resistance states centered
at 500 k� and 600 k� possible chaotic attractor states. However, true verification
of device criticality required statistical experimentation using exact and identical
parameters which proved impractical.

Continued trials revealed devices initialized outside of the near-critical resistance
states performed poorly with accuracies below 50%, which prompted subsequent
device testing to operate within the bimodal states to explore device optimization.
Devices initialized below 500 k� (Fig. 9b) performed at 71.35% ± 6.38% accu-
racy while those initialized above 600 k� attained a similar and maximized perfor-
mance of 73% ± 5%. Despite seemingly small differences, this trend manifested
throughout all trials alongside a characteristic high dispersion in the distribution
with kurtosis values of 2.73 and 5.94 for devices at 600 k� and 500 k�, respectively.
Kurtosis values beyond 3 indicated a non-Gaussian distribution and increasingly
became dominant below 500 k�. Rapid bipolar switching manifesting as abrupt
changes in current supply was observed below this range and simulation experiments
revealed increased filaments forming under similar conditions. The non-Gaussian
statistics and filament completion events indicated a shift in the operational char-
acteristics of atomic switches and decreased performance metrics. Consequently,
network resistance state became increasingly complex and divergent thereby driving
network dynamics toward increasingly nonlinear behaviors and outside target func-
tionality. Past results (Demis et al. 2016; Sillin et al. 2013) and similar experiments
(Carbajal et al. 2015; Hermans et al. 2015) clearly indicated the requirement for task-
specific network design. Diverging resistance states, dynamic changes in atomic
switch behaviors, and poor performance concluded the network was being driven
outside of its error checking design.

Further experimentation evaluating other device parameters such as stimula-
tion amplitude, size, and learning timescales resulted in minor changes to network
performance, highlighting the importance of network dynamics. The stability of the
network resistance state was an evident metric in controlling computational capa-
bility and network state. Spontaneous organization of 2 convergent resistance states
highlights the underlying critical dynamics which maximized device performance.
Controlling such device dynamics through the use of mechanisms such as a feedback
loop (Hermans et al. 2015) seems evident for further progress.
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3 Outlook

We concluded that we were able to use network activity and stability via resistance
initialization to describe the network state for a thermodynamically driven reservoir,
the ASN. Due to the task-specificity inherit in machine learning, it was paramount to
characterize and catalogue a reservoir’s "state" that corresponds to task-specific func-
tionalities. Likewise, previous results (Sillin et al. 2013) developed a map for pattern
recognition using higher harmonics. Typical reservoir characterization in the litera-
ture utilized entropy and Shannon theory, which requires repeated experiments under
identical conditions. Current devices utilizing memristor-like reservoirs are difficult
to control with such precision, thus, a desire for an alternative characterization of
reservoir state has been necessary. In general, characterization of reservoir function-
ality has proven difficult for real "edge-of-chaos" systems. Although this requirement
has strictly not been within the reservoir computing framework, the development of
reservoirs with diverse and rich functionality expands the framework’s utility.

Despite limited addressable electrodes, the ASN device was capable of outper-
forming simulated networks as network complexity, density, and critical dynamics
were utilized more effectively in the device. We have presented a clear methodology
to implement reservoir computing on a neuromorphic device by developing observ-
able metrics such as power-law behavior, activation of STP/LTP, and resistance state.
As outlined in Sect. 2, reservoir performance was theoretically predicted to depend
on nonlinear dynamics, network topology, and task design. The commensurate devel-
opment of simulations aided in implementing theoretical models onto neuromorphic
a platform and task evaluation. Previously accomplished tasks such as pattern clas-
sification, bit logic, and T-maze decision-making task highlighted the capabilities of
the atomic switch as an integrated memory and logic component.

4 Methods

Structurally complex networks comprising of highly interconnected, functional
nanostructures are fabricated using varying degrees of top-down and bottom-up
processes, ranging from the random deposition of monodisperse nanowires to the
electroless deposition (ELD) of metallic nanostructures. By identifying the benefits
and limitations of each technique, a nanoarchitectonics approachwas adopted (Demis
et al. 2015, 2016) whereby the size of nucleation sites for ELD was used as a control
parameter for network growth in order tomaximize atomic switch connectivity while
retaining control over network topology. The silver networks were functionalized
to have atomic switch interfaces at the junctions of their component nanostructures.
This process produced a complex network of interacting elements whose operational
properties provide a basis for the memorization and transformation of environmental
information. Further, their inherent volatility results in patterns of robust electrical
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activity. Through this specific combination of nanoscale elements and design prin-
ciples for the production of structurally complex systems, ASN devices provide the
balance of intrinsic memory capacity and nonlinear operation required for advanced
hardware implementations of neuromorphic computing, specifically in the reservoir
computing paradigm.

Patterned seed networks proved themost versatile fabricationmethod, and utilized
a combination of top-down with bottom-up fabrication, a powerful fabrication
method described as nanoarchitectonics. Random neural networks are grown on
a SiO2 substrate with Cu post nucleation sites via electroless deposition producing
a massively interconnected nanowire network with functionally brain-like features
(Avizienis et al. 2012a, b). A patterned 150 nm layer of platinum electrodes are
prepared on the substrate with a 500 nm layer of SU-8 polymer insulating the plat-
inum, only circular nodes 30–50μmin diameter are left exposed for electrical contact
and arranged in a square grid. Standard lithographic techniques using a negative
resist were used to then deposit pre-pattern Cu posts serving as nucleation sites.
Dendritic nanowires are grown via electroless deposition with a 50 mM AgNO3

solution controlling the size and shape of Cu posts to control the topological distri-
butions of the Ag nanowire network (Avizienis et al. 2013). Exposure to sulfur gas
at 10−1 Torr at 130o C for 3 min developed functional Ag|Ag2S|Ag interfaces.

With a density controlled network in mind, our group started using electrochem-
istry to grow a recurrent silver network using copper seeds. Network growth occurs
through an electroless deposition (ELD) reaction through individual atom displace-
ment reactions between Ag+ and Cu0 based on respective electric potentials. A spon-
taneous ELD reaction is preferred over an electric one due to the lack of a need for
external power and the delicate nature of electrochemical reactions. In this partic-
ular case, silver atoms are oxidized while copper is reduced during the galvanic
displacement reaction:

Cu0(s) + 2Ag+(aq) → 2Ag0(s) + Cu2+(aq) Ered = −1.26 V.

Successful implementations of the ELD reaction above allowed us to design a
technique using highly patterned top-down photolithography combined with the
complex spontaneous growth provided from the reaction above. These patterned
seed networks consist of a 2 μm layer of AZ nLOF 2020 (a negative photoresist), a
soft bake, followed by UV photolithography, and a post-exposure bake. This resist is
developed in MF26A, rinsed with isopropanol, and a 300 nm layer of copper is then
deposited and lifted off overnight in acetone. At the end of this process, a patterned
grid of copper posts 300 nm high is left. The size and pitch of these posts were refined
over time to give the most desirable silver crystal growth.

When first designing a purpose-built device to emulate mammalian brain activity,
dendritic silver structures were desired. However, over time it was realized that the
connections provided by these structures were unreliable and difficult to reproduce.
Through changing the size of the copper posts, a morphological transition was found
showing that a seed site of 1× 1μm2 up to 3× 3μm2 leads to fine nanowires. Seeds
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between 3 × 3 μm2 and 10 × 10 μm2 yield a mixture of nanowires with branched
dendritic structures, while posts larger than 10 × 10 μm2 produce only dendrites.

4.1 Design Optimization Results

Directed nanowire growth to create dendritic structures followed diffusion-limited
aggregationwithMullins–Sekerka instabilities. For sparse concentrations of AgNO3,

diffusion-limited aggregation (DLA) dynamics prevail where Ag+ cations displace
Cu0 atoms in discrete non-interacting reactions. Reduced silver atoms accumulate
on the surface of the copper posts and develop, in a steady-state evolution, metallic
nanostructures. Solidification of silver particles undergoing DLA obeys the mathe-
matical formulations of Fick’s Law,modified byMullins–Sekerka instabilities which
describe pattern formation of accumulated metal nanostructures. We describe the
kinetics of formation using ion clusters to describe the heterogeneity of the solu-
tion’s concentration. Clusters of ions diffuse through the solution, creating a wave
of ions that initiate the ELD process at the seed. Starting with Fick’s law to describe
the diffusion:

DAg∇2μAg = ∂μAg

∂t
; DCu∇2μCu = ∂μCu

∂t
; (19)

Here we use DAg and DCu the diffusion constants for AgNO3 and pure copper,
respectively, with as the diffusion potential. As the wavefront of silver reacts with
copper, aggregated silver atoms at the seed sites accumulate, pushing the growth front
toward the wavefront. The solid–liquid interface perturbs the diffusion field, moving
slowly and continuously renormalizing the ion gradient in solution. Growth of the
solid–liquid interface, via the non-equilibrium process of electroless deposition, is
mediated by the continuity equation:

Mvn = [
δμAgDAg∇μAg − δμCuDCu∇μCu

] · n̂. (20)

The miscibility gap,M, and the normal velocity,vn , of the interface, determine the
population exchange during single displacement reactions with δμAg as the fluctua-
tion in chemical potential due to concentration heterogeneity. Growth of the solid–
liquid interface results in the Mullins–Sekerka instability which is due to competing
dynamics between steady silver nanostructure growth and dynamical expansion of
the growth front. Once the rate of metal nanostructure growth exceeds the diffusion
rate, a depletion region emerges that no longer contains enough silver atoms for
sustainable displacement. Regions adjacent to the initial growth front contain suffi-
cient ion concentration to participate in ELD, forming side branches. Depending
on the rate of formation, the chemical potential at the interface is described by the
Gibbs–Thomson boundary condition:
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μ(r0) = −d0ε. (21)

Here, the chemical potential at the interface, μ(r0), is dependent on the surface
curvature, ε, and d0 the characteristic length of the seed. In the simplest case, the value
of Eq. (21) was approximated to be the value of Eq. (20) during equilibrium. The
non-equilibrium process at the solid–solution interface determines a characteristic
length scale:

d0 = γ

M
. (22)

where γ is the surface tension. Solutions to Eqs. (19)–(22) for a planar interface with
small perturbations in ionic concentrations are solved in (Langer 1980). Extending
this model for multiple perturbations will show dendritic growth that we experi-
mentally demonstrate in controlled fabrication of the ASN. Equations (21) and (22)
show parameters of control over the morphology of seed-directed nanowire growth.
The reactivity dependence on curvature can be controlled by varying shape, size,
and pitch of copper seeds. Surface tension and miscibility gap can be controlled
through varying the copper spacing and distribution. Understanding DLA under
Mullins–Sekerka instability conditions provides control and reproducibility over
self-organizing nanowire networks. Pattern formation due to Mullins–Sekerka insta-
bilities presented here is a linear approximation of the dynamical behavior of dendrite
formation. Experimental testing confirmed that when the size of the copper seed is
on the order of 1–5μ Mullins–Sekerka instabilities are suppressed, and the growth
of metallic nanowires continues without nucleation of side branches.

In order to explore the concept of fabrication through self-organization, the math-
ematical principles of diffusion-limited aggregation (DLA) and ELD are combined
to guide a nanoarchitectonics approach using the electroless deposition of silver.
An extensive experimental study of this fabrication method found that the critical
parameter for the growth of nanowires was the size of the copper seed post which
is theoretically predicted in Eq. (22) due to the factors of surface curvature and
surface tension (Avizienis et al. 2013). The diverse wire lengths included long-range
and short-range atomic switches, facilitating both globally and locally distributed
patterns of switching activity in the ASN. Due to the variation in nanowire diam-
eters, we infer each junction to have a variable gap size and subsequent atomic
switch size, thereby increasing the number of available resistance states to the ASN
(Avizienis et al. 2012a, b; Stieg et al. 2012). This fabrication method offers control
over network density and structure by introducing two important parameters: seed
size and spacing, which nucleate wire growth.
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4.2 Hardware and Instrumentation

Electrical characterization of the devices was conducted through current–voltage
(I–V) spectroscopy using a bipotentiostat (Pine Instruments model AFCBP1) in
conjunction with either a data acquisition module (National Instruments USB
6259) or a multiplexed (National Instruments PXI 1073) source-measurement unit
(National Instruments PXI 4130). The maximum bandwidth of the measurement
systems was 1 MHz and 10 kHz enabling 2 Ms and 20 ks s−1 with 16-bit resolution,
respectively. ASN devices were designed to accommodate 64 electrode 40 μm Pt
contacts within a 2.5× 2.5mm2 gridwhere atomic switches were grown. Subsequent
data analyses were carried out using MATLAB 2018b (MathWorks) and Origin 8.1
(OriginLab Corporation).

4.3 Reservoir Computing Implementation

All reservoir experiments were conducted on an 8 × 8 grid containing an estimated
108 atomic switch junctions using the 64 electrodes as I/O interface layers. A single
electrode was selected to inject the electrical input signal, while another electrode
was chosen as the counter electrode as shown in Fig. 9a. The control signal deliv-
ered a feedback voltage to an electrode in proximity to the input electrode. Voltage
signals were simultaneously measured from the remaining 61 electrodes using the
data acquisition module (National Instruments USB 6259). Reservoir computing
was implemented following the mathematics presented in Sect. 2 with the input
layer consisting of only the input electrode and the output layer constructed from the
61 measuring electrodes.
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Abstract Present artificial intelligence algorithms require extensive computations
to emulate the behavior of large neural networks, operating current computers near
their limits, which leads to high energy costs. A possible solution to this problem
is the development of new computing architectures, with nanoscale hardware com-
ponents that use their physical properties to emulate the behavior of neurons. In
spite of multiple theoretical proposals, there have been only a limited number of
experimental demonstrations of brain-inspired computing with nanoscale neurons.
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J. Grollier
Unité mixte de physique CNRS/Thales, Université Paris-Sud, Université Paris-Saclay, 91767
Palaiseau, France
e-mail: mathieu.riou@yahoo.fr

J. Torrejon
e-mail: jtorrejon81@gmail.com

F. Abreu Araujo
e-mail: flavio.abreuaraujo@uclouvain.be

P. Bortolotti
e-mail: paolo.bortolotti@thalesgroup.com

N. Leroux
e-mail: nathan.leroux@cnrs-thales.fr

D. Marković
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Herewe describe such demonstrations using nanoscale spin-torque oscillators, which
exhibit key features of neurons, in a reservoir computing approach. This approach
offers an interesting platform to test these components, because a single component
can emulate a whole neural network. Using this method, we classify sine and square
waveforms perfectly and achieve spoken-digit recognitionwith state of the art results.
We illustrate optimization of the oscillator’s operating regime with sine/square clas-
sification.

1 Context

Artificial intelligence has attracted interest because it offers the possibility of
machines outperforming humans at cognitive tasks such as image or speech recog-
nition. In a data-driven society, artificial intelligence will become more and more
essential as many industries begin to automate the analysis of ambiguous situations.
The algorithms at the base of this progress are artificial neural networks, which take
inspiration from the plasticity and non-linearity of biological neural networks. They
originate in the nineteen fifties, when the first algorithm allowing a machine to learn
abstract representations was developed (Rosenblatt 1958). Artificial neural networks
are now becoming popular, because the computation capabilities of microprocessors
have improved enough to run these complex algorithms (LeCun et al. 2015) to solve
useful tasks. Tasks such as image recognition require computing the response of mil-
lions of formal neurons and tuning tens of millions of parameters. Even though these
algorithms are still far from the complexity of the human brain, which has one hun-
dred billion neurons, running them on classical computer architectures already costs
significantly more energy than appropriate for the range of possible applications.
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Modern computers are based on the Von Neuman architecture where the pro-
cessing unit is separated from the memory and data has to move sequentially back
and forth between these two units through a shared bus. While this architecture has
been responsible for the dramatic growth in computational capabilities, it is not well
adapted for energy efficient cognitive computing. While artificial neural networks
can perform comparably to humans for some particular tasks, they do so consuming
three to four orders of magnitude more energy than the human brain. The energy
efficiency of the brain comes in part from its entanglement of processing and mem-
ory, with biological neurons that process the information densely interconnected by
synapses that hold the memory. This observation motivates building brain-inspired
chips with analog components whose physics mimics the behavior of neurons. Bio-
logical neurons encode their information in the spikes they emit. One branch of
neuroscience models neurons as non-linear auto-oscillators and the brain as a large
assembly of interconnected oscillators that compute through their complex dynam-
ics. A brain-inspired chip based on these principles requires integrating millions of
non-linear oscillators in an area as small as one square centimeter. Simple arithmetic
shows that this scale requires nanoscale non-linear oscillators.

While there are proposals for neurons based on memristors and Josephson junc-
tions, these have not been experimentally demonstrated yet. Here we describe an
experimental realization of nanoscale neurons based on spin-torque oscillators (Kise-
lev et al. 2003; Rippard et al. 2004) in the approach of reservoir computing. Reservoir
computing offers a convenient platform to test the potential of spin-torque oscillators
since a single oscillator excited by time-multiplexed inputs can generate a transient
signal equivalent to the response of a whole neural network. This approach greatly
simplifies the experimental setup and has been successfully used, notably in optics,
to perform complex cognitive tasks such as speech recognition.

In this chapter, we summarize our work on reservoir computing using spin-torque
oscillators (Riou et al. 2017; Torrejon et al. 2017). Here, we emphasize the mea-
surement system, the results of pattern recognition tasks, and the optimization of
the operating regime. We only touch lightly on the single-node reservoir comput-
ing approach and the physics of the spin-torque oscillators. Interested readers can
find more details in our original papers (Riou et al. 2017; Torrejon et al. 2017) or the
other chapters in this volume. Section 2 presents our experimental implementation of
single-node reservoir computing based on a single vortex spin-torque nano-oscillator.
Then, Sect. 3 presents the classification results obtained using this approach (Tor-
rejon et al. 2017) for two tasks, sine versus square classification (Sect. 3.1.1) and
spoken digit recognition (Sect. 3.2.2). Section 4 describes the optimization of the
different parameters that can be tuned to improve the recognition rate on the sine and
square classification task.
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2 Hardware Implementation

2.1 Measurement Set-Up

The samples used for this demonstration are magnetic tunnel junctions (MTJs) with
a vortex magnetization in the free layer. The TMR of the junction is about 135% for
a resistance of 42�. For the dimensions used here (thickness L = 6nm and diameter
� = 375nm), the FeB layer has a remanent vortex magnetization. Under DC current
injection, the core of the vortex steadily gyrates around the center of the dot with
a frequency in the range 250–400MHz. Vortex dynamics driven by spin-torque are
well understood (Grimaldi et al. 2014), well controlled, and have been shown to be
particularly stable (Tsunegi et al. 2014), and in this case have an excellent signal-to-
noise ratio (for more details see the chapter by Taniguchi et al. 2016).

The measurement setup is shown in Fig. 1a. The experimental preprocessed input
signalVin is generatedby ahigh-frequency arbitrary-waveformgenerator and injected
as a current through the magnetic nano-oscillator. The preprocessed input varies with
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Fig. 1 a The measurement setup: A magnetic field delivered by an electromagnet (not shown) and
DC source fix the operating point of the oscillator. The signal to analyze is sent by an arbitrary-
waveform generator. The magnetic tunnel junction emits an oscillating voltage. A diode allows
extraction of the oscillation amplitude. b Oscillating response in gray and oscillation amplitude
figured in blue. c Non-linear variation of the oscillation amplitude ˜V as a function of the input
current IDC at μ0H = 430 mT. The purple shaded area highlights the typical excursion in the
voltage amplitude that results when an input signal of Vin = ±250 mV is injected. Here IDC = 6.5
mA (vertical doted line). d Upper graph: input signal sent by the arbitrary-waveform generator
(magenta). Lower graph: transient response of the oscillator. The emitted oscillating voltage is
plotted in gray. The amplitude of the oscillation is figured by dashed blue lines. Adapted from
Torrejon et al. (2017)
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a time step θ . The sampling rate of the source is set to 200MHz, which corresponds
to 20 points per interval of discretized time (θ ) in the reservoir computing scheme
for the spoken-digit recognition task and 500MHz (50 points per interval) for the
classification of sines and squares. The peak-to-peak voltage variation in the input
signal is 500 mV, which corresponds to peak-to-peak current variations of 6 mA
(part of the incoming signal is reflected due to impedance mismatch between the
sample and the circuit). The bias conditions of the oscillator are set by a DC current
source and an electromagnet that applies a field perpendicular to the plane of the
magnetic layers. These bias conditions determine the operating point of the oscillator.
The oscillating voltage emitted by the nano-oscillator is rectified by a planar tunnel
microwave diode, with a bandwidth of 0.1–12.4GHz and a response time of 5 ns.
For the range of power and frequency used here, the response of the diode can be
considered as linear. The input dynamic range of the diode is between 1µW and
3.15 mW, corresponding to a DC output level of 0–400 mV. We use an amplifier to
adjust the emitted power of the nano-oscillator to the working range of the diode.
The output signal is then recorded by a real-time oscilloscope.

2.2 Physical Properties of the Oscillator Used for
Computation

The two main properties of the spin-torque nano-oscillator used for computation
are the non-linearity of the oscillation amplitude with the input DC current and
the relaxation of the oscillation amplitude. These two properties are necessary to
ensure the separation property and the fadingmemoryneeded for reservoir computing
(Appeltant et al. 2011).

2.2.1 Non-linearity of the Oscillations Amplitude

A reservoir realizes a non-linear transformation of an input signal. This non-linearity
allows the reservoir to project the initial problem into a different space in which
classes that were not linearly separable in the original space become linearly separa-
ble. The variable used for computation is the amplitude of the oscillations (Fig. 1b).
The corresponding non-linearity is thus the non-linearity of the amplitude level as a
function of the DC current. Figure1c shows this non-linearity for a magnetic field
of 400 mT. Below a threshold current (which is around 3 mA for this sample at this
magnetic field), the oscillator does not emit any signal because the spin-torque is
not sufficient to compensate the damping and thus the spin polarized current does
not move the vortex core. Above this threshold current, the vortex core gyrates. The
amplitude of the oscillation is proportional to the radius of the vortex orbit s. The non-
linearity of the amplitude evolves approximately like λ(I, H⊥)

√
I − Ith (Grimaldi

et al. 2014).
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Figure1c illustrates the effect of the bias current on the oscillation amplitude
response ˜V to an AC current. As mentioned in Sect. 2.2.1, the input signal delivered
by the arbitrary-waveform generator has an amplitude of 500 mV peak to peak
which corresponds to a 6 mA variation of injected current. Thus the input induces
variations on a limited part of the non-linear amplitude curve. This area is represented
in magenta in Fig. 1c for a DC current of 6 mA. By changing the DC current, one
would move the pink area (which is centered on the bias DC current value) and thus
the typical excursion in the voltage amplitude which is explored. For computation,
it is not necessary that this excursion includes the threshold current (unlike with the
classical rectified linear activation function). Indeed the square root-like behavior of
the amplitude provides the non-linearity for separating the inputs in the framework
of reservoir computing.

The influence of the magnetic field is also crucial because it changes the shape of
the non-linear function itself. It changes the threshold current (for smaller fields the
threshold current is smaller) and the amplitude of the non-linearity. The optimum
choices for DC currents and magnetic fields are discussed in Sect. 4.

2.2.2 Relaxation of the Oscillation Amplitude

The second essential property for single-node reservoir computing is a form of mem-
ory. This property is important both for ensuring the connectivity between temporal
neurons and to ensure a fading memory. This demonstration only uses the intrinsic
memory due to the relaxation of the oscillator’s amplitude. When the excitation of
the vortex core changes suddenly, the amplitude of its orbit changes more slowly.
Thus, the orbit radius and the proportional amplitude also change slowly. Figure1d
shows the variation of the oscillation amplitude when the oscillator is subjected to a
varying input signal. The response of the oscillator is plotted in gray and the ampli-
tude of the oscillation is highlighted in blue. Transitions in the input signal are much
more abrupt than in the oscillation amplitude signal. The characteristic time of these
changes is the relaxation time of the oscillator which is roughly inversely propor-
tional to the frequency and the damping factor (Trelax ≈ 1

α f Slavin and Tiberkevich
2009). For our sample, the relaxation time is around 200 ns, except when the current
is close to the threshold. For the later regime, the relaxation time is larger but the
oscillation amplitude is low and very noisy, making it difficult to exploit this regime
for computation.

The relaxation is important to determine the discretization time θ which is used
to define the state of one temporal neuron in a ring of similar neurons. In order to
have connections between the temporal neurons, we should choose θ < Trelax. For
the work described in this chapter, θ = 100 ns. This choice is discussed in Sect. 4.
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3 Results on Classification Tasks

3.1 Results on Sine/Square Recognition Task

3.1.1 Task

The sine and square waveform classification task has been used in other studies
(Paquot et al. 2012) to evaluate the performance of reservoir computing based on an
oscillator with delayed feedback. The goal is to classify each point of the input as
part of a sine by returning an output 0, or as part of a square by returning an output
1. Each period of sine and square is discretized into eight points giving 16 different
cases to classify. The input u(k) is composed of 1280 points (160 randomly arranged
periods of sine or square). The first half of the points are used for training (to find
optimum output weights W ) and the second half for testing.

The different inputs to classify are shown as red dots in Fig. 2a. The inputs take
five different values in a sine period and two different values in a square input. To
return the same output value for five different input values of a sine (or 2 in the case
of the square), the reservoir must be non-linear. In addition, in the sine period the
3rd and the 7th point have a value +1 and −1 that corresponds to the values taken
by the input in the square. So in the absence of memory, when the input value is +1
or −1 it is impossible to know whether these points belong to a sine or to a square.
Therefore this temporal pattern recognition task is not trivial because it needs both
the non-linearity and the memory of a neural network.

3.1.2 Protocol

Different steps of the protocol are represented in Fig. 2a–c. Figure2 shows how the
oscillator is driven by the input signal. The input u(k) (Fig. 2a) is a sequence of
discretized sine and square periods. This discrete input is then preprocessed. This
preprocessed input is a time-multiplexed version of the inputs that different neurons
should receive in a standard spatial neural network. Here the neural inputs are the
value of u(k) multiplied by a coefficient ±1. This allows the oscillator response to
be a time-multiplexed version of a spatial neural-network response. Later we will
refer to these equivalent neurons as temporal neurons. If the preprocessed input
varies faster than the relaxation time of the oscillator, it creates connections between
the temporal neurons because the saturation is never reached so the oscillator state
always depends on its previous state. The preprocessed input J (t) for a sine and
square period is shown in Fig. 2b. An input with only 12 temporal neurons is chosen
here. The reservoir emulates 12 temporal neurons with amask containing only binary
values +1 and −1. The number of neurons is smaller than the optimum number
for better visualization in the figure. The results in Sect. 3.1.3 are based on a 24
temporal neurons reservoir. The time allocated to each neuron, θ , is taken here to
be 100 ns, which we found to be optimal (see Sect. 4). When the oscillator receives
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Fig. 2 Sine/square classification process: a The signal to classify composed of periods of sine and
square with the points to identify as belonging to a sine or to a square in red. b The preprocessed
input signal for a sine (dark blue) and square (light blue) period for a mask with 12 values used. c
Oscillation amplitude transient response to the oscillator signal. Figure extracted from Riou et al.
(2017)

this preprocessed input, it emits a transient response. The amplitude of the emitted
oscillation measured experimentally is plotted in Fig. 2c.

Figure3a shows how to retrieve the mapping of the preprocessed input by the
single oscillator. This step is done offline on a computer. Discrete points are sampled
at every time step θ . The values of these points correspond to the response of the
temporal neurons. Measuring these values gives the reservoir state. Sampling the
temporal traces of the oscillation amplitude properly requires aligning them with
the preprocessed input (misalignment can result in bad classification). The rest of
the process is a standard reservoir computing procedure. The neuron responses are
linearly combined to reconstruct the output. This step is shown in Fig. 3b. The coef-
ficients of the linear combination are obtained by linear regression method. This
approach using a single oscillator with time multiplexing emulates the response of
a ring shape recurrent neural network. This architecture is represented in Fig. 3c.
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Fig. 3 Mapping and reconstruction of the output: a The oscillator voltage amplitude ˜V during a
single time segment τ = Nθ . Here, N = 12 neurons (12 samples ˜Vi separated by the time step θ)
are used to construct the output. b Target for the output,

∑N
i=1 wi ˜Vi , reconstructed from the output

voltages ˜Vi and the weights wi in each time segment τ . c The transient states of the oscillator give
rise to a chain reaction emulating a neural network with a ring structure. Figure extracted from
Riou et al. (2017)

Response of this equivalent neural network is used to classify the sine and square
inputs.

3.1.3 Set Point Dependent Results

Figure4a shows the best reconstructed output obtained by experimentally emulating a
24-neuron network. The rootmean square (RMS) deviation between target and output
is 11%, which is small enough to distinguish between sines and squares without any
error (perfect classification) for the chosen choice of parameters:DC current IDC =
7.2 mA, magnetic field μ0H = 447 mT, input amplitude Vin = 500 mV (equivalent
to 6 mA peak to peak). Figure4a shows that if we trace a threshold line (in blue) at
0.5, all the outputs for square inputs are over this threshold and all the points for sine
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output-to-target deviations: map as a function of DC current I and magnetic field H

inputs are under this threshold. This perfect classification is achieved if the RMS
deviation between the target and the output is small enough, here, close to 10%.

Perfect classification is obtained for operating points (the values of the bias DC
current and the bias magnetic field) that give a small enough RMS deviation between
the target and the output. As seen in Fig. 4b, the RMS deviation varies from 10% to
more than 30% depending on the bias conditions. We interpret the optimal operating
point conditions in Sect. 4. After identifying this region of magnetic field and DC
current leading to high performance of the oscillator for sine/square classification,
we discuss the more complex task of spoken-digit recognition.

3.2 Results on Spoken-Digit Recognition

3.2.1 Task

Spoken-digit recognition is a widely used benchmark task in the hardware reservoir
computing community (Brunner et al. 2013; Dejonckheere et al. 2014; Larger et al.
2012; Paquot et al. 2012; Vinckier et al. 2015). The goal of the task is to recognize
digits from audio waveforms produced by different speakers. For this task, the inputs
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are taken from the NIST TI-46 data corpus. The input consists of isolated english
spoken digits said by five different female speakers. Each speaker pronounces each
digit ten times. The set of ten digits said by all of the speakers is called an “utterance”.
The 500 audio waveforms are sampled at a rate of 12.5kHz and have variable time
lengths. Only female speakers are chosen to benchmark with the literature. Adding
male and children increases the complexity of the task because it increases the variety
of voice tones and thus increases the dispersion of the data to classify.

3.2.2 Protocol

The recognition of audio waveforms requires an additional time-domain to time-
frequency-domain transformation, before inputting the signal into the reservoir. For
this purpose we used two different methods: a spectrogram and a cochlear model.
Both methods divide each word into several time intervals Nτ . Each of these time
sequences has a fixed length τ and undergoes a frequency analysis through either
Fourier transform (spectrogram model; 65 channels, Nτ ∈ 24, . . . , 67) or a more
complicated non-linear approach (cochlear model; 78 channels, Nτ ∈ 14, . . . , 41),
which uses several different notch filters followed by non-linear automatic gain con-
trollers (Lyon 1982).

After the transformation from time-domain to time-frequency domain, each word
is represented by amatrixwith N f = 65 or N f = 78 rows representing the frequency
channels and Nτ columns representing the time (Fig. 5b). These inputs are then
preprocessed being multiplied by a N f × Nθ matrix (where Nθ is the number of
neurons in the reservoir) called a mask, containing binary values. The resulting input
for the oscillator is Nθ × Nτ matrix. Here we are emulating Nθ = 400 temporal
neurons, each of which is connected to all of the frequency channels for each time
interval with the binary input weights defined by the mask.

Each preprocessed input value is consecutively applied to the oscillator as a con-
stant current for a time interval of θ ≈ 100 ns (Fig. 5c). This time is short enough
to guarantee that the oscillator is maintained in its transient regime so the emulated
neurons are connected to each other, but is long enough to let the oscillator respond to
the input excitation. The amplitude of the AC voltage across the oscillator is recorded
for offline post-processing (Fig. 5d).

As for the previous task, the post-processing is then separated in two different
phases: training and testing. During the training phase, a part of the spoken digits
is used to determine the optimal sets of output weights wi,θ , where i indexes the
desired digit. The recorded traces are multiplied by the output weights wi,θ and then
averaged over the Nτ time steps. It results in 10 output values yi , which should
ideally be equal to the target values yi = 1.0 for the appropriate digit and 0.0 for
the rest. In the training process, a fraction of the utterances are used to train these
weights; the rest of the utterances are used in the classification process to test the
results. The optimum weights are found by minimizing the difference between ỹi
and yi for all of the words used in the training. The reconstruction of the outputs yi is
a linear combination and thus finding the optimal weights for the training examples
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Fig. 5 Protocol for spoken-digit recognition. a–d Principle of the experiment. a Audio waveform
corresponding to the digit 1 pronounced by speaker 1. b Filtering to the frequency channels for
acoustic feature extraction. The audio waveform is divided in intervals of duration τ . The cochlear
model filters each interval into 78 frequency channels (65 for the spectrogram model), which are
then concatenated as 78 (65) values for each interval, to form the filtered input. c Preprocessed input
(transformed from the purple shaded region in b). The filtered input is multiplied by a randomly
filled binarymatrix (masking process), resulting in 400 points separated by a time step θ of 100 ns in
each interval of duration τ (τ = 400θ).dOscillator output. The envelope ˜V (t) of the emitted voltage
amplitude of the experimental oscillator is shown (μ0H = 430 mT, I = 6 mA). The 400 values of
˜V (t) per interval τ (˜Vi , sampled with a time step θ) emulate 400 neurons. The reconstructed output
’1’, corresponding to this digit, is obtained by linearly combining the 400 values of ˜Vi , sampled
from each interval τ . e, f Spoken-digit recognition rates in the testing set as a function of the number
of utterances N used for training for the spectrogram filtering (a; H = 430 mT, I = 6 mA) and
for the cochlear filtering (b; μ0H = 448 mT, I = 7 mA). Because there are many ways to pick
the N utterances, the recognition rate is an average over all 10!/[(10 − N )!N !] combinations of
N utterances out of the 10 in the dataset. The red curves are the experimental results using the
magnetic oscillator. The black curves are control trials, in which the preprocessed inputs are used
for reconstructing the output on a computer directly, without going through the experimental setup.
The error bars correspond to the standard deviation of the recognition rate, based on training with
all possible combinations. Figure extracted from Torrejon et al. (2017)
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is a linear regression process. If we consider the target matrix ˜Y , which contains the
targets ỹi for all of the time steps τ used for the training, and the response matrix S,
which contains all neuron responses for all of the time steps τ used for the training,
then the matrixW , which contains the optimal weights, is given byW = ˜Y †S, where
the symbol † represents the Moore–Penrose pseudo-inverse (Penrose 1955).

During the testing phase, the weights are fixed and applied to the remaining
recorded traces. The ten reconstructed outputs corresponding to one digit are aver-
aged over all of the time steps τ of the signal, and the digit is identified by taking
the maximum value of the ten averaged reconstructed outputs. The efficiency of the
recognition is evaluated by the word success rate, which is the rate of digits that are
correctly identified.

Training is achieved with training sets which can have variable size (number of
utterances used for the training) and composition (which combination of utterances is
used for the training). Different training sets led to different performances during the
testing phase. We trained the system using the ten digits spoken by the five speakers.
The only parameter that we changed is the number of utterances used for the training.
If we use N utterances for training, then we use the remaining 10 − N utterances
for testing. However, some utterances are very well pronounced whereas others are
hardly distinguishable. As a consequence, the resulting recognition rate depends on
which N utterances are picked for training in the set of ten (for example, if N = 2,
then the utterances picked for training could be the first and second, but also the
second and third, or the sixth and tenth, or any other of the 10!/(8!2!) combinations
of 2 picked out of 10). To avoid this bias, the recognition rates that we present here are
the average of the results over all possible combinations. The error bars correspond
to the standard deviation of the word recognition rate.

In order to see the contribution of the spin-torque oscillator in the recognition
process we compare the results obtained from the oscillator time traces with a control
trial. During the control trial, the preprocessed inputs are used for reconstructing the
output on a computer directly, without going through the experimental set-up.

3.2.3 Preprocessing Dependant Results

The improvement shown in the experimental results over the control results (see
Fig. 5e) indicates that the spin-torque nano-oscillator greatly improves the qual-
ity of spoken-digit recognition, despite the added noise that is concomitant to its
nanometre-scale size. In this case, the extraction of acoustic features, achieved by
Fourier transforming the audio waveform over finite time windows, plays a minimal
part in classification. Without the oscillator (black line), the recognition rates are
consistent with random choices; with the oscillator (red line), the recognition rate is
improved by 70%, reaching values of up to 80%. This example highlights the crucial
role of the oscillator in the recognition process.

Using the cochlear filtering (Fig. 5f), which is the standard in reservoir computing
and has been optimized on the basis of the behavior of biological ears, we achieve
recognition rates of up to 99.6%, as high as the state of the art. Compared to the
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control trial, the oscillator reduces the error rate by a factor of up to 15. Our results
with a spin-torque nano-oscillator are therefore comparable to the recognition rates
obtained with more complicated electronic or macroscopic optical systems (between
95.7 and 99.8% for the same task with cochlear filtering).

3.3 Conclusion

In this section, two tasks were used to evaluate the performance of reservoir comput-
ing using the dynamics of a spin-torque nano-oscillator: sine/square classification
and spoken-digit recognition. Sine/square classification is a simpler task but allows
testing the non-linear behavior and memory of the reservoir which are the key fea-
tures for good classification on more complex tasks. Using 24 temporal neurons, a
systematic study of classification for different magnetic fields and DC current bias
conditionswas conducted. In the best case a 10% rootmean square deviation between
the reconstructed output and the target was obtained, which allows perfect classifi-
cation of sine and square inputs. Best bias conditions were selected to move on to
the more complex task of spoken-digit recognition.

Spoken-digit recognition requires frequencyfiltering of audiofiles prior to sending
the input to the oscillator. Two filtering methods were studied: first a simple linear
spectrogram method and a more complex cochlear decomposition to benchmark
our result with the existing literature. Using the spectrogram method, the oscillator
improves the recognition up to 70% and the overall success rate is 80% by train-
ing on 90% of the data. This result stresses the critical role of the nano-oscillator
for recognition. Using a cochlear decomposition, 99.6% success rate was reached
which is state-of-the-art results for both numerical and hardware methods. Also it is
important to note that training a linear classifier directly on a cochleogram enables
a success rate of 96%. Thus cochlear decomposition already separates a part of the
input. The results in this chapter demonstrate neuromorphic computing performed
with a nanoscale “neuron”.

For this demonstration, experimental parameters such as the temporal time scale
θ and the operating point (DC current and field) were specially selected to achieve
good classification results. The next section elucidates the influence of these different
parameters and gives guidelines to choose them appropriately.
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4 Optimizing the Experimental Parameters and Data
Processing for Improved Classification

4.1 Input Sampling Rate and Amplitude

The memory and connectivity in single oscillator reservoir computing are obtained
by driving the oscillator with a quickly varying preprocessed input. The time interval
of the input variation is θ . In this part, we discuss how to optimize θ to obtain the
best classification performance. Figure6a–c illustrates the dynamical response of the
oscillation envelope for different values of θ and different amplitudes of the input.

The input signal sent to the oscillator by the arbitrary-waveform generator (AWG)
takes three different amplitude values (300, 400, and 500 mV peak to peak).
Figure6a–c represents the oscillation amplitude response for, respectively, θ = 25 ns
(Fig. 6a), θ = 100 ns (Fig. 6b), and θ = 300 ns (Fig. 6c). For θ = 25 ns, the time rate
of the input is much shorter than the intrinsic relaxation time of the oscillator mea-
sured around 200 ns (θ = Trelax/8) so the oscillator stays in the transient regime all
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Fig. 6 a, b, c, ˜V oscillation amplitude variation of the oscillator response for three levels of input
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the time. The memory effect is in this case strong but the variation of the emitted
oscillation amplitude signal is quite small. The oscillator does not have the time to
reach higher values. The amplitude of the oscillation also depends on the peak-to-
peak input amplitude and for an input amplitude of 300 mV, the signal is particularly
small.

At the other extremes for θ = 300 ns,which is greater than the oscillator relaxation
time (θ = 1.5Trelax), the measured amplitude response reaches its saturation regime
and the oscillator loses the memory of what happened one time step θ in the past.
But for such high θ , the amplitude of the signal is much larger because the oscillator
reaches its saturation regime.

For an intermediate value θ = 100 ns (approximately Trelax/2), the oscillator still
remains in a transient regime with a large amplitude. Intuitively, we expect that the
trade-off is to choose a value of θ that allows for a significant amplitude (so a decent
signal over noise ratio) and still has memory. It is important to note that a higher
input amplitude for a fixed θ always improves the signal to noise ratio.

Figure6d presents the experimental RMS error result for sine and square classifi-
cation as a function of θ . For 500 ns, increasing θ first decreases the RMS error until
an optimum after which the RMS error increase again. This optimum seems to be
around 100 ns. In the first part, the error decreases because the signal-to-noise ratio
increases but after Trelax/2 the error increases again because of a loss of memory.
This trend is also seen for an input amplitude of 400 mV. In that case, surprisingly
the optimum seems to occur for a smaller θ of 50 ns. However the general result is
always worse than for 500 mV input amplitude. Finally for an input amplitude of
300 mV, no clear trend is observed and the classification results are bad. For this
particular voltage amplitude input, there does not seem to be any values of θ that
have both sufficient memory and a sufficient signal-to-noise ratio.

4.2 Magnetic Field and DC Current Dependence

4.2.1 Noise and Amplitude Ratio

Successful classification depends strongly on the operating point (Fig. 7a). The mag-
netic field and the applied bias DC current determine the amplitude variation and
the noise level of the oscillator signal. The amplitude of the measured signal and its
asymmetry are measured through amplitude variations in both positive and negative
directions, Vup and Vdw (Fig. 7b upper graph), while the noise in the voltage ampli-
tude is measured through the noise standard deviation�V (Fig. 7b lower graph). We
extract these parameters from the time traces of the voltage emitted from the oscil-
lator at each bias point, and plot VupVdw (Fig. 7c) and 1/�V (Fig. 7d) as a function
of the DC current I and field H .

Large oscillation amplitudes (red regions in Fig. 7c) are obtainedwhen the applied
magnetic field is low, in such case themagnetization is weakly confined andwhen the
applied DC current is high because it increases the spin torque on the magnetization.
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Fig. 7 a Rootmean square deviation of output-to-target deviations: map as a function of DC current
I and magnetic field H . b Amplitude variations in both positive and negative directions, Vup and
Vdw (upper graph) and standard deviation of the noise in the voltage amplitude �V (lower graph).
c Maximal reponse of the oscillator to the input (VupVdw) in the H -I plane. d Inverse of the noise
level (1/�V ) in the H -I plane. The threshold current Ith is indicated in white dashed line. e Map of
the ratio maximal amplitude to noise VupVdw/�V in the H -I plane, showing that these parameters
largely determine the performance of the oscillator (compare with a). Extracted from Torrejon et
al. (2017)

High noise regions (blue regions in Fig. 7d) are obtained just above the threshold
current for oscillation Ith. In such conditions, the oscillation amplitude increases
rapidly as a function of the current and is sensitive to external fluctuations. The dotted
white boxes in Fig. 7c, d (currents of 6–7 mA and magnetic fields of 350–450 mT)
highlight regions of high oscillation amplitude and low noise. Such bias conditions
give root mean square deviations below 15%, and there are no classification errors
between sine and square waveforms. The similarity between the map of VupVdw/�V
(Fig. 7e) and the map of root mean square error (Fig. 7a) confirms that the best
conditions for the recognition are regimes with both high oscillation amplitude and
low noise. We expect that the requirement, which we demonstrate here for a spin-
torque oscillator, of a high signal-to-noise ratio to obtain good classification would
apply to any type of nanoscale oscillator used for neuromorphic computing.

4.2.2 Amplitude Level

Modifying the operating point modifies the oscillation amplitudes level as can be
observed in Fig. 8a. In the case of our sample, the highest amplitude is obtained for
fields between 300 and 500 mT and for DC currents between 7 and 9 mA. During the
reservoir computing experiments, we fix the magnetic field and we vary the current
that the sample receives.

First the magnetic field should be selected so the input signal induces large and
reproducible amplitude variation. By changing the magnetic field, the threshold cur-
rent and the derivative of ˜V with the current are modified (Fig. 8b). ˜V is directly
linked to the vortex orbit s. The oscillation amplitude is given theoretically by the
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following equation
˜V (t) = λ(H⊥, I )s(t), (1)

where s is the vortex radius and λ is a factor depending on the perpendicular magnetic
field H⊥ and the DC current. s is a function of I/Ith and evolves approximately as√

((I/Ith) − 1) (Grimaldi et al. 2014). Because of this dependency, for lowmagnetic
field such that 297 mT, the threshold current Ith is high (5.9 mA) and ˜V varies very
rapidly with the input current I so the effect of an input current variation maybe
not reproducible, particularly in the proximity of Ith. For higher magnetic field such
as 537 mT, Ith is lower (4.0 mA) but the variation of ˜V with I is slow, such as the
input current variation results in small variation of ˜V . Finally, optimal variations are
obtained for intermediate values of field such as 379 mT, where the variations of
input current induce significant change of ˜V but the value of ˜V is not too sensitive
to noise.

Once the magnetic field is fixed, the DC current should be selected to obtained
large variations of ˜V and ensures that ˜V does not evolve in a linear regime. The DC
current influences both the amplitude and the asymmetry of the measured time traces
as seen in Fig. 9 for three different DC currents, 4.5, 6.5, and 9.0 mA. The left part
of the figure shows the non-linear dependence of the oscillation amplitude on the
current. The parts of this non-linear dependence explored for the chosen inputs are
represented in the colored areas. An input of 300 mV induces a typical variation of
DC current of roughly 4 mA. When the input is sent, the oscillator receives a current
in a range ±2 mA around the fixed DC current.

Changing theDCcurrent explores differentwindows of the non-linear dependence
of ˜V on I , which is set by the magnetic field. This exploration window is represented
by the vertical dashed lines. The central line is the DC current and the left and
right lines are the extreme current values received by the oscillator. The level of the
oscillation amplitude when no input signal is sent is the intersection of the central
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vertical line and themagenta curve ˜V = f (I ). The higher oscillation amplitude value
reached is the intersection of the right vertical line and the curve ˜V = f (I ). Vup, the
difference between the highest value reached by the oscillator amplitude when input
is sent and the oscillation amplitude level due to the DC current, is represented in
blue. Similarly the lowest amplitude reached when the input is sent is situated at the
intersection between the left vertical line and the ˜V = f (I ) curve. Vdw, the difference
between the oscillation amplitude due to the DC current and the lowest value reached
by the oscillator amplitude when input is sent, is represented in green.

The right part of Fig. 9 shows the time traces corresponding to these different
DC current conditions. Vup and Vdw are shown for the time traces with the blue and
green areas. The apparent asymmetry of the measured time traces and the amplitude
variation is completely determined by the portion of the non-linearity ˜V = f (I ) that
is explored. For 9.0 mA DC current value, the signal is small because the oscillation
amplitude evolves in a part of the non-linearity ˜V = f (I )where variations are small
(for high current the growth of ˜V with I slows down). For 6.5 mA, the lowest current
received by the oscillator is close but still greater than the threshold current (the
oscillator receives currents between approximately 4.5 and 8.5 mA).

The region close to the threshold current is the region with the largest oscilla-
tion amplitude variations. The overall amplitude of the time traces for 6.5 mA is
much larger than for 9.0 mA. Because the variation of the oscillation amplitude is
stronger close to the threshold current, Vdw (green) is much larger than the Vup (blue).
Decreasing the DC current to 4.5 mA gives saturation because the lowest DC current
into the oscillator is then 2.5 mA, which is under the threshold current of 4 mA.
Saturation, which maps a whole range of inputs to the same output, is detrimental
for computation because these inputs can not be differentiated in later computation.
In such cases the asymmetry of the time traces is reversed with Vup which is larger
than Vdw.

An optimal oscillation amplitude variation requires an intermediatemagnetic field
(typically between 300 and 500 mT) so that the variation of the ˜V = f (I ) non-
linearity is not so abrupt such as for low field (because of the high Ith value) nor so
slow as for high fields. Once the magnetic field is determined, the DC current should
be chosen so that the lowest current sent to the oscillator from the AWG is close to
the threshold current, giving the largest variations of the oscillation amplitude.

4.2.3 Noise and Non-linearity Trade-Off

Good classification requires non-linearity in the reservoir. The non-linearity allows
for separation of the different inputs by projecting the problem is into a different
space in the reservoir state. A large signal-to-noise ratio is also necessary, because
otherwise similar inputs can be mapped onto very different reservoir states because
of the noise so that the approximation property fails for the reservoir. Figure10 shows
that the non-linearity and the voltage noise vary considerably with DC current and
magnetic field, suggesting that care is essential in selecting the working conditions.
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Fig. 10 a The non-linearity ∂2˜V /∂ I 2 of the oscillator: map in the I -H plane. b Amplitude noise
�˜V of the oscillator in the steady state: map in the I -H plane

To quantify the non-linearity, we computed the second derivative of the voltage
with the current ∂2

˜V /∂ I 2. Figure10a shows that the largest non-linearities are close
to the threshold current where the emission of the oscillator varies strongly. The noise
level is evaluated by taking the standard deviation of the fluctuations of the voltage
amplitude due to the noise (similarly to the noise evaluated in Sect. 3 Fig. 4). Again,
the noise also varies strongly close to the threshold current (Fig. 10b).

Since spin-torque oscillators have a small magnetic volume, thermal noise affects
the magnetization dynamics. The resulting voltage amplitude noise is large for large
non-linearity, which quantifies the sensitivity of the system to perturbations. The
correlation between voltage noise and non-linearity appears clearly in the comparison
of Fig. 10a and b. Neuron non-linearity is a key ingredient for classification as it
allows the separation of input data. On the other hand, noise in the response of
neurons is detrimental for classification as it directly affects the output. Figure7a
shows the classification performance as a function of DC current and magnetic field.
We find good performance by choosing a bias point with intermediate non-linearity
and therefore intermediate noise, and where the neuron output changes strongly in
response to the AC input. Such bias points allow enough non-linearity to classify
while keeping a large enough signal-to-noise ratio to distinguish between outputs.

4.3 Conclusion

This section describes the experimental optimization of the θ time scale and the
operating point for reservoir computing with a spin-torque oscillator. The θ time
step plays both an important role in the memory of the reservoir (particularly when
intrinsicmemory is the onlymemorymechanism) and in the connectivity between the
virtual neurons. A trade-off leads to a value of θ short enough to assure memory and
connectivity and long enough to assure a satisfactory amplitude variation. We find
the best trade-off for θ = Trelax/2 where Trelax is the relaxation time of the oscillator.
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The operating point plays an important role in the optimization of these properties.
The magnetic field should be between 300 and 500 mT so the variation of the non-
linearity ˜V = f (I ) is not too abrupt nor too smooth. At a given field, the DC current
should be large enough to avoid reaching the threshold current and low enough to
avoid a regime where ˜V variation saturates. Finding the correct operating point is a
subtle balance, requiring both intermediate non-linearity and noise, while avoiding
the threshold current.

5 General Conclusion

In this chapter we demonstrate neuromorphic computing with a nanoscale hardware
neuron. We use the non-linear transient dynamics of a single nanoscale spin-torque
oscillator to emulate the response of an entire neural network, using the reservoir
computing approach. The main physical properties used for this demonstration are
the non-linear dependence of the emitted voltage amplitude on the applied current
and the memory of the oscillator through the relaxation of the oscillation amplitude.

Using this non-linear dynamics, we classified sine and square waveforms, which
requires both memory and non-linearity and we recognized successful digits spoken
by different speakers. For this last task we obtained a recognition rate of 99.6%
using cochlear decomposition prior to inputting the signal into the oscillator. With a
spectrogram as time-to-frequency transformation, the final recognition rate is smaller
(80%) but the oscillator provides a higher gain.

The final recognition rate depends on the DC current and the magnetic field that is
applied to the oscillator, because these bias conditions modify the regime where the
oscillator operates determining both the signal-to-noise ratio and the non-linearity
of the oscillator response. The noise and the non-linearity are correlated for spin-
torque oscillators and optimal results are obtained for intermediate level of noise and
non-linearity. The rate and the amplitude of the input which is sent to the oscillator
also play an important role. The amplitude of the input influences the amplitude of
the signal emitted by the oscillator and better results are obtained for larger input
signals. The rate should ensure that the oscillator stays in a transient regime while
keeping large amplitude variations of the emitted signal. Optimal variation time for
the input is found for half of the oscillator relaxation time.

Using the reservoir computing approach, we show that spin-torque oscillators are
stable enough and have both enough non-linearity and enough memory to perform
neuromorphic computing. In this work we used a time-multiplexing approach for
computation, allowing for the use of a single oscillator. This work combined with
the ability of these oscillators to couple together opens the path to build large-scale
hardware neural networkswith dense arrays of interconnected spin-torqueoscillators.
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Reservoir Computing Based
on Spintronics Technology

Tomohiro Taniguchi, Sumito Tsunegi, Shinji Miwa, Keisuke Fujii,
Hitoshi Kubota, and Kohei Nakajima

Abstract Recent developments in reservoir computing based on spintronics tech-
nology are described here. The rapid growth of brain-inspired computing has moti-
vated researchers working in a broad range of scientific field to apply their own
technologies, such as photonics, soft robotics, and quantum computing, to brain-
inspired computing. A relatively new technology in condensed matter physics called
spintronics is also a candidate for application to brain-inspired computing because
the small size of devices (nanometer order), their low energy consumption, their rich
magnetization dynamics, and so on are advantageous for realization of highly inte-
grated network systems. In fact, several interesting functions, such as a spoken-digit
recognition and an associative memory operation, achieved using spintronics tech-
nology have recently been demonstrated. Here, we describe our recent advances in
the development of recurrent neural networks based on spintronics auto-oscillators,
called spin-torque oscillators, such as experimental estimation of the short-term
memory capacity of a vortex-type spin-torque oscillator and numerical simulation
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of reservoir computing using several macromagnetic oscillators. The results demon-
strate the potential high performance of spintronics technology and its applicability
to brain-inspired computing.

1 Introduction

A new candidate element for brain-inspired computing has recently appeared: spin-
tronics, which is the main topic of this chapter. In this section, we provide a brief
introduction to this research field.

1.1 Recurrent Neural Network and Reservoir Computing

The brain has long been a fascinating research target in science. Nonlinear inter-
actions between neurons in the brain via synapses carry and/or store information,
and prompt the growth of living things. Human beings, as well as biological sys-
tems in general, show surprising computational ability due to their brains. The brain
can perform various functions, including (visual and/or audio logic) recognition,
associative memory, prediction from past experiences, action modification, and task
optimization. Moreover, the human brain has notably low power consumption for
computation. If we could replace current computing systems based on the von Neu-
mann architecture by neural networks, our lives would be drastically changed. Brain-
inspired computing aimed at achieving artificial neural networks has attracted much
attention in a wide range of scientific research fields, such as physics, chemistry,
biology, engineering, and nonlinear science.

A crucial task in the advancement of brain-inspired computing is developing an
appropriate model (Gerstner et al. 2014; Goodfellow et al. 2017) and implementing it
in a real system. A class of artificial neural network, called recurrent neural network
(RNN), is an architecture exhibiting a dynamic response to a time sequence of an
input data (Mandic and Chambers 2001). The response of an RNN depends not
only on the input and the system’s weights at a certain time but also on the input at
some previous time. In other words, RNNs store past input information. Thus, RNNs
enable a time sequence of input data such as data on spoken languages and movies
to be classified and calculated.

A reservoir computing system is an RNN in which the internal weights of the net-
work are not changed by learning; only the reservoir-to-output weights are trained
(Maass et al. 2002; Jaeger and Haas 2004; Verstraeten et al. 2007; Appeltant et al.
2011; Nakajima 2020). This approach simplifies the tuning of the weights used for
computing and enables any physical system to be used as a “reservoir.” Various such
systems have been developed, including a photonic architecture with delayed feed-
back (Brunner et al. 2013), a soft robotic reservoir using body dynamics generated
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from a soft silicone arm (inspired by octopus’s arm in water) (Nakajima et al. 2015),
and a quantum reservoir consisting of several qubits (Fujii and Nakajima 2017).

The purpose of this chapter is to introduce a promising new candidate for reservoir
computing: spintronics. Spintronics is a relatively young research field in condensed
matter physics and has been developed by investigating spin-dependent electron
transport in solids with nanometer (nm) scale. Spintronics technology has several
advantages for reservoir computing, such as its applicability to an array structure
with nanoscale dimensions, low energy consumption, and strong nonlinearity. How-
ever, the research targets in spintronics to date have been electronic devices, such as
nonvolatile memory and microwave generators, and the ability of spintronics tech-
nology from the viewpoint of artificial neural networks has not yet been thoroughly
investigated. What is required in reservoir computing is rich (or complex) dynam-
ics of physical systems because the reservoir should show several and distinguish-
able responses to different sequences and/or inputs. The richness (or complexity)
of a dynamical system is quantitatively characterized by its memory and nonlinear
capacities, which characterize, respectively, the amount of information the RNN can
store and its nonlinear computational capability. Here, the capacities are estimated
by examining the response to binary input as done in Jaeger (2002). Short-term
memory capacity is simply characterized how much past information fed into the
system can be stored and reconstructed from the current output of the reservoir with
trained weight. This task can be accomplished even in a linear system, in principle.
Therefore, the nonlinear computational capability on the stored information is fur-
ther characterized by the parity check capacity by predicting the parity of the past
input sequence, which essentially requires nonlinearity. For example, the short-term
memory capacity of a quantum reservoir consisting of several qubits (≥4) with vir-
tual nodes (≥4) was reported to be of the order of 10 (Fujii and Nakajima 2017). In
this chapter, we describe our recent measurements of memory capacity in spintronics
devices (Tsunegi et al. 2018a; Furuta et al. 2018).

We start by describing the history of this research field, and discuss the applica-
bility of spintronics technology to brain-inspired computing.

1.2 History of Spintronics and Key Technologies

An electron has two degrees of freedom, charge and spin. Research on electricity
and magnetics has a long history, and it was unified at the end of the nineteenth
century as classical electromagnetism (Jackson 1999). People began to notice that
both electricity and magnetism originate from a charged particle, but it took time to
widely accept the existence of elementary particles (or atoms and molecules) until
the beginning of the twentieth century. The rapid growth of quantum mechanics
provided a new picture of electrons and of elementary particles, in general, which
resulted in a drastic change in our understanding of the nature. In particular, the
discovery of spin led the transition from classical to quantum physics because it
was the first finding of an internal degree of freedom in elementary particles (Dirac
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1928). Spin has relativistic quantummechanical origin (Weinberg 2005), determines
the statistics of the elementary particles (Pauli 1940), and is related to many physics,
such as the stimulated emission of light (Dirac 1927), the origin of ferromagnetism
(Heisenberg 1928), superconductivity (Bardeen et al. 1957), and the fate of stars
(Chandrasekhar 1984). Importantly, the quantum mechanics has also resulted in the
development of applied physics. Electronics based on semiconductors has provided
many devices useful in everyday life. Magnetic devices as well have become widely
used for such things as a storage device. Charge and spin have been, however, used
separately for electronics and magnetic devices, respectively.

Spintronics (or spin electronics) is both electronics and magnetism at nanoscale
and aims to develop new electronics devices, such as nonvolatile memory [magne-
toresistive random access memory (MRAM)] and microwave generators, in which
spin plays a key role. Quantummechanical interactions between the spins of conduct-
ing electrons inmetals and semiconductors,magnetization in ferromagnets,magnons
(spin-wave quanta) in insulating ferromagnets, light helicity, and so on provide inter-
esting new phenomena in fundamental physics and have opened the door to practical
applications. The growth of spintronics is due to advances in nanostructure fabri-
cation processes. This is because the spin of electrons in condensed matter is not
a conserved quantity. For example, the spin in metals relaxes over the length scale
(the spin diffusion length) (Valet and Fert 1993), which is typically of the order of
nanometers (Bass and Pratt 2007); therefore, nanostructures are necessary to observe
spin-dependent phenomena.

A key phenomenon in spintronics is the tunneling magnetoresistance (TMR)
effect, which was found by Julliere in a magnetic tunnel junction (MTJ) consisting of
Fe/Ge/Co (Julliere 1975). The magnetoresistance effect is a physical phenomenon in
which the resistance of an electrical circuit depends on themagnetization directions of
the ferromagnets. The TMR effect originates from spin-dependent tunneling through
an insulator, and so it is a purely quantummechanical phenomenon. Although several
other magnetoresistance effects, such as anisotropic magnetoresistance and the pla-
nar Hall effect, have been found since the nineteenth century and their origins were
revealed to be quantum mechanical phenomena in the middle of the twentieth cen-
tury (Thomson 1856; Kundt 1893; Pugh and Rostoker 1953; Karplus and Luttinger
1954; McGuire and Potter 1975; Sinitsyn 2008; Nagaosa et al. 2010), the discovery
of the TMR effect in 1975 is often regarded as a beginning of spintronics. Since the
electrons pass through the interfaces between multilayers, the structure of an MTJ is
often called a “current-perpendicular-to-plane (CPP)” structure. The research target
shifted fromMTJs (Julliere 1975; Maekawa and Gäfvert 1982; Maekawa and Shinjo
2002) to giant magnetoresistive (GMR) systems consisting of metallic ferromag-
netic/nonmagnetic multilayers when the relatively large magnetoresistance effect,
called the “GMR effect,” was found in 1988–1989 by Fert and Grünberg indepen-
dently (Baibich et al. 1988; Binasch et al. 1989). The GMR effect was first observed
in a current-in-plane (CIP) structure, in which the electrons move in a direction par-
allel to the metallic interface. It was, however, soon noticed that the CPP structure
shows a larger GMR effect than the CIP structure (Pratt et al. 1991; Zhang and Levy
1991). Research interest shifted to backMTJs when a large TMR effect was found in
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an Fe/AlO/Fe MTJ in 1995 (Miyazaki et al. 1995; Moodera et al. 1995) and a giant
TMR effect was found in an MTJ with an Fe/MgO/Fe MTJ in 2004 (Yuasa et al.
2004a; Parkin et al. 2004; Yuasa et al. 2004b).

A magnetoresistance effect, such as the TMR effect, enables the magnetization
direction in a ferromagnet to be detected by using an electrical circuit. Typical TMR
and GMR devices include two ferromagnets, and the resistance of the circuit is low
(high) when the alignment of their magnetizations is parallel (antiparallel). In addi-
tion, the theoretical prediction of a spin-transfer torque (STT) effect by Slonczewski
and Berger provided a new technology controlling themagnetization direction (Slon-
czewski 1989, 1996; Berger 1996; Slonczewski 2005). After the discovery of mag-
netism, themagnetization direction of a ferromagnet has been controlled by applying
an external magnetic field. The STT effect is a completely different phenomenon,
where an electric current is applied to a ferromagnetic/nonmagnetic/ferromagnetic
trilayer structure. One ferromagnet, the “reference layer,” acts as a polarizer of the
spin angular momentums of the conducting electrons. When these spin-polarized
electrons are injected into the other ferromagnet, the “free layer,” the spins of the
conducting electrons are transferred to the magnetization of the ferromagnet via
quantum mechanical interaction and excite STT (Ralph and Stiles 2008). When the
magnitude of the electric current is sufficiently large, the STT can change the mag-
netization direction in the free layer. Such magnetization reversals were observed in
a GMR device in 2000 (Katine et al. 2000) and in an MTJ in 2005 (Kubota et al.
2005).

In summary, there are two important phenomena in spintronics, the TMR and STT
effects. Themagnetization direction of a nanostructured ferromagnet can be detected
electrically by using the TMR effect and can be changed by using the STT effect.
These are the operation principles for any kind of spintronics device (Locatelli et al.
2014). In fact, as discussed below, brain-inspired computing based on spintronics
technology utilizes these phenomena. There are many other interesting phenomena
in spintronics, such as the spin pumping effect (Silsbee et al. 1979; Tserkovnyak
et al. 2002; Mizukami et al. 2002), the spin Hall effect (Dyakonov and Perel 1971;
Hirsch 1999; Kato et al. 2004), and the topological effect (Murakami et al. 2003).
Readers who are interested in spintronics can easily find good textbooks and review
articles, such as Maekawa (2006), Shinjo (2009), and Maekawa et al. (2012).

1.3 Brain-Inspired Computing Based on Spintronics

There are many advantages of applying spintronics technology to brain-inspired
computing (Grollier et al. 2016). First of all, the small size of spintronics device and
their applicability to an array structure enable development of high-density com-
puting devices. The typical size of an MTJ is of the order of 1nm in thickness and
10–100 nm in diameter (Fukushima et al. 2018; Watanabe et al. 2018). The non-
volatility of the magnetization as memory results in low power consumption during
operation (Dieny et al. 2016). The large output signal due to the giant TMR effect



336 T. Taniguchi et al.

is another advantage for electronics applications (Yuasa et al. 2004a; Parkin et al.
2004; Yuasa et al. 2004b; Djayaprawira et al. 2005; Ikeda et al. 2008; Yakushiji et al.
2010; Sukegawa et al. 2013; Kubota et al. 2013; Tsunegi et al. 2016a). The figure of
merit for TMR and GMR devices is the magnetoresistance ratio, which is defined as
(RAP − RP)/RP, where RP and RAP are the resistances of the system for parallel (P)
and antiparallel (AP) magnetization alignments. Currently, the TMR ratio is of the
order of 100%, which results in a visible change in the output signal that is sufficient
to experimentally detect by overcoming noise. Strong nonlinearity of the magneti-
zation dynamics excited by the STT effect (Bertotti et al. 2005, 2007, 2009; Slavin
and Tiberkevich 2009) is desirable for computation calculating a time sequence of
input data. In fact, as mentioned below, we found that an MTJ with TMR and STT
effects is applicable as an element for reservoir computing. The fast relaxation time
of the magnetization dynamics (Zhou et al. 2010; Kudo et al. 2010; Suto et al. 2011;
Nagasawa et al. 2011; Rippard et al. 2013; Jenkins et al. 2016; Taniguchi et al.
2017; Tsunegi et al. 2018b), of the order of 1–100 nanoseconds (ns), is suitable for
fast computing. Application of these features to brain-inspired computing by using
spintronics technology has recently been reported.

An associative memory operation in a network consisting of CIP devices was
reported by Borders, Fukami, and their collaborators in 2017 (Borders et al. 2017).
They used analog switching of the magnetization in a CoNi ferromagnet placed on a
PtMn antiferromagnet as memory for storing the weight of computing. A total of 36
devices were used to demonstrate the associative memory operation of identifying a
word consisting of three alphabetic letters.

Spoken-digit recognition competitive to that of state-of-the-art neural networks
was demonstrated by Torrejon, Grollier, and their collaborators, including some of
the present authors of this chapter, also in 2017 (Torrejon et al. 2017). A vortex
spin-torque oscillator (STO) was used for the computation, and the information
of a sequence of spoken words was stored using the nonlinear dynamics of the
magnetic vortex. A high recognition rate (≥95%) was obtained for spoken digits
(0–9) pronounced by five speakers. The detail of this work is explained in the other
chapter of this book. Vowel recognition with four coupled STOs was also achieved
recently (Romera et al. 2018). In the following sections, we will revisit artificial
neural networks based on an STO.

There have also been several reports of numerical simulation focused on brain-
inspired computing based on a spintronics computing architecture (Furuta et al.
2018; Vodenicarevic et al. 2017; Kudo and Morie 2017; Huang et al. 2017; Nakane
et al. 2018; Chen et al. 2018; Pinna et al. 2018; Arai and Imamura 2018; Nomura
et al. 2018). For example, Kudo and Morie demonstrated pattern recognition using
an array of STOs in 2017 (Kudo and Morie 2017). Nakane and his collaborators
investigated the possibility of reservoir computing based on spin-wave excitation
and detection in 2018 (Nakane et al. 2018). As can be seen, a wide variety of device
designs have been proposed. This is due to the rich physics of nanostructured devices.
The magnetization dynamics in a ferromagnet is usually highly nonlinear. Since
spintronics devices consist of nanomagnets, magnetic interactions, such as dipole
interaction and spinwave, can be used as an operation principle. In addition, electrical



Reservoir Computing Based on Spintronics Technology 337

interaction through the STT effect can also be an operation principle for such devices.
Accordingly, spintronics provides interesting examples of dynamical systems and
therefore can be considered a strong candidate as a fundamental element of brain-
inspired computing, see, for example, a review (Grollier et al. 2020) including both
experiments and theory.

1.4 Spin-Torque Oscillator (STO)

A key device for brain-inspired computing based on spintronics technology is the
STO (Torrejon et al. 2017). An STO typically consists of anMTJ, for which the main
structure is a trilayer (reference layer/insulating barrier/free layer), as illustrated in
Fig. 1a. The typical material for the barrier isMgO (Yuasa et al. 2004a, b; Parkin et al.
2004). As mentioned above, when an electric current is injected into an MTJ, STT
is excited on the magnetization in the free layer. The STT leads to magnetization
dynamics when themagnitude of the electric current is sufficiently large. Themagne-
tization dynamics is typically classified as reversal (Kubota et al. 2005) or oscillation
(Kiselev et al. 2003). Magnetization reversal has been used as an operation principle
for MRAM (Dieny et al. 2016). Magnetization oscillation has been widely studied
for both GMR and TMR structures with the aim of developing practical applications
such as microwave generator, highly sensitive sensors, and phased array radar (Kise-
lev et al. 2003; Rippard et al. 2004; Houssameddine et al. 2007). An STO device
uses this magnetization oscillation in an MTJ for such practical applications.

Since STOs are nonlinear oscillator showing an auto-oscillation (a limit cycle),
there are a dissipation due to friction and source of energy injection, as is any auto-
oscillator in nature (Pikovsky et al. 2003). The source of the energy is the work

Fig. 1 a Schematic diagram of fundamental structure of MTJ connected to electric battery. b
Schematic diagram of MTJ with vortex-type free layer. Each white arrow represents local direction
of magnetic moment m(x). Magnetic moment at center points in the perpendicular direction with
respect to film surface and is called a “vortex core.”Magnetic moments around core lie in film plane.
c Schematic diagram of MTJ with macromagnetic free layer. Almost all local magnetic moments
point in same direction, so local variable m(x) can be replaced with macroscopic variable m. In
both b, c, direction of magnetization in reference layer, which is assumed to be macromagnetic, is
represented as p
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done by the STT, while the dissipation is relaxation minimizing the magnetic energy
of the ferromagnets. The oscillation frequency ranges from 100MHz to 100GHz
depending on the device structure and magnetic configuration, see Sects. 2.1, 2.2,
and 2.3 for more detail. The oscillation of the magnetization in an STO is detected
through the TMR effect. The resistance of the MTJ is R = 1/G, where conductance
G is given by

G = GP + GAP

2
+ GP − GAP

2
cos θ, (1)

where θ is the relative angle between the magnetizations of the free and reference
layers, and GP = 1/RP and GAP = 1/RAP are the conductances for the parallel and
antiparallel magnetization alignments. Therefore, the resistance, or voltage, of the
STO oscillates over time when the magnetization in the free layer is in an auto-
oscillation state. In other words, the oscillation state of the STO can be detected by
electrical measurement.

Our motivation focusing on reservoir computing based on spintronics technology
is as follows. Imagine that we fabricate an array of STOs. Each STO interacts with
the other STOs through magnetic and/or electrical interactions. Such a system may
experience phase synchronization (Slavin and Tiberkevich 2009), in which the phase
differences between the magnetizations saturate to certain values. This synchroniza-
tion phenomenon may be applicable to some portion of brain-inspired computing
(Kudo and Morie 2017). It should be noted, however, that the coupling strength
between the STOs normally cannot be changed after fabrication of the array. This
means that the interconnections (weights) between the elements in the RNN cannot
be tuned for computing. Reservoir computing solves this problem and thus opens
the door to the applicability of STO devices to brain-inspired computing. The highly
nonlinear, and thus complex, dynamics of STOs should provide rich dynamics to a
reservoir and is unnecessary to be tuned for computing. To clarify the applicability
of STO devices to reservoir computing it is necessary to evaluate the performance
capabilities of STOs,which is themain objective of this chapter (Tsunegi et al. 2018a;
Furuta et al. 2018).

2 Methods

In this section,we summarize themethodswe used to evaluate the short-termmemory
and parity check capacities of reservoir computing with STOs.

2.1 Landau–Lifshitz–Gilbert Equation

We start by introducing a theoreticalmodel of themagnetization dynamics frequently
used in the fields of magnetism and spintronics. It is often assumed that the mag-
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netization dynamics in a ferromagnet is described by the Landau–Lifshitz–Gilbert
(LLG) equation with spin-transfer torque (Slonczewski 1996; Landau and Lifshitz
1935):

dm
dt

= −γm × H − γ �Pg(θ)J

2eMsd
m × (p × m) + αm × dm

dt
, (2)

where m is the unit vector pointing in the local magnetization direction. Magnetic
field H consists of both internal and external fields; the internal fields include an
exchange field, anisotropy field, and dipole field. Parameter γ , the “gyromagnetic
ratio,” is related to Bohr magneton μB and Landé g-factor gL via γ = gLμB/�.
Saturation magnetization Ms is the magnetic moment per volume, whereas d is the
thickness of the free layer. Spin polarization P (0 ≤ P < 1) characterizes the strength
of theSTT, and the vectorp (|p| = 1),which is usually parallel to themagnetization of
the reference layer, determines the direction of the STT. The current density flowing
in the MTJ is denoted as J . Factor g(θ), a function of the relative angle between m
and p (cos θ = m · p), determines the angular dependence of the STT. The explicit
form of g(θ) depends on the structure of the spintronics device (Xiao et al. 2004;
Taniguchi et al. 2015). Dimensionless parameter α, the “damping constant,” which
characterizes the strength of the dissipation due to friction of the magnetization
dynamics (Gilbert 2004) and is of the order of 10−3 − 10−2 for typical ferromagnets
used in spintronics devices (Oogane et al. 2006). The magnetization dynamics in a
ferromagnet has been investigated by solving the LLG equation both analytically
(Bertotti et al. 2009) and numerically (Lee et al. 2004).

The LLG equation is a nonlinear differential equation. The first term on the right-
hand side of Eq. (2) is the field-torque term and describes a steady precession (oscil-
lation) of themagnetization around themagnetic field. The second (STT) termmoves
the magnetization parallel or antiparallel to the direction of p depending on the direc-
tion of the electric current. The third term (the damping term) describes the energy
dissipation of the ferromagnet phenomenologically (Gilbert 2004). Auto-oscillation
of magnetization m in an STO is excited when the energy dissipation (∝ α) is can-
celled by the energy supplied by the work done by the STT (Bertotti et al. 2009).
When this condition is satisfied, the auto-oscillation around themagnetic field, which
is described by the field-torque term, is realized. The oscillation trajectory is almost
on a constant energy curve (Bertotti et al. 2009).

2.2 Micro- and Macro-Structures of Nanomagnet

For the following discussions, we need to briefly review the microstructure of the
free layer. As mentioned above and shown in Fig. 1a, the size of the free layer is typ-
ically 10–100 nm in diameter and 1nm in thickness. Such a ferromagnet consists of
numerous magnetic atoms, so its macroscopic magnetization consists of numerous
magnetic moments. The direction of each magnetic moment in equilibrium is deter-
mined to minimize the magnetic energy E , which is related to the magnetic field H
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via H = −δE/δ(Mm) (Lifshitz and Pitaevskii 1980), and consists of the exchange
energy, magnetic anisotropy energy, dipole field energy, and Zeeman energy (Hubert
and Schäfer 1998).

When the free layer, in particular the thickness, is relatively large, the microstruc-
ture of each magnetic moment becomes a vortex so as to minimize the stray field
energy, i.e., the magnetic moment at the center of the area points in the direction per-
pendicular to the cross-sectional area of the free layer whereas themagneticmoments
around the center exhibit a chiral structure, as illustrated in Fig. 1b. In this case,m is
a function of location x inside the free layer. Another micromagnetic structure called
domain wall separates two uniformly magnetized domains. One way to investigate
the magnetization dynamics in such systems is to use the LLG equations to com-
pute the magnetization dynamics of all the magnetic moments simultaneously, i.e.,
by using numerical micromagnetic simulation (Brown and LaBonte 1965; Hayashi
and Goto 1971; Nakatani et al. 1989, 2003; Dussaux et al. 2010). Another way to
investigate the dynamics is to reduce the LLG equation to an equation of motion of
the vortex core. The reduced equation is called Thiele equation, which describes the
motions of the radius and rotation angle in the film plane of the vortex core (Thiele
1973; Guslienko 2006; Liu et al. 2007; Khvalkovskiy et al. 2009; Dussaux et al.
2012; Grimaldi et al. 2014).

On the other hand, when the free layer is relatively small, almost all magnetic
moments point in the same direction so as to minimize the exchange and anisotropy
energies. In this case, we can replace local magnetizationm in Eq. (2) with a macro-
scopic single moment as illustrated in Fig. 1c. This model is called a macromagnetic
or macrospin model. The macromagnetic magnetization in the thin magnetic film
used in spintronics devices usually points in the direction parallel to the film plane.
This is because this in-plane magnetized configuration minimizes the stray field gen-
erated outside the ferromagnet and reduces the magnetic energy. The magnetization
can be, however, oriented in the direction perpendicular to the film plane by con-
trolling the perpendicular anisotropy energy. For example, adding an MgO barrier
neighboring a CoFe ferromagnet induces an interface anisotropy effect (Hine et al.
1979; Yakata et al. 2009; Ikeda et al. 2010; Kubota et al. 2012). Applying an electrical
voltage also changes the perpendicular anisotropy due to interface effect (Weisheit
et al. 2007; Chiba et al. 2008; Maruyama et al. 2009; Nozaki et al. 2010; Shiota
et al. 2012). The perpendicularly magnetized MTJ is of great interest for MRAM
applications because it is suitable for high-density structures.

The number of variables in Eq. (2) for the vortex structure is 2N , whereN is the
number of magnetic moments. In the macromagnetic case, the number of variables
is 2. One might consider that, since vectorm is defined in a three-dimensional space,
the number of variables should be 3N and 3 for the vortex and macromagnetic case.
However, the LLG equation conserves the norm of magnetization m because the
equation satisfies d|m|2/dt = (1/2)m · (dm/dt) = 0, so there is a constraint condi-
tion |m| = 1, which reduces the number of independent variables. This conservation
of the magnetization norm means that the temperature of the system is sufficiently
lower than the Curie temperature of the ferromagnet. According to the Poincaré–
Bendixson theorem (Wiggins 1990), chaos is precluded in a macromagnetic model
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without interaction with other ferromagnets and/or feedback. Magnetization p in the
reference layer is usually assumed to be macromagnetic.

The ferromagnets used in spintronics devices typically have two energy minima
due to uniaxial anisotropy energy. Such a ferromagnet can be used as a bit of memory
devices. The strengths of the STT and damping torque represented in Eq. (2) depend
on the direction of the magnetization. Related to this fact, there are two thresholds,
Jc and Jsw, of current density J in Eq. (2). When J/Jc > 1, the STT exceeds the
damping torque near the equilibrium state and destabilizes the magnetization. When
J/Jsw > 1, the magnetization moves from one equilibrium to another. Note that
auto-oscillation of the magnetization is excited in range J/Jc > 1 and J/Jsw < 1.
To satisfy these conditions, Jsw/Jc should be larger than one. If this condition is not
satisfied, i.e., Jsw/Jc < 1, the MTJ exhibits the switching without showing an auto-
oscillation (Taniguchi et al. 2013; Taniguchi 2015). This means that not all MTJs
exhibit an auto-oscillation. The magnitude relationship between Jc and Jsw depends
on the magnetic field and STT angular dependence.

The oscillation frequencies of a vortex and macromagnetic STO are typically of
the order of 100MHz and 1–10 GHz, respectively. A vortex-type STO was used
for the experimental estimation of short-term memory capacity (Sect. 3) whereas the
macromagnetic model was used for the numerical simulation (Sect. 4).

2.3 Recurrent Neural Network Based on STO

We developed two models of an STO-based RNN. One uses a single vortex-type
STO, while the other uses a single macromagnetic STO or nine macromagnetic
STOs as a reservoir. In both models, the output voltage from the STO is used as
the dynamic response from the reservoir. According to Eq. (1), the resistance, or
voltage, of an STO oscillates due to the oscillation of magnetization m in the free
layer (cos θ = m · p). The output voltage from the STO is given by

vout(t) = va(t) sin [2π f t + ϕout(t)] , (3)

where f is the oscillation frequency of the TMR. Amplitude va and phase ϕout of
the voltage are constant in an auto-oscillation state. On the other hand, when an
additional current (voltage) pulse is applied to the STO, they vary over time. This
is because the additional torque changes the balance between the STT and damping
torque, causing themagnetization tomove a different oscillation state. The relaxation
process for the new oscillation state depends on the sequence of additional voltage
pulses. In otherwords, theSTO in the relaxation process stores past input information.
Therefore, the STO is a candidate for reservoir computing. The ability of a reservoir is
quantitatively characterized by its memory and nonlinear capacities, as mentioned in
Sect. 1.1. Therefore, it is necessary to evaluate the memory and nonlinear capacities
of STO devices.
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Fig. 2 Schematic illustration of input voltage Vin and output signal X (t). The numbers such as k
and k + 1 indicate the pulse numbers. The kth input voltage is Vin,k = Vlow + (Vhigh − Vlow)sin,k ;
the corresponding output signal at the i th node is Xk,i , where sin,k is input binary data. For evaluation
of short-term memory capacity, training data ySTM,k was directly related to input data via ySTM,k =
sin,k . Weight wD,i was determined so as to reproduce ySTM,k (Vin,k−D) from Xk,i . Cases D = 0
and D = 1 are shown in figure. For evaluation of the parity check capacity, training data yPC,k was
related to input binary data (voltage) via Eq. (12) (After Tsunegi et al. 2018a)

2.4 Methods for Evaluating Memory Capacities

Here, we describe methods for evaluating the short-term memory and parity check
capacities.

We first explain, with the help of Fig. 2, how we evaluate short-term memory
capacity. The figure schematically shows how the input is applied to the STO and how
the output is obtained. As mentioned, memory capacity is evaluated by examining
the response to binary input. We first sequentially apply Z -bit random voltage pulses
(Z : integer) to the STO. The input voltage is expressed as Vin,k = Vlow + (Vhigh −
Vlow)sin,k , where Vlow and Vhigh are the lower and higher values of the input voltages,
respectively, whereas sin,k = 0 or 1 is the random binary data. The memory capacity
is evaluated by examining the response of the reservoir to binary input (Jaeger 2002),
and therefore masking procedure (Appeltant et al. 2011) is not applied to the input
data in this work. The total length of the voltage pulses is Z�t , where�t corresponds
to the duration of 1 bit. These input data are called training data. The kth (k =
1, 2, . . . , Z ) pulse is applied from time t = (k − 1)�t to t = k�t .

The STT excited by the input voltage changes the oscillation trajectory of the
magnetization, resulting in a change in the voltage output from the STO, as schemat-
ically shown in Fig. 2. Not only the output voltage but also the STO variables can be
used for the evaluation. For example, in Sect. 3, voltage amplitude va is used as the
output signal, whereas resistance x is used in the simulation described in Sect. 4. In
this section, we denote a general signal output from an STO as X (t). We divide the
output signal from t = (k − 1)�t to t = k�t into N -nodes, where N is the number
of virtual nodes. These virtual nodes are used, along with linear regression, to obtain
the output from the reservoir. For simplicity, we denote the output signal at the i th
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(i = 1, 2, . . . , N ) node as Xk,i , i.e.,

Xk,i = X

(
(k − 1)�t + i

�t

n

)
. (4)

Weight w0,i is then introduced to obtain the output from the reservoir;

N+1∑
i=1

w0,i Xk,i . (5)

The learning task here is to find the weight that minimizes the error between the
output from the reservoir and the training data, which is defined as

Z∑
k=1

(
N+1∑
i=1

w0,i Xk,i − ySTM,k

)2

, (6)

where ySTM,k is the training data used for evaluating short-term memory capacity,
and is related, specifically for the case without any delay, to the input binary data
sin,k ;

ySTM,k = sin,k . (7)

The meaning of the suffix “0” in w0,i in Eq. (6) will be explained below. The term
with subscript i = N + 1 corresponds to the bias term used to tune the constant
value, and Xk,N+1 = 1 in Eq. (6).

Weight w0,i introduced above is determined to reproduce training data ySTM,k

applied during time (k − 1)�t ≤ t ≤ k�t . Since an RNN is an artificial neural net-
work used for classifying and calculating a time sequence of input data, it should
be able to reproduce the past input voltage from the current output signal. To enable
this functionality, Eq. (6) is extended:

Z∑
k=1

(
N+1∑
i=1

wD,i Xk,i − ySTM,k−D

)2

, (8)

where D = 1, 2, 3, .. is the delay.WeightwD,i is set so as to reproduce the (k − D)th
input binary data ySTM,k−D applied during time (k − D − 1)�t ≤ t ≤ (k − D)�t
from output signal X (t) obtained during time (k − 1)�t ≤ t ≤ k�t .

After this learning, other Z ′-random pulse sequences s ′
in,n are applied to the STO

as voltages, where Z ′ is the number of input data instances. The prime symbol is
used to distinguish the quantities related to testing from those related to learning.
Test data y′

STM,n is defined similarly to Eq. (7), i.e., y′
STM,n = s ′

in,n . The output signal
at the i th node responsive to the nth test data is denoted as X ′

n,i . Using the weight
determined by the learning, we define the reconstructed data as
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y′
R,n−D =

N+1∑
i=1

wD,i X
′
n,i , (9)

where Xn,N+1 = 1. Whether the reconstructed data reproduces the test data with
delay D is characterized by correlation coefficient Cor(D) given by

Cor(D) =
∑Z ′

n=1

(
y′
STM,n−D − 〈y′

STM,n−D〉) (
y′
R,n−D − 〈y′

R,n−D〉)√∑Z ′
n=1

(
y′
STM,n−D − 〈y′

STM,n−D〉)2 ∑Z ′
n=1

(
y′
R,n−D − 〈y′

R,n−D〉)2
, (10)

where 〈· · · 〉 is the average value. The short-term memory capacity is estimated as

CSTM =
Z ′∑

D=1

[Cor(D)]2. (11)

The short-term memory capacity characterizes the ability of the reservoir to store
past input as is, which can be done by simply using a linear transformation. The
nonlinear transformation ability for the stored information can be examined by using
a parity check task, where the following task data are used for the learning and testing:

yPC,k−D =
D∑
i=0

sin,k−D+i mod 2. (12)

The ability of the nonlinear transformation is quantitatively evaluated by introducing
parity check capacityCPC, which is defined similarly to Eq. (11). In the evaluation of
parity check capacity, the data input to the STO is again binary voltage data. However,
when the weight is determined, yPC,k−D given by Eq. (12) should be substituted into
the right-hand side of Eqs. (6) and (8). Similarly, during testing, test data y′

PC,n
are defined from the input binary data in accordance with Eq. (12) whereas the
reconstructed data y′

R are obtained from the signal output from the STO and the
weight determined by the learning, as shown in Eq. (9). The parity check capacity
CPC is evaluated from the correlation between the test and reconstructed data.

3 Reservoir Computing with STO (Experiment)

In this section, we report our experimental evaluation of the short-term memory
capacity of a vortex-type STO.
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3.1 Experimental Methods

The STO used in this study was made from an MTJ with a multilayer structure:
sub/buffer/PtMn(15)/CoFe(2.5)/Ru(0.86)/CoFeB(1.6)/CoFe(0.8)/MgO(1.1)/CoFe
(0.5)/ FeB(7.0)/CoFe(0.5)/ MgO(1.0)/Ta/Ru (thickness in nm). The films were pat-
terned into an STO with a diameter of 425nm. The CoFe/Ru/CoFeB/CoFe and
CoFe/FeB/CoFe structures correspond to the free and reference layers, respectively.
A magnetic vortex state, as schematically shown in Fig. 1b, appears in the free layer
in this type of MTJ (Tsunegi et al. 2016a, 2018b).

Figure3a schematically shows the circuit used for evaluating the short-termmem-
ory capacity of the STO.We first prepared random binary bits as input data. The data
were converted into voltage pulses by using an arbitrarywave generator (AWG).Volt-
age pulses with duration �t and a 5 ns lead edge were applied to the STO through a
low-pass filter using a bias-tee with a cutoff frequency of 300MHz. We used filters
corresponding to a Gaussian filter and applied the inverse of the circuit transfer func-
tion to the input voltage to reduce the distortion in preprocessing. The waveform
of the high-frequency output voltage was measured at room temperature using a
real-time oscilloscope (5–10 Gsam/s) using a high-pass filter with a cutoff frequency
of 400MHz. The STO generated an oscillating voltage through auto-oscillation of
the vortex core induced by the perpendicular component (film normal) of the STT
(Dussaux et al. 2010). Therefore, we applied an out-of-plane magnetic field of 725
mT to the oscillator. The voltage output from the STO was separated from the input
voltage by using the high-pass filter and measured with the oscilloscope. Amplitude
va of the output voltage was estimated by using Hilbert transformation and used as
the output signal X for evaluating short-term memory capacity.

Figure3b, c shows examples of the input and output voltages for offset voltage
Voffset = 250mV and �t = 20ns. The input voltage was 200 or 300mV, and the
corresponding oscillation frequency of the STO was 540 or 555MHz, respectively.
The output voltage exhibited a temporal change in magnitude, in accordance with
the change in the input pulse voltage. The amplitude is the envelope of the oscillating
voltage, as shown by the red curve in Fig. 3c. It was used to estimate the short-term
memory capacity.

In our experiments, we used 3500 randombits in total, where the first 500 bitswere
used for the washout, the following 2000 (Z = 2000) bits were used for learning,
and the last 1000 (Z ′ = 1000) bits were used to estimate the short-term memory
capacity. Hereafter, we call this sequence of 3500 bits a “single shot.”

Since the dynamics of the vortex core exhibited randomness due to thermal fluc-
tuation, the initial conditions, as well as the amplitude noise in the output voltage,
differed for every trial. Thus, the output voltage from the STO differed every run
even when the same voltage pulses were used as input. Therefore, we repeated the
single-shot experiment 60 times using fixed training and test data. The amplitude
was averaged, with which the test data was also reconstructed. Using the average
amplitude for both learning and testing should reduce the amplitude noise, leading
to an increase in short-term memory capacity.
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Fig. 3 a Measurement circuit used in experiments. Input data were preprocessed and injected
into the STO through an arbitrary wave generator (AWG) and low-pass filter. Output voltage was
measured with an oscilloscope after passing through the high-pass filter. Amplitude of output
voltage was estimated using Hilbert transformation. Memory capacity was evaluated by comparing
amplitude of output voltage with input data. b Example of sequential input-voltage pulses and c
voltage output from STO. Intensity, offset, and pulse duration of input voltage were Vint = 100 mV,
Voffset = 250 mV, and �t = 20 ns, respectively (After Tsunegi et al. 2018a)

3.2 Short-Term Memory Capacity in Single STO

Figure4a shows comparisons between the test (red solid line) and reconstructed (blue
dotted line) data using 200 nodes in a single-shot experiment with delay D = 1, 2,
or 3. For D = 1, the reconstructed data reproduced the test data almost perfectly,
indicating that the STO remembered the input voltage applied one bit before the
present pulse. In contrast, the ability to reconstruct data was low for D = 2 and 3.
Using the averaging technique improved the reconstruction data for D = 2, as can
be seen in Fig. 4b. These reconstructed data and Eq. (10) were used to evaluate the
correlation coefficients.

Figure5a illustrates the relationship between delay D and correlation Cor(D)

for the single-shot (red solid line) and averaged data (blue dotted line). The short-
term memory capacities estimated from these data and Eq. (11) were nearly 1.0 for
the single-shot experiment and 1.8 for the “averaged 60 times” experiment. These
results indicate that reducing the amplitude noise of the output voltage is important
for increasing short-term memory capacity.

We performed the same experiment but with values of �t other than 20 ns. The
pulse duration dependency of the short-term memory capacity obtained from the
averaged results is plotted in Fig. 5b by circles. The short-term memory capacity
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Fig. 4 Comparisons between test (red solid line) and reconstructed (blue dotted line) data for a
single-shot and b averaged data. Delay D was 1, 2, and 3 from top to bottom (After Tsunegi et al.
2018a)

Fig. 5 a Square of correlation Cor(D) between the test and reconstructed data for single-shot (red
dotted) and averaged (blue solid) data as a function of delay D. b Dependence of memory capacity
in circuit without (red triangles) and with (blue circles) STO on pulse duration �t (After Tsunegi
et al. 2018a)

decreased monotonically with an increase in the pulse duration for the following
reason. When a voltage pulse is applied to the STO, the vortex core starts to relax to
an oscillation orbit (limit cycle) determined by the voltage. Now let us assume that
a voltage pulse is applied at t = t0 and that the next pulse is applied at t = t0 + �t .
If pulse width �t is sufficiently greater than the relaxation time of the vortex core,
the output voltage for t > t0 + �t is not correlated to that for t < t0. Therefore, the
short-termmemory capacity decreases with an increase in the pulse width. The pulse
width should thus be less than the relaxation time of the STO for reservoir computing.
The relaxation time of the STO strongly depends on the type of oscillator. Roughly
speaking, the relaxation time is of the order of 1/(α f ), where α and f are the
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damping constant and oscillation frequency, respectively (Taniguchi et al. 2017).
The relaxation time of a vortex-type STO is of the order of 10−100 ns (Jenkins et al.
2016; Tsunegi et al. 2018b) whereas that of a macromagnetic STO is of the order of
1−10 ns (Kudo et al. 2010; Suto et al. 2011; Nagasawa et al. 2011). Evaluation of
STO relaxation time will be a key issue for designing reservoir computing based on
spintronics technology.

3.3 Contributions from Other Circuit Components

The definition used for short-term memory capacity in this work needs to be men-
tioned. The memory function of reservoir computing arises from the nonlinear
response of the system to the input data. In the present system, not only the STO
but also the other components in the circuit, such as the AWG and low-pass filter
(Fig. 3a), exhibit nonlinear responses to input data. Therefore, the short-termmemory
capacity evaluated above should be, strictly speaking, regarded as that of the whole
system, and includes the contributions from the other components of the circuit.

To validate the existence of the memory function in the STO, we also evaluated
the short-term memory capacity of the system without the oscillator. The results are
plotted in Fig. 5b by triangles. The short-term memory capacity of the circuit with
the STO exceeded that of the circuit without the STO, proving that the STO has
memory functionality.

3.4 Future Directions

Although thefinite value ofmemory capacity found in thiswork supports the potential
applicationof spintronics devices to artificial neural networks, the short-termmemory
capacity is still low compared with that of other systems such as a quantum reservoir
with several qubits and virtual nodes (Fujii and Nakajima 2017). The low memory
capacity of the present system is due to the trade-off between noise reduction of
noise and capacity enhancement. As explained above, the memory of the past input
voltage is stored in the amplitude of the output voltage. Noise in the amplitude of the
output voltage reducesmemory capacity. Therefore, the changes in the output voltage
amplitude between neighboring nodes should be large enough to be distinguished
from the noise. However, a large change in the output voltage amplitude between the
neighboring nodes means fast relaxation, leading to a reduction in memory capacity.
Therefore, solutions that further enhance memory capacity are needed.

A potential solution is to use an STO with delayed feedback (Khalsa et al. 2015;
Tsunegi et al. 2016b), where the information of past input is naturally stored in the
delayed feedback loop, resulting in an increase in short-termmemory capacity (Riou
et al. 2019; Yamaguchi et al. 2020). Another is to use frequency and/or phase locking
of the STO by using forced ormutual synchronization (Marković et al. 2019; Tsunegi
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et al. 2019). This is because locking by synchronization leads to a reduction in the
amplitude and/or phase noise and thus stabilizes the output voltage (Kaka et al. 2005;
Mancoff et al. 2005; Zhou and Akerman 2009; Locatelli et al. 2015; Urazhdin et al.
2016; Awad et al. 2017; Tsunegi et al. 2018c). Investigating such solution is a future
research direction in reservoir computing using spintronics technology.

4 Reservoir Computing with STO (Simulation)

In this section, we discuss the quantitative analysis of the figures-of-merit for reser-
voir computing usingMTJ devices by employingmacromagnetic simulation. Specif-
ically, not only a reservoir computing system with single MTJ but also one with
multiple MTJs is discussed (Furuta et al. 2018).

4.1 Simulation Methods

Figure6a, b shows schematics of the system used for simulating reservoir computing
using MTJs. As mentioned above, an MTJ contains an insulating tunneling barrier
layer with two ferromagnetic layers. For ferromagnetic layer-1 (the reference layer),
the magnetization direction is designed to be fixed. This can be done by the exchange
bias effect using antiferromagnetic materials, such as PtMn and IrMn (Meiklejohn
and Bean 1956), or magnetic anisotropy energy. Here, the magnetization direction
of layer-1 was fixed perpendicular to the film plane. For ferromagnetic layer-2 (the
free layer), the magnetization direction was not fixed and thus could be controlled
by the current (Katine et al. 2000) or voltage (Shiota et al. 2012). The MTJ device
resistance reflects the magnetization direction.

The magnetization dynamics in ferromagnetic layer-2 follows the LLG equation
with STT given by Eq. (2), without thermal fluctuation in the ferromagnetic layers
(Brown 1963). Here, p andm in Eq. (2) correspond to the unit magnetization vectors
for ferromagnetic layers 1 and 2 in Fig. 6(a) and 6(b), respectively. The effective
magnetic field in the present study is given by

H = −Hazzmzez, (13)

where Hazz is a uniaxial perpendicular anisotropy field. The z-component of m is
denoted as mz , and ez is the unit vector parallel to the z-axis. In our definition,
Hazz > 0 (Hazz < 0) shows in-plane (perpendicular) magnetic anisotropy. The angu-
lar dependence of the STT inEq. (2) is g(θ) = 1/(1 + P2 cos θ) (Slonczewski 2005).
The resistance of the MTJ varies with the relative angle between the spins in the free
and pinned layers, R = 1/G [see also Eq. (14)]
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Fig. 6 a Schematic of reservoir system using magnetization dynamics in an MTJ. b System with
multiple MTJs. Magnetization direction of ferromagnetic layer-2 (s2) could be controlled by input
bias voltage Vin; Magnetization direction of ferromagnetic layer-1 (p) is fixed. c Input sin, bias
voltage Vin input to MTJ device, and MTJ device resistance as function of time, which are typical
characteristics during learning and evaluation processes. Virtual nodes [xk,1 to xk,N during kth
binary input] were defined as shown in figure. d MTJ device resistance as function of static input
DC bias voltage. Black and red plots indicate resistance, when uniaxial anisotropy fields were 500
Oe and 1000 Oe, respectively. V0 and V1 are voltages that rendered device resistance constant (After
Furuta et al. 2018)

R = 2RAPRP

(RAP + RP) + (RAP − RP)(m · p)
. (14)

The time evolution of the MTJ resistance is characterized by sequential calculation
using the fourthRunge–Kuttamethod. For evaluating the short-termmemory and par-
ity check capacities, an input pulse voltage, Vin, corresponding to the computational
input, sin(= 0 or 1), was applied to the MTJs, as depicted in Fig. 6c. Figure6(a) and
6(b) shows the schematics of circuits with single and multiple MTJs, respectively. In
this section, the physical parameters are Hazz = 1000 Oe, α = 0.009, RP = 210 	,
and RAP = 390 	. These values almost follow our previous experimental research
(Miwa et al. 2014).

Figure6c shows an example of MTJ device resistance under input voltage Vin.
We used a pulse voltage with binary values of V0(= −44 mV) and V1(= +44 mV)

as Vin. These binary values correspond to 0 and 1 in sin, respectively, in the reservoir
computing learning and evaluation processes. The pulse width (20 ns in Fig. 6c, for
instance) corresponds to the discrete unit time step. Because the device resistance
is scalar, the node dimension is simply one. However, the number of nodes can be
increased by using virtual nodes (Appeltant et al. 2011; Nakajima et al. 2018). As
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Fig. 7 a Input s′
in, test data y

′
STM [Eq. (8)with D = 1], and reconstructed data y′

R used for evaluating
the short-term memory task. b Input s′

in, test data y
′
PC, (Eq. (9) with D = 1), and reconstructed data

y′
R used for evaluating parity check task. c Correlation using Eq. (10); integrated values are defined
as short-term memory capacity (CSTM). d Correlation using Eq. (10); integrated values are defined
as the parity check capacity (CPC). Input-voltage pulse width was 20 ns, and number of virtual
nodes was 50 (After Furuta et al. 2018)

shown in Fig. 6c, the virtual nodes xk,1 to xk,N during the kth binary input are defined,
where output signal xk,i in the figure is the resistance with suffix i = 1, 2, . . . , N
corresponding to the node number. These virtual nodes are further defined as a node
vector xk .

Figure6d depicts the DC bias voltage dependence of the static MTJ device resis-
tance. Under DC bias voltage conditions, the resistance was measured after the
magnetization dynamics were damped. Under positive bias voltage conditions, the
spin-polarized current flowed from the free layer to the pinned layer, and the STT
induced auto-oscillation in m. The relative magnetization angle between p and m
increased, and an antiparallel-like magnetization configuration was realized. This
means that the device resistance increases when a positive bias voltage is applied.
Under negative bias voltage conditions, a parallel-like magnetization configuration
was induced, and the device resistance decreases. For the input pulse voltage depicted
in Fig. 6c, the binary values V0 and V1 are defined as voltages that rendered device
resistance constant. As shown in Fig. 6d, V0 and V1 depended on uniaxial magnetic
anisotropy Hazz .

4.2 Short-Term Memory and Parity Check Capacities
in Single STO

In this section, we present figures-of-merit for reservoir computing using a single
MTJ device. The uniaxial magnetic anisotropy of the free layerm was fixed: Hazz =
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Fig. 8 a, b Results of reservoir computing using single MTJ for short-term memory capacity
(CSTM), and parity check capacity (CPC) as a function of input-voltage pulse width; N is number of
virtual nodes in MTJ. c, d Results of reservoir computing using multiple MTJs for CSTM and CPC
with seven MTJs (M = 7) as function of input-voltage pulse width. Uniaxial magnetic anisotropy
ratio (Hazz,k+1/Hazz,k ) was 1.6 (After Furuta et al. 2018)

1000 Oe. Recall that a positive value of Hazz means that the magnetic cell in the MTJ
is in-plane magnetized. Figure7 shows the simulated data used for evaluating the
short-term memory and parity check capacities for a single MTJ. The input-voltage
pulse width was 20 ns and the number of virtual nodes, N , was 50. Figure7a shows
typical simulation results for input s ′

in, test data for short-term memory task y′
STM,

and reconstructed data y′
R as a function of time. Similarly, Fig. 7b shows input s ′

in,
test data for parity check task y′

PC, and trained output y′
R. Delay D in both figure

was 1. The training and test data for the short-term memory task and parity check
task are defined by Eqs. (7) and (12), respectively. The output was calculated using
the simulated MTJ resistance (see Fig. 6c) and the weight. The weight was trivially
calculated using the definitions given by Eq. (8). Figure7c, d depicts the correlations
[Eq. (10)] between the test and reconstructed data as a function of D. CSTM and CPC

are defined as the numerical integration of the correlation [see Eq. (11)] and as the
capacity using training data for the short-termmemory and parity check, respectively.

Figure8(a) and 8(b) shows the short-term memory CSTM and parity check CPC

capacities, respectively, as functions of the input-voltage pulse width with virtual
nodes N . Both CSTM and CPC increased with the pulse width until it reached ∼ 20
ns. They then remained nearly constant. When the pulse width is less than 20 ns, the
change in the magnetization direction is very small, so the magnetization dynamics
cannot work as a reservoir.
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4.3 Short-Term Memory and Parity Check Capacities
in Multiple STOs

WhenmultipleMTJs are used for reservoir computing, higher figures-of-merit can be
obtained. A schematic of a multiple-MTJ circuit for reservoir computing is depicted
in Fig. 6b. MTJs are placed in parallel, and an identical pulse voltage is applied to all
of them. Spatial multiplexing (Nakajima et al. 2019) is used to construct the nodes for
reservoir computing. The node vector has M × N elements, where M is the number
of MTJs and N is the number of virtual nodes in an MTJ:

xL ,k =
⎛
⎜⎝
xL ,k,1

...

xL ,k,N

⎞
⎟⎠ , (L = 1, 2, . . . , M) , (15)

xk ≡ (
x1,k,1 · · · x1,k,N x2,k,1 · · · x2,k,N · · · xM,k,N

)t
, (16)

where “t” indicates a transposed vector, and xL ,k,i is the signal output from the Lth
MTJ (L = 1, 2, . . . , M) at the i th node (i = 1, 2, . . . , N ) in response to the kth
binary data input (k = 1, 2, . . . , Z ).

We tested various sets of uniaxial anisotropy Hazz of ferromagnetic layer-2 in each
MTJ (see Table1). For instance, when fourMTJs were used and Hazz,k/Hazz,k+1 = 2,
the uniaxial anisotropies of the MTJs were 1000 Oe, 500 Oe, 250 Oe, and 125
Oe. Such variations in anisotropy can be obtained by voltage-controlled magnetic
anisotropy in the MTJs (Maruyama et al. 2009). In this study, thermal fluctuation
in ferromagnetic layer-2 was neglected. For instance, thermal fluctuation energy at
room temperature (26 meV) is negligibly small compared to magnetization energy
MsHazzV/2 (∼ 10 eV) when Hazz = 1000 Oe. Here, Ms and V are the saturation
magnetization and volume of the free layer and were assumed to be 1375 emu/c.c.
and 23500 nm3, respectively (Miwa et al. 2014). Therefore, thermal fluctuation is
comparable to or less than the magnetization energy of ferromagnetic layer-2 for
Hazz < 3Oe. In this region, simulation assuming the ground state is not very accurate,
so a randommagnetic field to reproduce the thermal fluctuation (Brown 1963) should
be included in the simulation. Similar to the procedure for a single MTJ, the binary
values V0 and V1, the voltage input to the MTJs, were determined as shown in
Fig. 6d. Note that V0 and V1 vary as a function of the uniaxial anisotropy field, and
the smallest absolute values of the saturation voltages are used for as V0 and V1 for
reservoir computing with multiple MTJs, i.e., V0 and V1 are determined for the MTJ
with the smallest uniaxial magnetic anisotropy field.

We characterized CSTM and CPC as functions of anisotropy ratio Hazz,k/Hazz,k+1.
In the simulation, the input-voltage pulse width was 20 ns, and the number of virtual
nodes for each MTJ was 50 for all MTJs. The maximum value of CSTM increased
with the number of MTJs (M). Because each MTJ had a different uniaxial magnetic
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Table 1 Sets of uniaxial magnetic anisotropy used for reservoir computing with multiple MTJs

Hazz/Hazz,k+1 Hazz,1 Hazz,2 Hazz,3 · · · Hazz,7

1.0 1000 Oe 1000 Oe 1000 Oe · · · 1000 Oe

1.1 1000 Oe 909.1 Oe 826.4 Oe · · · 564.5 Oe

1.2 1000 Oe 833.3 Oe 694.4 Oe · · · 334.9 Oe

· · · · · · · · · · · · · · · · · ·
2.9 1000 Oe 344.8 Oe 118.9 Oe · · · 1.7 Oe

3.0 1000 Oe 333.3 Oe 111.1 Oe · · · 1.4 Oe

anisotropy field Hazz , it had a different response speed to an external voltage/current.
This variation in the response speed increased the CSTM of the system. In contrast,
the increase in CPC was insignificant compared to that in CSTM because there was no
electric and/ormagnetic interaction between the free layers of theMTJs. For instance,
we found that Hazz,k/Hazz,k+1 = 1.6 was the best condition for maximizingCSTM for
M = 7. As shown in Fig. 8c, the CSTM was maximum around a pulse width of 20 ns.
When the pulse width was smaller, the change in the magnetization direction due to
the STT is too small for performing as a reservoir. When the pulse width was greater
than 20 ns, the magnetization dynamics was almost completely damped during each
unit time step, and such a condition is not preferable for reservoir computing. As
shown in Fig. 8d, the best conditions are not the same for CSTM and CPC. This is
because a relatively long pulse is required to induce nonlinearity in themagnetization
dynamics, in multiple MTJs.

4.4 Comparison with Echo-State Network

We used an echo-state network for comparison (Jaeger and Haas 2004; Jaeger 2001).
An echo-state network is also a kind of RNN, in which the input-to-reservoir weight
Win and internal weights W between nodes are random, whereas the reservoir-to-
output weight is optimized. The node vector at time step k of the echo-state network
is determined in terms of the node vector at the previous step and the input at time
step k. The following function is used as a node vector of the echo-state network,

xESN,k = tanh
(
Wxk−1 + Winsin,k

)
. (17)

The hyperbolic tangent function is used for component-wise projection. Weights W
and Win are given in a matrix and vector, respectively, in which the components
are time-independent random values from −1 to +1. We normalized W by dividing
each component of W by the spectral radius, which is the largest absolute value
of the eigenvalues (singular value) of the weight matrix (Verstraeten et al. 2007).
Weight Win is also normalized by its spectral radius. The CSTM and CPC obtained
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Fig. 9 Plots showingCSTM versusCPC in aMTJ system and b echo-state network. InMTJ system,
pulse width and number of virtual nodes (N ) of each MTJ were fixed to 20 ns and 50, respectively
(After Furuta et al. 2018)

using a multiple MTJ system are plotted in Fig. 9a; the pulse width was 20 ns and
the number of virtual node was 50 for each MTJ. The data points from top to bottom
correspond to increase in Hazz,k/Hazz,k+1 from 1.1 to 3.0. TheCSTM andCPC obtained
using the echo-state network are shown in Fig. 9b. The data points from top to bottom
correspond to increase the spectrum radius of the weight from 0.05 to 2.0. The results
shown in Fig. 9 indicate that high-performance reservoir computing, similar to that
of an echo-state network with 20–30 nodes, can be obtained for reservoir computing
using 5–7MTJs. In terms of the total number of virtual nodes in the system (M × N ),
35 nodes (7 × 5) in an MTJ system are comparable to 20–30 nodes in an echo-state
network. Although CPC increased slightly with M , we can obtain a large CPC if there
are magnetic and/or electrical interactions between the free layers in each MTJ.

5 Conclusion

In this chapter, we have described advances in brain-inspired computing devices
based on spintronics technology. We have reviewed recent experimental and numer-
ical work and reported our efforts in investigating the applicability of spintronics
auto-oscillators (spin-torque oscillators, STOs) to recurrent neural networks. Spin-
tronics devices have several attractive features for brain-inspired computing, such
as low power consumption, applicability to high-density structures, a large output
signal, and highly nonlinear and fast magnetization dynamics. Therefore, spintronics
technology is promising for further development of artificial neural networks. How-
ever, the basic properties of spintronics devices, from the viewpoint of brain-inspired
computing, have not been fully revealed yet. To prove the applicability of spintronics
technology to computing, we need a deep understanding of magnetization dynamics
in nanomagnets.



356 T. Taniguchi et al.

We have experimentally evaluated the short-term memory capacity of a reservoir
computing with an STO.We have demonstrated the feasibility of learning and testing
from output voltage by applying a time sequence of random voltage pulses to the
STO. The short-term memory capacity obtained from the average output voltage
was maximized to 1.8 under optimum conditions. Although this value includes the
contribution not only from the STO but also from the other circuit components, the
oscillator was shown to have a finite memory functionality. This indicates that it is
important to reduce the amplitude noise in an STO applied to reservoir computing.
The short-term memory capacity was increased by using a short pulse duration of
20 ns, which is comparable to the relaxation time (10–100 ns) of the oscillator. This
indicates that it is also important to set the duration of the input pulses appropriately.

Using macromagnetic simulation, we demonstrated reservoir computing using
the magnetization dynamics in MTJs. With reservoir computing using 5–7 MTJs,
we can obtain performance similar to that of an echo-state network using hyperbolic
tangent function with 20–30 nodes. Higher performance can be obtained by enabling
magnetic and/or electrical interactions between the free layers in each MTJ.
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Reservoir Computing
with Dipole-Coupled Nanomagnets

Hikaru Nomura, Hitoshi Kubota, and Yoshishige Suzuki

Abstract An idea to use a magnetic nano-dots array for a reservoir computing
is introduced. The mechanism of how the nonlinear calculation is carried out in
the magnetic system is explained by showing the simplest case with three nano-
dots system. The first trial to prove calculation ability and fabrication ability of
the system is demonstrated. Since the proposed reservoir computing system may
utilize integration technology of the magnetic random access memory (MRAM), it
possesses a possibility to realize a large-scale reservoir computing system.

1 Spin-Glass Model and Spin-Glass Reservoir Computing

The Hopfield model (Hopfield 1982) and the Boltzmann machine (Ackley et al.
1985) are well-known mathematical models of recurrent neural networks (RNN).
They are based on a physical model of magnetic material with randomness (Amit
and Gutfreund 1985) called a spin glass. Classical view of the spin is a rotation
of the electron itself that causes magnetic moment of the atoms. In a spin glass,
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each atom acts as a magnet and interacts with each other via a quantum mechan-
ical exchange interaction, J. In terms of neural concepts, the direction of magnetic
dipole moment of an atom can be considered as the electrochemical potential of a
neuron and the interaction J as the synaptic weight. Thus, magnetic materials can
be treated as models of RNN and sophisticated techniques from statistical physics
can be applied to analyze RNNs. In particular, the “infinite range model” (Fig. 1),
where an infinite number of atoms (neurons/nodes) with all inter-atomic exchange
interactions (inter-neuron/inter-node connections), is considered, which simplifies
the problem tremendously because the mean-field approximation from statistical
physics can provide an exact solution for the model. In addition, the Ising spin
model, in which the direction of the magnetic moment is constrained along +z- or

Fig. 1 Infinite range model of a spin glass. Orange disks are atoms with magnetic momentum
vectors (arrows). Black lines express exchange interactions, J, between two atoms. Depending on
the sign of J, connected two magnetic moments prefer parallel or antiparallel configurations. Since
all atoms are connected by lines, the model is regarded as an “infinite range model.” This is an
idealization of the real spin glass, in which the atoms align in a solid and the exchange interactions
are limited between neighboring atoms. In terms of neuromorphic computation, the atoms represent
neurons (nodes), and lines represent axons/synapses complex (undirected inter-connections and
synaptic weights). In the spin-glass system, because of a randomness in the atom positions, J is
distributed. As a consequence, the system has many energy minima. This means that the system has
many quasi-equilibrium states with complicated alignments of magnetic moments. In this chapter,
we aim to use such a system as a reservoir
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Fig. 2 aMRAM.TheMRAMcomprisesmagnetic tunnel junctions (MTJs) and selection transistors
underneath (not shown). As an example, the MTJ can have a magnetic free layer of 20 nm × 20 nm
× 2 nm. The direction of the magnetic moment in the free layer, which is illustrated by the white
arrow in the black layer, corresponds to one bit of binary information. Since the resistance of the
MTJ depends on the relative angle between the free layer magnetic moment and the reference
layer (white arrow in the gray color layer) (Yuasa et al. 2004; Parkin et al. 2004), one may read
out individual bit information electrically. bMagnetic reservoir made of MTJ array. The magnetic
dipole interaction between the magnetic free layers allows linear/nonlinear operations among the
stored information and makes the system an effective reservoir

–z-directions, can also simplify the problem without losing its essential calculation
ability. These generalizations and simplifications of the spin-glass model resulted in
the Hopfield model and Boltzmann machine.

Therefore, one may expect that magnetic materials can serve as good natural
systems to realize RNNs. However, limited researches have been done to produce
RNNs using the spin glasses. This is because individual atomic magnets cannot be
easily controlled. On the other hand, recent developments in the field of electronics
have made it possible to integrate large numbers of nano-sized magnets (hereafter
called “nanomagnets”) to construct a solid-state magnetic random access memory
(MRAM) (Bhatti et al. 2017) (Fig. 2a). In MRAM, one may read out each bit infor-
mation, which is stored as the direction of the magnetic moment in a cell, using
the magnetoresistive effect (Yuasa et al. 2004; Parkin et al. 2004). The cell is called
as a magnetic tunnel junction (MTJ), in which the resistance is dependent on the
relative angle between two magnetic dipole moments in the junction, i.e., of free
layer and reference layer. One may also write-in the information by applying either
a current (Myers et al. 1999) or a voltage (Maruyama et al. 2009). To construct a
stable memory, the interaction between the nanomagnets is removed in the MRAM.
In contrast, here, we intentionally use the interaction between the nanomagnets to
allow the MRAM to work as a spin-glass system and perform as an RNN. Since
nanomagnets are electronically separated in the MRAM, the exchange interaction
between the cells does not exist. However, magnetic dipole interaction exists that
allows nanomagnets to perform linear/nonlinear calculations, as it will be explained
later in this chapter (Fig. 2b). The strengths of the magnetic dipole interactions are
determined from the size of magnetic dipole moments and distance between the
magnets. Therefore, they cannot be modified after the device has been fabricated.
This means that the system can be considered as an RNNwith fixed synaptic weights.
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As a consequence, the framework of reservoir computing (Jaeger and Haas 2004) is
needed to perform machine learning.

As magnetic systems have rich dynamics, usage of dynamic states can increase
the performance of magnetic reservoirs. For example, spin-torque oscillators offer a
relatively high performance when used as a reservoir working at high frequency (see
the chapters by Grollier and Tsunegi). In this chapter, we show that static magnetic
systems have also shown relatively high performance by increasing the number of
nanomagnets. In particular, we show that the voltage control of magnetic anisotropy
(VCMA) offers away to realize a large-scale, high-performance, and energy-efficient
magnetic RNN.

2 Historical Design of the Magnetic Boolean Calculator

A Boolean operation element using dipole-coupled nanomagnets is called a nano-
magnet logic (NML) (Cowburn and Welland 2000). NML comprises nanomagnets
with single magnetic domain states. The binary state is defined by the polarity of the
magnetic moment of the nanomagnet that is similar to MRAM. The nanomagnets
communicate each other via dipole interaction. The magnetic moment of a nano-
magnet aligns parallel to the stray field from surrounding nanomagnets. Since the
direction of the stray field is determined by the major polarity of the surrounding
magnets, the NML gate is basically a majority gate. A transmission line (Cowburn
andWelland 2000), a NAND/NOR gate (Imre et al. 2006; Hikaru and Ryoichi 2011),
a shift register (Hikaru et al. 2017), etc. have been previously realized (Orlov et al.
2008). Figure 3a, b shows a scanning electron microscope (SEM) image of the
NML-NAND/NOR logic gate (Hikaru and Ryoichi 2011) and magnetic force micro-
scope images of a typical operation results, respectively. Until now, NMLs have been
designed to perform only Boolean operations. However, if the analog value of the
magnetic moment vector is used, the NML becomes an attractive candidate for a
physical reservoir.

Fig. 3 a SEM image of the
NML NAND/NOR gate.
bMagnetic force microscope
images of a typical operation
of the NML NAND/NOR
gate (Hikaru and Ryoichi
2011)
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3 Linear and Nonlinear Calculation Using Nanomagnets

The energy (Hamiltonian:H) of a single nanomagnet with uniaxial anisotropy under
an external magnetic field is written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

H = − 1
∣
∣
∣ �M

∣
∣
∣
2

�Mt K̂ �M − μ0 �M · �Hext

K̂ = KuV

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠

, (1)

where �M is the magnetic moment vector, K̂ is the anisotropy tensor, Ku > 0 is the
uniaxial anisotropy energy par unit volume,V is the volume of the nanomagnet,μ0 is
the magnetic susceptibility of vacuum, and �Hext is the external magnetic field vector.
If we can neglect formation of a magnetic domain inside the nanomagnet, the size

of the magnetic moment,
∣
∣
∣ �M

∣
∣
∣, is the constant whereas it may change the direction.

Here, we assumed a disk-like nanomagnet, where the z-axis is perpendicular to the
plane of the disk (Fig. 4a). Note that �M is stable if its direction minimizes H.

In Fig. 4b, the magnetic hysteresis curves for an external field parallel to �ex + �ez
(45° from the normal line of the disk) are shown. The solid and dotted curves show
the x- and z-components of �M , respectively. When there is no external field, because
of the uniaxial magnetic anisotropy, there are two equilibrium points, which are
indicated as (i) and (i’) in Fig. 4b, i.e., �M = ±M�ez , where �ez is the unit vector in the

Fig. 4 a Schematic diagram of MTJ with perpendicular anisotropy. The free and reference layers
aremade of ferromagneticmaterials and are separated by an insulator layer such asMgO.Employing
a very thin insulator (about 1 nm), one may get a tunneling current through the insulator that is
dependent on the relative angle between the two magnetic moments at both sides of the insulator
layer. To avoid a stray magnetic field from the reference layer, the reference layer comprises two
magnetic layers with opposite magnetic moments. b Magnetic moment as a function of external
magnetic field, which is applied at an angle of 45° from the symmetrical axis of the MTJ. Further
details are provided in the text. cApplicationof a voltage on theMTJ reduces themagnetic anisotropy
energy and coercive force, Hc, through the VCMA
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z-direction. Now, we trace the hysteresis starting from a state with �M = −M�ez . It
means that the x- and z-components of �M are 0 and −M , respectively (Fig. 4b (i)).
When the external magnetic field increases, �M begins to tilt toward the x-direction.
Therefore, bothMx andMz increase (Fig. 4b (ii)). Here, although the energy at point
(ii’) is smaller than that at point (ii), the state remains at point (ii), which corresponds
to a local minimum in the Hamiltonian.When themagnetic field reaches the coercive
force, Hc, the saddle point that separates the two minima disappears. Then, the state
does not stay at (iii) but jumps to (iii’). As a consequence,Mz becomes positive and a
small jump occurs forMx. Although a small jump exists, we can assume thatMx is a
sigmoid-like function ofHext. In an array of nanomagnets, the magnetic field exerted
on a nanomagnet is the sum of all dipole fields made by the other nanomagnets.
Therefore, the nanomagnet calculates a sigmoid-like function of the sumof the dipole
fields. Hence, the nanomagnet has a nonlinear calculation power. In contrast toMx,
Mz shows a large hysteresis. The jump frompoint (iii) to point (iii’) corresponds to the
firing of a neuron that has a certain threshold. After firing, the nanomagnet stores the
information about the sign of the previous external magnetic field until another large
external field is applied. Therefore, a nanomagnet has a memory function. In Fig. 4c,
the effect of voltage application on the hysteresis curve is shown. The application of
a voltage reduces the magnetic anisotropy and correspondingly reduces the coercive
force,Hc. As a consequence, state at point (ii) may jump to point (ii’). By using these
phenomena, the information about the sum of the dipole fields can be written to the
nanomagnet.

The Hamiltonian of an array of nanomagnets is written as follows:

Harray = μ0

⎛

⎝−
∑
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�Mt
i Ĵi j �Mj −

∑
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where
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Here, �Mi , K̂i , Ku,i , and Vi are the magnetic moment vector, anisotropy tensor,
uniaxial anisotropy energy par unit volume, and volume of the nanomagnet at site i,
respectively. D̂dipole,i j , and �ri j are the dipole matrix, and relative position vector at
site i with respect to a nanomagnet at site j, respectively.

By observing the first line in Eq. (2), one may find that the Hamiltonian is similar
to that of the spin glass although it is a classical Hamiltonian with dipole interaction.

From Eq. (2), one can obtain effective magnetic field, �Hef f ct,k , exerted on the kth
nanomagnet as follows:

�Heffect,k = − 1

μ0

∂Harray

∂ �Mk

= �Hani,k +
∑

i �=k

�Hdipole,ki + �Hext

where,
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K̂k
∣
∣
∣ �Mk

∣
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∣
2

�Mk : Anisotropy filed

�Hdipole,ki = D̂dipole,ki �Mi : Dipole field

. (4)

The effective field is a sum of anisotropy field, dipole field, and external field.
The kth magnetic moment is stable if it is parallel to the effective field at the site.
Therefore, it may calculate a sigmoid-like function of the sum of those fields.

A schematic diagram of a dipole magnetic field around a nanomagnet is shown in
Fig. 5a. Because of the field, two nanomagnetswith perpendicularmagneticmoments
couple antiparallelwith each otherwhen the dipole field is smaller than the anisotropy
field. Under large dipole fields, the magnetic moments turn to in-plane and align
parallel to the line that connects the two nanomagnets. If there are three nanomagnets
on a plane, e.g., at the vertices of an equilateral triangle (see Fig. 5b), “frustration”
happens. Then, for a large dipole field, all the magnetic moments turn into the plane
and align circularly; this is called the vortex state.
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Fig. 5 aMagnetic dipole field distribution around a nanomagnet. bA system with three nanomag-
nets, which are placed at the vertices of an equilateral triangle. c A system with three nanomagnets,
where the magnetic moments of magnets 1 and 2 are parallel. d A system with three nanomagnets,
where the magnetic moments of magnets 1 and 2 are antiparallel. Here, magnets 1 and 2 are used
for the input of information and magnet 0 is used for the output. The values 0 and 1 correspond
to the magnetic moments in the −z− and +z-directions, respectively. The arrows beside the disk
represent the magnetic moment vectors

Now, we discuss a realistic case that employs a system with three nanomagnets
(see Fig. 5c, d). Three nanomagnets are placed on a plane and arranged at the vertices
of an isosceles right triangle. A smallmagnetic field toward+x-direction is applied to
break the time-reversal symmetry (see Fig. 5). For this model, we can find a stable set

of
{ �Mi

}
by finding the minima inHarray. Figure 5c, d shows two stable alignments of

the magnetic moments. The z and in-plane components of the magnetic moments are
also shown. Here, as for an example, we employ nanomagnets with radius, thickness,
and saturation magnetization as 20 nm, 2 nm, and 1.3 MA/m, respectively. Magnetic
anisotropy field for perpendicular magnetization without voltage application is about
3.1 mT (2.5 kA/m). Distance between magnet 1 and 2 is 50 ×√

2 nm. In Fig. 5c, the
magnetic moments of both magnets 1 and 2 point toward the +z-direction, which
corresponds to the “1” state. As a consequence, the magnetic moment of magnet
0 points toward the –z-direction (“0” state) because of dipole coupling. The state
is obtained using the following protocol. First, the magnetic moments of magnets
0, 1, and 2 are set to point toward the +x-, +z-, and +z-directions, respectively.
Then, the system is relaxed to find a minimum in Harray near the initial state. After
relaxation, a voltage is applied to reduce the perpendicular anisotropy of magnet
0. The voltage is increased slowly compared with the relaxation time to keep the
system at the energy minimum. After reaching zero anisotropy, the voltage is slowly
removed until it becomes zero. Using this protocol, the information about the dipole
field at the position of magnet 0 is written to magnet 0. The alignment shown in
Fig. 5c is natural because the distances between magnets 0 and 1 and magnets 0 and
2 are smaller than that of magnets 1 and 2. Figure 5d shows a case where themagnetic
moments of magnets 1 and 2 are almost antiparallel. For this case, the frustration of
the systemmakes the perpendicular magnetic moments unstable and all the moments
tilt to make a vortex-like in-plane component. The magnetic moment of magnet 0
prefers the +z-direction as a consequence of the delicate balance of the two dipole
couplings and the external field.
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Table 1 Normalizedoutput of the systemwith three nanomagnets (Fig. 5b, c) and linear calculations
between them. The system provides enough information to calculate AND, OR, and XOR functions
using only linear calculus

M1 = a M2 = b Mz = c Mx = d AND =
1
2 (a + b − d)

OR =
1
2 (a + b + d)

XOR = d

0 0 1 0 0 0 0

0 1 −0.8 1 0 1 1

1 0 0.8 1 0 1 1

1 1 −1 0 1 1 0

M1 = a M2 = b Mx = c AND =
1
2 (a + b − c)

OR =
1
2 (a + b + c)

XOR = c

0 0 0 0 0 0

0 1 1 0 1 1

1 0 1 0 1 1

1 1 0 1 1 0

Without an external magnetic field, the time-reversed states are also stable and
degenerate in energy. Note that, by time reversal, all the magnetic moments are
reversed.With a small external magnetic field, the time-reversal symmetry is broken,
and degeneracy of the time-reversed states is released. As a consequence, the time-
reversed state of the antiparallel alignment of magnets 1 and 2 (Fig. 5d) is not stable.
Instead, a state with reversed perpendicular moments and non-reversed in-plane
momentswith respect to the state shown inFig. 5dbecomes stable. The configurations
of the magnetic moments of all the states are listed in Table 1. The 0 and 1 in the first
and second columns represent the magnetic moments pointing toward the z- and –z-
directions, respectively. The third and fourth columns show the normalized values of
the z- and x-components of the magnetic moment of magnet 0, respectively. By using
those four values, results for the AND, OR, and XOR operations can be obtained
using only linear calculus as shown in the fifth, sixth, and seventh columns of Table 1,
respectively. This means that the systemwith three nanomagnets has linear/nonlinear
calculation ability and can be used as a reservoir for reservoir computation. Note that
such property based on the time-reversal breaking can be obtainedwithout an external
field if a system with four nanomagnets is employed. The breaking of the time-
reversal symmetry can also be incorporated by taking into account magnetization
dynamics with energy dissipation.

4 First Trial of the Dipole-Coupled Nanomagnet Reservoir

As for a first trial, an array system with 8 × 8 × 2 (=128) nanomagnets was tested
using a micromagnetic simulation. Figure 6a, b shows the schematic diagram of
reservoir computing with dipole-coupled nanomagnet reservoir and the schematic
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Fig. 6 a Schematic diagramof reservoir computingwith dipole-coupled nanomagnets.bSchematic
diagram of the top view of the reservoir with dipole-coupled nanomagnets

diagram of the top view of the reservoir with perpendicular magnetic anisotropy
film, respectively. The radius and thickness of the nanomagnets were 20 nm and
0.3 nm, respectively. The gap between the nearest neighbor dots was 10 nm. The
z-components of the normalized static magnetic moments of the nanomagnets were
used as the state of the nodes denoted by mz. The nodes (magnetic moments of
the nanomagnets) are connected via magnetic dipole interactions. As mentioned
previously, the static directions of the magnetic moments of the nanomagnets were
determined from the previous direction of the magnetic moments and the dipole
interaction between the entire nanomagnets in the reservoir. Therefore, the reservoir
can be considered as a recurrent neural network. Some nodes were connected to the
input layer u in the computer, and every nodes were connected to the output matrix
w made in the computer. A dot product of the node state and the output matrix was
stored in the output layer as the output of reservoir computing (o = u •w). Binary
and analog data were stored in the input layer and the output matrix, respectively.

First, when new data were set in the input layer, they were written to the input
nodes (stage 1). To evaluate the system, as will be explained later, we randomly chose
48(=8 × 6) nodes from the 64 nodes of Group I (Fig. 6b) to be the input nodes and
connected them to the input layer. The data in the input layer corresponding to the
directions of magnetic moment were written using a writing method for MRAM.
When the value in the input layer is 0/1, the direction of the magnetic moment of the
input node is set to point toward the −z/+z-direction.

Next, the state of the node was updated. To update the node state, we changed
the magnetic anisotropy of the nanomagnet using the VCMA method. After writing
the data to the input nodes, a bias voltage was applied to the Group II nanomagnets
(stage 2) and then removed (stage 3). By applying an appropriate bias voltage to the
nanomagnets, the magnetic anisotropy of the nanomagnets disappeared. With this
change of magnetic anisotropy, the magnetic moments of the nanomagnets transi-
tioned to the next state. During this transition, linear/nonlinear operations occurred
as the directions of the magnetic moments of the nanomagnets changed.

The node state in stage 3 was connected to the output matrix. The node state (i.e.,
the z-components of themagnetic moments of the nanomagnets) wasmeasured using
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a reading method for MRAM (e.g., a reading method using tunneling magnetore-
sistive effect). A dot product of the node state and the output matrix was stored in
the output layer using an external hardware. Then, a bias voltage was applied to the
Group I nanomagnets (stage 4) and then removed (stage 5). The state of the node
was updated by repeating the processes from stage 1 to stage 5.

In order to evaluate the behavior of the magnetic reservoir, we performed micro-
magnetic simulations. We assumed that the nanomagnets take single-domain states
and we used a single cell for a single nanomagnet in the simulations. The static direc-
tion of the magnetic moment was calculated by solving the Landau–Lifshitz–Gilbert
(LLG) equation using the fourth-order Runge–Kutta method. The LLG equation at
0 K is as follows:

d �Mi

dt
= −γLL �Mi × �Hef f,i − αγLL

∣
∣
∣ �Mi

∣
∣
∣

�Mi ×
( �Mi × �Hef f,i

)
, (5)

α, γ LL, and Ms are the damping constant, gyromagnetic ratio in the Landau–
Lifshitz form, and saturation magnetization of the nanomagnets, respectively. The
simulation parameters used were as follows: α = 0.5, γLL = 2.211

/(
1 + α2

) =
1.7688 m

/
As, and

∣
∣
∣ �Mi

∣
∣
∣/Vi = 1.3 MA/m. Here, we employed large damping

constant to shorten calculation time for the simulation. The large value ofα employed
here does not affect the following results since we only use static states for the RC.
The typical value of the α is from 0.001 to 0.1 for metals.

We performed the NARMA10 task (Atiya and Parlos 2000) to evaluate the perfor-
mance of the reservoir, which was previously to evaluate the performance of reser-
voirs (Appeltant et al. 2011; Nakajima et al. 2015). In the NARMA10 task, the output
of step ys+1 is obtained from the previous inputs us–k and outputs ys–k by the following
equation:

ys+1 = 0.3ys + 0.05ys
(∑9

k=0
ys−k

)
+ 1.5usus−9 + 0.1. (6)

For the input us , random values ranging from 0 to 0.5 were used. The input data
were normalized to an 8-bit unsigned integer before storing in the input layer. In each
step, the 8-bit data was written to the 48 input nodes in the reservoir. This means
that each data bit was simultaneously written to six different nodes. Since only the
current input was written in a single step, the reservoir is requested to have up to 10
short memory to fulfill the NARMA10 task.

We trained the output matrix using 2408 steps of training data with the least-
squares method. The performance of reservoir computing was evaluated using
NRMSE (normalized root-mean-square error) expressed by the following equation:

NRMSE =
√

∑Ntest
s=1(os − ys)

2

Ntestσ 2(ys)
, (7)
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Fig. 7 Typical output result
of reservoir computing with
dipole-coupled
nanomagnets. The solid and
dotted lines show the output
data of reservoir computing
with trained matrix and the
answer data with the
NARMA10 function,
respectively

where Ntest is the number of test data, os and ys are the output data and answer at
step s, respectively, and σ 2(yk) is the variance of the answer.

Figure 7 shows a typical output result of reservoir computing with dipole-coupled
nanomagnets. The solid line shows the output data of reservoir computing with
trained matrix and the dotted line shows the answer data with the NARMA10 func-
tion. The reservoir with the nanomagnet radius of 40 nm, the thickness of 10 nm,
the nearest inter-dot distance of 10 nm, Ku of 0 or 20 kJ/m3, was used in Fig. 7. The
output data of the trained reservoir computing show similar values as compared to
the answer data. We calculated the NRMSE of the reservoir with 602 steps of the
input data. The results show that the NRMSE between the output and answer data is
0.85, which is not low enough compared with those obtained by other methods. This
is because the dipole-coupled nanomagnet reservoir used for the first trial (Fig. 6b)
cannot hold sufficient old input values for the NARMA10 task. By changing the
position of the node connected to the input layer and the updating procedure of the
node state, the short-term memory capacity (Nomura et al. 2018) can be achieved
with an NRMSE of 0.23 in the NARMA10 task with dipole-coupled nanomagnet
reservoir (Zhu et al. 2018).

Figure 8 shows the SEM image of the prototype reservoir with dipole-coupled
nanomagnets. The prototype reservoir comprises 8 × 8 nanomagnets with 2 × 2
contact holes. The distance between the nanomagnet of the prototypic reservoir was
12 nm. The micromagnetic simulations confirm that this structure can be used as a
dipole-coupled nanomagnet reservoir.

5 Guiding Principle for the Future

We showed that the static magnetic moment vector in a dipole-coupled nanomagnet
array behaves as a reservoir. The randomness of the inter-layer/inter-node coupling
may enhance the performance of themagnetic reservoir. In the first trial, we randomly
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Fig. 8 SEM image of the
prototype reservoir

connected the input layer and the nodes in the reservoir. However, inter-node random-
ness was not utilized. Such randomness can be implemented by randomly changing
the size and arrangement of the nanomagnets. Depending on the arrangement of the
nanomagnets, the dipole-coupled nanomagnet array can behave as a spin glass or
spin ice (Jensen et al. 2018). These arrangements can be used as a reservoir.

As described above, the MRAM reading/writing technology can be used to read
the node state. Moreover, the inter-node connection using magnetic dipole coupling
solves the wiring problem in realizing the hardware for RNN. The dipole-coupled
nanomagnet reservoir, which is capable of creating interfaces with semiconductor
technology by various existing technologies, is a candidate for practical use of phys-
ical reservoir computing.With theMRAM technology, onemay fabricate giga-nodes
class reservoir in principle. The guiding principle, however, to obtain better perfor-
mance in a very large reservoir has not yet established. Nonetheless, explorations on
the human brain class (21 giga-neurons) reservoir computing are not a dream.
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Performance Improvement
of Delay-Based Photonic Reservoir
Computing

Kazutaka Kanno and Atsushi Uchida

Abstract The techniques for performance improvement of delay-based reservoir
computing with photonic systems are proposed and summarized. A chaos input mask
signal is introduced to improve the performance of a time-series prediction task. A
photonic integrated circuit is used to miniaturize the reservoir computing system.
The performance of reservoir computing is compared between a single electro-optic
system and a mutually coupled electro-optic system.

1 Introduction

Delay-based photonic reservoir computing has been proposed as a simplified config-
uration of reservoir computing (RC) (Appeltant et al. 2011). A single nonlinear
device with a time-delayed feedback loop is used, and its output within the delayed
loop is sampled at a constant interval. The outputs are considered virtual nodes, and
the linear sum of the virtual node states are used as output. This configuration does
not require a real network configuration and involves easy hardware implementation.
There have been many reports on delay-based RC using photonic systems (Larger
et al. 2012; Paquot et al. 2012; Duport et al. 2012; Brunner et al. 2013).

In this chapter, three techniques of the performance improvement of delay-based
photonic RC are introduced and explained. The first topic provides a method to
improve an input mask signal. For delay-based RC, the input mask signal is required
for obtaining different node states for the same input signal. The design of the input
mask signal can enhance the performance of RC. A chaos mask signal is introduced,
and the performance is evaluated by a time-series prediction task. A semiconductor
laser with optical feedback and injection is used as a reservoir.
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The next topic involves miniaturizing RC systems. A photonic integrated circuit
(PIC) with a semiconductor laser and an optical feedback loop is introduced, and a
technique to achieve a large number of virtual node states is proposed. A technique
for the use of past input signals is also proposed to perform n-step-ahead prediction.

The final topic is the use of mutually coupled systems. A variety of virtual node
states canbe enhancedby introducingmutually coupled systems.Asymmetric config-
uration of feedback delay times is crucial for improving the performance of RC.
Electro-optic systems are used to show the performance comparison between single
and mutually coupled systems.

2 Performance Improvement of Reservoir Computing
Using an Input Chaos Mask Signal

In this section, a semiconductor laser with optical feedback and injection is used
as a reservoir of delay-based RC. A chaos mask signal is introduced as an input
mask signal, and the performance of a time-series prediction task is evaluated by
comparison with different types of input mask signals in numerical simulations.

2.1 Scheme

The scheme of an RC using a semiconductor laser subjected to optical delayed
feedback and injection is shown in Fig. 1 (Nakayama et al. 2016). RC is composed of
three parts: the input layer, the reservoir, and the output layer. Input data is discretized
and denoted as u(n), where n is a discrete-time index, as a preprocessing step in the
input layer. Input data u(n) is held for a timeT and a temporalmask is applied for each
duration of T. The value of the mask is set to vary at each interval θ, corresponding

Fig. 1 Schematics of RC using a semiconductor laser (Response) with time-delayed optical feed-
back and injection from another semiconductor laser (Drive). Adapted with permission from
(Nakayama et al. 2016). © The Optical Society
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to the virtual node interval in the reservoir. The value of θ is set to be smaller than the
transient response of the nonlinear system (i.e., the relaxation oscillation frequency
of the laser) so that the system can generate a complex behavior. The feedback
delay time τ in the reservoir is set nearly equal to the input holding time T, which
is determined by the product of N nodes and node interval θ (i.e., T = Nθ ). The
input sampling time T is set to 40.0 ns, and the reservoir is composed of 400 virtual
nodes (N = 400), with a node interval of θ = 0.1 ns. The input holding time T and
the feedback delay time τ = 40.1 ns are slightly mismatched (i.e., τ = T + θ ) for
performance improvement (Paquot et al. 2012).

Two semiconductor lasers are used, referred to as the drive laser and the response
laser. The drive laser is used to achieve consistent output from the response laser,
as well as to convert the input signal into an optical injection signal. The dynamics
of the response laser is used as the reservoir. The virtual nodes are determined from
the transient response of the laser system for each interval θ within the feedback
delay time τ . The reservoir is composed of virtual nodes xi(n), (i = 1, 2,…, N) for
the nth input data, and individual virtual nodes indicate different values to achieve
high-dimensional space mapping.

For post-processing in the output layer, the output y(n) for the nth input data is
calculated as a linear combination of virtual nodes xi(n), with output weightsWi for
every temporal-mask periodicity T as follows:

y(n) =
N∑

i=1

Wi xi (n). (1)

The output weights Wi are optimized by minimizing the mean-square error
between the target function ȳ(n) and the RC output y(n) as follows:

1

L

L∑

n=1

(y(n) − ȳ(n))2 ⇒ min. (2)

The linear least-squares method is used for learning Wi with the training data.

2.2 Numerical Model

The scheme shown in Fig. 1 uses drive and response semiconductor lasers. The
dynamics of the response laser (reservoir) is calculated by using the Lang–Kobayashi
equations as follows (Nakayama et al. 2016):

dEr (t)

dt
= 1 + iα

2

{
GN (Nr (t) − N0)

1 + ε|Er (t)|2
− 1

τp

}
Er (t) + ξ(t)

+ κEr (t − τ) exp(−iωrτ) + κinjEd(t) exp(i	ωt), (3)
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dNr (t)

dt
= Jr − Nr (t)

τs
− GN (Nr (t) − N0)

1 + ε|Er (t)|2
|Er (t)|2, (4)

where Ed and Er are the amplitudes of the electric field of the drive and response
lasers, respectively; Nr is the carrier density of the response laser; α is the linewidth
enhancement factor; GN is the gain coefficient; N0 is the carrier density at trans-
parency; ε is the saturation coefficient; τ p and τ s are the photon and carrier lifetimes,
respectively; κ is the feedback strength of the response laser; κ inj is the injection
strength from the drive to the response laser; Δω = ωd – ωr is the angular frequency
detuning between the drive and response lasers, where ωd and ωr are the optical
angular frequencies of the drive and response lasers, respectively; Jr is the injec-
tion current of the response laser; Jth is the injection current at the lasing threshold,
and τ is the feedback delay time. ξ (t) is the white Gaussian noise including spon-
taneous emissions. The parameters κ and Δω are selected so that injection locking
can be achieved between the drive and response lasers. These parameter values are
summarized in Table 1.

The relaxation oscillation frequency of the response laser with drive injection
is 5.7 GHz. The time scale of RC is determined by the inverse of the relaxation
oscillation frequency (~0.18 ns) of the response laser under drive injection. The
transient response is crucial for RC, and the node interval θ = 0.1 ns is selected to
maintain the transient response between node dynamics.

Table 1 Laser parameter
values used in numerical
simulations (Nakayama et al.
2016)

Symbol Parameter Value

α Linewidth
enhancement factor

3.0

GN Gain coefficient 8.4 × 10−13 m3s−1

N0 Carrier density at
transparency

1.4 × 1024 m−3

ε Gain saturation 2.0 × 10−23

τp Photon lifetime 1.927 ps

τs Carrier lifetime 2.04 ns

κ Feedback strength 15.53 ns−1

κin j Injection strength 12.43 ns−1

ωd Optical angular
frequency

1.23 × 1015 rad/s

	 f = 	ω/(2π) Frequency detuning −4.0 GHz

τ Feedback delay time 40.1 ns

Jr Injection current of
the response laser

1.05 Jth

Jth Injection current at
threshold

9.89 × 1032 m−3s−1
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In the input layer, the masked input signal M(t) is generated by multiplying the
input data u(n), the mask signal mask(t) with periodicity T, and the scaling factor γ ,
as follows:

M(t) = mask(t) × u(n) × γ. (5)

The phase of the electric field of the drive laser is modulated by usingM(t). After
phase modulation, the electric field of the drive laser is described as follows:

Ed(t) = √
Id exp(iπ M(t)), (6)

where Ed is the electric field of the drive laser and Id is the light intensity of the
steady state of the drive laser. This drive signal is injected into the response laser to
obtain the transient outputs for RC.

2.3 Results of Chaos Mask Signal

The Santa Fe time-series prediction task (Weigend and Gershenfeld 1993) is used to
evaluate the performance of RC. This task aims to perform a single-point prediction
of chaotic data. These chaotic data are generated from a far-infrared laser. A total of
3000 steps are used for training, and 1000 steps are used for testing. The amplitude
of the Santa Fe time-series is normalized so that the input signal u(n) of the Santa
Fe time-series ranges from 0 to 1.

A digital binary mask signal and an analog chaos mask signal are used to compare
the performances of RC. The binarymask signal is composed of a piecewise constant
function for each interval θ, with a randomly modulated binary sequence {−1, 1}
with equal probabilities (Appeltant et al. 2011; Larger et al. 2012). The standard
deviation of the binary mask signal is set to 1. The chaos mask signal is generated
from the response laser with optical feedback but without drive injection. The RF
spectrum of the chaos mask signal is selected to be similar to that of the response
laser output so that complex dynamics can be induced in the response laser cavity.
The amplitude of the chaos mask signal is rescaled so that the standard deviation of
the chaos mask signal is set to 1, and the mean value is set to 0.

The temporalwaveformsof themasked input signals and the output of the response
laser for the binary and chaos mask signals are shown in Fig. 2a and 2b, respectively.
In the case of the binary mask signal in Fig. 2a, some nodes in the response signal
show similar values when the mask value is constant. In contrast, the response laser
generates a complex response in the case of the chaos mask signal in Fig. 2b. A
variety of node states can be obtained in the complex and fast dynamical response
signal in Fig. 2b.

The performance of the time-series prediction task using the binary and chaos
mask signals is compared, as shown in Fig. 2c and 2d. In both cases, the prediction



382 K. Kanno and A. Uchida

Fig. 2 Masked input signal and response laser output for a the binary mask signal and b the chaos
mask signal for the first input signal. Blue dots indicate the node states. Prediction results of the
original signal (black curve) and the RC prediction signal (red curve) for c the binary mask signal
and d the chaotic mask signal. The error signals (blue curves) between the original signal and the
RC prediction signal are shown at the bottom of c and d. Adapted with permission from (Nakayama
et al. 2016). © The Optical Society

results are similar to the original signals. However, smaller errors are observed in the
case of the chaosmask signal inFig. 2d.Theperformance of the time-series prediction
task is quantitatively evaluated by using the normalized mean-square error (NMSE)
as follows (Appeltant et al. 2011; Larger et al. 2012):

NMSE = 1

L

∑L
n=1 (ȳ(n) − y(n))2

var(ȳ)
, (7)

where n is the index of the input data, L is the total number of data, y is the RC output
that is compared to the original value ȳ as a target, and var represents the variance.

The NMSEs are 0.064 and 0.008 for the binary and chaos mask signals in Fig. 2c
and 2d, respectively. Therefore, better performance of the time-series prediction task
can be achieved by using the chaos mask signal. The variety of the node states for
the chaos mask signal is larger than that for the binary mask signal. The variety of



Performance Improvement of Delay-Based Photonic … 383

the node states results in higher dimensional mapping of the input signal and higher
performance of RC using the chaos mask signal.

2.4 Comparison of Digital and Analog Mask Signals

Several digital mask signals for RC are introduced and compared with the chaos
mask signal in this subsection. The values of the digital mask signal are changed
randomly with constant interval θ, similar to the binary mask signal (Appeltant et al.
2011). In addition to the binary mask, a six-level mask signal {±1.0, ±0.6, ±0.3}
and a random-level mask signal {−1 ~ +1} are also used for comparison.

The performance of the time-series prediction task is shown in Fig. 3awith respect
to the feedback strength κ of the response laser for the digital and chaosmask signals.
Consistent output (reproducible output with respect to the same input signal (Uchida
et al. 2004)) of the response laser is achieved in the region of 0 ≤ κ ≤ 19 ns−1 under
injection locking. The consistency region is estimated from the cross-correlation
value of temporal waveforms between two response lasers with the same optical
injection, under the condition of different initial values and different noise signals.
For larger κ, consistency is not achieved as the optical frequencies are mismatched
between the two lasers. The NMSEs for all the mask signals are decreased as the
feedback strength is increased within the consistency region. Smaller NMSEs are
obtained at the vicinity of the consistency region (κ ~ 16 ns−1), which is close to the
area of neutral stability of the laser dynamical system (also known as the edge of
chaos). Smaller NMSEs are obtained for the chaos mask signal in comparison with
that of the digital mask signal.

Fig. 3 NMSE of the time-series prediction task as a function of the feedback strength κ , a for the
binary, six-level, random-level, and chaos mask signals, b for the white Gaussian noise, colored-
noise, and chaos mask signals. Adapted with permission from (Nakayama et al. 2016). © The
Optical Society
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Analog noise mask signals (white Gaussian noise and colored-noise signals) are
also introduced for comparison with the chaos mask signal. White Gaussian noise
is calculated from the Box–Muller transform. Colored noise is calculated from the
Ornstein–Uhlenbeck process using white Gaussian noise and a low-pass filter in
numerical simulations (Fox et al. 1988). The cut-off frequency of the colored-noise
mask signal is set near the relaxation oscillation frequency of the response lasers
under optical injection (5.70 GHz), to enhance the resonance between the mask
signal and the laser dynamical response. The amplitudes of these noise mask signals
are rescaled so that the standard deviation of the mask signal is set to 1, and the mean
value is set to 0.

The performance of the time-series prediction task is shown in Fig. 3bwith respect
to the feedback strength κ of the response laser for the analog mask signals. The
consistency region is the same as seen in Fig. 3a (0 ≤ κ ≤ 19 ns−1), where small
NMSEs are obtained. Theminimumerror is obtained at the vicinity of the consistency
region. The NMSEs for the white Gaussian noise mask are larger than those for the
colored-noise and chaos mask signals. However, the NMSEs for the colored-noise
mask signal are very similar to those for the chaos mask signal in Fig. 3b. This result
indicates that the colored-noise mask signal is as effective as the chaos mask signal in
inducing a complex dynamical response for RC. Complex analogmask signalswould
be suitable for RC input temporal masks. It is speculated that the analog property
of the chaos and colored-noise mask signals could be useful for generating smooth
and complex temporal waveforms of the response laser output, compared with the
digital mask signals, which consist of square waveforms.

To clarify the conditions of the analog mask signals for better RC performance,
the characteristic frequency of the mask signals is changed, and the performance of
the time-series prediction task is investigated. It is found that the performance of RC
can be improved by using the chaos mask signal with the peak frequency near the
relaxation oscillation frequency of the response laser (Nakayama et al. 2016).

These findings showing the superiority of the chaos mask signal have been
confirmed by experiment, as described in Kuriki et al. (2018).

3 Miniaturization of Reservoir Computing with a Photonic
Integrated Circuit

Photonic integrated circuits (PICs) are good candidates for implementing RC at
the millimeter scale (Takano et al. 2018). In this section, a method is proposed for
implementing delay-based RC using a PIC with a semiconductor laser and a short
external cavity in experiment. A time-series prediction task is used to evaluate the
performance of RC. A method is introduced for enhancing the performance of the
n-step-ahead prediction task using past input signals.
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3.1 Scheme

The structure of the PIC for a reservoir is shown in Fig. 4a. The PIC consists of
a distributed-feedback (DFB) semiconductor laser, a semiconductor optical ampli-
fier (SOA), a phase modulator (PM), a passive waveguide, and an external mirror
for optical feedback (Takano et al. 2018). The DFB laser with the external mirror
(referred to as the external cavity) corresponds to the reservoir with the time-delayed
feedback loop. The lengths of the DFB laser, SOA, and PM are 0.3, 0.44, and 0.3mm,
respectively. The structures of the DFB laser, SOA, and PM are based on ridge-
waveguide-type structures. The optical output port is placed on the left side of the
DFB laser and coated with an anti-reflection (AR) coating. It is connected to an
optical fiber through a lens. The modulation signal is injected into the optical output
port on the left side of the DFB laser. The output signal from the DFB laser (right
side) is reflected with the use of an external mirror. The external mirror is constructed

Fig. 4 a Structure of photonic integrated circuit. DFB laser, distributed-feedback semiconductor
laser; PM, phase modulator; SOA, semiconductor optical amplifier. b, c Experimental results of
time-series prediction task for different node intervals θ and different number of delay times k used
as virtual nodes. b θ = 40 ps, k = 1, and c θ = 10 ps, k = 5. The numbers of virtual nodes are b N
= 6 and c N = 124, respectively. The mask interval is set to θM = 40 ps. Adapted with permission
from (Takano et al. 2018). © The Optical Society
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with a high-reflection (HR) coating on the right edge of the PIC. The external cavity
length between the right facet of the DFB laser and the external mirror is 10.6 mm.
This length corresponds to a round-trip delay time of τ = 254 ps in the external
cavity, and the external cavity frequency is 3.9 GHz (refractive index = 3.6). The
strength of the optical feedback light is adjusted by the SOA injection current.

A semiconductor laser is used to feed themodulation signal into the PIC reservoir.
The phase of the semiconductor laser is modulated by a phase modulator with the
modulation signal and injected into the PIC. Injection locking is achieved between
the optical wavelengths of the semiconductor laser and the DFB laser in the PIC. The
temporal waveform of the DFB laser in the PIC is detected using a photodetector and
amplified by an electric amplifier. This electronic signal is sampled using a digital
oscilloscope (the sampling frequency of 100 Giga-samples/s) at N nodes at every
node interval θ (τ ≈ Nθ ) in experiment. The sampled outputs are treated as virtual
node states and are used to calculate the output signal. The output signal is obtained
from the sum of the weighted values of all the virtual node states. The learning of
the weight values is conducted using the linear least-squares method with the use of
training data, as shown in Eq. (2).

Twomethods are proposed to increase the number of virtual nodes in the PIC. The
first method is the reduction of the node interval. In the previous method of delay-
based RC, the mask interval θM and the node interval θ are matched (Appeltant et al.
2011; Larger et al. 2012). However, the node interval θ can be decreased because an
analog temporally varying waveform with continuous variation is used to represent
the virtual node states. The second method uses the signal output based on the use of
multiple delay times. A temporally varying waveform with kτ multiple delay times
(k is a positive integer) of the feedback loop can be used as the set of virtual node
states for a single input signal. The configuration of the PIC is unchanged with a
single delay loop τ , and a virtual network from a temporal waveform with length kτ
is constructed. The number of virtual nodes N can be increased with an increase in
k.

3.2 Experimental Results of Time-Series Prediction Task

The Santa Fe time-series prediction task is used for performance evaluation, as
described in Sect. 2.3. A random binary mask signal is applied to the input signal
for the PIC reservoir. The experimental results of the time-series prediction task are
shown in Fig. 4b and 4c when the node interval and the number of multiple delay
times are changed. The node intervals θ are set to 40 and 10 ps, respectively, and the
number of multiple delay times k is set to 1 and 5, respectively, for Fig. 4b and 4c.
These parameter settings correspond to the number of virtual nodes of N = 6 and
124, respectively. Prediction is not successful in Fig. 4b, and the NMSE is 0.423.
On the contrary, a significant improvement in the prediction errors is exhibited in
Fig. 4c. A small NMSE value of 0.086 is obtained in Fig. 4c, and the reservoir output
closely matches the original signal.
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Fig. 5 a Prediction errors (NMSEs) as a function of a the number of the multiple delay times k.
The node intervals θ are set to 10 ps (black circles), 20 ps (red squares), and 40 ps (blue diamonds).
b NMSEs with (red curve) and without (black curve) optical feedback in the PIC as a function of
the number of the multiple delay times k. The SOA injection currents with and without the optical
feedback are, respectively, set to 4 and 0 mA. The node interval is set to θ = 10 ps. Adapted with
permission from (Takano et al. 2018). © The Optical Society

The prediction errors are investigated when the number of multiple delay times
k is changed, as shown in Fig. 5a. The prediction error decreases with increases in
k and saturates at k = 5. The increase in k is effective for improving the prediction
error. Different node intervals are used at θ = 10, 20, and 40 ps that yield similar
curves in Fig. 5a. Smaller errors are obtained for smaller node intervals. The best
NMSE result of 0.109 is obtained with k = 5 and θ = 10 ps.

Next, the prediction errors are investigated for the PICs with and without optical
feedback. The comparison of the variations of NMSEs is shown in Fig. 5b with and
without optical feedback in the PIC for different SOA injection currents as a function
of the number of multiple delay times k. The node interval is set to θ = 10 ps. Smaller
NMSE values are obtained in the presence of optical feedback for most of the cases
associated with different k. The optical feedback can enhance the memory effect (the
ability to hold past results in the reservoir), and it plays a crucial role in improving the
errors of the time-series prediction task. Saturation in the values of NMSEs occurs
at k = 5 with optical feedback, as shown in Fig. 5b. The number of nodes is large
enough to perform the time-series prediction task for k ≥ 5.
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3.3 N-Step-Ahead Prediction Task

A method for enhancing the memory effect in the PIC reservoir is proposed in this
subsection. Past input signals are introduced to the current input signal to improve
the memory. A weighted sum of the past input signals is included in the current input
signal U(t) as follows:

U (t) =
P∑

i=0

gi mi (t) u(n − i), (8)

gi = 1 − i

P + 1
, (9)

where gi is the weight for the ith past input signal of u(n − i), and mi(t) is the mask
signal for u(n− i). Input signal u(n) evolves in discrete-time n and u(t) is a piecewise
constant function of continuous time t: u(t) = u(n), nT ≤ t ≤ (n + 1)T, where T =
kτ is the mask length. The input mask mi(t) = mi(t + T ) is a periodic function of
period T and is piecewise constant over the mask interval θM , where the constant
values are randomly chosen from −1 or 1 (i.e., a binary mask signal).

The current input signal U(t) is constructed so that the effect of the past input
signal u(n − i) decreases linearly with an increase in i, indicating fading past input
signals. The number of past inputs P is changed, and the NMSE of the time-series
prediction task is evaluated. The number of multiple delay times for the virtual nodes
is set to k = 5, and the node interval is set to θ = 10 ps.

Themore difficult task of n-step-ahead time-series prediction (n > 1) is introduced
in this subsection. The NMSE is shown in Fig. 6a as a function of past input signals P
for the n-step-ahead prediction task, using the PICwith optical feedback. The NMSE
decreases from P = 0 to 6 for the prediction step of n = 2 and 3 and is saturated for
larger values of P. On the contrary, the NMSE is almost constant for n= 1.While the
prediction task becomes more difficult for larger values of n, the inclusion of several
past input data improves the NMSE.

Next, the NMSE is measured as a function of prediction step n for different
numbers of past input P. These results obtained with optical feedback are shown in
Fig. 6b. The NMSE values fluctuate periodically in Fig. 6b. This periodic oscillation
becomes small when P is large, and the prediction error increases with an increase
in n. In fact, this periodic curve corresponds to the auto-correlation function of the
original chaotic input data used for the time-series prediction. It is found that n-
step-ahead prediction for a large value of n is more difficult because of the sensitive
dependence on the initial conditions of the chaotic input data. The inclusion of past
input signals is effective in assisting thememory effect of the PICwith a short external
cavity, such that n-step-ahead prediction can be successful.
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Fig. 6 a NMSE as a function of the number of past input signals P with optical feedback for
different prediction steps n. The prediction steps include n = 1 (black circles), n = 2 (red squares),
n = 3 (green diamonds), and n = 7 (blue triangles). b NMSE as a function of the prediction step
n with optical feedback for different past input signals P. The numbers of past input signals include
P = 0 (black circles), P = 2 (red squares), P = 6 (green diamonds), and P = 15 (blue triangles).
Adapted with permission from (Takano et al. 2018). © The Optical Society

4 Mutually Coupled Electro-Optic System

4.1 RC Based on Electro-Optic Feedback System

An electro-optic system is another implementation for delay-based photonic RC.
The schematic diagram of the electro-optic system is shown in Fig. 7a (Larger et al.
2012; Paquot et al. 2012; Larger and Dudley 2010). The system is composed of
a semiconductor laser (LD), an electro-optic intensity modulator (Mach–Zehnder
modulator, MZM), an optical fiber for delayed feedback (τ is the delay time), a
photodetector (PD), an electronic amplifier (AMP), and an electronic bandpass filter
(BPF). The MZM is used to provide a nonlinear transformation and the optical fiber

Fig. 7 a Schematics of the single electro-optic system and bmutually coupled electro-optic system.
LD, semiconductor laser; MZM, Mach–Zehnder modulator; PD, photodetector; BPF, bandpass
filter; and AMP, electronic amplifier. The input signal for RC is injected into MZM. Adapted with
permission from Tezuka et al. (2016). © 2016 The Japan Society of Applied Physics
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is used to implement a time-delayed feedback loop as the reservoir. The optical
output of the laser is injected into the MZM. The optical signal that passes through
the MZM is delayed by the optical fiber. The delayed signal is transformed to an
electronic signal by the PD. The electronic signal is fed back to the MZM after the
signal passes through the BPF and the AMP.

The MZM provides a nonlinear transfer function (cos2(·) function). Various
dynamics can be observed in the electro-optic system by changing the feedback
strength, which can be controlled by the detection power at the PD of the MZM.
For RC, the electro-optic system operates in a steady state at a sufficiently small
feedback strength to obtain a consistent response of the system outputs with respect
to the same input signal (Uchida et al. 2004).

4.2 Scheme for Mutually Coupled Electro-Optic System

In this section, the RC scheme based on a mutually coupled electro-optic system is
demonstrated (Tezuka et al. 2016) and comparedwith the single electro-optic system.
The schematic diagram of the mutually coupled electro-optic system is shown in
Fig. 7b. The outputs of two MZMs are detected by photodetectors and amplifiers
with bandpass filters after they are delayed with delay times τ1 and τ2 via optical
fibers. The converted signals are added electrically, and the added signal is fed back to
the bias voltage of the twoMZMs. The feedback delay times are set to be asymmetric
(τ1 �= τ2) to produce complex response outputs. The twoMZMs and the two delayed
feedback loops are used as the reservoir.

The mutually coupled electro-optic system shown in Fig. 7b can be modeled by
the following delay differential equations (Tezuka et al. 2016; Murphy et al. 2010):

τL
dx1(t)

dt
= −

(
1 + τL

τH

)
x1(t) − y1(t)

+ β cos2[κx1(t − τ1) + (1 − κ)x2(t − τ2) + φ1 + M(t)] + ξ1(t),
(10)

τH
dy1(t)

dt
= x1(t), (11)

τL
dx2(t)

dt
= −

(
1 + τL

τH

)
x2(t) − y2(t)

+ β cos2[κx1(t − τ1) + (1 − κ)x2(t − τ2) + φ2] + ξ2(t), (12)

τH
dy2(t)

dt
= x2(t), (13)
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Table 2 Parameter values for the mutually coupled electro-optic system in numerical simulations
(Tezuka et al. 2016)

Symbol Parameter Value

τL Time constant for low cut-off frequency of BPF 32 μs

τH Time constant for high cut-off frequency of BPF 0.0016 μs

τ1 Delay time for MZM1 3.6 μs

τ2 Delay time for MZM2 9.8 μs

θ Node interval 0.2 μs

N Number of virtual nodes 50

β Coupling and feedback strength 1.0

κ Coupling ratio between x1 and x2 0.5

φ1,2 Bias points of MZM1 and MZM2 −0.25π

where x1,2 are the normalized outputs of theBPFs; τL and τH are time constants corre-
sponding to the low and high cut-off frequencies (1/(2πτL) = 5 kHz and 1/(2πτH )

= 100 MHz) of the BPFs, respectively; β is the dimensionless coupling and feed-
back strength; φ1,2 represents the bias points of the MZM1 andMZM2, respectively;
κ is the coupling ratio between x1 and x2; τ1,2 are the delay times for the outputs
of MZM1 and MZM2, respectively; M(t) is the preprocessed input signal injected
into the reservoir (see Eq. (5) in Sect. 2.2); ξ1,2 are the normalized white Gaussian
noise with the properties ξ1,2(t) = 0 and ξ1,2(t)ξ1,2(t − τ) = δ(t − t0), where 〈·〉
denotes the ensemble average; and δ(t) is Dirac’s delta function. The outputs of
MZM1 and MZM2 are fed back to the two MZMs with the delay times τ1 and τ2,
and they are coupled before being injected in the amplifiers. The parameter values
in Eqs. (10)–(13) are given in Table 2.

In RC based on time-delayed dynamical systems, virtual nodes are assumed in
the temporal output of the dynamical system. In the mutually coupled electro-optic
system, N virtual nodes are considered within the temporal output x1(t). The states
of these virtual nodes are defined from x1(t), separated in time by node interval θ .
The number of virtual nodes N = 50 and the node interval θ = 0.2 μs are used.
The delay time has been selected to be equal to Nθ in many studies (Larger et al.
2012), because the virtual nodes are assumed within a time-delayed loop. On the
other hand, the unsynchronized scheme (Paquot et al. 2012) is used in this section,
where the delay time τ2 is set to (N − 1)θ = 9.8 μs, instead of Nθ . The other delay
time τ1 is set to 3.6 μs.

An input signal and the feedback signal are added, and themixed signal is injected
into one of the MZMs (MZM1) of the mutually coupled system. Before injecting
the input signal, an input mask m(t) is multiplied to the input signal to obtain a rich
variety of node states. The mask signal has a step waveform with the mask interval
θM and a period of T = Nθ . The input signal with the input mask is sent to the
reservoir. The output of the reservoir is defined as a weighted linear combination
of the node states. The weights are optimized by the least-squares method in the
training procedure.
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The performance of the mutually coupled electro-optic system is compared with
that of the single electro-optic system. The numerical model of the dynamics of the
single system is given as (Tezuka et al. 2016; Murphy et al. 2010):

τL
dx(t)

dt
= −

(
1 + τL

τH

)
x(t) − y(t) + β cos2[x(t − τ) + φ + I (t)] + ξ(t), (14)

τH
dy(t)

dt
= x(t). (15)

The feedback delay time τ is set to 9.8 μs and the other parameter values in these
equations are set to be the same as those in the mutually coupled electro-optic system
(Table 2).

4.3 Results

A longer mask interval θM is useful because a low-cost arbitrary waveform gener-
ator with lower frequency bandwidth can be used in experiment for fast informa-
tion processing. However, the slowly modulated mask signal would not produce a
variability of the virtual node states. The loss of the variability may result in the
degradation of the performance of RC. This degradation could be compensated by
using the mutually coupled system, instead of using the single system to enhance
complexity.

The single and mutually coupled systems are compared for input mask signals of
short and long intervals. A faster mask signal with the mask interval of θM = θ = 0.2
μs is used for the single electro-optic system, as shown in Fig. 8a. In contrast, a slower
mask signal with the longer mask interval of θM = 10θ = 2.0 μs is used for the
mutually coupled electro-optic system as shown in Fig. 8b.

The Santa Fe time-series prediction task is used for performance evaluation, as
described in Sect. 2.3. The results of the time-series prediction using the single and
mutually coupled electro-optic systems are shown in Fig. 8c and 8d, respectively. The
performance for the time-series prediction task is quantitatively evaluated, using the
NMSE. For Fig. 8c and 8d, the values of the NMSE are 0.034 and 0.028, respectively.
A similar performance of the time-series prediction can be obtained for the single
and mutually coupled systems. It is worth noting that the mutually coupled system
exhibits a prediction performance comparable to the single system, even though the
slower mask signal is used for the mutually coupled system. This result indicates
that the mutually coupled system provides a rich variety of virtual node states, even
for using the slower mask signal. The mutually coupled system has two nonlinear
elements and two time-delayed loops with different delay times, and the input signal
can be transformed into more complex outputs, which generate different virtual node
states.
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Fig. 8 a Fast mask signal with the step length θM = θ = 0.2 μs. b Slow mask signal with
θM = 10θ = 2.0 μs. The value of the mask signals is randomly taken from 1 or −1(i.e., binary
mask signals). The number of steps in these mask signals are NM = T/θM = 50 and 5, where
T = 10 μs is the period of the mask signal, respectively. c Result of chaotic time-series prediction
using the single feedback system with the mask signal shown in a. d Result of chaotic time-series
prediction using the mutually coupled system with the mask signal shown in b. Adapted with
permission from Tezuka et al. (2016). © 2016 The Japan Society of Applied Physics

The influence of the delay time on the prediction accuracy is investigated in the
mutually coupled systemwith the slowermask signal. The NMSE is shown in Fig. 9a
as a function of the delay time τ1. The other delay time τ2 is fixed at 9.8 μs. Local
maxima of NMSE are obtained at τ1 = 2.0, 4.0, 6.0, 8.0, and 10.0 μs. These values
of τ1 are equal to themultiples of themask interval θM = 2.0μs. Therefore, amultiple
of θM needs to be avoided for τ1 to obtain a high prediction accuracy. It is also found
that larger local maxima of NMSE are obtained for larger τ1. On the other hand, local
minima of NMSE are obtained for τ1 = 0.5, 3.5, and 6.5 μs.

Next, the dependence of RC performance on the normalized feedback strength β

is investigated. The dependence of the NMSE on β is shown in Fig. 9b for the single
and mutually coupled systems. The black solid and red dashed curves represent the
NMSE obtained using the mutually coupled system and the single feedback system,
respectively. The slower mask signal shown in Fig. 8b is used to modulate the input
signal for both cases. The NMSEs for the mutually coupled system are smaller than



394 K. Kanno and A. Uchida

Fig. 9 a Prediction errors (NMSEs) as a function of the delay time τ1 in RC using a mutually
coupled system. Delay time τ2 is fixed at 9.8 μs. bNMSE as a function of feedback strength β. The
black solid and red dashed curves represent the mutually coupled system and the single system,
respectively. The slower mask signal shown in Fig. 8b is used for preprocessing (θM = 2.0 μs).
Adapted with permission from Tezuka et al. (2016). © 2016 The Japan Society of Applied Physics

those for the single feedback system for β > 0.65. Thus, the mutually coupled
system exhibits higher performance than the single system for β > 0.65. The best
(smallest) NMSE of 0.028 is obtained at β = 1.08. The dynamics of the single and
mutually coupled systems are stable for β < 1.0 when the input signal is not sent
to the reservoir. Complex transient response can be obtained for β ≈ 1.0 due to the
delayed feedback and coupling when the input signal is sent to the reservoir. For a
large value of β > 1.0, bifurcation appears from a stable fixed point to a periodic
state. Therefore, the performance deteriorates with an increase in β for β > 1.0.

5 Discussions

Thechaotic time-series prediction task is used to evaluate the performanceof different
reservoir systems in Sects. 2, 3, and 4. The prediction errors of these schemes are
compared in this section, even though the comparison is not straightforward because
the conditions of RC are different (e.g., the number of virtual nodes, type of mask
signals, numerical simulations or experiments).

Compared with the schemes of the semiconductor laser with long delay (Sect. 2)
and the PIC with short delay (Sect. 3), the values of the prediction errors for the
latter (Fig. 4) are worse than the results for the former (Fig. 2). The main reason
is the difference in the signal-to-noise ratio (SNR), the values of which are 25 and
10 dB for the numerical (Sect. 2) and experimental (Sect. 3) systems, respectively.
A lower SNR is obtained in the experimental results from fast detection noise in the
photodetectors and the digital oscilloscope. In fact, the experimental results of the
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prediction errors of the two systems are comparable (NMSE ~ 0.1) if multiple delay
times are used for the PIC reservoir (Kuriki et al. 2018; Takano et al. 2018).

In Sect. 3, a random binary mask signal is used in the PIC reservoir. An improve-
ment in performance can be expected using a chaos mask signal instead, as described
in Sect. 2.

A comparison of the semiconductor laser (Sect. 2) and the electro-optic system
(Sect. 4) schemes shows that the values of the prediction errors for the latter (Fig. 8)
are better than those for the former (Fig. 2c) in numerical simulations. Even in the
experiment, the prediction errors for the electro-optic system are better than those
of the semiconductor laser system, because a higher SNR can be obtained in the
electro-optic system with low detection noise of the slow photodetectors. There-
fore, the electro-optic system is more robust against detection noise. With respect to
the processing speed, the delay time for the electro-optic system (microseconds) is
longer than that for the semiconductor laser system (nanoseconds), and a faster RC
processing speed can be obtained for the semiconductor laser system.

6 Conclusions

The techniques of the performance improvement of delay-based photonic RC are
introduced and summarized in this chapter. The use of a chaotic mask signal and
colored-noise mask signal results in RC performance improvement. Photonic inte-
grated circuits are useful devices for the miniaturization of RC. Thememory effect in
RC can be enhanced by using past input signals. Finally, a mutually coupled system
can enhance RC performance. These techniques show promise in solving more diffi-
cult tasks for RC. A combination of these techniques including the use of analog
mask signals, multiple delay times, past input signals, and mutually coupled systems
can further improve the performance of RC.
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Computing with Integrated Photonic
Reservoirs

Joni Dambre, Andrew Katumba, Chonghuai Ma, Stijn Sackesyn,
Floris Laporte, Matthias Freiberger, and Peter Bienstman

Abstract The idea of using photonic systems as reservoirs to perform general-
purpose computing was first introduced in 2008. Since then, a wide range of systems
using either discrete or integrated optical components has been explored. In this
chapter, we summarise a decade of research into integrated coherent photonic reser-
voirs. In these systems, information is carried by the intensity and the phase of light
waves.Computations emerge from theway the light propagates inside the system, and
the ways in which light that travels along different paths is mixed and transformed.
We discuss the computational capabilities of these reservoirs and the trade-offs that
can be made to optimise them. We also discuss the technological constraints that are
encountered in building such systems and the ways these reflect on their design and
training. Finally, we give an overview of recent approaches to combining multiple
such reservoirs into larger and computationally more powerful systems.

1 Introduction

Light is commonly used as an information carrier in telecommunication systems.
Optical communication has almost entirely replaced electronics for all but very short
distances, because electronic interconnect is inherently bandwidth limited and con-
sumes far more power at high data rates. Optical telecommunication systems are
now mostly held back by the fact that computation is still performed electronically.
The limitations of electronics pop up at the boundaries between the optical and the
electronic domain, where optical signals are converted into electronic ones and vice
versa. This fact has revived the interest in pushing as much computation as possible
into the optical domain. However, the devices and material systems used for inte-
grated photonics do not match well with the typical behaviour of elementary digital
building blocks such as logic gates and flipflops. For this reason, the general-purpose
divide-and-conquer design methodology used for electronic digital computing sys-
tems is not portable to photonics. Also, in contrast to integrated electronics, device
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dimensions are hard coupled to the wavelength of the light that is used, which means
that integrated photonics does not scale well. For this reason it is essential to find the
sweet spot in the trade-off between computational power and area. Although ded-
icated analogue optical components are being designed for specific tasks, a design
methodology for general-purpose analogue photonic components does not exist. On
the positive side, the trade-off between bandwidth and power is generally better
for photonic than for electronic devices, raising the hope that integrated photonic
computing devices can push computation speeds even higher for digital information
processing.

Around the beginning of the twenty-first-century, the principles of what is now
known as reservoir computing showedup in several scientific publications. Echo state
networks (ESN) (Jaeger 2001) and Liquid StateMachines (LSM) (Maass et al. 2002)
are the most commonly cited ones. What they have in common, is the fact that useful
computation can be done by random dynamical systems, provided that the dynamics
can be globally tuned to a useful regime: stable, but close to the edge of chaos.1

Although the systems originally studied were simulated artificial neural networks,
operating in discrete time, this fascinating idea soon stimulated other researchers to
explore whether physical dynamical systems could also be used as reservoirs in this
setup, giving birth to the field of physical reservoir computing. Photonic systems
have been among the first physical reservoirs that were studied.

Two large families of photonic reservoirs exist. Time multiplexed reservoirs
(addressed in other chapters of this book) use a single or very few physical non-
linear processing units. They are time-multiplexed, using delayed feedback to pro-
vide dynamics and memory (Brunner et al. 2013; Larger et al. 2012, 2017; Paquot
et al. 2012). They have been shown to be capable of solving relatively complex tasks,
even image classification (Hermans et al. 2015), at very high bandwidths. They are in
principle scalable towards complex tasks, but this requires longer delay lines, making
their implementations rather bulky. In contrast, the parallel integrated photonic reser-
voirs which are the topic of this chapter are much closer to the echo state networks
they are based on. They are integrated, and therefore small. They are also optimised
for low power and very high bandwidths. The performance of integrated photonic
reservoirs has been studied numerically for networks of ring resonators (Andre et al.
2014; Mesaritakis et al. 2013, 2015; Vandoorne et al. 2011; Zhang et al. 2014),
networks of SOAs (Vandoorne 2011), and experimentally with networks of delay
lines and splitters (Vandoorne et al. 2014). Integrated photonic reservoirs are partic-
ularly compelling when implemented in a CMOS-compatible platform as they can
take advantage of its associated benefits for technology reuse and mass production.

This chapter describes our vision, the research route we followed and the lessons
we learned. We start by giving an overview of the technological hurdles that have
been (and are still being) taken to obtain low-power tunable computing modules. We
then highlight recent first steps towards a scalable design methodology with such
modules. We will not elaborate on state-of-the-art technologies for designing and

1 Although edge of chaos is the common term in dynamical systems theory, the term edge of stability
has always felt like a more appropriate term in this context.
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fabricating the components we use, since that can be found in publications. Instead
we focus on the interplay between system optimisation, which starts from known
good practices in unconstrained (software) reservoir computing, and the technical
possibilities and constraints of the chosen implementation substrate. In this way, we
hope that our path and the lessons we learned can also inspire researchers who are
exploring other physical substrates and systems.

2 From Ideas to First Prototypes

Early research on integrated photonic reservoir computing aimed to mimic Echo
State networks with tanh nonlinearities as closely as possible, while exploiting the
potential benefits of integrated photonics: high bandwidth and low power. However,
as software models, ESNs are entirely unconstrained with respect to properties like
connectivity, connection weight values, neuron non-linearity or time scales. In con-
trast, in any physical implementation medium, limitations arise from physical and
device constraints, or from fabrication issues. In addition, the often misleading near-
infinite precision of software simulations is replaced by finite precision due to limited
measurement accuracy and various noise sources. The very first conceptual descrip-
tion of a possible integrated photonic reservoir (Vandoorne and Bienstman 2007)
proposed to use a regular 2D grid of Semiconductor Optical Amplifiers (SOAs) as
reservoir nodes and had a “waterfall” interconnection topology (Fig. 1). Between that
very first concept and the time ofwriting this chapter lies a decade of interdisciplinary
research, combining systematic architecture and device optimisation, machine learn-
ing methods, targeted technological innovations and prototyping efforts. The result
is systems that are now ready to bridge the final stretch between academic research
and industrial take-up in the telecommunications sector.

2.1 Coherent Light and Planar Topologies

When using light as an information carrier, there are several options with respect to
the way information is encoded into the signal. A first choice to make is to use either
incoherent light or coherent light. In the first case, the information is carried only by
the light intensity, represented by a positive real number. In the second case, the signal
has both a magnitude (still positive) and a phase, and should therefore be modelled
as a complex number. Like in our brains, the presence of inhibition, i.e., connections
with negative weight between neurons, is crucial for computation in artificial neural
networks. Early studies (unpublished) have confirmed that ESNs in which all signal
values and all weights are positive perform very poorly. However, coherent light
has both a phase and a magnitude. Equally, connections introduce both a phase
shift and a change of magnitude (usually a loss). This implies that all operations
in coherent optical reservoirs need to be modelled as complex-valued operations.
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Input

Fig. 1 Planar architectures for integrated photonic reservoirs: (left) the Waterfall topology from
Vandoorne and Bienstman (2007) with the input signal inserted in the top-left node and optional
feedback connection s(dashed lines) and (right) the Swirl topology that was first introduced in
Vandoorne et al. (2008) and is still the basis for most recent work. No input injection is indicated
here, since multiple variants have been investigated

As a consequence, even with only positive weights and positive light intensities,
the addition of coherent light signals can be subtractive as well as additive w.r.t. to
the magnitude of the signals. This is the main reason why coherent platforms were
adopted early on for integrated photonic reservoirs.

Because of their integration on a 2D chip, integrated photonic reservoirs are also
two-dimensional (planar) structures. Using photonic integrated waveguides for con-
necting neurons means that sharp bends and interconnect crossings cause prohibitive
losses, excluding the stacking of layers of interconnect, as in electronic chips. For this
reason, a purely planar connection graph is preferable. The most common approach
is one in which each neuron has at most four neighbours. Initially, the input signal
was injected into a single node only. After the initial concept that was based on
the waterfall architecture (Vandoorne and Bienstman 2007) (Fig. 1, left), subsequent
studies as well as first prototypes were based on the Swirl architecture (Vandoorne
et al. 2008) (Fig. 1, right), which was designed to introduce optimal mixing of the
internal state signals within the constraints of a planar structure. The connections
are made by waveguides, which are passive components and therefore introduce no
gain (only loss). They can be modelled as complex-valued weights with a magnitude
smaller than 1 and a phase shift relative to their length. Each waveguide also has a
propagation delay that is again relative to its length.

2.2 Readout and Training

In these reservoirs, a part of the light is split off at the output of each node and
converted back into an electronic signal by a photodetector. This conversion of light
intensity into an electrical signal non-linearly transforms each reservoir state (essen-
tially quadratically) before linearly combining the states in the readout, trained with
ridge regression.
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In practice, the fabrication tolerances on the lengths of integrated waveguide con-
nections are such that their loss and propagation delay are very close to the designed
values, but the deviations of the phase shifts are so large that it is safest to con-
sider each individual phase shift as random and different for each physical reservoir
instance. In fact, due to the otherwise very regular topologies of the integrated pho-
tonic reservoirs, the variability of the phase shifts is their main source of richness.
All simulation studies and design choices described in this chapter are based on per-
forming simulations for a number of reservoirs with the same design parameters and
random phases and reporting the average results.

However, there is also a downside to this uncontrollability: because of the dif-
ferences between individual reservoirs, weights trained in simulation perform very
poorly on the physical devices. Therefore, once they are fabricated, each individual
reservoir will always need a calibration stage for training its readout. It is also not
possible (or at least not within a reasonable time) to construct an accurate simula-
tion model for individual physical reservoirs, since this would require a procedure
to extract the actual values of all interconnection phases. This means that typical
neural network training or optimisation approaches based on the application of gra-
dient descent (backpropagation) cannot be used to optimise internal parameters of
integrated photonic reservoirs.

2.3 Delays, Non-linearity and Power

The first integrated photonic reservoir architectures that were thoroughly studied
and systematically optimised (simulation only) used a 4 × 4 array of Semiconductor
Optical Amplifiers (SOAs) as reservoir nodes with a swirl connection structure. The
input signal was initially inserted into a single node only (Vandoorne et al. 2008).
The hyperparameters to be optimised for these reservoirs were the scaling and bias
for the input signal, the bias current (determining the operating point of the SOAs)
and the delay of the inter-node waveguides. The inter-node losses were fixed by the
technology and consisted of the splitter losses, combiner losses and the waveguide
losses, which were coupled to the waveguide length.

A first important conclusion from this initial work is the fact that tuning the inter-
node connection delay is crucial for good performance. The importance of reservoir
time scales was already pointed out in Verstraeten (2009) for simulated reservoirs
(ESNs). The point of using a reservoir for computation is the fact that it naturally
has memory, i.e., current state signals still depend to some extent on past inputs.
This memory is weaker for inputs that lie further in the past. In order to solve a
task on a given input signal (or signals), the reservoir has to be able to remember
any past information from the input that is useful for the task and its bandwidth has
to be high enough to respond to changes in the input signal. A physical reservoir’s
memory is determined by how fast signals (echo’s) fade away (the losses) or are non-
linearly mixed with other signals. Its bandwidth is affected by the bandwidths of all
components, i.e., in photonic reservoirs: the signal generation and input modulation,
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the SOAs, and the detector. Non-linear mixing occurs in the nodes (SOAs). The inter-
node interconnections in integrated photonic reservoirs act as delay lines, i.e., sources
of near-perfect memory. Although their loss is length dependent, it is dominated by
splitter and combiner losses. For this reason, changing the inter-node delays directly
impacts the memory without strongly affecting the non-linear mixing in the nodes.
This means that for each task, inter-node interconnection lengths need to be tuned to
match the relevant time scales in the input signal and the task.

A second conclusionwas to drop the SOAs in future designs. It turns out that using
SOAs nodes would increase the overall power budget above acceptable limits. They
were originally introduced into the network to provide non-linearity, and because
their static input-output characteristics more or less resemble the upper half of the
hyperbolic tangent function that is commonlyused inESNs. It is generally understood
that ESNs are in some sense universal approximators for fading memory functions,
provided they can be made large enough (although some discussion exists about
the precise conditions). Moving further away from ESNs by removing the non-
linearity from the nodes and shifting it to the readout reduces the set of functions a
reservoir can approximate. However, in that respect, the SOAs turned out to offer
only limited advantages: at the optimal parameter settings for several benchmark
tasks, they operated in an almost linear regime (Vandoorne 2011). In practice and
for tasks that are not strongly non-linear, the non-linearity from the photodetectors
alone is sufficient to achieve state-of-the-art performance (Vandoorne et al. 2014).

The two lessons above gave rise to the first actual implementation of an integrated
photonic reservoir. Since the SOAs were omitted, it was a 4 × 4 purely passive Swirl
network consisting of waveguides, splitters and combiners. For telecom tasks on
bitstream signals, the lengths of the delay lines were optimised relative to the bit
period. This made the design easily portable to operate at different bitrates, simply
by changing the delay line lengths. Strangely enough, this also decreases the footprint
of the reservoir for larger bitrates. For commonly used analogue benchmarks with
much slower time scales like spoken digit recognition, the inputs were artificially
speed up in order to achieve the optimal relation between signal and reservoir time
scales. This first physical implementation contained only the reservoir itself. The
readout was implemented in software after driving the reservoir with a long input
sequence multiple times, each time measuring one reservoir state with a photodetec-
tor and storing it for further processing. The experimental results in Vandoorne et al.
(2014) demonstrate that a 4 × 4 passive integrated photonic reservoir can yield error
free performance on the header recognition task for headers up to 3-bit in length.
Simulations for larger reservoirs indicated that it should be possible to go up to 8-bit
headers (see Fig. 2). We additionally demonstrated that the passive integrated pho-
tonic reservoir can be used for bit-level manipulations on digital optical bit streams
that could be useful for various tasks in telecommunication. Vandoorne et al. (2014)
contains more information about the chip design and fabrication procedure.
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Fig. 2 Simulated andmeasured performance of a 4 × 4 swirl passive integrated photonics reservoir
on the 3- and 5-bit header recognition task and simulated performance of a 6 × 6 reservoir on the
8-bit header recognition task (Vandoorne et al. 2014). The plots show the dependency of the error
rate on the inter-node delays in the reservoir, relative to the bit period

2.4 Next Generation Reservoir Architectures

From the perspective of power consumption, the step to passive integrated reservoirs
was crucial, since it removes all power consumption inside the reservoir. In addition,
it allows the reservoir to be implemented in the CMOS-compatible silicon photonics
technology, which drastically lowers the technological barrier for industrial take-up.
However, the fact that there is no more gain inside the reservoir affects the reser-
voir performance: although signals still travel in the reservoir, their magnitudes now
decrease very rapidly due to losses. When only a single reservoir node is driven by
the input signal, the power in many nodes ends up below the detection limit (noise
margin) of the photodetectors. Under these circumstances, evenmildly scaling up the
reservoir to address more difficult tasks makes no sense since this will not increase
the number of nodes with detectable power levels. For this reason, follow-up simula-
tion studies over the last few years have focused on designing more power-efficient
reservoirs by reducing the losses or by shifting to totally different architectures. In
what follows, we summarise recent progress on three lines of research.

Optimisation of the input distribution

Increasing the input power, even if this were desirable, does not help much because
the losses accumulate in amultiplicativemanner as light travels further from the input
node. It turns out to much more effective to split the available input power budget



404 J. Dambre et al.

In
p

ut
 P

o
w

er
 (W

)

Error Rate

Fig. 3 Error rate for the one-bit-delayed XOR task versus total input power for different injection
scenarios in a 4 × 4 passive Swirl reservoir. The minimum measurable error, given the number
of bits used for testing, is 10−3 (Katumba et al. 2017). Note that the power budget only includes
the power that is actually sent into the reservoir. It does not include the additional power that is
consumed by the driving and receiving circuits as these have not been modelled in our simulations

across multiple input nodes (Katumba et al. 2017). Spreading the input power evenly
across all nodes yields the best accuracy for a given power budget (Fig. 3 illustrates
this).

However, the design and fabrication also become more difficult as the number of
nodes that are driven by the input increases. For a 4 × 4 Swirl architecture, driving
only the four central nodes is an excellent compromise between reservoir perfor-
mance and technological complexity (Fig. 3). For the same accuracy, a reservoir
with this input scheme needs about 2 orders of magnitude less power than when only
a single node is driven to achieve almost the same performance as a reservoir for
which the input power is distributed evenly across all nodes. Clearly, the outcome
of this optimisation is closely linked to the size and connectivity of the reservoir.
For the 16-node reservoir, the four central nodes form a single connected loop, from
which power flows into the undriven boundary nodes. For larger architectures, the
ideal trade-off may lie elsewhere. Ideally, for each future architecture, the input
connectivity and reservoir connectivity must be jointly optimised.

Thus far, most benchmarks addressed with integrated photonic reservoirs have
been relatively simple. However, scaling up to larger reservoirs in order to solvemore
difficult tasks onlymakes sense if the additional nodes actually contribute. Spreading
the available input power across multiple nodes as in Katumba et al. (2017) makes
this possible. However, it also makes the design more complex because the input
signal needs to be coupled into more nodes. Also, driving nodes off the boundary
of the planar network necessarily leads to crossings or the need for coupling the
light into the nodes vertically (from the top). For this reason, it is desirable to keep
the number of driven nodes as small as possible. If this can be complemented with
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Fig. 4 Extension of swirl
architecture (left) to more
power-efficient four-port
architecture (right):
connections that were added
are shown in red

technological solutions to reduce the losses, the fraction of nodes that need to be
driven to achieve good performance can be further reduced. Two such approaches
for loss reduction have been investigated.

Multi-mode reservoirs
The original passive reservoirs were designed to guide only a single mode. Note
that the term mode in this context refers to the different transverse modes of the
waveguide. Since part of the losses are due to light that leaks away to other modes,
it could be beneficial to design a reservoir in which some of these other modes are
also guided, such that the power that leaks into them is not lost. In this way, using
multi-mode reservoirs can help to realise a better power balance.

The use of multi-mode rather than single-mode reservoirs was studied in simu-
lation for passive reservoirs in which only a single node is driven (Katumba et al.
2018a). The successful application of this approach strongly hinges on the design
of a novel multi-mode Y-junction with carefully tailored adiabaticity that lowers
the losses at combination points in the photonic network constituting the reservoir.
It turned out that, for a 36-node (6 × 6) reservoir, we can gain up 30% in per node
power, especially for nodes that are furthest from the input point. Although the power
in the boundary nodes is still lower, This extra power boost could be the difference
between being below or above the noise floor at a node. In future work, additional
benefits of multi-mode reservoirs will be investigated. For example, separate modes
can carry different degrees of freedom, which could be beneficial for mixing the
input signals.

New architectures
In the swirl architecture (repeated in Fig. 4, left), each node has atmost two inputs and
two outputs. However, this maximum is not reached for all nodes. The four corner
nodes only have a single input and output, which means that no signal mixing occurs
in them. All other boundary nodes have three ports (either only one input or only one
output). Thismeans they need asymmetrical combiner or splitter deviceswhich suffer
frommodal radiation losses. These losses are inherent for non-symmetrical reciprocal
splitting devices, as on average there is a 50%modal mismatch between the two input
channels. By changing the architecture in such a way that each node has exactly two
inputs and twooutputs, these losses canbe avoided. Fromanarchitectural perspective,
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Fig. 5 Comparison between node power levels of 6 × 10 original swirl architecture and four-
port architectures when driven with bitstream signals: (left) histograms of node powers for both
architectures; (right) required detection thresholds for being able to detect a given number of nodes

the bestway to do thiswould be to extend the architecturewith so-calledwrap-around
connections at the edges. However, a wrap-around architecture is inherently not
planar, which means that crossings would be needed in a planar implementation. A
planar alternativewas proposed inwhichwrap-around connections are added only for
the corner nodes, and all other added boundary connections are non-crossing (Fig. 4,
right). Note that the four corner nodes now effectively form a second four-node loop,
similar to the inner four nodes. In Sackesyn et al. (2018), this new architecture is
compared with the swirl architecture in simulations in terms of loss and in terms
of performance on the equalisation of a non-linearly distorted BPSK signal. These
simulations (Fig. 5) show that the four-port architecture indeed suffers less losses
and thus has a better energy-efficiency as all input power at a node is redirected to
one of the two output channels instead of radiating away.

3 Training Reservoirs with Integrated Optical Readouts

3.1 Motivation

To train the readout of a physical reservoir computing system, all states that used in
that readout must be observable. In many cases, the reservoir is driven with the train-
ing input signal(s), the resulting reservoir states are recorded and one-shot learning
through ridge regression is used to obtain the optimal readout weights. However,
online learning (using recursive least squares or FORCE optimization Sussillo and
Abbott 2009) is also possible. For the integrated photonic reservoirs discussed thus
far, it was assumed that a photodetector would be needed for each reservoir state,
followed by an AD convertor because training is usually done in the digital domain.
Unfortunately, this solution would be challenging when scaling up to reservoirs with
more nodes and tuned to operate at higher bandwidths, as high-speed photodetectors
tend to be costly in terms of chip footprint.
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Fig. 6 Schematic of a fully optical readout. Each optical output signal is modulated by an Optical
Modulator (OM) implementing the weights. The optical outputs are then sent to a photodiode where
all signals are summed and then converted to a final electrical output signal

This chip area, as well as the power consumption of the photodetectors, could be
avoided by implementing the readout optically. Since the aim is to reduce costs (chip
area) and power consumption, the optical implementation of the readout should
equally not involve power-hungry weighting components for each state signal. A
straightforward tuneable optical weighting element can take the form of a reverse-
biased pn-junction. An even better solution would be to use non-volatile optical
weighting elements, such as the ones that are currently being developed by several
groups (Abel et al. 2013; Ríos et al. 2015; Van Bilzen et al. 2015). Figure6 illustrates
the concept of a fully optical integrated readout.

From a system designer’s perspective, this means we end up with a readout with
quite different properties from the original one (Fig. 6). In what follows, we sum-
marise each of these differences and their implications and discuss how they have
been taken into account in the designs for the next generation integrated reservoir
prototypes.

3.2 Limited Observability

As mentioned before, the fabrication tolerances of integrated waveguides are such
that the propagation phase of two nominally identical waveguides could be com-
pletely different. By averaging simulations across a number of randomly selected
instances, the global architectural parameters can be tuned. However it is not pos-
sible to build a simulation model that exactly matches the behaviour of individual
physical reservoirs, which means that training the readout weights cannot be done
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in simulation. In fact, simulation studies have shown that, fro realistic settings of
the phase variability, weights trained in simulation are almost as bad as randomly
initialised weights (Freiberger et al. 2017).

As long as the fabrication tolerances do not improve, this implies that device-
specific training on the actual hardware will always be necessary. Thus far, no techni-
cal solutions have been found that indicate that the actual optimisation of the weight
values could also be done optically, on the physical hardware, so opto-electronic
conversion and digital training still remain necessary. For this reason, we maintain
a single photodetector after the linear readout. However, in order to record all state
signals for training, it no longer suffices to send the input sequences through the
reservoir once. Remember that the photodetector’s output is essentially the squared
magnitude of its optical input. Obtaining the state signals implies that we need to
know their magnitude, but also their phase, relative to a reference phase. It turns
out that this is in fact possible with a single photodetector by driving the reservoir
with the same input signals multiple times (just under three times per state signal),
each time with different settings of the weights (Freiberger et al. 2018). Under ideal
conditions, this non-linearity inversion procedure is exact. Each signal’s magnitude
is obtained by setting all weights to zero except for the observed signal. To obtain
the relative phases, one signals phase is chosen as a reference and two measurements
are necessary to obtain the relative phase for each of the other signals. Once this pro-
cedure has been executed, training can be done offline. Once the weights have been
trained, the reservoir can operate without the need for digital processing, althoughwe
expect that re-training or tuning may be necessary at regular intervals to compensate
for any causes of drift or non-stationarity in the system.

3.3 Non-linearities and Complex-Valued Regression

With an integrated optical readout, the non-linearity of the single photodetector
(now the only non-linearity in the system) is applied after the linear combination
and the accuracy of the reservoir is evaluated after the photodetector. However, ridge
regression is a linear technique. In order to use it in this new setting, the desired signal
values after the non-linearity have to be converted back into desired complex-valued
signals before the non-linearity. After that, the optical weighted sum at the readout
is now a linear combination in the complex domain, which can be optimised using
complex-valued ridge regression (Hoerl and Kennard 1970).

A straightforward way to obtain complex-valued target signals is to again invert
the non-linearity by taking the square root of the original target signal as magnitude
and setting the desired phase to an arbitrary value (e.g., zero). Unfortunately, this pro-
cedure yields rather disappointing results for tasks that really require non-linearity. A
simple example is the highly non-linear XOR task on bitstream input signals, where
the desired output is again a bitstream signal, representing the Boolean XOR of the
current bit and the previous bit. This task could easily be solved by the reservoirs
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Fig. 7 Mathematics of a complex readout for two states: although each weighted input’s phase
is constant in time (chosen at −30◦ and +100◦ in the figure), the phase of the linear combination
varies in time

without optical readout, i.e., with a (non-linear) photodetector for each state signal,
but turns out to be much harder with a single photodetector after the readout.

One part of the reason for this is the fact that, purely froma function approximation
point of view, taking a weighted sum of non-linearly transformed signals offers more
non-linear richness than taking the samenon-linear transformationof aweighted sum.
However, it also turns out that setting targets for the complex-valued signals before
the photodetector is far from optimal. This can be explained as follows. First, fixing
the magnitude of the signal also fixes the operating point of the output non-linearity.
Since the output signal can easily be rescaled and shifted in the electrical domain,
this is not necessary. Second, and more importantly, fixing the phase to a single value
is overly restrictive. Let’s consider the simplest case of combining two states. The
weights are constant in time and so is the phase for each of the state signals. The
readout is therefore the sumof two complex-valued signals withmagnitudes that vary
in time and constant phases. Due to the properties of complex addition, the phase of
this readout also varies in time, as illustrated in Fig. 7. This simple example shows
why trying to enforce a constant phase to the outputs of the readout constrains the
solution space unnecessarily. The phase in the complex domain is of no relevance
to the signal after its transformation to the electrical domain, so it should be left
unconstrained.

Since ridge regression is an optimisation technique for linear models, we cannot
use it without setting targets in the complex domain. Instead, we use gradient descent
to minimise the error between the electrical output signal and the complex-valued
weights directly. We previously explained why using gradient descent is not possible
for optimising the entire reservoir due to the uncertainty about inter-node connection
phases. However, the phases in the paths between the readout weights and the pho-
todetector are included in the signals obtained fromnon-linearity inversion procedure
and a differentiable model for the photodetector is quite straightforward.

The replacement of ridge regression by gradient descent avoids enforcing any
values for the complex-valued signal between the linear combination and the pho-
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Fig. 8 Comparison of ridge regression with complex-valued targets and gradient descent for the
XOR task on bitstream input (reservoir using four-port architecture of 4 × 4 nodes and input applied
to all nodes)

todetector. The trained parameters are the magnitudes and phases of all weights
(including the constant weight) as well as the bias and rescaling after the photode-
tector:

ŷ(t) = wbias + wscale

(
m0 ∗ e jφ0 +

n∑
i=1

mi ∗ e jφi ∗ xi

)2

, (1)

where n is the number of state signals used in the readout, wbias and wscale operate
in the electrical domain (i.e., after the photodetector) and m0 . . .mn and φ0 . . . φn

are the tuneable magnitudes and phases of the optical weights. Figure8 illustrates
the striking the difference between trained outputs obtained using ridge regression
with complex-valued targets and using gradient descent directly on the real-valued
targets at the output of the photodetector. This example indicates that, despite initial
expectations, having a single non-linearity at the readout does not dramatically affect
our reservoir performance. This is mostly due to the fact that we are working in the
complex domain (with coherent light).

3.4 Limited Precision

Readout weights can be implemented using different approaches. From the perspec-
tive ofminimising power, there is a large difference between volatile and non-volatile
technologies. Volatile approaches, like reverse-biased PN-junctions, can typically be



Computing with Integrated Photonic Reservoirs 411

tuned with fine resolution, but they need power to maintain their set value. In con-
trast, non-volatile weight elements only consume power when their value is being
set, but the physics of the current candidate technologies do not allow for high res-
olution. A typical example with such a limitation is a weighing element based on
barium titanate (BaTiO3) (Abel et al. 2013), an integration of a transitionmetal oxide
material. These elements are typically able to bring only 20 discrete weight levels.
Clearly, this limited precision of the tuneable weights needs to be investigated since
it can be expected to affect reservoir performance.

The impact of weight precision has been analysed in simulation. For a first study,
we assumed the same number of levels for both the magnitudes and the phases of
the weights. The readout was trained in the same way as with infinite precision and
the weights were quantized only after training, using discretisation at 8, 16, 32 and
64 discrete levels (also referred to as 3-, 4-, 5- and 6-bit quantization, respectively).
Figure9 illustrates the results for a header recognition task, each time sweeping
across different values for the inter-node delay (arbitrary units). We can conclude
that, without taking any additional measures, the performance degenerates a lot for
3-bit quantisation. For 4 or more bits, the error rate at the optimal inter-node delay is
notmuch higher than for the casewith infinite precision but there remains some varia-
tion between the results for individual reservoirs. At 6 bits resolution, this variability
disappears almost completely. These results are promising, given the fact that no
measures have yet been taken to take weight quantisation into account during train-

Fig. 9 Error rate when using quantised optical weights (red curves) in a header recognition task,
as a function of interconnection delay. The weight resolution (in bits) is indicated at the top of each
plot. For comparison, the blue curves show the case of infinite weight resolution
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ing. Reduced weight precision in real-valued networks is currently being actively
addressed in deep learning research. In view of introducing autonomous deep learn-
ing in embedded systems (without needing cloud connectivity) it is crucial to reduce
the computational cost of inference in deep neural networks. One way to approach
this is to use (extremely) reduced precision (Gupta et al. 2015; Hao et al. 2017).
Results have even been proposed that go as far as using binary weights (Bengio and
David 2015; Rastegari et al. 2016). By developing approaches for quantised training
that are adapted to complex-valued readouts, we expect to be able to relax the pre-
cision requirements on integrated optical weights to 16 or even 8 quantisation levels
(3 or 4 bits).

4 From Modules to Systems

4.1 The Future of Single Reservoir Modules

Based on simulation results, the architectural improvements mentioned in the pre-
vious sections should be sufficient to allow good reservoir performance for small
to medium-sized reservoir modules. Second-generation prototypes to evaluate these
claims have been designed and are being characterised at the time of writing this
chapter. At the same time, more challenging applications in the telecom area are
being addressed. Although a lot of optical processing is already being done in that
domain, it is mostly linear. For this reason, we are focusing on non-linear tasks on
optical telecom signals.

One problem that is being addressed is the restoration of optical signals that have
degraded due to non-linear distortions during generation, transmission and reception
phases (Djordjevic et al. 2010). Causes for this can be traced back to effects like
dispersion, amplified spontaneous emission at amplification points, attenuation and
reflections in fibre links, optical nonlinearities in fibres or timing jitter introduced at
O/E and E/O points. Today, such restoration is typically done in the digital electronic
domain using advanced DSP post-processing, but such an approach consumes a
lot of power and chip real estate. Photonic reservoir computing could provide an
alternative here, to undo (part of) these signal impairments already in the optical
domain. Katumba et al. (2019) shows non-linear compensation in unrepeated metro
links of up to 200km that outperform electrical FFE-based equalisers, and ultimately
any linear compensation device. For a high-speed short-reach 40Gb/s link based on
a Distributed Feedback Laser (DFB) and an Electroabsorptive Modulator (EAM),
and considering an HD-FEC limit of 0.2102, the reach can be increased by almost
10km using a reservoir with only 16 nodes. These results show for the first time
that integrated photonic reservoir modules can be competitive to the-state-of-the-art
solutions in the telecommunications domain.
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The next step is to address more complex tasks. Most often, tasks on optically
encoded digital signals are performed on data encoded with a binary modulation
format, but this can be extended to the much more complex case of computing
directly on a PAM-4 signal, a two-bit per symbol amplitude modulation format. This
is equivalent to performing Boolean computations in a 4-valued space. In Katumba
et al. (2018b), initial results are given for operations on PAM-4 signals modulated at
10GHz, which translates to a bitrate of 20GHz. These indicate that small reservoirs
like the ones discussed above cannot solve this. Even an 8 × 8 swirl reservoir has a
symbol error rate of approximately 30%. However, the complexity of this task allows
us to test how this can improve for increasing reservoir size. In this case, there was
a close to linear improvement and for the largest simulated reservoir in that study
(20 × 20 nodes), the symbol error rate had decreased to 5%. Although this is only
a first study, it suggests that there is still quite a bit of room for improvement in
addressing more complex tasks simply by scaling up the reservoir.

In parallel to the application-directed research, which aims to pave the road to
industrial take-up,more fundamentally different reservoir architectures are also being
explored. The reservoirs discussed thus farwere still based on the earliest ones, which
tried to follow the conventional node structure of neural networks quite closely. How-
ever, the field of physical reservoir computing has evolved a lot since the early days.
In particular, as is clear from the variety of contributions in this book, the dynamical
systems used as reservoirs do not have to follow the straitjacket of interconnected
nodes. In particular, the inherently parallel nature of photonics allows for architec-
tures in which the light propagates and mixes in free space. A possible design for an
integrated free-space photonic reservoir consists of a photonic crystal cavity with a
quarter stadium shape (Laporte et al. 2018), depicted in Fig. 10. In this design, the
quarter stadium shape makes sure that an input signal gets mixed in a complicated
manner (Liu et al. 2015; Sieber et al. 1993; Stöckmann and Stein 1990). The mixed
light leaks out of the cavity along the connected waveguides which provide the state
signals to the readout. As can be seen in the figure, the mixing of light within the
cavity is very rich. In fact, it is richer than in the waveguide-based reservoirs, while
at the same time using considerably less chip area. The time scales of the reservoir
depend on the time-of-flight inside the cavity (the cavity dimensions) and how well
the light is confined inside the cavity. The cavity in Fig. 10 was optimised for optical
bitstream signals at a bitrate of around 50Gbps. Its dimensions are 30µm × 60µm.
In theory, cavities as small as 7µm × 7µm are possible, which would allow bitrates
up to 1 Tbps. Based on simulations, this photonic crystal design promises very low
loss and excellent performance several benchmark telecom tasks, such as the highly
non-linear XOR task and header recognition tasks, while still accepting bitrates in a
wide region of operation (Laporte et al. 2018).
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Fig. 10 Optical field profiles in a photonic crystal cavity. In the example, input is applied through
a single channel. Thanks to the specific profile of the cavity’s boundary, the mixing of the optical
fields inside the cavity is very rich. The mixed light leaks out of the cavity along all the waveguides
which are routed to a readout

4.2 Making Ensembles of Reservoir Modules

Although initial results indicate that there is still room for improvement with respect
to task complexity by scaling up reservoirs, it is well known in the reservoir comput-
ing community that there are bounds to what you can achieve simply by making a
reservoir larger and using more observed states in the readout. One of the main rea-
sons for this is that, due to the interactions inside the reservoir, the states are usually
highly correlated and it becomes more difficult to exploit the residual information
that is added by additional states as the state space grows larger. For simulated reser-
voirs, such as infinite precision echo state networks, this would require an increase
in the amount of training data. Physical reservoirs do not have infinite precision due
to noise and measurement inaccuracies, so their performance tends to saturate even
faster as a function of reservoir size. This limits the applicability of single reservoir
modules.

In order to go beyond what can be achieved with a single reservoir module, more
extensive training is required by building networks of interconnected reservoirs, in
which training occurs only at the inter-module interfaces. Unfortunately, we are again
(heavily) constrained by the fact that, due to process variability, the detailed behaviour
of individual reservoirs cannot be modelled in simulation. This effectively rules
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out backpropagation, the workhorse of deep learning, as a top-down optimisation
approach. Instead, targets for each individual reservoir module must be explicitly
defined based on the global task targets.

In machine learning, ensembling is an overarching name to achieve exactly that:
increasing task performance beyond what can be achieved with a single model. In
order to work well, the models in an ensemble must be different, i.e., the mistakes
theymakemust be as uncorrelated as possible. Variation betweenmodels of the same
type can be achieved by training them on different subsets of the training data or the
input features. They can also be trained to correct each other’s mistakes (boosting,
Friedman et al. 2001).

In an initial simulation study of ensembling for photonic reservoirs, we consider
ensembles in which each model is of the same type: an integrated 4 × 8 photonic
four-port reservoir with interconnection delays tuned for operation at 30 Gbps. Since
the interconnection phases of each reservoir are randomly chosen, each reservoir is
already unique and different from the others. Since this work was performed in
parallel with the research on optical readouts described in Sect. 3, it focused mostly
on reservoirs with electrical readouts, i.e., with the non-linear transformation of a
photodetector for each signal that is used in the readout.

We selected a number of approaches of combining four such reservoirs and com-
pared them to the baseline case of a single 16 × 32 reservoir with the same architec-
ture. The approaches we considered in this study are illustrated in Fig. 11. In the first
type (single-stage ensemble), the observed states of all modules in the ensemble are
concatenated into a single readout. In the second type, gradient boosting, only the
first module is trained on the original task, while each consecutive module is trained
to correct the mistakes of its predecessor’s outputs. As a third approach, we have also
evaluated the paradigm of stacking, which has already been applied in the context of
reservoir computing (Keuninckx 2016; Nichele andMolund 2017). In this approach,
each reservoir is trained on the original task. Only the first module is driven with the
original input signal, while each consecutive module is driven with its predecessor’s
trained output (converted back into the optical domain. Finally, we introduce a new
combination technique inspired by these approaches, which we refer to as chaining.
Like in gradient boosting, each module is driven with the original input and like in
stacking each readout is trained on the original task. However, from the second mod-
ule onward, each readout also receives the trained output from the previous reservoir
as an input. This offers a different way for the readouts to correct the mistakes of the
previous reservoirs.

The architectures described above were evaluated on two benchmark tasks. The
first task is the XOR task on bitstream data, but nowwith 3 bits delay. This means that
the desired output is the Boolean XOR of the current binary symbol and that which
lies three-bit periods in the past. This task has the same non-linearity requirements
as the XOR task used before, but it requires more memory. The second task is the
1 sample ahead prediction Santa Fe task (Weigend and Gershenfeld 1993). Table1
summarises the error rates obtained for these two tasks at 30Gbps. Error rates printed
in bold face indicate the best performing approach per task, error rates in italic
the second best. This table shows that the single-stage ensembling systematically
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Fig. 11 Types of ensembles of reservoirs with electrical readout considered in the initial study.
Components operating in the optical domain are shown in blue, components in the electrical domain
in yellow

Table 1 Results for electrical training/coupling at 30 Gbps

Task Baseline Ensemble Boosting Stacking Chaining

XOR 3-bit
delay (BER)

0.006 0.001 0.041 0.222 0.038

Santa Fe
(NMSE)

0.028 0.022 0.038 0.038 0.027

outperforms the baseline of a single large reservoir. This is good news, since we
expect it will be technologically easier to combine multiple small reservoirs than to
make a large one. The main reason for this is that optically routing power from all the
nodes to the readout becomes more difficult when the dimensions of the architecture
increase. Boosting and stacking are consistently worse than the baseline. This was
also the case for experiments at other bandwidths (not shown). For our proposed
chaining approach, conclusions are mixed. At 30Gbps, its performance is between
the baseline and the ensemble for the Santa Fe task but worse than both for the XOR
task. However, at other bandwidths, this gap is closed and chaining again matches
the ensemble’s performance.
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Clearly, this is only an initial study, in which many possibilities for optimisation
are yet to be explored. In view of our recent progress on integrated readouts trained
with gradient descent, the next study will focus directly on those architectures. It will
also cover amore extensive range of combination approaches. For example, the recent
approach followed inGallicchio andMicheli (2017),Gallicchio et al. (2018) is similar
to but not the same as the stacking performed above. In those works, each reservoir
module is driven with all the states of its predecessor (with untrained weights). The
readout is trained on the aggregated states of all reservoirs in the ensemble. This
architecture performs better than the one studied here because, as the information
flows from reservoir to reservoir, each subsequent reservoir has amemory that reaches
further into the past. Translated to integrated photonics technology, it would have
to be simplified, e.g., by projecting a random combination of each reservoir’s states
back into the next reservoir and training the readout on all states in the electrical
domain.

5 Conclusion and Perspectives

In this chapter we outlined our research path on integrated photonic reservoir com-
puting, from its first steps in 2007 until today, when second-generation prototypes
have been designed are being characterised and at least one application is a promising
candidate for industrial take-up.

The focus in this chapter was on the impact of technological limitations on system
performance and on the architectural and operational solutions we developed to end
up with ever better performing systems. In view of the present results, we are more
confident now than a decade ago that this technology will eventually find its way
into industrial applications.

The last part of this chapter reported on first steps towards designing multi-
reservoir systems. It is clear that the ensembling approaches investigated in this
study do not offer sufficient improvement by themselves. Their limitation lies in the
fact that all targets for training individual modules are either equal to or directly
derived from the original task targets. This is not sufficient for building really power-
ful multi-reservoir networks. Candidate starting points for exploring architectures as
well as optimising them could be based on, e.g., reinforcement learning or large-scale
genetic black box optimisation approaches. However, what is really needed is a new
automatic and efficient divide-and-conquer design methodology for analogue com-
puting. Only then can reservoir computing with integrated photonic systems, as well
as other novel analog computing substrates, leverage general-purpose computation
in the optical domain.
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Quantum Reservoir Computing: A
Reservoir Approach Toward Quantum
Machine Learning on Near-Term
Quantum Devices

Keisuke Fujii and Kohei Nakajima

Abstract Quantum systems have an exponentially large degree of freedom in the
number of particles and hence provide a rich dynamics that could not be simu-
lated on conventional computers. Quantum reservoir computing is an approach to
use such a complex and rich dynamics on the quantum systems as it is for tempo-
ral machine learning. In this chapter, we explain quantum reservoir computing and
related approaches, quantum extreme learningmachine and quantumcircuit learning,
starting from a pedagogical introduction to quantum mechanics and machine learn-
ing. All these quantummachine learning approaches are experimentally feasible and
effective on the state-of-the-art quantum devices.

1 Introduction

Over the past several decades, we have enjoyed exponential growth of computational
power, namely, Moore’s law. Nowadays even smart phone or tablet PC is much more
powerful than super computers in 1980s. People are still seekingmore computational
power, especially for artificial intelligence (machine learning), chemical and mate-
rial simulations, and forecasting complex phenomena like economics, weather and
climate. In addition to improving computational power of conventional computers,
i.e., more Moore’s law, a new generation of computing paradigm has been started to
be investigated to go beyond Moore’s law. Among them, natural computing seeks
to exploit natural physical or biological systems as computational resource. Quan-
tum reservoir computing is an intersection of two different paradigms of natural
computing, namely, quantum computing and reservoir computing.
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Regarding quantum computing, the recent rapid experimental progress in con-
trolling complex quantum systems motivates us to use quantum mechanical law
as a new principle of information processing, namely, quantum information pro-
cessing (Nielsen and Chuang 2010; Fujii 2015). For example, certain mathematical
problems, such as integer factorisation, which are believed to be intractable on a
classical computer, are known to be efficiently solvable by a sophisticatedly synthe-
sized quantum algorithm (Shor 1994). Therefore, considerable experimental effort
has been devoted to realizing full-fledged universal quantum computers (Barends
et al. 2014; Kelly et al. 2015). In the near feature, quantum computers of size > 50
qubits with fidelity > 99% for each elementary gate would appear to achieve quan-
tum computational supremacy beating simulation on the-state-of-the-art classical
supercomputers (Preskill 2018; Boixo et al. 2018). While this does not directly mean
that a quantum computer outperforms classical computers for a useful task like
machine learning, now applications of such a near-term quantum device for useful
tasks includingmachine learning has been widely explored. On the other hand, quan-
tum simulators (Feynman 1982) are thought to be much easier to implement than
a full-fledged universal quantum computer. In this regard, existing quantum simu-
lators have already shed new light on the physics of complex many-body quantum
systems (Cirac and Zoller 2012; Bloch et al. 2012; Georgescu et al. 2014), and a
restricted class of quantum dynamics, known as adiabatic dynamics, has also been
applied to combinatorial optimisation problems (Kadowaki and Nishimori 1998;
Farhi et al. 2001; Rønnow et al. 2014; Boixo et al. 2014). However, complex real-time
quantum dynamics, which is one of the most difficult tasks for classical computers
to simulate (Morimae et al. 2014; Fujii et al. 2016; Fujii and Tamate 2016) and has
great potential to perform nontrivial information processing, is now waiting to be
harnessed as a resource for more general purpose information processing.

Physical reservoir computing, which is the main subject throughout this book, is
another paradigm for exploiting complex physical systems for information process-
ing. In this framework, the low-dimensional input is projected to a high-dimensional
dynamical system, which is typically referred to as a reservoir, generating transient
dynamics that facilitates the separation of input states (Rabinovich et al. 2008). If the
dynamics of the reservoir involve both adequate memory and nonlinearity (Dambre
et al. 2012), emulating nonlinear dynamical systems only requires adding a linear
and static readout from the high-dimensional state space of the reservoir. A num-
ber of different implementations of reservoirs have been proposed, such as abstract
dynamical systems for echo state networks (ESNs) (Jaeger andHaas 2004) ormodels
of neurons for liquid state machines (Maass et al. 2002). The implementations are
not limited to programs running on the PC but also include physical systems, such
as the surface of water in a laminar state (Fernando and Sojakka 2003), analogue
circuits and optoelectronic systems (Appeltant et al. 2011; Woods and Naughton
2012; Larger et al. 2012; Paquot et al. 2012; Brunner et al. 2013; Vandoorne et al.
2014), and neuromorphic chips (Stieg et al. 2012). Recently, it has been reported that
the mechanical bodies of soft and compliant robots have also been successfully used
as a reservoir (Hauser et al. 2011; Nakajima et al. 2013a, b, 2014, 2015; Caluwaerts
et al. 2014). In contrast to the refinements required by learning algorithms, such as
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in deep learning (LeCun et al. 2015), the approach followed by reservoir computing,
especially when applied to real systems, is to find an appropriate form of physics that
exhibits rich dynamics, thereby allowing us to outsource a part of the computation.

Quantum reservoir computing (QRC) was born in the marriage of quantum com-
puting and physical reservoir computing above to harness complex quantum dynam-
ics as a reservoir for real-time machine learning tasks (Fujii and Nakajima 2017).
Since the idea of QRC has been proposed in Fujii and Nakajima (2017), its proof-
of-principle experimental demonstration for non-temporal tasks (Negoro et al. 2018)
and performance analysis and improvement (Nakajima et al. 2019; Kutvonen et al.
2020; Tran and Nakajima 2020) has been explored. The QRC approach to quantum
tasks such as quantum tomography and quantum state preparation has been recently
garnering attention (Ghosh et al. 2019a, b, 2020). In this book chapter, we will pro-
vide a broad picture of QRC and related approaches starting from a pedagogical
introduction to quantum mechanics and machine learning.

The rest of this paper is organized as follows. In Sect. 2, we will provide a ped-
agogical introduction to quantum mechanics for those who are not familiar to it
and fix our notation. In Sect. 3, we will briefly mention to several machine learning
techniques like, linear and nonlinear regressions, temporal machine learning tasks
and reservoir computing. In Sect. 4, we will explain QRC and related approaches,
quantum extreme learning machine (Negoro et al. 2018) and quantum circuit learn-
ing (Mitarai et al. 2018). The former is a framework to use quantum reservoir for
non-temporal tasks, that is, the input is fed into a quantum system, and generalization
or classification tasks are performed by a linear regression on a quantum enhanced
feature space. In the latter, the parameters of the quantum system are further fine-
tuned via the gradient descent by measuring an analytically obtained gradient, just
like the backpropagation for feedforward neural networks. Regarding QRC, we will
also see chaotic time series predictions as demonstrations. Section 5 is devoted to
conclusion and discussion.

2 Pedagogical Introduction to Quantum Mechanics

In this section, we would like to provide a pedagogical introduction to how quantum
mechanical systems work for those who are not familiar to quantum mechanics. If
you already familiar to quantum mechanics and its notations, please skip to Sect. 3.

2.1 Quantum State

A state of a quantum system is described by a state vector,

|ψ〉 =
⎛
⎜⎝
c1
...

cd

⎞
⎟⎠ (1)
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on a complex d-dimensional system C
d , where the symbol |·〉 is called ket and

indicates a complex columnvector. Similarly, 〈·| is called bra and indicates a complex
row vector, and they are related complex conjugate,

〈ψ | = |ψ〉† = (
c∗
1 . . . c∗

d

)
. (2)

With this notation, we can write an inner product of two quantum state |ψ〉 and |φ〉
by 〈ψ |φ〉. Let us define an orthogonal basis

|1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
...
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, ... |k〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

1
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

, ... |d〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
...
...
...

d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

a quantum state in the d-dimensional system can be described simply by

|ψ〉 =
d∑

i=1

ci |i〉. (4)

The state is said to be a superposition state of |i〉. The coefficients {ci } are complex,
and called complex probability amplitudes. If we measure the system in the basis
{|i〉}, we obtain the measurement outcome i with a probability

pi = |〈i |ψ〉|2 = |ci |2, (5)

and hence the complex probability amplitudes have to be normalized as follows

|〈ψ |ψ〉|2 =
d∑

i=1

|ci |2 = 1. (6)

In other words, a quantum state is represented as a normalized vector on a complex
vector space.

Suppose the measurement outcome i corresponds to a certain physical value ai ,
like energy, magnetization and so on, then the expectation value of the physical
valuable is given by

∑
i

ai pi = 〈ψ |A|ψ〉 ≡ 〈A〉, (7)

where we define an hermitian operator
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A =
∑
i

ai |i〉〈i |, (8)

which is called observable, and has the information of the measurement basis and
physical valuable.

The state vector in quantum mechanics is similar to a probability distribution, but
essentially different form it, since it is much more primitive; it can take complex
value and is more like a square root of a probability. The unique features of the
quantum systems come from this property.

2.2 Time Evolution

The time evolution of a quantum system is determined by a Hamiltonian H , which is
a hermitian operator acting on the system. Let us denote a quantum state at time t = 0
by |ψ(0)〉. The equation of motion for quantum mechanics, so-called Schrödinger
equation, is given by

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉. (9)

This equation can be formally solved by

|ψ(t)〉 = e−i Ht |ψ(0)〉. (10)

Therefore, the time evolution is given by an operator e−i Ht , which is a unitary oper-
ator and hence the norm of the state vector is preserved, meaning the probability
conservation. In general, the Hamiltonian can be time dependent. Regarding the
time evolution, if you are not interested in the continuous time evolution, but in just
its input and output relation, then the time evolution is nothing but a unitary operator
U

|ψout〉 = U |ψin〉. (11)

In quantum computing, the time evolution U is sometimes called quantum gate.

2.3 Qubits

The smallest nontrivial quantum system is a two-dimensional quantum system C
2,

which is called quantum bit or qubit:

α|0〉 + β|1〉, (|α|2 + |β|2 = 1). (12)
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Suppose we have n qubits. The n-qubit system is defined by a tensor product space
(C2)⊗n of each two-dimensional system as follows. A basis of the system is defined
by a direct product of a binary state |xk〉 with xk ∈ {0, 1},

|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉, (13)

which is simply denoted by

|x1x2 · · · xn〉. (14)

Then, a state of the n-qubit system can be described as

|ψ〉 =
∑

x1,x2,...,xn

αx1,x2,...,xn |x1x2 · · · xn〉. (15)

The dimension of the n-qubit system is 2n , and hence the tensor product space is
nothing but a 2n-dimensional complex vector spaceC2n . The dimension of the n-qubit
system increases exponentially in the number n of the qubits.

2.4 Density Operator

Next, I would like to introduce operator formalism of the above quantummechanics.
This describes an exactly the same thing but sometimes the operator formalismwould
be convenient. Let us consider an operator ρ constructed from the state vector |ψ〉:

ρ = |ψ〉〈ψ |. (16)

If you chose the basis of the system {|i〉} for the matrix representation, then the
diagonal elements of ρ corresponds the probability distribution pi = |ci |2 when the
system is measured in the basis {|i〉}. Therefore, the operator ρ is called a density
operator. The probability distribution can also be given in terms of ρ by

pi = Tr[|i〉〈i |ρ], (17)

where Tr is the matrix trace. An expectation value of an observable A is given by

〈A〉 = Tr[Aρ]. (18)

The density operator can handle a more general situation where a quantum state is
sampled form a set of quantum states {|ψk〉} with a probability distribution {qk}. In
this case, if we measure the system in the basis {|i〉〈i |}, the probability to obtain the
measurement outcome i is given by
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pi =
∑
k

qkTr[|i〉〈i |ρk], (19)

where ρk = |ψk〉〈ψk |. By using linearity of the trace function, this reads

pi = Tr[|i〉〈i |
∑
k

qkρk]. (20)

Now, we interpret that the density operator is given by

ρ =
∑
k

qk |ψk〉〈ψk |. (21)

In this way, a density operator can represent classical mixture of quantum states
by a convex mixture of density operators, which is convenient in many cases. In
general, a positive and hermitian operator ρ being subject to Tr[ρ] = 1 can be a
density operator, since it can be interpreted as a convex mixture of quantum states
via spectral decomposition:

ρ =
∑

λi |λi 〉〈λi |, (22)

where {|λi 〉} and {λi } are the eigenstates and eigenvectors, respectively. Because of
Tr[ρ] = 1, we have

∑
i λi = 1.

From its definition, the time evolution of ρ can be given by

ρ(t) = e−i Htρ(0)eiHt (23)

or

ρout = UρinU
†. (24)

Moreover, we can define more general operations for the density operators. For
example, if we apply unitary operators U and V with probabilities p and (1 − p),
respectively, then we have

ρout = pUρU † + (1 − p)VρV †. (25)

As another example, if we perform the measurement of ρ in the basis {|i〉}, and
we forget about the measurement outcome, then the state is now given by a density
operator

∑
i

Tr[|i〉〈i |ρ]|i〉〈i | =
∑
i

|i〉〈i |ρ|i〉〈i |. (26)
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Therefore, if we define a map from a density operator to another, which we call
superoperator,

M(· · · ) =
∑
i

|i〉〈i |(· · · )|i〉〈i |, (27)

the above non-selective measurement (forgetting about the measurement outcomes)
is simply written by

M(ρ). (28)

In general, any physically allowed quantum operationK that maps a density operator
to another can be represented in terms of a set of operators {Ki } being subject to
K †

i Ki = I with an identity operator I :

K(ρ) =
∑
i

KiρK
†
i . (29)

The operators {Ki } are called Kraus operators.

2.5 Vector Representation of Density Operators

Finally, we would like to introduce a vector representation of the above operator
formalism. The operators themselves satisfy axioms of the linear space. Moreover,
we can also define an inner product for two operators, so-called Hilbert–Schmidt
inner product, by

Tr[A†B]. (30)

The operators on the n-qubit system can be spanned by the tensor product of Pauli
operators {I, X,Y, Z}⊗n ,

P(i) =
n⊗

k=1

σi2k−1i2k . (31)

where σi j is the Pauli operators:

I = σ00 =
(
1 0
0 1

)
, X = σ10 =

(
0 1
1 0

)
, Z = σ01 =

(
1 0
0 −1

)
, Y = σ11 =

(
0 −i
i 0

)
. (32)

Since the Pauli operators constitute a complete basis on the operator space, any
operator A can be decomposed into a linear combination of P(i),
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A =
∑
i

aiP(i). (33)

The coefficient ai can be calculated by using the Hilbert–Schmidt inner product as
follows:

ai = Tr[P(i)A]/2n, (34)

by virtue of the orthogonality

Tr[P(i)P(j)]/2n = δi,j. (35)

The number of the n-qubit Pauli operators {P(i)} is 4n , and hence a density operator
ρ of the n-qubit system can be represented as a 4n-dimensional vector

r =
⎛
⎜⎝
r00...0

...

r11...1

⎞
⎟⎠ , (36)

where r00...0 = 1/2n because of Tr[ρ] = 1. Moreover, because P(i) is hermitian, r
is a real vector. The superoperator K is a linear map for the operator, and hence can
be represented as a matrix acting on the vector r:

ρ ′ = K(ρ) ⇔ r′ = K r, (37)

where the matrix element is given by

Kij = Tr[P(i)K (P(j))]/2n. (38)

In this way, a density operator ρ and a quantum operationK on it can be represented
by a vector r and a matrix K , respectively.

3 Machine Learning and Reservoir Approach

In this section, we briefly introduce machine learning and reservoir approaches.

3.1 Linear and Nonlinear Regression

A supervised machine learning is a task to construct a model f (x) from a given set
of teacher data {x ( j), y( j)} and to predict the output of an unknown input x . Suppose
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x is a d-dimensional data, and f (x) is one dimensional, for simplicity. The simplest
model is linear regression, which models f (x) as a linear function with respect to
the input:

f (x) =
d∑

i=1

wi xi + w0. (39)

The weights {wi } and bias w0 are chosen such that an error between f (x) and the
output of the teacher data, i.e. loss, becomes minimum. If we employ a quadratic
loss function for given teacher data {{x ( j)

i }, y( j)}, the problem we have to solve is as
follows:

min{wi }
∑
j

(

d∑
i=0

wi x
( j)
i − y( j))2, (40)

where we introduced a constant node x0 = 1. This corresponds to solving a super-
imposing equations:

y = Xw, (41)

where y j = y( j), X j i = x ( j)
i , and wi = wi . This can be solved by using the Moore–

Penrose pseudo inverse X+, which can be defined from the singular value decompo-
sition of X = UDV T to be

X+ = V DUT . (42)

Unfortunately, the linear regression results in a poor performance in complicated
machine learning tasks, and any kind of nonlinearity is essentially required in the
model. A neural network is a way to introduce nonlinearity to the model, which is
inspired by the human brain. In the neural network, the d-dimensional input data x
is fed into N -dimensional hidden nodes with an N × d input matrix W in:

W inx . (43)

Then, each element of the hidden nodes is now processed by a nonlinear activation
function σ such as tanh, which is denoted by

σ(W inx). (44)

Finally, the output is extracted by an outputweightW out (1 × N dimensionalmatrix):

W outσ(W inx). (45)
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The parameters in W in and W out are trained such that the error between the output
and teacher data becomes minimum. While this optimization problem is highly non-
linear, a gradient based optimization, so-called backpropagation, can be employed.
To improve a representation power of the model, we can concatenate the linear trans-
formation and the activation function as follows:

W outσ
(
W (l) . . . σ

(
W (1)σ (W inx)

))
, (46)

which is called multi-layer perceptron or deep neural network.

3.2 Temporal Task

The above task is not a temporal task, meaning that the input data is not sequential but
given simultaneously like the recognition task of images for hand written language,
pictures and so on. However, for a recognition of spoken language or prediction of
time series like stock market, which are called temporal tasks, the network has to
handle the input data that is given in a sequential way. To do so, the recurrent neural
network feeds the previous states of the nodes back into the states of the nodes at next
step, which allows the network to memorize the past input. In contrast, the neural
network without any recurrency is called a feedforward neural network.

Let us formalize a temporal machine learning task with the recurrent neural net-
work. For given input time series {xk}Lk=1 and target time series {ȳk}Lk=1, a temporal
machine learning is a task to generalize a nonlinear function,

ȳk = f ({x j }kj=1). (47)

For simplicity, we consider one-dimensional input and output time series, but their
generalization to a multi-dimensional case is straightforward. To learn the nonlinear
function f ({x j }kj=1), the recurrent neural network can be employed as a model.
Suppose the recurrent neural network consists of m nodes and is denoted by m-
dimensional vector

r =
⎛
⎜⎝

r1
...

rm

⎞
⎟⎠ . (48)

To process the input time series, the nodes evolve by

r(k + 1) = σ [W r(k) + W inxk], (49)

where W is an m × m transition matrix and W in is an m × 1 input weight matrix.
Nonlinearity comes from the nonlinear function σ applied on each element of the
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nodes. The output time series from the network is defined in terms of a 1 × m readout
weights by

yk = W outr(k). (50)

Then, the learning task is to determine the parameters in W in, W , and W out by using
the teacher data {xk, ȳk}Lk=1 so as to minimize an error between the teacher {ȳk} and
the output {yk} of the network.

3.3 Reservoir Approach

While the representation power of the recurrent neural network can be improved by
increasing the number of the nodes, it makes the optimization process of the weights
hard and unstable. Specifically, the backpropagation-based methods always suffer
from the vanishing gradient problem. The idea of reservoir computing is to resolve
this problem by mapping an input into a complex higher dimensional feature space,
i.e., reservoir, and by performing simple linear regression on it.

Let us first see a reservoir approach on a feedforward neural network, which is
called extreme learning machine (Huang et al. 2006). The input data x is fed into
a network like multi-layer perceptron, where all weights are chosen randomly. The
states of the hidden nodes at some layer are now regarded as basis functions of the
input x in the feature space:

{φ1(x), φ2(x), . . . , φN (x)}. (51)

Now, the output is defined as a linear combination of these

∑
i

wiφi (x) + w0 (52)

and hence the coefficients are determined simply by the linear regression as men-
tioned before. If the dimension and nonlinearity of the the basis functions are high
enough, we can model a complex task simply by the linear regression.

The echo state network is similar but employs the reservoir idea for the recurrent
neural network (Jaeger and Haas 2004; Maass et al. 2002; Verstraeten et al. 2007),
which has been proposed before extreme learning machine appeared. To be specific,
the input weights W in and weight matrix W are both chosen randomly up to an
appropriate normalization. Then, the learning task is done by finding the readout
weights W out to minimize the mean square error

∑
k

(yk − ȳk)
2. (53)
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This problem can be solved stably by using the pseudo inverse as we mentioned
before.

For both feedforward and recurrent types, the reservoir approach does not need
to tune the internal parameters of the network depending on the tasks as long as it
posses sufficient complexity. Therefore, the system, to which the machine learning
tasks are outsourced, is not necessarily the neural network anymore, but any non-
linear physical system of large degree of freedoms can be employed as a reservoir
for information processing, namely, physical reservoir computing (Fernando and
Sojakka 2003; Appeltant et al. 2011; Woods and Naughton 2012; Larger et al. 2012;
Paquot et al. 2012; Brunner et al. 2013; Vandoorne et al. 2014; Stieg et al. 2012;
Hauser et al. 2011; Nakajima et al. 2013a, b, 2014, 2015; Caluwaerts et al. 2014).

4 Quantum Machine Learning on Near-Term Quantum
Devices

In this section, we will see QRC and related frameworks for quantum machine
learning. Before going deep into the temporal tasks done on QRC, we first explain
how complicated quantum natural dynamics can be exploit as generalization and
classification tasks. This can be viewed as a quantum version of extreme learning
machine (Negoro et al. 2018).While it is an opposite direction to reservoir computing,
we will also see quantum circuit learning (QCL) (Mitarai et al. 2018), where the
parameters in the complex dynamics is further tuned in addition to the linear readout
weights. QCL is a quantum version of a feedforward neural network. Finally, we
will explain quantum reservoir computing by extending quantum extreme learning
machine for temporal learning tasks.

4.1 Quantum Extreme Learning Machine

The idea of quantum extreme learning machine lies in using a Hilbert space, where
quantum states live, as an enhanced feature space of the input data. Let us denote
the set of input and teacher data by {x ( j), ȳ( j)}. Suppose we have an n-qubit system,
which is initialized to

|0〉⊗n. (54)

In order to feed the input data into quantum system, a unitary operation parameterized
by x , say V (x), is applied on the initial state:

V (x)|0〉⊗n . (55)
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For example, if x is one-dimensional data and normalized to be 0 ≤ x ≤ 1, then we
may employ the Y -basis rotation e−iθY with an angle θ = arccos(

√
x):

e−iθY |0〉 = √
x |0〉 + √

1 − x |1〉. (56)

The expectation value of Z with respect to e−iθY |0〉 becomes

〈Z〉 = 2x − 1, (57)

and hence is linearly related to the input x . To enhance the power of quantum
enhanced feature space, the input could be transformed by using a nonlinear function
φ:

θ = arccos(
√

φ(x)). (58)

The nonlinear function φ could be, for example, hyperbolic tangent, Legendre
polynomial, and so on. For simplicity, below we will use the simple linear input
θ = arccos(

√
x).

If we apply the same operation on each of the n qubits, we have

V (x)|0〉⊗n = (
√
x |0〉 + √

1 − x |1〉)⊗n

= (1 − x)n/2
∑
i1,...,in

∏
k

√
x

1 − x

ik

|i1, . . . , in〉. (59)

Therefore, we have coefficients that are nonlinear with respect to the input x because
of the tensor product structure. Still the expectation value of the single-qubit operator
Zk on the kth qubit is 2x − 1. However, if we measure a correlated operator like
Z1Z2, we can obtain a second-order nonlinear output

〈Z1Z2〉 = (2x − 1)2 (60)

with respect to the input x . To measure a correlated operator, it is enough to apply
an entangling unitary operation like CNOT gate �(X) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X :

〈ψ |�1,2(X)Z1�1,2(X)|ψ〉 = 〈ψ |Z1Z2|ψ〉. (61)

In general, an n-qubit unitary operation U transforms the observable Z under the
conjugation into a linear combination of Pauli operators:

U †Z1U =
∑
i

αiP(i). (62)
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Fig. 1 The expectation value 〈Z〉 of the output of a quantum circuit as a function of the input
(x0, x1)

Thus if you measure the output of the quantum circuit after applying a unitary oper-
ation U ,

UV (x)|0〉⊗n, (63)

you can get a complex nonlinear output, which could be represented as a linear
combination of exponentially many nonlinear functions. U should be chosen to be
appropriately complexwith keeping experimental feasibility but not necessarily fine-
tuned.

To see how the output behaves in a nonlinear way with respect to the input, in
Fig. 1, we will plot the output 〈Z〉 for the input (x0, x1) and n = 8, where the inputs
are fed into the quantum state by the Y -rotation with angles

θ2k = k arccos(
√
x0) (64)

θ2k+1 = k arccos(
√
x1) (65)

on the 2kth and (2k + 1)th qubits, respectively. Regarding the unitary operation U ,
random two-qubit gates are sequentially applied on any pairs of two qubits on the
8-qubit system.

Suppose the Pauli Z operator is measured on each qubit as an observable. Then,
we have

zi = 〈Zi 〉, (66)
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for each qubit. In quantum extreme learning machine, the output is defined by taking
linear combination of these n output:

y =
n∑

i=1

wi zi . (67)

Now, the linear readout weights {wi } are tuned so that the quadratic loss function

L =
∑
j

(y( j) − ȳ( j))2 (68)

becomes minimum. As we mentioned previously, this can be solved by using the
pseudo inverse. In short, quantum extreme learning machine is a linear regression on
a randomly chosen nonlinear basis functions, which come from the quantum state in a
space of an exponentially large dimension, namely quantum enhanced feature space.
Furthermore, under some typical nonlinear function and unitary operations settings
to transform the observables, the output in Eq. (67) can approximate any continuous
function of the input. This property is known as the universal approximation property
(UAP), which implies that the quantum extreme learning machine can handle a wide
class of machine learning tasks with at least the same power as the classical extreme
learning machine (Goto et al. 2020).

Here we should note that a similar approach, quantum kernel estimation, has
been taken in Havlicek et al. (2019) and Kusumoto et al. (2021). In quantum extreme
learning machine, a classical feature vector φi (x) ≡ 〈(x)|Zi |(x)〉 is extracted
from observables on the quantum feature space |(x)〉 ≡ V (x)|0〉⊗n . Then, linear
regression is taken by using the classical feature vector.On the other hand, in quantum
kernel estimation, quantum feature space is fully employed by using support vector
machinewith the kernel functions K (x, x ′) ≡ 〈(x)|(x ′)〉, which can be estimated
on a quantum computer. While classification power would be better for quantum
kernel estimation, it requires more quantum computational costs both for learning
and prediction in contrast to quantum extreme learning machine.

In Fig. 2,we demonstrate quantum extreme learning machine for a two-class clas-
sification task of a two-dimensional input 0 ≤ x0, x1 ≤ 1. Class 0 and 1 are defined to
be those being subject to (x0 − 0.5)2 + (x1 − 0.5)2 ≤ 0.15 and> 0.15, respectively.
The linear readout weights {wi } are learned with 1000 randomly chosen training data
and prediction is performed with 1000 randomly chosen inputs. The class 0 and 1 are
determined whether or not the output y is larger than 0.5. Quantum extreme learning
machine with an 8-qubit quantum circuit shown in Fig. 2a succeeds to predict the
class with 95% accuracy. On the other hand, a simple linear regression for (x0, x1)
results in 39%. Moreover, quantum extreme learning machine withU = I , meaning
no entangling gate, also results in poor, 42%. In this way, the feature space enhanced
by quantum entangling operations is important to obtain a good performance in
quantum extreme learning machine.
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Fig. 2 a The quantum circuit for quantum extreme learningmachine. The boxwith thetak indicates
Y -rotations by angles θk . The red and blue boxes correspond to X and Z rotations by random
angles, Each dotted-line box represents a two-qubit gate consisting of two controlled-Z gates and
8 X -rotations and 4 Z -rotations. As denoted by the dashed-line box, the sequence of the 7 dotted
boxes is repeated twice. The readout is defined by a linear combination of 〈Zi 〉 with constant bias
term 1.0 and the input (x0, x1). b (Left) The training data for a two-class classification problem.
(Middle) The readout after learning. (Right) Prediction from the readout with threshold at 0.5

4.2 Quantum Circuit Learning

In the split of reservoir computing, dynamics of a physical system is not fine-tuned
but natural dynamics of the system is harnessed formachine learning tasks. However,
if we see the-state-of-the-art quantum computing devices, the parameter of quantum
operations can be finely tuned as done for universal quantum computing. Therefore,
it is natural to extend quantum extreme learning machine by tuning the parameters
in the quantum circuit just like feedfoward neural networks with backpropagation.

Using parameterized quantum circuits for supervised machine leaning tasks such
as generalization of nonlinear functions and pattern recognitions have been proposed
in Mitarai et al. (2018), Farhi and Neven (2018), which we call quantum circuit
learning. Let us consider the same situationwith quantum extreme learningmachine.
The state before the measurement is given by

UV (x)|0〉⊗n. (69)
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In the case of quantumextreme learningmachine, the unitary operation for a nonlinear
transformation with respect to the input parameter x is randomly chosen. However,
the unitary operation U may also be parameterized:

U ({φk}) =
∏
k

u(φk). (70)

Thereby, the output from the quantum circuit with respect to an observable A

〈A({φk}, x)〉 = 〈0|⊗nV †(x)U ({φk})†ZiU ({φk})V (x)|0〉⊗n (71)

becomes a function of the circuit parameters {φk} in addition to the input x . Then,
the parameters {φk} are tuned so as to minimize the error between teacher data and
the output, for example, by using the gradient just like the output of the feedforward
neural network.

Let us define a teacher dataset {x ( j), y( j)} and a quadratic loss function

L({φk}) =
∑
j

(〈A({φk}, x ( j))〉 − y( j))2. (72)

The gradient of the loss function can be obtained as follows:

∂

∂φl
L({φk}) = ∂

∂φl

∑
j

(〈A({φk}, x ( j))〉 − y( j))2 (73)

=
∑
j

2(〈A({φk}, x ( j))〉 − y( j))
∂

∂φl
〈A({φk}, x ( j))〉. (74)

Therefore, if we can measure the gradient of the observable 〈A({φk}, x ( j))〉, the loss
function can be minimized according to the gradient descent.

If the unitary operation u(φk) is given by

u(φk) = Wke
−i(φk/2)Pk , (75)

whereWk is an arbitrary unitary, and Pk is a Pauli operator. Then, the partial derivative
with respect to the lth parameter can be analytically calculated from the outputs
〈A({φk}, x ( j))〉 with shifting the lth parameter by ±ε (Mitarai et al. 2018; Mitarai
and Fujii 2019):

∂

∂φl
〈A({φk }, x( j))〉

= 1

2 sin ε
(〈A({φ1, . . . , φl + ε, φl+1, . . .}, x( j))〉 − 〈A({φ1, . . . , φl − ε, φl+1, . . .}, x( j))〉).

(76)
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By considering the statistical error tomeasure the observable 〈A〉, ε should be chosen
to be ε = π/2 so as to make the denominator maximum. After measuring the partial
derivatives for all parameters φk and calculating the gradient of the loss function
L({φk}), the parameters are now updated by the gradient descent:

θ
(m+1)
l = θ

(m)
l − α

∂

∂φl
L({φk}). (77)

The idea of using the parameterized quantum circuits for machine learning is
now widespread. After the proposal of quantum circuit learning based on the ana-
lytical gradient estimation above (Mitarai et al. 2018) and a similar idea (Farhi and
Neven 2018), several researches have been performed with various types of param-
eterized quantum circuits (Schuld et al. 2020; Huggins et al. 2019; Chen et al. 2018;
Glasser et al. 2018; Du et al. 2018) and various models and types of machine learning
including generative models (Benedetti et al. 2019a; Liu and Wang 2018) and gen-
erative adversarial models (Benedetti et al. 2019b; Situ et al. 2020; Zeng et al. 2019;
Romero and Aspuru-Guzik 2019). Moreover, an expression power of the parameter-
ized quantum circuits and its advantage against classical probabilistic models have
been investigated (Du et al. 2020). Experimentally feasible ways to measure an ana-
lytical gradient of the parameterized quantumcircuits have been investigated (Mitarai
and Fujii 2019; Schuld et al. 2019; Vidal and Theis 2018). An advantage of using
such a gradient for the parameter optimization has been also argued in a simple set-
ting (Harrowand John 2019),while the parameter tuning becomes difficult because of
the vanishing gradient by an exponentially large Hilbert space (McClean et al. 2018).
Software libraries for optimizing parameterized quantum circuits are nowdeveloping
(Bergholm et al. 2018; Chen et al. 2019). Quantum machine learning on near-term
devices, especially for quantum optical systems, is proposed in Steinbrecher et al.
(2019), Killoran et al. (2019). Quantum circuit learning with parameterized quan-
tum circuits has been already experimentally demonstrated on superconducting qubit
systems (Havlicek et al. 2019; Wilson et al. 2018) and a trapped ion system (Zhu
et al. 2019).

4.3 Quantum Reservoir Computing

Now, we return to the reservoir approach and extend quantum extreme learning
machine from non-temporal tasks to temporal ones, namely, quantum reservoir com-
puting (Fujii and Nakajima 2017). We consider a temporal task, which we explained
in Sect. 3.2. The input is given by a time series {xk}Lk and the purpose is to learn a
nonlinear temporal function:

ȳk = f ({x j }kj ). (78)

To this end, the target time series {ȳk}Lk=1 is also provided as teacher.
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Contrast to the previous setting with non-temporal tasks, we have to fed input into
a quantum system sequentially. This requires us to perform an initialization process
during computation, and hence the quantum state of the system becomesmixed state.
Therefore, in the formulation ofQRC,wewill use the vector representation of density
operators, which was explained in Sect. 2.5.

In the vector representation of density operators, the quantum state of an N -qubit
system is given by a vector in a 4N -dimensional real vector space, r ∈ R

4N . In QRC,
similarly to recurrent neural networks, each element of the 4N -dimensional vector
is regarded as a hidden node of the network. As we seen in Sect. 2.5, any physical
operation can be written as a linear transformation of the real vector by a 4N × 4N

matrix W :

r′ = W r. (79)

Now we see, from Eq. (79), a time evolution similar to the recurrent neural net-
work, r′ = tanh(W r). However, there is no nonlinearity such as tanh in each quantum
operationW . Instead, the time evolutionW can be changed according to the external
input xk , namely Wxk , which contrasts to the conventional recurrent neural network
where the input is fed additively W r + W inxk . This allows the quantum reservoir to
process the input information {xk} nonlinearly, by repetitively feeding the input.

Suppose the input {xk} is normalized such that 0 ≤ xk ≤ 1.As an input, we replace
a part of the qubits to the quantum state. The density operator is given by

ρxk = I + (2xk − 1)Z

2
. (80)

For simplicity, below we consider the case where only one qubit is replaced for the
input. Corresponding matrix Sxk is given by

(Sxk )ji = Tr

{
P(j)

I + (2xk − 1)Z

2
⊗ Trreplace[P(i)]

}
/2N , (81)

where Trreplace indicates a partial trace with respect to the replaced qubit. With this
definition, we have

ρ ′ = Trreplace[ρ] ⊗ ρxk ⇔ r′ = Sxk r. (82)

The unitary time evolution, which is necessary to obtain a nonlinear behavior
with respect to the input valuable xk , is taken as a Hamiltonian dynamics e−i Hτ for
a given time interval τ . Let us denote its representation on the vector space by Uτ :

ρ ′ = e−i Hτ ρeiHτ ⇔ r′ = Uτ r. (83)
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Fig. 3 a Quantum reservoir computing. b Virtual nodes and temporal multiplexing

Then, a unit time step is written as an input-depending linear transformation:

r((k + 1)τ ) = Uτ Sxk r(kτ). (84)

where r(kτ) indicates the hidden nodes at time kτ .
Since the number of the hidden nodes are exponentially large, it is not feasible to

observe all nodes from experiments. Instead, a set of observed nodes {r̄l}Ml=1, which
we call true nodes, is defined by a M × 4N matrix R,

r̄l(kτ) =
∑
i

Rliri(kτ). (85)

The number of true nodes M has to be a polynomial in the number of qubits N . That
is, from exponentially many hidden nodes, a polynomial number of true nodes are
obtained to define the output from QR (see Fig. 3a):

yk =
∑
l

W out
l r̄l(kτ), (86)
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where Wout is the readout weights, which is obtained by using the training data. For
simplicity, we take the single-qubit Pauli Z operator on each qubit as the true nodes,
i.e.,

r̄l = Tr[Zlρ], (87)

so that if there is no dynamics these nodes simply provide a linear output (2xk − 1)
with respect to the input xk .

Moreover, in order to improve the performancewe also perform the temporal mul-
tiplexing. The temporal multiplexing has been found to be useful to extract complex
dynamics on the exponentially large hidden nodes through the restricted number of
the true nodes (Fujii and Nakajima 2017). In temporal multiplexing, not only the
true nodes just after the time evolution Uτ , also at each of the subdivided V time
intervals during the unitary evolution Uτ to construct V virtual nodes, as shown
in Fig. 3b. After each input by Sxk , the signals from the hidden nodes (via the true
nodes) are measured for each subdivided intervals after the time evolution byUvτ/V

(v = 1, 2, . . . V ), i.e.,

r(kτ + (v/V )τ ) ≡ U(v/V )τ Sxk r(kτ). (88)

In total, now we have N × V nodes, and the output is defined as their linear combi-
nation:

yk =
N∑
l=1

V∑
v=1

W out
j,v r̄l(kτ + (v/V )τ ). (89)

By using the teacher data {ȳk}Lk , the linear readout weights W out
j,v can be determined

by using the pseudo inverse. In Fujii and Nakajima (2017), the performance of QRC
has been investigated extensively for both binary and continuous inputs. The result
shows that even if the number of the qubits are small like 5–7 qubits the performance
as powerful as the echo state network of the 100–500 nodes have been reported
both in short term memory and parity check capacities. Note that, although we do
not go into detail in this chapter, the technique called spatial multiplexing (Nakajima
et al. 2019),which exploitsmultiple quantum reservoirswith common input sequence
injected, is also introduced to harness quantumdynamics as a computational resource.
Recently, QRC has been further investigated in Kutvonen et al. (2020), Ghosh et al.
(2019a), Chen and Nurdin (2019). Specifically, in Ghosh et al. (2019a), the authors
use quantum reservoir computing to detect many-body entanglement by estimating
nonlinear functions of density operators like entropy.
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4.4 Emulating Chaotic Attractors Using Quantum Dynamics

To see a performance ofQRC, herewedemonstrate an emulation of chaotic attractors.
Suppose {xk}Lk is a discretized time sequence being subject to a complex nonlinear
equation, which might has a chaotic behavior. In this task, the target, which the
network is to output, is defined to be

ȳk = xk+1 = f ({x j }kj=1). (90)

That is, the system learns the input of the next step. Once the system successfully
learns ȳk , by feeding the output into the input of the next step of the system, the
system evolves autonomously.

Here,we employ the following target time series fromchaotic attractors: (i) Lorenz
attractor,

dx

dt
= a(y − x), (91)

dy

dt
= x(b − z) − y, (92)

dz

dt
= xy − cz, (93)

with (a, b, c) = (10, 28, 8/3), (ii) the chaotic attractor of Mackey–Glass equation,

d

dt
x(t) = β

x(t − τ)

1 + x(t − τ)n
− γ x(t) (94)

with (β, γ, n) = (0.2, 0.1, 10) and τ = 17, (iii) Rössler attoractor,

dx

dt
= −y − z, (95)

dy

dt
= x + ay, (96)

dz

dt
= b + z(x − c), (97)

with (0.2, 0.2, 5.7), and (iv) Hénon map,

xt+1 = 1 − 1.4xt + 0.3xt−1. (98)

Regarding (i)-(iii), the time series is obtained by using the fourth-order Runge–
Kutta method with step size 0.02, and only x(t) is employed as a target. For the time
evolution of quantum reservoir, we employ a fully connected transverse-field Ising
model
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H =
∑
i j

Ji j Xi X j + hZi , (99)

where the coupling strengths are randomly chosen such that Ji j is distributed ran-
domly from [−0.5, 0.5] and h = 1.0. The time interval and the number of the virtual
nodes are chosen to be τ = 4.0 and v = 10 so as to obtain the best performance. The
first 104 steps are used for training. After the linear readout weights are determined,
several 103 steps are predicted by autonomously evolving the quantum reservoir.
The results are shown in Fig. 4 for each of (a) Lorenz attractor, (b) the chaotic attrac-
tor of Mackey–Glass system, (c) Rössler attractor, and (d) Hénon map. All these
results show that training is done well and the prediction is successful for several
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hundreds steps. Moreover, the output from the quantum reservoir also successfully
reconstruct the structures of these chaotic attractors as you can see from the delayed
phase diagram.

5 Conclusion and Discussion

Here, we reviewed quantum reservoir computing and related approaches, quantum
extreme learning machine and quantum circuit learning. The idea of quantum reser-
voir computing comes from the spirit of reservoir computing, i.e., outsourcing infor-
mation processing to natural physical systems. This idea is best suited to quan-
tum machine learning on near-term quantum devices in noisy intermediate quantum
(NISQ) era. Since reservoir computing uses complex physical systems as a feature
space to construct a model by the simple linear regression, this approach would be a
good way to understand the power of a quantum enhanced feature space.
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K. Caluwaerts, J. Despraz, A. Işçen, A.P. Sabelhaus, J. Bruce, B. Schrauwen, V. SunSpiral, Design
and control of compliant tensegrity robots through simulations and hardware validation. J. R.
Soc. Interface 11, 20140520 (2014)

http://arxiv.org/abs/1811.04968


448 K. Fujii and K. Nakajima

J. Chen, H.I. Nurdin, Learning nonlinear input-output maps with dissipative quantum systems.
Quantum Inf. Process. 18, 198 (2019)

H. Chen et al., Universal discriminative quantum neural networks. Quantum Mach. Intell. 3, 1
(2021)

Z.-Y. Chen et al., VQNet: library for a quantum-classical hybrid neural network (2019),
arXiv:1901.09133

J.I. Cirac, P. Zoller, Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)
J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, Information processing capacity of dynamical
systems. Sci. Rep. 2, 514 (2012)

Y. Du et al., Implementable quantum classifier for nonlinear data (2018), arXiv:1809.06056
Y. Du et al., The expressive power of parameterized quantum circuits. Phys. Rev. Res. 2 (2020)
E. Farhi, H. Neven, Classification with quantum neural networks on near term processors (2018),
arXiv:1802.06002

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A quantum adiabatic evolution
algorithm applied to random instances of an NP-complete problem. Science 292, 472 (2001)

C. Fernando, S. Sojakka, Pattern Recognition in a Bucket. Lecture Notes in Computer Science, vol.
2801 (Springer, 2003), p. 588

R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)
K. Fujii,QuantumComputationwith TopologicalCodes-FromQubit to Topological Fault-Tolerance
Springer Briefs in Mathematical Physics. (Springer, Berlin, 2015)

K. Fujii, S. Tamate, Computational quantum-classical boundary of complex and noisy quantum
systems. Sci. Rep. 6, 25598 (2016)

K. Fujii, K. Nakajima, Harnessing disordered-ensemble quantum dynamics for machine learning.
Phys. Rev. Appl. 8 (2017)

K. Fujii, H. Kobayashi, T. Morimae, H. Nishimura, S. Tamate, S. Tani, Power of Quantum Com-
putation with Few Clean Qubits, in Proceedings of 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016) (2016), pp. 13:1–13:14

I.M. Georgescu, S. Ashhab, F. Nori, Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)
S. Ghosh et al., Quantum reservoir processing. NPJ Quantum Inf. 5, 35 (2019a)
S. Ghosh, T. Paterek, T.C.H. Liew, Quantum neuromorphic platform for quantum state preparation.
Phys. Rev. Lett. 123 (2019b)

S. Ghosh et al., Reconstructing quantum states with quantum reservoir networks. IEEE Trans.
Neural Netw. Learn. Syst. 1–8 (2020)

I.Glasser,N. Pancotti, J.I. Cirac, Fromprobabilistic graphicalmodels to generalized tensor networks
for supervised learning (2018), arXiv:1806.05964

T. Goto, Q.H. Tran, K. Nakajima, Universal approximation property of quantum feature maps
(2020), arXiv: 2009.00298

A. Harrow, N. John, Low-depth gradient measurements can improve convergence in variational
hybrid quantum-classical algorithms. Phys. Rev. Lett. 126, 140502 (2021)

H. Hauser, A.J. Ijspeert, R.M. Füchslin, R. Pfeifer, W. Maass, Towards a theoretical foundation for
morphological computation with compliant bodies. Biol. Cybern. 105, 355 (2011)

V. Havlicek et al., Supervised learning with quantum enhanced feature spaces. Nature 567, 209
(2019)

G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications. Neuro-
computing 70, 489 (2006)

W. Huggins et al., Towards quantummachine learning with tensor networks. Quantum Sci. Technol.
4 (2019)

H. Jaeger, H. Haas, Harnessing nonlinearity: predicting chaotic systems and saving energy in wire-
less communication. Science 304, 78 (2004)

T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Phys. Rev. E 58,
5355 (1998)

J. Kelly et al., State preservation by repetitive error detection in a superconducting quantum circuit.
Nature 519, 66 (2015)

http://arxiv.org/abs/1901.09133
http://arxiv.org/abs/1809.06056
http://arxiv.org/abs/1802.06002
http://arxiv.org/abs/1806.05964
http://arxiv.org/abs/2009.00298


Quantum Reservoir Computing: A Reservoir Approach … 449

N. Killoran et al., Continuous-variable quantum neural networks. Phys. Rev. Res. 1 (2019)
Kusumoto et al., Experimental quantum kernel trick with nuclear spins in a solid. npj Quantum Inf.
7, 94 (2021)

A. Kutvonen, K. Fujii, T. Sagawa, Optimizing a quantum reservoir computer for time series pre-
diction. Sci. Rep. 10, 14687 (2020)

L. Larger, M.C. Soriano, D. Brunner, L. Appeltant, J.M. Gutierrez, L. Pesquera, C.R. Mirasso, I.
Fischer, Photonic information processing beyond Turing: an optoelectronic implementation of
reservoir computing. Opt. Express 20, 3241 (2012)

Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436 (2015)
J.-G. Liu, L. Wang, Phys. Rev. A 98 (2018)
W.Maass, T.Natschläger,H.Markram,Real-time computingwithout stable states: a new framework
for neural computation based on perturbations. Neural Comput. 14, 2531 (2002)

J.R. McClean et al., Barren plateaus in quantum neural network training landscapes. Nat. Commun.
9, 4812 (2018)

K. Mitarai, K. Fujii, Methodology for replacing indirect measurements with direct measurements.
Phys. Rev. Res. 1 (2019)

K. Mitarai et al., Quantum circuit learning. Phys. Rev. A 98 (2018)
T.Morimae, K. Fujii, J.F. Fitzsimons, Hardness of classically simulating the one-clean-qubit model.
Phys. Rev. Lett. 112 (2014)

K. Nakajima, H. Hauser, R. Kang, E. Guglielmino, D.G. Caldwell, R. Pfeifer, Computing with a
muscular-hydrostat system, in Proceedings of 2013 IEEE International Conference on Robotics
and Automation (ICRA), vol. 1496 (2013a)

K. Nakajima, H. Hauser, R. Kang, E. Guglielmino, D.G. Caldwell, R. Pfeifer, A soft body as a
reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm Front. Comput.
Neurosci. 7, 1 (2013b)

K. Nakajima, T. Li, H. Hauser, R. Pfeifer, Exploiting short-term memory in soft body dynamics as
a computational resource. J. R. Soc. Interface 11, 20140437 (2014)

K. Nakajima, H. Hauser, T. Li, R. Pfeifer, Information processing via physical soft body. Sci. Rep.
5, 10487 (2015)

K.Nakajima et al., Boosting computational power through spatialmultiplexing in quantum reservoir
computing. Phys. Rev. Appl. 11 (2019)

M. Negoro et al., Machine learning with controllable quantum dynamics of a nuclear spin ensemble
in a solid (2018), arXiv:1806.10910

M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge Univer-
sity Press, Cambridge, 2010)

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, Optoelec-
tronic reservoir computing. Sci. Rep. 2, 287 (2012)

J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
M. Rabinovich, R. Huerta, G. Laurent, Transient dynamics for neural processing. Science 321, 48
(2008)

J. Romero, A. Aspuru-Guzik, Variational quantum generators: Generative adversarial quantum
machine learning for continuous distributions (2019), arXiv:1901.00848

T.F. Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, M.
Troyer, Defining and detecting quantum speedup. Science 345, 420 (2014)

M. Schuld et al., Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99 (2019)
M. Schuld et al., Circuit-centric quantum classifiers. Phys. Rev. A 101 (2020)
P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Proceedings
of the 35th Annual Symposium on Foundations of Computer Science, vol. 124 (1994)

H. Situ et al., Quantum generative adversarial network for generating discrete data. Inf. Sci. 538,
193 (2020)

G.R. Steinbrecher et al., Quantum optical neural networks. NPJ Quantum Inf. 5, 60 (2019)
A.Z. Stieg, A.V. Avizienis, H.O. Sillin, C. Martin-Olmos, M. Aono, J.K. Gimzewski, Emergent
criticality in complex Turing B-type atomic switch networks. Adv. Mater. 24, 286 (2012)

http://arxiv.org/abs/1806.10910
http://arxiv.org/abs/1901.00848


450 K. Fujii and K. Nakajima

Q.H. Tran, K. Nakajima, Higher-order quantum reservoir computing (2020), arXiv:2006.08999
K. Vandoorne, P. Mechet, T.V. Vaerenbergh, M. Fiers, G.Morthier, D. Verstraeten, B. Schrauwen, J.
Dambre, P. Bienstman, Experimental demonstration of reservoir computing on a silicon photonics
chip. Nat. Commun. 5, 3541 (2014)

D. Verstraeten, B. Schrauwen,M. D’Haene, D. Stroobandt, An experimental unification of reservoir
computing methods. Neural Netw. 20, 391 (2007)

J.G. Vidal, D.O. Theis, Calculus on parameterized quantum circuits (2018), arXiv:1812.06323
C.M.Wilson et al., Quantumkitchen sinks: an algorithm formachine learning on near-term quantum
computers (2018), arXiv:1806.08321

D. Woods, T.J. Naughton, Photonic neural networks. Nat. Phys. 8, 257 (2012)
J. Zeng et al., Learning and inference on generative adversarial quantum circuits. Phys. Rev. A 99
(2019)

D. Zhu et al., Training of quantum circuits on a hybrid quantum computer. Sci. Adv. 5, 9918 (2019)

http://arxiv.org/abs/2006.08999
http://arxiv.org/abs/1812.06323
http://arxiv.org/abs/1806.08321


Toward NMR Quantum Reservoir
Computing

Makoto Negoro, Kosuke Mitarai, Kohei Nakajima, and Keisuke Fujii

Abstract Reservoir computing is a framework used to exploit natural nonlinear
dynamics with many degrees of freedom, which is called a reservoir, for a machine
learning task. Here we introduce the NMR implementation of quantum reservoir
computing and quantum extreme learning machine using the nuclear quantum reser-
voir. The implementation utilizes globally controlled dynamics of nuclear spin qubits
in solid state and it has been demonstrated.

The physical implementation of quantum information processing has been exten-
sively studied with various quantum systems (Nielsen and Chuang 2000; Ladd et al.
2010). Any physical realization of the quantum computer must satisfy the following
criteria: (1) a scalable physical system with well-characterized qubits, (2) the ability
to initialize the state of the qubits, (3) a universal set of quantum gates, (4) long rele-
vant decoherence times, much longer than the gate-operation time, and (5) a qubit-
specific measurement capability (DiVincenzo 2000). To this day, there have been
many proposals of implementations which satisfy these criteria, such as supercon-
ducting qubits, semiconductor quantum dots, trapped atoms, photonics, and nuclear
magnetic resonance (NMR). One of the most promising candidates is the supercon-
ducting qubit system. In 2019, Google has announced a quantum computer employed
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with 53 superconducting qubits (Arute et al. 2019) with which they have claimed to
achieve quantum computational supremacy (Preskill 2012). Arrays of atoms trapped
in the vacuum have also gained attention as good candidates for large-scale quantum
computing and simulation (Mazurenko et al. 2017; Bernien et al. 2017; Zhang et al.
2017). However, it is not yet clear that these implementations will ultimately be
successful.

NMR quantum information processing (QIP) has been proposed in 1996 by
Chuang et al. (Gershenfeld andChuang 1997) andCory et al. (1997). In this approach,
we use nuclear spins in a molecule as qubits. In a static magnetic field, spin-1/2
particles have two energy levels, each corresponding to the states parallel (|↑〉) and
anti-parallel (|↓〉) to the magnetic field. These two quantum states can be used as |0〉
and |1〉 of a qubit. An organic molecule, which can have many nuclei with spin-1/2,
forms a many-qubit system that can be used for QIP purposes. A usual NMR sample
has a macroscopic ensemble of identical copies of such a many-qubit system. The
ensemble-nature of NMR allows the direct measurement of an observable. Qubits
are controlled by applying oscillating magnetic fields at radiofrequency. Gate oper-
ations between two qubits can be implemented by utilizing the naturally existing
interaction between the spins. As NMR spectroscopy has been applied for analysis
of materials for over 60 years, vast knowledge to control nuclear spins has been accu-
mulated (Slichter 1990). Early day proof-of-principle QIP experiment is performed
with NMR, owing to the nice controllability of the many-qubit system. It is hoped
that future progress of macromolecular and supramolecular technology will make
it possible to array Avogadro number of spins in two or three dimensions, let alone
far more than 109 spins, which is required for fault-tolerant quantum computation to
outperform classical computation (Jones et al. 2012).

The NMR quantum computer has succeeded in implementing Shor’s algorithm
using 7 qubits (Vandersypen et al. 2001), quantum simulation using 7 qubits
(Negrevergne et al. 2005), and quantum machine learning (Biamonte et al. 2017)
using 4 qubits (Li et al. 2015). However, the pseudo-initialization technique (Cory
et al. 1997) used in these implementations is not scalable, which blocks the expo-
nential speedup of the quantum algorithms. The state with partially initialized spins
in these implementations is inevitably separable, that is, they do not have entan-
glement (Braunstein et al. 1998). In order to efficiently solve BQP (bounded error
quantum polynomial time) type problems like factoring, a scalable initialization
technique of nuclear spin qubits is required. Nuclear spins are only slightly polar-
ized even in the strong magnetic fields conventionally used in NMR spectroscopy
at room temperature because the magnetic energy of nuclear spin is much smaller
than the thermal energy. One of the scalable initialization schemes is to use dynamic
nuclear polarization (DNP) which is operated at very low temperature in solids (A.
Abragam, M. Goldman, Nuclear Magnetism: Order and Disorder (Clarendon Press
1982). Solid state NMRquantum information processing experiments have also been
studied. Solid state nuclear spin qubits have a long coherence time (Ladd et al. 2005)
and have already been controlled with high fidelity although not initialized (Ryan
et al. 2008; Alvalez et al. 2015). The initialization technique is not still compatible
with high-fidelity control to this day, which motivates us to seek a way to benefit
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from the solid state NMR quantum computer with partially polarized qubits without
pseudo-initialization.

A class of problems that can be solved scalably by quantum computers with
partially polarized states is called DQC1 (deterministic quantum computation with
1 qubit) (Knill and Laflamme 1998). Recently, it has been proven theoretically that
DQC1 is unsimulatable with classical computers under stable complexity conjec-
tures (Morimae et al. 2014). Owing to the theoretical progress, now we can provide a
roadmap to scale up the NMR quantum computer by first showing the quantum
computational supremacy with partially polarized spins, DQC1 type, then with
initialized spins. There are various oligomers and polymers with more than 50 spins.
The simulation of ensemble dynamics of more than 50 qubits is computationally
hard for classical computers whether the state is initialized or partially polarized.
Quantum simulation experiments (Alvalez et al. 2015) have demonstrated that the
controllable dynamics of partially polarized nuclear spins in molecular solids can be
highly complex as more than 1000 spins are quantum mechanically correlated.

We experimentally demonstrated how to exploit such complex quantum dynamics
of a nuclear spin ensemble for machine learning (Negoro et al. 2018). To this end,
a quantum reservoir framework (QRC) is employed (Fujii and Nakajima 2017).
Reservoir computing provides a framework for exploiting nonlinear dynamics with
many degrees of freedom, called a reservoir, for machine learning (Maass et al.
2002; Jaeger and Haas 2004; Varsraeten et al. 2007). It was first proposed as an
echo-state network or liquid-state machine (Maass et al. 2002; Jaeger and Haas
2004), where a conventional neural network is used as a reservoir, but its internal
dynamics are randomly prefixed and only the linear readout weights are optimized to
learn a nonlinear task. This black-box property allows for the use of actual physical
systems that employ photonics (Vandoorne et al. 2013), spintronics (Torrejon et al.
2017), or soft robotics (Nakajima et al. 2015), as well as qubits (Fujii and Nakajima
2017). Originally proposed implementation of QRC requires the initialized spins and
also the on-demand initialization in the protocol, which are not yet possible in actual
experiments. To avoid this difficulty, we proposed a slightly modified algorithm
together with the experimental realization (Negoro et al. 2018). Here we introduce
the experimental proposal.

Figure 1a shows the physical implementation of a quantum reservoir consisting
of nuclear spins with a partially polarized state in a molecular solid. In this imple-
mentation, all B spins are controlled with the same oscillating magnetic field, which
results in a global control scheme (Benjamin and Bose 2003), where each of B spins
is controlled in an equivalent way. At the first sight, this scheme might seem not
sufficient for the universal quantum computation, but nonetheless, it has been shown
that universal quantum circuits can be implemented with global control (Benjamin
and Bose 2003; Lloyd 1993). Topological error correction can also be implemented
with global control and on-demand initialization of qubits (Fujii et al. 2014). As
a proof-of-principle experimental demonstration, we have performed non-temporal
tasks using the natural quantum dynamics of the quantum reservoir, which we also
refer to as quantum extreme learning machine (QELM), a quantum counterpart of
extreme learning machine (see also another chapter written by Fujii and Nakajima
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Fig. 1 NMR quantum reservoir (a) and its implementation with l-alanine (b)

in this book) (Butcher et al. 2013). Related quantum algorithms have been recently
proposed (C.M.Wilson et al. 2018; Halvicek et al. 2019). In the experimental demon-
stration of QELM, we used isotopically labeled l-alanine (Negoro et al. 2018). This
molecule has four 1H spins and one 13C spin, both of which have spin-1/2.We diluted
it into a single crystal of 2H7-l-alanine which has 7 2H spins as shown in Fig. 1b.
1H, 13C, and 2H spins correspond to B, A, and C spins, respectively, and 1H and 13C
spins are used as reservoir.

The quantum circuits of QELM and QRC are shown in Fig. 2. The quantum gate
U, which is the source of nonlinearity of the output from the reservoir, is imple-
mented as a time evolution that naturally arises from the interaction among the spins.
Throughout the execution of the quantum circuit, the C spins do not interact with A
and B spins. Accordingly, the ensemble reservoir is well isolated. In order to control
the reservoir dynamics for input, we employed the selective rotation of A (Fig. 2a) or
the global rotation of B spins (Fig. 2b). Input data can be fed into the reservoir using
the selective rotation of A (Fig. 2a) or the global rotation of B spins (Fig. 2b). Our
experimental demonstration uses the circuit of Fig. 2b. The initial state of QELM is
a partially polarized state and that of QRC is initialized. In addition, the B spin is
initialized by interacting with initialized bath spins, as implemented in Ryan et al.
(2008), before every input (Fig. 2c).

QELM is a framework to perform non-temporal nonlinear tasks such as classi-
fication and pattern recognition with finite inputs. In the demonstration of QELM
(Negoro et al. 2018), we consider the learning problem of a nonlinear function y =
f (s) using K training data sets including an input stream with the length of L, {sl,k}
(sl,k ∈ [0,1]), and corresponding teacher tk . The input is processed by M cycles of
the time evolution U, each of which is followed by the ensemble measurement of
A spins. We repeat L series of the input process and cycles of evolution for each of
K instances of the input {sl, k}. Thus, we get a total of LM signals x (k)

l,m for a given
input instance {sl, k}. The output from the machine is defined as a weighted sum of
the LM signals x (k)

l,m :
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Fig. 2 Quantum circuits of QELM with selective rotation (a) and global rotation (b) and QRC (c)

yk =
M∑

m=1

L∑

l=1

Wl,mx
(k)
l,m, (1)

where W is an LM-dimensional weight vector. After taking signals from K sets of
training data,W is determined so as tominimize themean squared error,�k(tk – yk)2.

We evaluated the computational capabilities of this QELM implementation with
two benchmark tasks under a binary sequential input. One is the input recognition
task,whichmeasures howwell each input is reconstructed from thequantum reservoir
dynamics. Another is the parity check task, which tests how well the machine can
perform a nonlinear transformation of the input. We found our implementation can
perform both of the two. We further demonstrate to train the machine to compute
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Table 1 Performance of
learning functions

MSE # of error

2bit XOR 1.97 × 10–2 0

3bit XOR 2.83 × 10–2 0

4bit XOR 1.99 × 10–1 3

NAND 2.26 × 10–2 0

1bit Adder 0th order 2.26 × 10–2 0

1bit Adder 1st order 2.01 × 10–2 0

2bit Adder 0th order 4.36 × 10–2 1

2bit Adder 1st order 2.02 × 10–1 4

2bit Adder 2nd order 1.44 × 10–2 0

Multiplication 2.32 × 10–3 –

Division 5.22 × 10–4 –

Nonlinear I 3.09 × 10–4 –

Nonlinear II 7.64 × 10–3 –

simple Boolean functions of input binary strings, which are nonlinear functionswhen
the binary information is embedded into a continuous variable. The performance of
learning functions measured by the mean squared error and the number of erroneous
outputs are shown in Table 1. These experimental results are detailed and discussed
in Negoro et al. (2018).

If we wish to perform QRC, we would have to initialize both qubits, namely in
the above implementation, the C spins. For example, as mentioned earlier, nuclear
spin qubits can be initialized by DNP which is performed at very low temperature
of ~1 K (de Boer and Niinikoski 1974). For such a scheme, technological develop-
ment for high-fidelity control at very low temperature is important (Cho et al. 2007).
Alternatively, we can also develop and advance the initialization technique at room
temperature (Tateishi et al. 2014), where nuclear spins can be controlled very accu-
rately. In fact, we already have achieved the room-temperature initialization of up to
34% using photoexcitation of electrons (Tateishi et al. 2014). Initialization technique
that is compatible with high-fidelity control is within reach. In Ryan et al. (2008),
the error per gate is approximately 1% in solid state at room temperature. The other
important direction is to boost computational power by increasing the number of
the reservoir spins, as numerically demonstrated in Fujii and Nakajima (2017) and
Nakajima et al. (2019).

Our implementation of the quantum reservoir and demonstration of nonlinear
information processing therein pave the way for exploiting quantum computational
supremacy in NMR ensemble systems for information processing with reachable
technologies.
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