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Abstract An example is given of a hyperconvex manifold without non-constant
bounded holomorphic functions, which is realized as a domain with real-analytic
Levi-flat boundary in a projective surface.
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1 Introduction

In geometric complex analysis, hyperbolicity and parabolicity of non-compact com-
plex manifolds are key properties governing behavior of holomorphic functions.
Stoll [24] introduced the notion of parabolic manifold to investigate value distribu-
tion of holomorphic functions in several variables. We recall this notion using the
formulation of Aytuna and Sadullaev [6]:

Definition 1.1 A complex manifold X is said to be parabolic if X does not admit
non-constant bounded plurisubharmonic function. We say that X is S-parabolic if it
possesses a plurisubharmonic exhaustion ϕ that satisfies the homogeneous complex
Monge–Ampère equation (i∂∂ϕ)n = 0 on X\K for some compact subset K ⊂ X .

S-parabolic manifolds are parabolic, and their model case isCn equipped with the
exhaustion log ‖z‖. We refer the reader to Aytuna and Sadullaev [6] for the detail.

On the other hand, it would also be of interest to investigate non-compact complex
manifolds that are not parabolic in the sense above but enjoy some weaker parabolic-
ity. Myrberg [21] gave such an example in one dimensional setting, namely, an open
Riemann surface of infinite genus that has smooth boundary component, hence, not
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parabolic, but on which all the bounded holomorphic functions are constant. This
celebrated example was the driving force toward the classification theory of Riemann
surfaces (cf. Heins [14]).

In several complexvariables, this sort of intermediate parabolicity actually appears
too. See Aytuna and Sadullaev [6] for an example of unbounded pseudoconvex
domain in Cn containing countably many copies of C and having plurisubharmonic
defining function but no boundedholomorphic function except for constant functions.
The purpose of this article is to remark another kind of example of non-parabolic Stein
manifold without non-constant bounded holomorphic function, which the author
hopes to be useful for further study.

Theorem There exists a hyperconvex manifold that does not possess any non-
constant bounded holomorphic function and is realized as a domain with real-
analytic Levi-flat boundary.

Here hyperconvexity is defined as

Definition 1.2 A complex manifold X is said to be hyperconvex if it admits strictly
plurisubharmonic bounded exhaustion.

Recall that a function on a topological space X , ϕ : X → [−∞, c), is said to
be bounded exhaustion if all the sublevel sets {x ∈ X | ϕ(x) < b}, b < c, are rela-
tively compact in X . For example, anyC2-smoothly bounded pseudoconvex domains
in Stein manifolds is hyperconvex (Diederich and Fornæss [9]. Later the required
smoothness was relaxed to C1 by Kerzman and Rosay [17], then to Lipschitz bound-
ary by Demailly [7]). Clearly, a hyperconvex manifold is not parabolic, but Theorem
states that it can satisfy the Liouville property.

Now we explain the construction of the manifold claimed in Theorem. Let � be
a compact Riemann surface of genus ≥2 and fix its uniformization � = D/Γ by a
Fuchsian group Γ acting on the unit disk D. We make Γ act on the bidisk D × D

diagonally but with conjugated complex structure for second factor, namely, for each
γ ∈ Γ and (z,w) ∈ D × D, we let

γ · (z,w) := (γz, γw).

We shall show that the quotient space X := D × D/Γ enjoys the desired property.
This example has two origins. One is the work by Diederich and Ohsawa [10],

where holomorphic D-bundles over compact Kähler manifolds are shown to be
weakly 1-complete. Such a holomorphic D-bundle is canonically embedded in the
associated holomorphic CP

1-bundle as a pseudoconvex domain with real-analytic
Levi-flat boundary. In our case, the first and the second projection endow X structures
of D-bundle over � and �, the quotient of D by the conjugated action of Γ , respec-
tively. Hence, X has two realization as domains in ruled surfaces Y := D × CP

1/Γ

and Y ′ := CP
1 × D/Γ , where the action of Γ is the same as above thanks to the

fact Aut(D) ⊂ Aut(CP1). The Levi-flat boundaries of X in Y and Y ′ are denoted
by M = D × ∂D/Γ and M ′ = ∂D × D/Γ respectively. In summary, we have two
natural ways to realize X in larger complex manifolds Y and Y ′ and the real-analytic
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boundaries M and M ′ are inequivalent CR manifolds in general (Mitsumatsu [20]).
For further background on D-bundles, we refer the reader to a recent study by Deng
and Fornæss [8].

Another origin is the Grauert tube of maximal radius in the sense of Guillemin
and Stenzel [13] and Lempert and Szőke [19]. Since the conjugated diagonal
set {(z, z) | z ∈ D} ⊂ D × D is preserved under the action of Γ , its quotient S
is totally-real submanifold of real dimension two and isomorphic to � as real-
analytic manifold. Namely, X is a complexification of �. Not only that, we can
find a plurisubharmonic bounded exhaustion that satisfies the homogeneous com-
plex Monge–Ampère equation on X\S.

In Sect. 2, we first confirm that our X coincides with the Grauert tube of �, then
show the hyperconvexity of X . In Sect. 3, after explaining that the Liouville property
of X is actually a corollary of Hopf’s ergodicity theorem, we shall give another
proof for the Liouville property using the plurisubharmonic bounded exhaustion. In
Sect. 4, some open questions are posed.

2 Grauert Tube and Its Hyperconvexity

First we recall the notion of Grauert tube in the sense of Guillemin–Stenzel and
Lempert–Szőke.

Fact 2.1 (Guillemin and Stenzel [13], Lempert and Szőke [19]) Let (M, g) be a
compact real-analytic Riemannian manifold of dimension n. Denote by ρ : T M →
R≥0 the length function, and we identify M with the zero section of T M. Then, there
exists R ∈ (0,∞] and unique complex structure on X := {v ∈ T M | ρ(v) < R} such
that

(1) ρ enjoys the homogeneous complex Monge–Ampère equation (i∂∂ρ)n = 0 on
X\M;

(2) ρ2 is strictly plurisubharmonic on X;
(3) i∂∂(ρ2) agrees with g on T M.

This X above is called the Grauert tube of M of radius R. Since our� is endowed
with the hyperbolic metric of constant Gaussian curvature −1, whose fundamental
form is

g(z) = 2idz ∧ dz

(1 − |z|2)2 ,

Lempert and Szőke [19, Theorem 4.3] yields an upper bound of the radius R of the
Grauert tube of �, R ≤ π/2.

Proposition 2.2 The complex manifold X defined in Sect. 1 is biholomorphic to the
Grauert tube of � of radius π/2, which is maximum possible, whose length function
agrees with
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ρ(z,w) := arccos
√

δ where δ(z,w) := 1 −
∣
∣
∣
∣

w − z

1 − zw

∣
∣
∣
∣

2

.

Proof First note that δ : D × D → (0, 1] is invariant under the action of Γ and
induces a real-analytic function on X . Hence, ρ : X → [0,π/2) is well-defined
bounded exhaustion and ρ−1(0) = S = {(z, z) | z ∈ D}/Γ , which we identified with
�. Moreover, ρ2 is C∞-smooth function on X since

ρ(z,w) = arcsin

∣
∣
∣
∣

w − z

1 − zw

∣
∣
∣
∣
.

In view of Lempert and Szőke [19, Theorem 3.1], it suffices to confirm that ρ
satisfies the three conditions in Fact 2.1. From direct computation, we have

i∂∂(− log δ) = idz ∧ dz

(1 − |z|2)2 + idw ∧ dw

(1 − |w|2)2 ,

i∂(− log δ) ∧ ∂(− log δ)

1 − δ
= idz ∧ dz

(1 − |z|2)2 + idw ∧ dw

(1 − |w|2)2 + iεdz ∧ dw + iεdw ∧ dz

(1 − |z|2)(1 − |w|2)
on X\S, where ε = −(w − z)(w − z)−1. Hence, it follows that

∂ρ = 1

2

√

δ

1 − δ
∂(− log δ),

i∂∂ρ = 1

2

√

δ

1 − δ

(

i∂∂(− log δ) − 1

2

i∂(− log δ) ∧ ∂(− log δ)

1 − δ

)

= 1

4

√

δ

1 − δ

(
idz ∧ dz

(1 − |z|2)2 + idw ∧ dw

(1 − |w|2)2 − iεdz ∧ dw + iεdw ∧ dz

(1 − |z|2)(1 − |w|2)
)

,

and it is now clear that (i∂∂ρ)2 = 0 on X\S. To check remaining two points, we
compute on X\S

i∂∂(ρ2) = 2(ρi∂∂ρ + i∂ρ ∧ ∂ρ)

= 1

2

(

ρ

√

δ

1 − δ
+ δ

)(
idz ∧ dz

(1 − |z|2)2 + idw ∧ dw

(1 − |w|2)2
)

+ 1

2

(

−ρ

√

δ

1 − δ
+ δ

)

iεdz ∧ dw + iεdw ∧ dz

(1 − |z|2)(1 − |w|2) .

It follows that i∂∂(ρ2) > 0 on X , and g agrees with the restriction of

i∂∂(ρ2) = idz ∧ dz

(1 − |z|2)2 + idw ∧ dw

(1 − |w|2)2 = idz ∧ dz + dw ∧ dw

(1 − |z|2)2
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on S as Riemannian metric. The proof is completed. �

Remark 2.3 Kan [16] gave another realization of the Grauert tube of � extending
the construction of Lempert [18].

Next we shall confirm that our X is hyperconvex.

Proposition 2.4 The function−√
δ is strictly plurisubharmonic bounded exhaustion

on X. Hence, X is hyperconvex.

Proof From the computation in the proof of Proposition 2.2, we have

i∂∂(−√
δ)√

δ/2
= i∂∂(− log δ) − 1

2
i∂(− log δ) ∧ ∂(− log δ)

= 1 + δ

2

(
idz ∧ dz

(1 − |z|2)2 + idw ∧ dw

(1 − |w|2)2
)

+ 1 − δ

2

iεdz ∧ dw + iεdw ∧ dz

(1 − |z|2)(1 − |w|2)

and this is positive definite everywhere on X . �

Remark 2.5 We may extend δ smoothly on a neighborhood of X in Y and also a
neighborhood in Y ′ and regard −δ as a defining function of X in Y and X in Y ′.
Proposition 2.4 shows, by its definition, that−δ has the Diederich–Fornæss exponent
1/2, which is themaximum possible value for relatively compact domains with Levi-
flat boundary in complex surfaces (Fu and Shaw [11] and Adachi and Brinkschulte
[2]. See also Demailly [7, Théorème 6.2]).

3 Proofs of the Liouville Property

Let us observe that the Liouville property of X is actually a corollary of Hopf’s
ergodicity theorem ([15]. See also Tsuji [26], Garnett [12] and Sullivan [25]).

Fact 3.1 (Hopf [15]) Let � = D/Γ be a Riemann surface of finite hyperbolic area.
Then, the diagonal action of Γ on ∂D × ∂D is ergodic with respect to its Lebesgue
measure. Namely, for any Lebesgue measurable subset E ⊂ ∂D × ∂D invariant
under the diagonal action ofΓ has Lebesgue measure zero or full Lebesgue measure.

We use the following Fatou type theorem.

Fact 3.2 (cf. Tsuji [26, Theorem IV.13]) Let f be a bounded holomorphic function
onD × D. Then, there exists a measurable function f̃ : ∂D × ∂D → C such that for
almost all (z0,w0) ∈ ∂D × ∂D,

lim
(z,w)→(z0,w0)

f (z,w) = f (z0,w0)

where z and w approach to z0 and w0 non-tangentially respectively. Moreover, f is
a constant function if f̃ is constant on a subset of positive measure.



6 M. Adachi

Theorem 3.3 Any bounded holomorphic function on X is constant.

Proof (First proof of Theorem 3.3) Let f be a bounded holomorphic function on
X = D × D/Γ . From Fact 3.2, f as a function on D × D has boundary value f̃
on ∂D × ∂D which is invariant under the action of Γ . Then, the function (z,w) �→
f̃ (z,w) on ∂D × ∂D is invariant under the diagonal action of Γ . Fact 3.1 implies
that f̃ is constant almost everywhere, and we conclude by Fact 3.2. �

We shall give another proof, which does not rely on Fact 3.1 and explains how
the bounded exhaustion ρ controls the growth of holomorphic functions on X .

Proof (Second proof of Theorem 3.3) Let f be a bounded holomorphic function
on X . We shall show without using Fact 3.1 that the boundary value function f̃ on
∂D × ∂D is constant almost everywhere. Then the rest of the proof is the same as in
the first proof.

We apply the integration formula used in Adachi and Brinkschulte [3] with the
maximal plurisubharmonic function ρ on X\S used in Proposition 2.2. Namely, we
integrate

i∂∂| f |2 ∧ dρ ∧ dcρ + | f |2(i∂∂ρ)2 = d(dc| f |2 ∧ i∂ρ ∧ ∂ρ + | f |2dcρ ∧ i∂∂ρ)

on ρ−1(a, b), where our convention is dc := (∂ − ∂)/2i . Since all the level sets
ρ−1(c), c ∈ (0,π/2], are smooth, for any a, b ∈ (0,π/2), a < b, we have

∫

ρ−1(a,b)
i∂∂| f |2 ∧ dρ ∧ dcρ =

∫

ρ−1(b)
| f |2dcρ ∧ i∂∂ρ −

∫

ρ−1(a)

| f |2dcρ ∧ i∂∂ρ.

Denoting by Mt the boundary of {x ∈ X | ρ(x) < t} = {x ∈ X | δ(x) > cos2 t} and
rewriting in δ instead of ρ yield

∫

δ−1(β,α)

i∂∂| f |2 ∧ dδ ∧ dcδ

δ(1 − δ)
= 1

sin2 b

∫

Mb

| f |2dc(−δ) ∧ i∂∂(− log δ) (1)

− 1

sin2 a

∫

Ma

| f |2dc(−δ) ∧ i∂∂(− log δ)

where α := cos2 a and β := cos2 b.
Now we look at behavior of terms in Eq. (1) when b ↗ π/2, that is, β ↘ 0. For

its RHS, we compute the first term using a smooth trivialization

ιt : R × ∂D → Mt , (z, eiθ) �→
(

z,
(sin t)eiθ + z

1 + z(sin t)eiθ

)

for t ∈ (0,π/2]where R is a fundamental domain of the action of Γ onD. It follows
that



On a Hyperconvex Manifold Without Non-constant … 7

β

sin2 b

∫

Mb

| f |2dc(− log δ) ∧ i∂∂(− log δ)

= β

sin2 b

∫

Mb

| f |2
⎛

⎝

idz ∧ dz ∧ 1
2i

(
w−z
1−zw dw − w−z

1−zw dw
)

(1 − |z|2)2(1 − |w|2)

+
idw ∧ dw ∧ 1

2i

(
z−w
1−zw dz − z−w

1−zw dz
)

(1 − |w|2)2(1 − |z|2)

⎞

⎠

= 1

sin2 b

∫

R×∂D
|ι∗b f |2

idz ∧ dz ∧ 2(sin2 b)dθ

(1 − |z|2)2 ≤ 4π2 sup
X

| f |2(2g − 2) < ∞

where g is the genus of �. Therefore, the LHS should be finite; on the other hand,

∫

δ−1(β,α)

i∂∂| f |2 ∧ dδ ∧ dcδ

δ(1 − δ)
=

∫ α

β

dτ

τ (1 − τ )

∫

Marccos
√

τ

i∂ f ∧ ∂ f ∧ dc(−δ),

and the integrability requires

lim
t↗π/2

∫

Ms

i∂ f ∧ ∂ f ∧ dc(−δ) = 0

as we will see below that this limit exists.
We can compute this limit in two ways. Note that

∣
∣
∣
∣

∂ f

∂z

∣
∣
∣
∣
≤ sup | f |

1 − |z| ,
∣
∣
∣
∣

∂ f

∂w

∣
∣
∣
∣
≤ sup | f |

1 − |w|
On D × D from Cauchy’s estimate, and, thanks to Fatou’s theorem, we obtain the
boundary value functions of fz and fw on D × ∂D and ∂D × D respectively, which
are CR functions. By abuse of notation, we express the boundary value functions
by the same symbols. Using the trivialization ιt of Mt , the bounded convergence
theorem yields

0 = lim
t↗π/2

∫

Mt

i∂ f ∧ ∂ f ∧ dc(−δ) (2)

= lim
t↗π/2

∫

R×∂D

ι∗t
(

i∂ f ∧ ∂ f ∧ dc(−δ)
)

=
∫

R×∂D

ι∗π/2

(

i∂ f ∧ ∂ f ∧ dc(−δ)
)

=
∫

M

∣
∣
∣
∣

∂ f

∂z

∣
∣
∣
∣

2

idz ∧ dz ∧ 1 − |z|2
|1 − zeiϕ|2 dϕ

where we used the coordinate (z, eiϕ) ∈ D × ∂D for ιπ/2(R × ∂D) ⊂ M = D ×
∂D/Γ . Using another trivialization κt of Mt ,



8 M. Adachi

κt : ∂D × R′ → Mt , (eiθ
′
,w) �→

(

(sin t)eiθ
′ + w

1 + w(sin t)eiθ′ ,w

)

for t ∈ (0,π/2] where R′ is a fundamental domain of the conjugated action of Γ on
D, we similarly have

0 =
∫

M ′

∣
∣
∣
∣

∂ f

∂w

∣
∣
∣
∣

2

idw ∧ dw ∧ 1 − |w|2
|1 − weiϕ′ |2 dϕ′ (3)

where we used the coordinate (eiϕ
′
,w) ∈ ∂D × D for κ′

π/2(∂D × R′) ⊂ M ′ =
∂D × D/Γ .

Equations (2) and (3) imply that the boundary value functions f (z, eiϕ) and
f (eiϕ

′
,w) are constant functions in z and w for almost all eiϕ and eiϕ

′ ∈ ∂D
since these functions are holomorphic in z and w respectively. Now it follows
that f̃ (z,w) = f (eiϕ

′
, eiϕ) : ∂D × ∂D → C agrees with a constant function almost

everywhere, and we finish this proof. �

Remark 3.4 The integration formula used in the proof is equivalent to Demailly’s
Lelong–Jensen formula [7]. Exploiting this formula, a notion of Hardy space for
hyperconvex domains inCn , Poletsky–Stessin Hardy spaces, was introduced in Alan
[4] and Poletsky and Stessin [23] independently (cf. Alan and Göğüş [5]). The proof
above actually shows the triviality of L2 Hardy space of X ⊂ Y,Y ′.

Remark 3.5 Yet another proof for the Liouville property which does not employ
Fact 3.2 can be obtained by a method similar to [1], which will be discussed in the
author’s forthcoming article. As in [1], we may show that all the weighted Bergman
space of order > −1 of X ⊂ Y,Y ′ is infinite dimensional in spite of the fact that its
L2 Hardy space is trivial.

4 Open Problems

We shall pose two open problems for further study.

Problem 1 Do other Grauert tubes of finite maximal radius give similar example of
hyperconvex manifolds without non-constant bounded holomorphic function?

Problem 2 Is there any domain with Levi-flat boundary having positive Diederich–
Fornæss index and non-constant bounded holomorphic function?

Problem 2 is a variant of an open problem raised by Sidney Frankel (cf. Ohsawa
[22]), to classify Levi-flat hypersurfaces that bound domains with non-constant
bounded holomorphic functions.
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19. Lempert, L., Szőke, R.: Global solutions of the homogeneous complex Monge-Ampère equa-

tion and complex structures on the tangent bundle ofRiemannianmanifolds.Math.Ann. 290(4),
689–712 (1991)

20. Mitsumatsu, Y.: Private communication (2013)
21. Myrberg, P.J.: Über die analytische Fortsetzung von beschränkten Funktionen. Ann. Acad. Sci.

Fennicae. Ser. A. I. Math. Phys. 1949(58), 7 (1949)
22. Ohsawa, T.: Levi flat hypersurfaces—Results and questions around basic examples. Lecture

note at KIAS (2016)
23. Poletsky, E.A., Stessin, M.I.: Hardy and Bergman spaces on hyperconvex domains and their

composition operators. Indiana Univ. Math. J. 57(5), 2153–2201 (2008)

http://arxiv.org/abs/1703.08165
http://arxiv.org/abs/1710.08046


10 M. Adachi

24. Stoll, W.: Variétés strictement paraboliques. C. R. Acad. Sci. Paris Sér. A-B 285(12), A757–
A759 (1977)

25. Sullivan, D.: On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic
motions. In: Ann. of Math. Stud., vol. 97, Princeton University Press, 465–496 (1981)

26. Tsuji, M.: Potential Theory in Modern Function Theory. Maruzen Co., Ltd, Tokyo (1959)


	On a Hyperconvex Manifold Without Non-constant Bounded Holomorphic Functions
	1 Introduction
	2 Grauert Tube and Its Hyperconvexity
	3 Proofs of the Liouville Property
	4 Open Problems
	References




