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Abstract An example is given of a hyperconvex manifold without non-constant
bounded holomorphic functions, which is realized as a domain with real-analytic
Levi-flat boundary in a projective surface.
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1 Introduction

In geometric complex analysis, hyperbolicity and parabolicity of non-compact com-
plex manifolds are key properties governing behavior of holomorphic functions.
Stoll [24] introduced the notion of parabolic manifold to investigate value distribu-
tion of holomorphic functions in several variables. We recall this notion using the
formulation of Aytuna and Sadullaev [6]:

Definition 1.1 A complex manifold X is said to be parabolic if X does not admit
non-constant bounded plurisubharmonic function. We say that X is S-parabolic if it
possesses a plurisubharmonic exhaustion ¢ that satisfies the homogeneous complex
Monge—Ampére equation (i90¢)" = 0 on X\K for some compact subset K C X.

S-parabolic manifolds are parabolic, and their model case is C" equipped with the
exhaustion log ||z||. We refer the reader to Aytuna and Sadullaev [6] for the detail.

On the other hand, it would also be of interest to investigate non-compact complex
manifolds that are not parabolic in the sense above but enjoy some weaker parabolic-
ity. Myrberg [21] gave such an example in one dimensional setting, namely, an open
Riemann surface of infinite genus that has smooth boundary component, hence, not
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parabolic, but on which all the bounded holomorphic functions are constant. This
celebrated example was the driving force toward the classification theory of Riemann
surfaces (cf. Heins [14]).

In several complex variables, this sort of intermediate parabolicity actually appears
too. See Aytuna and Sadullaev [6] for an example of unbounded pseudoconvex
domain in C" containing countably many copies of C and having plurisubharmonic
defining function but no bounded holomorphic function except for constant functions.
The purpose of this article is to remark another kind of example of non-parabolic Stein
manifold without non-constant bounded holomorphic function, which the author
hopes to be useful for further study.

Theorem There exists a hyperconvex manifold that does not possess any non-
constant bounded holomorphic function and is realized as a domain with real-
analytic Levi-flat boundary.

Here hyperconvexity is defined as

Definition 1.2 A complex manifold X is said to be hyperconvex if it admits strictly
plurisubharmonic bounded exhaustion.

Recall that a function on a topological space X, ¢: X — [—00, ¢), is said to
be bounded exhaustion if all the sublevel sets {x € X | p(x) < b}, b < ¢, are rela-
tively compact in X. For example, any C2-smoothly bounded pseudoconvex domains
in Stein manifolds is hyperconvex (Diederich and Fornass [9]. Later the required
smoothness was relaxed to C! by Kerzman and Rosay [17], then to Lipschitz bound-
ary by Demailly [7]). Clearly, a hyperconvex manifold is not parabolic, but Theorem
states that it can satisfy the Liouville property.

Now we explain the construction of the manifold claimed in Theorem. Let X be
a compact Riemann surface of genus >2 and fix its uniformization ¥ = ID/I" by a
Fuchsian group I" acting on the unit disk D. We make I" act on the bidisk D x D
diagonally but with conjugated complex structure for second factor, namely, for each
v € I'and (z, w) € D x D, we let

v (z, w) i= (yz, Y0).

We shall show that the quotient space X := D x D/I” enjoys the desired property.
This example has two origins. One is the work by Diederich and Ohsawa [10],
where holomorphic D-bundles over compact Kihler manifolds are shown to be
weakly 1-complete. Such a holomorphic ID-bundle is canonically embedded in the
associated holomorphic CP'-bundle as a pseudoconvex domain with real-analytic
Levi-flat boundary. In our case, the first and the second projection endow X structures
of D-bundle over ¥ and X, the quotient of ID by the conjugated action of I", respec-
tively. Hence, X has two realization as domains in ruled surfaces ¥ := D x CP! /T
and Y’ := CP! x D/I", where the action of I" is the same as above thanks to the
fact Aut(D) C Aut(CP!). The Levi-flat boundaries of X in Y and Y’ are denoted
by M =D x 0D/I" and M’ = 0D x D/ I" respectively. In summary, we have two
natural ways to realize X in larger complex manifolds ¥ and Y’ and the real-analytic
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boundaries M and M’ are inequivalent CR manifolds in general (Mitsumatsu [20]).
For further background on D-bundles, we refer the reader to a recent study by Deng
and Fornass [8].

Another origin is the Grauert tube of maximal radius in the sense of Guillemin
and Stenzel [13] and Lempert and Sz&ke [19]. Since the conjugated diagonal
set {(z,2) | z€ D} C D x D is preserved under the action of I', its quotient §
is totally-real submanifold of real dimension two and isomorphic to X as real-
analytic manifold. Namely, X is a complexification of . Not only that, we can
find a plurisubharmonic bounded exhaustion that satisfies the homogeneous com-
plex Monge—Ampere equation on X\S.

In Sect. 2, we first confirm that our X coincides with the Grauert tube of X, then
show the hyperconvexity of X. In Sect. 3, after explaining that the Liouville property
of X is actually a corollary of Hopf’s ergodicity theorem, we shall give another
proof for the Liouville property using the plurisubharmonic bounded exhaustion. In
Sect. 4, some open questions are posed.

2 Grauert Tube and Its Hyperconvexity

First we recall the notion of Grauert tube in the sense of Guillemin—Stenzel and
Lempert—Szoke.

Fact 2.1 (Guillemin and Stenzel [13], Lempert and Sz&ke [19]) Let (M, g) be a
compact real-analytic Riemannian manifold of dimension n. Denote by p: TM —
R~ the length function, and we identify M with the zero section of T M. Then, there
exists R € (0, oo] and unique complex structureon X := {v € TM | p(v) < R} such
that

(1) p enjoys the homogeneous complex Monge—Ampére equation (i9dp)" = 0 on
X\M;

(2) p? is strictly plurisubharmonic on X ;

(3) i90(p?) agrees with g on T M.

This X above is called the Grauert tube of M of radius R. Since our X is endowed
with the hyperbolic metric of constant Gaussian curvature —1, whose fundamental
form is

@ 2idz N dz
)= 55
NTEFDE
Lempert and Sz8ke [19, Theorem 4.3] yields an upper bound of the radius R of the
Grauert tube of X, R < 7/2.

Proposition 2.2 The complex manifold X defined in Sect. 1 is biholomorphic to the
Grauert tube of ¥ of radius 7 /2, which is maximum possible, whose length function
agrees with
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=2
w—2z

p(z, w) == arccos V8 where 0(z,w):=1-— ‘

1 —zw

Proof First note that §: D x D — (0, 1] is invariant under the action of I" and
induces a real-analytic function on X. Hence, p: X — [0, 7/2) is well-defined
bounded exhaustion and p~!(0) = § = {(z,7) | z € D}/TI", which we identified with
3. Moreover, p2 is C*°-smooth function on X since

D lw—2
p(z, w) = arcsin N

—Iw

In view of Lempert and SzSke [19, Theorem 3.1], it suffices to confirm that p
satisfies the three conditions in Fact 2.1. From direct computation, we have

idz NdZ idw A dw

AP A= JupP?’

i0(—1og0) AD(—logd) _ idzAdZ | idwAdD | icdz AdT + iEdw A dZ
(; R E R R T A s Y T

i00(—log d) =

on X\S, where ¢ = —(w — Z)(w — z)~'. Hence, it follows that

_ 1/ § —
N 1i0(—1ogd) A d(—log &)
i00p = N1=3 (z@@(—logé) ~3 =3 )
Ry (idz/\dZ N idw A dw _isdzAdw+igdw/\dz>
CaVI-s\d -1z (- |wP)? A—lzPhAd—|w? )’

and it is now clear that (i09p)> = 0 on X\S. To check remaining two points, we
compute on X\S

i00(p*) = 2(piddp +idp A Dp)

R 55\ (idzndz | idwndw
“2\W1Zs 1=z " (1= w?)?

1 < 5 )isdz/\dw+i5dedZ
—p

+

2 = ) T A Epa = e

It follows that i909(p*) > 0 on X, and g agrees with the restriction of

'85( 2) idz Ndz n idw A dw idz ANdzZ +dw A dw
l = —
P T A= Py (1= 222
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on S as Riemannian metric. The proof is completed. (|

Remark 2.3 Kan [16] gave another realization of the Grauert tube of ¥ extending
the construction of Lempert [18].

Next we shall confirm that our X is hyperconvex.

Proposition 2.4 The function —+/ 4 is strictly plurisubharmonic bounded exhaustion
on X. Hence, X is hyperconvex.

Proof From the computation in the proof of Proposition 2.2, we have

i00(=vo) . 1 _
———— =1i00(—logd) — =id(—logd) A O(—logd
N (—log0) — 7id(=log o) A I(=logo)
_1+5<idzAdE n idw/\d@) 1 —{§iedz Ndw + igdw A dZ
2 1=z A—|w?? 2 (1= 1z = wl?)
and this is positive definite everywhere on X. (]

Remark 2.5 We may extend § smoothly on a neighborhood of X in Y and also a
neighborhood in Y’ and regard —¢ as a defining function of X in Y and X in Y’.
Proposition 2.4 shows, by its definition, that —4 has the Diederich—Forness exponent
1/2, which is the maximum possible value for relatively compact domains with Levi-
flat boundary in complex surfaces (Fu and Shaw [11] and Adachi and Brinkschulte
[2]. See also Demailly [7, Théoréme 6.2]).

3 Proofs of the Liouville Property

Let us observe that the Liouville property of X is actually a corollary of Hopf’s
ergodicity theorem ([15]. See also Tsuji [26], Garnett [12] and Sullivan [25]).

Fact 3.1 (Hopf [15]) Let ¥ = D/I" be a Riemann surface of finite hyperbolic area.
Then, the diagonal action of I' on 0D x 9D is ergodic with respect to its Lebesgue
measure. Namely, for any Lebesgue measurable subset E C 0D x 0D invariant
under the diagonal action of I' has Lebesgue measure zero or full Lebesgue measure.

We use the following Fatou type theorem.

Fact 3.2 (cf. Tsuji [26, Theorem IV.13]) Let f be a bounded holomorphic function
onD x D. Then, there exists a measurable function f: 0D x 0D — C such that for
almost all (zo, wo) € D x oD,

Sz, w) = f(zo, wo)

1m
z,w)—>(z0,wo)

where z and w approach to zo and wy non-tangentially respectively. Moreover, f is
a constant function if f is constant on a subset of positive measure.
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Theorem 3.3 Any bounded holomorphic function on X is constant.

Proof (First proof of Theorem 3.3) Let f be a bounded holomorphic function on
X =D x D/I". From Fact 3.2, f as a function on D x ID has boundary value f
on D x 0D which is invariant under the action of I". Then, the function (z, w) >
f(z, W) on OD x HD is invariant under the diagonal action of I'. Fact 3.1 implies
that f is constant almost everywhere, and we conclude by Fact 3.2. (]

We shall give another proof, which does not rely on Fact 3.1 and explains how
the bounded exhaustion p controls the growth of holomorphic functions on X.

Proof (Second proof of Theorem 3.3) Let f be a bounded holomorphic function
on X. We shall show without using Fact 3.1 that the boundary value function f on
0D x 0D is constant almost everywhere. Then the rest of the proof is the same as in
the first proof.

We apply the integration formula used in Adachi and Brinkschulte [3] with the
maximal plurisubharmonic function p on X\ S used in Proposition 2.2. Namely, we
integrate

i00|f1> Adp AdSp+ | fI2(D0p)* = d(d| fI* Nidp ADp+ | fI*d p A iDDp)

on p’l(a, b), where our convention is d¢ := (0 — 5) /2i. Since all the level sets
p’l(c), ¢ € (0, w/2], are smooth, for any a, b € (0, 7/2), a < b, we have

/ i65|f|2AdpAde=/ |f|2d”p/\i85p—/ |f12dp A i0Op.
p~l(a,b) p~L(b) p~H@)

Denoting by M, the boundary of {x € X | p(x) <t} ={x € X | §(x) > cos®>t} and
rewriting in § instead of p yield

_ dé A deS 1 _
00| | = / 24°(=6) A iDD(—log § 1
/6](3’(!)1 |fI7 A 50 0) — sinlb Mblfl (=0) NidO(—=1logd) (1)

1 _
- | 1P ni0B(-10g)
sin“a Jy,
where o := cos?a and 3 := cos? b.
Now we look at behavior of terms in Eq. (1) when b 7 7 /2, that is, 3\, 0. For
its RHS, we compute the first term using a smooth trivialization

. le -_—

. t
t:Rx 0D > M, (z,¢))— [z, M
1 + z(sint)e'?

fort € (0, w/2] where R is a fundamental domain of the action of 1" on D. It follows
that
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ﬁ/lﬁwemﬁm@ema

sin b M
w—z W=7 J
8 \f|2 (tdz AdZ A 4 2 (Fwdw— ?mdw>

sin®b i, (I =1z = [w?)

+

idw A dw A 211' (1Z Zuu dz — 17 ludz)
(1 — w21 = |z1?)

1 " 2zdz/\dzAZ(sm b)d9
= 2 su 2 2) <00
szb/Rw i a=Tn? plfl 29-2)

where g is the genus of ¥. Therefore, the LHS should be finite; on the other hand,

Ao AdS  [C d _
/ i00) )2 A 21 =/ T / i0f ADT A d(—0),
51 (B.0) 01 =0)  Jsg 70 =7) JMp,

and the integrability requires

li iOf ANOF AdS(—6) =0
D%Zle i (—=9)

as we will see below that this limit exists.
‘We can compute this limit in two ways. Note that

of
0z

_swlfl |9 | _ suplf]
T 1=zl |Ow| T 1—|w|

On D x D from Cauchy’s estimate, and, thanks to Fatou’s theorem, we obtain the
boundary value functions of f; and f,, on D x 0D and 9D x D respectively, which
are CR functions. By abuse of notation, we express the boundary value functions
by the same symbols. Using the trivialization ¢, of M,, the bounded convergence
theorem yields

0= li i0f ANOf AdS(—0 2
r/lg}z M,lf/\ f Ad(=9) (2)

=m [ (laf ANDF Ad (—5))

=/ m(laanfAd‘( »)

- LI

where we used the coordinate (z, €'?) € D x ID for tr2(R x D) C M =D x
0D/ I . Using another trivialization x, of M;,

—lz|?

idz NdZ N
idz |1—ze’9°|2
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ke ODx R —> M, ' wy—>|—mm — w
1 + w(sint)e?

(sint)e'? +w )
fort € (0, w/2] where R’ is a fundamental domain of the conjugated action of I" on
D, we similarly have

0://

where we used the coordinate (¢/¥,w) € 0D x D for n;/z(am xRYCM =
oD x D/ T.

Equations (2) and (3) imply that the boundary value functions f(z,e’¥) and
f(e'¥, w) are constant functions in z and w for almost all ¢'¥ and ¢'¢ € oD
since these functions are holomorphic in z and w respectively. Now it follows
that f (z,w) = f(e'¥,e¥): 0D x 9D — C agrees with a constant function almost
everywhere, and we finish this proof. ]

2 2
1 —|w
idede—' .|,
|1 — wei?'|?

of

9w dy 3)

Remark 3.4 The integration formula used in the proof is equivalent to Demailly’s
Lelong—Jensen formula [7]. Exploiting this formula, a notion of Hardy space for
hyperconvex domains in C", Poletsky—Stessin Hardy spaces, was introduced in Alan
[4] and Poletsky and Stessin [23] independently (cf. Alan and Go6giis [5]). The proof
above actually shows the triviality of L Hardy space of X C Y, Y".

Remark 3.5 Yet another proof for the Liouville property which does not employ
Fact 3.2 can be obtained by a method similar to [1], which will be discussed in the
author’s forthcoming article. As in [1], we may show that all the weighted Bergman
space of order > —1 of X C Y, Y’ is infinite dimensional in spite of the fact that its
L? Hardy space is trivial.

4 Open Problems

We shall pose two open problems for further study.

Problem 1 Do other Grauert tubes of finite maximal radius give similar example of
hyperconvex manifolds without non-constant bounded holomorphic function?

Problem 2 Is there any domain with Levi-flat boundary having positive Diederich—
Fornass index and non-constant bounded holomorphic function?

Problem 2 is a variant of an open problem raised by Sidney Frankel (cf. Ohsawa
[22]), to classify Levi-flat hypersurfaces that bound domains with non-constant
bounded holomorphic functions.



On a Hyperconvex Manifold Without Non-constant ... 9

Acknowledgements The author is grateful to Kang-Tae Kim, who explained him the notion of
parabolic manifold when he was a postdoc at SRC-GAIA, which is supported by an NRF grant
2011-0030044 of the Ministry of Education, the Republic of Korea. This work was also supported
by JSPS KAKENHI Grant Numbers 26800057 and 18K13422.

References

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

. Adachi, M.: Weighted Bergman spaces of domains with Levi-flat boundary: geodesic segments

on compact Riemann surfaces. Preprint (2017), arXiv:1703.08165

. Adachi, M., Brinkschulte, J.: A global estimate for the Diederich-Fornaess index of weakly

pseudoconvex domains. Nagoya Math. J. 220, 67-80 (2015)

. Adachi, M., Brinkschulte, J.: Curvature restrictions for Levi-flat real hypersurfaces in complex

projective planes. Ann. Inst. Fourier (Grenoble) 65(6), 2547-2569 (2015)

. Alan, M.A.: Hardy spaces on hyperconvex domains. Master Thesis at Middle East Technical

University (2003)

. Alan, M.A., Gogiis, N.G.: Poletsky-Stessin-Hardy spaces in the plane. Complex Anal. Oper.

Theory 8(5), 975-990 (2014)

. Aytuna, A., Sadullaev, A.: Parabolic stein manifolds. Math. Scand. 114(1), 86-109 (2014).
. Demailly, J.P.: Mesures de Monge-Ampere et mesures pluriharmoniques. Math. Z. 194(4),

519-564 (1987)

. Deng, F., Fornass, J.E.: Flat bundles over some compact complex manifolds. Preprint (2017),

arXiv:1710.08046

. Diederich, K., Fornaess, J.E.: Pseudoconvex domains: bounded strictly plurisubharmonic

exhaustion functions. Invent. Math. 39(2), 129-141 (1977)

Diederich, K., Ohsawa, T.: Harmonic mappings and disc bundles over compact Kihler mani-
folds. Publ. Res. Inst. Math. Sci. 21(4), 819-833 (1985)

Fu, S., Shaw, M.C.: The Diederich-Fornass exponent and non-existence of Stein domains with
Levi-flat boundaries. J. Geom. Anal. 26(1), 220-230 (2016)

Garnett, L.: Foliations, the ergodic theorem and Brownian motion. J. Funct. Anal. 51(3), 285—
311 (1983)

Guillemin, V., Stenzel, M.: Grauert tubes and the homogeneous Monge-Ampere equation. J.
Differ. Geom. 34(2), 561-570 (1991)

Heins, M.: Hardy classes on Riemann surfaces. In: Lecture Notes in Mathematics, vol. 98.
Springer, Berlin (1969)

Hopf, E.: Fuchsian groups and ergodic theory. Trans. Amer. Math. Soc. 39(2), 299-314 (1936)
Kan, S.J.: On the characterization of Grauert tubes covered by the ball. Math. Ann. 309(1),
71-80 (1997)

Kerzman, N., Rosay, J.P.: Fonctions plurisousharmoniques d’exhaustion bornées et domaines
taut. Math. Ann. 257(2), 171-184 (1981)

Lempert, L.: Elliptic and Hyperbolic Tubes. In: Math. Notes, vol. 38, Princeton University
Press, pp. 440-456 (1993)

Lempert, L., Sz6ke, R.: Global solutions of the homogeneous complex Monge-Ampere equa-
tion and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann. 290(4),
689-712 (1991)

Mitsumatsu, Y.: Private communication (2013)

Myrberg, P.J.: Uber die analytische Fortsetzung von beschrinkten Funktionen. Ann. Acad. Sci.
Fennicae. Ser. A. 1. Math. Phys. 1949(58), 7 (1949)

Ohsawa, T.: Levi flat hypersurfaces—Results and questions around basic examples. Lecture
note at KIAS (2016)

Poletsky, E.A., Stessin, M.1.: Hardy and Bergman spaces on hyperconvex domains and their
composition operators. Indiana Univ. Math. J. 57(5), 2153-2201 (2008)


http://arxiv.org/abs/1703.08165
http://arxiv.org/abs/1710.08046

24.

25.

26.

M. Adachi

Stoll, W.: Variétés strictement paraboliques. C. R. Acad. Sci. Paris Sér. A-B 285(12), A757—
A759 (1977)

Sullivan, D.: On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic
motions. In: Ann. of Math. Stud., vol. 97, Princeton University Press, 465-496 (1981)

Tsuji, M.: Potential Theory in Modern Function Theory. Maruzen Co., Ltd, Tokyo (1959)



	On a Hyperconvex Manifold Without Non-constant Bounded Holomorphic Functions
	1 Introduction
	2 Grauert Tube and Its Hyperconvexity
	3 Proofs of the Liouville Property
	4 Open Problems
	References




