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Abstract We present field, petrology and mineralogy of a porphyritic mafic dyke
that traverses the granite-greenstone terrain of the Neoarchean Jonnagiri schist belt,
eastern Dharwar craton, India. The undeformed porphyritic dyke is characterised
by the presence of euhedral plagioclase megacrysts (0.5–3.5 cm) exhibiting primary
magmatic alignment. At places, partial resorption is noticed in the plagioclase phe-
nocrysts indicating crystal-melt interaction. The groundmass consists of andesine and
titan augite. Sub-ophitic/ophitic textures are conspicuously noticed. Ilmenite, titano-
magnetite, apatite and baddeleyite are the accessory phases. Exsolved ilmenite and
titano-magnetite along with euhedral apatite is also observed in the porphyritic dyke.
Mineral chemistry of plagioclase shows variation betweenOr3.50–6.44%, Ab43.18–62.98%
and An30.57–52.46%. Clustering of biotite, is noticed at places. EPMA analyses of pla-
gioclase reveals the presence of normal zoning; Ab45.73 in the core to Ab49.61 in the
rim. The predominantly andesine composition of plagioclase, position of clinopy-
roxene in the Ca+Na versus Ti binary mineral chemistry diagram, and the micron
size euhedral baddeleyite indicate transitional nature of the Jonnagiri porphyritic
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dyke. The clinopyroxene is compositionally a Ti-augite (Wo40En34Fs26). The tem-
perature and oxygen fugacity estimates for the coexisting magnetite-ilmenite solid
solution pair yielded an equilibration temperature of~756 °C and 10−15.6atmf O2 for
the Jonnagiri porphyritic dyke.

Keywords Mafic dyke · Porphyritic · Magmatic origin · Jonnagiri belt
Eastern Dharwar craton · India

1 Introduction

Emplacement of dyke swarms in a shield area provide critical information on the
palaeocontinental reconstruction (e.g. Hou et al. 2008; Zhao et al. 2004; Santosh
2012), and, therefore, a key for geodynamic interpretation (Srivastava 2011). The
Indian shield has recorded extensive activity of mafic magmatism (e.g. Naqvi and
Rogers 1987; Srivastava et al. 2008; Srivastava and Ahmed 2009; Srivastava 2011;
Srivastava et al. 2015). The granite-greenstone terrain of the Dharwar craton, the
Proterozoic Cuddapah basin, and the high-grade granulite belt in the southern part of
Indian shield, witnessed extensive dyke and sill intrusions, particularly during Pale-
oproterozoic (e.g. Radhakrishna and Joseph 1996; Halls et al. 2007; Radhakrishna
2008; Jayananda et al. 2008; Srivastava 2011; Kumar et al. 2012, 2015; Khanna
et al. 2013; Belica et al. 2013; Srivastava et al. 2014a, b, 2015; Sesha Sai et al.
2017). Chronologically, two distinct phases (~2370 and~1890 Ma) of dyke swarms
in the Dharwar craton, which predominantly trend in east-west direction, have been
identified (Piispa et al. 2011; Srivastava et al. 2014a, c, 2015). Additionally, two
other dyke swarms, emplaced at~2.21 and~2.18 Ga, have also recorded from the
eastern Dharwar craton (Srivastava et al. 2015). Recently, Kumar et al. (2015) have
reported~2.08Gamafic dyke swarm in the easternDharwar craton (EDC). Although,
plagioclasemegacryst bearing dykes are pervasively noticed as large swarms inmany
granite-greenstone terrains in the Archean shield areas (e.g. Phinney and Morrison
1986; Morrison et al. 1988), mafic dyke(s) with plagioclase megacrysts are less
known from the Dharwar craton. Plagioclase megacrysts bearing leuco-gabbronorite
dyke have been reported from the Bastar craton (Dora et al. 2016).

2 Geological Setting

The Jonnagiri schist belt (JSB) is located close to the vicinity of the western margin
of the Proterozoic Cuddapah basin in the EDC, Southern India. The northern part of
the schist belt is of 11 km long and up to 5 km wide and exposed in sigmoid shape
trending WNW–ESE. In the southeastern part, it abruptly changes into a linear band
of about 0.8 kmwidth, trendingNNW–ESE toNNE–SSW for a length of 16 km from
Aminabad to Gooty (Sreeramachandra Rao et al. 2001). WNW–ESE trending mafic
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Fig. 1 Geological map of Jonnagiri and adjoining areas, Eastern Dharwar Craton, India (Modified
after Jairam et al. 2001). Inset map showing the location of the JSB close the western margin of the
Proterozoic Cuddapah basin

dykes of Proterozoic age have been recorded within the granite-greenstone terrain
around Jonnagiri area in the EDC (e.g. Jairam et al. 2001). This belt represents the
Jonnagiri shear zone which is traceable for 25 km further south-southwest up to
Julakalva schist belt near the border of Proterozoic Cuddapah Basin. The belt lies
between 15°05′ and 15°20′ latitudes and 77°30′ and 77°40′ longitudes.

Lithologically, the JSB is comprised of metamorphosed basic and acid volcanic
together with tuffaceous rocks in the form of quartz sericite schist and sericite-
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Fig. 2 Field photograph showing plagioclase phenocrysts in the Jonnagiri porphyritic dyke. Note
the alignment in larger plagioclase phenocrysts

chlorite schist and ultramafite. Geological Survey of India carried out studies on
the granitoids of the Peninsular Gneissic Complex (PGC) in the Gooty-Singanamala
area (Suresh and Viswanatha Rao 1994); specialised thematic mapping in the areas
comprising the southern extension of JSB and Julakalva schist belt in EDC (Suresh
and Jaiswal 2003). The metabasalts of the Neoarchaean JSB exhibit ‘arc—nascent
back—arc signatures’ (Manikyamba et al. 2015).

The JSB has been subjected to a number of phases of deformation and is intruded
by younger granitoids and dolerite dykes, while undeformed dolerite dykes (por-
phyritic) of Proterozoic age are noticed in and around the JSB (e.g., Sreeramachandra
Rao et al. 2001; Jairam et al. 2001). The present paper deals with the field, petro-
logical and mineral chemistry studies of a major WNW–ESE trending porphyritic
mafic dyke emplaced in the granite-greenstone terrain of the JSB, EDC, India; located
within the folded metavolcanic sequence of the JSB and lies between Pagadarayi and
Peravali (Fig. 1). Field observations indicate that the dyke is intermittently exposed
over a stretch of>2 km as low-lying outcrops striking in WNW–ESE direction. The
size of the plagioclase megacrysts ranges from 0.5 cm to a maximum of 7 cm in
diameter. The dyke is undeformed and is characterised by the presence of aligned
large megacrysts of plagioclase (Fig. 2). The euhedral nature of the phenocrysts
and preservation of terminal ends in some of the plagioclase phenocrysts indicate
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that the alignment of plagioclase phenocrysts is magmatic. Phenocryst groundmass
ration varies from 15 (phenocryst): 85 (groundmass) in the peripheral part to 30
(phenocryst): 70 (groundmass) in the central part of the porphyritic dyke. Partial
resorption is some plagioclase phenocryst indicate crystal-melt interaction.

3 Methodology

Samples were collected during the course of field studies. Based on megascopic
observations, 15 representative samples have been selected from the Jonnagiri por-
phyritic dyke for preparation of thin cum polished sections. Mineral chemistry was
determined by EPMA, Petrology Division, GSI, SR, Hyderabad by CAMECA SX
100. Analyses conditions: Accelerating voltage: 15 kV, current: 15 nA. Beam size:
1 µm. Signal used Na Ka, Mg Ka, Al Ka, K Ka, Cr Ka, Mn Ka, Fe Ka, P Ka, Ni Ka,
Zr La, Ca Ka, Ti K. All natural standards have been used except for Mn and Ti for
which synthetic standards have been used.

4 Petrography and Mineral Chemistry

Petrographic studies reveal that the dyke exhibits porphyritic texture and essentially
composed of plagioclase and clinopyroxene, while apatite is noticed as a conspicuous
accessory mineral. Large euhedral phenocrysts of plagioclase (Fig. 3a) are embed-
ded in subhedral grains of clinopyroxene and groundmass plagioclase. Sub-ophitic
texture is conspicuously noticed in these samples, wherein plagioclase is partially
enclosed in clinopyroxene (Fig. 3b).

At places, ophitic texture is also noticed (Fig. 3c). Opaque phases are mostly con-
fined to the clinopyroxene (Fig. 3d). At places, it is observed that euhedral to subhe-
dral opaques are partially enclosed in clinopyroxene (Fig. 3e). It is also noticed that
partially enclosed opaque in ophitic plagioclase within the clinopyroxene (Fig. 3f).
Megascopic studies show that the relatively large plagioclase phenocrysts showalign-
ment at places.Microscopic studies of the plagioclase in the groundmass of Jonnagiri
porphyritic dyke indicate the presence of randomly oriented plagioclase laths. At
places, it is noticed that the plagioclase is altered along the margins. Mineral chem-
istry studies indicate the presence of euhedral baddeleyite. EPMA analyses have
been carried out by selecting areas in plagioclase that are fresh and unaltered.

Presence of greenish amphibole and minor amounts of biotite, after alteration
of the clinopyroxene is also noticed in the Jonnagiri porphyritic dyke. Opaques are
represented by Fe–Ti oxides i.e. ilmenite and titano-magnetite. Jonnagiri porphyritic
dyke is characterized by the presence of both apatite and Fe–Ti oxides. Both ilmenite
and magnetite together constitute about~10% in the rock are noticed as subhedral
to euhedral grains that are more or less uniformly distributed in the rock. Apatite
is noticed as minute euhedral inclusion in clinopyroxene. The petrographic obser-
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Fig. 3 a Plagioclase phenocryst in Xed. b Sub-ophitic texture in PPL. c Ophitic texture in PPL. d
Opaques in clinopyroxene (Cpx) PPL. e Opaques in clinopyroxene Xed. Note the lamellar twining
in plagioclase (Pl), and f Photomicrograph in Xed showing partially enclosed opaque in ophitic
plagioclase within the clinopyroxene

vations are substantiated by SEM images (Fig. 4a–c), while the EPMA analyses of
the plagioclase and pyroxene have been plotted in the respective mineral chemistry
diagrams (Figs. 5 and 6). The EPMA analyses of the pyroxene from the Jonnagiri
porphyritic dyke has been plotted in the Ca+Na versus Ti binary mineral chemistry
diagram for pyroxene (Fig. 7; after Leterrier et al. 1982) which indicate the transi-
tional nature of the Jonnagiri porphyritic dyke. Small grains of euhedral baddeleyite
are also observed (Fig. 8).
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Fig. 4 a BSE image showing exsolved ilmenite and titano-magnetite along with apatite in the
porphyritic dyke. Note that the titano-magnetite occurs at the rim and ilmenite in the core, b BSE
image showing euhedral apatite inclusions within the clinopyroxene in Jonnagiri porphyritic dyke,
and c BSE image showing the oriented baddeleyite grains ranging in size from 10 to 12 µm. Note
that one of the baddeleyite grain partially transects the ilmenite

4.1 Plagioclase

Plagioclase occurs large size phenocrysts as well as relatively fine-grained laths
in groundmass. Under crossed-nicols, it exhibits characteristic lamellar twining
(Figs. 3a, e). EPMA analyses of plagioclase grains indicate that SiO2 range from
53.90 to 58.34%, Al2O3 from 23.92 to 27.24%, CaO contents range from 7.49 to
10.04% and Na2O contents from 4.82 to 7.09%. K2O content of 0.61 to 1.24%.
Zoning is noticed in plagioclase.
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Fig. 5 Orthoclase (Or)—Albite (Ab)—Anorthite (An) ternarymineral chemistry diagram showing
the position of plagioclases

End member calculation from the EPMA analytical data of plagioclases sug-
gest their compositional variation from orthoclase3.50–6.44%, albite43.18–62.98% to
anorthite30.57–52.46%. On the Orthoclase (Or)—Albite (Ab)—Anorthite (An) ternary
mineral chemistry diagram, analyses of the plagioclase core in the phenocrysts indi-
cate labradorite composition, while the analyses of plagioclase rim in phenocrysts
as well as groundmass plagioclase of the Jonnagiri porphyritic dyke falls in the field
of andesine (Fig. 5). The andesine to labradorite composition of the plagioclase in
Jonnagiri dyke, perhaps indicate relatively less density of the plagioclase than the
basaltic magma from which it crystallised.
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Fig. 6 Wollastonite (Wo)—Enstatite (En)—Ferrosilite (Fs) mineral chemistry ternary diagram
showing position of pyroxenes

Further, predominant andesine composition indicates its relatively alkaline nature
suggesting emplacement in a crustally thinned tectonic domain (e.g. Khanna et al.
2013). The mineral chemistry of the plagioclase feldspar from the Jonnagiri por-
phyritic dyke is presented in Table 1.

4.2 Clinopyroxene

Clinopyroxene occurs as euhedral to subhedral grains showing moderate relief and
well-developed cleavage in plane polarised light (Fig. 3d), while in crossed nicols
it is anisotropic, exhibits inclined extinction and second order interference colours
(Fig. 3e). It is usually noticed as an intergranular phase in between lath shaped
plagioclase.

EPMA analyses of the clinopyroxene indicate a relatively lower SiO2 content
(<50%). SiO2 contents in the clinopyroxene range from 48.08 to 49.82%. TiO2 con-
tents in clinopyroxene range from 0.74 to 1.33%, while Al2O3 ranges from 0.35 to
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Fig. 7 Ca+Na versus Ti binary mineral chemistry diagram for pyroxene (after Leterrier et al.
1982), showing the alkaline nature of the clinopyroxenes

2.95%, FeOT contents range from 13.13 to 17.14% and MnO contents range from
0.16 to 0.49%. The clinopyroxene is compositionally a Ti-augite (Wo40En34Fs26).
MgO contents vary from 9.93 to 13.53%, CaO from 17.92 to 19.90%, Na2O from
0.21 to 0.32%, maximum K2O content up to 0.14%, NiO up to 0.13% and Cr2O3

content up to 0.02%. End member calculation from the EPMA analytical data
indicate variation in composition from wollastonite31.60–41.61%, enstatite818.62–31.69%
to ferrosilite022.71–040.76%. On the Wollastonite (Wo)-Enstatite (En)-Ferrosilite (Fs)
ternary diagram, pyroxenes of the Jonnagiri porphyritic dyke fall in the field of
augite, but close to the boundary of augite and diopside (Fig. 6).

The titanium concentrations in these clinopyroxenes slightly overlap with basalts
derived from tholeiitic and calc-alkaline lineage (Fig. 7; Leterrier et al. 1982). How-
ever, it is observed that the pyroxenes of the Jonnagiri porphyritic dyke indicate
the alkaline nature when plotted in the Ca+Na versus Ti binary mineral chemistry
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diagram (after Leterrier et al. 1982). Plagioclase with andesine composition (Fig. 5)
supports this observation. The mineral chemistry of the pyroxene of the Jonnagiri
porphyritic dyke is presented in Table 2.

4.3 Fe–Ti Oxides

Notable amounts of titano-magnetite and ilmenite are noticed as euhedral to subhe-
dral grains at the vicinity of the clinopyroxene (Figs. 3d, e, f). Both Ti-oxide and
T–Fe oxide aremore or less uniformly distributed in the rock. At places, Fe–Ti oxides
are partially enclosed in the plagioclase laths that exhibit ophitic relation with the
clinopyroxene. Exsolution intergrowth texture is conspicuously noticed in the Fe–Ti
oxides. Presence of exsolved phases of Fe–Ti oxides in magmatic rocks are often
associated both with the mafic intrusions and in the anorthosite massifs of Protero-
zoic age (Lister 1966; Haggerty and Rumble 1976; Ashwal 1982; Frost and Lindsley
1991). Titano-magnetite indicates the physical and chemical conditions of the mafic
intrusions during their crystallization (e.g. Tan et al. 2016). The mineral chemistry
of the ilmenite and titano-magnetite from the Jonnagiri porphyritic dyke is presented
in Table 3.

EPMAdata of ilmenite (FeOTiO2) indicate that TiO2 contents range from46.07 to
49.71%, and FeOT contents range from 46.17 to 46.44%. Cr2O3 content up to 0.53%
has been recorded, while a maximum NiO content up to 0.11% has been observed.
End member calculation from the EPMA analytical data indicate variation between
ilmenite87.64–92.46%, geikelite0.008–0.075%, pyrophanite3.82–4.40%, and hematite3.60–7.93%.

EPMA composition of titano-magnetite (FeO Fe2O3 TiO2) indicate that the FeOT

contents range from 79.39 to 79.62% and TiO2 from 11.53 to 12.1%. MnO content
range from 0.42 to 0.50%, while Cr2O3 content up to 0.15% and NiO content up
to 0.04%. BSE images indicate that at places both ilmenite and titano-magnetite
are noticed in continuity; and in such places ilmenite is noticed in the core, while
titano-magnetite occurs at the peripheral parts of the ilmenite (Fig. 4a). End mem-
ber calculation from EPMA analytical data indicate that their composition from
ilmenite21.54–22.69%, geikelite up to0.13 %, pyrophanite0.95–1.23%, to hematite76.05–77.35 %.

4.4 Apatite

Apatite is a conspicuous accessory phase and found to be associated with clinopy-
roxene. Euhedral apatite is often noticed as inclusions within the clinopyroxene
(Fig. 4b). EPMA data indicate CaO content up to 53.94% and P2O5 content up to
40.31 for the apatite inclusions in clinopyroxenes.
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Fig. 8 BSE image showing the euhedral nature of themicron size baddeleyite grains in the Jonnagiri
porphyritic dyke

4.5 Baddeleyite

The baddeleyite grains show alignment and at places partially transect ilmenite
grains (Fig. 4c). BSE image shows euhedral nature of baddeleyite (Fig. 8). Due to
the high uranium and minimal initial lead contents, baddeleyite (ZrO2) occur as
accessory phase in mafic rocks and is considered to be a reliable geochronometer
(Smith 2010). However, baddeleyite in Jonnagiri porphyritic dyke occur as minute
grains ranging in size from 10 to 12 µm.

5 Discussions

The present study deals with plagioclase megacrysts bearing porphyritic mafic dyke
from the Jonnagiri greenstone belt, in EDC, Southern India. The plagioclase phe-
nocrysts in the Jonnagiri porphyritic dyke range in size from 0.5 to 3.2 cm. Field
and megascopic studies indicate that the euhedral plagioclase phenocrysts with well
preserve terminal ends indicate the undeformed nature and presence of primarymag-
matic alignment in the Jonnagiri porphyritic dyke. Partial resorption in some pla-
gioclase phenocryst indicates crystal—melt interaction. Alignment of plagioclase
phenocrysts in mafic dykes has been described as a feature resulting due to flow
differentiation (e.g. Ross 1986). Increase in phenocryst groundmass from the centre
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Fig. 9 BSE image showing exsolved ilmenite in titanite inclusion in plagioclase megacryst in the
Jonnagiri porphyritic dyke

to the peripheral parts in porphyritic dyke has been explained in terms of increase
in the velocity gradient and the fluid viscosity (e.g. Komar 1972). Euhedral plagio-
clase megacrysts of 2–5 cm size have been recorded in the Tarssartoq dyke swarm
to the north of Isua Greenstone belt of Greenland (White et al. 2000). The larger
plagioclase phenocrysts confined to the central part of the dyke crystallize when
the magma resides at relatively deeper level and the groundmass phases crystallize
when the magma is emplaced to sub crustal levels. Presence of sub-ophitic/ophitic
textures in Jonnagiri porphyritic dyke (Figs. 3b, c) substantiate the magmatic origin.
Ophitic/sub-ophitic textures in coarse grained dykes containmagmatic pyroxene (e.g.
White et al. 2000). Exsolution textures in the form of ilmenite and titanomagnetite
intergrowth conspicuously noticed in the Jonnagiri porphyritic dyke also support the
magmatic origin. Fe and Ti enriched melts crystallize abundant titanomagnetite at an
early stage (e.g. Pang et al. 2008). Partially enclosed euhedral to subhedral opaques in
the ophitic plagioclase lath (Fig. 3c) and clinopyroxene (Fig. 3e) indicate early crys-
tallisation of the Fe–Ti oxides in the Jonnagiri porphyritic dyke. Notable variation
both in the abundance and size of plagioclase phenocrysts can be noticed in outcrop
scale in the megacrystic plagioclase bearing amphibolites in Flekkefjord area, South
Norway (Falkum and Grundvig 2001). The size of the plagioclase megacrysts from
gabbroic dykes in the Gardar Province vary from<1 cm to 1 m (Halama et al. 2002).
Low degree alkaline nature is evidenced by the presence of plagioclase phenocryst
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Fig. 10 Binary plot showing temperature and oxygen fugacity estimates for the coexisting
magnetite-ilmenite solid solution pairs Lepage (2014). FMQ curve in the figure is after Frost (1991)

with composition varying from andesine to labradorite composition in the porphyritic
mafic dyke from the Jonnagiri greenstone belt. Mafic dykes with low degree alkaline,
transitional to tholeiitic character have been reported in a continental tectonic from
the Izera Complex, West Sudetes, Poland (Ilnicki 2010).

Microprobe analyses of plagioclase grains in the Jonnagiri porphyritic dyke indi-
cate the presence of zoning phenomenon. The core analysed Na2O content of 5.16%
and CaO content of 10.01%, while the rim analysed Na2O content of 5.64% and
CaO content of 9.32% (Table 2). Increase in Na (Ab45.73 to Ab49.61) and decrease in
Ca (An49.01 to An45.34) from core to rim indicate normal zoning in the plagioclase, a
characteristic feature indicating relatively high temperature in core and lower temper-
ature in the rim resulted from crystallisation of magma. Further presence of exsolved
ilmenite within the titanite inclusion in the plagioclase megacryst (Fig. 9) affirm the
magmatic origin for the dyke.

Alteration studies on granites indicated replacement of titanite by ilmenite (e.g.
Broska et al. 2007), however, implications of exsolved ilmenite in titanite inclusion
in the plagioclase megacrysts in mafic dykes is less understood. It is notable that
composition of most of the plagioclase grains in Jonnagiri porphyritic dyke are
predominantly andesine. Wyers and Barton (1986) have reported transitional lavas
of alkaline—sub-alkaline composition from the Patmos province in Greece. The
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predominantly andesine composition of plagioclase grains, position of the clinopy-
roxene in the Ca+Na versus Ti binary mineral chemistry diagram (after Leterrier
et al. 1982), and micro size euhedral baddeleyite grains indicate the transitional
nature of the Jonnagiri porphyritic dyke that is presumably emplaced in a rift related
setting. However, detailed geochemical and geochronological studies are the gap
areas that can be taken up for further research.

The temperature and oxygen fugacity estimates for the coexisting magnetite-
ilmenite solid solution pairs using the calculation software given by Lepage (2014)
yielded an equilibration temperature of~756 °C and 10−15.6atmf O2. The equilibrium
conditions are consistent with an oxide equilibration path defined by a fayalite-
magnetite-quartz (FMQ) buffer curve (Fig. 10; Frost 1991). The basaltic rocks gen-
erated in arc settings are commonly characterized by oxygen fugacities necessarily
more oxidizing than the FMQ buffer (10−8–10−3) at a given temperature (1200 °C;
cf. Frost 1991). The estimate for the Jonnagiri dyke is consistent with a relatively
non-oxidizing i.e. reducing environment.

6 Conclusions

The porphyritic mafic dyke from the Jonnagiri greenstone belt described in the
present study is characterised by presence of euhedral plagioclase megacrysts show-
ing magmatic alignment. Partially resorbed plagioclase phenocryst indicates crystal-
melt interaction. Petrographically Jonnagiri dyke exhibits porphyritic texture with
magmatically aligned plagioclase phenocrysts set in groundmass andesine and titan
augite. Fe–Ti oxides; ilmenite and titano-magnetite exhibiting exsolved textures are
notable, while apatite and baddeleyite are the accessory phases. The predominant
andesine compositions of the plagioclase grains indicate transitional nature of the
Jonnagiri porphyritic dyke. The temperature and oxygen fugacity estimates for the
coexisting magnetite-ilmenite solid solution pairs yielded an equilibration tempera-
ture of~756 °C and 10−15.6atmf O2.
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