)

Check for
updates

Comparison of Machine Learning Algorithms
for Handwritten Digit Recognition

Shixiao Wu'>®9, Wanyun Wei’, and Libing Zhang®

! School of Electronic Information, Wuhan University, Wuhan 430072, China
343564602@q9. com
2 Department of Information Engineering, Wuhan Business University,
Wuhan 430056, China
3 Department of Electromechanical Engineering,
Lanzhou Resource & Environment Voc-Tech College, Lanzhou 730000, China

Abstract. This paper adopts 10 machine learning algorithms to present the
classification results of handwritten digit recognition on Minist dataset. These
algorithms include k-nearest neighbors, support vector machine (SVM), deci-
sion trees (DT), random forest (RF), naive bayes, multilayer perception (MLP),
logistic regression with neural network, artificial neural network (ANN),
back-propagation (BP), convolutional neural network (CNN) and so on. We
execute the experiments through matlab2015b and anaconda (python 3.6), and
the result (accuracy and run-time) shows that SVM and RF achieve better
performance. They has the accuracy of 98.08% and 97% separately, less
running-time is taken compared with other methods. All the experiment are
executed in CPU environment, without GPU. We also execute CNN algorithm
for handwritten digit recognition in GPU (Nvidia GeForce GTX 1060), finally
find that this algorithm achieves the best performance and the best classification
result, the accuracy is up to 99%.

Keywords: Machine learning - Handwritten digit recognition
Comparison

1 Introduction

Handwritten Digit recognition is well known in OCR and pattern recognition [1]. They
can deal with problems like Zipcode recognition, bank check processing, form data
entry, etc. For the Zipcode recognition, Wang and Srihari believe that acquisition,
binarization, location, and preliminary segmentation should be performed [2]. Metric
that judges a recognition system always include recognition accuracy and elapsed time,
memory and so on. Feature extraction and classifier selection largely effect the per-
formance of the recognition [3, 4].

Compared with on-line handwritten digit recognition [5], off-line recognition still
plays the leader [6]. In this paper, we only focus on the classifier performance and off-line
handwritten digit recognition. There are many existing techniques for handwritten digit
recognition. LeCun et al., apply large BP networks to solve real image-recognition
problems [7], Matan et al., adopt space displacement neural network (SDNN) to recognize

© Springer Nature Singapore Pte Ltd. 2018
K. Li et al. (Eds.): ISICA 2017, CCIS 874, pp. 532-542, 2018.
https://doi.org/10.1007/978-981-13-1651-7_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1651-7_47&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1651-7_47&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1651-7_47&domain=pdf

Comparison of Machine Learning Algorithms 533

handwritten multi-digit string [8], Hinton et al., use linear auto-encoders to recognize
handwritten digit from grey-level images. UNIPEN database is also a famous testbed in
isolated handwritten character recognition [9]. Statistical methods such as fisher dis-
criminant analysis and PCA [10, 11], machine learning methods like MLP, RF, ANN,
CNN, BP, NB, SVM, etc., are well-known solutions [3]. Lotfi and Benyettou apply
probabilistic neural networks for handwritten digits [12]. Le Cun et al., make a comparison
about various classifiers, such as Baseline Linear Classifier, Baseline Nearest Neighbor or
Classifier, Pairwise Linear Classifier, Principal Component Analysis and Polynomial
Classifier, Radial Basis Function Network, Multilayer Neural Network, LeNet network,
Tangent Distance Classifier (TDC), Optimal Margin Classifier (OMC) and so on.
Cheng-Lin Liu et al., has estimated the performance of different classifier, such as MLP,
RBF classifier, PC, and LVQ classifier, DLQDF, SVM, etc. In this paper, we use the
accuracy and elapsed time as metric to compare the performance of 10 machine learning
solutions, also we will mention main parameter settings.

The next arrangement are as follows: we will make a short description for MNIST
database in Sect. 2, we introduce 10 mentioned machine learning solutions in Sect. 3,
we give the experiment figures and tables result in Sect. 4, we make a conclusion in
Sects. 5 and 6 we give the project supports directions.

2 MNIST

Generally, the MINIST Database are composed of 60,000 training images and 10,000
testing images. For a larger set available from NIST, MNIST is a subset [13]. NIST’s
Special Database 3 (SD3) and Special Database 1 (SD1) help to construct the MINST.
Among the complete set of samples, they believe that the result should be independent
of the choice of training set and test, data from different sources (SD3 and SDI1) are
collected to mix the NIST database. For the 60,000 training images and 10,000 testing
images, SD3 and SD1 take the half. This paper adopt all the training images and testing
images to test the performance of the classifier. As the experiments we have made,
different number of images, different configuration of the computer, even the running
status of the CPU (like run a lot of procedures) will largely effect the performance.

3 Machine Learning Methods

In this section, we will talk about 10 machine learning methods, which include CNN,
RF, SVM (Poly kernel, rbf kernel, linear kernel), KNN (5NN, 9NN), ANN, BP, MLP,
NB, Logistic Regression (LR) with NN, DT and so on. We will introduce them shortly
as below:

31 CNN

Traditionally, CNN consists of input layer, convolutional layer, pooling/downsampling
layer and fully-connected layer [14]. The convolutional layer detects local conjunctions
of features from the previous layer, the pooling layer merge semantically similar

534 S. Wu et al.

features into one. The main difference from other deep architectures is that CNN is
designed to use minimal amounts of pre-processing [15]. The massive amount of
convolution operations and large memory requirement are two bottlenecks common in
CNN-based inferencing.

Among all the methods in CPU environments, CNN provides the highest accuracy,
up to 99%, however, the elapsed time of CNN is about 7389 s, they take too much time
to train. This test is executed in matlab deep learning toolbox, 60000 pictures are used
to train and 10000 pictures are used to test, each of them has the size 28 * 28. For CNN
layers, input layer, 2 convolution layers, 2 sub sampling layers are included, alpha is 1,
batch-size is 50, numepochs is 1.

We also execute CNN algorithms in GPU environment, therein we install nvidia
driver 384.90, cuda 9.0, cudnn v5, caffe. With the help of Nvidia GeForce GTX 1060
3G, we complete the test in 1 min and finally get the same classification result. Deep
learning method CNN performs better.

32 RF

A random forest is composed of a collection of tree-structured classifiers, therein each
of them is independent identically distributed random vector, and they casts a unit vote
separately for the most popular class [16]. For RandomForestClassifier, parameters is
set by n_estimators = 150, criterion = “gini”, max_depth = 32, max_features = “auto”
(Table 1 and Fig. 1).

Table 1. SVM for MNIST (kernel = ‘poly’, degree = 2)

Precision | Recall | F1-score | Support
0.9730 |0.9918|0.9823 980
0.9920 | 0.9885 | 0.9903 1135
0.9561 |0.9700 | 0.9630 1032
0.9598 | 0.9693 | 0.9645 1010
0.9774 |0.9705|0.9739 982
0.9773 | 0.9641 | 0.9707 892
0.9740 |0.9781|0.9760 958
0.9735 |0.9660 | 0.9697 1028
0.9627 |0.9528|0.9577 974
0.9601 |0.9534 | 0.9567 1009
Avg/total |0.9707 |0.9707 | 0.9707 | 10000

O 0 N N kW= O

33 SVM

By projecting data into feature space and then searching the optimal separate hyper-
plane, SVM can transform the non-linear problems into linear problems [3]. Basically,
SVM solve binary classifier problems, but LIBSVM is developed to cover the
multi-class problems [17]. Its kernel function includes poly kernel, rbf kernel, linear

Comparison of Machine Learning Algorithms 535

Pixel importances for random forests
o 5 10 15 20 25

Fig. 1. Pixel importances for RF (dot: graph is too large for cairo-renderer bitmaps. Scaling by
0.0741169 to fit)

kernel and sigmoid kernel. We compared the first three kernel function, finally find that
poly kernel has the best performance and less time. For parameter setting, ker-
nel = ‘poly’, degree = 2. Also we tried 3 kernel, two other kernel include linear and
rbf, training images is 60000, and training labels is 60000. Running time: is
510.06473140107244 s. This code is provided by efe (Table 2).

Table 2. SVM for MNIST (kernel = ‘poly’, degree = 2)

Precision | Recall | F1-score | Support
0.9789 | 0.9929 | 0.9858 980
0.9886 | 0.9938|0.9912 1135
0.9777]0.9767 | 0.9772 1032
0.9782 |0.9772|0.9777 1010
0.9827 |0.9837|0.9832 982
0.9798 |0.9776|0.9787 892
0.9874 | 0.9812|0.9843 958
0.9795 |0.9747|0.9771 1028
0.9774 |0.9764 | 0.9769 974
0.9751 {0.9703|0.9727 1009
Avg/total | 0.9806 | 0.9806|0.9806 | 10000

O 003 N L AW = O

536 S. Wu et al.

34 KNN

KNN is an unsupervised machine learning methods. It is also the most simple method
for machine learning, they determine the final classification through the affiliation of
the great majority among the nearest neighbor. They have the fatal disadvantage, large
quantity of computation takes more time. The value of K influence the performance of
the classifier (Fig. 2).

Name

1 accuracy
il cl1

—H dist

- dist_tmp
i

1 num_correct
Hu

—1 test_classify_label
- test_label
- test_point
- test_scale
1 test_set
—Htmp

1 train_label
— train_point
- train_scale
— train_set

Fig. 2. KNN (k = 1), result and parameter setting (DT)

3.5 ANN

Bajpai et al., believes that ANN is one type of network which treat the node as
“artificial neurons” [18]. Inspired in the natural neurons, this artificial neuron is a
computational model, which highly abstract the complexity of real neurons. The neuron
is activated when natural neurons receive strong signals, and then inputs and outputs of
the natural neurons are computed through some mathematical function. This kind of
network always include input layer, hidden layer, and output layer. For handwritten
digit recognition, the input and output layer has 784 and 10 nodes separately, the
number of hidden layer units is 300. For parameter settings, alpha = 0.1; (learning
rate), beta = 0.01 (scaling factor for sigmoid function).

3.6 BP

Based on Deepest-Descent technique, Buscema et al., believe that BP is one kind of
ANN [19]. If the hidden units has an appropriate number, they can simulate complex
computation and minimize the error of nonlinear functions under this situation.
Although they have flexible structure, the learning speed is slow and local minimum is
easy to come out (Fig. 3).

Comparison of Machine Learning Algorithms 537

Neural Network

Layer Layer
Input [
784
Fig. 3. BP network settings (DT)
3.7 MLP

For performing a wide variety of estimation tasks, MLP is a non-parametric technique
[20]. The most widely used algorithm for training MLP is Error back propagation
(EBP). MLP is one kind of ANN. For parameter setting, learning rate is 0.5,
weight_decay is 0, momentum is 0, minibatch sample size is 1, the number of iterations
between displaying info is 100, the maximum number of iterations is 100000, the
number of iterations between testing is 10. The final result is when testing iterations
reaches 100000, mean loss is 0.06542, mean accuracy is 96.22%, the running time is
8680.518088.

3.8 NB

Given the value of the class variable, all attributes are independent in NB network [21].
The conditional independence assumption in the real word is feasible, so it employs
competitive performance. Train set Accuracy: 83.545%, test set Accuracy: 84.26%
(Fig. 4).

0 2 4 6 8

Fig. 4. Naive_Bayes_feature_confusion

538 S. Wu et al.

39 LR

LR is the most simple binary-classification algorithm in the word. If the regression
function is defined, you can classify the result into two kinds. For handwritten digit
recognition, LR with NN (neural networks) can be applied. The parameters is set as
follows: HidUnits = 400, learnRate = 0.1, batchSz = 100, miniBSz = 100, iterations
is 20 (Fig. 5).

1%
09%
08 [t

0.7 %
o6&
05 ¥

04
03

02

011

0 500 1000 1500 2000 2500 3000

Fig. 5. Error is decreasing (LR with NN)

310 DT

Decision trees is composed of intermediate nodes and leaf nodes [22]. Conditions are
adopted to label the outgoing edges from intermediate nodes, decisions or actions are
used to label the leaf node. A leaf is reached by starting at the root then navigating
down on true conditions. Running time in python (spider) is 249.32678459503586 s,
Accuracy is 0.87 (£0.00). For parameter settings, criterion = “gini”, max_depth = 32,
max_features = 784. Training images is 60000 (Table 3 and Fig. 6).

Comparison of Machine Learning Algorithms 539

Table 3. The running-time and accuracy for ten machine learning.

Precision | Recall | Fl-score | Support
0.9106 |0.9357 | 0.9230 980
0.9546 | 0.9630 | 0.9588 1135
0.8708 | 0.8488 | 0.8957 1032
0.8259 |0.85250.8408 1010
0.8749 | 0.8829 | 0.8789 982
0.8401 |0.8307 | 0.8354 892
0.8912 | 0.8894 | 0.8903 958
0.9098 | 0.9027 | 0.9062 1028
0.8286 | 0.8039 | 0.8161 974
0.8564 | 0.8573|0.8569 1009
Avg/total | 0.8781 | 0.8783|0.8781 | 10000

O 00 3 N B W N~ O

4 Experiment and Result

We introduce the algorithms in Sect. 3 shortly, this part we will give the final exper-
iment result. We execute the code in python 3.5 and matlab 2015b. We execute CNN,
the deep learning toolbox is needed. ANN, MLP, KNN, BP, CNN, LR with NN, SVM
are executed in matlab 2015b, DT, RF, NB is executed in python 3.5. In Table 4, we
will show the result for ten machine learning algorithms for handwritten digit
recognition.

Pixel importances for decision tree
0 5 10 15 20 25

Fig. 6. Pixel importances for DT (dot: graph is too large for cairo-renderer bitmaps. Scaling by
0.0741169 to fit)

540 S. Wu et al.

Table 4. The running-time and accuracy for ten machine learning.

Algorithm Accuracy | Running time (seconds)
5NN 96.88% | 3639.7

ONN 96.59% | 3649.2

ANN 97.87% |7997.149

SVM (poly kernel) |98.08% |324.371
SVM (rbf kernel) 94.46% | 839.468
SVM (linear kernel) | 93.98% | 482.513

MLP 96.44% | 8680.518
CNN 98.85% | 7389.859
LR with NN 96.81% | 1187.660
NB 84.26% | 1620

BP 92.04% |312.425
DT 87% 240.642
RF 97% 332.275

We find that the final running-time is highly related with the configuration and
manipulation of the computer. If the same algorithm is executed in different software
(python/matlab), the running time seems different. But through the accuracy and the
running time, you can get the result that RF and SVM has the less time and higher
accuracy (Figs. 7 and 8).

Accuracy

100.00%

95.00%

90.00% -

85.00%

80.00% l I I l l l l m Accuracy
75.00% -

S @ \\z S ¥ w\@e“ ® & &
&

& @\ -\0"’
KON
g;\) 4@

Fig. 7. The accuracy of 10 machine learning algorithms (CPU)

Comparison of Machine Learning Algorithms 541

Running time(seconds)
10000
9000 |
8000 -
7000
6000
5000 -
4000 -
3000
2000 -
1008 I N N e ‘l,l = = = MRunningtime(seconds)
%%%E@@g%%g%zé
nw o < £ £ £ O <
v O @ =]
38§ «
Qa = ¢ -
S2<
S 2
7] >
v

Fig. 8. Running time of 10 machine learning algorithms (CPU)

5 Conclusions

In this paper, we compare 10 machine learning algorithms for handwritten digit
recognition in CPU environment. After the experiment, we find that RF and SVM take
the less time and higher accuracy. The running time of the algorithms is largely effected
by the status and the configuration of the computer. We also execute the experiment in
GPU mode, we have Nvidia 384.90 driver, cuda 9.0 and cudnn v5, caffe, then get the
same result in CPU but better speed, no more than 1 min.

Acknowledgments. This work was financially supported by Wuhan Teaching and Learning
Research Programme (2017113).

References

Liu, C.-L., Nakashima, K., Sako, H., Fujisawa, H.: Pattern Recogn. 36, 2271 (2003)
Wang, C.-H., Srihari, S.N.: Int. J. Comput. Vision 2, 125 (1988)

Niu, X.-X., Suen, C.Y.: Pattern Recogn. 45, 1318 (2012)

Lauer, F., Suen, C.Y., Bloch, G.: Pattern Recogn. 40, 1816 (2007)

Kherallah, M., Haddad, L., Alimi, A.M., Mitiche, A.: Pattern Recogn. Lett. 29, 580 (2008)
Arica, N., Yarman-Vural, F.T.: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 31, 216
(2001)

LeCun, Y., et al.: Advances in Neural Information Processing Systems, pp. 396—-404 (1990)
8. Matan, O., Burges, C.J., LeCun, Y., Denker, J.S.: Advances in Neural Information
Processing Systems, pp. 488—495 (1992)

A

=~

542 S. Wu et al.

9. Guyon, L., Schomaker, L., Plamondon, R., Liberman, M., Janet, S.: Proceedings of the 12th
IAPR International Conference on Pattern recognition. Conference B: Computer Vision and
Image Processing, vol. 2, pp. 29-33. IEEE (1994)

10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)

11. Yu, N, Jiao, P.: 2012 IEEE Fifth International Conference on Advanced Computational
Intelligence (ICACI), pp. 689-693. IEEE (2012)

12. Lotfi, A., Benyettou, A.: J. Artif. Intell. 4, 288 (2011)

13. LeCun, Y.: MNIST OCR data (2013)

14. Bag, S.: Deep learning localization for self-driving cars, Ph.D. thesis. Rochester Institute of
Technology (2017)

15. Qiu, X., Zhang, L., Ren, Y., Suganthan, P.N., Amaratunga, G.: 2014 IEEE Symposium on
Computational Intelligence in Ensemble Learning (CIEL), pp. 1-6. IEEE (2014)

16. Breiman, L.: Mach. Learn. 45, 5 (2001)

17. Chang, C.-C., Lin, C.-J.: ACM Trans. Intell. Syst. Technol. (TIST) 2, 27 (2011)

18. Bajpai, S., Jain, K., Jain, N.: Int. J. Soft Comput. Eng. (I-JJSCE) 1 (2011)

19. Buscema, M.: Subst. Use Misuse 33, 233 (1998)

20. Verma, B.: IEEE Trans. Neural Netw. 8, 1314 (1997)

21. Zhang, H.: AA 1, 3 (2004)

22. Dobra, A.: Decision trees. In: Liu, L., Ozsu, M. (eds.) Encyclopedia of Database Systems.
Springer, New York (2016). https://doi.org/10.1007/978-1-4899-7993-3_553-2

http://dx.doi.org/10.1007/978-1-4899-7993-3_553-2

	Comparison of Machine Learning Algorithms for Handwritten Digit Recognition
	Abstract
	1 Introduction
	2 MNIST
	3 Machine Learning Methods
	3.1 CNN
	3.2 RF
	3.3 SVM
	3.4 KNN
	3.5 ANN
	3.6 BP
	3.7 MLP
	3.8 NB
	3.9 LR
	3.10 DT

	4 Experiment and Result
	5 Conclusions
	Acknowledgments
	References

