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Abstract. A new recurrent neural network is presented to solve a general
quadratic programming problem in real time. In contrast with the available
neural networks, the new neural network is with fewer neurons for solving
quadratic programming problems. The global convergence of the model is
proven with contraction analysis. The discrete time model and an alternative
model for solving the problem under irredundant equality constraints are also
studied. Simulation results demonstrate that the proposed recurrent neural net-
works are effective.
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1 Introduction

There are a lot of studies of recurrent neural networks focusing on the filed of signal
processing [1, 2], pattern classification [3, 4], robotics [5, 6], optimization [7], and so on.
Especially, with the invention of the Hopfield [8], it was specially invented for solving
online optimization. Recurrent neural networks are becoming a popular research branch
in the field of online optimization. They are with powerful parallelism and online
solving capability. Recurrent neural networks have made huge advances for online
optimization in both theory and application. A recurrent neural network [9] is developed
for nonlinear programming problems, where a penalty term is introduced as equality and
inequality constraints, and it converges to an approximate optimal solution. A switched-
capacitor neural network is proposed [10] for solving nonlinear convex programming
problems. However, the model will be unstable in the case that the optimal solution is
outside the feasible region. A neural network is proposed for solving linear quadratic
programming problems [11]. The optimal solution is proven globally converged. Some
slack variables is introduced to the problem, which leads the dimension of model is too
large. A dual neural network is proposed for reducing the dimension. It is composed of a
single layer of neurons,and the dimension of the dual network is equal to its neurons.
The model and its modifications [13, 14] are introduced to kinematic control of
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robot [12, 15]. A simplified dual neural network is proposed [16]. It much reduces
complexity while the convergence property is sound. The model is applied to the
KWTA problem in real time [17], which is just a single neuron. However, it just deals
with quadratic programming problem with a square quadratic term in box constraints
and cost function. A recurrent neural network for solving general quadratic program-
ming problems is proposed. It is with fewer neurons, and the dimension of the model is
greatly reduced while keeping sound accuracy and efficiency.

The remainder of this paper is organized as follows. In Sect. 2, A neural network
model is presented for solving quadratic programming problems. In Sect. 3, the con-
vergence of the neural network is analyzed and it is proven to be globally convergent to
the optimal solution of the quadratic programming problems. A discrete-time model in
Sect. 4 for solving the same problem and an alternative neural network model for
solving the quadratic programming problem under irredundant equality constraints are
studied. In Sect. 5, numerical examples are given to demonstrate the effectiveness of
our method. Section 6 is the conclusion.

In this paper, R denotes the real number field, AT represents the transport matrix of
A, I denotes a unitary matrix.

2 Mathematical Model

The general quadratic programming problem as following is studied:

minð1
2
xTWxþ cTxÞ

s:t:
Ax ¼ b

Ex� e

ð1Þ

Where W 2 R
n�n, x 2 R

n denotes a positive definite matrix, c 2 R
n, A 2 R

m�n,
b 2 R

m, e 2 R
q and E 2 R

q�n. The equality constraint Ax ¼ b is transformed to two
inequalities equivalently: �Ax� � b and Ax� b. The Eq. (1) is transferred as a
quadratic programming problem subject to inequality constraints. It is as following:

minð1
2
xTWxþ cTxÞ

s:t:
1
2
Bx� d

ð2Þ

B ¼
A

�A

E

2
64

3
75; d ¼

b

�b

e

2
64

3
75 ð3Þ
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Where B 2 R
p�n, d 2 R

p and p ¼ 2� mþ q. The inequality constraint of (2) is
transformed as maxðBx� dÞ� 0. The maxðxÞ denotes the largest element of vector x.
The problem (1) is equivalent to the Eq. (4):

minð1
2
xTWxþ cTxÞ

s:t: BT
rx� dr � 0

ð4Þ

In the Eq. (4), r denotes the row No. of the biggest element of Bx� d, and BT
r

represents the rth row of B, dr denotes the rth element of d. According to the KKT
terms, the solution of problem (4) meets the requirements:

Wxþ c� lBr ¼ 0

BT
rx� dr ¼ 0 if l� 0

BT
rx� dr � 0 if l ¼ 0

(
ð5Þ

The dual variable of inequality constraint in the Eq. (4) is represented with l 2 R.
The Eq. (5) is simplified with an upper saturation function as following:

Wxþ c� lBr ¼ 0
BT
rx� dr ¼ gðBT

rx� dr � lÞ ð6Þ

Where the upper saturation function gð:Þ is as following:

gð:Þ ¼ 0 x[ 0
x x� 0

�
ð7Þ

The W is positive definite, x could be explicitly solved with l and the first equality
in Eq. (6) as following:

x ¼ lW�1Br �W�1c ð8Þ

A dynamic neuron is used to solve l in Eq. (6) as following:

2 _l ¼ gðBT
rx� dr � lÞ � BT

rxþ dr ð9Þ

Where 2 [ 0 is a scaling parameter. Substituting (8) into (9) generates the neural
network dynamics with the following state equation and output equation,

State equation:

2 _l ¼ gð�lþBT
rW

�1Brl� BT
rW

�1c� drÞ � BT
rW

�1BrlþBT
rW

�1cþ dr ð10Þ
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Output equation:

x ¼ lW�1Br �W�1c ð11Þ

Where r is the row No. of maxðBx� dÞ, d and B and are as Eq. (3).

Remark 2.1: Only one dynamic neuron is required in the neural network (10), which
is nothing to do with the conditions of Eq. (1). There are at least q dynamic neurons in
recurrent neural networks for solving a general quadratic programming problem in [13–
16, 18]. It is the No. of inequalities of problem (1). However, the proposed model is
just a single dynamic neuron, which greatly reduces the number of neurons and
computational complexity.

Remark 2.2: The neural network dynamic modeled by (10) is a switched dynamic
system. It switches in a family of dynamic systems under the endogenous switching
signal r (signal flow in the neural network is plotted in Fig. 1)

2 _l ¼ frðlÞ; r 2 S ¼ 1; 2. . .; pf g
r : l ! S

ð12Þ

Where frðlÞ ¼ gðBT
rx� dr � lÞ � BT

rxþ dr

Remark 2.3: The proposed model is liable to be implemented with hardware. In
comparison with the research [16], the new part with hardware implementation is a
switching of the proposed network (10). The r is a switching signal, which is equal to
the row No. of maxðBx� dÞ. It is the winner of Bx� d. r is gotten with a WTA circuit
[19]. It is worked as the switching signal for Br and dr in (10). There are a lot of studies
on WTA circuits, and it is easily implemented with CMOS [20]. It is also easily
implemented by a recurrent neural network just a single dynamic neuron [19]. There is
just two dynamic neurons in the neural network (10), which is much less than the
solutions of [13–18].

Fig. 1. Signal flow of the simplified neural network.
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3 Convergence Analysis

It is a feasible way to prove the global convergence of the proposed system by con-
structing a common negative definite Lyapunov function. However, choosing such a
common Lyapunov function is a difficult problem. Some researches on the contraction
theory [21, 22] greatly simplify the proof process with virtual dynamics of the system.
In this paper, the contraction analysis is made to prove the proposed model (10)
convergent. The proof process is based on one definition and two lemmas:

Definition 3.1 ([22]): Given the system equations _x ¼ f ðx; tÞ, a region of the state
space is called a contraction region with respect to a uniformly positive definite metric

Mðx; tÞ ¼ HTH if @f T

@x MþM @f
@x þ _M� � bM (with b[ 0Þ in that region.

Lemma 3.1 [22]: Given the system equations
_x ¼ f ðx; tÞ, any trajectory, which starts in a ball of constant radius with respect to the

metric Mðx; tÞ, center at a given trajectory and contained at all times in a contraction
region with respect o Mðx; tÞ, remains in that ball and converges exponentially to this
trajectory. furthermore, global exponential convergence to the given trajectory is
guaranteed if the whole state space is a contraction region with respect to the metric
Mðx; tÞ.
Remark 3.1: As pointed out in [21], Lemma 3.1 holds for all switched systems in case
that all subsystems in the switched family are within a same contraction region Mðx; tÞ.
Lemma 3.2: The solution to problem (6) (represented by l�, x�) is the optimal solution
to problem (1). At the same time, l� is an equilibrium point of the state equation of the
proposed model, which is as following:

gð�lþBT
rW

�1Brl� BT
rW

�1c� drÞ � BT
rW

�1BrlþBT
rW

�1cþ dr ¼ 0

The optimal solution also satisfies (11) as following: x� ¼ lW�1Br �W�1c:

Proof: According to the KKT condition, equation sets (5) are the optimal solution to
problem (4). Equation sets (6) are equivalent to equation sets (5), the solution to
equation set (6) is equivalent to the optimal solution to problem (1). They are as
following:

gð�l� þBT
rW

�1Brl
� � BT

rW
�1c� drÞ � BT

rW
�1Brl

� þBT
rW

�1cþ dr ¼ 0

Where x� ¼ lW�1Br �W�1c.
Now, we are on the stage to state the convergence result of the proposed model.

Theorem 3.1: The proposed (10) converges to the equilibrium point from any start
point l 2 R, and the Eq. (11) is the optimal solution to Eqs. (1).
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Proof: Based on the contraction theory for analyzing the convergence of (10):

_l ¼ f ðl; tÞ ¼ 1
e
ðgð�lþBT

rW
�1Brl� BT

rW
�1c� drÞ � BT

rW
�1BrlþBT

rW
�1cþ drÞ ð13Þ

The partial derivative @f
@l is as following:

@f
@l

¼ � BT
rW

�1Br

e if t� 0
� 1

e t\0

(
ð14Þ

Where t ¼ �lþBT
rW

�1Brl� BT
rW

�1c� dr. Note that the derivate g0ðxÞ ¼ 0 if
x� 0 and g0ðxÞ ¼ 1 if x\0 (more exactly, it should be the upper right-hand derivative
since the function gðxÞ is non-smooth at x ¼ 0.) is used in the derivation of (14). By
choose M ¼ 1, we have

@f T

@l
MþM

@f
@l

þ _M ¼ 2
@f
@l

� � 2minð1;BT
rW

�1BrÞ
e

ð15Þ

Since W�1 is positive definite and Br is not equal to 0 (otherwise, the corre-
sponding inequality in (2) does not include x), we conclude that BT

rW
�1Br [ 0 and

minð1;BT
rW

�1BrÞ
e [ 0:

By defining b ¼ minf1;minið1;BT
i W

�1BiÞ
e , with BT

i denoting the ith row of B and the set
S ¼ f1; 2; . . .; pg, we have the following inequality for all l 2 R and all r 2 S under
the same metric M,

@f T

@x
MþM

@f
@x

þ _M� � bM ð16Þ

The whole state space of l is a contraction region.
Based on Lemma 3.2, l� and x�, is the optimal solution to problem (1), and it is

also an equilibrium point to Eq. (10).

4 Extensions

4.1 Discrete-Time Model

In this part, we propose the discrete-time model to solve the problem (1) and give
conditions for global convergence

Replacing l, _l with ln,
lnþ 1�ln

Dt in (10), respectively, and denoting ! ¼ Dt
e , we get

the following state equation and output equation of the discrete model as following
with some trivial manipulations. state equation:

lnþ 1 ¼ !gð�ln þBT
rW

�1Brln � BT
rW

�1c� drÞþ ð1
� !BT

rW
�1BrÞln þ!BT

rW
�1cþ!dr ð17Þ
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The output equation:

xn ¼ lnW
�1Br �W�1c ð18Þ

Where r is the row No. of the largest element of Bxn � d, B and d are as equation
sets (3).

In the discrete-time case, the contraction theory is an extension of the well-known
contraction mapping theorem. We still use the contraction theory to analyze the con-
vergence. For discrete-time systems, the definition of a contraction region and the
condition for contraction are stated as below.

Definition 4.1 ([22]): The discrete-time model is as following:
Equation xnþ 1 ¼ fnðxn; nÞ, is a contraction region. Positive definite metric Mnðxn;

nÞ ¼ HT
nHn, given in the region 9b[ 0, FT

n Fn � I� � bI\0, where Fn ¼ Hnþ 1
@fn
@xn

H�1
n .

Lemma 4.1 ([22]): If the whole state space is a contraction region, The global con-
vergence to the given trajectory is made sure.

Theorem 4.1: The discrete model (17) will converge to the equilibrium point after
initialization l 2 R and the output of equilibrium point, as shown in (18), is also the
optimal solution to problem (1) under:

0\c\2; c\
2

BT
i W�1Bi

for all i 2 S ð19Þ

where BT
i denotes the ith row of B and S ¼ f1; 2; 3; . . .; pg

Proof: Firstly, solve the equilibrium point for the discrete model (17), and get the
output of the Eq. (18). Secondly, prove the global contraction to the equilibrium point.

Step 1: Comparing the discrete-time model (17) and its output (18) with the
continuous-time model (10) and its output (11), we can find that they have the same
equilibrium and the same output at this equilibrium. According to the Lemma 3.2, the
solution to equation set (6) is an equilibrium to the discrete model (17) too, and the
output at the point is the optimal solution to the problem (1).

Step 2: To the discrete model (17),

lnþ 1 ¼ fnðxn; nÞ
¼ !gð�ln þBT

rW
�1Brln � BT

rW
�1c� drÞþ ð1� !BT

rW
�1BrÞlnþ!BT

rW
�1cþ!dr

ð20Þ

Calculate @fn
@ln

as follows:

@fn
@ln

¼ 1� !BT
rW

�1Br if vn � 0
1� !if vn\0

�
ð21Þ
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Where vn ¼ �ln þBT
rW

�1Brln � BT
rW

�1c� dr. Choosing Hn ¼ 1 for n ¼ 0; 1;
2; . . .; n then

Fn ¼ Hnþ 1
@fn
@ln

H�1
n ð22Þ

Based on (21) and (22),

FT
n Fn �ðmaxfj1� cj; j1�cBT

rW
�1BrjgÞ2

�ðmaxfj1� cj;maxi2Sfj1�cBT
rW

�1BijggÞ2
ð23Þ

Set b ¼ 1� ðmaxfj1� cj;maxi2Sfj1�cBT
rW

�1BijggÞ2. To all ln 2 R, r 2 S, the
inequality as following (24) is valid.

FT
n Fn � I� bI ð24Þ

Since 0\c\2; 0\cBT
i W

�1Bi\2 for i 2 S, we get j1� cj\1; j1� cBT
i W

�1

Bij\1 for i 2 S. Therefore, ðmaxfj1� cj;maxi2Sfj1�cBT
rW

�1BijggÞ2 � 1 and b[ 0.
Then the whole state space is within contraction range. Let the equilibrium point of

(17) to be the given trajectory, according to Lemma 4.1, the discrete model (17) will
convergence to the equilibrium point.

4.2 Irredundant Equality Constraint

Based on that the equality constraint exists without redundancy, there is another way to
tackle the problem (1). This is to say, the matrix A 2 R

m�n in (1) problem meets the
requirement of rank ðAÞ ¼ m and m\n:

Ex� e in problem (1) is replaced by maxðEx� eÞ� 0, then

min(
1
2
xTWxþCTxÞ

s.t. Ax ¼ b

ET
r x� er � 0

ð25Þ

Based on KKT conditions and the upper saturation function g(�), the solution to
problem (25) meets,

Wxþ c� ATy� lBT
r ¼ 0

Ax ¼ b
ET
r x� er ¼ gðET

r x� er � lÞ
ð26Þ

Where y 2 R
m; l 2 R. x and y can be explicitly solved in terms of l under the

above three equations:

x ¼ lPEr þ s
y ¼ ðAW�1ATÞ�1ð�AW�1BrlþAW�1cþ bÞ ð27Þ

10 S. Chen et al.



Where P ¼ �W�1ATðAW�1ATÞ�1AW�1 þW�1, S ¼ W�1ðATðAW�1ATÞ�1ðAW�1

cþ bÞ � cÞ P 2 R
n�n. The third equation in (26) is solved as following:

e _l ¼ gðET
r x� er � lÞ � ET

r xþ er ð28Þ

Where e[ 0 is a scaling parameter. The state equation of the neural network is as
following:

e _l ¼ gðET
rPErl� lþET

r s� erÞ � ET
rPErl� ET

r sþ er ð29Þ

Before stating the convergence result about the neural network (29), the following
lemma is presented, which is used in the convergence proof.

Lemma 4.2: The symmetric matrixP 2 R
n�n,P ¼ �W�1ATðAW�1ATÞ�1AW�1 þW�1

is semi-positive definite, i.e., zTPz� 0 for all z 2 R
n and zTðW�1ATðAW�1ATÞ�1

A� IÞ 6¼ 0.

Proof: Since W�1 2 R
n�n is positive definite, it can be factorized into W�1 ¼ QQT

with Q positive definite. Defining G 2 R
m�n, G ¼ AQ, then G is also row full rank

(since A is row full rank and Q is positive definite) and therefore G can be decomposed
into G ¼ U½^ 0�V via singular value decomposition, where U 2 R

m�m, V 2 R
n�n are

both unitary matrices, ½^ 0� 2 R
m�n, ^ 2 R

m�m is a diagonal matrix with all positive
elements on the diagonal. Bringing

W�1 ¼ QQT ; G ¼ AQ; andG ¼ U½^ 0�V into P
¼ �W�1ATðAW�1ATÞ�1AW�1 þW�1

We get the equations as (30) as below. The stability of the neural network (29) and
its global convergence to the optimal solution of (1) is guaranteed by the following
theorem.

Theorem 4.2: The neural network (29) exponentially converges to its equilibrium from
any initial point l 2 R, and its output at this equilibrium by following the output
Eq. (27) is the optimal solution to problem (1), if rankðAÞ ¼ m in (1) and
ðET

i ðW�1ATðAW�1ATÞ�1A� IÞ 6¼ 0
For i ¼ 1; 2; . . .; q, with ET

i denoting the ith row of the matrix E.

Proof: This theorem can be proven in a two-step procedure similar to the proof of
Theorem 4.1. The first step is to solve the equilibrium and show that the output at this
equilibrium is the optimal solution to the problem (1). The second step is to prove the
global contraction to the equilibrium. Note that the condition ðET

i ðW�1ATðAW�1

ATÞ�1A� IÞ 6¼ 0 For i ¼ 1; 2; . . .; q, according to Lemma 4.2, guarantees ET
rPEr [ 0

for all possible switching signal r. Based on this result, global contraction of the neural
network (29) can be proven. Detailed proof process for the two steps is omitted.
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P ¼ �QQTATðAQQTATÞ�1AQQT þQQT

¼ �QGTðGGTÞ�1GQT þQQT

¼ �QVT K

0

� �
UTðUK�2UTÞU K 0½ �VQT þQQT

¼ �QVT Im�m 0

0 0

� �
VQþQVTVQT

¼ ðVQTÞT 0 0

0 Iðn�mÞ�ðn�mÞ

" #
VQT � 0

ð30Þ

5 Simulations

5.1 Continuous-Time Neural Network Model

The following problem will be solved for showing the convergence of the continuous-
time neural network modelled with (10) and (11).

minð3x21 þ 3x22 þ 4x23 þ 5x24 þ 3x1x2 þ 5x1x3 þ x2x4 � 11x1 � 5x4Þ

s:t:

�3x1 þ 3x2 þ 2x3 � x4 � 0

�4x1 � x2 þ x3 þ 2x4 � 0

�x1 þ x2 � � 1

�2� 3x1 þ x3 � 4

ð31Þ

To the model, the parameters are as following:

W ¼
6 3 5 0
3 6 0 1
5 0 8 0
0 1 0 10

2
664

3
775; c ¼

�11
0
0
�5

2
664

3
775

B ¼

�1 1 0 0
3 0 1 0
�3 0 �1 0
�3 3 2 �4
�4 �1 1 2

2
66664

3
77775; D ¼

�1

4

2

0

0

2
6666664

3
7777775

ð32Þ

We run the neural network model in simulation with a random initialization of the
state variable l and we choose 2 ¼ 10�8. Simulations is run for 5� 10�8 s and the
simulation result of l and x are as shown in the Figs. 2 and 3. The optimal solution is
about −19.1794310722, the proposed output x ¼ ½1:8774617068;�1:0393873085;
�1:6323851203; 0:6039387308�, the optimum point is −19.179. The differences are
both less than 1:0� 10�10 for x and the optimum point.

12 S. Chen et al.



5.2 Discrete-Time Model

We also consider the problem studied in Example V-A and solve it with the discrete
model based on (17) and (18). In the simulation, c ¼ 0:05, randomly initialization l.
The evolution of l and x are as shown in Figs. 4 and 5. The proposed network output is
x ¼ ½1:8774617068;�1:0393873085;�1:6323851203; 0:6039387308�. The optimal
value is −19.179. The difference is less than 5:85� 10�6 for x and 4:2� 10�5 for the
optimal value.

5.3 Problem with Irredundant Equality Constraint

To show the convergence of the neural network, we solve a quadratic programming
problem with irredundant equality constraints as following

minð3x21 þ 3x22 þ 4x23 þ 5x24 þ 3x1x2 þ 5x1x3 þ x2x4 � 11x1 � 5x4Þ

s:t:

�3x1 þ 3x2 þ 2x3 � x4 ¼ 0

�4x1 � x2 þ x3 þ 2x4 ¼ 0

�x1 þ x2 � � 1

�2� 3x1 þ x3 � 4

ð33Þ

As the problem (34), A simulation is performed with a random initialization of the
state variable l and the scaling parameter 2¼ 10�8. Simulation result is as shown in
Figs. 6, 7 and 8, from which we can observe that the neural network converges very
fast after a short transient period shorter after than 10�6 s. The error of solution at the
final time of the simulation is less than 0:9� 10�10 in l2 norm sense, and the optimal
solution is x ¼ ½0:5;�0:5;�1:5; 0�.

Fig. 2. Transient behavior of l in Example
V-A.

Fig. 3. Transient behavior of x in Example
V-A.

A New Recurrent Neural Network with Fewer Neurons 13



W =

6 3 5 0
3 6 0 1
5 0 8 0
0 1 0 10

2
664

3
775; c ¼

�11
0
0
�5

2
664

3
775

A =
3 �3 �2 1
4 1 �1 �2

� �
; b =

0

0

" #

E ¼
�1 1 0 0
3 0 1 0
�3 0 �1 0

2
4

3
5; e =

�1

4

2

2
64

3
75

ð34Þ

Fig. 5. Transient behavior of x in Example
V-B.

Fig. 4. Transient behavior of l in Example
V-B.

Fig. 6. Transient behavior of l in Example
V-C.

Fig. 7. Transient behavior of x in Example
V-C.
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6 Conclusions

For solving the general quadratic programming problems, a new recurrent neural
network is proposed. The proposed model is with fewer neurons and simple structure.
The neural network are shown global convergence based on contraction analysis. The
discrete time counterpart to the proposed neural network is studied and an alternative
recurrent neural network to solve the problem under irredundant equality constraint is
also studied. Finally, simulation results demonstrate the models are efficient and
accurate.

Acknowledgements. The authors would like to acknowledge the support of Guangdong Science
Foundation of China under Grant No. S2011010006116 and No. 2015A030313587, Shenzhen
Science Technology Project No. JCYJ20150417094158025, No. JCY20160307100530069 and
GRCK20170424095924228,Shenzhen Institute of Information Technology Scientific Research
Platform Cultivation Project (PT201704).

References

1. Hughes, T., Mierle, K.: Recurrent neural networks for voice activity detection. In: IEEE
International Conference on Acoustics, pp. 7378–7382 (2013)

2. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal
Process. 45(11), 2673–2681 (2002)

3. Scardino, L., Niess, R.: Performance of recurrent neural networks applied to a simplified
pattern recognition problem. J. Comput. Sci. Colleges 15(3), 251–258 (2000)

4. Nan, B., Fukuda, O.: EMG-based motion discrimination using a novel recurrent neural
network. J. Intell. Inf. Syst. 21(2), 113–126 (2003)

5. Zhang, Y.N., Tan, Z.G.: Repetitive motion of redundant robots planned by three kinds of
recurrent neural networks and illustrated with a four-link planar manipulator’s straight-line
example. Robot. Auton. Syst. 57(6–7), 645–651 (2009)

6. Vázquez, L.A., Jurado, F.: Decentralized identification and control in real-time of a robot
manipulator via recurrent wavelet first-order neural network. In: Mathematical models in
Engineering, pp. 1–12 (2015)

Fig. 8. Transient behavior of y in Example V-C.

A New Recurrent Neural Network with Fewer Neurons 15



7. Xu, R., Wunsch, D.: Inference of genetic regulatory networks with recurrent neural network
models using particle swarm optimization. IEEE Trans. Comput. Biol. 4(4), 681–692 (2007)

8. Hopfield, J.J.: Neurons with graded response have collective computational properties like
those of two-state neurons. Proc. Nat. Acad. Sci. 81(10), 3088–3092 (1984)

9. Liu, Q., Wang, J.: A one-layer recurrent neural network with a discontinuous hard-limiting
activation function for quadratic programming. IEEE Trans. Neural Netw. 19(4), 558–570
(2008)

10. Mestari, M., Namir, A.: Switched capacitor neural networks for optimal control of nonlinear
dynamic systems: design and stability analysis. Syst. Anal. Model. Simul. 41(3), 11–20
(2001)

11. Malek, A., Alipour, M.: Numerical solution for linear and quadratic programming problems
using a recurrent neural network. Appl. Math. Comput. 192(1), 27–39 (2007)

12. Liu, Q., Wang, J.: A one-layer recurrent neural network with a discontinuous activation
function for linear programming. Neural Comput. 20(5), 1366–1383 (2008)

13. Hu, X., Wang, J.: An improved dual neural network for solving a class of quadratic
programming problems and its k-winners-take-all application. IEEE Trans. Neural Netw. 19
(12), 2022–2031 (2008)

14. Xia, Y., Han, Y.W.: A mixed-binary convex quadratic reformulation for box-constrained
nonconvex quadratic integer program. Mathematics 10(12), 7897–7905 (2014)

15. Li, S., Chen, S.: Decentralized kinematic control of a class of collaborative redundant
manipulators via recurrent neural networks. Neurocomputing 91(9), 1–10 (2012)

16. Cheng, L., Hou, Z.: A Simplified Neural Network for Linear Matrix Inequality Problems.
Neural Process. Lett. 29(3), 213–230 (2009)

17. Hu, X., Zhang, B.: A simplified dual neural network for quadratic programming with its
KWTA application. IEEE Trans. Neural Netw. 17(6), 1500–1510 (2006)

18. Xia, Y., Feng, G., Wang, J.: A novel recurrent neural network for solving nonlinear
optimization problems with inequality constraints. IEEE Trans. Neural Netw. 19, 1340–1353
(2008)

19. Tymoshchuk, P.: A discrete-time dynamic K-winners-take-all neural circuit. Neurocomput-
ing 72(13–15), 3191–3202 (2009)

20. Xiao, Y., Liu, Y.: Analysis on the convergence time of dual neural network-based KWTA.
IEEE Trans. Neural Netw. Learn. Syst. 23(4), 676–682 (2012)

21. Hu, F., Zhang, Z.: Contraction theory-based adaptive dynamic surface control for a class of
nonlinear systems. Control Decis. 31(5), 769–775 (2016)

22. Wang, W., Slotine, J.J.E.: Contraction analysis of time-delayed communications and group
cooperation. IEEE Trans. Autom. Control 51(4), 712–717 (2006)

16 S. Chen et al.


	A New Recurrent Neural Network with Fewer Neurons for Quadratic Programming Problems
	Abstract
	1 Introduction
	2 Mathematical Model
	3 Convergence Analysis
	4 Extensions
	4.1 Discrete-Time Model
	4.2 Irredundant Equality Constraint

	5 Simulations
	5.1 Continuous-Time Neural Network Model
	5.2 Discrete-Time Model
	5.3 Problem with Irredundant Equality Constraint

	6 Conclusions
	Acknowledgements
	References




