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Abstract EEGLAB, a widely used toolbox in MATLAB (The Mathworks, Inc.),
uses Independent Component Analysis (ICA) to decompose the EEG signal into
sub-signals, and localizes brain sources of those sub-signals prior to independent
component (IC) clustering for group study. In 2013, the Measure Projection Toolbox
(MPT) was introduced as a new data-driven IC clustering toolbox for EEGLAB.
Despite the numerous features and advantages offered by EEGLAB and the MPT,
they both have limitations for statistical analyses with more than two independent
variables. In order to work around those limitations, this paper introduces StaR, an
EEGLAB framework for the MPT statistical analyses to be performed in R. StaR
initially exports the data from different clusters generated by the MPT for differ-
ent measures of interest (e.g., Event-Related Potentials (ERPs) and Event-Related
Spectral Perturbations (ERSPs)) and formats the data such that further statistical
analyses can be performed in R. Once in R, StaR uses linear mixed models as its
default method to better handle missing values and intra-subject variability. Finally,
StaR brings the results back into MATLAB to plot the results with the well-known
and easy to interpret EEGLAB graphics. To make the whole process easy, StaR also
offers an intuitive user interface that integrates into EEGLAB’s menu.
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1 Introduction

EEGLAB [1] is an open-source toolbox running in MATLAB (The Mathworks,
Inc.) made for EEG signal analysis and conceived to go beyond traditional mean
peak analysis. One of its major preprocessing steps is the Independent Component
Analysis (ICA) [2]. A dipole fitting plugin, DIPFIT [3], is then used to locate the
corresponding potential brain sources (modeled as dipoles) in a brain template.

EEGLAB uses the Independent Component (IC) clustering approach for multi-
subject analysis in the brain source domain. The number of adjustable parameters
available in its GUI to cluster the ICs might, however, introduce subjectivity into
the process. To address this issue, Bigdely-Shamlo, Mullen, Kreutz-Delgado, and
Makeig (2013) developed a plugin for EEGLAB, called the Measure Projection
Toolbox (MPT), which proposes a simpler and objective clustering procedure.

Even though EEGLAB and MPT offer performing algorithms intended for pro-
cessing individual datasets and for IC clustering, they both have some important
limitations when it comes to creating and running multi-subject studies with com-
plex statistical designs such as longitudinal designs.

These limitations are (1) EEGLAB does not allow one to create a “studyset”
(dataset gathering all the individual datasets) including different ICAdecompositions
for a given subject; (2) the STUDY feature in EEGLAB, which handles the statistical
modules for multi-subject comparisons (i.e., “study design”), which does not support
more than two independent variables; (3) the MPT statistical feature only supports
two independent variables (Group and Dynamic); (4) in the MPT, once the domains
(i.e., clusters) are computed, only two types of univariate analysis are available (t-test
and permutation); and (5) in the MPT, in the case of comparison of two different
groups for one condition, missing values are replaced with zeros (0) in order to keep
the number of datasets equal in both groups, and in the case of comparison of two
different conditions for both groups gathered together, the datasets with even a single
missing value are completely removed from the statistical analysis, which can have
a significant impact on the results.

Since its release in 2013, the MPT has been used in only a few published studies
[4–8]. We believe that the limitations mentioned above are one of the reasons why
few researchers have used it.

As a solution to these limitations, we developed a framework for EEGLAB called
StaR (Statistics in R). StaR provides a complete pipeline extracting the data from
EEGLAB, theMPT, andMATLABaltogether, in order to perform statistical analyses
in R framework, and bringing the results back in MATLAB to easily plot them in
various ways using the StaR UI that leverages the EEGLAB graphics [9–12].
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2 Methodology

This section describes the StaR framework that we have developed. The code can be
downloaded from https://github.com/FaubertLab/StaR. Questions can also be sent
to yannick.roy@umontreal.ca. If we were to receive positive feedback and requests
to provide a complete toolbox, we would happily seek funding to do so.

2.1 StaR Framework Steps

Steps #1 and #2 consist of preprocessing the data and creating a studyset
in EEGLAB, then performing the clustering in the MPT (see EEGLAB
(sccn.ucsd.edu/wiki/EEGLAB) and MPT wiki pages (sccn.ucsd.edu/wiki/MPT).

Step #3 consists of exporting the data from the MPT to R. StaR tags missing
values with a NaN (Not a Number) value when exporting them from the MPT.

Step #4 consists of creating the complex data frame in R.
Step #5 consists of carefully placing the MPT values in the long data structure

previously created. The dimensionality of the data will automatically be switched
around by StaR to facilitate its usability by the user and developer while also opti-
mizing for parallel computing. In order to study the EEG signal in greater detail, the
different measures of interest (e.g., ERP, ERSP, etc.) are analyzed in a point-by-point
fashion (i.e., considering each data point constituting a given graphical representa-
tion of the measure for each subject). Thus, for each subject, the data framemay hold
tens of thousands of values, and hence there is the necessity for parallel computing.

Step #6 and #7 consist of the actual statistical analysis and post hoc tests.We opted
for the linear mixed model procedure (lme4 package) to capture the within-subjects
variability and to use as much of the data as possible, instead of removing subjects
having missing values [13, 14]. Nevertheless, other tests can be used in R with small
modifications in the code. Options of correction methods for multiple comparisons
are also offered such as False Discovery Rate (FDR) [15] or Bonferroni.

Step #8 consists of bringing the results back into MATLAB to use EEGLAB
graphics that are easy to recognize and interpret [10, 16]. One of the challenges here
was the poor protocol of exchange between R and MATLAB. The data had to be
linearized by carefully reshaping the matrices.

Step #9 consists of plotting the results. Handling more than two independent
variables is not possible in EEGLAB and the MPT, therefore, even if the graphics
are generatedwith EEGLAB functions, having the ability to plot this kind of graphics
from a combination of three or four independent variables is new. The illustrations
presented here come from a subset of datasets used in a longitudinal study initially
comprising of four factors (Group, Session, and two condition-related crossed factors
such as Dynamic and Modulation). In order to better handle the missing values, we
have included a cluster-related factor (Domain).

https://github.com/FaubertLab/StaR
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Fig. 1 ERSP 2×2. In this figure, the two factors are Group (2 levels: 3 and 4) and Dynamic (2
levels: M and F, where M stands for motion and F for flicker) for Domain 2. The effect of the factor
Dynamic within a specific group is figured in the first two rows and the effect of the factor Group
within a specific condition is figured in the first two columns. In the outer graphs, the green regions
mean that it is not significant and the values are set to 0

Figure 1 shows an example of the data and statistical results for a given cluster
(domain 2) from a combination of two factors (Group × Dynamic), both with two
levels, while all other factors were kept combined. Any other pair of two variables
could have been selected and would have produced a similar output. One could also
fix the other variables to a specific value (e.g., Session �1) instead of leaving them
combined. It is also possible to select the option to only plot the significance mask
showing only two colors (i.e., significant or not) instead of a color scale representing
the difference between the two graphs.

Figure 2 shows an example of the data and statistical results for a given cluster
(domain 1) from a combination of two factors (Group × Modulation), both with two
levels, while all other factors were kept combined. Any other pair of two variables
could have been selected and would have produced a similar output. One could also
fix the other variables to a specific value (e.g., Session �1) instead of leaving them
combined.

2.2 StaR UI

Creating an intuitive user interface (UI) that makes it easy to plot different layouts
of graphs based on the interaction of multiple independent variables, all with a dif-
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Fig. 2 ERP 2×2. In this figure, the two factors are Group (2 levels: 3 and 4) and Modulation (2
levels: FO, SO). Colored dots or lines below the curves indicatewhere the differences are significant.
The legend indicates the independent variables being compared. For example, “gr�3–gr�4 (do�
1; mo�SO)” means that datasets from group 3 for domain 1 and second-order modulation were
compared to datasets from group 4 for the same domain and modulation levels, all other factors
combined

ferent number of values (e.g. 2 x 2, 2 x 3), is a challenge. Actually, when supporting
multiple independent variables the combinations and possibilities quickly become
manually unmanageable. The simple and intuitive StaR UI simplifies all these pos-
sible combinations and options.

2.3 Exploratory

We added a feature called specific Dipoles (Fig. 3) allowing the visualization of
the domains generated by the MPT with the contributing dipoles from different
groups and sessions represented with different colors. This feature does not compute
anything but simply plots the dipoles already identified and located (i.e., source
localization) with EEGLAB plug-in such as DIPFIT using a brain template such as
the Montreal Neurological Institute, one prior to using the MPT and therefore before
using StaR.

Such a tool gives the opportunity to quickly check if the data seem well-balanced
in order to validate results. By selecting a specific domain with the groups and/or
sessions of interest usingdifferent colors, one can see at a glance if (1) the groups seem
to be equally represented and/or if (2) the sessions seem to be equally represented.
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Fig. 3 Specific Dipoles UI and output. The UI (at the top) allows for the selection of a specific
domain to show its contributing dipoles. The user can either select all groups for all sessions to see
all the contributing dipoles of a specific domain, or can break down the analysis to a specific group
and/or session

3 Discussion and Conclusion

StaR, the statistical framework introduced in this article ismainly targeting EEGLAB
users, especially those interested in the use of the MPT as IC clustering tool. StaR
creates a link between EEGLAB/MPT in MATLAB and R. It uses the “studyset”
created in EEGLAB to perform statistical analyses of EEG signal characteristics of
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interest (e.g., ERPs, ERSPs, power spectra, etc.) in R, and finally brings the results
back into MATLAB in order to plot them using EEGLAB graphics.

The necessity for creating such a tool came from the limitations we encountered
using EEGLAB and the MPT to create a longitudinal statistical study design with
four factors (including two crossed condition-related factors).

The recent increase in computing power has made possible the use of more com-
plex statistical designs likemixed-effectmodels, which are better atmodelingwithin-
subject variability and at dealing with missing values and unbalanced datasets than
the classicalANOVA[17, 18]. Furthermore, contrary to the classicalANOVA,mixed-
effect models do not violate underlying assumptions (e.g., linearity, sphericity, etc.)
[19]. Else, mixed-effect models are well-suited for the analysis of longitudinal data
containing missing values [20–22], and were thus particularly relevant in our case.

StaR was developed to be flexible and to easily support different statistical tests in
R with minimum changes in the code while keeping all other steps untouched (e.g.,
exporting the data, plotting results with EEGLAB, etc.).

Finally, by making StaR freely accessible, we hope to encourage the research
community to explore their EEG data beyond traditional ERP curves (peak ampli-
tude and latency) obtained from the electrodes, especially by using the MPT as IC
clustering tool.
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tudinal trends within EEG experiments. Biometrics 71, 1090–1100 (2015). https://doi.org/10.
1111/biom.12347

19. Picton, T.W., Bentin, S., Berg, P., Donchin, E., Hillyard, S.A., Johnson, R., et al.: Guidelines for
using human event-related potentials to study cognition: recording standards and publication
criteria. Psychophysiology 37, 127–152 (2000). https://doi.org/10.1111/1469-8986.3720127

20. Gibbons, R.D., Hedeker, D., DuToit, S.: Advances in analysis of longitudinal data. Ann. Rev.
Clin. 6, 79–107 (2010). https://doi.org/10.1146/annurev.clinpsy.032408.153550.advances

21. Krueger, C., Tian, L.: A comparison of the general linear mixed model and repeated measures
ANOVA using a dataset with multiple missing data points. Biol. Res. Nurs. 6, 151–157 (2004).
https://doi.org/10.1177/1099800404267682

22. Ibrahim, J.G., Molenberghs, G.: Missing data methods in longitudinal studies: a review. TEST
18, 1–43 (2009). https://doi.org/10.1007/s11749-009-0138-x

https://doi.org/10.1016/s0079-6123(06)59007-7
https://doi.org/10.1016/j.neuroimage.2005.04.014
https://doi.org/10.1016/j.tics.2004.03.008
https://doi.org/10.1177/009286150103500418
https://doi.org/10.2307/2346101
https://doi.org/10.1016/0013-4694(93)90110-h
https://doi.org/10.1016/j.nicl.2014.09.006
https://doi.org/10.1111/biom.12347
https://doi.org/10.1111/1469-8986.3720127
https://doi.org/10.1146/annurev.clinpsy.032408.153550.advances
https://doi.org/10.1177/1099800404267682
https://doi.org/10.1007/s11749-009-0138-x

	StaR: An EEGLAB Framework for the Measure Projection Toolbox (MPT) Statistical Analyses to be Performed in R
	1 Introduction
	2 Methodology
	2.1 StaR Framework Steps
	2.2 StaR UI
	2.3 Exploratory

	3 Discussion and Conclusion
	References




