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Abstract Several approaches have been developed for mesh quality improvement
by considering only node movement, without disturbing the element connectivity.
Laplacian smoothing is well known and easiest one to implement among all, but
this approach might lead to inverted elements in concave regions. In this work,
optimization-based smoothing method is proposed for the improvement of hexahe-
dral mesh without any inverted elements. Optimization is carried out using condition
number-based objective function which defines qualities of individual elements in
the hexahedral mesh. Numerical optimization method used is the cohort intelligence
(CI) algorithm which is socio-inspired algorithm developed by Dr. Anand Kulkarni
et al. (Cohort intelligence: a self-supervised learning behavior, pp. 1396–1400, 2013
[10]). The approach is demonstrated with three examples.
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1 Introduction

The finite element analyses (FEAs) are required to verify the suitability of an engi-
neering design before actual manufacturing. There are two big challenges, one is
to build a sufficiently accurate model and other is to carry out its analysis, in the
available time. Meshing is the essential component of any analysis or simulation
and obtaining useful meshes is an important issue. All commercial FEA softwares
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are based on interpolation methods which produce approximate results and the error
needs to be minimum. There are various techniques of mesh generation which are
either automatic or manual [1]. Automatic mesh generators often generate meshes
that are not well-shaped, and hence, a mesh smoothing technique is essential for
mesh quality improvement.

Smoothing or r refinement method is a technique of correcting the poorly shaped
elements. No one smoothing technique works all of the time [2]. Mesh smoothing
provides a high quality of mesh and increases reliability of the solution. The most
popular technique is Laplacian smoothing which uses internal nodes of the element
and its connected nodes for relocation of nodes at desired place via centroid approach
[3].

Knupp [4] has described the mesh quality metrics in the algebraic form which
can be used as the objective functions for optimization-based smoothing. Element
quality is a function of invertibility, size, and shape. Invertibility gives the measure of
the positive local volume of given mesh. The quality of a mesh is defined in terms of
these mesh metrics [4]. Knupp [5] proved that mesh element shape can be defined by
using condition number parameter and can be improved by aspect ratio improvement
and element skew reduction [5]. The mesh metrics generally used are inverse mean-
ratio metric [6], aspect ratio metric [7], condition number [8], and distortion metric
[9] etc.

In the present work, we discuss the application of cohort intelligence (CI) algo-
rithm for developing a new efficient mesh smoothing technique. Objective function
for individual qualities of hexahedral elements in the mesh based on the condition
number is used as a quality measure. CI is based on natural tendency of the individu-
als or candidates, to improve its behaviour by observing and implementing behaviour
of peers in the group known as cohort. This helps in the growth of overall cohort
behaviour as every candidate absorbs certain qualities from one another [10].

2 Literature Review

Finite element analysis is a very powerful tool and a necessity of mechanical engi-
neering applications like structural analyses and fluid dynamics but its usefulness
is controlled by mesh quality. Meshing is a critical step in FEA and is generally
carried out in two stages—point placement and mesh improvement. It is an iterative
process. Kovalev [11] has shown that auto-generation of good-quality quadrilat-
eral/hexahedral meshes is difficult [11]. Various methods have been developed for
improvement of triangular, quadrilateral, tetrahedral, or hexahedral meshes. Laplace
smoothing is suitable only for 2Dmeshes but does not guarantee good element quality
3D meshes. It produces slivered tetrahedron for 3D elements [12].

Mesh smoothing algorithms also apply optimization techniques for movement
of nodes [13]. Knupp [4] explained how the quality of mesh is an important aspect
in mesh smoothing algorithms and can be improved by numerical optimization of
the mesh metric [4]. The optimization methods are better than Laplacian smooth-
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ing methods as they remove inverted elements on mesh improvement but are more
expensive and time-consuming than Laplacian smoothing [14]. Hence, combinations
of both result in effective tools for mesh improvement [8].

Both classical and heuristic techniques have been used in the literature for
optimization-based smoothing. Freitag and Ollivier [15] proposed a technique which
usedminimumanglemetric and iterative steepest descent for optimization [15].Other
classical optimization algorithms used are Newton’s method, Hessian method [7],
steepest gradient method [16], and linear programming [17]. Holder et al. (1998)
have employed genetic algorithm for mesh optimization using distortion mesh cri-
teria [18]. Acikgoz et al. [19] used simulated annealing technique for optimization
[19]. Dittmer et al. [20] used optimization to control mesh creation parameters. [20].
Sastry and Shontz [7, 17] discussed the performance of nonlinear optimization meth-
ods for mesh quality improvement and showed that optimization solver behaviour
can be improved by varying mesh size and accuracy level [7, 17].

Knupp [5] discussed condition number as a shape quality measure for hexahedral
elements designed using a set of Jacobian matrices related to the particular element
[5]. Yilmaz and Kuzuoglu [8] used particle swarm optimization technique for hexa-
hedral mesh smoothing using condition number. The shape quality of all hexahedral
elements is taken into account to design objective function which is modified in order
to get the minimum value of objective function as zero [8].

The proposedwork aims to apply condition number optimization for solvingmesh
smoothing using CI algorithm. The CI algorithm was proposed by Kulkarni et al.
[10] and is inspired from the self-supervised learning behaviour of the candidates in
a cohort [10]. All of them have the same target, and to achieve it, every candidate
tries to study the behaviour of peers and improve by following a certain candidate’s
behaviour. Several parameters like sampling interval and reduction factor govern CI.
The algorithm has been successfully applied in the areas of healthcare and logistics
[21], knapsack problem [22], and mechanical design problems [23], and the present
work investigates the application of CI for mesh smoothing. Throughout the journey,
it will help to explore and validate various characteristics of CI [24].

3 Mesh Smoothing Algorithm Using Cohort Intelligence
(CI)

Consider an objective function for hexahedral mesh smoothing (in the minimization
sense) as described in Eq. 3.1. Here, k denotes the condition number of individual
element and Tn,i is the transformation matrix defined for the ith node of the nth hex-
ahedral element. N denotes total number of elements in the problem. The attributes
of the candidates are considered as the three coordinates of the eight vertices of the
cube, i.e. x, y, z � (x1, y1, z1, . . . , xk, yk, zk, . . . , x8, y8, z8). Similarly f (xc yc, zc)
denotes the behaviour of individual candidate c(c � 1 toC).
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Minimize F � f (x, y, z) � 1

8N

∑
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∑

i

(
k
(
Tn,i

)
/3

)2 − 1 (3.1)

3.1 Procedure

The geometry of cube is generated using ANSYS and chosen for the preliminary
analysis of the new algorithm proposed in this paper. The cube is discretized into 27
elements, 64 elements, and 729 elements, respectively. 27 elements and 64 elements
have been chosen to investigate the applicability of the algorithmwhile 729 elements
have been chosen for the comparison with previously published results. Creation of
geometry file and auto-generated mesh using ANSYS APDL is the preliminary step.
The analysis steps are as follows:

Step 1: (Conversion of data from ANSYS into a text file): Nodal connection data
is obtained using nlist command and element data is obtained using elist command
from hexahedral mesh.
Step 2: Extract node and element data: The data in this file is in complex form
consisting of spaces, and alphanumeric characters. It contains data about element
connectivity, real constants, and material assignment. Geometric coordinates of the
nodes and elements need to be extracted from this huge piece of information. This
data is initially stored in an excel filewhich is then extracted using textscan command.
Then, the mesh data is read line by line for the removal of entries like NaN and zero
values from the file. Then, the element connectivity in all directions (i.e. x, y, z) is
used to define solution space.
Step 3: Develop the boundary of the object in MATLAB by edge and surface
identification: The boundary of the object is required to be defined. So from the set
of nodes extracted, the nodes lying on the surfaces, edges, and corners are identified.
The equations of the planes for the surfaces of the cubes are developed using the
three-point form of the equation of the plane. Redundant planes are excluded using
the perpendicularity condition. Edges of the cube are identified as the intersection of
the planes. This helps us to define external boundary of object.
Step 4: Identify themeshmetric for optimizationwhich is the condition number:
Let (xi , yi , zi ) be the vertices of the adjacent corners of a vertex (x, y, z), then its
condition number (Eq. 3.2) is given by

k(T ) � cond

⎡

⎢⎣
x1 − x x2 − x x3 − x
y1 − y y2 − y y3 − y

z1 − z z2 − z z3 − z

⎤

⎥⎦ (3.2)

Condition number is calculated for each corner. The maximum value represents
the condition number of the element which needs to be minimized. Store the mini-
mum condition number candidate as global best.
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Step 5: Check for bad-quality element: The element is said to have good quality
if condition number lies between 1 and 3 [5]. The candidates C (number of bad
elements in auto-generated mesh data) are initialized. The bounds of the variables
are given by Eq. 3.3

xi (solution space)lower < xi < xi (solution space)upper

yi (solution space)lower < yi < yi (solution space)upper

zi (solution space)lower < zi < zi (solution space)upper

(3.3)

Step 6: The behaviour selection probability pc is calculated using Eq. 3.4. The
behaviour of every associated candidate c(c � 1, . . . ,C) to be followed is given by
f ∗(xc yc, zc), thus

pc � 1/ f ∗(xc, yc, zc)∑
c 1/ f

∗(xc, yc, zc)
, (c � 1 . . .C) (3.4)

The roulette wheel approach is used by every candidate c(c � 1 toC)

to generate random number to follow corresponding behaviour
f (xc[ f ], yc[ f ], zc[ f ]) and associated qualities xc[ f ], yc[ f ], zc[ f ] �(
xc[ f ], yc[ f ], zc[ f ] � xc[ f ]1 , yc[ f ]1 , zc[ f ]1 , xc[ f ]2 , yc[ f ]2 , zc[ f ]2 . . . xc[ f ]8 , yc[ f ]8 , zc[ f ]8

)

Step 7: Every candidate shrinks or expands attributes depending on element edge
length of candidate to be followed. The relations in Eq. 3.5 are obtained using condi-
tion number criteria. Specific nodes are not permitted to move to preserve the shape
of volume mesh. Corner nodes are fixed. Surface nodes are allowed to move along
surface only. Edge nodes are allowed to move along edges only.

xi � xc[ f ]1 − xi(edge)c[ f ] + xi−1(edge)c[ f ]

yi � yc[ f ]1 − yi(edge)c[ f ] + yi−1(edge)c[ f ]

zi � zc[ f ]1 − zi(edge)c[ f ] + zi−1(edge)c[ f ]

(3.5)

Step 8: Decide cohort behaviour to be followed by candidates and improve the quality
of mesh using CI. Each candidate c(c � 1, . . . ,C) tries to enrich its behaviour by
following the other candidates having better behaviour associated with modified
attributes xc[f ], yc[f ], zc[f ]. Thismakes the cohort availablewithC updated behaviours
represented as FC � (

f
(
x1, y1, z1

)
, . . . , f (xc, yc, zc)

)
.After few learning attempts,

all candidates follow global best behaviour from available behaviours which are
helpful for internal mesh smoothing of hexahedral elements.
Step 9: Recheck mesh quality: The results using surface mesh plots before and
after mesh improvement are compared. The objective function for global mesh qual-
ity improvement is evaluated. The cohort behaviour could be considered to be sat-
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urated if there is no significant improvement in f ∗(xc yc, zc) of every candidate
c(c � 1, . . . ,C) in the cohort, and the difference between individual behaviours is
not very significant for a large number of iterative learning attempts, then the con-
vergence is achieved.
Step 10: Import the improved mesh to ANSYS. The complete flow is summarized
in flowchart 1.

4 Results and Discussions

The problem was coded in MATLAB R2016a on Windows Platform with Intel Core
processor with 4GBRAMand plot mesh function developed by [25].Mesh improve-
ment can be validated by checking the condition number improvement within range
1–3 for number of nodes of modified mesh data.

4.1 Stage-Wise Improvements

Mesh Improvement in stage I: In the proposed work, stage 1 is 3D mesh improve-
ment using roulette wheel approach for deciding following behaviour of candidates
in the cohort. Table 1 shows the condition number analysis for the Mesh with 27
elements. Several nodes do not lie within the range of 1–3 after improvement, so
current scheme needs more refinement in further stages.

Mesh Improvement in stage II: Stage 2 is 3D or overall mesh improvement
using global best behaviour to be followed by all candidates in the cohort. As shown
in Table 2, the maximum number of nodes lies within 1–3 after mesh improvement.
It proves that current optimization-based smoothing; that is, cohort algorithm gives
promising results. The positive values show that elements are not inverted.

Table 1 Comparison based on condition number count

Condition number
range (k)

Original number of
nodes

Condition number optimization

Stage 1 Stage 2

1–1.5 35 79 216

1.5–2 82 93 0

2–3 56 42 0

3–4 16 2 0

4–5 11 0 0

5–8 12 0 0

8 and above 4 0 0
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Start

Model 3D object in the ANSYS APDL and mesh it

Export and read auto generated mesh data 

Initialize candidates in the cohort for mesh smoothing 

Probability calculation and selection of candidate to follow using roulette wheel

Evaluate condition number of every element. Store the 
minimum condition number candidate as global best

Every candidate shrinks attributes depending on candidate to be followed. 

If n < 4, Select the best behavior to follow from available choic-
es for each candidate Else select global best behavior to follow

Update the candidate position Apply boundary constraints

Calculate Objective function and check for convergence

Global mesh smoothing is done

Export the mesh back to ANSYS

  Stop

All Cohorts saturated/converged?

Fig. 1 Flow chart for condition number optimization using CI
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Table 2 Condition number reduction

Mesh data Results Condition number

27 elements, 64 nodes Before 510.1303

After 1.0117

64 elements, 125 nodes Before 26.0429

After 1.2136

729 elements, 1000 nodes Before 12.1118

After 1.7188

4.2 Graphical and Statistical Analysis

As shown in surface mesh plot followed by convergence plot in Figs. 2 and 3, the
irregular mesh having 27 and 64 elements is smoothened using CI in two stages.

The graphical plot gives an idea about condition number optimization. Y axis
gives a measure of objective function value and X axis refers to the learning attempts
needed. Results are plotted for a various number of element data and all shows
fine refinement after several learning attempts. The plots are also obtained for 729
elements. As results stated above shows about 95% improvement in the noisy version
of mesh, we can say that CI can be used for hexahedral mesh smoothing.

The mean solution, worst solution, best solution, and standard deviation (Std.
Dev.), mean run time (in seconds) over the 30 runs of the algorithm for three cases
of mesh improvement problems are represented in Tables 2 and 3, respectively.
Condition number is a node-based quality measure for hexahedral elements while
the objective function shows the overall mesh improvement. If the value of condition
number lies between 1 and 8, it is considered as acceptable range for meshing, but
value between 1 and 3 is the good-quality measure for the same. Since the value of
the highest condition number is close to 1 and standard deviation (σ ) of the objective
function is closer to 0, we can say that CI can be applied for mesh smoothing if
objective function and condition number are taken into account.

5 Conclusions and Future Directions

A method for mesh improvement based on condition number optimization by using
CI is validated in this work. Hexahedral meshes of 3D for a cubical model of various
element sizes can be smoothed with this technique. This work needs to be updated to
handle complex geometries such as prismatic elements with hexahedral mesh, mesh-
ing of geometry with stress concentration regions, and enhancement in convergence
time by means of adjustments in the candidate behaviour.
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Fig. 2 Surface mesh plot and convergence plot: 27 elements, 64 nodes



478 M. S. Sapre et al.

Fig. 3 Surface mesh plot and convergence plot: 64 elements, 125 nodes
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Table 3 Condition number-based robustness check

Mesh data Results Condition number σ

27 elements, 64 nodes Worst 1.0117 0.001429098

Best 1.0014

Mean 1.0065

64 elements, 125
nodes

Worst 1.2136 0.006551462

Best 1.0045

Mean 1.1041

729 elements, 1000
nodes

Worst 1.7188 0.00012563

Best 1.0216

Mean 1.3702
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