
Sentence Similarity Estimation for Text
Summarization Using Deep Learning

Sheikh Abujar, Mahmudul Hasan and Syed Akhter Hossain

Abstract One of the key challenges of natural language processing (NLP) is to
identify the meaning of any text. Text summarization is one of the most challenging
applications in the field of NLP where appropriate analysis is needed of given input
text. Identifying the degree of relationship among input sentences will help to reduce
the inclusion of insignificant sentences in summarized text. Result of summarized
text always may not identify by optimal functions, rather a better summarized result
could be found by measuring sentence similarities. The current sentence similarity
measuring methods only find out the similarity between words and sentences. These
methods state only syntactic information of every sentence. There are two major
problems to identify similarities between sentences. These problems were never
addressed by previous strategies provided the ultimate meaning of the sentence and
added the word order, approximately. In this paper, the main objective was tried to
measure sentence similarities, which will help to summarize text of any language,
but we considered English and Bengali here. Our proposedmethods were extensively
tested by using several English and Bengali texts, collected from several online news
portals, blogs, etc. In all cases, the proposed sentence similarity measures mentioned
here was proven effective and satisfactory.

Keywords Sentence similarity · Lexical analysis · Semantic analysis
Text summarization · Bengali summarization · Deep learning

S. Abujar (B) · S. A. Hossain
Department of Computer Science and Engineering, Daffodil International University,
Dhanomondi, Dhaka 1205, Bangladesh
e-mail: sheikh.cse@diu.edu.bd

S. A. Hossain
e-mail: aktarhossain@daffodilvarsity.edu.bd

M. Hasan
Department of Computer Science and Engineering,
Comilla University, Comilla 3506, Bangladesh
e-mail: mhasanraju@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
A. J. Kulkarni et al. (eds.), Proceedings of the 2nd International Conference on Data
Engineering and Communication Technology, Advances in Intelligent Systems
and Computing 828, https://doi.org/10.1007/978-981-13-1610-4_16

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1610-4_16&domain=pdf
mailto:sheikh.cse@diu.edu.bd
mailto:aktarhossain@daffodilvarsity.edu.bd
mailto:mhasanraju@gmail.com
https://doi.org/10.1007/978-981-13-1610-4_16

156 S. Abujar et al.

1 Introduction

Text summarization is a tool that attempts to provide a gist or summary of any given
text automatically. It helps to understand any large document in a very short time,
by getting the main idea and/or information of entire text from a summarized text.
To produce the proper summarization, there are several steps to follow, i.e., lexical
analysis, semantic analysis, and syntactic analysis. Possible methods and research
findings regarding sentence similarity are stated in this paper. Bengali language has
very different sentence structure and analyzing those Bengali alphabets may found
difficult in various programming platforms. The best way of starting for preprocess-
ing both Bengali and English sentences, initially need to convert into Unicode [2].
Sentence could be identified in a standard form, and it will help to identify sentence
or words structure as needed. The degree of measuring sentence similarity is being
measured by method of identifying sentence similarity as well as large and short
text similarity. Sentence similarity measures should state information like: If two or
more sentences are either fully matched in lexical form or in semantic form, sentence
could be matched partially or we could found any leading sentence. Identifying cen-
troid sentence is one of the major tasks to accomplish [1]. Few sentences can contain
some major or important words which may not be identified by words frequency.
So, only depending on word frequency may not always provide the expected output,
though several times most frequent words may relate to the topic models. Mean-
ingfully same but structurally different sentences have to avoid while preparing a
better text summarizer [3]. But related or supporting sentences may add a value to
the leading sentences [4]. Finally, most leading sentence and relationship between
sentences could be determined.

In this paper, we have discussed several important factors regarding assessing
sentence and text similarity. Major findings are mentioned in details, and more
importantly potential deep learning methods and models were stated here. Several
experimental results were stated and explained with necessary measures.

2 Literature Review

The basic feature of text summarization would be either abstractive or extractive
approach. Extractive method applies several manipulation rules over word, sen-
tence, or paragraph. Based onweighted values or othermeasures, extractive approach
chooses appropriate sentence. Abstractive summarization requires several weights
like sentence fusion, constriction, and basic reformulation [5].

Oliva et al. [6] introduced a model SyMSS, which measure sentence similarity
by assessing, how two different sentences systaltic structure influence each other.
Syntactic dependence tree help to identify the rooted sentence as well as the similar
sentence. These methods state that every word in a sentence has some syntactic con-
nections and this will create a meaning of every sentence. The combination of LSA

Sentence Similarity Estimation for Text Summarization … 157

[7] and WordNet [9] to access the sentence similarity in between every word was
proposed in Han et al. [8]. They have proposed two different methods tomeasure sen-
tence similarity. First one makes a group of words—known as the align-and-penalize
approach, and the second one is known as SVM approach, where the method applies
different similarity measures using n-gram and by using support vector regression
(SVR), and they use LIBSVM [10] as another similarity measure.

A threshold-based model always returns the similarity value between 0 and 1.
Mihalcea et al. [11] represent all sentences as a list of bag of words vector, and they
consider first sentence as a main sentence. To identify word-to-word similarity mea-
sure, they have used highest semantic similarity measures in between main sentence
and next sentence. The process will continue repeated times until the second main
sentence could be found, during this process period. Das and Smith introduced a
probabilistic model which states syntax and semantic-based analysis. Heilman and
Smith [12, 13] introduce as new method of editing tree, which will contain syntac-
tic relations between input sentences. It will identify paraphrases also. To identify
sentence-based dissimilarity, a supervised two-phase framework has been repre-
sented using semantic triples [14]. Support vector machine (SVM) can combine
distributional, shallow textual, and knowledge-based models using support vector
regression model.

3 Proposed Method

This section represents a new proposed sentence similarity measuring model for
English and Bengali language. The assessing methods, sentence representation, and
degree of sentence similarity have been explained in detail. The necessary steps
required especially for Bangla language have been considered while developing the
proposed model. This model will work for measuring English and Bengali sentence
similarity. The sentence structure and lexical form are very different for Bangla
language. The semantic and syntactic measures also can add more values in this
regard. The concept of working with all those necessary steps will help to produce
better output, in every aspect. In this research, lexical methods have been applied
and untimely a perfect expected result has been found.

3.1 Lexical Layer Analysis

The lexical layer has few major functions to perform, such as lexical representation
and lexical similarity. Both of these layers have several other states to perform. Fig. 1
is the proposed model for lexical layer.

Figure 1 introduces the sentence similaritymeasures for lexical analysis. Different
sentences will be added into a token. A word-to-word and sentence-to-sentence ana-
lyzer will perform together. An order vector will add all those words and/or sentences

158 S. Abujar et al.

Sentence 1

Sentence2

Sentence-Sentence Similarity

Order Vector

WordNet
Database

Order Similarity

Sentence
SimilarityWord-word Similarity

Token

Fig. 1 Lexical layer analysis model introduces different layers of proposed methods

order in a sequence basedon similaritymeasures.With the reference ofweighted sum,
the order of words and sentence will be privileged. A WordNet database will send
lexical resources to word-to-word and sentence-to-sentence processes. Ultimately
based on the order preference, the values from three different states (word–word
similarity, sentence–sentence similarity, and order similarity) will generate the simi-
lar sentence output. The methods were followed by one of the popular deep learning
algorithm—text rank.

(a) Lexical Analysis: This state splits sentence and words into different tokens for
further processing.

(b) Stop Words Removal: Several values hold representative information such as
article, pronoun. These types of words could be removed while considering text
analysis.

(c) Lemmatization: This is a step to convert and/or translates each and every token
into a basic form, and exactly from where it belongs to the very same verb form
in the initial form.

(d) Stemming: Stemming is the state of word analysis.Word–word and sentence-to-
sentence bothmethods need all their contents (text/word) in a unique form. Here
every word will be treated as a rooted word such as play, player—both words are
different as word though in deep meaning those words could be considered as
branch words of the word “Play.” By using a stemmer, we could have found all
those texts in a unique form before further processing. The confusion of getting
different words in structure but same in inner meaning will reduce. So, it is a
very basic part of text preprocessing modules.

Figure 2 states how lexical steps had been processed with appropriate example.
All the necessary processes as lexical analysis, stop words removal, and stemming
had been done as per the mentioned process. Those sentences will be used for further
experiments in this paper.

Sentence Similarity Estimation for Text Summarization … 159

Input Sentence 1

The growing needs are

far outpacing resources

Lexical Analysis

the ;growing; needs; are;

far; outpacing; resources

Stop Words Removal

growing; needs; far;

outpacing; resources

Stemming

grow; need; far;

outpace; resource

Input Sentence 2

The growing needs are

beyond outpacing

resources

Lexical Analysis

the ;growing; needs; are;

beyond; outpacing;

resources

Stop Words Removal

growing; needs;

beyond; outpacing;

resources

Stemming

grow; need; beyond;

outpace; resource

Fig. 2 Lexical layer processing of input sentences. It was clearly shown how multiple process
handle single input data

3.2 Sentence Similarity

Pathmeasure helps to sense the relatedness ofwords from the hierarchies ofWordNet.
It calculates and replies to the path distance between two words. Path measure will
be used to identify similarity scores between two words. Path measure could be
calculated through Eq. (1).

Path_measure(token1, token2) � 1/Path_length(token1, token2) (1)

Path_measure will send two different tokens as token1 and token2. Both tokens are
assigned the value of a single sentence after splitting. Path_length will return the
distance of two different concepts from WordNet.

Levenshtein Distance (Lev.) algorithm has been used to identify the similarity
matrix in between ofwords. To identify the sentence similarity,measuringwords sim-
ilarly pay more importance. Lev. counts the minimum number of similarity required
for the operation of insertion, deletion, and modification of every character which
may require transforming from a sentence to another sentence. Here it was used to
identify distance and/or similarity measure between words. Longest common sub-
sequences (LCS) have also implemented though expected output was found using
Lev. Here LCS does not allow substitutions. The distance of sentences followed by
Lev. will be calculated based on Eq. (2).

LevSim � 1.0 − (Lev.Distance(W1,W2)/maxLength(W1,W2)) (2)

The degree of relationship helps to produce a better text summarizer by analyzing
text similarity. The degree of measurement could be word–word, word–sentence,
sentence–word, and sentence–sentence. In this research, we had discussed the sim-
ilarity between two different words. Such as there are a set of words (after splitting

160 S. Abujar et al.

Table 1 Similarity score between words using path measure and LevSim

Grow Need Far Outpace Resource

Grow 1.00 0.25 0.00 0.14 0.00

Need 0.25 1.00 0.11 0.17 0.14

Far 0.00 0.11 1.00 0.00 0.09

Outpace 0.14 0.17 0.00 1.00 0.00

Resource 0.00 0.14 0.09 0.00 1.00

every individual sentence): W �{W1, W2, W3, W4, …, Wn). Lev. distance calcu-
lates the distance between two words: W1 and W2, and max length will reply the
score of maximum character found in between W1 and W2. Only similarity will
be checked between two different words. The similarity between words could be
measured by Algorithm 1.

Algorithm 1 Similarity between Words
1: W1= Sentence1.Split(“ ”)
2: W2= Sentence2.Split(“ ”)
3: if Path_measure(W1,W2) < 0.1 then
4: W_similarity= LevSim(W1,W2)
5: else
6: W_similarity = Path_measure(W1,W2)
7: end if

In Algorithm 1, the value of path will be dependent of distance values and Lev
Similarity (LevSim) value could be found from Eq. 1. The words similarity score
less than 0.1 will be calculated through the LevSim method, else the score will be
accepted form the pathmeasure algorithm.W_similarity will receive similarity score
of between two words. The range of maximum and minimum score is in between
{0.00 −1.00}. Table 1 represents the similarity value of words from sentence 1.

Wuand Palmermeasure (WP) use theWordNet taxonomy to identify the global
depthmeasures (relatedness) of two similar or different concepts orwords bymeasur-
ing edge distance as well as will calculate the depth of longest common subsequences
(LCS) value of those two inputs. Based on Eq. (3), WP will return a relatedness
score if any relation and/or path exist in between on those two words, else if no path
exist—it will return a negative number. If the two inputs are similar, then the output
from synset will only be 1.

WP_Score � 2 ∗ Depth(LCS)
/
(depth(t1) + depth(t2)) (3)

In Eq. 3, t1 and t2 are token of sentence 1 and sentence 2. Table 2 states the WP
similarity values of given input (as mentioned in Fig. 2).

Lin measure (Lin.) will calculate the relativeness of words or concepts based on
information content. Only due to lack of information or data, output could become
zero. Ideally, the value of Lin would be zero when the synset value is the rooted node.

Sentence Similarity Estimation for Text Summarization … 161

Table 2 Similarity score between words using Wu and Palmer measure (WP)

Grow Need Far Outpace Resource

Grow 1.00 0.40 0.00 0.25 0.00

Need 0.40 1.00 0.43 0.29 0.57

Far 0.00 0.43 1.00 0.00 0.38

Outpace 0.25 0.29 0.00 1.00 0.00

Resource 0.00 0.57 0.38 0.00 1.00

Table 3 Similarity score between words using Lin measure (Lin.)

Grow Need Far Outpace Resource

Grow 1.00 0.40 0.00 0.25 0.00

Need 0.40 1.00 0.43 0.29 0.57

Far 0.00 0.43 1.00 0.00 0.38

Outpace 0.25 0.29 0.00 1.00 0.00

Resource 0.00 0.57 0.38 0.00 1.00

But if the frequency of the synset is zero, then the result will also be zero but the
reason will be considered as lack of information or data. Equation (4) will be used to
measure the Lin. value, and Table 3 will state the output values after implementing
the input sentences on Lin. measures.

Lin_Score � 2 ∗ IC(LCS)
/
(IC(t1) + IC(t2)) (4)

In Eq. 4, IC is the information content.
A new similarity measure algorithmwas experimented where all those mentioned

algorithmand/ormethodswill be used. Equation (5) states the new similaritymeasure
process.

total_Sim(t1, t2) � (Lev_Sim (t1, t2) +WP_Score(t1, t2) + Lin_Score(t1, t2))
/
3

(5)

In Eq. 5, a new total similarity values will be generated based on all mentioned
lexical and semantic analysis. Edge distance, global depth measure, and analysis of
information content are very much essential. In that purpose, this method has applied
and experimented out is shown in Table 4.

Algorithm 2 A proposed similarity algorithm

1: matrix=newmatrix(size(X)*size(Y))
2: total_sim=0
3: i=0
4: j=0
5: for i∈ A do

162 S. Abujar et al.

Table 4 New similarity score

Grow Need Far Outpace Resource

Grow 1.00 0.21 0.00 0.13 0.00

Need 0.21 1.00 0.18 0.15 0.34

Far 0.00 0.18 1.00 0.00 0.15

Outpace 0.13 0.15 0.00 1.00 0.00

Resource 0.00 0.34 0.15 0.00 1.00

6: for j ∈ B do
7: matrix(i, j)= similarity_token(t1,t2)
8: end for
9: end for
10: for has_line(matrix) and has_column(matrix) do
11: total_Sim=(Lev_Sim(matrix)+WP_Score(matrix)+Lin_Score(matrix))/3
12: end for
13: return total_Sim

The Algorithm 2 receives the token on two different X, Y as input text. Then
it will create a matrix representation of m * n dimensions. Variable total_sim (total
similarity) and i, j (which are the values for iteration purpose) will initially become 0.
Initially, matrix(i, j) will generate the token matrix, where values will be added. The
variable total_sim will record and update calculate the similarity of pair of sentences
based on token matrix—matrix(i, j).

4 Experimental Results and Discussion

Several English and Bengali texts were tested though the proposed lexical layer
to find out the sentence similarity measure. Texts are being collected from online
resource, for example, wwwo.prothom-alo.com, bdnews24.com, etc. Our python
Web crawler initially saved all those Web (html content) data into notepad file. We
have used Python—Natural Language Toolkit (NLTK: Version–3) andWS4J (a Java
API, especially developed for WordNet use). All the experimented results are stated
in this section.

Tables 1, 2, and 3 state that the experimented result of similarity measure by using
path measure and LevSim, Wu and Palmer measure (WP), and Lin measure (Lin.)
consecutively. All those methods are either applied in lexical analysis or seman-
tic analysis. In this research article, the proposed method of identifying sentence
similarity using a hybrid model is being stated in Table 4.

Thismethodwas also applied in Bengali language usingBengaliWordNet. Exper-
imented results are shown in Table 5.

Sentence Similarity Estimation for Text Summarization … 163

Table 5 New similarity score
(applied in Bengali sentence)

1 0.78 0.88 0.16

0.78 1 0.31 0.24

0.88 0.31 1 0.23

0.16 0.24 0.23 1

5 Conclusion and Further Work

This paper has presented sentence similarity measure using lexical and semantic
similarity. Degree of similarity was mentioned and implemented in the proposed
method. There are few resources available for Bengali language. More development
on Bengali language is just more than essential. Bengali WordNet is not stable as like
otherWordNet available for English language. This research found suitable output in
the unsupervised approach, though a huge dataset will be required to implement the
supervised learningmethods. There are other sentence similarity measures and could
be done by more semantic analysis and syntactic analysis. Both of these analyses if
could be done together including lexical similarities, a better result could be found.
More importantly, for a better text summarizer, we need to identify the leading
sentences. Centroid sentences could optimize the analysis of post-processing of text
summarization. Evaluating system developed summarizer before publishing as final
form is more important. Backtracking methods could possibly be a good solution in
his regards.

Acknowledgements We would like to thanks Department of Computer Science and Engineering
of two universities: Daffodil International University and Comilla University, Bangladesh, for facil-
itating such joint research. Special thanks to DIU-NLP andMachine Learning Research Laboratory
for providing research facilities.

References

1. Ferreira R et al (2013)Assessing sentence scoring techniques for extractive text summarization.
Expert Syst Appl 40:5755–5764 (Elsevier Ltd.)

2. Abujar S, Hasan M (2016) A comprehensive text analysis for Bengali TTS using unicode.
In: 5th IEEE international conference on informatics, electronics and vision (ICIEV), Dhaka,
Bangladesh, 13–14 May 2016

3. Abujar S,HasanM,ShahinMSI,HossainSA (2017)Aheuristic approach of text summarization
for Bengali documentation. In: 8th IEEE ICCCNT 2017, IIT Delhi, Delhi, India, 3–5 July 2017

4. Lee Ming Che (2011) A novel sentence similarity measure for semantic-based expert systems.
Expert Syst Appl 38(5):6392–6399

5. Mani I, Maybury MT (eds) (1999) Advances in automatic text summarization, vol 293. MIT
Press, Cambridge, MA

164 S. Abujar et al.

6. Oliva, J et al (2011) SyMSS: a syntax-based measure for short-text semantic similarity. Data
Knowl Eng 70(4):390–405

7. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent
semantic analysis. J Am Soc Inf Sci 41(6):391–407

8. Han L, Kashyap AL, Finin T, Mayfield J, Weese J (2013) UMBC EBIQUITY-CORE: semantic
textual similarity systems. Volume 1, Semantic textual similarity, Association for Computa-
tional Linguistics, Atlanta, Georgia, USA, June, pp 44–52

9. Miller GA (1995) Wordnet: a lexical database for English. Commun ACM 38:39–41
10. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell

Syst Technol 2(3):27, 1–27
11. Mihalcea R, Corley C, Strapparava C (2006) Corpus-based and knowledge-based measures

of text semantic similarity. National conference on artificial intelligence, vol 1. AAAI Press,
Boston, MA, pp 775–780

12. Heilman M, Smith NA (2010) Tree edits models for recognizing textual entailments, para-
phrases, and answers to questions. In: Annual conference of the North American chapter of the
association for computational linguistics. Association for Computational Linguistics, Strouds-
burg, PA, USA, pp 1011–1019

13. Heilman M, Smith NA (2010) Tree edit models for recognizing textual entailments, para-
phrases, and answers to questions. In: Human Language Technologies, Stroudsburg, PA, USA,
pp 1011–1019

14. Qiu L, KanM-Y, Chua T-S, (2006) Paraphrase recognition via dissimilarity significance classi-
fication, EMNLP. Association for Computational Linguistics, Stroudsburg, PA, USA, pp 18–26

	Sentence Similarity Estimation for Text Summarization Using Deep Learning
	1 Introduction
	2 Literature Review
	3 Proposed Method
	3.1 Lexical Layer Analysis
	3.2 Sentence Similarity

	4 Experimental Results and Discussion
	5 Conclusion and Further Work
	References

