
S-LSTM-GAN: Shared Recurrent Neural
Networks with Adversarial Training

Amit Adate and B. K. Tripathy

Abstract In this paper, we propose a new architecture Shared-LSTM Generative
Adversarial Network (S-LSTM-GAN) that works on recurrent neural networks
(RNNs) via an adversarial process and we apply it by training it on the handwrit-
ten digit database. We have successfully trained the network for the generator task
of handwritten digit generation and the discriminator task of its classification. We
demonstrate the potential of this architecture through conditional and quantifiable
evaluation of its generated samples.

Keywords Generative adversarial networks · Recurrent neural networks ·
Adversarial training · Handwritten digit generation · Deep learning

1 Introduction

Generative adversarial networks (GANs) are a relatively new category of neural
network architectures which were conceptualized with the aim of generating realistic
data [1]. Their method involves training two neural networks, architectures with
contrasting objectives, a generator, and a discriminator. The generator tries to produce
samples that look authentic, and the discriminator tries to differentiate between the
generated samples and real data. This methodology makes it possible to train deep
models without expensive normalizing constants, and this framework has proven to
produce highly realistic samples of data [2].

The GAN framework is the most popular architecture with successes in the line of
research on adversarial training in deep learning [3] where the two-player minimax

A. Adate (B) · B. K. Tripathy
VIT University, Vellore, India
e-mail: email2amitadate@gmail.com; adateamit.sanjay2014@vit.ac.in

B. K. Tripathy
e-mail: tripathybk@vit.ac.in

© Springer Nature Singapore Pte Ltd. 2019
A. J. Kulkarni et al. (eds.), Proceedings of the 2nd International Conference on Data
Engineering and Communication Technology, Advances in Intelligent Systems
and Computing 828, https://doi.org/10.1007/978-981-13-1610-4_11

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1610-4_11&domain=pdf
mailto:email2amitadate@gmail.com; adateamit.sanjay2014@vit.ac.in
mailto:tripathybk@vit.ac.in
https://doi.org/10.1007/978-981-13-1610-4_11


108 A. Adate and B. K. Tripathy

game is crafted carefully so that the convergence of the networks attains the optimal
criteria. The initial work onGANs focused on generating images [4], however, GANs
have a range of application domains like feature learning [5] and improved image
generation [2].

In this work, we propose a hybridmodel called as S-LSTM-GAN (Shared-LSTM-
GAN) and we investigate the viability of using adversarial training on it for the task
for handwritten digit generation. We would demonstrate the workings of two closely
related neural networks, both variants of the recurrent neural unit, long short-term
memory (LSTM) cells.

2 Background: LSTM

LSTM is a variant of the RNN and was introduced in [6]. The fundamental idea
behind LSTM cell was the use of memory cell for retaining data for longer time and
overcoming the limitations of recurrent neural networks. RNNs have problem with
recognizing long-term dependencies like recognizing sequences of words which are
quite apart from each other, and this problem is also referred to as the vanishing
gradient problem. More technically speaking, the values in the matrix and multiple
matrix multiplication are diminishing or becoming closer to zero and after a few time
steps they vanish completely [7].

At far away time steps gradient is zero, and these gradients are not contributing
to learning. In fact, vanishing gradient problem is not only limited to RNN. They are
also observed in case of deep feed-forward neural networks.

3 S-LSTM-GAN: Shared Recurrent Networks with
Adversarial Training

The proposed model consists of two different deep recurrent neural models with
adversarial training. The adversaries are made up of two different architectures, but
both sharing their weights. The generator (G) is trained to generate pixel values
that are similar to the real data, while the discriminator (D) is trained to identify
the generated data. The training can be modeled as a two-player minimax game for
which the equilibrium is reached when the generator can consistently generate digits
which the discriminator cannot identify from the real data. We define the following
loss functions for the discriminator and generator, respectively, LD and LG

LG = 1

m

m∑

i=1

log(1− D(G(z(i)))) (1)



S-LSTM-GAN: Shared Recurrent Neural Networks … 109

LD = 1

m

m∑

i=1

[− log(D(x (i)))− (log(D(G(z(i)))))
]

(2)

where (z(i)) is the sequence of input vectors and x (i) is a sequence from the training
data. k is the dimensionality of the input data.

The overall model is depicted in Fig. 1. In the figure, the pink portion of the model
is the generator and the brown portion is the discriminator. For reasons of clarity,
the image is split into quadrants here, but in our experiments the aim was to split
the image into pixels in an effort to create a generator that could create digits by
each pixel using the long-range memory of the LSTM cells. The architectures of the
generator and the discriminator are elaborated in Figs. 2 and 3, respectively.

The input data for each cell in G comes from a random vector, merged with the
output of the previous cell, similar to application in [8]. The dimensionality of the
input data set is defined as the number of sections we have sampled the dataset into,
we are essentially splitting the image into k sections and then feeding them to the
LSTM layers sequentially.

The discriminator consists of a series of LSTM cells all sharing the weights with
their adversaries, and they feed forward into a linear neural network which is twice
the size of the individual LSTM cells. Further, a softmax layer with a linear score
function was applied to perform the task of classification.

Fig. 1 S-LSTM-GAN: two recurrent neural sharing weights and training in parallel



110 A. Adate and B. K. Tripathy

Fig. 2 S-LSTM-GAN: the generator architecture

Fig. 3 S-LSTM-GAN: the discriminator architecture



S-LSTM-GAN: Shared Recurrent Neural Networks … 111

4 Experimental Setup

We evaluated the above-mentioned architecture on the MNIST dataset [4] for two
separate instances. Firstly with dividing it into four segments, refer Fig. 1 and sec-
ondly by dividing into 16 segments.

Model Layout Details: The number of layers in the LSTM network in the generator
is six, while in the discriminator is two. They have 600 and 400 internal (hidden)
units, respectively. Both architectures have unidirectional layout. In D, the cells feed
forward to a fully connected network, with weights that are shared across each time
step. The activation function used for each cell is sigmoid.

Dataset: We have imported the MNIST dataset, and its images contain gray levels
due to anti-aliasing technique used by the normalization algorithm. The images were
centered in an image by computing the center of mass of the pixels and translating
the image so as to position this point at the center of the 28× 28 field. We segment
that image as per our instance, and this sets the dimensionality k for our model. We
operate directly on the pixel values considering each image as a 28× 28 matrix.

Training: Backpropagation and mini-batch stochastic gradient descent were used.
For the initial instance of 4 segments, learning rate of 0.0001 for the second instance
of 16 segments, learning rate of 0.0002 was used. The GPU used was Quadro P6000,
and we trained the model for 107 epochs. For the generator, we recorded the loss as
it changed alongside the increment in epochs. And for the discriminator, the metric
we recorded was classification accuracy, best being one, against the rise in epochs.
Refer Fig. 4.

Fig. 4 S-LSTM-GAN:
classification versus epochs
during training with instance
of four segments



112 A. Adate and B. K. Tripathy

At four segments, we had to train for the initial for 5× 105 epochs to see the
generator able to generate image that were giving a steady loss, and then the spike in
loss started for the generator while the discriminator converges at loss = 0.25. We are
generating a sample at every 105 epoch. Hence, our sample at the third checkpoint
was having some distinguishable features compared to the rest.

At 16 segments, we got better results than the previous instance, and here the clas-
sification was comparatively cleaner, with just a few spikes. The generator showed
signs of heavy spikes in losses in early epochs, but later converged upon a value. It
is noted that the loss is higher than the previous instance, but it still yields a cleaner
classification. Due to the high variance, no singular checkpoint was distinguishable
but compared to its predecessor, and they were easily recognizable to the human eye.

5 Results

The results of our experimental study are presented in Figs. 8 and 9 for 4 time steps
and 16 time steps, respectively. We have chosen a very small learning rate to help the
model learn the pixel values withmore variability and larger intensity span. Allowing
multiple layers for the generator and allowing it to train for these many epochs help
to generate handwritten digits with a high degree of classification.

Figure 5 reveals that to attain convergence we can reduce the number of iterations
by 2×, for the task of building the classifier net only. Figure 7 displays the variance
of the same model over the initial iterations of turbulent variance in the accuracy

Fig. 5 S-LSTM-GAN:
classification versus epochs
during training with instance
of 16 segments



S-LSTM-GAN: Shared Recurrent Neural Networks … 113

Fig. 6 S-LSTM-GAN: loss
versus epochs during
training with instance of four
segments

Fig. 7 S-LSTM-GAN: loss
versus epochs during training
with instance of 16 segments

of its digit generation. We maintain generator accuracy by varying dropout and the
network depth of six layers.

Unlike the graph presented in Fig. 6, we have found that beyond the 16-segment
instance, the generator would collapse at early iterations. We believe this is because
the generator has to reduce the variance of the minimax objective over the iterations,
and it will not be able to continue to do the following as implied in Fig. 7. Hence,
if we were to segment the image ahead of 16 segments, the proposed model would
fail.



114 A. Adate and B. K. Tripathy

Fig. 8 S-LSTM-GAN: images generated during training with instance of four segments

Fig. 9 S-LSTM-GAN: images generated during training with instance of 16 segments



S-LSTM-GAN: Shared Recurrent Neural Networks … 115

We also found that beyond the 16-segment instance, the generator would collapse
at early iterations. We believe this is because the generator has to reduce the variance
of the minimax objective over the iterations, and it will not be able to continue to do
the following as implied in Fig. 7. Hence, if we were to segment the image ahead of
16 segments, the proposed model would fail.

To view our code and the images generated by S-LSTM-GAN: https://github.
com/amitadate/S-LSTM-GAN-MNIST.

6 Conclusion

In this paper, we have proposed a neural network model for the task of learning hand-
written digits trained using an application based on generative adversarial networks.
We believe that training could be accelerated greatly by developing better techniques
for synchronizing the generator and the discriminator or by forming better partition-
ing of the data sample before or during training.

In future work, we will look at more sophisticated mechanisms for applying
the similar approach toward the task of handwriting synthesis. For that amount of
features, introducing multiple generators would be ideally the next step, and the
discriminator would also be needed to be broadened as per the feature–label pairs.

References

1. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press. Book in preparation for
MIT Press

2. Ledig C, Theis L, Huszar F, Caballero J, Aitken AP, Tejani A, Totz J, Wang Z, Shi W (2016)
Photo-realistic single image super-resolution using a generative adversarial network. CoRR,
arXiv:1609.04802

3. Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F,MarchandM, Lempitsky
V (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2030–2096

4. LeCun Y, Cortes C (2010) MNIST handwritten digit database
5. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2013) Decaf: A deep

convolutional activation feature for generic visual recognition. CoRR, arXiv:1310.1531
6. Graves A, Schmidhuber J (2005) Framewise phoneme classification with bidirectional LSTM

and other neural network architectures. Neural Netw. 18:602–610
7. Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J (2015) LSTM: a search

space odyssey. CoRR, arXiv:1503.04069
8. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

https://github.com/amitadate/S-LSTM-GAN-MNIST
https://github.com/amitadate/S-LSTM-GAN-MNIST
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1310.1531
http://arxiv.org/abs/1503.04069

	S-LSTM-GAN: Shared Recurrent Neural Networks with Adversarial Training
	1 Introduction
	2 Background: LSTM
	3 S-LSTM-GAN: Shared Recurrent Networks with Adversarial Training
	4 Experimental Setup
	5 Results
	6 Conclusion
	References




