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1Cyanobacteria in Reducing Pollution 
Load from Wastewater and Laboratory 
Bioassay of Heavy Metals on Ecotoxicity 
Study: A Review

Aditya Kishore Dash, Mira Das, and Abanti Pradhan

Abstract
Cyanobacteria, also named as blue-green algae, are the only known prokaryotes 
capable of oxygenic photosynthesis. Treatments of both industrial and domestic 
wastewater through physico-chemical methods are invariably cost-intensive to 
be employed in industries especially in developing and underdeveloped coun-
tries. Therefore, in recent years, the importance of low-cost biological wastewa-
ter treatment by using the cyanobacteria compared to the conventional wastewater 
treatment plants has attracted the attention of the researchers. It has been reviewed 
that there is a reduction of about 70% calcium, 46% chloride, 100% nitrate, 88% 
nitrite, 100% ammonia, 92% total phosphorus, 12.5% magnesium, 85% BOD 
and 85% COD from different wastewater by application of different species of 
cyanobacteria. Further, the metals like Cu, Al, Cd, Zn, Hg, Cr, Ni, Pb, etc. play 
an important role in the growth and development of cyanobacteria under labora-
tory culture conditions. Toxicity on growth, effect on photosynthesis, damage of 
cell, algaecide effect, toxicity at sublethal concentration, ultrastructural changes, 
cell division and movement, changes in cellular components, etc. are some of the 
observations in cyanobacteria under laboratory bioassay for metal toxicity study. 
Besides these, cyanobacteria also show growth effect when grown in wastewater 
containing different types of pesticides, herbicides and other toxic chemicals.  
In the present review, an attempt has been made to review the role of different 
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species of cyanobacteria in reducing the pollution load from different wastewater 
and also the laboratory bioassay of heavy metals on ecotoxicity of aquatic 
cyanobacteria.

1.1  Introduction

Rapid industrialization and urbanization coupled with an increased awareness about 
the need for a clean and green environment have forced the environmentalists, indus-
trialists and governments to find out for efficient, lasting and cost-effective solutions 
to wastewater treatment and recycling. Treatments of both industrial and domestic 
wastewater through physico-chemical methods are invariably cost- intensive to be 
employed in industries particularly in developing and underdeveloped countries [1]. 
Therefore, in recent years, the importance of low-cost biological treatment of waste-
water by using the cyanobacteria, compared to the conventional wastewater treatment 
plants have attracted the attention of the researchers all over the globe. Microalgae 
have attracted the attention considerably due to their unique advantages of fast growth, 
high oil content, synergy with CO2 biofixation and bioremediation of wastewater [2].

The algal system is useful in treating the wastewater [1, 3–7] and also produces 
a number of useful byproducts from their biomass [8]. Due to the primary producer 
and widely occuring nature in almost all auqatic habitats, algae can be served as an 
indicator of habitat condition [9, 10]. Use of cyanobacteria in wastewater treatment 
could prove beneficial in many ways since they are useful in bringing about oxygen-
ation and mineralization in addition to being a food source for aquatic species [11]. 
Algal-bacterial symbiosis has been proved to be an inexpensive process for recla-
mation of wastewater [8, 12–15]. Toxicity on growth [16], effect on photosynthesis 
[17], damage of cell [18], algaecide effect [19], toxicity at sublethal concentration 
[20], ultrastructural changes [21], cell division and movement and changes in cel-
lular components [22] are some of the observations in cyanobacteria under labora-
tory bioassay for metal toxicity study. Cyanobacteria also play an important role in 
reducing pollution load from different wastewater [23–26]. Besides these, cyano-
bacteria also show growth effect when grown in wastewater containing different 
types of pesticides [27–29], herbicides [30, 31] and other toxic chemicals. In the 
present review, an attempt has been made to review the role of different species of 
cyanobacteria in reducing the pollution load from different wastewater and also the 
laboratory bioassay of heavy metals on ecotoxicity of aquatic cyanobacteria.

1.2  Cyanobacteria

Cyanobacteria, also named as blue-green algae, are considered as the only known 
prokaryotes which are helpful for oxygenic photosynthesis. A unique and common 
characteristic of all species of cyanobacteria is their dual nature of a prokaryotic cell 
structure and an O2 evolving photosynthesis which is typical for all green plants. 
They are Gram-negative bacteria which are oxygenic photosynthetic autotrophic 
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organisms, and they are considered as among the most successful and oldest forms 
of life in nature. Cyanobacteria are important primary producers globally which 
play a crucial role in the bio-geochemical cycles of oxygen, carbon and nitrogen. 
Cyanobacteria are also recognized for their high potential in a variety of biotechno-
logical applications all over the world.

About 3 billion years ago, oxygenic photosynthesis started, when ancient cyano-
bacteria evolved apparatus which are capable of capturing and utilizing visible solar 
radiation (300–700 nm). By using electrons that are extracted from H2O, the reduc-
tions of CO2 to energy-rich carbohydrates, with concomitant release of O2, had 
become possible [32–34]. Different species of cyanobacteria originates around 
20–30% of world primary productivity, which corresponds to the annual CO2 fixa-
tion of about 20–30Gt into biomass. This releases about 50–80 Gt of O2 by these 
oxygenic prokaryotes into the atmosphere [35]. Different cyanobacterial species are 
capable of fixing atmospheric N2 into a biologically accessible form. Thus they play 
a key role in the nitrogen cycle of biosphere [36]. Figure 1.1 shows the typical ultra- 
structure of a cyanobacterial cell.

1.3  Role of Cyanobacteria in Reducing Pollution Load 
from the Wastewater

The ability of cyanobacteria to reduce pollution load from different types of waste-
water has been studied by different scientists [2, 6, 26, 37–39]. They play an impor-
tant role in reducing either one or in combination of different nutrients from 
algal-based treatment systems [40–46].

Cyanobacteria can uptake and bioaccumulate a variety of environmental con-
taminants present in the water. The typical capacity of cyanobacteria to bring about 
changes to suit their requirement was well studied by different authors. Rath and 
Adhikary [47] found that the maximum growth and chlorophyll a content of A. fer-
tilissima were observed in pH range between 8–9 and that of A. variabilis at pH 7–8, 
while at acidic pH (5–6) and at above 9, growth was affected. Misra et al. [48] found 
that blue-green algae found from waste contaminated with mercury accumulate 
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Fig. 1.1 Typical ultra-structure of a cyanobacterial cell
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mercury in their cell. Uma and Subramanian [26] have studied the effective use of 
cyanobacteria (Halobacterium sp. US 101, Oscillatoria sp. BDU 10142 and 
Aphanocapsa sp. BDU 16) in ossein industry wastewater which has a very high 
concentration of total dissolved solids, calcium and chloride content. With a serial 
incubation of these organisms, given retention time of 4 days for each treatment 
under laboratory batch cultures, there was more than 50% reduction in calcium and 
nearly 50% reduction in chloride contents. In the field condition, the reduction of 
calcium was only 40% and chloride was 25%. Stevenson [49] studied the excretion 
of organic acids by cyanobacteria and their capacity to solubilize magnesium in the 
wastewater. Cyanobacteria as an agent to remove large amount of phosphorous 
from industrial wastewater has been carried out by several workers [50, 51]. Reports 
are also available on reduction of BOD, COD and high levels of nitrogenous com-
pounds by algal cultures in different wastewater [51–53].

Aquatic cyanobacteria have been implicated in the degradation of organic con-
taminants. Sengar et al. [54] found that on the 30th day of growth, complete removal 
of NO3-N occurred by mixed algal culture. Cyanobacteria are known to grow well 
in sewage [8, 53]; however their precise roles in treating sewage as well as the 
impact of sewage on these organisms are not known [25]. Domestic wastewater are 
mainly treated to limit pollution problem and to minimize other hazards which pos-
sibly results from the disposal of inadequate treated sewage, through the reduction 
of number of pathogenic microorganisms as well as the oxidation of organic materi-
als [55, 56]. Role of cyanobacteria to reduce large amount of phosphorus from efflu-
ent was demonstrated by Chan et al. [50]. Tam and Wong [51] also reports about the 
effective removal of high level of nitrogenous compounds by the algae from the 
wastewater. Manoharan and Subramanian [25] studied the role of cyanobacteria 
Oscillatoria pseudogeminata var. Unigranulat in reducing the pollution load from 
sewage water and found that the maximum reduction of BOD and COD was around 
80% and the initial DO increased considerably. The correlation between the initial 
DO increase and removal of BOD as well as COD observed in the study agree with 
the observations by Kankal et al. [57]. Manoharan and Subramanian [25] recorded 
a 100% removal of nitrate and ammonia and 50–100% removal of nitrate from sew-
age by Oscillatoria alone and in combination with natural population of microbes 
and a total or near total removal of all types of phosphates. Removal of 40 and 20% 
of calcium in unsterilized and sterilized sewage, respectively, and 76% magnesium 
in unsterilized sewage by Oscillatoria was also reported by Manoharan and 
Subramanian [24]. In another study, Dash and Mishra [1] have found out that there 
is a reduction of sodium (68%), potassium (50.04%), calcium (71.23%), chloride 
(23.27%), sulphate (74.16%), phosphate (90.03%) and COD (78.33%) from paper 
mill wastewater with basal nutrient medium by using the cyanobacterium, W. pro-
lifica. Xiaochen et  al. [2] have studied that, by using the microalgae C. vulgaris 
UTEX 2417, there is a reduction of COD (86–88%), phosphorus (63–69%) and 
nitrogen (43–46%), and the pH has increased from 6.3 to 8.5. Some of the other 
research works on interaction of different species of algae with wastewater have 
been reported [58–70]. Table  1.1 shows the percentage reduction of  nutrients/

A. K. Dash et al.
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Table 1.1 Percentage reduction of nutrients/pollutants from the wastewater treated with 
cyanobacteria

Parameter
Type of 
wastewater Organisms

% 
Reduction References

Sodium Paper mill 
effluent

W. prolifica 68 [1]

Potassium Paper mill 
effluent

W. prolifica 50.04 [1]

Calcium Ossein effluent Halobacterium Oscillatoria 
Aphanocapsa

22–53 [26]

Paper mill 
effluent

Oscillatoria 70.5 [24]

Paper mill 
effluent

W. prolifica 71.23 [1]

Chloride Ossein effluent Halobacterium Oscillatoria 
Aphanocapsa

30–46 [26]

Paper mill 
effluent

Oscillatoria 25 [24]

Paper mill 
effluent

W. prolifica 23.27 [1]

Nitrate Sewage Oscillatoria 50 [25]
Paper mill 
effluent

Oscillatoria 88 [24]

Ammonia Sewage Oscillatoria 100 [25]
Paper mill 
effluent

Oscillatoria 80 [24]

pH Ossein Oscillatoria Up to 8.09 [23]
Paper mill 
effluent

W. prolifica Up to 8.07 [1]

Centrate C. vulgaris 6.3–8.5 [2]
Nitrogen Centrate C. vulgaris 43–46 [2]
Total 
phosphorous

Ossein effluent Oscillatoria 92 [23]
Centrate C. vulgaris 63–69 [2]

Magnesium Sewage Oscillatoria 12.5 [23]
Sulphate Paper mill 

effluent
W. prolifica 74.16 [1]

Phosphate Paper mill 
effluent

W. prolifica [1]

BOD Sewage Oscillatoria 80–85 [23]
Ossein effluent Oscillatoria 80–85 [23]

COD Sewage Oscillatoria 80–85 [23]
Ossein effluent Oscillatoria 80–85 [23]
Paper mill 
effluent

W. prolifica 78.33 [1]

Centrate C. vulgaris 86–88 [2]

1 Cyanobacteria in Reducing Pollution Load from Wastewater and Laboratory…
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pollutants from the wastewater treated with different species of cyanobacteria. 
Photoplate 1.1(a–l) shows the picture of some of the cyanobacterial species whose 
pollution reduction potential has been reviewed (Fig. 1.2).

Sallal and Babaa [56] has reported that use of sewage effluent containing the 
heavy metals such as Fe, Zn, Pb, Cd, Ni, Co, Cr, etc. favoured the growth of algae 
and cyanobacteria. Reports are available about the toxicity and uptake of heavy 

Photoplate 1.1 (a–l) Picture of some cyanobacteria species used for pollution reduction study

A. K. Dash et al.
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metals like Fe,Zn and Cu by different species of cyanobacteria under laboratory 
study [71]. The capacity of algae to reduce the heavy metal pollution load in river 
water has been stated by Sengar et al. [54] where the authors have found that on the 
30th day of growth, complete removal of Fe, Zn and Cu was achieved by mixed 
algal culture. They found that Chlamydomonas confera removes Fe and Cu com-
pletely, while Phormidium conium removes Zn and Cu completely on the 30th day. 
Some of the other research work on metal toxicity using different species of algae 
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have been reported [72–80]. Table 1.2 shows the laboratory bioassay of different 
cyanobacteria species for different metal toxicity.

Algae can also be used for various other applications like biohydrogen produc-
tion [101], biofuel using a biorefinery approach [102, 103], lipid yield and lipid 
accumulation [104, 105], etc.

Table 1.2 Laboratory bioassay for metal toxicity

Metal Organisms Observations References
Cu Chlorella vulgaris Toxicity of growth [16]
Cu Chlorella pyrenoidosa Photosynthesis [17]
Cu Chlorella sp. Damage of cell [18]
Cu Blue-green algae Algicide effect [19]
A Chlorella pyrenoidosa Toxicity assay [81]
Cd Scenedesmus 

quadricauda
Growth [82]

Zn Chlorella vulgaris and 
Plectonema boryanum

Toxicity assay [83]

Mn Blue-green algae Toxicity assay [84]
Cu Oscillatoria theribauti Toxic effect [85]
Cd Euglena gracilis Growth [86]
Hg Anabaena inaequalis Photosynthesis [87]
Cd Euglena gracilis Cytotoxicity [88]
Cd & Cu Anabaena sp. Ultrastructural changes [21]
Cu, Zn Euglena exigua Resistance [89]
Heavy metals Plectonema boryanum Changes in cellular components [22]
Cd Nostoc calcicola Resistance [90]
Mn, Zn, Hg, 
Pb, Cu, Cd, 
Co, Ni

Plectonema boryanum 
and Anabaena flosaquae

Morphological analysis and 
nitrogen-fixing ability

[91]

Hg, Zn Spirulina platensis Toxicity assay [92]
Ni & Ag Nostoc muscorum Growth and other biochemical 

properties
[93, 94]

Heavy metals Blue-green algae Toxicity [95]
Heavy metals Anabaena flos-aquae Toxicity monitoring [96]
Heavy metals Anabaena doliolum Toxicity assay [97]
Cu, Ni, Fe Anabaena doliolum Physical and biochemical 

characteristic of a copper tolerant 
and wild strain

[98]

Pb Nostoc muscorum Metal induced inhibition of 
photosynthetic electron transport 
chain

[99]

Cd Nostoc linckia Toxicity to photosynthetic and 
associated electron transport system

[100]

A. K. Dash et al.
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1.4  Conclusion

Conventional chemomechanical method of wastewater treatment is so far one of the 
best methods but is cost prohibitive requiring a regular maintenance and adequate 
technical manpower. Therefore, there has been a growth in the development of low- 
cost biological treatment methods of wastewater which requires less capital invest-
ment and minimal operational attention. One of the trends is to search for new 
photosynthetic organisms in different environment with high biomass yield and 
growth rate and high utilization potential which could be mass cultured in wastewa-
ter and play a dual role of purifying the wastewater and serving as a source of feed 
and fertilizer. They are ideally suitable to perform these functions by virtue of their 
high flexibility to adapt to varied environments and of their known nutritional and 
fertilizer values. Therefore, different species of cyanobacteria can be mass cultured 
in different wastewater lagoon in combination with the microorganisms to help in 
the degradation of organic matter, reducing pollution load and also to meet the 
requirement of nitrogenous fertilizer and fish food with a less capital investment as 
compared to the conventional wastewater treatment plants.
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Abstract
The continuous growth of human population, industrialization and urbanization 
has led to the increased release of pollutants into the environment. The water 
pollutants are chemically toxic compounds causing harmful effect on human and 
animal health. Algae are effective in reducing the nutrients and toxic compound 
from contaminated water reservoirs, and the process is known as bioremediation. 
The microalgae can play a crucial role in producing the bioenergy if integrated 
with the remediation of wastewater while growing biomass for biofuel feedstock. 
This article lays emphasis on the dual role of a robust oleaginous marine micro-
alga Parachlorella kessleri-I, which is substantial in bioremediating the waste-
water and producing biofuel feedstock.

2.1  Introduction

There are two kinds of water present on earth depending upon the presence of salts, 
fresh and saline water. The freshwater that sustains human life is about 3% of total 
water present on earth, and only 0.5% is available for human consumption [1]. 
Hence, the stock of freshwater is limited on earth, and recycling is the only process 
to fulfil the demand. Despite the fact, most of the water resources have been pol-
luted due to unplanned urbanization and growing industrialization. The domestic, 
industrial and agricultural are major sectors that release untreated water into water 
bodies. The untreated water contains pollutants to varying degrees of organic and 
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inorganic compounds. There are several water treatment plants that have been estab-
lished; however, the number is not much and the process is based on usage of haz-
ardous chemicals. In the developing countries, the wastewater treatment plants treat 
about 28% wastewater, the remaining released in water bodies [2]. The untreated 
water causes diseases and creates water scarcity issues to humans. Under the pres-
sure of population growth, developing countries are facing water scarcity issues 
more than developed countries. About 50% of the Chinese and Indian population 
facing at least 1 month a year of water scarcity live [3]. Further, the discharge of 
untreated wastewater into seas and oceans is also responsible for deoxygenated 
dead zones, which are growing rapidly and affect marine ecosystem such as fisher-
ies, livelihoods and food chains [4]. The release of nutrients (e.g. nitrogen and phos-
phorus) and agrochemicals from intensive agriculture and animal waste can further 
accelerate the eutrophication of freshwater and also pollute the groundwater. In 
general, nitrogen and phosphorous are the major nutrient sources responsible for 
eutrophication that causes serious environmental issues such as formation of toxic 
algal blooms and declines in the biodiversity [5–8]. The nutrient enrichment through 
raw sewage into the lake or other stagnant water system may cause various negative 
effects in the water body such as luxuriant growth of aquatic weeds that imbalance 
the fauna and flora of aquatic biome. Persistent pesticides, chemical solvents and 
other substances slowly invade into the environment, bioaccumulating in animals 
and human food chain [9].

The bioremediation process to treat wastewater is considered to be economical 
and environment friendly [10]. There are many biological means for bioremediation 
of wastewater such as bacteria [11], fungi [12, 13], microalgae [14] and higher 
plants [15]. Microalgae are unique due to their ability of photosynthesis like plant 
and utilizing nutrient (nitrogen, phosphorous, organic and inorganic carbon sub-
strate) from wastewater while sequestering the CO2 for photosynthesis and generat-
ing biomass for biofuel feedstock. The present article emphasizes on the usage of 
marine microalga Parachlorella kessleri-I to remediate the wastewater and its appli-
cation in producing the biomass feedstock for biofuel using an integrated approach.

2.2  Coupling of Bioremediation of Wastewater and Biofuel 
Feedstock Production

The economy of technology is an essential requirement for its sustainability. An 
integrated system has been proposed that is capable of removing nutrients from 
wastewater while producing algal biomass as a biofuel feedstock. The terminology 
of remediation varies with the driver such as phytoremediation where ‘phyto’ stands 
for plant-based remediation. However, algae-based remediation is coined as ‘phy-
coremediation’ where ‘phyco’ stands for algae-based remediation [16]. Notably, 
microalgae are the primary producers in aquatic food chains and are also useful as 
key indicator in determining the quality of water and extent of pollutant toxicity to 
the aquatic ecosystem [17]. For decades, microalgae have been utilized as a value- 
added active biocompounds in pharmaceutical, nutraceuticals and animal feed. 
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Other benefit of using microalgae in wastewater remediation is disinfection capabil-
ity by increasing the pH of wastewater as a result of photosynthesis [18].

Oswald and co-worker have investigated the bioremediation of wastewater using 
microalgae, and the first algal ponding system was established for the municipal 
sewage treatment [19, 20]. This investigation was instrumental for the development 
of economical algae biomass production process for the biofuel applications. In the 
wastewater treatment process, the burden of cost can be imputed to secondary and 
tertiary treatment. The rationale behind this is the energy costs of oxygen and chem-
ical supply in secondary treatment (biological) and tertiary treatment, respectively. 
In the wastewater, microalgae and bacteria live in symbiotic relationship. In this 
association, bacterial population feast on organic wastes to decompose into simple 
nutrients (nitrogen and phosphorous including CO2) by using algae-generated oxy-
gen; however, microalgae used these nutrients and other growth-promoting factors 
(e.g. vitamins) for their growth (Fig. 2.1). Interestingly, Croft et al. [21] have shown 
that algae use vitamin B12 released from bacteria in a symbiotic relationship.

Recently, the microalgae have received a considerable attention due to their abil-
ity to remediate wastewater and simultaneous biofuel production (Fig.  2.2). The 
integration of biofuel production while treating the wastewater with supplementa-
tion of CO2 was suggested by Oswald group [22].

Using an integrated technology, only a few microalgae strains are explored for 
the wastewater treatment and subsequent biofuel production. The most common 
strains were Chlorella vulgaris [23], Chlorella pyrenoidosa [24], Chlamydomonas 
polypyrenoideum [25], Scenedesmus obliquus [26] and Botryococcus braunii [27]. 
Marine microalgal species is also tested for the treatment of wastewater despite 
their salinity requirements [28]. In our study, we have noticed that a marine green 
alga Parachlorella kessleri-I showed a high growth rate using the wastewater as 
compared to mixed combination of wastewater and freshwater [29] (Fig. 2.3). This 
is in agreement to Osundeko et al.’s [30] report, where P. kessleri has shown high 
tolerance to the wastewater environment.

Fig. 2.1 Algal-bacterial species symbiosis during the wastewater treatment
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2.3  Nutritional Mode of Microalgae and Factors Affecting 
the Growth in Wastewaters

Microalgae have ability to grow in a wide range of wastewaters such as municipal, 
industrial and agricultural types [31]. Depending upon the species and environment, 
microalgae can survive on three different nutritional modes that depend upon car-
bon assimilation for the synthesis of biomass, viz. autotrophic, heterotrophic and 
mixotrophic [32], as shown in Fig. 2.4.

Fig. 2.2 Schematic representation of an integrated microalgal culture system for the bioremedia-
tion of wastewater and production of biomass feedstock for biofuel applications

Fig. 2.3 Growth study of microalga Parachlorella kessleri-I in wastewater. (Source: [29])
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The heterotrophic and mixotrophic mode of nutrition showed slightly higher 
growth than autotrophic. The modes of nutrition vary species to species. Autotrophic 
mode of nutrition requires no carbon source as a substrate. Such algal species 
depend upon the photosynthetically fixed sugars, whereas heterotrophic mode of 
nutrition depends on the exogenously present carbon substrate, reported in case of 
C. protothecoides, Crypthecodinium cohnii and Schizochytrium limacinum. The 
mixotrophic mode of nutrition is a combination of both auto (photosynthesis) and 
heterotrophic (carbon substrate) nutrition, shown by Chlamydomonas reinhardtii 
and Chlorella vulgaris. Microalgae contain multiple metabolic pathways related to 
this mode of nutrition. Some microalgae have capability to change their mode of 
nutrition depending on the condition present at that time; however, other microalgae 
have capability to use both the pathways simultaneously [33].

The average stoichiometric formula of algae biomass is C106H181O45N16P in which 
carbon (C) has more than 50% contribution [34, 35]. During photosynthesis, algae 
assimilate inorganic carbon (CO2) from air and convert it to starch and oils. For 
experimental or industrial scale algal culture, aeration can be used to provide atmo-
spheric CO2 [36]. Besides this, algae can also consume organic carbon compounds 
(e.g. glucose, glycerol, acetate, etc.) during heterotrophic growth ([37, 38]: [39]). 
Nitrogen (N) is the second important macronutrient essential for algae growth. 
Nitrogen is present in ionic forms such as NH4

+, NO3
−, NO2

−, etc. Among these 
forms, algae assimilate ammonium (NH4

+) as a most preferable source of nitrogen 
as compared to others, i.e. NO3

− and NO2
− [40]. Phosphorus is another important 

macronutrient to algae and prefers uptake in form of inorganic orthophosphate 
(PO4

3−) for its growth.
Apart from nutritional requirement, the factors like light and temperature are 

also an essential requirement for the algal cultivation. Yan et al. [41] have demon-
strated that the performance of and growth of Chlorella vulgaris in synthetic waste-
water varied considerably under the effects of various LED light wavelengths and 

Fig. 2.4 Nutritional mode of microalgae
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intensities. Further, they have showed that the light intensity plays important role in 
the growth of microalgae only when it provided with optimum light intensity [41]. 
The temperature range (20–40 °C) was used to determine the maximum growth of 
microalga Chlorella sorokiniana and found that the optimum temperature was about 
38 °C for maximum growth. However, a drastic decrease in growth was reported at 
40 °C [42]. Thus, nutrient removal efficiency of the algae is not only affected by the 
availability of nutrients but also affected by physico-chemical factors such as pH, 
light intensity, photoperiod, temperature and biological factors [43]. Also, the bio-
logical factor may count particularly on open pond culture condition such as micro-
bial communities and predation [44].

2.4  Percentage of Nutrients Removal from Wastewater 
by Microalgae

Previous microalgae research mostly focused on removing nutrients from wastewa-
ter as a tertiary treatment. However, microalgae are also efficient in removing water 
contaminants as a secondary treatment process [45, 46]. Microalgal species can be 
explored further for removing nutrients in wastewater remediation due to their abil-
ity to use inorganic nitrogen and phosphorous for their growth [34, 35, 47, 48]. 
Further, biological processes are ecofriendly compared to the chemical and physical 
processes, which are costly and used chemicals leading to secondary pollution [49].

The treatment municipal wastewater by microalgae is carried efficiently which 
contain carbon, nitrogen, phosphorous, etc. However, only few algal species have 
been found useful for remediating the wastewater. Due to industrialization and 
urbanization, the wastewater characteristics are also changing. Therefore, discovery 
of new strains will be important for efficient treatment of wide range of wastewa-
ters. Moreover, due to extension of the process of cultivation of microalgae in 
wastewater towards mass cultivation, many new microalgae species were reported 
recently depending upon the wastewater type as shown in Table 2.1. In our study P. 
kessleri-I was observed efficient for removing ammoniacal nitrogen, total nitrogen 
and phosphorus by 89%, 81% and 98%, respectively, from municipal wastewater 
(Table 2.1). Notably, ammonia is the main constituent of domestic wastewater and 
exists in soluble form with equilibrium between ammonia (NH3) and ionized ammo-
nia (NH4

+) in water [55].

2.5  Mechanism of Nutrient Removal by Algae

Microalgae have many biochemical pathway involved in nutrient remediation pro-
cess of water (Fig. 2.5). Microalgae need nutrients for construction of cell structure 
and formation of basic molecules like protein, carbohydrate, lipid, nucleic acids, 
etc. As discussed earlier, carbon, nitrogen, phosphorous and sulphur are major con-
stituents of nutrients that are responsible for growth of algae [56].
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The nitrogen is the key macronutrient involved in the biosynthesis of all proteins, 
chlorophylls, ADP (adenosine diphosphate) and ATP (adenosine-5′-triphosphate) 
[57]. The basic mechanism involved in uptake of nitrogen is based on the availabil-
ity of inorganic and organic nitrogen. The inorganic nitrogens are available in the 
form of nitrite (NO2

−), nitrate (NO3
−) and ammonia salt as ammonium (NH4

+) in the 
wastewater. In uptake process, these ionic molecules cross the cell membrane in the 
preference of NH4

+  >  NO3
−  >  organic nitrogen [20, 58]. Notably, microalgae C. 

vulgaris and S. obliquus showed preferences for ammonium uptake as compared to 
other form of nitrogen present in wastewater [59]. The uptake of ammonium (NH4

+) 
takes place through the ammonium transporter which is found to be closely related 
to a group of protein transporter generally present in bacteria, yeasts and higher 
plants [60].

The translocation of inorganic nitrogen molecules (NO3
− and NO2

−) takes place 
across the plasma membrane by transporters. Inside cell, these molecules undergo 
reduction process followed by ammonium (NH4

+) formation as end product which 
finally incorporated into protein via protein anabolism (Fig. 2.5). In the nitrogen 
uptake process, firstly, nitrate (NO3

−) entered into cytosol, and with the help of 
nitrate reductase (a NADH-dependent) enzyme, it converted into nitrite (NO2

−). 
Thereafter, nitrite converted to ammonium by nitrite reductase (a NADPH-linked) 
enzyme [61, 62]. The ammonium is precursor for amino acid production inside the 
cell. However, the direct uptake of ammonium is also taking place due to the reduced 
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energy requirement necessary for reduction and assimilation [56]. Finally, all inor-
ganic forms of nitrogen are incorporated into biomolecule (organic form).

Phosphorus also plays a crucial role in algal cell growth and metabolisms. It is an 
essential structural and functional component in lipids, proteins and nucleic acids 
[63]. Phosphorus mainly exists in the forms of phosphate such as dihydric phos-
phate (H2PO4

−) and hydrophosphate (HPO4
2−) [64]. In the phosphorylation process, 

phosphorous is incorporated into organic compounds. Phosphorylation process 
needs energy that comes from the respiration and photosynthesis processes [56]. 
The excess phosphorous is stored in form of polyphosphate bodies inside an organ-
elle, the acidocalcisome, and can be used for growth in absence of phosphorous in 
medium [65].

2.6  Application of Microalgae Biomass

The history of production of microalgal biomass has been described in literature in 
the late 1800s and early 1900s. The first application of algae has been reported in 
China that appeared about 2500 years ago, where edible Nostoc (a cyanobacterial 
species) was used as food by the natives to survive [66, 67]. Another cyanobacterial 
species Spirulina and Chlorella species has been grown on large scale up as protein 
sources for human consumption. The focus now is shifting towards the use of 
microalgae cultivation for biofuel production. Due to limited stock of fossil fuel and 
unfavourable environmental consequences caused by burning of fossil fuels, algae- 
based biodiesel has gained the attention as an ecofriendly and sustainable biofuel. 
Comparing to petroleum diesel, biodiesel is renewable, and its combustion emits 
reduced amount of carbon monoxide (CO), particulate matter and unburnt hydro-
carbons [68]. It is estimated theoretically that about 100 tons of photosynthetically 
active microalgal biomass may fix 183 tons of CO2 from the environment, and, 
hence, only algae have accounted for about 50% of the world’s atmospheric CO2 
fixation [22, 69].

The process of biodiesel production from microalgae is not an economical pro-
cess due to high cost of algae cultivation and harvesting and producing biodiesel 
[70, 71]. Use of waste materials such as wastewater (water and nutrients) and CO2 
as flue gas from industry, for growth of microalgae, is considered to be feasible 
solution to the cost issue in microalgal biomass production. Table 2.2 showed few 
microalgae biomass yield grown in wastewater under batch culture.

In our study, we have grown P. kessleri-I in two different media for comparative 
analysis and found that increase in biomass and lipid yield by 50% and 115%, 
respectively, in wastewater as compared to control medium [29]. Further, the bio-
diesel obtained from P. kessleri-I grown in wastewater has the appropriate combina-
tion of saturated and monounsaturated fatty acids. Hence, the compatibility of 
biodiesel to international standard was also analysed and found that the properties 
such as density, viscosity, high heating value and saponification values were within 
the limit in wastewater-grown algal biodiesel (Table 2.3).
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2.7  Conclusions

The anthropogenic activities generate large quantities of aqueous waste containing 
nutrient and toxic heavy metals. Many initiatives have been taken for lowering 
nutrient concentrations derived from natural resources and anthropogenic activities 
in the water, and considerable efforts are under progress for developing an efficient 
and cost-effective technology treating the wastewater. The coupling of microalgae 
to remove nutrient from wastewater and generation of biofuel could be an important 
techno-economic strategy for reducing the cost of biofuel production. Although 
some progress has been made for the neutralization of pollutants from waters via 
algae, many challenges are remaining there to be addressed. This is a new emerging 
area of integrated technology, where the main focus is on the development of envi-
ronmentally friendly technologies with economic feasibility.
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Abstract

Arsenic is a gray-appearing metalloid which occurs naturally and is the 20th 
most prolific element in the earth’s crust. It is an integral part of more than 200 
minerals. These are mostly ores containing sulfides, along with copper, nickel, 
lead, and other metals. In the environment, arsenic and its compounds are very 
mobile. Although in its organic form arsenic is nontoxic, it is highly toxic in its 
inorganic form (arsenite, a free form of arsenic) with arsine gas being the most 
fatal. The World Health Organization recommends a concentration below 20 mg/l 
for an individual to be considered free of arsenic poisoning. Accumulation of 
arsenic in the body beyond this level could adversely affect human health. An 
individual suffering from chronic arsenic poisoning via contaminated water 
could suffer from severe skin-related ailments like melanosis (pigmentation of 
the skin), keratosis (associated with the formation of rough, dry, and popular skin 
lesions), and leucomelanosis (also known as spotted melanosis) ultimately lead-
ing to arsenicosis in the long term. Other than that arsenic poisoning also may 
lead to other manifestations like neurological disorders, diabetes mellitus, high 
blood pressure, obstetric problems, disorders of the respiratory system, and can-
cer in the lung, skin, and bladder. The Indian subcontinent is very rich in arsenic, 
and countries like India and Bangladesh are a disaster waiting to happen. West 
Bengal, India, is a state severely affected by arsenic-contaminated water, and a 
case study showed an astounding 16 sites from one single village with very high 
concentrations of arsenic. As such, it is the need of the hour for governments to 
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be ready with an immediate action plan to tackle such large-scale disasters. 
Existing solutions to this problem include phytoremediation via hyperaccumula-
tion with plants like Pteris vittata and grasses like A. delicatula and use of 
phosphate- based fertilizers. However, a long-term use of phosphate-based fertil-
izers may ultimately lead to an algal bloom in water bodies, and phytoremedia-
tion is a time-consuming process. Planktons, however, have the potential to be a 
game changer in tackling arsenic-contaminated water bodies by virtue of accu-
mulation and bioremediation. Spirulina platensis, a typical plankton, produces 
an enzyme called arsenite S-adenosylmethionine methyltransferase which has 
the ability to methylate arsenic making it nontoxic. This enzyme confers 
Spirulina platensis the unique ability to convert the toxic trivalent arsenic to its 
nontoxic pentavalent form. Spirulina platensis produces this enzyme by the vir-
tue of arsenite S-adenosylmethionine methyltransferase (SpArsM) gene.

Isolation and overexpression study of this gene in a heterologous host like E. 
coli followed by pilot-scale study ultimately leading to the industrial mass pro-
duction of this enzyme is an unexplored and untapped area which has a huge 
potential to tackle the menace of arsenic contamination in water bodies.

3.1  Introduction

Arsenic (As) is an infamously poisonous metalloid which is extensively scattered in 
marine, freshwater bodies, and the soil. It has different physiochemical properties 
and has four primary oxidation states of −3, 0, +3, and + 5 [1]. Arsenic is an active 
constituent of 245 different types of minerals and is regularly associated with other 
metals like copper, lead, gold, and ore sulfides [2]. The congregation of arsenic in 
marine water bodies is said to be about 1.5 μg/l [3]. Arsenic has a very negligible 
role to play in biological activities [4]. Depending upon various geological features 
and mobilization of arsenic under the combined effect of natural processes (like 
mineralization) and anthropogenic emissions [5], variations may occur in the con-
centration of arsenic. Although arsenic is found in the form of a minute element in 
earth’s crust with an average concentration of 5 μg/g, under the influence of natural 
processes, arsenic has the potential to become highly concentrated in some parts of 
the world [6]. Anthropogenic activities like drilling for oil, mining, fossil fuel com-
bustion, and smelting may also release arsenic into the environment [6]. According 
to a 1999 factsheet of the WHO, the contamination as a result of heavy metal like 
arsenic was mentioned to be the source of a potential disaster whose avoidance 
required immediate correction on an emergency basis [7]. More than 20 different 
nations like Chile, India, Bangladesh, China, and Argentina have suffered from high 
incidences of arsenicosis over the years [8–10]. Today arsenic has become such a 
menace because of its presence in the environment and its potentially severe effects 
upon human exposure that the United States Agency for Toxic Substances and 
Disease Registry has been forced to give arsenic the topmost priority as a toxic 
heavy metal ahead of polychlorinated biphenyls, mercury, and lead (http://www.
atsdr.cdc.gov/SPL/index.html). Microalgae comprise of both prokaryotic 
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(cyanobacteria) and eukaryotic (Chlorophyta, diatoms, etc.) organisms. Because of 
their unchanged morphology over the last 3.5 billion years, microalgae have devel-
oped the ability to survive under highly stressed and toxic environments [11]. 
Microalgae are present at the foot of the food chain and are distributed in various 
types of terrestrial and aquatic environments. They carry out a crucial task in the 
cycling of arsenic in the environment [12–15]. Microalgae have as a result devel-
oped various methods to resist and metabolize toxic arsenicals, because of which 
they have gained a considerable attention in bioremediation of arsenic-contami-
nated water bodies. In order to understand the feasibility of the extent to which 
accumulation and detoxification of arsenic by microalgae can take place, the under-
standing of speciation and metabolism of arsenic in these organisms gain primary 
importance [16]. In this chapter the distribution of arsenic globally, its potential 
sources, and its ill effects have been discussed in brief. The mechanism of arsenic 
toxicity and a few case studies of arsenic poisoning over the years have also been 
discussed. The mechanism of detoxification and biomethylation of arsenic by 
microorganisms has also been discussed. A simple hypothesis for treatment of 
patients suffering from an acute form of arsenicosis with the help of SpArsM pro-
tein and its detailed mechanism has also been given. A few notable works carried 
out on bioremediation of arsenic and the challenges ahead have also been discussed 
at the end of this chapter.

3.2  Global Distribution of Arsenic

Today a large number of surface water bodies have been established where the con-
centration of arsenic is above 50 μg/L. The regions which have notably high con-
centrations of arsenic lie in parts of Bangladesh, West Bengal (India), China, 
Taiwan, Vietnam, Nepal, Myanmar, Cambodia, Chile, Argentina, Mexico, and 
Hungary, and large swaths of the southwestern USA [17]. Smedley et al. [17] gave 
a beautiful account of the distribution of arsenic in various parts of the world 
depending on the type of environment prevalent.

3.2.1  Reducing Environment

A reducing environment is one in which there is the removal of oxygen and other 
oxidizing gases or vapors which prevents oxidation. These types of environments 
are usually filled with gases which are actively reducing in nature. Among the 
regions included under reducing environments, Bangladesh and West Bengal (India) 
represent the regions with extremely high occurring concentrations of arsenic. 
Arsenic in this region lies within a range of 0.5 to 3200 μg/l. Arsenic concentration 
more than 50 μg/l has also been mentioned in about 27% of the shallow wells of 
Bangladesh [18]. Some districts of southeast Bangladesh are among the worst hit 
areas where more than 90% of the wells are affected with high concentrations of 
arsenic [17]. More than 35 million people in Bangladesh [18] and up to six million 
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people in West Bengal, India [19], have come in direct contact with arsenic in drink-
ing water. Around 5000 individuals were identified who had arsenic-related health 
issues in West Bengal although the estimated number of patients suffering from 
arsenicosis were over 200,000 [20]. Arsenic-related problems in groundwater were 
first brought to the fore in Taiwan in the 1960s [21]. Tseng et al. [21] reported very 
high concentrations of arsenic in groundwater in southwestern part of Taiwan, 
whereas similar reports in the northeastern region of the island were made by Hsu 
et al. [22]. Arsenic concentration ranging between 10 and 1800 μg/l from south-
western Taiwan was reported by [23]. Kuo [23] also found that more than half of the 
analyzed samples had an arsenic concentration ranging between 400 and 700 μg/l. 
Arsenic found in northeast and southwest Taiwan was mostly trivalent (III) which 
supported the hypothesis that groundwater in these regions is reducing in nature 
[24]. Arsenic had been found from aquifers from Inner Mongolia as well as Xinjiang 
and Shanxi province, China, which were above the Chinese permissible limit of 
50 μg/l. The first instances of arsenic poisoning were reported in the Xinjiang prov-
ince in the early 1980s. Similarly arsenic concentration in groundwater bodies in Ba 
Men region and the Tumet Plain (including Huhhot Basin) in Inner Mongolia was 
reported to be above the 50 μg/l permissible threshold for arsenic in groundwater 
bodies allowed in China [25–27]. Luo et al. [25] reported arsenic-related diseases in 
this region with major health effects being keratosis, pigmentation in the skin and 
lung, and skin and bladder cancer. Concentrations of arsenic ranging from 1 to 
3050 μg/l in Hanoi, the capital city of Vietnam, were reported by Berg et al. [28]. 
Similarly, an arsenic concentration above 50 μg/l has also been reported in ground-
water from alluvial soil sediments found in southern part of the Great Hungarian 
Plain of Hungary and certain regions of neighboring Romania. The concentration of 
arsenic measuring 176 μg/l in aquifers of Romania was reported by Gurzau and 
Gurzau [29].

3.2.2  Arid Oxidizing Environments

An arid oxidizing environment is one which is associated with acute lack of avail-
ability of water, and as a result, these types of environments are usually associated 
with lack of vegetation (http://www.atsdr.cdc.gov/SPL/index.html). Del Razo et al. 
[30] reported arsenic concentration in the range of 8–624 μg/l (average 100 μg/l, 
n = 128) in groundwaters of the Lagunera region located in North Central Mexico 
which was associated with high pH and high oxidizing environment. It is believed 
that the number of people in the Lagunera region exposed to an arsenic concentra-
tion greater than 50 μg/l was about 400,000 [30]. In Antofagasta, Chile, the arsenic 
concentration in groundwater was reported to be around 500 μg/l [31]. Very high 
arsenic concentration ranging between 6 and 11,500 μg/l was reported in Cordoba, 
Argentina, by Nicolli et al. [32]. They also reported the high concentration of arse-
nic in groundwater of Tucuman Province (12–1600 μg/l) with a median concentra-
tion of 46 μg/l. Desorption of arsenic occurs under high pH in the presence of metal 
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oxides [17] although the presence of volcanic glass in water bodies is considered to 
be the root cause behind this high concentration of arsenic [32].

3.2.3  Mixed Oxidizing and Reducing Environments

Arsenic in the range 1 μg/l to 2600 μg/l was found in groundwaters from Tulare 
Basin of the San Joaquin Valley, California, USA [33]. Robertson [34] also reported 
the very high concentration of arsenic in alluvial aquifers in the Basin and Range 
Province of Arizona with the groundwater in that region being highly oxidizing in 
nature. High arsenic concentration is a feature of that basin which was supported by 
the continuous presence of dissolved oxygen in the aquifers at significant depths of 
600 meters despite the old age of groundwater (up to 10 Ka old).

3.3  Sources of Arsenic Contamination

The ubiquitous distribution of arsenic in the environment makes it a genuine threat. 
It is an interesting fact that although the distribution of arsenic varies greatly, it is 
considered to be the 20th most lavish element in the crust of the earth [35]. 
Anthropogenic arsenic (around 18,000 tonnes per year) was estimated to comprise 
about 70% of the arsenic released globally which was mostly in the form of flux 
[36]. The concentration of arsenic in seawater varies greatly between 0.006 and 0.03 
parts per million [37]. Arsenic may be present in groundwater in excess where it is 
associated with ore sulfides predominantly in the form of pyrite and arsenopyrite 
[38]. Smelting industries and burning of fossil fuels serve as the primary source of 
anthropogenic release of arsenic directly into the environment where arsenic pri-
marily exists in the form of particles of dust [3]. Andreae [39] reported arsenic 
concentration around 0.5 μg/l in rainfall under the potential effect of smelting and 
coal burning, although higher concentration (average 16 μg/l) has been reported in 
Seattle, USA, located 35 km downwind of a copper smelting unit [40]. Geothermal 
activities may also lead to the direct release of arsenic in water bodies. Arsenic con-
centration up to 370 μg/l in Madison River was reported by Nimick et al. [41] under 
the influence of geothermal release of arsenic from the Yellowstone geothermal sys-
tem. High concentrations of arsenic under geothermal influences have also been 
found in new hot springs from parts of Chile, France, New Zealand, Argentina, 
Japan, the USA, and Dominica [5] (Fig. 3.1). Similarly, high arsenic concentration 
ranging between 85 and 153 μg/l under geothermal influences in Hot Creek, a tribu-
tary of Owens River, California, was reported by Wilkie and Hering [42]. A notice-
able increase in the arsenic concentration of river waters may occur under the 
influence of industrial or sewage effluents. Arsenic concentration up to 30 μg/l was 
reported in waters from Zenne River, Belgium, as a result of arsenic release from 
industries and urban areas with sewage being the most prominent source [43]. 
Arsenic concentration as high as 200–300 μg/l was reported in surface waters of 
Moira River, Ontario, primarily under the effect of Sn and Au mining activities  
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[44, 45]. High concentrations of arsenic are found in a wide range of environments, 
which include oxidizing (high pH) and reducing aquifers and areas affected by min-
ing and geothermal activity. High concentration of a wide range of solutes like 
arsenic has been reported under extremely acidic conditions which tend to build up 
as a result of acid mine drainage [46]. An acidic seepage in Richmond Mine at Iron 
Mountain, California, resulted in the highest ever reported concentration of arsenic 
at 850,000 μg/l [47]. Arsenic may also be released into the environment from oil 
fields and brines. Although available data of such occurrences are very low, a few 
reports have also been made which suggest high concentrations of arsenic under 
such influences. A dissolved arsenic concentration of 230 μg/l was reported in a 
NaHCO3-rich groundwater at a depth of 1000 meters in an oil field pool from Ellis 
Pool, Alberta, Canada [48]. They also reported a NaCl-dominated brine from 
Tisakurt, Hungary, with arsenic concentration as high as 5800 μg/l. The presence of 
arsenic was also reported in tobacco (mean concentration of 0.15 μg/g) and ciga-
rettes (mean concentration of 0.11 μg/g) with reported arsenic concentration per 
pack of tobacco being 6 μg [49].

3.4  Ill Effects Pertaining to Arsenic Poisoning

Accumulation of arsenite and MA(III) in the body as a result of ingestion of arsenic 
through contaminated water may lead to their accumulation in vital organs of the 
body which may go on to cause atherosclerosis, hypertension, hepatotoxicity, isch-
emic heart diseases, diabetes, nephrotoxicity, and skin, bladder, and lung cancer on 
the long run. In this section, the mechanisms which are involved in the pathogenesis 
of arsenic-induced toxicity which ultimately leads to organ damage have been 
discussed.

Fig. 3.1 Figure depicting the distribution of arsenic globally under natural and anthropogenic 
influences [3]
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3.4.1  Arsenic-Mediated Cardiovascular Dysfunction

Exposure to inorganic arsenic, in the long run, may lead to cardiovascular disorders 
like atherosclerosis, hypertension, ischemic heart diseases, and ventricular arrhyth-
mias [50–52]. Stimulation of NADPH oxidase in the presence of arsenite causes an 
increase in production of reactive oxygen species (ROS) like hydrogen peroxide and 
superoxides in vascular endothelial cells and vascular smooth muscle cells [53, 54]. 
The coupling of nitric oxide with ROS results in the formation of peroxynitrite, a 
strong oxidant which is responsible for the upregulation of inflammatory mediators 
like cyclooxygenase-2 [55]. The ROS generated during arsenite exposure results in 
increased expression of genes related to atherosclerosis such as interleukin-6 (IL-6), 
heme oxygenase (HO-1), and monocyte chemoattractant protein (MCP-1) which 
promote the penetration, attachment, and migration of monocytes in VSMC [56]. 
Arsenite regulates the vasoconstriction of blood vessels by phosphorylation of myo-
sin light chain kinase (MLCK) and increasing sensitization to calcium which ulti-
mately results in hypertension [57]. Long-term exposure to arsenic may induce 
oxidative stress and alter the release of vasoactive mediators in the blood vessels 
which may ultimately result in elevation of blood pressure [58] (Fig. 3.2).

3.4.2  Arsenic-Induced Diabetes Mellitus

Long-term arsenic exposure decreases the expression of PPAR-γ. This reduces the 
sensitivity of insulin response for type II diabetes induction by arsenic [59]. Arsenic 
replaces a phosphate group from ATP resulting in the formation of ADP-arsenate, 
which decreases the rate of glucose metabolism, interrupts with energy production, 

Fig. 3.2 Arsenic-mediated cardiovascular dysfunction
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and interrupts with the secretion of ATP-dependent insulin [60] (Fig. 3.3). The high 
affinity of arsenite toward sulfhydryl groups results in the formation of covalent 
bonds with disulfide groups of the glucose transporter, insulin receptors, insulin, 
and enzymes involved in the metabolism of glucose [60]. Chronic exposure to arse-
nic may also result in hypoglycemia due to a notable decrease in glucose-6- 
phosphate activity in both the liver and kidneys [61]. Besides sodium arsenite has 
also been reported to suppress the expression of mRNA specific to insulin expres-
sion [62].

3.4.3  Arsenic-Induced Neurotoxicity

The ability of arsenic to easily trespass the blood-brain barrier makes the brain a 
very soft target for arsenic toxicity. Long-term exposure to arsenic poses various 
neurological implications like poor concentration, impaired memory, Parkinson’s 
disease, speech disorders, encephalopathy, and peripheral neuropathy [63–67] 
(Fig. 3.4). The mechanism of arsenic-induced neurotoxicity mainly involves oxida-
tive stress associated with an increase in the number of reactive oxygen species and 
lipid peroxidases along with a decrease in levels of superoxide dismutase and gluta-
thione [68]. In recent studies, it has been revealed that chronic exposure to arsenic 
results in a significant drop in levels of adrenaline, noradrenaline, and serotonin in 
the corpus striatum, hippocampus areas, and frontal cortex of the brain [69]. Protein 
kinase (p38MAPK) and JNK3 pathways activated by p38 mitogen result in the 
induction of apoptosis in the cerebral neurons as a result of arsenic-mediated neuro-
toxicity [70].

Fig. 3.3 Flowchart of arsenic-induced diabetes mellitus
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3.4.4  Arsenic-Induced Hepatotoxicity

The expression of HO-1 and MAPK increases due to oxidative stress induced by 
arsenic. HO-1 and MAPK, in turn, regulate transcription factors such as Elk-1, acti-
vating transcription factor-2 (ATF-2) and activator protein-1 (AP-1) which ulti-
mately result in renal toxicity [71, 72] (Fig. 3.5). A study also revealed that the liver 
and kidneys serve as the primary targets for arsenic-induced toxicity with the levels 
of arsenic found in the liver being much higher than in the kidneys [73]. Activation 
of JNK and p38 MAPK under the influence of chronic arsenic-mediated oxidative 
stress results in the induction of apoptosis in the hepatocytes [74–76]. Further, 
upregulation of pro-apoptotic proteins under the influence of arsenic-induced oxi-
dative stress results in hepatic apoptosis [68, 77]. A study also showed that the levels 
of alanine aminotransferases, total bilirubin, malondialdehyde, and aspartate in the 
body increased under the influence of arsenic exposure which strongly supported 
arsenic-induced hepatotoxicity [78].

3.4.5  Arsenic-Induced Pyruvate Dehydrogenase Complex 
Inhibition

Pyruvate dehydrogenase complex is a multienzyme complex comprising of three 
enzymes, namely, pyruvate dehydrogenase (E1) (decarboxylation of pyruvate), 
dihydrolipoyl transacetylase (E2) (formation of acetyl-CoA by transfer of acetyl 
group to CoA), and dihydrolipoyl dehydrogenase (E3) (re-oxidation of dihydroli-
poamide for continuous conversion of pyruvate to acetyl-CoA). The formation of 

Fig. 3.4 Flowchart of arsenic-induced neurotoxicity

3 Arsenite S-Adenosylmethionine-Producing Spirulina platensis: A New Trump Card…



38

acetyl-CoA ceases as regeneration of dihydrolipoamide is blocked under the influ-
ence of arsenic which forms a stable complex with dihydrolipoamide [79].

3.4.6  Arsenic-Induced Inhibition of α-Ketoglutarate 
Dehydrogenase Complex of TCA Cycle

α-Ketoglutarate dehydrogenase complex is another multienzyme complex compris-
ing of α-ketoglutarate dehydrogenase (E1), dihydrolipoyl succinyltransferase (E2), 
and dihydrolipoyl dehydrogenase (E3). The function of E3 is quite identical to that 
of pyruvate dehydrogenase complex which oxidizes dihydrolipoamide [80]. 
Arsenite and its organoarsenicals block the activity of the enzyme in a manner simi-
lar to that of pyruvate dehydrogenase complex, as a result of which succinyl-CoA is 
stopped.

3.4.7  Arsenic-Induced JAK-STAT Pathway Inhibition

The phosphorylation of key tyrosine and serine residues of STAT3 were analyzed to 
study the effect of arsenite by immunoblotting. The results so obtained were consis-
tent with EMSA results where exposure to arsenite caused inhibition of tyrosine 
(Y705) residue, whereas addition of IL-6 to the system alone caused phosphorylation 
of Y705. This showed that arsenic blocked tyrosine phosphorylation of the Y705 
residue which in turn led to the blockade of IL-6-induced activation of STAT-3 [81].

Fig. 3.5 Flowchart of arsenic-induced nephrotoxicity and hepatotoxicity
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3.4.8  Arsenic-Induced ATP Suppression in Glycolysis

Arsenic renders the process of glycolysis useless. This is because although the pro-
duction of pyruvate takes place, there is no net production of ATP. Glyceraldehyde 
phosphate dehydrogenase (GAPDH) is an enzyme which converts glyceraldehyde- 3- 
phosphate to 1, 3-biphosphoglycerate. In the presence of arsenic, GAPDH converts 
glyceraldehyde-3-phosphate to 1-arseno-3-phosphoglycerate which is an analog of 
1, 3-biphosphoglycerate. Each 1-arseno-3-phosphoglycerate molecule breaks down 
into arsenate and 3-phosphoglycerate molecule without any formation of ATP [82].

3.5  Mechanism of Arsenic Poisoning

The indisputable authority of arsenic as a toxic substance stamps from its ability to 
inhibit about 200 enzymes involved in the production of energy in various cellular 
pathways, synthesis, and repair of DNA [83]. Toxicity developed due to both triva-
lent and pentavalent arsenical species has been discussed here.

3.5.1  Mechanism of Pentavalent Arsenic Toxicity

Dixon [84] reported the ability of phosphates in a variety of biochemical reactions 
because of its structural similarity and similarity in properties. Lagunas [85] and 
Gresser [86] also further validated Dixon in their work by showing the ability of 
arsenate to react with glucose and gluconate to form glucose-6-arsenate and 
6-arsenogluconate, respectively. Glucose-6-arsenate and 6-arsenogluconate show 
structural similarity with glucose-6-phosphate and 6-phosphogluconate. Glucose-6- 
arsenate serves as a substrate for glucose-6-phosphate dehydrogenase and can 
inhibit hexokinase [85]. In the human RBC, phosphate in the sodium pump and the 
anion exchange transport system can also be replaced by arsenate [87]. During the 
process of glycolysis, ATP is generated in the presence of phosphate (substrate-level 
phosphorylation), but the reverse is true in the presence of arsenate [82, 88]. 
Delnomdedieu et al. [89] and Winski and Carter [90] showed reduced levels of ATP 
in human erythrocytes and rabbits, respectively, following in vitro exposure to arse-
nate (human 0.1–10 mM; rabbit 0.8 mM).

3.5.2  Mechanism of Trivalent Arsenic Toxicity

Certain receptors, enzymes, and coenzymes contain thiols or vicinal sulfhydryls as 
specific functional groups. These thiols and vicinal sulfhydryls play a very crucial 
role in the proper functioning of these molecules. Trivalent arsenicals have a very 
high affinity toward such functional groups and react readily in vitro with molecules 
such as GSH and cysteine which contain thiols as their functional groups [91, 92]. 
Moreover, the affinity of arsenite for dithiols is far greater than monothiols. This 
was shown successfully by Delnomdedieu et al. [93] where the transfer of arsenite 
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from (GSH)3-arsenic complex to the dithiol 2,3-dimercaptosuccinic acid, a highly 
favorable reaction, takes place [91]. A study by Styblo et al. [94] has shown that tri-
valent organic arsenicals like MMA(III) and DMA(III) undergo in vitro binding with 
proteins with a far greater affinity than pentavalent arsenicals. Methylated organic 
arsenicals like MMA(III) interact with thiol groups of GSH reductase and thiore-
doxin reductase ultimately resulting in the suppression of these molecules [95, 96].

3.6  Arsenic Contamination (A Few Case Studies)

Over the years incidences associated with arsenic-related contamination have been 
reported globally. A few such cases reported over the last two decades have been 
discussed here. Das et al. [97] carried out a survey of groundwater bodies in six 
districts of West Bengal, India, for a period of 5 years. The six districts spanned an 
area of 34,000 km2 which encompassed a population of 30 million people. In their 
studies, they found that arsenic concentration in the groundwater bodies of these 
districts had exceeded the maximum threshold of 0.05 mg/l as recommended by the 
WHO. Their studies revealed about 800,000 people from 312 villages in 37 blocks 
drank water that was contaminated with arsenic, out of which about 175,000 people 
showed arsenic-related lesions in the skin which were a representative of later stages 
of arsenic toxicity. The affected individuals also showed most of the three stages of 
clinical symptoms closely related to arsenic poisoning, out of which melanosis, 
depigmentation, keratosis, and hyperkeratosis were the most common. Upon analy-
sis of water samples from these regions, they detected a combination of arsenite and 
arsenate but could not detect methyl arsenic or dimethyl arsenic acid.

The distribution of arsenic species in different organs from the dead body of a 
28-year-old man who died after fatal intoxication with arsenic trioxide was studied. 
The cause of death was reported to be massive ingestion of arsenic trioxide (~8 g) 
orally. Autopsy studies revealed As(III) to be the most dominant species found in 
various organs with the liver and kidneys showing the highest arsenic concentration. 
Detoxification of arsenic by methylation and its subsequent elimination was reported 
to be the primary reason behind such high concentration of arsenic in these organs. 
The affinity of As(III) toward vicinal dithiols in hepatic cytosolic proteins was pro-
posed to be another reason behind the high concentration of arsenic in the liver 
(5–50-folds higher than most other organs). The distribution of arsenic was however 
almost uniform throughout most other organs [98].

Rahman et al. [99] reported arsenic levels higher than the WHO recommended 
limit of 50 μg/l in groundwater bodies in 50 districts in Bangladesh and nine dis-
tricts in West Bengal, India, which covered areas of 118,849 km2 with populations 
of 104.9 million and 42.7 million, respectively. Upon clinical examination of about 
18,000 individuals from Bangladesh and 86,000 persons from West Bengal involv-
ing these arsenic-affected districts, 3695 (20.6% including 6.11% children) in 
Bangladesh and 8500 people (9.8% including 1.7% children) in West Bengal 
showed arsenic-related skin lesions.

Liu et al. [100] have reported some 3000 cases of arsenic poisoning in the Southwest 
Prefecture of Guizhou, with the burning of high arsenic-rich coal for fuel being the 
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root cause of this problem. Mineralization of coal in this region has led to release of 
high concentrations of arsenic, and burning of coal in open pits has led to an increase 
in arsenic concentration in indoor air. Due to the cumulative effect of all these factors, 
over 200,000 people of this region are at a serious risk of arsenic overexposure.

The levels of exposure to arsenic in 10-year-old school children selected ran-
domly from a high-exposure area and a low-exposure area of Ron Phibun sub- 
district, Ron Phibun District, and Nakhon Si Thammarat Province, Thailand, were 
studied over a period of 1 year. The students belonging to high-exposure area and 
low-exposure area were then compared to their counterparts belonging to a control 
area. The concentration of inorganic arsenic and its metabolites in the urine samples 
of the students belonging to the high-risk area and low-risk area were considerably 
higher than those who belonged to the control area with drinking water and surface 
soil being the primary sources of exposure. A risk analysis study of these children 
revealed a higher chance of cancerous development in children belonging to the 
high-exposure area [101].

The people of Chile get exposed to arsenic via drinking water and air pollution 
primarily due to mining activities. The early effects of arsenic poisoning such as 
vascular diseases, bronchiectasis, and lesions in the skin were observed in children 
and adults. Long terminal effects of arsenic poisoning such as lung and bladder 
cancers were reported 20 years after highest levels of arsenic exposure [102].

The groundwater in Terai regions of Nepal was analyzed to determine the extent 
of arsenic contamination. Mineralization was reported to be the primary cause of 
arsenic contamination. Levels of arsenic concentration higher than 50 μg/l were 
detected in about 0.5 million people of that region, whereas arsenic concentration 
between 10 and 50 μg/l was reported in about 3.5 million people which comprised 
of about 31% population of that region. These individuals repeatedly suffered from 
chronic arsenic poisoning as a result of consumption of arsenic-affected water from 
groundwater bodies [103].

Arsenic concentration in drinking water (119–310) μg/l, alfalfa hay (1.9–6.9) 
μg/l, cultivated soil (46.7–819.9) μg/l, wool (1.56–10.79) μg/l, and blood samples 
(86.3–656) μg/l was evaluated in sheep from Ebrahimabad and Baba Nazar villages 
in Kurdistan Province of Iran. These reports suggested the presence of a very high 
concentration of arsenic above recommended levels in these areas which also goes 
on to suggest that arsenic has penetrated into the biogeochemical cycle by direct or 
indirect pathways. The conclusion drawn from the study was that the sheep from the 
contaminated areas suffered from anemia which was supported by a decrease in 
packed cell volume and hemoglobin in sheep that reared in these arsenic- 
contaminated zones [104].

3.7  Spirulina platensis in Large-Scale Bioremediation 
of Arsenic-Contaminated Water Bodies

Cyanobacteria are ubiquitously distributed in different types of aquatic environ-
ments and are considered to be ancient phototrophic organisms [105]. They are 
generally considered to be blue-green, and these colors are conferred upon them by 
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their photosynthetic pigments. Some cyanobacteria have a nitrogen-fixing ability 
and so have the potential to play an important role in rice paddy water [106]. They 
may exist in the form of colonies [107] and individual cells [108] and may form 
coccoid [109] or filamentous structures [110]. The morphology of cyanobacteria 
has remained unaltered over the last 3.5 billion years because they are highly resis-
tant to contamination and, as such, they have evolved different mechanisms to sur-
vive in the harsh arsenic-contaminated environments [11]. However, characterization 
of microbes based upon morphological features is highly subjective and speculative 
in nature. Today, however, more weight is being given on genome-based character-
ization, and a very good review of the different types of genetic tools available for 
characterization has been beautifully described by Koksharova and Wolk [111]. 
Cyanobacteria produce compounds which are protective in nature which in turn 
shield them from the harshness of the environment [112]. Some species of cyano-
bacteria even possess the ability to produce molecules which are anticancerous and 
antimicrobial in nature [113, 114]. Spirulina originated about 3.5 billion years ago, 
and during that course of time, it has successfully developed the ability to derive 
nutrition for the purpose of reproduction from dissolved carbon dioxide in seawater. 
It is a photosynthesizing blue-green alga and shows high growth under high tem-
perature, high alkaline conditions, and strong sunlight. Among the countless num-
ber of cyanobacteria, Arthrospira (spirulina) platensis is a blue-green alga which 
has the ability to successfully thrive under raised alkaline pH [115]. Spirulina pla-
tensis can be easily recognized because of its peculiar shape of cylindrical tri-
chomes. These cylindrical trichomes are arranged in a left-handed helix throughout 
the filament [116]. Three different species of spirulina were cultured, viz., Spirulina 
platensis, Spirulina laxissima, and Spirulina lonar, to study their biochemistry and 
evaluate their growth in different types of media containing organic and inorganic 
nutrients. Out of the three species, the highest growth rate, biomass production, 
pigmentation, and low accumulation of intracellular phenolics (results in toxicity) 
were shown by Spirulina platensis [117]. This result also cemented the importance 
of Spirulina platensis as a favorable strain for large-scale cultivation because of its 
short doubling time and high growth rate [117]. Addition of ammonium nitrate to 
the culture provides an easily assimilable source as well as a reserve of nitrogen that 
not increases the biomass of Spirulina platensis but also reduces the cost of produc-
tion by reducing the cost of cultivation media [118]. All these favorable factors 
associated with the ability of Spirulina platensis to successfully and efficiently 
detoxify arsenic from water bodies by biomethylation [119] makes it a top-notch 
candidate for the large-scale treatment of wastewater bodies contaminated with 
arsenic.

3.8  Mechanism of Biomethylation of Arsenic

The process of methylation as a means of detoxification of inorganic arsenic by liv-
ing organisms is a complex process, and there exists a lack of information about 
how this process works. Moreover, the methods of methylation are not universal and 
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as such show small to large variations from organism to organism. Arsenic which is 
primarily present in the water bodies in inorganic form can be biotransformed into 
methylated arsenicals, arsenosugars, and arsenolipids. This biotransformation can 
be carried out by oxidation, reduction, and methylation. Oxidation of arsenite (As 
(III)) to arsenate (As (V)) is considered to be a detoxification pathway as As (V) is 
less toxic as compared to As (III) [120, 121]. Similarly, arsenic methylation is also 
considered to be a detoxification pathway as intermediate products formed during 
this process like methyl arsenite (III) and dimethyl arsenite (III) are considered to 
be more toxic [16, 122]. Alternate reduction and methylation are also very good 
methods to detoxify arsenic (III) which ultimately leads to production of less toxic 
methylated arsenicals like methyl arsenate (V), dimethyl arsenate (V), and trimethyl 
arsine oxide (TMAO (V)) [123, 124].

However, new findings have shed more light on the fact that alternative pathways 
for detoxification of arsenic also exist in which DMA (III) and MMA (III) persist in 
their trivalent state during the entire course of the catalytic cycle [125, 126].

3.8.1  The Work of Challenger and Associates (Leeds School)

The formation of trimethyl arsine (a less toxic form of arsenic) occurred in accor-
dance with a mechanism proposed by [124] and associates of the Leeds School. 
This mechanism has managed to hold its own for a very long time and is considered 
to be one of the very few universally accepted mechanisms of arsenic detoxification 
in living organisms. According to this group, a positive methyl group must be gener-
ated which will then be transferred to the metalloid. S-Adenosylmethionine or SAM 
was considered to be this methyl donor. For the formation of trimethyl arsine from 
arsenate, four stepwise 2e− reductions are necessary. Each reduction would then 
result in the formation of one lone pair of electrons on the arsenic atom with the last 
step being the only exception. At the end of each reduction step, arsenic is methyl-
ated by SAM.

3.9  Tackling Arsenicosis (A Hypothesis)

Guo et al. [119] isolated a SpArsM gene from Spirulina platensis which could suc-
cessfully detoxify As(III) by methylation followed by conversion of MMA(V) and 
DMA(V). CmarsM7 and CmarsM8 genes from Cyanidioschyzon, a eukaryotic 
microalga which was isolated from Yellowstone, had the ability to methylate arsenic 
and conferred high arsenic resistance to the transformed strain of E. coli. There are 
many more reports which support the existence of such genes throughout the world. 
These reports encourage the use of proteins encoded by these genes and its applica-
tions in the field of drug development to successfully tackle acute arsenicosis in 
patients. In this section, a hypothesis has been developed to treat such patients suf-
fering from arsenicosis with arsenic methylating proteins.
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Step 1: Isolation of the SpArsM Protein

• Collection of Spirulina platensis from various sources (brackish water bodies, 
freshwater, and marine water bodies).

• Growth in Zarrouk’s medium.
• Screening for Spirulina platensis in as(III)-supplemented media.
• Collecting information about the flanking sequence of SpArsM gene and design 

of primers using bioinformatics tools.
• Cloning of the PCR product into a pUC vector by using E. coli as a heterologous 

host.
• Plasmid isolation with plasmid isolation kit.
• Plasmid digestion with specific restriction enzymes.
• Insertion of the fragment into the pET vector.
• The pET vector with the SpArsM gene is used to transform E. coli that lack the 

ability to methylate as(III) where screening is subsequently carried out in an LB 
media supplemented with as(III) and IPTG to induce the expression of his-tagged 
SpArsM protein.

• This his-tagged SpArsM protein that is produced may then be easily separated by 
affinity chromatography.

• Determination of protein concentration at 280 nm followed by characterization 
and in-silico analysis of the protein.

• Development and formulation of the protein into a suitable drug dosage form.

Step 2: The Process of Treatment

• Under normal conditions (case I), lipoic acid bound to the E2 subunit of pyruvate 
dehydrogenase complex undergoes FAD-dependent oxidation of lipolate. This 
lipolate then undergoes a reduction in the presence of thiamine triphosphate 
(TPP) by binding to the CH3COO group attached to TPP. This CH3COO group 
bound to lipoic then binds to the CoA group of pantothenic acid resulting in the 
formation of acetyl-CoA which serves as the starting material for Krebs cycle 
(Fig. 3.6).

• In the case of a person suffering acute arsenicosis (case II), arsenite (III), the 
trivalent form of arsenic, directly binds itself very strongly to the thiol groups of 
lipoic acid. This prevents FAD-dependent oxidation of lipolate which renders the 
TPP inept in reducing this structure. Ultimately there is no formation of acetyl- 
CoA as a result of which the Krebs cycle loses its efficiency because of the loss 
of its starting material. This ultimately may result in the death of that individual 
because of acute shortage of ATP (Fig. 3.6).

• However, when the SpArsM protein (now developed into a drug) is administered 
into the body of the patient suffering from arsenicosis, the SpArsM protein meth-
ylates the trivalent form of arsenic. This prevents arsenite from binding to the 
thiol groups of lipoic acid. The lipoic acid is now free to carry out its normal 
function, and this enables the pyruvate dehydrogenase complex to utilize the 
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pyruvate generated at the end of glycolysis and produce acetyl-CoA as the end 
product. Now, because of the availability of acetyl-CoA (the starting material of 
Krebs cycle), the Krebs cycle retains its normal functioning which results in the 
normal production of ATP as a result of which the patient gradually recovers and 
survives (Fig. 3.7).

3.10  A Few Notable Works on Remediation of Arsenic

Katsoyiannis et al. [127] devised a method that could successfully remove arsenic 
from groundwater bodies with an efficiency of about 80% by using fixed bed upflow 
bioreactors without the use of any additional chemicals during simultaneous bio-
logical oxidation of iron and manganese from groundwater by using Gallionella 
and Leptothrix species. Gallionella ferruginea and Leptothrix ochracea oxidized 
soluble iron(II) and manganese(II) which then served as effective adsorbents for 
removal of As(V) and As(III).

Fig. 3.6 Figure depicting the effect of arsenic on the functioning of pyruvate dehydrogenase com-
plex. Case I represents a healthy individual with properly functioning pyruvate dehydrogenase 
complex which ultimately produces acetyl-Co A. Case II represents the effect of arsenic on the 
functioning of pyruvate dehydrogenase complex. In Case II arsenic binds to the two thiol groups 
of lipoic acid, thus blocking the proper functioning of this enzyme. This prevents the formation of 
acetyl-CoA which ultimately hinders the Krebs cycle. (E1, pyruvate dehydrogenase; E2, dihydro-
lipoyl transacetylase; E3, dihydrolipoyl dehydrogenase)
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Dhankher et al. [128] genetically transformed Arabidopsis thaliana with arsenic 
reductase (arc C) gene and γ-glutamylcysteine synthetase (γ-ECS) gene from E. 
coli. The arc C gene was expressed by light-inducible soybean rubisco promoter 
(SRS1p) which highly expresses arc C only in the leaves. Similarly, γ-ECS was 
expressed by a highly constitutive ACT-2p actin promoter. γ-ECS gene catalyzes the 
first step in phytochelatin synthesis pathway. In doing so it increases the concentra-
tion of thiol compounds (including phytochelatin, a polypeptide) throughout the 
plant. Arsenate absorbed from the soil through the roots is transported with trans-
porters via the xylem to the leaves where arc C catalyzes glutathione-coupled elec-
trochemical reduction of arsenate (V) to arsenite (III). Arsenite is then detoxified by 
the formation of arsenic-protein thiolates with thiol compounds. When grown on 
arsenic, this plant showed two to three times higher accumulation of arsenic per 
gram of tissue than its wild counterpart which expressed γ-ECS or arc C alone.

Takeuchi et  al. [27] identified a bacteria Marinomonas communis out of nine 
isolated bacterial strains belonging to marine and nonmarine origins. These bacteria 
could resist up to 510 mg/l of arsenic and could remove 2290 μg of arsenic per gram 
of dry weight when incubated on a medium containing 5 mg/l of arsenate. This 
accumulation was the highest accumulation of arsenic reported at that period of 
time. This makes these bacteria one of the best candidates for removal of arsenic 
from contaminated water bodies.

Ike et al. [129] acclimatized a mixed culture of heterotrophic bacteria (namely, 
Haemophilus, Micrococcus, and Bacillus) from soil free of contamination to a high 
concentration of As (III). Upon addition of arsenic at an initial concentration of up 
to 1500 mg/l at pH ranging from 7 to 10 and temperatures ranging between 25 and 

Fig. 3.7 Figure depicting the effect of SpArsM (when delivered to an arsenicosis patient in a drug 
dosage form) on the functioning of pyruvate dehydrogenase complex. In this case, SpArsM protein 
methylates As(III) to As(V) as a result of which arsenic is no longer able to bind to the thiol groups 
of lipoic acid. This enables pyruvate dehydrogenase complex to retain its original function. (E1, 
pyruvate dehydrogenase; E2, dihydrolipoyl transacetylase; E3, dihydrolipoyl dehydrogenase)
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35 °C, this mixture successfully oxidized As(III) which greatly enhanced the effi-
ciency of removal of arsenic by absorption on activated alumina, an essential pre-
treatment process from a basal salt medium containing 75 mg/l of As(III).

A study by Tuzen et  al. [130] showed that Ulothrix cylindricum, green algae, 
could absorb 67.2 mg/g of As (III) from its aqueous medium which could then be 
readily desorbed by treatment with 1 M HCl. Ulothrix cylindricum also enhanced the 
process of As (III) absorption and desorption almost by tenfold. A study of the ther-
modynamic parameters like ∆G°, ∆S°, and ∆H° of this process revealed that it was 
an exothermic, spontaneous, and feasible reaction under the studied conditions.

Mirza et al. [131] studied the possibility of phytoextraction of arsenic from syn-
thetic wastewater with Arundo donax. The plant showed an increase in its biomass 
in its root and shoot without showing any symptoms of toxicity when grown in 
nutrient media supplemented with up to 600 μg/l of arsenic. This finding suggests 
that Arundo donax plants have the potential to be employed in the treatment of 
water containing arsenic concentration up to 600 μg/l.

Kao et al. [132] isolated a novel As(III)-oxidizing bacteria (As 7325) from the 
aquifer in the blackfoot disease (BFD) endemic area of Taiwan, which oxidized 
2300 μg/l As (III) from in situ As(III)-contaminated groundwater in 1 day under 
aerobic conditions. They then successfully removed this oxidized As(V) from con-
taminated groundwater by absorption on As 7325 cell pellets.

Sibi [133] isolated six different  microalgae, namely, Chlorella, Oscillatoria, 
Scenedesmus, Spirogyra, and Pandorina, which showed a higher rate of absorption 
of more toxic As (III) than its less toxic As(V) counterpart. The dried biomass of 
these microalgae showed even higher absorption and much faster kinetics than the 
living ones.

Jasrotia et  al. [134] studied the potential of locally available algal species like 
Cladophora in the possible phycoremediation of arsenic from arsenic-enriched water 
bodies. Their study revealed the ability of Cladophora to survive in arsenic concen-
trations up to 6 mg/l in water and the plant’s ability to absorb arsenic by almost 100% 
when the arsenic concentration was raised to 80 g/l. HPLC coupled with I CPMS (for 
arsenic speciation) and electron microscopy studies confirmed the bioabsorption of 
arsenic in the form of arsenite, arsenate, arsenosugars, MMA, and DMA.

Dey et al. [135] isolated two arsenic-resistant rod-shaped gram-positive bacteria 
(Bacillus sp. and Aneurinibacillus aneurinilyticus) from Purbasthali block of 
Burdwan district, West Bengal, India, which have the ability to oxidize arsenite to 
less toxic arsenate and can tolerate arsenate concentration up to 4500 ppm and arse-
nite concentration up to 550 ppm. The isolated Bacillus sp. had the ability to remove 
51.45% and 51.99% of arsenite and arsenate, respectively, whereas the isolated 
Aneurinibacillus aneurinilyticus had the ability to remove 53.29% and 50.37% of 
arsenite and arsenate, respectively, from an arsenic-supplemented media after 72 h 
of incubation.

Guo et al. [119] studied the ability of Spirulina platensis in accumulation and 
biotransformation of arsenic. The dry weight of Spirulina platensis could accumu-
late up to 4.1 mg/kg of arsenic. This species could oxidize toxic As (III) to a lesser 
toxic As (V) like mono-methyl arsenate (MMA (V)) and dimethyl arsenate with an 
efficiency of 64% to 86%.
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3.11  Problems Associated with Biomethylation As a Means 
of Detoxification and Bioremediation of Arsenic

Earlier there was this belief that methylation of inorganic arsenic was actually a way 
of detoxifying it as the acute toxicity of inorganic was found to be much greater than 
organic arsenicals. However, the process of methylation as a means of detoxifica-
tion of As (III) may not always hold true. A study by Cullen and Reimer [3] further 
vindicated this fact as they successfully showed how an MMA(III) derivative was 
far more toxic than arsenite to Clavulina humicola. Methylated forms of As(III) like 
methyl arsine oxide [(CH3AsO)n] which showed higher levels of toxicity as com-
pared to arsenite in Clavulina humicola were also reported by Cullen and Reimer 
[3] who also reported that methylated sulfides of arsenic like [(CH3AsS)n] had far 
greater toxic effects than oxides of arsenite. Furthermore, the ability of organic 
arsenicals to generate a wide variety of carcinogenic effects as compared to inor-
ganic arsenic was also reported by Styblo et al. [136]. Human cells responded by 
showing higher levels of toxicity in the presence of MMA (III) as compared to 
arsenite [137, 138]. Similar levels of cytotoxicity were reported in dimethyl arsenic 
acid (DMA) as observed in arsenite in a wide range of human cells [138]. The LD50 
value of MMA (III) in hamster was found to be much lower than arsenite in hamster 
[137].These findings go on to reveal that the general notion of detoxification of 
arsenicals by methylation cannot be accepted universally in all organisms.

3.12  Conclusion

Microalgae are an integral component of our food web and as such play a vital role 
in the regulation of arsenic in the environment. Hence, the process of arsenic metab-
olism by microalgae has gradually gained an important position in the scientific 
community. However, irrespective of the research carried out over many years, there 
still exists a void in our knowledge about these organisms which need to be filled. 
This is because there exists a wide variation in the pathways involving biomethyl-
ation of arsenic in different microalgae and a sufficient data does not exist regarding 
the characterization of these enzymes. Moreover, conventional methods in the form 
of adsorption, ion exchange, coprecipitation, and membrane-based separation are 
already being used to treat water polluted with arsenic, and the feasibility of such 
methods are under serious questioning because of the high cost of operations and 
need of technical manpower. Irrespective of all these bottlenecks, microalgae can 
emerge as a boon in our fight against the menace of arsenic poisoning. So proper 
establishment of mechanisms of methylation and docking studies of arsenic on 
these enzymes are necessary to shed further light on the working of these arsenic 
methylation enzymes, and with a proper pipelined strategy, remediation of arsenic- 
contaminated water bodies with microalgae has the potential to grow into a 
multimillion- dollar industry which is also capable of generating a huge amount of 
employment.
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Abstract
The rapid lifestyle of industrialization and increasing demand of fossil oil that 
are going to be scarce in future date have led to think the alternative source of 
renewable energy as fuels to meet our energy demands. Fossil fuel is challenged 
with increasing price and a decreasing quantity, and burning of the fuels is put-
ting the environment into threat toward pollution and global warming. Various 
steps toward cultivating oil crops such as Jatropha, corn, coconut, soybean, and 
oil palm have been encouraged, but productivity of oil has been very less, i.e., 
5% of total biomass, and it needs vast acres of cultivated land. Therefore, to 
overcome the problem, today’s world is moving toward microalgae cultivation, 
which in comparison can grow faster in wastelands/uncultivated lands and can 
produce up to 80% of the dry weight of algae biomass. Microalgae are photo-
trophic and are able to transform carbon dioxide into biofuels, valuable bioactive 
compounds, foods, and feeds. In spite of all positivity, microalgae biofuel is still 
not common man’s fuel due to various hurdles. Overhead harvesting cost is 
20–30% higher to the cultivation cost of algae; it can reduce the nonrenewable 
resources (nitrogen, phosphorus) for which still date it cannot reach to common 
man. However, limited supply of these renewable oils and high cost stop it to be 
a potential challenger in the face of other petroleum- based fuels. Overall, eco-
nomic feasibility and environmental suitability cannot be forgotten when ventur-
ing into scaling up for future commercialization.
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4.1  Introduction

The social and economic development of a nation is mainly propelled by the amount 
and type of energy it can generate. As constant progress of the world to expand its 
economy in modernization, industrialization of lifestyle with growing population 
and increasing demand for vehicles for transportation has directed to substantial 
intensification in fossil fuel, i.e., petroleum-based fuel use [1, 2]. The world energy 
consumption has been projected to grow to an extent of 56% during 2010–2040 as 
reported by IEO2013 [3]. The continuous overexploitation of petroleum fuel has 
increased the atmospheric carbon dioxide concentration, which possibly can upset 
across the globe due to change in climate and global warming [4]. In addition, 
increased fuel requirement has also led to the fast exhaustion of the sources of such 
energy. About 80% of global energy fuels are supplied by fossil fuels; natural gas, 
coal, and crude oil but unless resources of renewable energy are exploited; such 
huge demand of energy at global scale can never be reached. Therefore, worldwide 
demands of motor and power generation fuels, with environmental consequences, 
have headed for finding novel substitutes which are not only sustainable and renew-
able but also eco-friendly and economic [5, 6]. Efforts are being taken to replace 
fossil fuels [7–13] from oil palm, rapeseed, Jatropha, and soybean but are subjected 
to foremost disagreement as they require land for their production which has been 
used for raising food crops [2]. As compared to traditional crop, algae can be culti-
vated in submerged area as well as in seawater [13] to produce 300-fold oil per unit 
area. 

Efforts are being taken in the present years to explore the potentials of utilizing 
algae as a resource of oil and gas of biological origin aiming at applications for 
energy generation. Algae are not only the fastest-growing plants but also are the 
huge diverse group of both unicellular and multicellular autotrophs. They have the 
ability to thrive under varied environmental conditions like freshwater as well as 
saline and seawater [14, 15]. They have phototrophic-driven cell factories that con-
vert sunlight, water, and carbon dioxide to potential biofuels, foods, and feeds, and 
high-value bioactive compounds of triacylglycerides (fats) and polysaccharides 
(sugars) produced by them are proved to be the principal starting material for pro-
duction of biodiesel. As compared to different energy crops, microalgae pose enor-
mous amount of treasured properties, higher efficiency in photosynthesis, higher 
rate of product accumulation [16], higher rate of production of biomass, and higher 
ratio of carbon to nitrogen (C/N) as well as carbon to phosphorous (C/P) [17, 18]. 
Therefore, biodiesel of microalgal origin has the potential to replace the fuels 
derived from petroleum, such as gasoline, jet fuel, and diesel. Even though algae act 
to be a hopeful resource for production of biofuel, several environmental and eco-
nomic bottlenecks lie in its large-scale application. The present cost of production 
of algal biofuels is substantially higher than fossil fuel, but in the near future, it 
would be likely to come down. Still of many efforts, it cannot reach to common 
people because of many hurdles. Many researchers are putting efforts, focusing on 
the biosynthetic pathways, and improving its economics [19].
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4.2  Different Problems to Commercialization

4.2.1  Demand for Land

As a consequence of rapid growth of industrialization, there are huge demands for 
fossil fuel in substitute of petroleum which are going to be scarce in future era. In 
the report of US Energy Information Administration, in the year 2008, the USA 
required 19,497,950 barrels of oil per day. Growing terrestrial plants for biodiesel 
does not seem to compete with the oil prospective in the future, because it needs 
land not only to grow food but also needs to feed the animals. However, for growing 
algae only about 1% of the wasteland/feeding land (limited productivity land) is 
enough to produce oil to replace the entire diesel used. According to Chisti [28] 
replacement of 50% US transport fuel, algal biodiesel would only require 1.1–2.5% 
of farming land to yield up to 30–70% of oil content which is relatively very high in 
land area coverage to other feedstock cultivation (see Fig. 4.1).

It is evident from recent survey that present technology has the prospective to 
generate 220 × 109Lyr-1 of oil from microalgae which is equivalent to 48% of exist-
ing import of US petroleum used for transportation basing on fuel utilization in 
2011 [20]. As reported by Gerbens-Leenes et al. [21], 17,000 km2, i.e 1% of the 
total farming area will be required for microalgal biofuel to meet 3.5% of fuel 
demand of European Union in 2030. Therefore, 28% of the existing area will be 
needed in the entire world for algal biodiesel production. Evidently, in comparison 
algae can yield more oil than other biomass feedstocks. In open pond, the amount 
of land needed to supply fuel demands depends directly on the type of biomass 

Fig. 4.1 Land area needed 
under cultivation to meet 
50% requirement of 
transport fuels (liquid) in 
the USA
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used. Application of photobioreactors, is encouraged as it needs less amount of 
water as well as land compared to open ponds [22] but still is not economical as yet 
because it needs more fossil fuel energy for their operation even at a small scale than 
the energy it can generate. Therefore, locating open pond or photobioreactor for 
microalgae cultivation, a proper site selection should be one of the main criteria for 
cultivation as it needs a suitable land topography, i.e., slope, appropriate water sup-
ply with proper salinity, good climatic conditions (temperature, proper nutrients, 
and carbon supply), and geological features (porosity, permeability, compactness). 
These are the important factors to be taken into consideration for providing optimal 
growth conditions.

4.2.2  Carbon Dioxide Availability

Microalgae are the unicellular organisms and capable to change solar energy to 
chemical energy. During the conversion process, CO2 is essential requirement for 
biodiesel production. Chisti [28] reported that for production of 1 kg microalgae 
biomass, they require 1.8 kg CO2. For pilot-scale production of microalgal biomass 
which depends on availability of CO2, it contributes almost half of the cost of bio-
mass production [28]. Many of the researchers prove that microalgae have ability to 
concentrate the CO2 from the culture medium because absorption of CO2 from 
atmosphere is not sufficient for large biomass production [23–25]. In addition, there 
are several non-biological technologies which are developed for capturing CO2 
from atmosphere but are subjected to economic challenges. Some researchers also 
developed biological approaches, i.e., genetic modification of microalgae for cap-
turing CO2, but it has been less effective for rapid growth of microalgae. Carbon 
dioxide is necessary for algal biofuel production, but absorption of CO2 from atmo-
sphere to culture is difficult because its concentration in the atmosphere is very low. 
Microalgae are generally growing in alkaline condition, and bicarbonate can be 
used as alternative source for supplying CO2 [26], but this strategy may not work in 
marine algae because salts tend to precipitate once the pH exceeds to 8.0. From 
economic point of view, the regular supply of CO2 is very expensive and also 
increasing the total cost of the biofuel.

4.2.3  Nutrient Requirement

Nitrogen and phosphorus are two essential elements for production of biofuel from 
microalgae. But, microalgae are producing biofuel in deficiency of these elements. 
Nitrogen fertilizer can be produced from atmospheric nitrogen by Haber-Bosch pro-
cess for producing but it involves the use of fossil energy. Metz et al. [27] reported 
that global energy up to 1.2% is consumed to produce N fertilizer for agriculture. 
Chisti [28] reported that the US Agriculture Department consumed 5.4 million ton 
of N and 1.1 million ton of P for production of 82 million ton algal biomass. If huge 
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amount of N and P is diverted toward the utilization of algae growth, how would we 
provide the same for food production? However, efficiencies of uptake of nutrient 
and their content in algae may vary with growth conditions, time of exposure, the 
species, and the percentage of carbohydrates, proteins, and lipids in the harvested 
biomass.

4.2.4  Water Supply

Recently much work has been done in the field of enhancement of lipid accumula-
tion in single microalga cell. High lipid productivity not only depends upon nutri-
tion limitation but also some other factors such as light, temperature, and water 
quality. Among these, water is very essential for biomass production. Use of fresh-
water for production of any goods and services in the entire process is called water 
footprint. For algal fuel production, the water footprint is dependent upon (1) evapo-
ration or loss of water during culture and (2) transformation of freshwater to waste-
water. There are various factors which are involved in evaporative loss such as local 
climatic conditions, irradiance level, the air temperature, the wind velocity, and the 
absolute humidity. Becker [29] reported that freshwater evaporation in tropical 
areas was 10 liter/m which is equivalent to 10 mm d−1. Freshwater is also necessary 
for washing the biomass and lipid extraction. Regular supply of freshwater is needed 
for substantial production of biofuel. For 1 kg biofuel production by freshwater alga 
C. vulgaris, 3727 kg freshwater was needed [30]. During algal culturing in large 
open pond, the maintenance of freshwater is required due to evaporative loss [28]. 
Utilization of huge amount of freshwater for biofuel production does not appear to 
be a practical option. The consumption of freshwater is reduced by recycling the 
water, but it loses the nutrients and risk of bacterial, fungal, or virus infection as 
well as other inorganic and organic compound/metabolites as inhibitors. Brackish 
water may be recycled, as substitute of freshwater, but pretreatment of water is 
required to remove inhibitors. In contrast, employment of photobioreactors for pro-
duction of microalgal biofuel has significantly lower water demand. Yang et al. [30] 
stated the reduction of water trail in bioreactors can expedite superior regulation of 
culture and can generate thickly grown algal culture per unit volume of used water. 
Regular water spray is required to prevent the overheating of bioreactor during 
operation. The production of biofuel in photobioreactor is very cost intensive due to 
its maintenance, installation, and operation. Dependable supply of water at a low 
cost is very difficult to make available for the successful production of biofuel from 
algae.

4.3  Present Static Economic Status of Liquid Fuels

There are significantly various challenges and hurdles in making fossil fuels capa-
ble of competing with petroleum to reach common people as it can touch our rou-
tine life in many forms. At present, the evaluation price is US$300–2600 of a barrel 
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of algae-based fuel as compared with $40–80 for petroleum which is very high 
related to crude oil [31–33]. As the petroleum requirement increases considerably to 
meet the demand, its price also affects the economic feasibility [34, 35]. Production 
of fuel from algae in a commercial venture is still subjected to questions as com-
pared to other renewable energy resources, unless otherwise it is superior or nearer 
to prevailing fuels of petroleum origin from economic point of view. However, the 
challenges it has been subjected to and the strategies it has to follow to come over 
of this economic incongruity are very much highlighted in the present article.

4.4  Conclusion

The entire facts of using microalgae as fuel in substitute of fossil fuels are unsuc-
cessful except the production at an industrial scale which is eco-friendly and eco-
nomically viable. No industrial scale setup till date has a large-scale algal biofuel 
production that can support both the environment and economic. Both, the costs 
incurred in investment capital and operation make the algal fuel, making highly 
expensive so as to make it commercially suitable. The time is waited when produc-
tion costs of algae will come down and relatively that of fossil fuels will rise high. 
With the advent of real game-changing breakthrough of start-ups on algal fuel pro-
duction, hopefully the age of green fuel may bring into being. Probably, more finan-
cial support on research and development is desirable to crack this boundless 
prospective into economically viable, and thus, it is too premature to declare if the 
future biofuels need can bank upon algae.
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Abstract
Hexavalent chromium (Cr(VI)) is enriched in the water system of environment 
above the regulatory level due to different human activities. Cr(VI) has the chem-
ical properties favorable for its dissolution in the water environment at an ele-
vated concentration level. This concerns the environmentalists as Cr(VI) in water 
is carcinogenic to different organs of the living organisms. Different techniques 
like chemical, biological, and combination of both have been undertaken using 
various methods to remove Cr(VI) from the water. Primarily bioremediation 
including bioreduction and biosorption has potential to remove Cr(VI) from 
water. Also some other processes like microbial fuel cells and biostimulation 
sideline the Cr(VI) removal from water along with different primary objectives. 
Among the living organism, microalgae have great potential to remove Cr(VI) 
from water. They have the unique photosynthesis and cellular metabolisms com-
pensating the Cr(VI) removal. The use of microalgae in bioremediation for 
removal of pollutants from the contaminated water is a practical interest due to 
different advantages as it requires low energy with reduced sludge formation and 
carbon dioxide sequestration. Most of the algae follow an adsorption followed by 
reduction of Cr(VI) during the bioremediation process.
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5.1  Introduction

Water pollution is one of the major environmental pollutions resulted from the bio-
geochemical water cycle. Many poisonous and harmful chemicals produced from 
different manufacturing industries contaminate water supplies [1]. Worldwide dif-
ferent countries are in mission for control and abatement of the water pollutions [2, 
3]. Heavy and toxic metals are one of the major reasons for pollution of water. The 
standard levels of different toxic metals in the drinking water are summarized by the 
regulatory authorities of different countries [4]. Hexavalent chromium or Cr(VI) is 
an important water pollutant proved to be carcinogenic even at low levels of parts 
per billion (ppb) [5]. The solubility and thermodynamic factors of Cr(VI) favor its 
transportation within the ecosystems [6].

The enrichment of Cr(VI) in water is related to the different industrial activities 
such as alloying industries, cement, chemical plants, electroplating, asbestos, con-
taminated landfill, glassmaking, industrial effluents, tobacco, rocks, and leather tan-
ning [4, 7, 8]. Most of the chromium is deposited in the Cr2O3 and FeO.Cr2O3. 
Chromium is extracted as metallic chromium through different industrial oxidation 
and reduction process [6]. About 90% of total chromium is used as components of 
alloys and 10% is used in cement, leather tanning, refractory, electroplating, pig-
ment, ceramics, glass, machinery, and wood preservation industries [8]. Refractory 
bricks used in ceramic industries are produced from chromite ores [9].

5.2  Chemistry of Cr(VI)

The trivalent chromium or Cr(III) and hexavalent chromium or Cr(VI) are the most 
stable chromium ions present in the environment [10]. Cr(VI) exists as Cr2O7

2−, 
HCrO4

−, H2CrO4, and CrO4
2−, and Cr(III) exists as Cr3+, CrO+, Cr(OH)2

+, HCrO2, 
and CrO2

− in the solution state [11]. Na2CrO4 is a primary product of the lime treat-
ment of minerals and further transformed to other compounds and ions such as 
CrF6, Cr2O7

2−, CrO3, CrOCl4, H2Cr2O7, CrO4
2−, HCrO4

−, and H2CrO4 [12]. The 
Cr(VI) species are strong oxidizing agent and they are used in different manufactur-
ing industries. The industries release wastewater to the environment containing high 
Cr(VI) level [5]. The stability of Cr(III) and Cr(VI) at different pH and Eh are 
shown in Fig. 5.1. Pradhan et al. [4] described the redox chemistry of chromium. 
The best mechanism of Cr(VI) removal from water is the reduction of highly solu-
ble Cr(VI) species to less soluble Cr(III). The less soluble Cr(III) can be removed 
by immobilizing them in the physical and chemical processes. Adsorption process, 
especially physical adsorption, is a suitable to remove less soluble Cr(III) [14].
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5.3  Biological Toxicity Mechanism of Cr(VI)

The anionic species of Cr(VI) are stable less than pH 6.0 (Fig. 5.1). The anionic 
species CrO4

2− has similarity with SO4
2− ion. This similarity of CrO4

2− with SO4
2− 

makes them easy to enter into the biological cells through the sulfate transport sys-
tem [15]. The CrO4

2− oxidizes different components of cells forming different 
reactive species inside the cells and itself reduced to Cr(III) with intermediates of 
Cr(V) and Cr(IV). It forms different intracellular reactive species like O2

−, O, O2H−, 
OH−, and free radicals during reduction of CrO4

2− [11]. The higher the Cr(VI) con-
centration, the more the reactive species generation [16]. The intracellular reactive 
species cause both oxidative and nonoxidative forms of DNA damage, i.e., Cr-DNA 
binding (adducts) [15]. Also metabolism of Cr(VI) is associated with the single- 
strand DNA breaks [17]. Different diseases like liver cancer, kidney cancer, lung 
cancer, dermatitis, dermal necrosis, sperm damage, and dermal corrosion are devel-
oped due to the alteration of DNA profile [5, 18–22, 51].

Fig. 5.1 Eh-pH phase diagram for chromium [13]
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5.4  Conventional Cr(VI) Treatment

Reduction of Cr(VI) is an emerging field of research due to its numerous toxicity 
effects on the human body. The convention treatment of Cr(VI) emphasizes on 
direct reduction [23], composite ceramic adsorption [24], resin adsorption [25], 
thermal treatment [26], nanomaterial-catalyzed reduction [27], electrolysis and 
electrocoagulation [28, 29], desalination [52], and catalytic reduction [30]. The con-
ventional methods involve different intensive subprocesses and utilize substantial 
chemical reagents and generate toxic sludge, making the overall process compli-
cated [10]. The conventional methods comprise of subprocesses that are not suitable 
for the in situ operation of Cr(VI) removal. Overall the conventional methods are 
expensive and not eco-friendly. Thus an alternative treatment method for detoxifica-
tion of Cr(VI) is preferable. Bioremediation is a potential alternative treatment 
method conquering the drawbacks of conventional treatment methods [31]. The 
Cr(VI) acts as an electron acceptor stimulating the oxidation required for the micro-
bial growth in the bioremediation process. Bioremediation uses different bacteria, 
plants, algae, fungi, and some derivative of organisms for the detoxification of 
Cr(VI) [10].

5.5  Algae for Cr(VI) Reduction

Romanenko and Koren’kov [32] first reported the microbial bioreduction of Cr(VI) 
in the late 1970s. They observed Pseudomonas species grown could reduce Cr(VI) 
in an anaerobic condition. Later Cr(VI) reduction using different microorganisms 
has been a hot bioremediation topic for the environmental researcher. For the biore-
duction of Cr(VI), parameters like agitation, initial Cr(VI) concentration, tempera-
ture, nutrient supplements, pH, cell immobilizers, and reactor design have been 
proved as influential parameters [8]. Photosynthetic microalgae absorb metal ions 
dissolved in water during the autotrophic primary production [33]. Microalgae 
detoxify different metal ions present in the water, either by changing the metal ions 
thermodynamic stability in water or complex formation [34]. The advantage of 
using microalgae as Cr(VI) reducers is they are available less expensively and 
conveniently.

A microalgae species Chlorella vulgaris has ability to reduce Cr(VI) photochem-
ically. Deng et al. [35] used C. vulgaris for the Cr(VI) reduction. For the photo-
chemical influence, the C. vulgaris was irradiated with a light of wavelength 365 nm 
using a metal halide lamp having output power of 250 W. Different parameters were 
varied during the photochemical reduction. They observed the Cr(VI) was increas-
ingly reduced by the C. vulgaris with increase of exposure time and algae concen-
tration, and decrease of pH and initial Cr(VI) concentration. In another study, a 
laboratory stock microalgae culture C. vulgaris was used to remove Cr(VI) from a 
wastewater sample. The wastewater sample was collected from a tannery industry 
and diluted with tap water in a ratio of 1:1 before starting the experiments. The 
Cr(VI) concentration in the wastewater sample was 3.22 mg/L. Under irradiation of 
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fluorescent lights of 149–299 μmol photons/m2/s, the salt-tolerant microalgae C. 
vulgaris removed Cr(VI) completely from the diluted water sample at 28  °C in 
12 days [36]. They did not study effectively the organelle activities of the C. vul-
garis cell during the reduction. Chen et al. [37] reported mechanism of the Cr (VI) 
reduction is due to the organelles of the C. vulgaris.

The microalgal biomass of C. vulgaris was used as an adsorbent for chromium- 
removing process. It was observed that Cr removal though C. vulgaris was occur-
ring not only through the adsorption mechanism but also through reduction 
mechanism. The results of X-ray absorption near-edge spectroscopy showed the 
Cr(VI) reduction by C. vulgaris. The enzymatic chromium reductase is the potential 
way to reduce Cr(VI). The Cr(VI) reduction was observed even in the dead cells 
revealing that a nonenzymatic reduction route is possibly involved in this process. 
Furthermore glutathione released from the broken cells played an auxiliary role in 
the Cr(VI) reduction [38]. The dry biomass of an isolated microalgal Chlorella min-
iata was used for the Cr(VI) adsorption. The biosorption coupled with bioreduction 
was found to be involved in the Cr(VI) removal. This biosorption coupled with 
bioreduction was confirmed in the desorption studies as the Cr(III) engaged in most 
of the adsorption spots. The Cr(VI) uptake increased with decrease of the initial 
pH.  The total Cr uptake was maximum at an initial pH  -3. The FTIR analysis 
revealed the amino and carboxylate groups were the adsorption sites of Cr(VI) and 
Cr(III) [39]. Dried biomass of C. vulgaris was used as absorbent for Cr(VI) removal 
from electroplating and galvanizing industry effluents. The pH was a limiting factor 
for Cr(VI) sorption. The highest Cr removal was observed at a concentration of 81.3 
mg/L was observed at. Freundlich isotherm model fitted the experimental data well 
[40]. Waste microalgae biomass residues of C. vulgaris from a biodiesel production 
unit were used as adsorbent for Cr(VI) uptake [41]. The removal of Cr(VI) increased 
as the pH decreased and temperature increased. The Sips isotherm was well fitted to 
the experimental data. At an optimum condition of pH 1.5 and temperature of 25 °C, 
the total chromium uptake was found to be 43.3 mg/g. X-ray photoelectron spec-
troscopy revealed an adsorption of Cr(VI) followed by reduction to Cr(III) was the 
mechanism for the adsorption. The FTIR study indicated a similar result that was 
reported by Han et al. [39] above.

Cr(VI) biosorption by raw algae is associated with a high organic compound 
leaching. A raw Sargassum sp. seaweed was modified with HCl, NaOH, CaCl2, 
HCOH, and C5H8O2 in order minimize organic leaching during Cr(VI) biosorption. 
The chemical modification by 0.2% HCOH was found to be enough for seizing the 
organic leaching. The maximum adsorption achieved in both modified seaweed and 
raw seaweed at pH 2.0 with the uptake of 1.1 and 0.6 mmol/g, respectively [42], A 
macroalga Sargassum cymosum was used for Cr(VI) removal which followed a 
reduction followed by adsorption process [43]. The alginate compound was first 
extracted from the Brazilian brown seaweed Sargassum filipendula. Then the resi-
due was used for Cr(III) and Cr(VI) removal from aqueous solutions. The biosorp-
tion followed by the reduction was observed for the bioremediation process. The 
Langmuir adsorption isotherm model was fitted to the Cr remediation with maxi-
mum biosorption capacities of 0.819 and 0.635 mmol/g for Cr(total) and Cr(III), 
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respectively [44]. A brown macroalga Pelvetia canaliculata was used as Cr(VI) 
remover from an acidic electroplating wastewater varying different adsorption 
parameters such as pH, initial Cr(VI) concentration, temperature, and biomass con-
centration. The acidified P. canaliculata biomass reduced 2.4 mmol/g Cr(VI) and 
adsorbed 1.9 mmol/g Cr(III). However, the raw P. canaliculata biomass packed in a 
column reactor showed the uptake of 2.1 mmol/g Cr(VI) [45].

Dry biomass of marine green algae Halimeda gracilis was used to remove 
Cr(VI). The optimized condition for Cr(VI) removal was pH 4.9, sorbent dosage 
2.2 g/L, agitation speed 136 rpm, and contact time 47 min with adsorption capacity 
55.55  mg/g. The adsorption was a pseudo-second-order intraparticle diffusion, 
pseudo-first-order kinetics, power function, and Elovich kinetic models. About 80% 
of the sorbent was regenerated in 0.2 M HCl solution [46]. Chemical modification 
of marine brown algae Cystoseira indica was performed for Cr(VI) removal. Four 
specified biomass specimen were prepared by cross-linking with epichlorohydrin 
(CB1, CB2), oxidized by potassium permanganate (CB3), and only washed by dis-
tilled water (RB). The maximum Cr(VI) removal was observed at a pH 3.0 in 2 h 
only for all four modified biomass. The maximum adsorption capacity of Cr(VI) 
were found to be 22.7, 24.2, 20.1, and 17.8 mg/g, respectively, for CB1, CB2, CB3, 
and RB [47]. Valorization with acid of seaweed Laminaria digitata was done Cr(VI) 
remediation. The protonated L. digitata biomass could remove 2.2 mmol/g. Cr(VI) 
removal followed a reduction-cum-adsorption mechanism. The adsorption capacity 
of the biomass increased with the extend of Cr(VI) reduction as more active sites 
were formed due to oxidation of biomass during the reduction process [48]. Raw 
and acidified biomass of alga Oedogonium hatei were used for Cr(VI) removal from 
an aqueous solution. The raw and acid-treated alga, respectively, adsorbed 30 and 
35 mg/g of Cr(VI) at an optimum condition of pH 2.0, contact time 2 h., adsorbent 
dose 0.8 g/L, and temperature 45  °C. The Cr(VI) adsorption process followed a 
pseudo-first-order kinetic model and was found to be spontaneous and endothermic 
in nature. The experimental data were well fitted to both the Freundlich and 
Langmuir adsorption isotherm. The FTIR analysis revealed functional group like 
-COOH, -OH, and -NH2 groups played major role in the biosorption process. Up to 
75% of the loaded adsorbent was regenerated in 0.1 M NaOH solution [49]. The 
activated carbon from blue-green algal bloom showed maximum adsorption capac-
ity of 155.52 mg/g of Cr(VI) from aqueous solutions. The adsorption process fol-
lowed the pseudo-second-order kinetic model. The experimental data well fitted to 
Freundlich adsorption isotherm [50].

5.6  Conclusions

The Cr(VI) level in the water increases above the standard regulatory concentration 
due to different anthropogenic activities such as pigment synthesis, metal finishing, 
leather tanning, chromite mining, and electroplating. This is started with the mining 
of chromite or ferrous chromite ores followed by different industrial activities 
resulting in Cr(VI) concentration in water. The Cr(VI) toxicity in the living 
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organisms is developed due to cellular Cr(VI) reduction forming hyperreactive spe-
cies inside the cells, Cr(III)-protein complex, and altered DNA sequence. The 
Cr(VI) in the water can be removed by either the chemical or biological or combina-
tion of both processes. Bioremediation including bioreduction and biosorption has 
potential to remove Cr(VI) from water. A variety of algal species have shown posi-
tive correlation toward Cr(VI) uptake. Some microalgae directly reduce Cr(VI) dur-
ing the photosynthesis. But, the biosorption process using biomass of microalgae 
has a wide potential for the purpose of Cr(VI) removal. The Cr(VI) acts as an elec-
tron acceptor forming active sites on the surface of biomass in the redox reactions. 
The active sites on the biomass easily adsorb the reduced Cr(III) in the cation-anion 
interactions. The major active sites are carboxyl, hydroxyl, and amine group present 
in the biomass or formed during the reduction of Cr(VI). Overall the biosorption 
process of Cr(VI) follows a reduction coupled with adsorption technique for its 
removal from water.
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6Removal of Radon from Radionuclide- 
Contaminated Water Using Microalgae
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Abstract
Bioremediation using microalgae is a potential alternative way to different con-
ventional water treatment processes. The advantages of using microalgae are as 
follows: it requires low energy with reduced sludge formation and carbon diox-
ide sequestration. This review summarizes the possible bioremediation of radio-
active radon from water system as radon gas is α- and β- radiation emitter. The 
major health hazard occurs due to indoor air radon which is usually released 
from the potable water contaminated with dissolved radon supplied through dif-
ferent distribution systems. Standard techniques like aeration and activated car-
bon filtration are the conventional techniques applied to remove radon from 
drinking water. However, both the processes face different technological draw-
backs from complex designing, maintaining uniform concentration flow, short- 
lived decay products, and risk of sewer recontamination. The activated 
intercellular polysaccharides of the microalgae cell can be a potential accumula-
tor of radon from drinking water as the activated intercellular polysaccharides 
mimic the activated carbon. The microalgae do not grow under the influence of 
high energy radiation; but, due to the evolution of this kind of microorganisms 
under prolonged influence of high energy radiation, they overcome the physio-
logical stress in the extreme environment for their growth. A number of algal 
species grow in the highly radioactive sites. They accumulate different radioac-
tive elements as well as α-, β-, and γ-radiations.
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Abbreviations

μSv/y 10−6 × Sievert per year
BARC Bhaba Atomic Research Center, Mumbai, India
BIS  Bureau of Indian Standard
BOD Biochemical oxygen demand
Bq/L: Becquerel per liter, 1 Bq/m3 = 0.027 pCi/L
Bq   Becquerel. Unit of radioactivity, equal to one nuclear transformation 

per second
COD Chemical oxygen demand
FOG Fat, oil, and grease
GAC Granular activated carbon
Gy  Gray, an SI unit of ionization radiation, 1 Gy = 1 J/kg
mBq/L Millibecquerel per liter
Rn-222 Radon with atomic mass 222 (most stable isotope of radon)
Sv   Sievert. Unit of collective effective dose, equal to the sum of effec-

tive doses of individuals among a group. 1 Sv = 1 J/kg
Sv/y Sievert per year
UNSCEAR  United Nations Scientific Committee on the effects of atomic 

radiation
USDWR United States Drinking Water Regulation
USEPA United States Environmental Protection Agency
WHO World Health Organization
α  Alfa ionization radiation
β  Beta ionization radiation
mrem/yr.  milliremper year. (rem: Roentgen Equivalent Man is a measurement 

that correlates the dose of any radiation to the biological effect of that 
radiation), 1 Sv = 100 rem

6.1  Introduction

Radon (Rn) radiates high energy α- and β-radiations. Radioactive Rn has 36 iso-
topes, but only Rn-222 is stable [1]. Due to the specific chemical properties, potable 
water supplied to household from different resources are contaminated with Rn-222 
[2]. Most of the waterborne radon entering a home is released into the indoor air 
through normal water use activities; later, this indoor air radon is inhaled by the 
human being. According to the UNSCEAR report, the average effective radon dose 
caused due to inhalation is directly proportional to the concentration of radon pres-
ent in the drinking water [3, 4]. The acceptable limits for gross α- and β-radiation 
are listed in Table 6.1. Radon is an established human lung carcinogen second to 
that of tobacco smoke. About 10–15% of total death due to lung cancer in the United 
States is due to indoor Rn-222 exposure [2]. Besides lung cancer other diseases such 
as acute leukemia, kidney cancer, prostate cancer, malignant melanoma, and 
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childhood cancer are developed due to indoor Rn-222 inhalation [2]. In vitro muta-
genicity studies revealed radon alters the gene sequence resulting propagation and 
separation of cancer cells. Kjellberg and Wiseman [9] reported the dissolved 
Rn-222 in drinking water absorbed in the stomach cell has positive correlation with 
stomach cancer.

Different water treatment techniques like aeration, lime softening, GAC filtra-
tion, reverse osmosis, coagulation and flocculation, sand filtration, and hydrous 
manganese filtration have been used for treatment of radionuclides and other pollut-
ants present in water [10]. The GAC adsorption and diffused aeration techniques 
have been reported as potentially cost-effective treatment processes to remove 
Rn-222 [11]. But, the major concern is the accumulation of Rn-222  in different 
tools of the above two processes which ultimately release back to the water reser-
voirs resulting in an elevated radiation levels [10, 12, 13]. Bioremediation emerges 
as a potential alternative to the above technologies as it is simple to scale up for in 
situ operation, requires low-cost equipments, is eco-friendly and cost-effective, has 
no emission, and gives almost a closed-loop process [14–18]. In the bioremediation 
process, different indigenous microorganisms or microphytes play important role in 
switching the contaminants through the metabolic process. The use of microalgae in 
bioremediation is a practical interest in wastewater treatment due to different advan-
tages as it requires low energy with reduced sludge formation and carbon dioxide 
sequestration. Extremophilic microalgae can grow under variable conditions of 
acid, alkali, pH, temperature, light, CO2, and metal ions [19]. Due to their sustain-
able evolution mechanism in the extreme environments, they can be potential radia-
tion accumulator in the bioremediation process. But adequate reports have not been 
presented to predict the mechanism of accumulation of radionuclides by microal-
gae. Only few authors have shown the tolerance of microalgae to radiation without 
any genome defects [20–28].

6.2  Radon in Water

Radon is an inert gas and always tends to be in the elemental state. It does not form 
any chemical compounds or complexes; its concentration in water is unlikely 
changed by natural geochemical process except dilution and seasonal variation. 
Sometimes Rn-222 concentration in some geological water is above 10,000 Bq/L 
which is much higher than the acceptable level as shown in Table 6.1. Rn-222 is the 
only inert gas in the decay series of uranium (U-238) and thorium (Th-232) at  
standard temperature and pressure. The parents of Rn-222  in the decay series,  
i.e., radium and uranium, are highly soluble in water in the form of Ra2+ and U6+. 

Table 6.1 Acceptable limit of radiation in drinking water

Sl. no. Radiations NPDWR, USEPA [5] BIS [6] WHO [7] EU [8]
1. Gross α emitters 15.0 pCi/L 0.1 Bq/L 0.5 Bq/L 0.04 Bq/L
2. Gross β emitters 4.0 mrem/yr 1.0 Bq/L 1.0 Bq/L 0.4 Bq/L
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During the decay Rn-222 reaches 99% secular equilibrium with its immediate par-
ent Ra-226 in 25.4 days in a closed system [29]. But in an open system like ground-
water, transport of daughter and parent causes non-prevailing of secular equilibrium 
causing continuous α decay. Ra-226 decays continuously produce Rn-222 to achieve 
secular equilibrium enriching its concentration. In some location its concentration 
is much higher than the regulatory level. It produces stable daughter isotopes, and 
those are Pb-210 (t1/2  =  22.3  year), Bi-210 (t1/2  =  5.013  days), Po-210 
(t1/2 = 138.376 days), and stable Pb-206. The density of radon gas is 9.074 g/L [30].
The solubility of radon gas in water is 1.67 × 10−4 (mole fraction) at 25 °C, which 
is more than oxygen (2.29 × 10−5) [31]. Due to the adequate solubility, Rn-222 is 
mechanically transported to water bodies from different sources by means of direct 
contamination of Rn-222 or decay product of Ra-226 resulting in elevated Rn-222 
concentration [32]. On the basis of literature, a biogeochemical radon cycle is pro-
posed which is shown in Fig. 6.1. Due to hydrological cycle, a variety of contami-
nants including Rn-222 are mixed with water in the form of dissolved or suspended 
state. In the environment the sources of Rn are (1) terrestrial crusts like U-ore, 
phosphate rock, granite, and lime stone; (2) building materials and their conjunc-
tions; (3) plumbing wastes; (4) native radioactive decay; (5) continental temperature 
inversion due to seasonal variations; (6) meteorological variation like wind speed, 
humidity, and temperature; (7) accumulation due to low atmospheric pressure; (8) 
basement soil to indoor due to structural defects of floors; (9) carrier gas like water 
vapor and CO2; (10) uranium mining wastes; (11) cereal and pulses; and (12) by- 
product of uranium ore processing in HCl or HBr [2, 10, 33, 34]. Rn-222 is intro-
duced to water from the above sources by different natural and artificial activities.

Fig. 6.1 Proposed geochemical radon cycle [2, 10, 33]
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Several articles have reported the elevated Rn concentration in drinking water in 
the Indian province such as Tamil Nadu, Karnataka, Punjab, Haryana, Rajasthan, 
and Himalaya regions [13, 35–37]. The occurrence of radioactive Th-232, U-238, 
Ra-226, K-40, and Cs-137 has been reported in the daily consumables like rice, 
wheat, pulses, and drinking water of Odisha’s Chhatarpur area in India [33]. The 
ingestion doses were estimated in the range of 110–937, 11–308, and 0.6–3.0 μSv/
year from the cereals, pulses, and drinking water, respectively. Water samples col-
lected from the borewells of Mandya region of Karnataka, India, have been reported 
to be contaminated with Rn-222 ranging from 6.5 to 44.9 Bq/L. The ingestion dose 
due to the borewell contamination varies from 26.4 to 178.6 μSv/year [36]. In the 
Amritsar city of Punjab, India, Rn-222 concentration ranging from 0.5 to 11.1 Bq/L 
was found in the drinking water samples [38]. The mineral water used for drinking 
purpose in two states of Brazil, i.e., São Paulo and Minas Gerais, has been reported 
to be contaminated with Rn-222 and Rn-220 [39]. The water utilities used for the 
distribution of water have been reported to be contaminated with radium, thorium, 
and uranium isotopes, and their gross alpha and beta activity were 255 and 181 
pCi/g, respectively [10]. The water samples collected from Rajasthan, India, were 
contaminated with Rn-222 ranging from 0.6 to 21.9  Bq/L, and the total annual 
effective dose ranged from 1.4 to 60.0 μSv/year [3]. The drinking water samples 
collected from Shimoga district of Karnataka, India, were estimated to be ranged 
from 3.0 to 39.0 Bq/L. About 45% of total collected drinking water samples were 
contaminated with Rn more than the recommended MCL [40]. The uranium con-
centration ranging from 2.0 to 3.5 ppm was found to be contaminated in the soil 
samples collected from Ganderbal district of Jammu and Kashmir, India. The Rn 
exhalation rate due to the uranium in the soil was found to vary between 5.0 and 
21.9 mBq/kg/h [35]. A raw water sample from the inlet of a WTP showing total 
radium activity of 0.25 Bq/L was introduced to the standard water treatment pro-
cesses such as flocculation/sedimentation, sand filtration, and reverse osmosis to 
evaluate the radium removal efficiency [41]. It was found that the flocculation/sedi-
mentation, sand filtration, and reverse osmosis, respectively, removed 33, 22, and 
98% of radium from the water in the individual step. The solid waste generated in 
the sedimentation and sand filtrations stages were found to contain 4500 and 
6752  Bq/kg of radium, respectively. In another study the air inside a WTP was 
found to be ranged from 2 to 18 Bq/m3 [42].

6.3  Conventional Radon Removal

6.3.1  Aeration

Radon from drinking water can be removed through aeration. In the aeration pro-
cess, clean air is injected to water in order to remove certain dissolve gases and 
metals [43]. Due to its high Henry constant of radon solubility in water aeration, it 
is a suitable process to remove it from water. The aeration techniques involved stor-
age and/or storage with minimal aeration. The diffused bubble aeration technique 

6 Removal of Radon from Radionuclide-Contaminated Water Using Microalgae



80

was used to efficiently remove radon from a moderately contaminated groundwater 
supplies [44]. The important parameters are air-to-water ratios and detention times 
for the diffused bubble aeration technique. In an experimental study of the diffused 
bubble aeration technique, about 97% of radon could be removed at an optimized 
condition of detention time and air-to-water ratio respectively 19 min and 12 [45]. 
The efficiency of the aeration solely depends on the air-to-water ratio which deter-
mines the cost of the process. Also there are so many factors to be considered to 
design an aerator especially for treatment of Rn-222 making the process too com-
plex [12]. Several technical failures occur during operation of the aerators. Moreover 
the air ventilated to atmosphere cause high level of Rn-222 airborne. Raucher and 
Drago [13] estimated the annual installation and operation cost of aeration tech-
nique for radon removal across the United States was $2.6 billion.

6.3.2  Activated Carbon Adsorption

Rn is an inert gas found in the elemental form instead of forming any chemical 
compound. Instead of chemisorptions, the physical adsorption on the GAC surface 
is a suitable process to immobilize Rn from water. Annanmaki and Turtiainen [12] 
reported about 99% Rn removal applying a GAC adsorption process. But the major 
problem is production of the short-lived decay products of radon retained on the 
GAC which emits gamma rays as a consequence. Also the radioactivity retained in 
the GAC returned to the sewer again on its disposal. Karunakara et al. [46] used 
coconut-based granular activated charcoal as cylindrical adsorbent beds to remove 
Rn-222 and Rn-220 from air. The adsorption coefficient varied from 2.2 to 4.1 m3/
kg. The adsorption coefficient had a positive linear relation with the flow rate. The 
adsorbent could be regenerated on heating at 100  °C.  In another study different 
GAC adsorbents successfully adsorbed radon from water supplies containing Rn 
1500 to 750,000 pCi/L [47]. The removal of Rn from drinking water using GAC is 
a positive benefit for the water users. However, the accumulation of radon on acti-
vated carbon causes radiologic hazards for the water treatment plant operators, and 
the spent carbon may be considered a low-level radioactive waste.

6.3.3  Reverse Osmosis

Reverse osmosis is an advanced water treatment technique used to remove different 
trace elements and ions present in the water. A two-pass reverse osmosis system 
performed well to remove radionuclides from geothermal water [48]. The removal 
efficiency was found to be ranging from 70.7 to 77.2% for both radium and uranium 
with the gross α and β activities reduced to undetermined level. Commercial reverse 
osmosis equipment was examined for removing radioactivity as well as salinity 
from a domestic water. The reverse osmosis equipment removed most of the ele-
ments up to 94%; however, it failed to remove gaseous radon in the water [49].
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6.4  Algae as Radon Remover

The activated intercellular polysaccharides of the biological cell mimic the proper-
ties of activated carbon. Since the activated carbon has ability to absorb Rn-222 from 
drinking water, the activated intercellular polysaccharides of the biological cell of 
radio-tolerant organism can show a potential accumulator of Rn from drinking water 
[12, 27]. Microalgae are found to contain up to 61% carbohydrates, 45% proteins, 
and 4% lipids which can be utilized as radionuclide accumulator [14, 18, 21, 27]. But 
the major issue is α- and β-tolerant organism finding due to lack of adequate research 
on this field. Secondly, some microbes have shown extraordinary tolerance to the 
high energy radiations above the standard regulation level. Some algae species have 
shown tolerance and accumulation power toward different radioactive isotopes, and 
those are listed in Table 6.2. The extremophilic species like Thermococcus gamma-
tolerans, Pyrococcus furiosus, Halobacterium sp., Chroococcidiopsis sp., and 
Alternaria alternata are extremely radio resistant similar to the Deinococcus radio-
durans [28, 50]. The evolution of the radioresistance properties in D. radiodurans 
has been studied, far less in other organisms. The evolution is mainly due to protec-
tion against oxidative stress, an efficient conventional DNA repair tool box, original 
DNA repair mechanisms, and a condensed nucleoid [50].

Few bacteria and microalgae showed their potential to accumulated radioactive 
elements from water [20–28]. The microorganisms have developed an adaptation 
method to overcome the physiological stress in radioactive environments. The most 
studied radio-tolerant microorganism is Deinococcus radiodurans [21]. The micro-
algae can sustain irradiation stress up to 20,000 Gy. The analysis revealed the resis-
tance to radiation dose by the microalgae due to the genome multiplication and 
speedy DNA repair mechanisms [27]. Another group of scientist in Australia 
investigated the tolerance ability of Chlorophyceae green microalgae to ionizing 

Table 6.2 Algae tolerance toward radionuclides

Algae
Tolerance/treatment to different 
radionuclides References

Closterium moniliferum Strontium-90 [25, 26]
Coccomyxa actinabiotis Ag-110, Co-60, Co-58, Sb-124, Cr-51, 

Zn-65, Mn-54, Cs-137, U-238, C-14
[27, 28, 
50]

Chara sp., Nitella sp., Pistia sp., 
Jussia sp., Eichornia sp., Hydrilla

Ra-226 [51]

Polysiphonia fucoides, Furcellaria 
lumbricalis

Cr-51, Mn-54, Co-57,Co- 60, Zn-65, 
Sr-85,Cd-109, Ag-110, Sn-113, Cs-137, 
Am-241

[52]

Ulva sp., Ecklonia radiata I-131 [22]
Deinococcus radiodurans Radioactive waste mixed with Hg(II) [21]
Chroococcidiopsis Artificial ionization radiation from 

tungsten disk
[20]

Jania longifurca, Cystoseira, 
Sargassum vulgare

Cs-137, Po-210, Pb-210 [53]

Chlorophyceae Artificial γ-rays and fast neutrons [23]
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radiations [23]. Radioactive iodine (I-131) as source of radiation has been detected 
in macroalgae. Different I-131 contaminated sample from liquid effluent and sludge 
of STPs were evaluated in terms of concentration factors (ratio of concentration in 
algae to the surrounding media). The I-131 level in other macroalgae such as Ulva 
sp. and Ecklonia radiata was also estimated. The radioactive I-131 was accumu-
lated by macroalgae Ulva sp. and E. radiata in the shoreline outfall of a coastal 
environment in Australia. The concentration factors of Ulva sp. and E. radiata were 
found to be 177 and 528, respectively [22]. The advantage of using microalgae for 
bioremediation is due to the capacity of rapid biomass generation intern which 
increased potential adsorption sites for contaminants in water.

In the Nature news, it has been reported that algae hold a key role in remediation 
of radiations following the Fukushima nuclear accident in Japan. This novel conclu-
sion was claimed at a meeting of the American Chemical Society [25, 26]. The alga 
was characterized as Closterium moniliferum. The C. moniliferum removed radio-
active Sr-90 from the surrounding water containing radioactive contaminants. The 
mechanism of remediation was described as the formation of vacuoles, a subcellular 
structure, followed by deposition in the crystal [25]. In another study the newly 
discovered unicellular microalgae Coccomyxa actinabiotis is isolated from a nuclear 
facility displaying exceptional resistance to ionizing radiation, accumulation, and 
detoxification of radioactive isotopes [27, 28, 50]. Bioremediation is an interesting 
alternative for mitigation of radiations released from aqueous effluents of nuclear 
industries. The microalgae can fight against the radiations during unexpected acci-
dents in the nuclear industries. A new isolated microalgae C. actinabiotis withstand 
at a radiation doses up to 20,000 Gy. The isolated C. actinabiotis rapidly decontami-
nated the major radioactive metals from the wastewater of nuclear industries and 
85% of carbon-14  in few hours only. This autotrophic eukaryote C. actinabiotis 
showed tolerance similar to that of the famous radioresistant prokaryote D. radio-
durans. The nuclear magnetic resonance showed the D. radiodurans is hardly 
affected by radiation doses of up to 10,000 Gy with easy recovery of the cellular 
functions. Another report suggested the radiation resistance of Chroococcidiopsis 
strains can survive prolonged radiation through DNA repair mechanism [20].

Highly adapted filamentous algae grow in the wastewater at the uranium indus-
tries at Jaduguda, India. The algae accumulated Ra-226 from the wastewater of 
tailing pond, and its concentration was found to be 9850 Bq/kg in free-floating algal 
species with the maximum concentration factor of 8.6 [51]. Bioaccumulation ability 
of radionuclides such as Cr-51, Mn-54, Co-57, Co-60, Zn-65, Sr-85, Cd-109, 
Ag-110, Sn-113, Cs-137, and Am-241 by red algae species Polysiphonia fucoides 
and Furcellaria lumbricalis isolated from the southern Baltic Sea was determined 
under laboratory conditions. Compared to the F. lumbricalis, P. fucoides demon-
strated better bioaccumulative properties toward most of the investigated radionu-
clides [52].

The study of accumulation of radionuclides using different microalgae is in the 
elementary stage though numerous researches have been done for application of the 
rapid generating algae biomass for wastewater treatment process. It is too early to 
speak about the mechanism of the accumulation of radionuclides by the microalgae. 
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The phycologists have a lot of scopes in the bioremediation of radionuclides using 
different naturally occurring microalgae. So the future research may be focused on 
isolation, characterization, taxonomy, selection of strain, tolerance study, genomic 
and metagenomics study for radio ecosystem, culturing of microalgae, biomass 
generation and harvesting, adaptability, accumulation of radionuclide, metagenom-
ics study post accumulation, optimization of growth, degrading parameter correla-
tion with metagenomic study with spectroscopic analysis, kinetic parameters for a 
low cost, and less complex bioremediation process for the radionuclides including 
the Rn-222.

6.5  Conclusions

The potable water supplied to household from either groundwater or water reservoir 
containing Rn-222 is the major reason for indoor radon contamination. Prolong 
inhalation or ingestion of the gas has several health effects. Two processes such as 
liquid phase granular activated carbon adsorption and air stripping with vapor phase 
carbon have been performed commercially to remove the radon from water despite 
different technological drawbacks like complex designing, uniform concentration 
flow, short-lived decay products, and risk of sewer recontamination associated with 
the processes. So time has come to search for a new technology for complete 
removal of carcinogenic radon from water environment. Algae holds promising in 
this scenario. Bioremediation is an interesting alternative for mitigation of radia-
tions released from aqueous effluents of nuclear industries. The microalgae can 
fight against the radiations during unexpected accidents in the nuclear industries. 
The evolution of the radioresistance properties in different algae species is mainly 
due to protection against oxidative stress, original DNA repair mechanisms, and 
condensed nucleoid. Therefore phycoremediation may be a promising opportunity 
for the environmentalist to remove radon from the water system.
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Abstract
Cyanobacteria are the most ancient lineages of the domain Bacteria and have 
been playing a crucial role in shaping our planet through their highly proliferat-
ing nature in harsh environmental conditions because of their adaptability to 
grow along with other photosynthetic and heterotrophic microbial community 
with varied ranges of salinity, pH, temperature, radiation, and water potential. 
Rise in temperature is reported to be the deciding factor in bringing down the 
microbial community diversity of hot springs. In the present study, for the first 
time, we reported the current status of the variability in community structure and 
predicted metabolic activity among cyanobacteria population of two sulfur hot 
springs, Atri at 48 °C and Taptapani at 58 °C, from the state of Odisha, Eastern 
India, using metagenomic approach. We further tried to establish the relationship 
between the differential occurrences of cyanobacteria clades with those of coex-
isting non-cyanobacteria clades chloroflexi from our previously published find-
ings of hot spring microbial diversity analysis.

Predominance of thermophilic Leptolyngbya (96.25%) in Atri and prevalence 
of mesophilic Arthronema (83.81%) in Taptapani, as discovered through 16S 
rRNA amplicon sequencing of their community DNA, as a function of tempera-
ture, are the interesting features of the present study. Such differential presence 
of cyanobacteria community in these two hot springs can be correlated with 
unequal existence of some non-cyanobacteria members’ chloroflexi, as well as 
with possible influence of physiochemical parameters, more specifically tem-
perature. Variation in cyanobacteria diversity and composition of these hot 
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springs as revealed through sequence analysis were also evinced by respective 
differences in richness, evenness, and Shannon’s diversity indices. The two tropi-
cal sulfur-rich hot springs, Taptapani (48  °C) harboring mesophiles and Atri 
(58 °C) comprising thermophiles, provide an opportunity to understand the eco-
physiological reasons behind the differences in structural and functional profile 
of cyanobacteria community.

7.1  Introduction

Cyanobacteria, the most ancient domain of Bacteria, have been playing a central 
role in reshaping our earth because of their exceedingly flourishing nature in severe 
environmental conditions due to their adaptability to multiply unaffectedly in con-
sort with other microbial community.

Cyanobacteria, widespread on this earth in different environments, could raise 
many queries regarding (1) their adaptability to newer environment for a long time 
resulting in huge diversity, (2) the mechanism behind possible linking of ecological 
diversity with their existing physiological diversity, and (3) the elimination of some 
progenitors during their adaptation to changing environment. Pertinent replies to 
above queries may help establishing the diversity and pattern of distribution of cya-
nobacteria. Whitton and Potts [1] proposed that the cyanobacteria provide an effi-
cient platform to validate above hypotheses as these photo-autotrophic bacteria are 
known to get proven to thrive in varied terrestrial and aquatic ecological niches with 
varied ranges of temperature, pH, salinity, water potential, and radiation.

Synechococcus, because of their wide adaptability, are able to invade in several 
alkaline hot springs of different continents of the world; Africa, Asia, Western North 
America, as well as Europe [2]. Dvořák et al. [3] established that global elevation in 
temperature could be linked to the polyphyletic descent of Synechococcus from 
various environmental niches like freshwater, marine water, peat bog, hot springs, 
etc. Similarly, important role of rise in temperature in reshaping the prolific growth 
of Synechococcus and Prochlorococcus was depicted by Flombaum et al. [4]. On 
the other hand, Callieri et al. [5] established the phylogenetic diversity and global 
distribution of Synechococcus in extreme ecological territories with reference to 
salinity and oligotrophic conditions from volcanic lakes of Mexico, North Patagonia, 
and Italy.

Ecophysiological factors such as carbon, sulfur, nitrogen, pyrite, as well as tem-
perature can affect microbial structure building [6, 7]. Reduction in diversity of 
microbial structure of the community in hot springs due to rise in temperature is 
reported by Cole et al. [8]. Shift of community from phototropic to chemotrophic 
was observed with augmentation of temperature by Swingley et al. [9] and De León 
et al. [10]. From above findings, it can be interpreted that temperature can play an 
important role in influencing taxonomic diversity and compositions of the 
community.
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With the advent of metagenomics (culture-independent molecular methods), 
based on the studies of community DNA of the environmental sample, ability to 
analyze structural and functional complexity and to describe the ecology of the 
microbial populations is significantly enhanced [11].

The unevenness in cyanobacterial community structure as well as their predicted 
functional activity of two sulfur hot springs’ population  – Atri (AT) (longitude, 
85°29′ 58.485″E; latitude, 20°13′32.784″N; and elevation, 120 ft. above sea level) 
at 48 °C and Taptapani (TP) (longitude, 84°24′ 4.6″E; latitude, 19°30′16.8″N; and 
elevation, 1800 ft. above sea level) at 58 °C of the state of Odisha, Eastern India 
(Fig. 7.1), having 10 °C difference in temperature using metagenomics approach – 
is presented for the first time. Metagenomic DNA from the sediments of these hot 
springs were subjected to analysis through NGS using Illumina platform targeting 
V3 hyper variable regions of prokaryotic 16S rRNA gene through their amplifica-
tion and sequencing. We further tried to establish the relationship between the dif-
ferential occurrences of cyanobacteria clades from two hot springs having variation 
in temperature with those of coexisting non-cyanobacteria clades chloroflexi from 
our previous published findings of hot spring microbial diversity analysis [12].

7.2  Materials and Methods

7.2.1  Physicochemical Analysis

Sediment samples were collected from AT and TP hot springs of Odisha (Fig. 7.2a, b). 
The temperature and pH were measured on-site. Potassium, organic carbon, sulfur, 
phosphorus, and nitrogen were analyzed by the OUAT, Bhubaneswar [13].

7.2.2  Metagenomic Library Construction and Sequencing

Total genomic DNA from sediment samples of both the hot springs were extracted as 
described by Sahoo et al. [12]. The primers 341F, 5′-CCTACGGGAGGCAGCAG-3′ 
and 518R, 5′-ATTACCGCGGCTGCTGG-3′ were used to amplify V3 region of the 
16S rRNA using metagenomic DNA [14]. PCR parameters were set as described by 
Sahoo et al. [12]. The prepared library was sequenced by Illumina GAIIx sequencer 
at Genotypic Technology Pvt. Ltd (India).

7.2.3  Taxonomic Abundance

All the sequences of both the samples were analyzed using the QIIME v1.9.1-dev 
[15], and quality control was done by FastQC [16]. QC passed sequences were 
annotated against Greengenes v13.8 [17] databases. The reference OTUs were 
picked by UCLUST [18] and taxonomy assignment was done by Mothur [19].

7 Shift in Structural and Functional Diversity of Algal Community…
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7.2.4  Predicted Functional Activity

The predicted functional analysis was done by PICRUSt [20] and Tax4Fun [21] to 
explore the KEGG orthologues (KOs), Clusters of Orthologous Groups of proteins 
(COGs), and the RNA family (Rfam) in the hot spring metagenome based on the 
16S rRNA sequencing data represented in Greengenes database v13.5.

7.2.5  Statistical Analysis

The nonparametric indices, species richness (S), Shannon’s diversity index (H′), 
Simpson’s diversity index (D′), Simpson’s dominance index (D), and Simpson’s 
evenness index (E), were calculated from taxonomic abundance for each clone 
library using the statistical tool PAST v3.02 [22]. With the help of STAMP v2.1.3 
[23], predicted functional abundances from PICRUSt and Tax4Fun were compared 
for statistical significance and biological meaningful differences between each 
clone library by employing White’s nonparametric t-test [24] with a Benjamin- 
Hochberg FDR multiple test correction [25].

Fig. 7.2 (a) Atri hot spring. (b) Taptapani hot spring

7 Shift in Structural and Functional Diversity of Algal Community…
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7.3  Results and Discussion

7.3.1  Eco-physiochemical Analysis

The two hot springs are situated at varying altitudes, 120 and 1800 ft. above the Bay 
of Bengal, respectively (Fig. 7.1), with varying temperatures. A difference of 10 °C 
in water temperature between two hot springs TP (48  °C) and AT (58  °C) was 
recorded, but no difference in the pH was found in respective samples (pHTP = 8.76 
and pHAT = 8.56). Physiochemical parameters of sediment samples of the hot springs 
were different from each other as given in Table 7.1. TP is rich in sulfur and phos-
phorus as compared to AT. Total organic carbon of AT sample as well as nitrogen 
and potassium was higher than those of TP (Table 7.1). The dissimilarity in physi-
ological parameters could be due to variation in elevation, phytogeography topogra-
phy, and environmental conditions surrounding respective hot springs.

7.3.2  Cyanobacteria Community Structure and Composition

Out of 544,887,837 base pairs obtained for hot springs samples targeting the hyper 
variable V3 region of 16S rRNA gene using the Illumina platform, 35,063,514 bp 
and 2,056,775 bp of high-quality sequences for AT and TP samples were obtained 
as analyzed using QIIME. Cyanobacterial diversity and richness were observed to 
be different in hot spring between TP and AT as observed from their diversity indi-
ces (Table 7.2). TP (79322) revealed higher number of sequence reads as compared 
to AT (4611) and demonstrated highly diverse cyanobacterial populations (1636 
OTUs) as compared to AT 133 (OTUs) (Table 7.2) having 10 °C higher temperature. 
Inverse relationship of hot spring temperature with that of community richness is 
supported by the findings of Cole et al. [8].

In the analysis, only high-quality sequences were classified using Mothur (cutoff 
E-value 1e-5) against Greengenes databases. Around 96.42% and 87.35% of the 
total cyanobacteria of AT and TP hot spring, respectively, belonged to class 
Synechococcophycideae (Fig.  7.3a). At order level, the cyanobacteria members 
were found to be predominated with Pseudanabaenales (87.35%) followed by 
Nostocales (8.19%) and Chroococcales (3.58%) in TP (Fig. 7.3b). On the contrary, 
a highly disproportionate percentage of order Pseudanabaenales (96.3%) was 
observed in AT. Predominance of Pseudanabaenaceae (96.3%) at family level was 
recorded in AT (Fig.  7.3c), while at genus level, TP was found to be prolific in 
Arthronema (83.81%) but AT was with 96.25% Leptolyngbya (Fig. 7.3d).

7.3.3  Shift in Cyanobacterial Genera

The cyanobacteria composition from the level of class down to family followed a 
significant escalation in members of Pseudanabaenaceae family. This swing of per-
centage composition at genus level could be due to 10 °C higher in temperature in 
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AT which is elucidated by the mesophilic nature of Arthronema sp. [26] and ther-
mophilic nature of Leptolyngbya sp. [27]. The hot springs having temperature rang-
ing from 40 °C to 80 °C are chiefly predominated by Leptolyngbya as supported by 
previous sequencing and microscopic study [28–31]. Amarouche-Yala et al. [32] 
reported worldwide invasion of Leptolyngbya sp. in hot springs. They also reported 
their highest abundance in Algerian hot springs as well as different species such as 
L. foveolarum, L. laminosa, and L. amplivaginata. Leptolyngbya isolated from the 
Euganean thermal muds exhibited its polyphyletic nature as observed from the clus-
tering of the type species of Leptolyngbya, L. boryana, and L. boryana (ex L. foveo-
larum). It was also observed that only Leptolyngbya (ETS-08) and Spirulina 
(ETS-02) were only able to thrive at temperature above 50–55 °C which supports 
the high proportion of Leptolyngbya in AT (58 °C). The phylogenetic relatedness of 
Leptolyngbya strains with those from subaerophytic and geothermal environments 
has further proven the fact that Leptolyngbya are inhabitants of elevated temperature 
[33].

Amarouche-Yala et  al. in 2014 reported the incidence of Leptolyngbya, 
Synechococcus, and other cyanobacteria in springs with high temperature varying 

Table 7.2 Diversity indicesa and richness between AT and TP

n N S H′ D′ D E

Atri 3545 (76.83%) 133 28 0.372 0.1068 0.8932 0.0518
Taptapani 74,991 (94.54%) 1636 245 1.957 0.6966 0.3034 0.0289

aSubudhi et al. (2017)
n total number of mapped individuals, N total number of OUTs, S species richness, H′ Shannon’s 
diversity index, D′ Shannon’s diversity index, D Simpson’s dominance, E Simpson’s evenness

Fig. 7.3 Taxonomic abundance for Atri and Taptapani at (a) class, (b) order, (c) family, and (d) 
genus levels
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from 45 to70°C and also suggested Leptolyngbya being the most thermophilic. He 
further observed that the shift in cyanobacteria composition from Oscillatoriales, 
Stigonematales, and Chroococcales in the springs having temperature 40–55 °C to 
Leptolyngbya dominated hot spring at 70 °C. These findings clearly corroborate our 
notes on shifting of 83.81% mesophilic Arthronema in TP to a thermophilic 
Leptolyngbya dominance in AT (96.25%) as a function of temperature. The shift in 
community from phototropic dominance to chemotrophic dominance was also doc-
umented earlier as an elevation of temperature [9, 10]. Thus, it may be deduced that 
temperature can influence diversity, structure, richness, and compositions of any 
community.

7.3.4  Correlation Between Cyanobacteria and Chloroflexi

Degree of difference in cyanobacteria in these two hot springs (AT 96.42%, TP 
87.35%) having little difference in other physiological parameters may further be 
explained by correlating with different amounts of chloroflexi clades (AT 52.39%, 
TP 7.16%) as also described in our previous report [12]. It was observed that cyano-
bacteria and chloroflexi were negatively interrelated with 10 °C higher temperature 
of AT at 58 °C but positively correlated at lower temperature of 48 °C of TP endors-
ing the existence of complex physiological relationship between these two phyla. 
However, exactly similar experience was proposed by Wang et al. [34] in their stud-
ies on role of temperature in shaping the structure of microbial community in 
Tibetan plateau hot springs where he found a positive correlation between these two 
phyla at temperature range 43–55 °C but the reverse in relationship at temperature 
between 55 and 75 °C and validated the findings from qPCR results. However, role 
of other physiological parameters cannot be ruled out.

7.3.5  Predicted Functional Analysis

The predicted functional analyses of both the hot springs showed cellular processes, 
bacterial chemotaxis (3.0817%, 2.7602%), and flagellar assembly (0.33%, 0.21%) 
as the largest category in the hot springs AT and TP, respectively, as shown in 
Fig. 7.4. Occurrence of different genes designated with KO accession numbers in 
different pathways was remarkably high in TP than that of AT. The taxonomic abun-
dance at family level varied in both the hot springs showed absence of phormidida-
ceae completely in AT. Low prevalence of functions (peptidoglycan synthesis, drug 
metabolism, fatty acid degradation, nitrogen metabolism, amino acid degradation, 
etc.) in AT and higher activity for cellular processes as compared to TP may be due 
to10 °C difference in temperature. Differences in the percentage of the functionality 
of individual subsystem because of difference in the temperature and other physico-
chemical parameters probably encouraged differential community structure.

7 Shift in Structural and Functional Diversity of Algal Community…



96

7.4  Conclusion

The present research work discovered the shift in prevalence of Arthronema (meso-
philic) in TP to Leptolyngbya (thermophilic) in AT. Observed community structure 
variation of both hot springs is further supported by predicted difference in func-
tional profiling in respective environments due to the difference in temperature, 
altitude, and other physicochemical parameters. Such variation in diversity and 
composition were also evinced by differences in richness, evenness, and Shannon’s 
diversity indices. However, performance meta-transcriptome profiling probably can 
throw more light in establishing the correlation between variation in ecophysiology 
of the hot spring and structural as well as functional cyanobacterial biodiversity.

Fig. 7.4 Predicted functional metagenomes at level 3 in both the hot springs
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8Microalgae: An Untapped Resource 
for Natural Antimicrobials

Jayanti Jena and Enketeswara Subudhi

Abstract
Numerous biochemical compounds are synthesized by algae in a wide variety of 
ecosystems. To date, more than 18,000 new bioactive compounds have been iso-
lated from marine algae; most are still uncharacterized. Therefore, the identifica-
tion of novel prospective antimicrobials from microalgae presents a unique 
opportunity. A number of investigations have explored the therapeutic potential 
of algal extracts and extracellular compounds from a wide range of microalgae; 
they have confirmed antibacterial, antiprotozoal, antiviral, antifungal, and anti-
plasmodial activity. Chemical groups such as phenols, fatty acids, indoles, ter-
penes, acetogenins, and some volatile halogenated hydrocarbons derived from 
microalgae have shown antimicrobial activity. For example, supercritical extracts 
of the microalgal Chaetoceros muelleri have shown antimicrobial activity due to 
its lipid composition. Many algal species are also effective against a range of 
bacteria. For example, Pithophora oedogonium targets Salmonella and 
Staphylococcus spp. The algae Rivularia bullata, Nostoc spongiaeforme, Codium 
fragile, Colpomenia peregrina Sauvageau, Cystoseira barbata, and 
Zanardiniatypus are active against many Gram-negative and Gram-positive 
bacteria.

Multidrug-resistant bacteria pose an increasing challenge to global health, 
with the future efficacy of antimicrobial drugs being uncertain. Most antimicro-
bial agents that are successfully used in clinical practice have drawbacks such as 
toxicity, lack of efficacy, and high costs; furthermore, their frequent use can 
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result in the emergence of resistant strains of bacteria. Therefore, the develop-
ment of alternative biodegradable compounds from natural sources with limited 
side effects is urgently needed. To date, the commercial applications of microal-
gae-derived compounds has not received as much attention as the fields of anti-
biotics production, pharmaceuticals, and supplementary biologically active 
compounds. However, microalgae are destined to become an important raw 
material for the efficient production of amino acids, vitamins, and other pharma-
ceuticals. The cultivation of microalgae may provide detailed insights on their 
practical applications and biotechnological characteristics, which may help 
researchers develop compounds of interest for their biomedical potential.

8.1  Introduction

The current healthcare system is experiencing a number of clinical problems related 
to organ transplantations, complicated surgeries, medical device implantation, and 
chemotherapy. Patients who have undergone these procedures are immunocompro-
mised and thus more susceptible to infections. Furthermore, the global spread of 
multidrug-resistant bacteria and lack of new antibiotics under development limits 
the treatment options available to clinicians [81].

The discovery and development of antibiotics are among the most important 
advances in modern medicine for the life-saving treatment of infectious diseases. 
However, these “miracle drugs” have lost their efficacy with the appearance of mul-
tidrug resistance. Higher rates of morbidity and mortality occur when infectious 
diseases are caused by multidrug-resistant organisms. In addition, the treatment of 
these infections is very expensive and requires prolonged hospital stays. This situa-
tion is a global epidemiological and public health crisis [13] that is spreading 
through poor sanitation, person-to-person contact, international travel, and the food 
chain [91].

The World Health Organization considers multidrug-resistant bacteria to be a 
major public health concern [103]. Pathogenic bacteria that are resistant to various 
antimicrobial compounds have been increasing in evolution, prevalence, and distri-
bution. The rapid dissemination of antibiotic-resistant genes through mobile genetic 
elements, such as plasmids and transposons, has resulted in the emergence of 
multidrug- resistant strains of many clinically important organisms. Obviously, this 
situation creates difficulties for clinicians with regard to therapeutic options  
[37, 62].

8.2  Alternative Sources for Antimicrobial Agents

Bacterial resistance to existing antibiotics, which are mostly derived from bacterial 
origins, has been increasing rapidly. Thus, there is a need to develop novel efficient 
compounds using different technologies, including synthetic and semi-synthetic 
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antibiotics [28]. However, the frequently increasing rate of resistance to these anti-
microbial compounds, in addition to the paucity of newer drugs, means that con-
tinuous investigation is required to find novel molecules and metabolic targets. One 
promising avenue is the investigation of natural compounds, particularly those from 
unexploited sources [93]. These alternative antimicrobial agents from natural 
sources are expected to have minimal side effects, in addition to being environmen-
tally friendly and biodegradable. Researchers are examining bioactive compounds 
from algae and microalgae as a potential source. A number of functional compounds 
have been isolated from microalgae. They have the ability to produce a broad range 
of biologically active compounds, including those with antibacterial, antifungal, 
enzyme-inhibiting, antiviral, cytotoxic, antiplasmodial, and immunostimulating 
activities [52].

Microalgae are a rich source of widely distributed bioactive compounds with 
commercial importance [106]. Microalgal bioactive compounds can be synthesized 
from secondary metabolism or directly from primary metabolism. These com-
pounds include proteins, vitamins, fatty acids, and pigments with various antimicro-
bial properties, such as antibiotic, antifungal, antiviral, anticancer, antiprotozoan, 
antialgal ,and antienzymatic activities [105]. Compounds such as B12, 𝛽-carotene, 
oleic acid, cyanovirin, palmitoleic acid, vitamin E, phycocyanin, linolenic acid, 
lutein, and zeaxanthin have antimicrobial, antioxidant, and anti-inflammatory prop-
erties for the reduction and prevention of diseases [36, 46, 64, 98]. In most microal-
gae, the bioactive compounds are accumulated in the biomass. In some cases, the 
metabolites are excreted into the medium; these are known as exometabolites. 
Bioactive metabolites of microalgal origin are of special interest in the development 
of new products for the medical, pharmaceutical, cosmetic, and food industries. 
Further research should be conducted with these bioactive compounds to verify 
their beneficial effects for humans, their degradability when released into the envi-
ronment, and their effects when used in animals [106].

8.3  Algae

Algae are simple plants containing chlorophyll for photosynthesis. They may be 
single- or multi-cellular organisms; they may also exist in colonies, sometimes 
working together as simple tissues [10]. Algae range from unicellular organisms of 
3–10 μm in size to 30-m-long giant kelp [43]. They are found ubiquitously on Earth, 
including in rivers, lakes, seas, and soils, as well as on walls, plants, and animals. 
Algae can be divided into two major groups: 1) macroalgae (seaweeds), including 
green algae, red algae, and brown algae; and 2) microalgae, which are described in 
the next section [31].
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8.4  Microalgae

Microalgae are unicellular organisms consisting of both prokaryotes and eukary-
otes. They grow in fresh or salt water and have varied shapes, with a diameter or 
length of approximately 3–10 𝜇m. Cyanobacteria have very similar structural char-
acteristics to bacteria, but they also contain the chlorophyll 𝑎 required for photosyn-
thesis. Microalgae are distributed all over the biosphere and are responsible for 
more than 40% of global photosynthesis [20].

Microalgae play a vital role in aquatic ecosystems as the basis of the food chain. 
They uptake H2O and CO2. With the help of solar energy, they synthesize organic 
compounds, which are then accumulated or secreted as primary or secondary 
metabolites. Microalgae have the ability to survive under many environmental stress 
conditions, including salinity, drought, osmotic pressure, photo-oxidation, heat, 
cold, and ultraviolet exposure [101]. Due to this ability, they can be found in diverse 
environments, such as fresh water, extreme salinity, blackish water, desert sands, 
and moist soil. Microalgae have an extra advantage of significant metabolic plastic-
ity, which is dependent on their physiological state (i.e., stressed vs. nonstressed 
conditions). Therefore, their secondary metabolism can be easily triggered by 
applying external stress [34].

Until the 1950s, microalgae were not studied for therapeutic purposes. More 
recently, extensive research efforts have been directed toward microalgae to find 
novel compounds that might lead to therapeutically useful agents [16, 66, 67]. 
Microalgae are being investigated as possible antiviral agents [11] to treat infectious 
diseases caused by previously unexposed viruses that have re-emerged in recent 
years. A number of algal extracts and extracellular products have proven antifungal, 
antibacterial, antiprotozoal, antiviral, and antiplasmodial activity [33, 41, 42, 55, 
75], as described in the following sections.

8.5  Antimicrobial Activity of Microalgae

The antimicrobial activity of microalgae has been recognized in compounds belong-
ing to several chemical classes, including terpenes, indoles, acetogenins, phenols, 
volatile halogenated hydrocarbons, and fatty acids [16, 66]. Numerous pressurized 
extracts from Dunaliella salina have shown antimicrobial activity, with the pres-
ence of several fatty acids and compounds such as β-cyclocitral, α- and β-ionone, 
phytol, and neophytadiene [41, 42].

Microalgae are a natural source of highly interesting biologically active com-
pounds. These compounds have received much attention from researchers and man-
ufacturers in recent years due to their potential applications in different life science 
fields, including as biomass for food/feed and as bioactive compounds for the medi-
cal and pharmaceutical industries [36]. Microalgae are promising sources for novel 
products because of their great biodiversity and recent developments in genetic 
engineering [46]. The extraction of bioactive compounds has been investigated in a 
variety of microalgae, including Botryococcus braunii, Arthrospira (Spirulina), 
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Dunaliella salina, Chlorella vulgaris, Haematococcus pluvialis, and Nostoc [68, 
72, 76], as described in the following sections.

8.5.1  Spirulina

Spirulina (Arthrospira) is prokaryotic cyanobacteria that belongs to Cyanophyta. It 
arose more than 3 million years ago, forming the current oxygen atmosphere, and 
has been important in the regulation of the terrestrial biosphere [87]. Spirulina is the 
richest source of proteins, containing approximately 60–70% protein [48].

Calcium spirulan (Ca-SP), a novel sulfated polysaccharide extracted with hot 
water from Spirulina platensis, has shown antiviral activity against herpes simplex 
virus (HSV) type 1, measles virus, human immunodeficiency virus (HIV) 1, and 
influenza virus [38]. Both extracellular and intracellular spirulan-like molecules 
from the polysaccharide fractions of S. platensis displayed significant antiviral 
activities against wide range of viruses, including human cytomegalovirus and 
HIV-1 [1]. Methanolic and aqueous extracts from S. platensis reduced HIV-1 viral 
loads by approximately 50% and 23%, respectively [4]. Spirulina platensis and 
Spirulina maxima also demonstrated antiviral activity against HSV-1 and HSV-2, 
respectively [25, 40].

In an animal study, suspensions of Escherichia coli or Staphylococcus aureus 
were injected into 3-week-old chickens; Spirulina (0.1%) enhanced the chicken’s 
bacterial clearance abilities by improving the activities of different phagocytotic 
cells, such as thrombocytes, macrophages, heterophils, and monocytes [85]. In 
another study, cultures of S. platensis displayed antibacterial activity against six 
Vibrio strains: Vibrio anguillarum, Vibrio parahaemolyticus, Vibrio scophthalmi, 
Vibrio alginolyticus, Vibrio splendidus and Vibrio lentus [57]. Phycobiliproteins 
extracted from Spirulina fusiformis showed significant antibacterial activity against 
Streptococcus pyogenes and S. aureus [70]. Furthermore, the antibacterial activities 
of purified C-phycocyanin from S. platensis clearly inhibited the growth of some 
multidrug-resistant bacteria, such as Klebsiella pneumoniae, E. coli, Pseudomonas 
aeruginosa, and S. aureus [89].

Spirulina has also exhibited antifungal activity [22]. A butanol extract of 
Spirulina sp. was reported to have activity of 13 mm against Candida glabrata [97]. 
Balb/C mice infected with candidiasis showed a stimulatory effect when S. platen-
sis extract was tested [99]. In another study, the antifungal activity of the methanolic 
extract of S. platensis was tested against Aspergillus flavus; the reduction of glucos-
amine production was reported to be nearly 56% [69].

8.5.2  Nostoc

Microalgal biomasses of Nostoc have been used in the medical field and as dietary 
supplements because of their protein, vitamin, and fatty acid content. Nostoc con-
tains a spectrum of polyunsaturated fatty acids that include essential fatty acids, 
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such as linoleic, 𝛼-linolenic, 𝛾-linolenic, octadecatetraenoic, and eicosapentaenoic 
acids [108]. Essential fatty acids are precursors of prostaglandins, thus engendering 
significant interest from the pharmaceutical industry. The medical value of these 
microalgae has been demonstrated by their use in the treatment of fistulas and some 
forms of cancer [102].

Nostoc sp. is reported to have a number of secondary metabolites, including 
antimicrobial compounds. For example, tenuecyclamide a-d was found from Nostoc 
spongiaeforme [111], and noscomin and coniston a-e were found from Nostoc com-
mune [50]. The diverse polysaccharides in N. commune have been shown to possess 
antibacterial activity along with antitumor, antiviral, and anti-inflammatory effects 
[92]. Nostocyclyne A is another antimicrobial compound that has been isolated 
from Nostoc sp. [80]. Cyanovirin, a potential protein molecule produced by a Nostoc 
microalga, showed positive effects in the treatment of HIV and influenza A (H1N1) 
[98].

8.5.3  Chlorella

Chlorella was discovered by the Japanese, who are the traditional consumers of 
algae and use it as a food supplement. The microalga Chlorella is rich in chloro-
phyll, vitamins, proteins, minerals, polysaccharides, and essential amino acids. This 
microalga is 53% (w/w) protein, 23% (w/w) arbohydrate, 9% (w/w) lipids, and 5% 
(w/w) minerals and oligoelements [49].

Pratt et al. first isolated microalgal active compounds from Chlorella; in their 
study, a mixture of fatty acids (chlorellin) was isolated and demonstrated antibacte-
rial activity against both Gram-negative and Gram-positive bacteria in vitro [82]. 
Interestingly, the authors also described a practical application during World War II 
derived from a previous experiment. Chlorella spp. were heavily inoculated in open 
sewage from military installations, rendering it bacteriologically safe for discharge 
into local streams. There was a reduction in the number of coliforms in the areas 
where Chlorella spp. were present compared with the areas where Chlorella spp. 
were absent [83].

8.5.4  Dunaliella

Dunaliella spp. are green, unicellular, halotolerant microalgae that belong to the 
Chlorophyceae group. These microalgae are extensively studied because of their 
diverse nature, including physiological aspects, tolerance of extreme habitats, and 
many biotechnological applications. Dunaliella spp. are a rich source of bioactive 
compounds, such as carotenoids, glycerol, lipids, enzymes, and vitamins [45, 84]. 
These microalgae are a major source of natural 𝛽-carotene; they are able to produce 
up to 14% of their dry weight under conditions of high salinity, light, and tempera-
ture as well as nutrient limitations [29].
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Chang et al. reported that Dunaliella cells contained antibiotic substances. The 
crude extract of this microalga strongly inhibited the growth of Bacillus cereus, S. 
aureus, Enterobacter aerogenes and Bacillus subtilis [17]. In another study, 
Dunaliella microalga also showed antibacterial activity against various microorgan-
isms of importance to the food industry, including E. coli, S. aureus, Candida albi-
cans, and Aspergillus niger [41, 42, 45].

Minolenic acid extracted from Dunaliella primolecta Butcher (C-525) and 
Chlorococcum sp. (HS-101) [73] showed antibacterial activity against methicillin- 
resistant S. aureus (MRSA). Another study investigated extracts of Dunaliella spp. 
isolated from clean and polluted waters. The authors observed that a heat-labile 
non-proteinous substance produced by species from the polluted water had the abil-
ity to inhibit E. coli. It was therefore suggested that microalgae from highly com-
petitive environments are more likely to produce compounds with antimicrobial 
activity [63] (Tables 8.1, 8.2, 8.3, and 8.4).

Table 8.1 Antibacterial activity of some algae species

Bioactive compound/Microalgae Targeting bacteria References
Ambiguine I isonitrile/Fischrella sp. E. coli ESS K-12, 

Staphyloccocus albus, 
Bacillus subtilis

[86]

Skeletonema costatum Vibrio spp. [71]
Carbamidocyclophanes/Nostoc sp. Staphylococcus aureus [12]
γ-lactone malyngolide 14/Lyngbya majuscule Mycobacterium smegmatis 

and Streptococcus pyogenes
[15]

Norbietane diterpenoid (20-nor-3a-acetoxyabieta-
5,7,9,11,13-pentaene)/Microcoleus lacustris

S. aureus [35]

Noscomin/Nostoc commune Bacillus cereus, 
Staphylococcus

[51]

epidermidis, Escherichia 
coli

Phenolic compound/Nostoc muscorum B. subtilis, B. cereus, E. coli, 
Salmonella typhi, S. aureus

[24]

Cycloeudesmol/Chondria oppositiclada S. aureus, Candida albicans [27]
Hapalindole T/Fischerella sp. S. aureus, Pseudomonas [3]

P. aeruginosa, S. typhi, E. 
coli

Euglena viridis Pseudomonas, Aeromonas, 
E. coli, Edwarsiella

[18]

Padina pavonica Enterococcus faecalis, S. 
epidermidis

[21]

Ulva fasciata, Chaetomorpha aerea Klebsiella pneumonia, P. 
aeruginosa, S. aureus

[90]

Ulva Lactuca B. subtilis, B. pumilus [77]
Cystoseira sp., Gelidium latifolium
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Table 8.2 Antiprotozoan activity of some algae species

Bioactive compounds/Microalgae Targeting protozoans References
Ascosalipyrrolidinones/Ascochyta 
salicorniae

Plasmodium falciarum [74]

Viridamide A/Oscillatoria nigro Trypanosoma cruzi, Leishmania exicana, 
Plasmodium falciparum

[95]
Virdis
Symplocamide A/Symploca sp. T. cruzi, Leishmania donovani, P. 

falciparum
[60]

Venturamides/Oscillatoria sp. P. falciparum [61]
Snyderol sesquiterpene/Laurencia 
obtuse

Plasmodium falciarum [104]

Ambigol C/Fischerellambigua T. rhodesiense, P. falciparum [112]
Amphidinium sp. Trichomonas foetus [109]
Dinophysis fortii, Prorocentrum 
lima

T. foetus [9]

n-hexane, 
dichloromethane/Bostrychia tenella

T. cruzi trypomastigotes, Leishmania 
amazonensis promastigotes

[19]

Table 8.3 Antiviral activity of some algae species

Bioactive compounds/
Microalgae Targeting protozoans References
Spirulan/Spirulina sp. HIV-1 and HIV-2 (inhibits reverse transcriptase) 

HSV, influenza
[96]

Nostoflan/Nostoc flagilliforme HSV-1 (HF), HSV-2 (UW-268), human 
cytomegalovirus (Towne), influenza (NWS), 
adenovirus (type 2), Coxsackie (Conn-5)

[96]

Cyanovirin-N/Nostoc 
ellipsosporum

HIV-1 (interacts with high mannose groups of 
envelope glycoproteins, gp120 and blocks its 
interaction with target cell receptors) HIV-2, 
HSV-6, Mesles virus

[96]

Simian immunodeficiency virus, feline 
immunodeficiency virus

Tribromo 4,5-dihydroxybenzyl 
methyl ether/Symphyocladia 
latiuscula

Wild-type HSV-l, APr HSV-I, and TK-HSV-l [79, 78]

Sulfoquinovosyl 
diacylglycerol/Ishige okamurai

HSV-2 [107]

Dollabelladiene 147, 
10,18-diacetoxy – 8-hydroxy

HSV-1and HIV-1 [6, 47]

2,6-dollabeladiene 
148/Dictyota pfaffi
8,80-bieckol 151 and 
8400-bieckol 152/

HIV-1 reverse transcriptase and protease [30]

Venustatriol 302, thyrsiferol 
303 and thyrsiferyl 23-acetate

Vesicular stomatitis [88]
Vesicular stomatitis Indiana virus, HSV-l

304/Laurencia venusta
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8.6  Natural Compounds

A number of chemical functional groups from algae have been reported to be bacte-
rial inhibitors, including polysaccharides, phlorotannins, peptides, fatty acids, ter-
penes, and halogenated furanones, as described in the following sections.

8.6.1  Polysaccharides

Fucoidan- and laminarin-like algal polysaccharides have shown antibacterial activ-
ity against E. coli and S. aureus and have been used as oral drugs. They also prevent 
the adhesion of the biofilm forming Helicobacter pylori in gastric mucosa [8, 39, 
53, 113]. In Ireland, ultrasound-assisted extraction was used to obtain laminarin 
from the brown seaweeds Ascophyllum nodosum and Laminaria hyperborean; the 
laminarin was shown to be a significant growth inhibitor of E. coli, Listeria mono-
cytogenes, S. aureus, and Salmonella typhimurium [53]. Hot and cold water extrac-
tion was used to obtain polysaccharides from the brown seaweed Dictyopteris 
membranacea and red seaweed Pterocladia capillacea; these extracts showed anti-
bacterial activity against Gram-negative Pseudomonas fluorescens and E. coli and 
Gram-positive bacteria B. cereus and S. aureus [2].

Spirulan and Ca-spirulan are the most important anticancer polysaccharides iso-
lated from Spirulina spp.; they also showed effective and broad-spectrum activity 
against HIV-1, HIV-2, and influenza viruses. These sulfated polysaccharides inhibit 
the reverse transcriptase activity of HIV-1 (like azidothymidine) [26]. Another 
acidic polysaccharide, nostoflan from Nostoc flagelliforme, exhibits potent viru-
cidal activity against HSV-1 [56].

8.6.2  Proteins and Peptides

Lectins are a diverse group of proteins that are found in algae, plants, animals, bacteria, 
and viruses [5]. They have various biological functions in humans, such as blood-
protein regulation, carbohydrate binding, cell adhesion, and immune defense [65]. 

Table 8.4 Antifungal activity of some algae species

Bioactive compounds/Microalgae Targeting fungus References
Ulva lactuca, Cystoseira sp., 
Gelidium latifolium

Candida albicans, Microsporum gypseum, 
Aspergillus niger

[77]

Padina pavonica Candida spp. [21]
Chlamydomonas reinhardtii A. niger, Aspergillus fumigatus [32]
Trentepohlia umbrina A. niger, Trichoderma barsianum [94]
Amphidinium sp. A. niger [109]
Dinophysis fortii, Prorocentrum 
lima

A. niger [9]
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Lectins extracted from the red algae Solieria filiformis have demonstrated inhibitory 
effects against both Gram-negative and Gram-positive pathogenic bacteria [44]. 
The inhibition of bacterial growth is thought to occur by the binding of lectin with 
mannan, which is a linear polymer of the saccharide monomer mannose that arises 
on the cell surface of Gram-negative bacteria. Mannan acts as a hapten upon binding 
with a large lectin molecule, producing an immune response. However, it does not 
seem to inhibit the growth of Gram-positive S. aureus or B. subtilis, probably due to 
inappropriate lectin-polysaccharide binding sites on the cell surfaces of these spe-
cies [100].

In another study, enzymatic hydrolysis was used with trypsin-extracted antibac-
terial peptides (>10 kDa mass) from Saccharina longicruris. Food spoilage from S. 
aureus was inhibited at concentrations of 0.31 to 2.5 mg/mL, indicating that the 
hydrolysate could be used as a potential agent for food preservation [7].

8.6.3  Fatty Acids

Antibacterial fatty acids, including 13-octadeadienoic acid and cyclopentaneacetic 
acid, have been obtained by ethanol extraction from Sargassum vulgare and by 
diethyl ether extraction from Sargassum fusiforme. Morphological variations were 
observed in S. aureus and K. pneumonia cells treated with these seaweed extracts. 
Transmission electron microscopy showed that the cell walls of both organisms 
were punctured, resulting in cell wall rupture, protoplasm shrinking, cytoplasmic 
vacuolation, cytoplasmic seepage, chromatin sprinkling, cell size reduction, and 
outer cell shape alteration [23]. In another study, long-chain fatty acids extracted 
from the green microalga Planktochlorella nurekis demonstrated antibacterial activ-
ity against Campylobacter jejuni, E. coli, Salmonella enterica, and Lactobacillus 
johnsonii [14].

8.6.4  Phlorotannins

The antibacterial activity of phlorotannins is reportedly due to the inhibition of oxi-
dative phosphorylation. Phlorotannins could bind with bacterial proteins, such as 
cell membranes and enzymes, thus triggering bacterial cell lysis. Phloroglucinol 
compounds caused bacteriolysis of Vibrio sp. when tertiary structures, such as 
methyl- or acetyl-vinyl, were present [54]. Phlorotannins isolated from Sargassum 
thunbergii algae showed activity against Vibrio parahaemolyticus by destroying its 
cell wall and cell membrane, thus causing membrane permeability destruction and 
cytoplasm leakage [110].

Lee et al. extracted a wide range of solvents from brown seaweed, Eisenia bicy-
clis (Arame) and investigated them against antibiotic-resistant Propionibacterium- 
related acne. The phlorofucofuroeckol compound (phlorotannin with an alcohol 
substituent) showed the most potent antibacterial activity, including antimicrobial 
activity against MRSA [59].
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8.6.5  Terpenes

A number of terpene compounds isolated from algae, such as diterpene-benzoate 
bromophycolides, have the ability to inhibit bacterial growth. Lane et al. extracted 
bromophycolides (diterpene-benzoate macrolides) from the Fijian red alga 
Callophycus serratus with methanol, dichloromethane, and water. The extracts sig-
nificantly inhibited MRSA and vancomycin-resistant Enterococcus faecium [58].

8.7  Conclusion

Antimicrobial drug resistance is a serious concern, with limited or no treatment 
options for infections that are emerging globally. Antimicrobial agents may be 
derived from bacteria and fungi or chemically synthesized. However, resistance to 
these agents has led to the need for alternative natural sources. Algae are a potential 
alternative source for antimicrobial agents due to their diversity and ubiquitous 
nature, along with their ability to produce secondary metabolites that exhibit anti-
microbial (i.e., antibacterial, antifungal, antiviral, antimalarial, and antiprotozoan) 
activities. Algae and their synthesized products have an ability to survive and adapt 
to a wide range of habitats, even when their environmental conditions are altered or 
stressed.

To date, there has been quite limited research into these microorganisms, and 
they predominantly remain an “untapped” resource. Thus, there is obviously a need 
for further study of the compounds described in this chapter for the treatment and 
prevention of various diseases, as well as an ongoing search for other undiscovered 
metabolites. Various technologies are available to assist in the systematic identifica-
tion and purification of these natural products, which—when combined with in vivo 
experiments—could lead to novel antimicrobial agents.
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Abstract
Algal-bacterial process biotechnology is a recent low-cost method toward toxic 
pollutant removal from wastewater that has received more attention in the pres-
ent scenario. The pollutants are mainly categorized into inorganic, organic, 
radioactive, acid/base, etc. The water pollutants mainly include SO2 from power 
plants, chemical waste, fertilizers from agricultural use, oil spillage, silt, harmful 
pesticides, detergents, harmful compounds in cosmetics, pathogenic bacteria 
from livestock operations and food processing wastes, and chemical compounds 
found in cosmetics products, effluent outfalls from factories, refineries, waste 
treatment plants, contaminants from improper disposal of industrial wastes run-
ning through rainwater, etc. The proper pretreatment of wastewater needs to be 
done before disposal to the water bodies unless it would cause serious damage to 
our entire ecosystem. Algae, mostly behaving as water-purifying agent acting as 
pollution indicator, can act as a better alternative toward bioremediation through 
low-cost approach. Due to certain limitations in the algal cell during toxic pollut-
ant accumulation, sometimes it can remediate contaminants up to a certain level. 
So another emerging concept of algal-bacterial symbiotic system, a less energy 
consumption technology, was developed which gained much attention toward 
wastewater treatment in the present scenario. Introduction of cost-effective algal- 
bacterial consortia treatment technology is reported to treat toxic wastewater 
effluents from municipal, domestic, industrial, and agricultural activities by 
using many special unicellular microalgae and pollutant-specific-degrading bac-
teria. It has been found from recent studies that two important factors such as 
selection of suitable strain as well as cultivation are responsible for biodegrading 
toxic chemicals and compounds such as polycyclic aromatic hydrocarbons, 
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 phenolics, and organic solvents. The organic compounds released after algal 
photosynthesis can ultimately become a food source for a variety of heterotro-
phic microbes. The growth-promoting substance production by bacteria can pro-
mote microalgal growth, whereas few bacteria can promote algal growth by 
photosynthetic oxygen tension reduction inside the algal cell, e.g., Pseudomonas 
diminuta and P. vesicularis. The wastewater can be treated in an open system, 
i.e., by the construction of artificial ponds, or closed system, i.e., using a bioreac-
tor. From the available reports, it was found that the algal-bacterial consortium 
may include mainly microalgae and bacteria, e.g., Flavobacteriia, 
Gammaproteobacteria, Bacteroidia, and β-proteobacteria. The harmful dis-
solved methane in anaerobically treated wastewater can effectively be treated by 
the methane-oxidizing bacteria and algae. It can be concluded that the conven-
tional algal-bacterial system treatment technology acts as a natural biological 
treatment method as a viable alternative and is of great importance for achieving 
good wastewater treatment performance as well as the reduction in energy con-
sumption cost.

9.1  Introduction to the Problem

Pollution is a human intervention that occurs due to the arising concentrations of 
naturally occurring substances or releasing of nonnatural synthetic compounds 
(xenobiotics) to the environment. It is also usually caused by the release of organic 
and inorganic wastes into the environment as a result of industrial, domestic, and 
agricultural activities, etc. [30, 35]. Clean water is an essential component for 
humans as well as their environments. The reduction in water quality would also 
lead to water scarcity that is a major issue around the globe. The fall in quality of 
water varies from country to country due to a number of factors such as population 
growth and density, the extent of industrialization quality of nonrenewable water 
resources, economic situation, and institutional capacity. Water quality maintenance 
becomes crucial for the protection of the natural habitats of fish, bugs, bird, and 
plant communities, etc. Operational output is an important aspect in case of treat-
ment methods which lead to innovation of various new techniques in the sector. 
Nowadays, great advance methods initiate the development of efficient technolo-
gies for wastewater treatment, but challenges still remain.

9.2  Causes and Sources of Water Pollution

Water pollution causes death of more than 14,000 people daily and also leads to 
various risky diseases [43, 55]. In India, water pollution is the main cause of death 
of an average 580 people due to typhoid, cholera, dysentery, paratyphoid fever, 
jaundice, amoebiasis, malaria, diarrhea, etc. Developed countries also account for 
water pollution issues same as water pollution in developing countries. Like in the 
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national water quality report of the United States, 44% of assessed stream miles, 
30% of assessed bays and estuarine square, and 64% of assessed lake acres and 
miles were classified as polluted [18]. Used water from toilets, showers, kitchens, 
laundries, industries, etc. acts as the major sources of wastewater. Domestic house-
holds produce an average of 200–300 L of wastewater per person every day.

The untreated sewage and wastewater cause serious health problems due to the 
presence of various harmful pathogenic microbes which are the reason for various 
harmful as well as deadly diseases (http://www.conserve-energy-future.com/
sources-and-causes-of-water-pollution.php). Due to the advent of rural develop-
ment, the rate of waste discharge from supplied extended water channels is increas-
ing year by year. The same also happens in urban areas due to the negligence in 
sewage channel construction or rehabilitation of the existing ones leading to water 
pollution problems [1]. The household garbage such as paper, aluminum, rubber, 
glass, plastic, food, etc. after release into the sea cause pollution and also harm sea 
animals. A small leakage from the sewer lines causes groundwater contamination 
making it unfit for drinking water and also becoming the home ground for various 
insects and mosquitoes. Also, the agricultural drains are contaminated with treated 
and untreated domestic wastes. The largest amount of water consumption occurs 
during agricultural activities such as irrigation and chemical fertilizer and pesticide 
application, discharge containing agricultural residues acting as a major water pol-
lution source for the environment and aquatic life too. The modern urbanization 
leading to water pollution because of fertilizer application, deforestation, soil ero-
sion, man-made constructional activities, improper sewage management as well as 
treatment, landfills as more garbage is produced, etc. Mining process also acts as a 
major source of water contamination by the release of some harmful toxic chemi-
cals, metal waste, and sulfides from the rocks causing serious health issues. A large 
amount of toxic pollutants pollute the sea and hamper the marine community by oil 
spillage caused due to the accident of oil-carrying ships. Most of the death occurs in 
aquatic animals and marine species due to rise in water temperature because of 
global warming causing water pollution. The nuclear wastes that are produced by 
radioactive material have serious environmental hazards due to improper disposal. 
The different sources of water pollution are well described in Fig. 9.1.

9.3  Problems and Processes During Wastewater Treatment

The present scenario of high energy costs and scarcity of natural resources leads to 
the development of sustainable methods for pollution control with a low energy 
consumption and the potential for resource recovery. The wastewater treatment was 
estimated a general consumption of approximately 2–3% of electrical energy per 
year in treatment plants, which is very costly. The major portion of energy con-
sumption occurs during biological waste treatment in municipal wastewater. Few 
examples of treatment methods are (a) use of fine screens in primary treatment, (b) 
membrane technology for the aeration process, (c) direct treatment of high concen-
tration return streams, etc. Due to the high energy consumption in agro-industry 
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wastewater treatment, implementation of the application in rural areas became 
difficult. Similarly, the implementation of anaerobic digestion system for biogas 
production need complex processes such as temperature and waste sludge loading 
rate became difficult. Therefore, the development of low-cost and eco-friendly 
wastewater treatment methods became a mandate for achievement in water 
pollution- related issues.

9.4  Role of Algae in Wastewater Treatment

Algae are the natural food and energy producers, are water refiner or purifier, and 
are ultimate solutions for the climate challenges facing our world today. Algae have 
various importance like fuel production, CO2 recycling, and food and feed for ani-
mals as well as humans. Algae act as photosynthetic gas exchangers during space 
travel [8, 49]. The wastewater quality improvement technology was implemented in 
the United States for the production of methane from the waste algal biomass [44]. 
The detail regarding algal pretreatment method for byproduct formation was 
described in Fig. 9.2. Microalgae act as a major component during the tertiary treat-
ment of domestic wastewater in maturation ponds or the treatment of small- to 
middle- scale municipal wastewater in facultative or aerobic ponds [2, 6, 33, 41, 42]. 
They enhance the removal of nutrients, heavy metals, and pathogens and provide O2 
to heterotrophic aerobic bacteria for organic pollutant mineralization, using, in turn, 
the CO2 released from bacterial respiration [37].
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Fig. 9.1 Sources of water pollution
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9.4.1  About Algae

Algae, the major primary producers in all kinds of water bodies, and many species 
flourished in water polluted with organic wastes play an important part in “self- 
purification of water bodies.” They are mainly responsible for tastes and odors in 
water, e.g., blue-green algae, diatoms, and colored flagellates, e.g., Chrysophyta, 
Euglenophyta, etc. [48].

9.4.2  Algae in Bioremediation and Water Purification

Wastewater treatment system using algae that has drawn the attention for the last 
50–55 years is now widely accepted as an effective conventional treatment system 
because of accumulation of highly toxic substances like selenium, zinc, and arsenic 
and higher concentration of radioactive elements from the aquatic environment in 
their cells and/or bodies, thus acting as an effective tool for bioremediation [48]. It 
was observed that Spirogyra can accumulate radiophosphorus by a factor 850.000 
times that of water [32]. The algal cultivation is mainly affected by several environ-
mental factors. Different algal species have different metal removal efficiency. 
From various studies it was found that individual algae like Oscillatoria can remove 
chromium, Chlorella vulgaris can remove cadmium and copper, Chlamydomonas 
can bioremediate zinc, and Scenedesmus chlorelloides can successfully remove 
molybdenum [19, 39, 48, 53]. Microalgae mostly behave as a pollution indicator in 
wastewater ponds affecting their growth during the treatment. For instance, 10 mg 

Wastewater
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bio-based
chemical

Pretreatment
of wastewater

using algae

Fig. 9.2 Method for integrated wastewater-based algae cultivation system for by-products
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phenanthrene l−l totally inhibited the growth of C. sorokiniana, whereas a 
phenanthrene- degrading Pseudomonas strain used to form the consortium easily 
biodegraded this compound at 25 mg l−1[7].

The quality improvement of wastewater involves chemical, physical, and bio-
logical processes in different treatment stages. While the primary treatment of 
wastewater results in sedimentation of materials, the secondary treatment removes 
suspended and dissolved organic matter left out in the primary treatment through 
the biological process. The last process involves purification of nitrates and phos-
phates, including fine particle removal [16, 48]. Algae can act as a better water- 
purifying agent by removing all of these contaminants in aquatic as well as marine 
ecosystem.

9.4.3  Limitations in Algal Bioremediation Technology 
During Wastewater Treatment

Algae is very sensitive/toxic when exposed to harmful pollutants as well as com-
pounds which include a wide range of toxic and/or persistent substances in the 
environment [4, 7]. Microalgae are also sensitive to the combined effect of high 
NH3 concentrations and high pH leading to decline in algal efficiency [3]. Microalgae 
are more likely to be inhibited during the treatment of hazardous compounds than 
their associated target resistant bacteria. For example, the growth of alga Chlorella 
sorokiniana inhibited by the presence of 10 mg phenanthrene l−1 and the bacterial 
strain Pseudomonas sp. present in the consortium can biodegrade the pollutant 
easily [7, 37].

9.5  Algal-Bacterial Symbiotic Relation in Wastewater 
Treatment

The algae are better source for removal of toxic wastes from the aquatic environ-
ment through phytoremediation. But sometimes the heavy contaminants (organic 
and inorganic pollutants) act as a toxic source in algal metabolism. Heavy metal 
accumulation in the algal biosystem may lead to lethality leading to the concept of 
algal-bacterial symbiotic system, acting as a better source for toxic pollutant 
removal by accumulation of toxic heavy metals into the bacterial biosystems, ulti-
mately causing no harm to the algae and acting as an effective source for wastewater 
treatment [56]. The algal-bacterial system was first designed by William J. Oswald 
[41] in wastewater treatment ponds for better utilization of solar energy [31, 40] and 
further applied for agricultural and industrial wastewater treatment [7, 38]. During 
this technically and economically viable process, the oxygen is supplied to bacteria 
by microalgae which oxidize both organic matter and NH4

+, while carbon dioxide 
released during bacterial respiration is being utilized by microalgae during photo-
synthesis (Fig. 9.3). The retention of useful nitrogenous compounds with the avoid-
ance of bacterial nitrification/denitrification [9, 51, 57]. The algal-bacterial biomass 
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assimilates the nitrogen and phosphorus present in the wastewater causing increase 
in pH. The higher pH and oxygenation lead to the removal of fecal coliforms from 
livestock wastewaters. Furthermore, the increase in the number of bacteria can pro-
mote algal growth through generating CO2, releasing growth-promoting substances 
(e.g., vitamins), and modulating the pH [11, 13, 21].

9.5.1  Mechanism Involved in Algal-Bacterial Symbiosis 
Behind Wastewater Treatment Process

The biological wastewater treatment in aerobic condition is a new eco-friendly 
approach. Heterotrophic bacteria convert the organic pollutants into carbon dioxide 
(CO2) and water (H2O) in the presence of oxygen, whereas the process is exactly 
opposite in case of phototrophic algae. The algae take up carbon dioxide (CO2) and 
water (H2O) and convert this into organic material (CH2O ≈ algae biomass) and 
oxygen (O2):

 CH O O CO H O2 2 2 2+ → +  (9.1)

 CO H O CH O O2 2 2 2+ → +  (9.2)

The combination of both the steps (9.1) and (9.2) leads to a net-zero consumption/
production of oxygen and carbon dioxide proving the ALBA process as an effective 
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one (Fig. 9.3). It became an effective possible symbiotic approach for purification 
of wastewater containing various organic and inorganic pollutants such as steroid 
hormones, polyaromatic hydrocarbons, etc.

9.5.2  Selection of Suitable Strain

Selection of suitable algal as well as bacterial strain is one of the major criteria for 
wastewater treatment through algal-bacterial approach. The better tolerance of algal 
species such as Chlorella species, Chlorella sorokiniana, a higher concentration 
salicylate tolerant, leads to inhibition of other algal species those would be useful 
for bioremediation purpose [14, 28, 34, 38]. The complex interaction results in their 
changing behavior with the phycosphere itself. For example, a polysaccharide gel 
called sheath produced by photoautotrophic alga Chlorella sorokiniana IAM C-212 
becomes a suitable habitat for several symbiotic microorganisms as it ensures close 
proximity [24, 46]. The major raw material used for polycarbonates, epoxy resins, 
and canned food coatings is bisphenol A (BPA) found in river soils, rivers, industrial 
wastewater, etc. leading to acute toxicity as well as female hormonal disorders [5, 
10, 27, 50]. An algal strain can lower this toxic chemical effect up to a certain level, 
e.g., Chlorella sorokiniana [17]. The waste removal process also depends upon the 
optimization of proper inoculum concentration for efficient environmental waste 
removal. The treatment efficiency depends upon the proper inoculum ration of dif-
ferent algae/bacteria indicating that proper inoculum strategy was vital for the treat-
ment performance [52].

9.5.3  Microalgae-Bacteria Consortia Systems

A new method, i.e., microalgae-bacteria consortia system, was developed for assim-
ilation of various contaminants; microalgae can produce various organic substances 
which are ultimately assimilated by bacteria. In a consortia system, the oxygen 
released by the microalgae proved useful for bacteria. Factors affecting the perfor-
mance of this system are light, pH, and selection of microalgal and bacterial spe-
cies. Since microalgae are suspended and dispersed in the media, harvesting is 
crucial to achieving a high-quality effluent [25]. The microalgal-bacterial relation-
ship is a complex one. Some species of bacteria can release hormones to promote 
algal growth, and the presence of a few can improve the algal activity during waste-
water treatment [36]. For example, during co-culturing of Chlorella vulgaris with 
Azospirillum brasilense, the growth and size of algal cells and colonies increase 
significantly [21], whereas the algal activity increased in the presence of few hetero-
trophs such as Pseudomonas vesicularis without any plant growth hormone produc-
tion [36]. In addition to the symbiotic relationship, bactericidal and algicidal activity 
observed between microalgae and bacteria, respectively, toward certain species. For 
example, growth inhibition of Gymnodinium mikimotoi, a red tide plankton, hap-
pens due to the presence of a bacteria, Flavobacterium sp. 5N3 [20]. Algae play a 
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dominant role in consortia system which are mostly microalgae-assistant systems as 
well as algae-dominant systems [25]. During Chlorella vulgaris cocultivation with 
Bacillus, the algal nutrient removal efficiency increased significantly [29].

The algal-bacterial symbiotic pretreatment of the effluent sample acts as a better 
method during salicylate degradation [37]. In algal-bacterial co-culture system, 
enhancement in algal growth occurred due to the presence of Pseudomonas diminuta 
and P. vesicularis, whereas because of anti-algal production, the bacterial strain 
Pseudomonas aeruginosa leads to the growth rate of various green microalgae and 
cyanobacteria [12]. The pigmentation of algal cell was found to be increased fol-
lowed by lesser nutrient removal after co-immobilization with nitrogen-fixing bac-
teria Phyllobacterium myrsinacearum [21].

9.5.4  Construction of Algal-Bacterial Artificial Pond: A Case 
Study

Algal-bacterial pond is an artificial temporary water body constructed for storing 
and improving wastewater in natural conditions where algal photosynthesis and 
bacterial decomposition are the principal mechanisms. Waste stabilization ponds 
were constructed where the dissolved compounds and suspended organic matter 
were stabilized in various conditions such as aerobic, facultative, matured, etc. The 
major stabilization pond where algae are used for effective treatment is facultative 
stabilization pond especially designed for useful purposes like to decrease waste 
retention time, etc. The major processes in this type of ponds involved which are 
oxidation, settling, sedimentation, adsorption, and disinfection in the ponds are 
results of symbiotic relation [47].

A case study for algal-bacterial selenium removal (ABSR) was conducted during 
agricultural drainage water treatment in the Panoche Drainage District, San Joaquin 
Valley, since 1997. The effectiveness of this technology was conducted to investi-
gate potential wildlife exposure to selenium at a full-scale facility that will mini-
mize the lifecycle cost for each pound of selenium removed. In the current approach, 
a series of ponds were designed for promotion of indigenous microbes for nitrate 
and selenium removal. An affordable reduction of selenium load was observed in 
San Joaquin River. A 95% and 80% reduction in nitrate and selenium, respectively, 
was observed by the construction of ABSR plant during 1997 and 1998. The pre-
liminary total cost estimate for a 10-acre-foot per day ABSR facility is less than 
$200 per acre-foot of treated drainage water [45].

A study was conducted by Tiron et al. [54] by observing the feasibility of treating 
dairy industry wastewater in a microalgae-bacteria symbiotic system providing the 
aeration through microalgal photosynthetic without aeration costs which was car-
ried out in a stirred tank bioreactor BIOSTAT®, in batch mode, at a HRT of 96 h with 
50 rpm rotation speed, at room temperature (20–31°C). Around 3 liters of wastewa-
ter from dairy industry was used in the study. The physicochemical parameters were 
maintained inside the bioreactor. Initial microalgal-bacterial biomass was 1.14 g dry 
weight l–1. A mixed consortium, i.e., Chlorella sp.-bacteria, was used for waste 
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treatment in the bioreactor. After 96 h of treatment, the removal efficiencies of 
organic matter (COD-Cr), total nitrogen (TN), and total phosphorus (TP) observed 
were 91, 68, and 38%, respectively. The maximum microalgal and microalgal- 
bacterial system growth rates were 0.13 and 0.10 day–1, respectively. It was con-
cluded from the study that promotion of microalgal-bacterial consortium method 
for wastewater treatment can be done as a cost-efficient biotechnology.

9.5.5  Challenges and Future Prospects

There are various lacunae/limitations observed in the algal-bacterial wastewater 
treatment method which need to be focused on the future study. Few examples are 
(1) the high pH and oxygen produced from algal photosynthesis that lead to the 
growth reduction of bacteria; (2) antibacterial substances released by algae that may 
hamper the bacterial growth; (3) weakening of algal cell wall because of the patho-
genic bacteria effect ultimately resulting in disruption and cell death; (4) microbial 
sensitivity to changes in operational and environmental conditions leading to read-
ily occurrence of malfunctioning under adverse conditions [46]; (5) challenges like 
loss of nitrification, bulking, and foaming due to excessive growth of filamentous 
bacteria [15, 26]; (6) handling and disposal of sludge generated in a larger quantity 
huge amount due to conventional treatment methods; and (7) the poor microalgae 
cells’ removal efficiency from the effluent [54].

9.6  Conclusion

Wastewater released from various activities like municipal, increased urbanization, 
industrial, agricultural, domestic, etc. to the aquatic body leads to water pollution 
ultimately deteriorating the water quality as well as hampering the food chain by 
entering the biosystem of aquatic flora and fauna as well as serious damage to the 
terrestrial life too including human beings. The wastewater containing various 
harmful chemicals and compounds which are highly toxic gives rise to eutrophica-
tion and pollution-related problems. If the wastewater would not be treated prop-
erly, they can be hazardous to our ecosystem. So keeping this in our mind, the 
wastewater needs to be treated properly before their release to the environment as 
well as water bodies. Separate wastewater treatment plants need to be constructed 
to mitigate this problem. Algae, considered as water purifier as well as pollution 
indicator, are accumulating plant nutrients, heavy metals, pesticides, organic and 
inorganic toxic substances, and radioactive matters in their cells/bodies. Algal utili-
zation in wastewater treatment is considered as an appropriate cost-effective bio-
logical method for wastewater treatment. Sometimes the above said method fails 
due to the bioremediation by algae up to a certain extent because of energy con-
sumption during aeration, harmful heavy metal tolerance, growth hindrance due to 
other dominating algae, etc. So another most useful technique such as algal- bacterial 
symbiotic method for wastewater treatment was adopted nowadays which is proved 
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to be most efficient. In this system, none of the living cells got hampered giving 
ultimately a new insight to cost-effective wastewater treatment technology through 
biological means.
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Abstract
Wastewaters provide necessary nutrients in aqueous medium for the cultivation 
of microalgae and a simultaneous removal of pollutants like heavy and toxic 
metals, TSS, TDS, FOG, BOD, and COD from the wastewater. Another simu-
lated technique of granular activated pellets of microalgae proved promising 
alternative way for efficient wastewater treatment. Natural lipid, carbohydrate, 
and protein contents of the microalgae are retained during the enhanced cultiva-
tion in the wastewater. These natural contents are suitable for energy production. 
The high productivity of microalgae coupled with a traditional biofuel produc-
tion technique would solve the cost- and environmental-related issues with the 
fossil fuels. Therefore, the designing of suitable high rate algal ponds or photo-
bioreactors for the large cultivation and harvesting of microalgae biomass during 
the wastewater treatment vis-à-vis biofuels production in an integrated process 
for the commercial exploration of prospective algal energy.

10.1  Introduction

Microalgae are photosynthetic microplanktons and commonly found in various 
nutrient-rich aquatic ecosystems like municipal wastewater, industrial wastewater 
streams, agricultural runoff, shorelines, mine seepage, and concentrated animal feed 
operations. They are more efficient than terrestrial plants converting solar energy 
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and CO2, results huge biomass production ability. They utilize the dissolved nutri-
ents like N and P in wastewater to convert carbohydrate to energy-rich complex 
organic lipids and proteins [1]. The complex organic compounds having large active 
sites both in- and outside of the cells of microalgae transform the inorganic and 
organic pollutants present in the wastewater by the chemical reactions and adsorp-
tion process.

The biomass of microalgae-containing natural organic hydrocarbons is an emerg-
ing feedstock biofuel production. It has been reported that the energy value of 
microalgae biomass is more than 30  times that of the oil plants [2]. The biofuel 
productivity of microalgae biomass is 100,000 liter per hectare per year, a much 
higher rate compared to other oil-producing plants. The adaptation power of the 
microalgae is so high to grow under different physiological stress conditions like 
marine water or wastewater ponds.

10.2  Wastewater Treatment

Wastewater contains the natural plant nutrients such as N-, P-, and enzyme- 
producing metals. It is discarded from the anthropogenic activities of industries, 
municipalities, agricultural runoff, and many more and provides a nutrient-rich 
media for the high productivity of microalgae biomass. This is evidenced by the 
high microalgae growth and biomass productivity. The high productivity compen-
sated by the enriched plant nutrient concentration results the high nutrient removal 
from the wastewater [3]. Therefore, coupling the wastewater treatment with micro-
algae cultivation may offer a low-cost eco-friendly way for sustainable renewable 
algae-based biofuel production feedstock. The biomass of microalgae produced in 
the wastewater retains large amounts of natural hydrocarbons, such as of lipids, 
carbohydrates, and proteins suitable for biofuel production. However, different 
physical factors, such as nutrient quantity and quality, light, carbon dioxide, tem-
perature, pH, turbulence, and salinity, are considered for effective microalgae 
cultivation.

10.3  High Rate Algal Pond

High rate algal pond (HRAP) is an engineered pond that provides the suitable physi-
cochemical condition for the less expensive production of effective algal biomass. 
Wastewater provides major chemical composition for the growth of microalgae in the 
HRAP. Microalgal photosynthesis, nutrient uptake, and subsequent growth, coupled 
with aerobic bacteria degradation of organic compounds, are the broad mechanisms to 
the wastewater treatment process in the HRAP. Therefore, understanding the role of 
physicochemical environment in the microalgal growth performance has more impact 
on the efficiency of the process. Promoting algal production in the HRAP by CO2 
addition enables cost-effective near-tertiary-level wastewater treatment process. 
Further the enhanced algal biomass, a by-product of wastewater treatment process, 
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can be used for biofuel production. Naturally occurring algae thrive on wastewater 
providing the oxygen for aerobic bacteria to break down the waste to ammonia, phos-
phate, and CO2 which are then assimilated into new algal biomass. Low C:N ratios in 
wastewater mean that additional CO2 added to HRAP enable all the wastewater N to 
be assimilated into algal biomass. CO2 is easily obtained at the treatment plant as 
exhaust gas from biogas power generation. CO2 addition to wastewater treatment 
HRAP has a further benefit in enhancing bioflocculation of the algal-bacterial bio-
mass to enable low-cost harvest by gravity settling [2].

10.4  Algae Photobioreactor

Algae photobioreactor (APB) assembled with LED lights are designed for the cul-
tivation of microalgae biomass. One of the advantages of the APB over HRAP is 
that the robustness of the algal strain toward contamination can be eliminated. Pilot- 
scale APB is used to cultivate an important microalgae species Chlorella vulgaris 
395 on flue gas from the T.B. Simon Power Plant at Michigan State University [4]. 
The ABP system is used to facilitate CO2 sequestration and value-added protein 
feed production. The effect of flashing light and continuous red LED light on the 
photosynthetic activity of the microalgae biofilms was investigated in an ABP [5]. 
In contrast to suspended microalgae cultures, biofilm-based microalgae photobiore-
actors allowed a uniform exposure of the microalgae to incident radiation through-
out the period of microalgae cultivation. The multi-species microalgae biofilms 
were produced in the photobioreactor.

The PHYCO2’s algae photobioreactor (APB) for enhanced or modified meta-
bolic activity shows great promise for biotechnological exploitation [6]. However, 
of key concern for many is the safety of genetic modification technology and geneti-
cally modified organisms with regard to both the environment and human health, 
and how these concerns are met will play a key role in ensuring how successful 
commercialization of genetically modified (GM) algae is achieved. 
Commercialization opportunities for GM microalgae will inevitably require transla-
tion from laboratory to industrial settings, on scales beyond those typically associ-
ated with the current biotechnology sector (http://news.algaeworld.org/2017/02/
phyco2-msu-make-wastewater-reusable-pure-algae-growth/).

10.5  Hybrid Microalgae Cultivation System

In comparison to HRAP and APB, newly developed hybrid microalgae cultivation 
system is superior in terms of lipid-rich microalgae production. The hybrid cultiva-
tion system enables the separation of two algal activities such as biomass growth 
and lipid induction phases. This separation facilitates the exponential biomass pro-
duction and more efficient stress induction techniques simultaneously. The stress 
induction technique effectively avoids the contamination [7].
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10.6  Microalgal Immobilization

In recent years, microalgae biotechnology has been increased for production of con-
sumables like food, cosmetic, aquaculture, and pharmaceuticals. But, during the 
production process, the small-sized single cellular biomass creates difficulties in the 
application of biotechnological processes to those organisms. Therefore, cell immo-
bilization technique has been developed to overcome the issues related to the appli-
cation of biotechnological processes [8]. However, the cell immobilization 
techniques are more scattered in terms of biotechnological applications. Different 
passive and active immobilization techniques have been used for the purpose. Effect 
of immobilization on growth and metabolism of the cells is also reviewed. The 
immobilization of microalgae has been studied to evaluate different algal activities 
like metabolite production, culture collection handling, obtaining of energy, and 
removing of undesired or valuable substances from the media containing nutrients, 
metals, and different pollutants. Furthermore, the immobilization techniques as well 
as the living microalgae have been investigated for the applications like biosensors 
in electronic devices designed to measure the toxicity of effluents.

10.7  Algal Technology for Lake Restoration

Water pollution is a combined result of different anthropogenic activities like indus-
trial effluents, agricultural runoff, sewage discharge, and many more [9]. This leads 
to eutrophication of water with time. The nutrient-rich eutrophicated water bodies, 
such as ponds, lakes, and river, develop hazardous algal bloom of blue green algae. 
The hazardous algal blooms kill the aquatic flora and fauna which is a part of one of 
the linear food chains of the aquatic ecosystems. Additionally, different floating 
species of the water do not allow light to enter into the lower water level of the water 
bodies. This forms an anaerobic condition in the water leading to difficulties for the 
survival of the aquatic species. There are numerous known disadvantages caused 
due to eutrophication.

The Phycospectrum Environmental Research Centre (PERC) of Chennai-India 
has developed a microalgae-based product for restoring the eutrophic water bodies 
[7]. They have successfully implemented the technique in different water bodies in 
India and abroad, in terms of sludge reduction, color removal, pH correction, COD 
and BOD reduction, and odor removal (Table 10.1). PERC has developed the prod-
uct named as “Phycoplus.” The product is designed by addition of customized 
micronutrients to a few selected robust and natural microalgae. The product breaks 
the dominance of the polluting algae as well as strips out the essential nutrients for 
the duckweeds’ growth. This process facilitates the disappearance of hazardous 
algal bloom and floating duckweeds.

The Phycoplus product was administered in a village lake near Aligarh of 
Northern India. Before starting the restoration, the lake was covered with floating 
cyanobacterial mats and duckweeds, as shown in Fig. 10.1a. The water of the lake 
was odorous and black in color. The people of the village abandoned the lake. After 
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the restoration work by PERC, the lake water became transparent (Fig. 10.1b), COD 
and BOD reduced to a minimum, and there was a significant reduction of coliform 
bacteria. The cyanobacterial mats and duckweeds disappeared after 2 weeks of res-
toration. Periodic addition of the product maintained the lake from further eutrophi-
cation and fouling. Different water properties of the lake, before and after 2 weeks 

Table 10.1 Parameters of lake water before and after 2 weeks of restoration

Parameters
Lake water

% reductionBefore restoration After 2 weeks of restoration
BOD (mg/L) 220 34 84.5
COD (mg/L) 900 160 82.2
TSS (mg/L) 4720 52 98.9
E. coli 2100 14 99.33
Total coliform 500,000 2500 99.5

Fig. 10.1 (a) Appearance 
of a heavily polluted lake 
near Aligarh of India 
before restoration work. 
(b) Appearance of the 
same lake after 2 weeks of 
restoration. The boy is 
spraying Phycoplus
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of the restoration, are listed in Table 10.1. PERC is planning to evaluate the novel 
product in more ponds, lakes, and small drains.

Another microalgae technology called “integration of pulsed magnetic field 
(PMF)” has been jointly developed by PERC and Madras Institute of Magnetobiology 
of Chennai-India. The technology efficiently enhances the algae-based remediation 
of wastewater such as reverse osmosis rejects from desalination plants and leather 
industries’ and textile industries’ discards. This technology may be a future water 
remediator, replacing the more expensive and energy-intensive multiple effect 
evaporators.

10.8  Consortium of Microalgae

The technologies related to microalgal growth, lipid accumulation, and pollutant 
removal are somehow costly and less efficient. This limitation can be overcome 
using a microalgae consortium which is better than a monoculture system in terms 
of biomass and lipid productivity and pollutant removal [10]. The biodiesel produc-
tion coupled with the use of lipid-extracted algal (LEA) residue provides different 
advantages such as significant energy value, sustainability, and nutrient recycling 
and reduces the overall cost of the process integrating tertiary wastewater treatment 
and microalgal lipid accumulation followed by biodiesel production [11].

10.9  Conclusions

Microalgae convert solar energy and CO2, resulting in huge biomass production 
ability. They utilize the dissolved nutrients like N and P in wastewater to convert 
carbohydrate to energy-rich complex organic lipids and proteins. The complex 
organic compounds having large active sites transform the inorganic and organic 
pollutants present in the wastewater by the chemical reactions and adsorption pro-
cess. This provides the removal of polluting substances from wastewater and huge 
biomass production, simultaneously. The biomass of microalgae-containing natural 
organic hydrocarbons is an emerging feedstock biofuel production. Coupling the 
wastewater treatment with microalgae cultivation may offer a low-cost eco-friendly 
way for sustainable renewable algae-based biofuel production of feedstock. 
Different modern techniques, such as high rate algal pond, algae photobioreactor, 
hybrid microalgae cultivation system, algae-based product, and microalgal immobi-
lization, are used for the simultaneous wastewater treatment and microalgae cultiva-
tion. Although several research outputs have been reported by different scientific 
community, the study is limited to the individual step of the microalgal benefits. 
Therefore, a comprehensive study is necessary for the pilot plant operation prior to 
in situ implementation.

Acknowledgments The authors are grateful to Prof. (Dr.) M. R. Nayak, President, Siksha ‘O’ 
Anusandhan University, for providing infrastructure and encouragement throughout.

L. B. Sukla et al.



135

References

 1. Aishvarya V, Jena J, Pradhan N, Panda PK, Sukla LB (2015) Microalgae: cultivation and appli-
cation. In: Sukla LB, Pradhan N, Panda S, Mishra BK (eds) Environmental microbial biotech-
nology. Springer, Cham, pp 289–312

 2. Craggs RJ, Lundquist TJ, Benemann JR (2013) Wastewater treatment and algal biofuel pro-
duction. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy develop-
ments in applied phycology, vol 5, pp 153–163

 3. Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, Schenk PM (2016) 
Comparison of microalgae cultivation in Photobioreactor, open raceway pond, and a two-stage 
hybrid system. Frontiers in Energy Research 4:29. https://doi.org/10.3389/fenrg.2016.00029

 4. Pavlik D, Zhong Y, Daiek C, Liao W, Morgan R, Clary W, Liu Y (2017) Flashing light effects 
on CO2 absorption by microalgae grown on a biofilm photobioreactor. Algal Res 25:413–420

 5. Girela IM, Curt MD, Fernández J (2017) Flashing light effects on CO2 absorption by micro-
algae grown on a biofilm photobioreactor. Algal Res 25:421–430 http://news.algaeworld.
org/2017/02/phyco2-msu-make-wastewater-reusable-pure-algae-growth/

 6. Li XL, Marella TK, Tao L, Peng L, Song CF, Dai L, Tiwari A, Li G (2017) A novel growth 
method for diatom algae in aquaculture wastewater for natural food development and nutrient 
removal. Water Sci Technol 75:2777–2783

 7. Sivasubramanian V (2017) Lake restoration using microalgal technology. Algae Industry 
Magazine, February19, 2017

 8. Kaparapu J (2017) Micro algal Immobilization Techniques. J Algal Biomass Utln 8:64–70
 9. Pradhan D, Sukla LB, Sawyer M, Rahman PKSM (2017) Recent bioreduction of hexavalent 

chromium in wastewater treatment: a review. J Ind Eng Chem 55:1–20
 10. Beacham TA, Sweet JB, Allen MJ (2017) Large scale cultivation of genetically modified 

microalgae: a new era for environmental risk assessment. Algal Res 25:90–100
 11. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a waste water 

dominate by carpet mill effluents for biodiesel applications. Bioresour Technol 101:3097–3105

10 Future Prospects of Microalgae in Wastewater Treatment

https://doi.org/10.3389/fenrg.2016.00029
http://news.algaeworld.org/2017/02/phyco2-msu-make-wastewater-reusable-pure-algae-growth/
http://news.algaeworld.org/2017/02/phyco2-msu-make-wastewater-reusable-pure-algae-growth/


137© Springer Nature Singapore Pte Ltd. 2019
L. B. Sukla et al. (eds.), The Role of Microalgae in Wastewater Treatment, 
https://doi.org/10.1007/978-981-13-1586-2_11

M. Debnath (*) 
Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological 
Sciences, Indian Institute of Science Education and Research Kolkata,  
Mohanpur, West Bengal, India 

Post Graduate Department of Botany, Hooghly Mohsin College,  
Chinsurah, West Bengal, India

11Insecticide Toxicity on Indigenous 
Cyanobacteria from Alluvial Rice Fields

Manojit Debnath

Abstract
Pesticides are used for agricultural practices affect the soil’s natural beneficial 
microorganisms like cyanobacteria. Effects of commonly used organochlorine 
and organophosphate insecticide were studied for growth and remediation poten-
tial of rice field indigenous cyanobacterial community under enrichment culture. 
Inhibition of species richness was noted under insecticide treatment within 
enriched cyanobacterial community. One unicellular strain of Aphanothece sp. 
and one heterocystous strain of Nostoc sp. were subjected to in vitro experiment. 
Effective concentration 50 (EC 50) of each insecticide was calculated for each 
strain. When both the strains were studied individually, they showed potentiality 
to minimize the insecticide concentration in insecticide-spiked growth medium. 
Organochlorine was found to be the most toxic. To mitigate insecticide pollution, 
indigenous cyanobacterial population could be used as filter for contaminated 
agricultural runoff.

11.1  Introduction

Agriculture is an important and integral part of the Indian economy. Agriculture 
provides food and raw materials to domestic industry of India. On the journey of 
modernization and industrialization, man has contributed pollution to the life and 
ecology of plants, animals, and microbes [1]. Increased demand for food and other 
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agro based material has led to the dependency on high-yielding varieties which 
invite heavy consumption of fertilizers and pesticides [2].

Use of pesticides has seriously environment, agricultural sustainability  and 
human health. The environmental contamination by pesticide residues is of concern 
due to their persistent nature and bioaccumulation property [1]. The migration of 
pesticides from agricultural land into surface waters is a major threat to aquatic 
ecosystems and their biotic communities [3]. Use of pesticide is region specific.
Residue of organochlorine and organophosphorus pesticide are high in soils, atmo-
sphere, and in the aquatic system in the tropic and subtropic part of the globe [4]. 
Bioaccumulation of organochlorine pesticides with in food chain have lead toxicity 
on immuno-reproductive system [5]. Therefore, the chlorinated pesticides are now 
largely banned. In India, 100 people died for the parathion-contaminated wheat 
flour consumption and as a consequences of which the Indian Council of Agricultural 
Research (ICAR) constituted a committee for possible remedies to combat the pes-
ticide toxicity in the edibles [6]. The 76% of the total pesticides used in India are 
insecticide compared to herbicides and fungicides [7]. Significant level of pesticides 
contamination was reported from inland aquatic system and bottled drinking min-
eral water from mega and major cities as well as rural part of India [8].

Scientific investigation on the effect of insecticides on the nontarget soil micro-
organisms [9] including diazotrophic cyanobacteria is necessary. Insecticides toxic-
ity on the diazotrophic organisms were related to the insecticide nature and soil type 
[10]. In the rice field ecosystem, growth and nitrogen fixation of cyanobacteria have 
received attention in relation to pesticides toxicity [11–14]. Use of cyanobacteria as 
a biofertilizer for better paddy yield  is an old practice [15–17]. These organisms 
play an important role in soil fertility, plant growth and crop productivity [18]. Not 
only that, this group of organisms with photoautotrophy and diazotrophy put them-
selves more adaptable to heavyly contaminated environments [19]. Cyanobacteria 
have shown ability to mitigate various types of environmental contaminants includ-
ing pesticides [20], either through their accumulation or degradation.

This chapter summarizes effects of endosulfan, monocrotophos, and phosphami-
don (insecticide) on indigenous cyanobacterial community composition and poten-
tiality of individual strain to minimize the insecticide concentration in 
insecticide-spiked growth medium. In specific, the aim of the present investiga-
tion was to reveal whether native cyanobacterial strain (Aphanothece sp. and Nostoc 
sp.) isolated from rice field, can be recommended to use as biofertilizer cum biofil-
ter for contaminated agricultural runoff. These findings may contribute for fur-
ther  implementation of photosynthetic microorganisms for effective wastewater 
management.
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11.2  Materials and Methods

11.2.1  Organisms and Culture Conditions: Experimental 
Organisms Were Selected in a Two-Step Process

Step 1: Enrichment culture of cyanobacterial community under insecticide stress. 
Alluvial rice field soil from Hooghly district, West Bengal, with visible micro-
bial crust was enriched with various concentrations of these three insecticides in 
liquid BG-11 without nitrogen (-N) medium [21]. Composition of enriched cya-
nobacterial biomass was examined under light microscope to reveal the commu-
nity composition compared to control set.

Step 2: Screening of insecticide-resistant diazotrophic cyanobacterial cultures. The 
biomass obtained from insecticide-amended soil enrichment culture was used as 
inoculums to isolated insecticide-tolerant strain following the spread plate 
method. Properly homogenized cyanobacterial cultures (1 gm biomass/100ml) 
were spread on BG-11 (-N) agar plate and incubated until visible colony observed 
(maximum 15 days). Finally, a non-heterocystous Aphanothece sp. and one het-
erocystous strain of Nostoc sp. were selected for the present study. These two 
strains were selected based on their wider occurrence  and faster growth. The 
organisms were first established in unialgal (using single colony) culture under 
aseptic condition and maintained in BG-11 (-N).

All isolation and experiments were conducted at a temperature of 28 ± 1 °C with 
cool white fluorescent light of 25–30 μmol photons m−2 s−1 in 12/12 h light/dark 
cycles.

11.2.2  Insecticides Used

Tolerance of cyanobacterial isolates to the insecticides was investigated in BG-11 
(-N) medium. The insecticides chosen and concentration used for the study were 
listed in Table 11.1. Homogenized culture was inoculated and incubated under same 
conditions as mentioned above. In order to determine the EC 50 (concentration at 
which 50% growth reduced) growth medium was amended with increasing insecti-
cide concentrations as mentioned in Table 11.1. The flasks were inoculated with 1 
gm fresh biomass/100 ml and placed on a rotary shaker-incubator at 120 rpm. After 
8 days EC 50 was noted in terms of Chl a in triplicate (n = 3, n is the number of 
sample taken for the each numerical value). EC 50 of each insecticide was deter-
mined using Lagrange’s interpolation theory and regression line equation 
(Table 11.2).
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11.2.3  Assessment of Insecticide Effect

Cyanobacterial biomass was harvested after 8 days for biochemical analysis under 
insecticide stress and control condition in duplicate (n = 2) for evaluating chloro-
phyll, carotenoid, phycobiliprotein, carbohydrate, and total protein. Emphasis was 
given to the EC 50 concentration.

11.2.3.1  Chlorophyll a [22]
Cyanobacterial growth was determined in terms of chlorophyll a (Chl a) content 
from 90% methanol extract. The absorbance of Chl a was measured at 663 nm.

11.2.3.2  Carotenoid [23]
Total carotenoid was extracted using 2  mg fresh biomass in 5  ml 85% acetone. 
Cyanobacterial cells were disrupted by repeated freezing and thawing. The absor-
bance was measured at 450 nm.

11.2.3.3  Phycobiliprotein [24]
Cyanobacterial biomass (5gm) in phosphate buffer (0.1 M) was used for extraction 
process. The absorbance was determined at 562  nm, 615  nm, and 652 nm  from 
supernatant.

Table 11.1 Detail of pesticides used in the present study

Name of 
pesticides Chemical nature Half- life

Application time 
in rice plant

Concentration 
used (ppm)

Field 
dosage

Phosphamidon 
(insecticide)

Organophosphate 7 days Pre-mid- tillering, 
flowering, after

2, 20, 50, 100 0.1–0.25%

Monocrotophos 
(insecticide)

Organophosphate 14 days Nursery, planting 
to pre-tillering, 
and panicle 
initiation to 
booting

2, 20, 50, 100, 1–1.25%

Thiodan 
(insecticides)

Endosulfan, 
organochlorine

10 days From planting to 
flowering stage

0.01, 0.05, 5, 25 2 ml/l

Table 11.2 Effective concentrations (EC 50) of studied pesticides in cyanobacteria (n = 3)

Insecticides
Effective concentration (ppm)
Aphanothece sp. Nostoc sp.

Endosulfan 2.7 ± 0.11 4.8 ± 0.19
Phosphamidon 14.6 ± 0.71 18.9 ± 0.83
Monocrotophos 45.30 ± 2.2 76.20 ± 2.8
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11.2.3.4  Carbohydrate [25]
Extraction was done from 1 g  fresh biomass in anthrone reagent using a boiling 
water bath for 10 min. The absorbance of the supernatant was determined at 620 nm. 
Quantification of carbohydrate was done against the standard curve prepared using 
glucose.

11.2.3.5  Protein [26]
Cell-free crude  extract was used to determine the protein content using bovine 
serum albumin as the standard.

11.2.3.6  Heterocyst Frequency
Heterocyst frequency (H%) was calculated by a number of heterocyst present per 
hundred vegetative cells.

H Number of heterocyst Number of cells in filament .% /= ( )×100

11.2.3.7  Inoculation
In all experiments the absorbance of inoculum of all cultures at 760 nm was 0.2. 
Inoculation was done under aseptic condition in insecticide-containing medium.

11.2.4  Determination of Insecticide Concentration in Growth 
Medium [27]

Experiments were carried out using 100 ml liquid cultures in 250 ml flasks. Cell- 
free culture medium was used as control. All flasks were incubated with cotton 
plugs as mentioned above. The insecticide-amended growth medium of each experi-
ment set was extracted with an equal volume of hexane by vortexing for 30 s twice 
to estimate remaining/residual insecticide (in the test medium). The organic layer 
was collected and dried separately. Each dried sample was resuspended in 2  ml 
hexane and subjected to GC-MS analysis following Lee et al. [27] using standard of 
each insecticide.

11.3  Results and Discussion

Pesticide (including insecticide) is known to be toxic, only to the targeted pests/
insects but not for the nontarget organisms like human. However indiscriminate 
use of such chemicals has adversely affected the nontarget life forms present to the 
adjacent ecosystem. These cause serious problem in the soil in many aspects as 
well as associated water bodies that are receiving the runoff from pesticide-con-
taminated land mass. In most of the cases, they either kill the soil-inhabiting ben-
eficial microorganisms like diazotrophic cyanobacteria, Azotobacter, Azospirillum, 
and many others. The present investigation deals with the effect of three such com-
monly used insecticides (Table 11.1) on cyanobacterial community composition 
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(species richness), growth, and some biochemical properties of two isolates, which 
highlight the potentiality to minimize the insecticide concentration within con-
taminated medium.

11.3.1  Growth Response

Amendment of different concentrations of insecticides in growth medium exhibited 
varying toxicity to the test cyanobacterial species/strains (Tables 11.2 and 11.3). Only 
EC 50 concentration of each insecticide was listed to fulfill the aim of this study. The 
toxicity was proportionate with increasing concentration of insecticides either on 
community species composition (Table  11.3) or on individual isolated strains 
(Table 11.2). The degree of toxicity of the studied insecticide was endosulfan great-
erthan phosphamidon greaterthan monocrotophos, for Nostoc sp. and Aphanothece 
sp. This order is based on EC 50 concentration of tested insecticides (Table 11.3). 
Beyond the EC 50 level, cyanobacterial growth was inhibited in various degree from 
day 1 to day 15th (data not shown). Differential permeability of the cyanobacterial cell 
membrane may cause such variation in the presence of insecticide [28].

The inhibitory effect of monocrotophos could be attributed to the adsorption of 
this compound on the rich lipid plasma membranes of the algal cells, thus altering 
the membranes’ permeability and diminishing photosynthetic activity as well as 
increasing reactive oxygen species (ROS) during stress [29]. Table 11.3 indicated 
that Nostoc sp. was more tolerant to different concentrations of studied insecticides 
than the other strain. This was also reported from previous studies in presence of 
organophosphorus pesticide monocrotophos up to 150  ppm ([30] and references 
therein). Kumar et  al. [29] study the tolerance of three cyanobacterial strains to 
endosulfan and record the tolerance in the order of N. muscorum  greaterthan  A. 
variabilis greaterthan A. fertilissima. Presence of thick mucillagenous envelop in 
Nostoc spp. may impose higher tolerance of pesticides compared to other heterocys-
tous form with the thin and diffluent mucilage as in Anabaena variabilis and weak 
sheathed Aulosira fertilissima [31]. Growth inhibition of cyanobacteria  (present 
study) in presence of three insecticides was more damaging beyond EC 50 (data not 
shown). In Anabaena cylindrica and Anabaena variabilis similar observations have 
been recorded with propanil [32], also for benthiocarb and butachlor in Anabaena 
sp. [33], and with endosulfan in Nostoc linckia [34]. In cyanobacteria, inhibition of 
Chl a driven photosynthesis in presence of insecticides may cause the reduction in 
growth rate [35]. In Oscillatoria, Hapalosiphon sp., and Calothrix braunii ARM 
367  inhibitory effect on growth has been correlated with phototosynthesis, chl a 
synthesis and diazotrophy in presence of BHC, carbofuran, phorate and malathion 
[36]. Pesticide-mediated inhibition of electron transport is closely associated with 
PSII-dependent noncyclic electron acceptor [37]. Pesticides mediated inhibition of 
electron flow and ATP formation have been shown in cyanobacteria [37]. Under low 
concentration of studied insecticides, a gradual increase in growth was observed on 
the 6th/8th day. But in higher concentrations (near to EC 50), growth was usually 
less than the control set; however, very slow increment was noted between 10–5th 
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day (data not shown). This may be due to the cyanobacterial degradation/half-life 
effect of endosulfan, phosphamidon, and monocrotophos or due to the adaptability 
of cyanobacteria to the insecticides.

11.3.2  Photosynthetic Pigments

In two studied cyanobacteria, growth was maximum for the untreated biomass, with 
respect to insecticide-amended medium, which might be caused by Chl a synthesis 
inhibition in insecticide-treated biomass (Tables 11.4 and 11.5). In Anabaena flos- 
aquae, T. scytonemoides, and T. ceylonica Chl a synthesis has been reported [38–
40]. In cyanobacteria inhibition and reduction of Chl a was found to be dose 
dependent in case of endisulfan [41]. Under low endosulfan doses (2.5 μg/ml), pho-
tosynthetic pigments were increased in comparison to respective control [29]. In the 
present study, maximum phycobiliprotein was detected in Nostoc sp. in monocroto-
phos followed by Aphanothece sp. (Tables 11.4 and 11.5). Inhibitory effect of endo-
sulfan at EC 50 was noted in Aphanothece sp. which is similar to the Plectonema 
boryanum [41]. Endosulfan toxicity was also reported on Spirulina platensis and 
Anabaena sp. by Kumar et al. [42].

11.3.3  Carbohydrate

Little decrease in carbohydrate content compare to control up to EC 50 exposures 
was noted (Tables 11.4 and 11.5). Significant decrease in the contents of total sug-
ars, reducing sugar, sucrose and polysaccharides have been reported in Nostoc khil-
mani and Anabaena oscillatoriodes under thiobencarb [43].

11.3.4  Protein

In Aphanothece sp. cellular protein in insecticide-spiked medium was always less 
compared to control (Table 11.4). In Nostoc sp. total protein content was higher 
under insecticide treatment than control below EC 50 (data not shown). At EC 50, 
higher protein was only noted in monocrotophos (Table 11.5). Kumar et al. [29] 
reported protein enhancement in Aulosira fertilissima, N. muscorum, and A. varia-
bilis under pesticides. This suggests that under low concentration of pesticide stim-
ulate the synthesis of stress scavenging  proteins. Increase in protein content of 
Anabaena sphaerica due to the effect of 25 μg/ml molinate [44], 2–6 μg/ml benthio-
carb [45], 50 μg/ml bavistin, and 1 μg/ml nimbicidin [39] has also been reported. 
But in the case of Anabaena sp. (0.5–2 μg/ml), decrease in protein content was 
noted [46]. Thus the effect is either insecticide or species specific. In the present 
investigation decrease in protein content was noted in Aphanothece sp. (Table 11.4). 
Here such activity may be due to insectivcide tolerence limit [29], increased level of 
ROS or increased protease activity  [47]. As a result retardation of growth and 
carbon- nitrogen assimilation have been noticed [46].

M. Debnath



145

Ta
bl

e 
11

.4
 

E
ff

ec
t o

f 
in

se
ct

ic
id

es
 a

t E
C

 5
0 

co
nc

en
tr

at
io

n 
on

 A
ph

an
ot

he
ce

 s
p.

 c
om

pa
re

d 
to

 u
nt

re
at

ed
 c

ul
tu

re
 (

n 
=

 2
)

Pe
st

ic
id

es
 u

se
d

C
hl

 a
 (
μg

/m
l)

C
ar

ot
en

oi
d 

(μ
g/

m
l)

Ph
yc

ob
ili

pr
ot

ei
n 

(m
g/

g)
C

ar
bo

hy
dr

at
e 

(m
g/

g)
Pr

ot
ei

n 
(m

g/
g)

G
en

er
at

io
n 

tim
e 

(h
)

C
on

tr
ol

3.
22

1.
7

52
83

10
50

10
8

E
nd

os
ul

fa
n

0.
96

0
1.

2
37

80
52

5
14

9
Ph

os
ph

am
id

on
1.

20
1.

4
54

80
60

9
11

5
M

on
oc

ro
to

ph
os

1.
65

1.
9

55
82

65
1

12
2

11 Insecticide Toxicity on Indigenous Cyanobacteria from Alluvial Rice Fields



146

Ta
bl

e 
11

.5
 

E
ff

ec
t o

f 
in

se
ct

ic
id

es
 a

t E
C

 5
0 

co
nc

en
tr

at
io

n 
on

 N
os

to
c 

sp
. c

om
pa

re
d 

to
 u

nt
re

at
ed

 c
ul

tu
re

 (
n 

=
 2

)

Pe
st

ic
id

es
 u

se
d

C
hl

 a
 (
μg

/m
l)

C
ar

ot
en

oi
d 

(μ
g/

m
l)

Ph
yc

ob
ili

pr
ot

ei
n 

(m
g/

g)
C

ar
bo

hy
dr

at
e 

(m
g/

g)
Pr

ot
ei

n 
(m

g/
g)

G
en

er
at

io
n 

tim
e 

(h
)

C
on

tr
ol

5.
60

2.
7

10
2

95
95

7
94

E
nd

os
ul

fa
n

2.
35

2.
5

12
4

82
86

7.
5

13
2

Ph
os

ph
am

id
on

2.
10

2.
9

15
9

83
92

6.
4

10
6

M
on

oc
ro

to
ph

os
3.

30
2.

7
16

3
87

98
9

10
8

M. Debnath



147

11.3.5  Heterocyst Frequency

Heterocyst frequency (H%) of Nostoc sp. was calculated in insecticide-treated and 
insecticide-untreated culture. No observed change in heterocyst frequency was 
noted under pesticide (at EC 50) treatment compared to their control set. H% 
observed in Nostoc sp. was (6–7%) under both insecticide-treated and insecticide- 
untreated conditions. In cyanobacteria nitrogen fixation is directly related to hetero-
cyst number. Under insecticide stress destabilization of heterocyst membrane is the 
main cause for inhibition of dinitrogen fixation in Anabaena 7119 [48]. Moreover het-
erocysts formation was completely inhibited in N. muscorum under pesticide treat-
ment [49]. Inhibition of heterocyst differentiation in N. linckia in the presence of 
benthiocarb has also been reported [50].

11.3.6  Minimization of Insecticide by Cyanobacterial Strains

In this present study, assessment of insecticide-spiked medium revealed that the two 
cyanobacterial strains have the ability to minimize total insecticide content at EC 50 
concentrations compared to control set culture medium. In this study, Nostoc sp. 
was more efficient than Aphanothece sp. The mean removal values of 35%, 49%, 
57% and 28%, 46%, 52% for endosulfan, phosphamidon, and monocrotophos were 
recorded for Nostoc and Aphanothece  respectively (Fig. 11.1). In the case of all 
control sets of insecticides, total insecticide content reduced between 6 and 8 per-
cent up to 8 days of incubation. Accumulation and degradation of organochlorine 
and organophosphorus pesticides were noted in many cyanobacteria including 
Synechococcus elongatus, Anacystis nidulans, and Microcystis aeruginosa in pol-
luted aquatic ecosystems [51]. Many cyanobacterial genera such as Synechococcus
,  Microcystis,  Oscillatoria, Nodularia, Nostoc and Anabaena have the ability to 
remove or degrade the lindane residues as reported by El-Bestawy et al. [52].

Degradation of broad-spectrum organophosphorus herbicide glyphosate was 
reported by Microcystis sp., Lyngbya sp., Nostocsp and Anabaena sp. The utiliza-
tion of degraded product as phosphate source by these organisms has also been 
reported [53]. Lipok et al. [54] also demonstrated that Spirulina sp. could degrade 
the glyphosate herbicide. Therefore the cultivation of cyanobacteria in wastewater 
bodies may have good potential to reduce pollution through degradation of pesti-
cides and further reduction in the BOD and COD through growth support to other 
microbes [55]. Ibrahim et al. [30] reported that in the absence of inorganic phos-
phate, cyanobacteria are actively engaged to utilize organophosphate insecticide as 
a source of phosphate through enzymatic metabolism. They identified the high abil-
ity of N. muscorum to biodegrade malathion (91%) at different concentrations. 
Besides this, several studies have shown that pesticides affect the growth of cyano-
bacteria. In the presence of endosulfan and dimethoate, growth and survivability of 
Anabaena doliolum were decreased [56], whereas hexazinone and atrazine inhib-
ited the growth of Anabaena flos-aquae [57]. Therefore, the negative impact of 
pesticides on the growth of cyanobacterial species can reduce the removal or dissi-
pation of pesticides from ecosystems. In Anabaena sp. pathways for metabolic 
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degradation of endosulfan were studied by Lee et  al. [27]. This cyanobacterium 
degrades endosulfan and produced nontoxic endodiol (major  product) and trace 
amount of endosulfan sulfate. Therefore production of nontoxic endodiol may be a 
detoxification process. However, the question arises “how they produced endo-
diol?”. It might be due to “an increase of pH in the medium, and chemical hydroly-
sis might influence the rate of endodiol production” [27]. Biological hydrolysis of 
endosulfan using a strong buffered culture was also investigated [58].

The report in Science Daily [59] stated that the Institute of Natural Resources 
and Agrobiology of the Spanish National Research Council (CSIC) has suggested a 
new method of pesticides encapsulation and slow release to prevent the leaching as 
well as the volatilization of such molecules. Here the pesticide was encapsulated in 
lecithin liposomes or vesicles leading to the adsorption on clay. This liposomes, 
pesticide, and clay complex will allow slow release of pesticide when dispersed in 
water. This entrapment technique may restricts the over spread of pesticides and 
their residues to other surfaces and aquifers [59]. So, it is also possible to immobi-
lized cyanobacteria for such purpose to control pollution. From the present study 
and other studies discussed herein, it is clear that cyanobacteria have potential to 
reduce insecticide load from agriculture field runoff which could be explored for 
wastewater management.
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Abstract
Phyco-remediation of wastewater through microalgae is a promising area; 
hence, the study focused here is to analyse the growth and biochemical constitu-
ents of waste-grown microalgal strain collected from municipality wastewater 
of Baripada and industrial effluents of Emami Paper Mill, Balasore. Effluent 
samples were collected and brought to laboratory, and physicochemical param-
eters of the effluent were characterized. A total of seven microalgal taxa com-
prising of five cyanobacteria (single species of each genera Scytonema, 
Leptolyngbya, Pseudospongiococcus, Hapalosiphon, Dolichospermum) and 
two green algae (i.e. Scenedesmus sp. and Oocystis sp.) were isolated and 
selected for phyco-remediation potential. The strains were inoculated in differ-
ent dilutions of effluents, viz. 25%, 50%, 75% and 100%, taking the culture 
media as positive control. The cultures were maintained at controlled condition, 
i.e. continuous light of 2400 lux with 25 °C temperature. The growth of algae; 
pigments such as chlorophylls, carotenoids and biliproteins; total carbohydrate 
and protein content were determined regularly using spectrophotometer up to 
20 days. Scenedesmus sp. and Dolichospermum sp. showed maximum growth in 
75% of diluted effluent, but in Hapalosiphon sp. it is 50% except Scytonema sp. 
which had a maximum growth in 100% effluent. Leptolyngbya showed com-
paratively maximum response of growth in control to the effluent. The macro-
molecular content and pigment contents also revealed the same trend as growth 
for the entire test organism.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1586-2_12&domain=pdf
mailto:skbhakta@bsi.gov.in


154

12.1  Introduction

The quality of human life on earth is inextricably linked to the overall quality of 
water resources. Different organic and inorganic contaminants in water bodies from 
domestic and industrial sources are leading to environmental deterioration [1]. 
Untreated or partly treated domestic and industrial wastewater is a major concern 
for the developing nations like India and Bangladesh. It is becoming a challenging 
task to global society for adopting an effective control measure. The conventional 
techniques have been used so far for remediation of contaminated water and trans-
port of hazardous material. In this context phyco-remediation employing microal-
gae is a novel alternative technology of treating industrial effluent. However, the 
utilization of algal biomass grown through an integrated approach with phyco- 
remediation is being a stupendous task so far.

Apart from the common wastewater treatment practice, algae are also being used 
as an important agent of bioremediation in many wastewater facilities. It is becom-
ing more popular to reuse the biomass harvested during wastewater treatment, 
simultaneously along with CO2 sequestration, BOD balance and nutrient removal in 
an integrated manner. Enzymatic breakdown and absorption of macronutrients, 
micronutrients and trace and heavy metals of wastewater are a part of metabolism 
of microalgae. However, the strains were always preferred based on their tolerance 
to wastewater, their nutrient intake capacity and their growth [21]. The dominant 
form of microalgae in well-aerated cultures has always been the coccoid microalgae 
that are not readily grazed up to climax of the culture [20]. Microalgae need light, 
CO2 and inorganic nutrients like nitrogen and phosphorous (N and P) for their 
growth and development. There are a few common taxa of microalgae which are 
preferred most for the phyco-remediation, e.g. Chlorella, Scenedesmus, 
Synechocystis, Gloeocapsa, Chroococcus, Anabaena, Lyngbya, Oscillatoria, 
Spirulina, etc., and subsequently utilization of their biomass for food, feed and fuel. 
Algae got mileage over other phytoremediation entities due to its fast growth in a 
limited space and its viability in contaminated water using various nutrients.

Unlike general practice of algae cultivation in freshwater nutrient medium, culti-
vation of algae in wastewater will produce a low-cost biomass as well as treatment 
of carbon footprint and reduce pollutant load [4]. A successful phyco-remediation 
of wastewater depends on the extent of contaminants and environmental and eco-
logical conditions. Hence, pre-treatment of wastewater could be fruitful by reducing 
hardness, TDS through dilution [23, 25] or radiation treatment and so on [5]. 
Moreover, the selection of native strain is also an essential parameter for phyco- 
remediation, and wastewater rich in nitrate and phosphate can yield a better biomass 
which is an additional advantage [3]. Keeping all these in view, the present investi-
gation aims to study the growth, survival, pigment composition and macromolecu-
lar contents of two waste-grown algae, isolated from municipality wastewater of 
Baripada area.
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12.2  Materials and Methods

12.2.1  Sample Collection

The algal samples were collected in clean sampling bottles (Tarson, 25 x 50 mm) 
with the help of forceps and Pasteur pipette from the municipality wastewater of 
Baripada and Emami Paper Mill, Balasore, and brought to the laboratory for identi-
fication, culture and preservation (Fig. 12.1). The industrial effluent of Emami Paper 
Mill, Balasore, was brought to the laboratory for analysis and further study.

12.2.2  Micrometry, Microphotography and Identification

For identification, two to three slides were prepared from each sample, observed 
under compound and/or phase contrast microscope, and the characters were enu-
merated. Photomicrographs were taken using Hund Wetzlar Trinocular Research 
Microscope with Canon-EOS 550D camera attachment. Micrometry was done 
using ocular and stage micrometer (Erma, Japan) to determine the cell dimensions. 
The algal species were identified using the monographs and standard literatures [6, 
13–15, 22].

12.2.3  Culture of Algal Isolates

Each algal sample was observed under microscope after 1 or 2 days of collection. 
The enriched algal species were streaked on agar plates of BG-11 ± N/BB medium 
and incubated under white fluorescent light. Different culture media were used for 
culturing different groups of algae. BG-11  medium +N and -N was used for 

Fig. 12.1 Map of Odisha (Orissa) showing the sampling sites
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culturing cyanobacteria [24]. Bold’s basal medium [2] was used to culture green 
algae. For preparation of media, the following chemicals (Merk/Himedia) were 
used at specific concentrations to make 1 litre with double-distilled water.

Stock solutions of the chemicals (100 ml) were prepared with double-distilled 
water, sterilized and stored in refrigerator for subsequent use. To prepare 1 litre 
culture medium, 1 ml from each stock was added dropwise into a clean sterilized 
volumetric flask of 1 litre capacity containing 600–800 ml distilled water. The con-
tents were stirred continuously during addition using a magnetic stirrer. After addi-
tion of nutrient from stock solution, the final volume of the flask was adjusted to 1 
litre by adding distilled water. The pH of the culture medium before autoclaving 
was adjusted by addition of sterile 0.01 N to1 N NaOH/HCl under aseptic condition. 
The culture medium and the glass wares used were sterilized at 15 lb. pressure for 
20 min in an autoclave.

Composition of BG – 11 medium
Ingredients g/litre
1. MgSO4·7H2O 0.075
2. CaCl2·2H2O 0.036
3. a. Citric acid 0.006
  b. Ferric ammonium citrate 0.006
  c. EDTA (disodium magnesium salt) 0.001
4. Na2CO3 0.02
5. K2HPO4 0.04
Micronutrients mg/litre
1. H3BO3 2.86
2. MnCl2·4H2O 1.81
3. ZnSO4·7H2O 0.222
4. CuSO4·5H2O 0.079
5. Na2MoO4·2H2O 0.390
6. Co (NO3)2·6H2O 0.049

N.B. – For culturing non-heterocystous cyanobacteria, KNO3 at the concentration of 1.5 g/L was 
added to the above medium

Composition of Bold’s Basal Medium
Ingredients g/litre
1. NaNO3 0.25
2. CaCl2·2H2O 0.025
3. MgSO4·7H2O 0.075
4. K2HPO4 0.075
5. KH2PO4 0.175
6. NaCl 0.025
7. FeSO4·7H2O 0.005
EDTA 0.005

(continued)
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Micronutrients mg/litre
H3BO3 2.86
MnCl2·4H2O 1.81
ZnSO4·7H2O 0.222
CuSO4·5H2O 0.079
Na2MoO4·2H2O 0.39
Co (NO3)2·6H2O 0.04

Plate 12.1 Culture and maintenance of waste grown algae in the laboratory 1. Isolation in petri 
plates, 2. Preservation of isolated taxa in slants, 3. Shake flask culture for mass multiplication

12.2.4  Culture Conditions and Maintenance

The pure cultures of algal strains were isolated from wastewater maintained in agar 
slants in glass screw-cap tubes containing 1.2% (w/v) agar-agar in the basal inor-
ganic medium and in 100  ml capacity conical flasks containing 50  ml medium 
before using them in the experiments. They were maintained in culture racks in a 
temperature-controlled room at 25 ± 1 °C under continuous light intensity of 7.5 W/
m2 fluorescent light of 16:8 light and dark cycles from daylight fluorescent tubes 
and examined from time to time (Plate 12.1). Cultures at their exponential phase 
were used as inoculums for the experiments.

12.2.5  Analytical Methods

In the present study, the waste-grown algae were selected as test organism for 
utilization of factory waste, collected from Emami paper Mill, Balasore. Their 
growth, pigment composition (chlorophylls, carotenoids and biliproteins) and 
macromolecular contents (total carbohydrate and protein) were studied at differ-
ent concentrations of waste (25%, 50%, 75% and 100%) taking growth medium 
as control. Triplicates were set for each set of experiments, and the cultures were 
harvested at alternate day up to 20  days of inoculation in alternate light-dark 
(16:8) for growth and on the last day, i.e. the 20th day, for estimation of pigments 
and macromolecules.
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12.2.5.1  Growth Measurements
Growth experiments were conducted in (18 × 150 mm) hard glass test tubes con-
taining 10 ml of medium for all the experiments conducted during this investigation. 
The test organisms were cultured in different dilutions of wastewater, taking culture 
media as a control, i.e. 25% effluent, 50% effluent, 75% effluent and 100% effluent. 
For growth the cultures were harvested at alternate day up to the 20th day at 
25  ±  1  °C under 7.5  W/m2 cool fluorescent light of 16:8 light and dark cycles. 
Growth was estimated by measuring the absorbance of the homogenized suspension 
of the culture in a Systronics 2203 double beam spectrophotometer set at 750 nm [9, 
10] with reference to blank containing distilled water. The objective of measuring 
the growth of pigmented micro-organisms at this wavelength is that absorption by 
pigments is minimum and the optical density here is a function of light scattering by 
the organism. Choosing a suitable wavelength for growth measurement is necessary 
because unless the rate of growth and pigment metabolism is the same, optical den-
sity of a microbial suspension at pigment-absorbing wavelength did not truly reflect 
the growth of the organism [27].

12.2.5.2  Estimation of Pigments
Culture suspension containing green algal samples was centrifuged at 5000 rpm for 
10 min. The supernatant was discarded, and the pigments in the pellet were extracted 
using 10 ml 90% (v/v) methanol for 30 min at 4 °C in refrigerator followed by heat-
ing in hot water bath at 60 °C for approximately 1 min. The clear methanol extract 
was separated from the residue by centrifugation and the process repeated until all 
the pigments are removed. Then the pellet was discarded, and the entire methanol 
extracts were combined, and the volume was made 5 ml. The absorbance of the 
chlorophyll-a pigment was taken in a Systronics 2203 double beam spectrophotom-
eter set at 663 nm and chl-b at 645 nm. The amount of total chlorophyll was deter-
mined following [16]. The amounts of total carotenoids were estimated at 475 nm 
according to [7].

Culture suspension containing blue green algal samples (cyanobacterial) was 
centrifuged at 5000 rpm for 10 min. The supernatant was discarded, and the pig-
ments in the pellet were extracted using 10 ml 90% (v/v) methanol for 30 min at 
4 °C in refrigerator followed by heating in hot water bath at 60 °C for approximately 
1 min. The clear methanol extract was separated from the residue by centrifugation 
and the process repeated until all the lipid soluble pigments are removed. All the 
methanol extracts are combined, and the volume was made 5 ml. Then absorbance 
of the chlorophyll-a pigment was taken in a Systronics 2203 double beam spectro-
photometer set at 663 nm determined by using the extinction coefficient given by 
[18]. The amounts of total carotenoids were estimated at 475 nm according to [7]. 
The water-soluble pigments (phycobilisomes) were obtained as aqueous extract 
from the methanol extracted filaments. After decanting methanol-soluble pigments, 
5 ml of distilled water was noted to the pellet and was kept in the refrigerator at 4 °C 
overnight. The tubes were brought to room temperature, shaken thoroughly and 
centrifuged at 4000  rpm for 10  min. Absorbance of water-soluble pigments was 
taken at 565 nm, 620 nm and 650 nm for phycoerythrin (PE), phycocyanin (PC) and 
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allophycocyanin (APC), respectively. The quality of total phycoerythrin and phyco-
cyanin was calculated using the extinction coefficient given by [11].

12.2.5.3  Estimation of Carbohydrate
The total carbohydrate content of the dried biomass was estimated by anthrone 
reagent method [12] using glucose as standard taken within the range 10–50 μg/ml. 
The anthrone in its ‘enol’ form reacts with furfural or its derivatives produced by the 
dehydration of sugar to form blue colouration. 5 ml of anthrone reagent (200 mg 
anthrone powder in 100 ml concentrated H2SO4) was added to1ml of algal sample 
and kept in the ice bucket and allowed to cool for 15 min followed by 10 min in 
boiling water bath. Samples were cooled and centrifuged at 5000 rpm for 6–8 min. 
The optical density of the supernatant was measured in a spectrophotometer 
(Systronics 2203 double beam spectrophotometer) set at 625  nm wavelengths 
against the anthrone reagent as blank.

12.2.5.4  Estimation of Protein
Protein concentration in samples was determined by following standard method 
[17] using bovine serum albumin as standard taken within the range 20–100 μg/ml. 
Folin and Ciocalteu’s phenol reagent used is essentially a phosphotungstic phospho-
molybdic acid solution, is reduced by phenols to molybdenum blue and is deter-
mined spectrophotometrically. Protein reduces the phenol reagent to give a colour 
complex, and its intensity depends on the amount of tyrosine and tryptophan present 
in the protein and thus varies for different proteins.

Reagent ‘C’ was prepared freshly by adding 50  ml of reagent A (2  gm 
NaOH + 10 gm Na2CO3 + 0.1 gm Na-K-tartrate in 500 ml distilled water) and 1 ml 
of reagent B (0.5% CuSO4·5H2O). Similarly reagent ‘D’ was prepared by adding 
1 ml of Folin-Ciocalteu’s phenol (Qualigens, India) to 2 ml of distilled water. 5 ml 
of reagent C was added to cyanobacterial residue (pellet). The test tubes were incu-
bated at room temperature for 30 min followed by boiling in water bath at 100 °C 
for 5 min. After cooling, the content was centrifuged at 5000 rpm for 6–8 min, and 
0.5 ml of reagent D was added to the supernatant and shaken well to ensure total 
distribution of the reagent. After keeping the tubes at room temperature for 15 min, 
the absorbance of the coloured suspension was measured at 750 nm in a Systronics 
2203 double beam spectrophotometer against the reagent blank.

12.3  Results and Discussion

12.3.1  Results

A total of seven algal taxa were isolated and identified from two sampling sites, i.e. 
Baripada municipality wastewater and Emami Paper Mill effluent of Odisha. 
Cyanobacteria show the occurrence of maximum taxa of five species under five 
genera followed by green algae having two species under two genera (Plate 12.2, 
Table 12.1).
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Plate 12.2 1–3. Oocystis polymorpha, 4. Pseudospongiococcus protococcoides, 5. Leptolyngbya 
subuliformis, 6. Hapalosiphon hibernicus, 7. Scytonema hoffman-bangi, 8. Dilichospermum affine, 
9–10. Scenedesmus sp

P. Dutta et al.



161

The physicochemical characteristics of wastewater were also determined in the 
laboratory following standard procedure as in Table 12.2.

The experiment was conducted to study the growth, pigment composition and 
macromolecular contents of five algal strains, viz. Scenedesmus sp., Leptolyngbya 
subuliformis, Hapalosiphon hibernicus, Scytonema hoffman-bangi and 
Dolichospermum affine, collected from waste water, in the presence of different 
concentrations of Emami Paper Mill wastewater. The growth rate was recorded till 
the 20th day of incubation at alternate day interval, and the pigment composition 
and macromolecular contents were determined at the end of the 20th day.

12.3.1.1  Effect of Effluent on the Growth
Results on the effect of different concentrations of paper mill effluents on the growth 
of five algal species indicated that in Scenedesmus sp., there were increase in growth 
with increasing effluent concentration up to 75% and decrease in 100% effluent in 
all days of harvest. However, the growth is less in control than effluent-treated cul-
tures and increased from the second day to 20th day in all culture conditions. But in 
Leptolyngbya sp., control showed maximum growth compared to effluent-treated 
media up to the 20th day of incubation. Whereas in Hapalosiphon sp., from the 
second day of incubation, it showed increase in growth in all concentrations of 
media, more rapid growth was in 100% effluent compared to others. But from the 
16th day, it showed maximum growth in 50% dilution compared to others till the 
20th day. Like that in Scytonema sp., maximum growth was seen in raw effluent 
from the second day of incubation till the 20th day, which is really effective, but in 
Dolichospermum sp. maximum growth found in 75% effluent compared to other 
concentrations (Fig. 12.2).

Table 12.1 List of algal taxa isolated from different wastewater sources

Sl. No. Name of taxa Municipal waste Industrial effluent
1 Cyanoprokaryota/cyanobacteria

Pseudospongiococcus protococcoides
− +

2 Leptolyngbya subuliformis − +

3 Hapalosiphon hibernicus − +

4 Scytonema Hoffman-bangi − +

5 Dolichospermum affine − +

6 Chlorophyta
Oocystis polymorpha

+ −

7 Scenedesmus sp. + −

Table 12.2 Physicochemical characteristics of wastewater collected from Emami Paper Mill, 
Balasore

Physical
Temp. 
°C pH

Conduct-
ivity mS

D.O. 
mg/L

Chloride 
mg/l

Total 
hardness 
mg/l

Calcium 
hardness 
mg/l

Alkalinity 
mg/l

COD 
mg/l

Brownish 
red

29 7.2 1.7 2.03 85.2 290 250 122 48
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Fig. 12.2 Effect of different concentration of Paper Mill effluent on the growth of algal species 
incubated up to 20 days. 1. Scenedesmus sp., 2. Leptolyngbya sp., 3. Hapalosiphon sp., 4. 
Scytonema sp., 5. Dilichospermum sp
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12.3.1.2  Effect of Effluent on Pigment Composition
The pigment composition of Scenedesmus sp. showed that the synthesis and accu-
mulation of methanol-soluble (chl-a, chl-b, carotenoids) pigments increased with 
increasing effluent concentrations up to 75% and decreased in 100% effluent up to 
20  days. However, in Leptolyngbya sp. both methanol-soluble (chlorophyll and 
carotenoids) and water-soluble (PC, PE, APC) pigments decreased with increasing 
effluent concentration up to 100% and increased in control condition up to 20 days. 
But in Hapalosiphon sp., both methanol-soluble (chlorophyll and carotenoids) and 
water-soluble (PC, PE, APC) pigments increased with increasing effluent concen-
tration up to 50% and decreased from 75% to 100% effluent. Like that in Scytonema 
sp., both methanol-soluble (chlorophyll and carotenoids) and water-soluble (PC, 
PE, APC) pigments showed maximum concentration in 100% effluent compared 
to other effluent-treated media and control. But in Dolichospermum sp., both meth-
anol-soluble (chlorophyll and carotenoids) and water-soluble (PC, PE, APC) pig-
ments showed maximum concentration in 75% effluent up to 20 days (Table 12.3, 
Fig. 12.3).

12.3.1.3  Effect of Effluent on the Macromolecular Contents
The effect of different concentrations of effluent on total carbohydrate and cell 
protein content of Scenedesmus sp. showed that the concentration of macromo-
lecular content increased with increasing effluent concentration up to 75% and 
decreased in 100% effluent. Moreover both the values are more in effluent-treated 
culture than the control. But opposite trend was observed in Leptolyngbya sp. after 
20 days, and the macromolecular contents are found more in control than the efflu-
ent. Whereas in Hapalosiphon sp., maximum amount of both the total carbohy-
drate and cell protein content was found in 50% effluent concentration, in 

Table 12.3 Pigment content (maximum) of different algal sp. grown under different growth 
conditions

Sl. 
No. Name of the sp.

Chlorophyll content (μg/
ml)

Carotenoid content 
(μg/ml)

Biliproteins 
content (μg/ml)

1 Scenedesmus sp. 75% effluent 
(chl-a = 0.576 μg/ml and 
chl-b = 0.32 μg/ml)

75% effluent 
0.008 μg/ml

–

2 Leptolyngbya 
subuliformis

Control52μg/ml Control0.013 μg/
ml

Control 
269 μg/ml

3 Dolichospermum 
affine

75% effluent 45 μg/ml 75% effluent 
0.006 μg/ml

75% effluent 
252 μg/ml

4 Hapalosiphon 
hibernicus

50% effluent 14 μg/ml 50% effluent 
0.004 μg/ml

50% effluent 
165 μg/ml

5 Scytonema 
Hoffman-bangi

100% effluent 10 μg/ml 100% effluent 
0.005 μg/ml

100% effluent 
115 μg/ml
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Fig. 12.3 Effect of different concentration of Paper Mill effluent on the pigment composition of 
algal species incubated up to 20 days. 1. Scenedesmus sp., 2. Leptolyngbya sp., 3. Hapalosiphon 
sp., 4. Scytonema sp., 5. Dilichospermum sp

Scytonema sp. total carbohydrate and cell protein content showed maximum 
amount in 100% effluent concentration which is a remarkable response. Like that 
in Dolichospermum sp., the macromolecular content (total carbohydrate and cell 
protein) showed maximum response to 75% effluent than others in 20 days of incu-
bation (Table 12.4, Fig. 12.4).
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Table 12.4 Total cell macromolecular content (maximum) of different algal sp. grown under 
different growth conditions

Sl. No. Name of the taxon Carbohydrate (mg/ml) Protein (mg/ml)
1 Scenedesmus sp. 75% effluent 2 mg/ml 75% effluent 1.4 mg/ml
2 Leptolyngbya subuliformis Control 9 mg/ml Control 3.7 mg/ml
3 Dolichospermum affine 75% effluent 6.35 mg/ml 75% effluent 3.17 mg/ml
4 Hapalosiphon hibernicus 50% effluent 4.7 mg/ml 50% effluent 1.7 mg/ml
5 Scytonema Hoffman-bangi 100% effluent 3.43 mg/ml 100% effluent 1.6 mg/ml

Fig. 12.4 Effect of different concentration of Paper Mill effluent on the macromolecular content 
of algal species incubated up to 20 days. 1. Scenedesmus sp., 2. Leptolyngbya sp., 3. Hapalosiphon 
sp., 4. Scytonema sp., 5. Dilichospermum sp
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12.3.2  Discussion

Microalgae including cyanobacteria and green algae play an important role in the 
ecology of aquatic systems. The growth of algae in wastewater under controlled 
conditions aims at maximizing their biomass production. Domestic wastewater is 
ideal for algal growth since it contains high concentration of all necessary 
nutrients.

Our study on the growth, pigment composition and macromolecule synthesis of 
four microalgal strains showed better growth and synthesis of primary metabolites 
in effluent water than the medium except Leptolyngbya sp. In Leptolyngbya, maxi-
mum growth, pigment and macromolecular content is observed in control condi-
tion, whereas in Scytonema maximum found to be seen 100% effluent. But in 
Scenedesmus and Dolichospermum maximum growth, pigment and macromolecu-
lar content were found to be seen in 75% effluent. Like that in Hapalosiphon 50% 
effluent showed maximum growth, pigment and macromolecular content. This may 
be due to high concentrations of nutrients required for the growth and synthesis and 
accumulation of photosynthetic pigments. Our results revealed that the increase in 
growth with the increased effluent concentration is in conformity with the earlier 
reports [8, 19, 26]. The utilization of effluent varies from microalgal species to spe-
cies, and to some extent it depends on concentration of effluent used.

12.4  Conclusion

The growth of algae in wastewaters under controlled conditions aims at maximizing 
their biomass production in order to remove various nutrients which constitute the 
waste. Identifying oxygen-evolving photosynthetic organisms like algae with high 
growth rates, high biomass and high utilization potential which could play a dual 
role of cleansing the wastewater and also serving as a source of feed, fertilizer and 
fuel is the primary requirement of today’s research. The benefit of algae in treatment 
system is oxygenation and mineralization in addition to their role as producers in 
the tropic ecosystem.

In the present investigation, it is quite evident that except Leptolyngbya subuli-
formis, four microalgal strains, viz. Scenedesmus sp., Dolichospermum affine, 
Hapalosiphon hibernicus and Scytonema hoffman-bangi, showed better growth in 
paper mill effluent than the growth medium. In all test species the growth is increased 
with increasing effluent concentration of up to 50% (Hapalosiphon), 75% 
(Scenedesmus and Dolichospermum) and 100% (Scytonema), whereas in 
Leptolyngbya the response is more in control condition. The increase in growth may 
be due to accumulation of nutrients from nutrient-rich wastewater and resulted in 
the removal of phosphate and nitrogen. In addition to their growth, there is also 
more synthesis and accumulation of photosynthetic pigments like chlorophylls, 
carotenoids (minimum synthesis), phycobilisomes and intracellular macromolecu-
lar contents like proteins and carbohydrates produced during primary metabolism. 
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However, the growth, accumulation of pigments and macromolecular contents are 
occurring the most in Scytonema sp. than the other species. From the results it is 
clear that the extent of utilization of effluents varies from algal species to species 
and concentrations of the effluent.

Use of oxygen-evolving microalgae and cyanobacteria in particular would be 
advantageous in many ways. The benefits of algae in treatment of wastewater vis-à- 
vis their role as producers in the topic ecosystems are noted worthy. The treatment 
of wastewater and production of sufficient biomass with high-value products using 
low-cost effluent is no doubt cost-effective. The oxygenic photosynthetic property, 
high-level tolerance to various pollutants and large surface area are some of the 
striking features of microalgae which make them highly suitable for effluent treat-
ment and high utilization potential in unproductive ecosystems. More work in this 
regard is needed for better exploitation and utilization of microalgae.
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Abstract
The terms biosurfactants and bioemulsifiers have often been used interchange-
ably to describe surface active biomolecules. However, there are marked differ-
ences between the two especially based on their physicochemical properties and 
physiological roles. Although bioemulsifiers and biosurfactants are both amphi-
philic in nature and are produced by a wide range of microorganisms, each 
exhibits characteristic roles in nature. Biosurfactants continue to receive scien-
tific attention due to their environmentally friendly characteristics relative to 
chemically derived surfactants. Their unique features of being non-toxic, biode-
gradable, biocompatible and efficient at low concentrations and their synthesis 
from natural substrates under mild environmental conditions make them really 
sought-after compounds. The combination of polysaccharide, fatty acid and pro-
tein components in bioemulsifiers confers upon them better emulsifying poten-
tial and ability to stabilise emulsions. The aim of writing this chapter is to bring 
into the fore the biosurfactants and bioemulsifiers from marine microalgae. The 
chapter presents two case studies and suggests ways to tap into this relatively 
lesser explored area.
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13.1  Introduction: The Connection Between Biosurfactants 
and Bioemulsifiers and Their Applications

Since the turn of the twentieth century and the beginning of the industrial age, 
exploitation of fossil-based resources has led to widespread damage of the Earth’s 
environment [1]. This anthropogenic damage to the environment combined with 
diminishing reserves of fossil-derived fuels has increased concern around the use of 
chemically derived surfactant and emulsifying compounds [2]. These factors, cou-
pled with increasingly stringent laws surrounding the release of chemically synthe-
sised products, have led to increased research in the area of bio-derived products 
[3]. In recent years, due to environmental concerns, research has increased in find-
ing alternative renewable feedstocks to produce substances such as biofuels, surfac-
tants and emulsifiers.

The global market of surfactant production in 2012 was worth approximately 
27 billion dollars [4]; however, most of these surfactants are produced through pet-
rochemical processes. To this market, biosurfactants contribute 1.76 billion dollars, 
and this is expected to rise to 2.8 billion dollars by 2023 [5]. There is an increase in 
the research and development of environmentally friendly biosurfactants and bio-
emulsifiers from renewable resources such as bacteria, fungi and yeast.

Biosurfactants and bioemulsifiers are amphipathic molecules; therefore, they 
have both hydrophobic and hydrophilic regions. The polar portion (hydrophilic) 
region may be ionic (cationic or anionic), non-ionic or amphoteric (Fig. 13.1). This 
enables them to possess a variety of beneficial properties including low surface ten-
sion, effective hydrocarbon emulsion and antimicrobial activity [7]. These desirable 
characteristics enable the biosurfactants to have several potential applications within 
the various industrial sectors such as bioremediation, health care and hygiene. 
Biosurfactants and emulsifiers are generally found on the surface of the organism 
producing these compounds as they are secreted extracellularly; they also serve as a 
protective layer for the microorganisms in adverse environments.

The various types of biosurfactants are classified into five categories: glycolipids 
(rhamnolipids, sophorolipids, trehalose lipids), fatty acids (mycolic acids, agaricic 
acids), phospholipids, polymers (glycoprotein, liposan) and lipopeptides [8]. Current 
research has revolved around the commercialisation of biosurfactants; however, this 
has reached a bottleneck due to the low productivity and high economic costs [9].

Fig. 13.1 Different structures of amphipathic molecules, with differing hydrophilic moieties [6]. 
These include non-ionic, ionic, cationic and amphoteric regions

P. K. S. M. Rahman et al.
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Bioemulsifiers, on the other hand, include high-molecular-weight molecules 
such as polysaccharides, lipopolysaccharides and lipoproteins [10]. Surfactants 
reduce surface tension through accumulation of immiscible fluids, which in turn 
increase the solubility, mobility, bioavailability and contaminant degradation of 
inorganic compounds [11]. Both bioemulsifiers and biosurfactants contain hydro-
phobic and hydrophilic moieties, which have varying degrees of polarity. The non- 
polar (hydrophobic) region is often a hydrocarbon chain.

It has generally been assumed that bioemulsifiers are a class of biosurfactants; 
however, both have different physiological properties and chemical compositions. 
Bioemulsifiers have a higher molecular weight than biosurfactants and have more of 
a complex mixture consisting of lipoproteins and lipopolysaccharides [12]. The main 
difference between bioemulsifiers and biosurfactants is that the latter reduces surface 
tension at the gas-solid-liquid level, whereas bioemulsifiers reduce surface tension 
between immiscible liquids [13]. Biosurfactants often have emulsifying activity; 
however, emulsifiers do not exhibit all the characteristics of surfactants [14].

Polysaccharides (a type of bioemulsifier) are secreted extracellularly forming a 
layer around the cells and are involved in the formation of biofilms. They have high- 
molecular- weight carbohydrate polymers and are generally classified as secondary 
metabolites [15]. The chemical composition of these compounds has been described 
as any group of carbohydrates comprising of long chains of simple sugar molecules; 
examples include alginate, chitin, carrageenan, glucan and agar. There are two types 
of polysaccharides, the first being exo- or extracellular polysaccharides (EPS) and 
the second sulphated exopolysaccharides (sEPS). Marine-extracted EPS and sEPS, 
similarly to biosurfactants and bioemulsifiers, are also used in a multitude of indus-
tries including pharmaceutical, food and agriculture [16].

Oceanic biological surface active compounds (or biosurfactants from marine 
sources) still represent a major untapped and unexplored area of research [17]. 
Solar energy in the production of polysaccharides has been generally overlooked, 
despite high product yields and wide variety of polysaccharide production 
(Table 13.1) [21]. However, due to current market demands for alternatives to syn-
thetic surfactants and emulsifiers, the production of polysaccharides with surface 
active properties is attracting the attention of researchers [14]. Worldwide produc-
tion of polysaccharides from marine biomass is between 25,000 and 30,000 tons/
year [22]. Dependent on the location within the cells, Roger in 2002 classified 
polysaccharides into three groups: cytosolic polysaccharides (CPS), which provide 
carbon and energy sources for the cell; structural polysaccharides (SPS), which 
make up the cell wall (including peptidoglycans and lipopolysaccharides); and 
exopolysaccharides (EPS), which are polysaccharides secreted into the extracel-
lular environment in capsules or biofilms.

Algal exopolysaccharides represent a huge range of structures. They are high- 
molecular- weight structures (10–30  kDa) which encompass homopolymeric and 
heteropolymeric compositions [23]. EPS structures vary widely between different 
genera of algae and are generally considered to be related to the environmental 
conditions of the organism [24]. The majority of EPS formation involves the linking 
of a nucleotide sugar to a lipid carrier molecule, by glycosyltransferases. Conversion 

13 Biosurfactants and Bioemulsifiers from Marine Algae



172

of glucose-6-phosphate to glucose-1-phosphate, a nucleotide sugar precursor, by 
phosphoglucomutase, is essential to the nucleotide sugar synthesis [25]. The green 
microalgae Dunaliella salina [20] and red algae Porphyridium cruentum [26, 27] 
are receiving attention as robust EPS producers with potential industrial application. 
The role of photosynthetically synthesised EPS as emulsifiers has been recently 
explored, with the presence of EPS leading to the metabolising of oil hydrocarbons 
by cyanobacteria and bacterial consortiums [28].

Bioemulsifiers and biosurfactants from marine environments, in general, are 
derived from a wide range of organisms including, but not limited to, macroalgae, 
microalgae, bacteria, diatoms and cyanobacteria. Biosurfactants and bioemulsifiers 
share many environmental advantages over their chemically synthesised counter-
parts. They are highly biodegradable and have low toxicity. There is also an abun-
dance of raw materials for the production of these molecules, and they are highly 
biocompatible [29]. Bioemulsifiers have been associated with a number of potential 
applications including remediation of oil-polluted water and soil, enhanced oil 
recovery and clean-up of oil-contaminated vessels and machineries, and heavy 
metal removal, formation of stable emulsions in food and cosmetic industries and 
therapeutic activities (antibacterial, antifungal, pesticide and herbicidal agents). 
Refer to Table 13.2 for more applications. Polysaccharides are widely used as emul-
sifying, stabilising and gelling agents in food manufacture. At present, two of the 
most used are alginate, also known as alginic acid and carrageenan. Alginic acid, 
used in both the food and pharmaceutical industry, is produced by all brown algae, 

Table 13.1 Microalgae species and the types of polysaccharides and sugars produced with addi-
tional beneficial properties associated with the organism

Algal species

Type of 
polysaccharides 
and sugars Properties References

Ankistrodesmus 
angustus

EPS Antiviral Raposo et al. 
[16]

Chaetoceros sp. EPS Anticancer Raposo et al. 
[16]

Chlorella sp. sEPS Anticancer, bioremediation Raposo et al. 
[16]

Chlorella 
stigmatophora

sEPS – glucose, 
xylose

Anti-inflammatory, 
immunomodulatory

Raposo et al. 
[16]

Chlorella 
vulgaris

sEPS Antimicrobial, antioxidant Raposo et al. 
[16]

Dunaliella 
primolecta

EPS Antibiotic, inhibits growth in 
various Bacillus, Enterobacter 
and Staphylococcus sp.

Chang et al. [18] 
and Varshney 
et al. [19].

Dunaliella salina EPS Vitamins, antioxidants Mishra and Jha 
[20]

Phaeodactylum 
tricornutum

sEPS – glucose, 
mannose

Anti-adhesive, 
immunomodulating

Raposo et al. 
[16]

Tetraselmis sp. sEPS Antimicrobial, potential 
probiotics

Raposo et al. 
[16]
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representing between 18 and 40% of the dry matter [37]. Algal EPS also play an 
integral role in the formation of biofilms. Therefore, much has been made of the 
potential role of bioemulsifiers and biosurfactants from biofilms. In particular, its 
applications as a wetting agent, lubricant and solubiliser in the food and environ-
mental biotechnology industry are attracting much attention [14].

The case studies included in this chapter explain the production of biosurfactants 
and bioemulsifiers from algae isolated from marine or coastal environments. The 
studies throw light on the optimum conditions in which marine organisms could be 
harnessed to produce surface active molecules. How the intricacies of sampling, 
organism screening methods and identification techniques play role in the produc-
tion of biosurfactants and bioemulsifiers can be understood in these studies.

13.2  Case Studies

13.2.1  Is Marine Microalgae Chlorella Capable of Producing 
Biosurfactants, Bioemulsifiers or Exopolysaccharides?

The genus Chlorella belongs to the family of Chlorellaceae which are spherical in 
shape. This photosynthetic organism generally found in ponds, oceans and lakes, 
are classified as blue-green unicellular algae. The algae are mainly distributed as a 
food or nutrition source for both humans and animals as the protein content is 
approximately 60% which is a common trait amongst microalgal species. There 
are an array of health benefits associated with this organism, i.e. hepatoprotection, 
anticancer, antimicrobial, antioxidant and anti-inflammatory properties. They are 

Table 13.2 A wide range of marine fungi and bacteria have been found to produce biosurfactants 
and bioemulsifiers with diverse potential applications as surface active molecules

Biosurfactant/
Bioemulsifier Organisms Potential application
Exopolysaccharide Planococcus maitriensis Emulsifier and oil dispersion potential

Antarctobacter sp. Emulsification of food oils and metal 
absorbance

Halomonas sp. Emulsification of food oils and 
stabilisation of emulsions

Glycolipopeptide Corynebacterium 
kutscheri

Emulsification and degradation of 
hydrocarbons

Yarrowia lipolytica Emulsification of aromatic hydrocarbons
Halomonas sp. ANT-3B Remediation of oil spills in cold 

environments
Pseudomonas aeruginosa 
A41

Enhanced oil recovery

Lipopeptide Bacillus circulans Polyaromatic hydrocarbon solubilisation
Aminolipid Myroides sp. Emulsification of crude oil

Pepi et al. [30], Amaral et al. [31], Maneerat et al. [32], Thaniyavarn et al. [33], Kumar et al. [34], 
Thavasi et al. [35], Das et al. [36]
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naturally high in lipid content with approximately 35% fatty acid content [38]. This 
trait makes the organism desirable for biofuel production. There has been limited 
research conducted into whether the Chlorella sp. produce biosurfactants or bio-
emulsifier; however, there have been a few species which display similar properties 
to these compounds. On the other hand, the production of EPS and sEPS from vari-
ous Chlorella as well as other microalgae species has been reported previously 
(Table 13.1).

In this study, the microalgae Chlorella was cultured via shake flask fermentation 
in BG-11 media; optical density was taken to monitor algal growth at different time 
intervals (Fig. 13.2). Once the desired optical density (OD) was achieved, the algae 
were analysed against the chemical surfactant (Tween 20) and a biosurfactant pro-
duced by Bacillus subtilis to assess the emulsification and surfactant properties.

The emulsification index (E24 percentage) and surface tension were calculated; 
it was found that microalgae displayed emulsification properties having a higher 
E24 index in comparison with the blank media; however, it did not seem to lower 
the surface tension. This suggested that Chlorella was more likely to produce a 
bioemulsifier than a biosurfactant. There was no difference in emulsification activ-
ity between the centrifuged and non-centrifuged samples. Surface tension measure-
ments also suggested that the samples are closer to being bioemulsifiers than 
biosurfactants (Figs. 13.3, 13.4, 13.5, and 13.6).

Next, liquid-liquid extraction was performed on the microalgae, which were then 
subsequently derivatized using the FAME technique; the samples were ran through 
a UV spectrophotometer, high-performance liquid chromatography (HPLC) and 
gas chromatography-mass spectrometry (GC-MS) (Tables 13.3 and 13.4). The UV 
spectrophotometer found the microalgae can only be identified at a lower wave-
length which would make it difficult to analyse under the HPLC.  HPLC 
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Fig. 13.2 The optical density (650 nm) observed for the algal samples
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chromatograms from the blank and algal samples found no indication of biosurfac-
tant, bioemulsifier or exopolysaccharides, whereas GC-MS data suggested the pres-
ence of ester- and fluorine-based compounds which seemed to originate from the 
reagents used in the derivatization of samples; however, the procedure was unable 
to detect biosurfactant, bioemulsifiers or exopolysaccharides (Figs. 13.7 and 13.8). 
The limitation of this study has been the usage of only one genus of microalgae, i.e. 
Chlorella, including other algal species such as Dunaliella or Porphyridium which 
might have given more definitive results.

Fig. 13.3 E24 measurements with a blank (BG-11 media), one to five non-centrifuged algal sam-
ples, a chemical surfactant (Tween 20) and a biosurfactant from B. subtilis
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Fig. 13.4 E24 measurements with a blank (BG-11 media), one to five centrifuged algal samples, 
a chemical surfactant (Tween 20) and a biosurfactant from B. subtilis
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13.2.2  Attempt to Extract Biosurfactants and Bioemulsifiers 
from Algae Isolated from the Coastal Sites Around North 
East England

For this case study, the algal samples were taken from the coastal sites in Seaton, 
Saltburn and Skinningrove of North East England. They were then cultured in F2, 
1% F2 and seawater media, before being centrifuged (Tables 13.5, 13.6, and 13.7). 
Seawater for the media was taken from the rock pool area of Saltburn beach. Each 
culture consisted of 200 ml of media and 1 g of algal sample with incubation at 
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Fig. 13.5 Surface tension measurements obtained from a blank (BG-11 media), one to five non- 
centrifuged algal samples, a chemical surfactant (Tween 20) and a biosurfactant from B. subtilis

Fig. 13.6 Surface tension measurements obtained from a blank (BG-11 media), one to five cen-
trifuged algal samples, a chemical surfactant (Tween 20) and a biosurfactant from B. subtilis
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20  °C, 150  rpm, for 168  hr. The cell-free supernatants were screened for three 
parameters as per standard methods: oil displacement tests, surface tension mea-
surements and emulsification activity assays.

Oil displacement tests were carried out using crude oil and were not observed in 
most samples suggesting the absence of any surface active molecules in these 
samples.

Surface tension was measured using Du Nouy ring assay on a Kruss K9 tensiom-
eter. A reduction in surface tension was observed in the culture samples in compari-
son with distilled water; however, it was found to be higher than the controls of pure 
media (Fig. 13.9). A two-way ANOVA was carried out on the tensiometer measure-
ments, in order to determine if there was a statistically significant difference between 
the surface tension measurements of samples taken from different sites and cultured 
using different media. Results show the P-value of the media type was 0.964 which 
is >0.05, which suggests that there was not a statistically significant difference 

Table 13.3 Microalgal, Chlorella sp., samples ran on a GC-MS under the surfactant method

Sample no.

Retention 
time 
(minutes) Name of compound

Molecular 
formula

Molecular 
weight (g)

BG-11 
Media 
(blank)-A

5.69 1-Fluorododecane C12H25F 188.3253
28.99 Trimethyl(44–1,1,3,3, 

tetramethylbutyl)phenoxy)silane
C17H30OSi 278.5050

29.14 Tetrasiloxane C10H30O3Si4 310.6854
BG-11 
Media 
(blank-B)

9.75 Tetrasiloxane C10H30O3Si4 310.6854
11.95 Tetrasiloxane C10H30O3Si4 310.6854

2A 5.69 2,2,6 trimethyloctane C11H24 156.3083
11.96 Tetrasiloxane C10H30O3Si4 310.6854

2B 14.90 2,2,2-Trifluoromethylamine C2H4F3N 99.0551
15.13 Cyclohexylmethyl heptyl ester C8H16O2 144.2114
20.96 Tetradecane C14H30 198.3880

3A 5.70 Heptane 4 ethyl 2,2,6,6 
tetramethyl

C12H24 168.3190

11.98 Tetrasiloxane C10H30O3Si4 310.6854
3B 15.12 Cyclohexane 3,3 dimethylbutyl C12H24 168.3190

20.09 Tetradecane C14H30 198.3880
4A 5.16 Tris(trimethylsilyl) borate C9H27BO3Si3 278.376

5.70 1-flurododecane C12H25F 188.3253
11.96 Tetrasiloxane C10H30O3Si4 310.6854

4B 15.13 Cyclohexane 3,3 dimethylbutyl C12H24 168.3190
20.10 Tetradecane C14H30 198.3880

5A 5.70 1-flurododecane C12H25F 188.3253
11.96 Tetrasiloxane C10H30O3Si4 310.6854

5B 15.13 Cyclohexane 3,3 dimethylbutyl C12H24 168.3190
20.08 Tetrasiloxane C10H30O3Si4 310.6854

The sample number, the retention times of the peaks and the compounds found at those peaks are 
recorded as well as the molecular weight of those compounds ascertained from the NIST library
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caused by the different media type, on the surface tension measurements taken. 
From the ANOVA, it can be seen that the P-value of the sampling location was 
0.293, and this suggests that sampling location held no statistical significance in the 
surface tension of the samples. Data also suggests that there is no statistical signifi-
cance linking sampling location and media type, as the P-value was 0.616 
(Table 13.8). A one-way ANOVA was carried out to compare each sample set from 
each location to the distilled water control, to determine if there was a statistically 
significant difference. As can be seen in Table 13.9, no statistically significant dif-
ference was observed between the culture samples and the distilled water control.

Emulsification activity was measured using three different hydrocarbons: sun-
flower oil, kerosene and hexane. The emulsification index (E24) was calculated using 
the following formula:

 
Height of Emulsion Total height of liquid/( )× =100 24θE  

Table 13.4 Microalgal, Chlorella sp., samples ran on a GC-MS under the FAME method

Sample no.

Retention 
time 
(minutes) Name of compound

Molecular 
formula

Molecular 
weight

BG-11 
Media 
(blank)-A

9.79 Tetrasiloxane C10H30O3Si4 310.6854
11.95 Tetrasiloxane C10H30O3Si4 310.6854
13.89 Trimethyl(44–1,1,3,3, 

tetramethylbutyl)phenoxy)
silane

C17H30OSi 278.5050

BG-11 
Media 
(blank-B)

9.73 Tetrasiloxane C10H30O3Si4 310.6854
11.95 Tetrasiloxane C10H30O3Si4 310.6854
13.89 Tetrasiloxane C10H30O3Si4 310.6854

2A 9.80 Tetrasiloxane C10H30O3Si4 310.6854
11.95 Tetrasiloxane C10H30O3Si4 310.6854

2B 11.94 Tetrasiloxane C10H30O3Si4 310.6854
15.12 Cyclohexane 3,3 dimethylbutyl C12H24 168.3190

3A 9.79 Tetrasiloxane C10H30O3Si4 310.6854
11.95 Tetrasiloxane C10H30O3Si4 310.6854
14.90 Trifluoromethylamine C3F9N 221.0244

3B 9.79 Tetrasiloxane C10H30O3Si4 310.6854
15.12 Cyclohexane 3,3 dimethylbutyl C12H24 168.3190

4A 9.78 Tetrasiloxane C10H30O3Si4 310.6854
11.96 Tetrasiloxane C10H30O3Si4 310.6854

4B 9.78 Tetrasiloxane C10H30O3Si4 310.6854
15.12 Cyclohexane 3,3 dimethylbutyl C12H24 168.3190

5A 3.25 Perfluorotributylamine C12F27N 671.0920
5.70 Perfluorotributylamine C12F27N 671.0920

5B 9.81 Tetrasiloxane C10H30O3Si4 310.6854
15.12 Cyclohexane 3,3 dimethylbutyl C12H24 168.3190

The sample number, the retention times of the peaks and the compounds found at those peaks are 
recorded as well as the molecular weight of those compounds ascertained from the NIST library
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Emulsification was observed in sunflower oil in all culture samples and controls 
(Fig. 13.10), and a small amount of emulsification was observed in some culture 
samples in kerosene (Fig. 13.11). There was no emulsification observed in hexane. 
When a two-way ANOVA was carried out (Table 13.10), it was found that there was 
no statistically significant difference in E24 indexes between different locations and 
media. One-way ANOVA (Table 13.11) also suggests that there was no statistically 
significant interaction between location and media type. This means that the level of 
emulsification was not affected by either sampling location or media type. This also 
means that there was no interaction between the two variants which lead to a change 
of E24 value. Emulsification in the pure media controls suggests that there was a 
surfactant molecule in the media. Therefore, the emulsification in the culture sam-
ples could be due to the presence of media in the cultures or an emulsifying mole-
cule produced by the algal culture.

Fig. 13.7 An HPLC chromatogram of the blank (BG-11 media) in a mobile phase of acetonitrile 
and formic acid (50:50)
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13.3  Present Status and Future Opportunities

The global market for biosurfactants and bioemulsifiers is steadily increasing, and 
with this the scope for research in this area is also ever increasing. The production 
of biosurfactants and bioemulsifiers by marine algae is an area with limited litera-
ture. The biosurfactants and bioemulsifiers produced by marine or coastal algae are 
interesting for the researchers due to their structural and functional diversity. There 
are enormous applications associated with the algal bioactive molecules, and hence 

Table 13.5 Composition of enriched seawater medium

Component Amount
Stock solution 
concentration

Final 
concentration

Pasteurised seawater 1 L
Enrichment solution for seawater medium 20 mL/L

Fig. 13.8 An HPLC chromatogram of the microalgae, Chlorella sp., in a mobile phase of aceto-
nitrile and formic acid (50:50)
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Table 13.6 Composition of 1% F2 medium

Component Amount Stock solution concentration Final concentration
Seawater(non-sterilised) 285 mL
dH2O 600 mL
NaNO3 (Fisher BP360–500) 1 mL/L 7.5 g/100 mL dH20 880 μM
NaH2PO4·H2O(MCIB 742) 1 mL/L 0.5 g/100 mL dH20 36 μM
Na2SiO3·9H2O (Sigma 
307,815)

1 mL/L 2 g/100 mL dH20 70 μM

Trace metals solution 1 mL/L
Vitamin B12 1 mL/L
Biotin vitamin solution 1 mL/L
Thiamine vitamin solution 1 mL/L

Table 13.7 Composition of F2 medium

Component Amount Stock solution concentration Final concentration
NaNO3 (Fisher BP360-500) 1 mL 7.5 g/100 mL dH20 880 μM
NaH2PO4·H2O(MCIB 742) 1 mL 0.5 g/100 mL dH20 36 μM
Na2SiO3·9H2O (Sigma 
307,815)

1 mL 3 g/100 mL dH20 106 μM

Trace metals solution 1 mL/L
Vitamin B12 1 mL/L
Biotin vitamin solution 1 mL/L
Thiamine vitamin solution 1 mL/L

0

10

20

30

40

50

60

70

80

Pure Control Saltburn Skinningrove Seaton

Su
rf

ac
e 

Te
ns

io
n 

(m
N

/m
)

Sample

F2 1 % F2 Seawater Distilled Water

Fig. 13.9 The average surface tension for each culture media type from each site. Both pure 
media and distilled water were used as controls. Error was calculated using the standard deviation 
of the original tensiometer readings
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focus should be more on the effective algal sampling techniques, effective organism 
screening, effective identification and characterisation of the bioactive molecules.

The presence of polyaromatic hydrocarbons (PAHs) at sampling sites has pre-
viously led to the discovery and isolation of surfactant-producing organisms 
[28]. This sampling method acts as a sure short way or preliminary screening 
technique for surface active molecule production, as survival of organisms and 
utilisation of PAHs as a carbon source are often associated with surfactant or 
emulsifier production [39].

Table 13.8 P-values 
obtained from a two-way 
ANOVA carried out on 
tensiometer measurements

Variable P-value
Media type 0.964
Sampling location 0.293
Media type and location 0.616

A P-value below 0.05 was considered 
statistically significant

Table 13.9 P-values 
obtained from a one-way 
ANOVA carried out on 
surface tension measurements 
between the culture samples 
and the distilled water control

Media type P-value
F2 0.261
1% F2 0.257
Enriched seawater 0.993

A P-value below 0.05 was considered 
statistically significant
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Fig. 13.10 An average E24 index (%) in sunflower oil was calculated for each sampling location 
and media type. Error was calculated using the standard deviation of the E24 measurements

P. K. S. M. Rahman et al.



183

In the study of algal surfactants and emulsifiers, there is little information on the 
optimisation of culturing conditions. Culture media F2, 1% F2 and enriched seawa-
ter media have been used previously. Little information exists on the selectivity of 
1% F2 and enriched seawater media for surfactant or emulsifier production; how-
ever, Villay et al. [40] found a marked increase in exopolysaccharide production 
when the microalga Rhodella violacea was cultured in F2 media. Alternatively, 
Bafana [41] found that M1 media was optimised for exopolysaccharide production. 

Table 13.10 P-values 
obtained from a two-way 
ANOVA carried out on the 
sunflower oil E24 index 
measurements

Variable P-value
Media type 0.400
Sampling location 0.365
Media type and 
location

0.408

A P-value below 0.05 was consid-
ered statistically significant

Table 13.11 P-values 
obtained from a one-way 
ANOVA carried out on 
sunflower oil E24 index 
measurements between 
culture samples and the 
control samples of pure 
media

Media type P-value
F2 0.119
1% F2 0.166
Enriched seawater 0.244

A P-value below 0.05 was consid-
ered statistically significant
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Fig. 13.11 An average E24 index (%) in kerosene was calculated for each sampling location and 
media type. Error was calculated using standard deviation of the E24 indexes
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In a study carried out by Rosales-Morales and Paniagua-Michel [28], the addition 
of hydrocarbons to the algal cultures acted as an early screening technique for the 
production of bioemulsifiers. Those which exhibited high degradation were screened 
out, allowing for efficient screening. The addition of hydrocarbons to the algal cul-
tures generally allows for screening of samples to take forward to the next stages of 
the experiment.

The search for potent biosurfactants and bioemulsifiers is becoming more acces-
sible due to extensive knowledge of properties and the availability of several screen-
ing methods [15]. Oil dispersion test is one effective method for the primary 
screening or detection of biosurfactants [15]. The occurrence of a clear zone in the 
centre of the oil is an indication of biosurfactant presence [42], and the diameter of 
the clearing zone is directly correlated to surfactant activity. The addition of pure 
biosurfactant leads to a linear correlation between quantity of surfactant and clear-
ing zone diameter [7]. The oil dispersion test is rapid and requires no specialised 
equipment, as well as requiring only a small volume of sample. It can also be applied 
in cases of low biosurfactant activity and quantity [43]. It is applicable to detecting 
surfactants in a wide range of microorganisms [43–45]. Additionally, it has been 
found that there is an inverse linear relationship with surface tension, whereby, 
increased oil dispersion is correlated with decreased surface tension.

Much work is also being carried out into the specificity of screening methods for 
biosurfactants and bioemulsifiers. Whilst oil dispersion has been found to be an 
effective method for the detection of biosurfactants, Satpute et al. [46] also found 
that this test can be insufficient for the identification of bioemulsifiers. This is due 
to the fact that bioemulsifiers mainly emulsify liquids, rather than altering interfa-
cial tension between different phases [47]. Early indications in the field of the isola-
tion of surface active molecules from algae are also that only bioemulsifiers are 
being produced by algal species, rather than biosurfactants. Therefore, it must also 
be noted that a negative result in oil dispersion tests does not necessarily mean the 
absence of bioemulsifiers in the culture samples.

Another technique for the measurement of surface tension is using a Du Nouy 
ring tensiometer method. The method is based on the level of force required to 
detach the loop from the interface or surface, which is proportional to the interfacial 
tension [48]. In order for the measurements to be accurate, no contaminants can be 
present on the platinum ring. This means that the ring must be sterilised before 
every sample measurement [7]. The Du Nouy ring assay is widely used in the 
screening of surfactant-producing organisms [49–52].

A culture sample is generally considered to be promising for surfactant presence 
if it reduces the surface tension of water to 40 mN/m or less [53]. Other studies say 
that any surface tensiosn reduction >20 mN/m below the surface tension of distilled 
water (72 mN/m) is counted as ‘good’, and thereby it is a promising biosurfactant 
[54]. This technique is highly accurate and easy to carry out however requires spe-
cialised equipment and does not allow for simultaneous sample measurement, 
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meaning it is inefficient with large sample numbers [49]. It also requires more sam-
ple volume than other screening techniques, using several ‘mL’ rather than ‘μL’ 
used in techniques such as drop-collapse tests. There is also a limit to the surfactant 
concentration which can be measured using tensiometer measurements, without 
requiring dilution. It is also not as reproducible as the drop-collapse method [49].

The E24 emulsification assays correlate to surfactant concentration and are also 
widely used as a first-stage screening method for biosurfactant-producing organ-
isms [43, 55]. As mentioned earlier, emulsification capacity and surface activity do 
not always correlate meaning that E24 indexes give only an indication of biosurfac-
tant presence not a confirmation [7]. The use of a known biosurfactant as a positive 
control allows for easy comparison with the E24 measurements of the samples in 
question.

There is a degree of overlap in the characteristics and functions of biosurfactants 
and bioemulsifiers. However, it has been found that whilst biosurfactants alter sur-
face tension and emulsify, bioemulsifiers are not known to have an impact on sur-
face tension. Therefore, screening methods based on changes in surface tension may 
lead to the exclusion of bioemulsifiers [12]. Some alternative confirmatory methods 
are required in this field which can easily target the detection of bioemulsifiers.

If an algal sample has been found to produce a surface active molecule, which 
caused a statistically significant change in a screening method, in comparison with 
the control, the first step might be to use a Tukey test to identify which of the sam-
ples has led to the significance. Chemical analysis through a technique such as high- 
performance liquid chromatography (HPLC) or gas chromatography-mass 
spectrometry (GC-MS) [15] can be carried out to identify the surface active mole-
cule. Identification of the algal sample in question through DNA sequencing and 
bioinformatics is also productive.

The identification of algal bioemulsifiers and biosurfactants holds much prom-
ise, due to the wide range of molecules produced by algae and the abundance of 
biomass which can be cultivated. However, much work is needed to identify specific 
species and molecules which have surface active properties. This includes optimisa-
tion of sampling and culturing conditions as well as appropriate screening methods. 
Whilst the oil dispersion tests, surface tension measurements and E24 emulsification 
assays are widely used in the detection of biosurfactants, future studies should con-
sider the use of techniques which are specifically targeted at bioemulsifiers, as the 
change in interfacial tension which these techniques are reliant upon is not always 
exhibited by bioemulsifiers.
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Abstract
The ever-increasing need of energy both in the domestic and industrial front has 
augmented the consumption of fossil fuel; consequently, complexity arises 
owing to exhausting fuel supplies and due to their contribution to climate change 
by the emission of large quantities of greenhouse gases. The renewable, eco-
nomic, and carbon-neutral biofuel from algae has made it a promising feedstock 
that can curtail global dependency on rapidly depleting fossil fuel-based petro 
diesel. Moreover, higher biomass and cellular lipid accumulation competence 
and economic sustainability even in large-scale production make algae a better 
choice than other existing oil crops. There are quite a few studies reporting num-
ber of green microalgae as a potential feedstock for biofuel production. 
Accumulation of lipid in microalgae is species dependent, and in potential strains 
it ranges from 25% to 60% of dry cell weight, in modified growth conditions; 
however, some microalgae are reported to accumulate more than 60% of cellular 
lipid content. The present chapter is specifically aimed to review freshwater 
green microalga Scenedesmus abundans as a prospective feedstock for high- 
quality biofuel production.
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14.1  Introduction

Extensive consumption of fossil fuels in industries and in transport sector has ele-
vated the air pollutants to their critical level; they are disturbing the ecological equi-
librium that not only causing climate change but also posing serious threats to 
human as well as animal health. At present, 90% of global energy demand is ful-
filled by the use of fossil fuel-based petro diesel. Their use is increasing year by year 
with the increase in human population and industrialization; with this ever- 
increasing pace, it has been anticipated that the conventional fossil fuel reserves will 
be completely exhausted by the year 2050 [17, 24]. To fulfill global energy demand 
and to protect environment as well as human health, researchers are facing immedi-
ate challenge to explore nonconventional sources of energy that are renewable, 
environment friendly, and cost-effective in nature.

To combat energy crises, first-generation biofuel came into existence; they are 
basically plant-based high-energy organic matter that can be processed into biofuel. 
But the major issue associated with first-generation biofuel is the nature of feed-
stock which is also consumed by humans as food products. Food crops such as 
soybean, sunflower, corn, sugarcane, sugar beet, etc. are good source of oil, sugar, 
and starch which can be converted into biodiesel, ethanol, and biogas. Second- 
generation biofuel is derived from agricultural waste or residue; unlike first- 
generation biofuel, second-generation biofuel are nonfood feedstock. The major 
disadvantage with second-generation biofuel is high processing cost associated with 
it; apart from this, technology barriers and feedstock collection are also drawbacks 
[20, 21, 31, 45, 46]. Most recent and advanced biofuel are third generation. These 
fuels are specifically derived from algae. By using algae as a feedstock, a number of 
fuels such as biodiesel, biohydrogen, ethanol, butanol, and jet fuel can be obtained 
(Fig. 14.1). Unlike first- and second-generation biofuels, third-generation biofuels 
have several advantages due to higher growth rate and lipid content of the algae; 
more importantly algae do not require arable land for its growth and do not compete 
with other food crops [11, 25, 26].

About 200,000–800,000 algal species are in existence, out of which about 50,000 
species have been identified and documented [24, 40]. Several potential algal 
(microalgae, macroalgae, and cyanobacteria) species have been reported for biofuel 
production. With slight modification in growth conditions, the lipid content of algae 
can be enhanced as much as 80% of their dry cell weight [1, 18]. Apart from biofuel, 
algae are capable in producing high-value coproducts that have nutritional and phar-
maceutical importance; with this advantage, the overall downstream processing 
becomes more economic and sustainable at industrial scale. Therefore, the present 
chapter deals with one of the most widely distributed potential biofuel-producing 
microalga Scenedesmus abundans. Its biofuel potential in light of fatty acid-derived 
biodiesel properties and various growth conditions pertaining to higher growth and 
lipid content will be discussed.

S. K. Mandotra et al.



191

14.2  Microalgal Lipid Content

Different algal species have different growth rate and biomass-accumulating poten-
tial; moreover, cellular lipid content of different algal species varied significantly. 
The lipid content of green microalgae is generally higher than that of blue-green 
algae (cyanobacteria) [20, 21, 50]. Therefore, the selection of algae is of prime 
importance while considering it for biofuel production. The biofuel potential of 
algae does not only depend on the cellular lipid content; instead, it is also dependent 
on the biomass content of the algae; the overall lipid content (g/L) significantly 
affected the biomass content [25].

Few microalgal species such as Botryococcus braunii, Neochloris oleoabundans, 
Dunaliella tertiolecta, and Chlorella emersonii have been reported to have very 
high amount of lipid content (>60%) of their dry weight biomass [24]. The natural 
oil percentage (% dry cell weight) of various microalgal species studies by different 
researchers are given in Table 14.1.

14.3  Lipid Accumulation Potential of Scenedesmus abundans

S. abundans is a freshwater green microalgae belonging to the genus Scenedesmus 
in the class Chlorophyceae. Cells are nonmotile in nature, and their colonies are 
usually two to four celled arranged in a linear series; rarely, they are found in eight- 
celled colonies (Fig. 14.2). In addition to the spines present in all the four corners, 
cells also contain one or more median lateral spines which form the outer face [34].

A study carried out by Mandotra et al. [25] explored the biofuel potential of S. 
abundans isolate from the culture collections of Dal Lake, Kashmir, India. On the 

Fig. 14.1 Overview of biofuel production form microalgae
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Table 14.1 Lipid content of selected algal species

Algae species Alga type
Lipid/oil percentage  
(% dry cell weight) References

Botryococcus braunii Green alga 25–75 [8]
Neochloris oleoabundans Green alga 35–65 [15]
Crypthecodinium cohnii Red alga 20–51 [8]
Scenedesmus quadricauda Green alga 2–18 [41]
Dunaliella tertiolecta Green alga 17–71 [28]
Chlorella emersonii Green alga 25–63 [15]
Haematococcus pluvialis Red alga 15–32 [10]
Chlorella pyrenoidosa Green alga 11–26 [32]
Spirulina maxima Green alga 4–9 [27]
Dunaliella salina Green alga 6–25 [1]
Euglena gracilis Green alga 14–20 [5]
Phaeodactylum tricornutum Diatom 18–57 [8]
Skeletonema costatum Diatom 13–51 [41]
Dunaliella primolecta Green alga 23 [8]
Scenedesmus obliquus Green alga 11–55 [1]
Oocystis pusilla Green alga 10 [27]
Arthrospira maxima Blue-green alga 20 [4]
Scenedesmus abundans Green alga 37 [25]
Nannochloropsis oculata NCTU-3 Green alga 31–50 [9]
Isochrysis galbana Prymnesiophytes 7–40 [30]

Fig. 14.2 Microscopic 
image of microalga  
S. abundans
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basis of preliminary analysis, the alga was found to have the biomass content of 
0.98 g/L along with 37% lipid content of their dry cell weight. Nutrient limitation in 
the culture medium is one of the strategies to enhance cellular lipid content of the 
algae. Nitrogen is one of the major intracellular components that plays vital role in 
protein synthesis along with cell division of algae [3, 43]. It is well known that 
nitrogen deprivation in the growth medium leading to higher lipid accumulation 
compromises biomass content of the alga. However, in a few studies, it has been 
reported that there is optimum nitrogen-limited condition in which algae suffer with 
minimal stress condition which is sufficient to induce lipid accumulation without 
compromising biomass content. A study carried out by Mandotra et al. [25] with S. 
abundans demonstrated the effect of nitrogen limitation. Six different concentra-
tions (0.0  g/L, 0.08  g/L, 0.16  g/L, 0.24  g/L, 0.32  g/L, and 0.4  g/L) of nitrogen 
(KNO3) were taken in the growth medium. Nitrogen concentration of 0.4 g/L was 
taken as positive control with standard concentration of media, whereas 0.0 g/L was 
taken as negative control with the absence of nitrogen in the growth medium. The 
result demonstrated that the higher biomass and lipid content of 1.11  g/L and 
489 mg/L, respectively, was found in the culture medium supplemented with the 
nitrogen concentration of 0.32 g/L. Although the growth condition (0.32 g/L) was 
slight nitrogen limiting, still the biomass content was higher in comparison with 
standard nitrogen concentration (0.4 g/L) of the growth medium. The study con-
firmed that, even though nitrogen content in the growth medium favors higher 
growth, but beyond certain limit, it shows inhibitive effect on biomass content of the 
algae [22, 25]. Yet in another study, different sources of nitrogen, viz., ammonium 
nitrate, ammonium sulfate, and sodium nitrate, were examined to grow S. abundans 
in autotrophic culture condition; as a result, maximum lipid yield of 3.55 mg/L/day 
was achieved with the culture medium having ammonium nitrate as a nitrogen 
source [14].

Carbon dioxide (CO2) is one of the important factors that significantly enhance 
the yield of algal biomass. In open pond cultivation, about 1 kilogram of dry algal 
biomass utilizes 1.83 kilogram of CO2 [6, 8, 35]. Chellamboli and Perumalsamy [6] 
performed a study using S. abundans by central composite design-response surface 
methodology (CCD-RSM); in their study they have considered different culture 
time, inoculum concentration, and sodium bicarbonate content. As a result, maxi-
mum biomass yield of 39.1 mg/L/day with highest lipid content of 26.2% dry cell 
weight was recorded with 8 g/L sodium bicarbonate and 10% inoculum on 30th day 
of the culture period.

Phosphate is another macronutrient that plays vital role in the growth of the 
algae. It is one of the important constituents of nucleic acid metabolism, ATP syn-
thesis, signal transduction, and phospholipid metabolism [3]. Phosphate-limiting 
condition significantly affects the cell division process of the algae; synthesis of 
most of the intracellular molecules such as carbohydrate, protein, and chlorophyll 
pigment ceases and carbon flux is directed toward the lipid synthesis [23, 29, 38, 
48]. Therefore, like nitrogen limitation, phosphate limitation is also one of the 
widely studied methods of lipid accumulation. A study carried out with microalga 
S. abundans with different phosphate (K2HPO4) concentration (20 mg/L, 40 mg/L, 
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60  mg/L, and 80  mg/L) in the culture medium showed significant effect on the 
growth and lipid content of the alga. The study demonstrated the growth of alga on 
all phosphate concentrations; however, the highest biomass content (770 mg/L) was 
recorded on the culture supplemented with 60 mg/L K2HPO4. On the other hand, 
highest lipid percentage was observed in culture with least amount (20 mg/L) of 
K2HPO4 content. Lipid concentration (mg/L) of the culture is biomass dependent; it 
is the total amount of lipid content extracted from the biomass present in 1 liter of 
the culture medium. Therefore, the highest lipid concentration of 176 mg/L was 
recorded in the culture with 60 mg/L of K2HPO4 [26].

Like different nitrogen and phosphate concentration, the effect of other growth 
conditions such as pH and light intensity was also studied for S. abundans. By keep-
ing all the culture conditions constant, different pH (pH 5, pH 6, pH 7, pH 8, and 
pH 9) and light intensities (3000, 4000, 5000, and 6000 lux) were studied to assess 
the effect on biomass accumulation and lipid production [26]. Among different light 
intensities, culture with the light intensity of 6000 lux has shown highest biomass 
concentration of 742 mg/L. Light intensity is one of the crucial parameters; at low 
light intensity, biomass content compromises, whereas, extremely high light inten-
sities damage photosynthetic apparatus (PSI and PSII) [42, 44]. Higher light inten-
sity required by S. abundans can be explained by its higher growth rate; during log 
phase of the growth, the alga culture becomes dense; to overcome self-shading 
effect, the alga requires higher light intensities, so that every cell gets enough 
amount of light to carry out normal physiological processes. Lipid content of S. 
abundans increased with increased light intensities. Highest lipid percentage (32%) 
with lipid concentration of 243 mg/L was recorded in the culture illuminated with 
6000 lux light intensity [26]. At higher light intensities, light energy is converted 
and stored into chemical energy in the form of photo assimilates to overcome pho-
tooxidation [37, 47].

Biomass content of S. abundans increases with increase in pH from 5 to 8; the 
growth, however, decreased at pH 9. Highest biomass concentration of 769 mg/L 
was observed at pH 8. As far as lipid percentage was concern, highest lipid percent-
age (26%) with the lipid concentration of 179 mg/L was observed at pH 6 [26]. At 
adverse pH condition, algae tend to divert their energy for the biosynthesis of lipids 
instead of biomass [16].

14.4  Biodiesel Properties of S. abundans

Even after producing sufficient quantities of lipids, the alga cannot be used as feed-
stock for biodiesel production until and unless its fatty acid-derived biodiesel prop-
erties are in accordance with various national and international biodiesel standards. 
There are certain biodiesel standards such as EN 14214, European biodiesel stan-
dards; IS 15607, Indian biodiesel standards; and ASTM D6751–08, American bio-
diesel standard that provide standard range of values for biodiesel properties. There 
are four important biodiesel properties such as degree of unsaturation (DU), cetane 
number (CN), iodine value (IV), and saponification value (SV). DU is the sum of 
monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) that influences 
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the oxidative stability of biodiesel. PUFA contain large number of reactive sites that 
are susceptible to free radial attack; therefore, having higher PUFA content nega-
tively affects the oxidative stability of biodiesel. Fatty acid profile having large 
quantity of long-chain saturated fatty acid (SFA) and MUFA improves oxidative 
stability of biodiesel [2, 7, 12, 49].

CN is another biodiesel property that influences the fuel combustion. Biodiesel 
having higher value of CN have low nitrous oxide (NO) emission, easy startup, and 
less knocking of engine. Higher value of SFA and MUFA results in higher CN 
value. IV indicates unsaturation of biodiesel oil; it increases with increase in double 
bonds. It is the amount of iodine required to saturate 100 g of oil. Biodiesel with 
high IV results in engine deposit. SV is another biodiesel property which is defined 
as the amount (mg) of potassium hydroxide (KOH) required to saponify 1 gram of 
oil sample. SV is also used to calculate the CN value of biodiesel [19, 36].

Table 14.2 shows the comparative biodiesel properties of S. abundans with other 
biodiesel feedstocks. Study carried out by Mandotra et  al. [25] on S. abundans 
reported the presence of 6.4% of linolenic acid and complete absence of fatty acid 
⩾4 double bond. For an ideal biodiesel, linolenic acid and PUFA with ⩾4 double 
bond should not increase 12% and 1%, respectively [15, 33].

14.5  Conclusion

The present chapter reviews the biodiesel potential of freshwater green microalga S. 
abundans. It is evident by the present data that the alga possesses higher biomass 
and lipid content naturally. However, the biomass and lipid content could be further 
enhanced by slight modification in the growth conditions. Fatty acid-derived bio-
diesel properties of S. abundans were also reviewed and found in accordance with 
various national and international biodiesel standards (EN 14214, IS 15607, and 
ASTM D 6751–08). As a result, it could be concluded that the alga could be explored 
for large-scale commercial biodiesel feedstock for quality biofuel production.

Table 14.2 Comparative biodiesel properties of S. abundans with other biodiesel feedstocks

Biodiesel feedstock DU (wt. %) CN IV (g I2/100 g oil) SV (mg KOH/g oil) References
S. abundans 84.5 52.15 94.06 202.02 [25]
Aphanothece sp. 70.6 55.8 65.4 225.1 [13]
Soybean 143.8 49 128 – [39]
Sunflower 152.2 50 132 – ,,
Peanut 113.1 53 97 – ,,
EN 14214 – Min. 51 Max. 120 –
IS 15607 – Min. 51 Max. 120 –
ASTM D6751-08 – Min. 47 – –

DU degree of unsaturation, CN cetane number, IV iodine value, SV saponification value
EN 14214, European biodiesel standards; IS 15607, Indian biodiesel standards; ASTM D6751–08, 
American biodiesel standards
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15Exploring the Diversity of Marine 
Planktonic Cyanobacterial Assemblages 
in a Mangrove Ecosystem: Integration 
of Uncultured and Cultured Approaches

Tarkeshwar Singh and Punyasloke Bhadury

Abstract
Mangrove ecosystems represent an  unique ecotone between land and 
ocean  boundary and therefore harbour rich biodiversity. The estuarine waters 
within a mangrove ecosystem are highly productive and sustain rich fisheries that 
support livelihood of millions of population globally. Phytoplankton communi-
ties hold the key to sustenance of mangrove fisheries by contributing to aquatic 
primary production. However, community composition of marine planktonic 
cyanobacteria, a key constituent of phytoplankton assemblages, and their result-
ing importance in primary production are not very well understood across man-
groves, in particular from South and Southeast  Asia. In this book chapter, 
snapshot of marine planktonic cyanobacterial community structure along sea-
sonal scales has been highlighted using Sundarbans mangrove ecosystem as an 
example. The importance of integrating taxonomy with molecular tools is para-
mount towards understanding structure and function of marine planktonic cyano-
bacterial communities in coastal ecosystems such as mangroves and thus have 
consequences for sustainence of rich coastal fisheries.

15.1  Introduction

Coastal ecosystems contribute substantially to primary production amounting to 0.7 
gigatons of carbon annually. Cyanobacterial communities account for 50% of all 
aquatic primary production or approximately 25% of total global primary 
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production [1]. In land-ocean boundary, planktonic cyanobacteria constitute a key 
component of phytoplankton assemblages (e.g. [2]). Ubiquitous picoplanktonic 
cyanobacterial populations represented mainly  by two genera, namely, 
Synechococcus and Prochlorococcus, are key players of aquatic primary production 
in coastal waters globally (e.g. [3, 4]). Synechococcus is more widespread from 
mesotrophic to eutrophic coastal ecosystems [3, 5], while Prochlorococcus is more 
abundant in open ocean environments [6]. On a latitudinal scale, both these picocya-
nobacterial genera have distribution ranging from tropics to high latitudes [7].

Among coastal ecosystems, mangroves represent an ecotone and spread across 
tropical to subtropical regions covering approximately 75% of the coastlines [8]. 
The distribution of mangroves globally indicates a tropical dominance with latitudi-
nal limits linked to major ocean currents. Biogeographically diverse regions such as 
the Indo-West Pacific, Indonesia, Australia, Brazil and Nigeria are represented by 
43% of the world’s mangrove forests. Mangroves are more widespread in South and 
Southeast Asia [9]. Mangroves serve as the nursery ground for rich coastal fisheries 
and thus serve livelihood of millions of people globally. For example, mangrove- 
related fish and crab species account for 32% of the small-scale fisheries landings in 
the Gulf of California [10]. The sustenance of rich fisheries in mangroves is directly 
or indirectly influenced by phytoplankton communities present in the water. 
Phytoplankton communities thus play a key role in energy transfer through trophic 
food webs including in fishes [9]. Hence, it is extremely important to elucidate the 
structure of phytoplankton communities at temporal and spatial scales, in particular 
for planktonic marine cyanobacteria, which can constitute an important component 
of overall phytoplankton assemblages in mangrove ecosystems.

15.2  Studies on Planktonic Marine Cyanobacterial 
Communities in Mangrove Ecosystems

Several studies have been undertaken to elucidate cyanobacterial communities in 
mangrove ecosystems based on microscopy. Majority of these studies have looked 
into cyanobacterial communities  in pneumatophores of mangrove plants, rhizo-
sphere, sediment, and partly from water. Based on bright field microscopy and cul-
tured  approaches, 15 marine planktonic cyanobacterial genera belonging to 
Chroococcales were reported from red mangroves in Brazil [11], whereas 10 ben-
thic cyanobacterial genera including Lyngbya, Oscillatoria and Anabaena were 
reported from mangrove sediments of Zanzibar in Kenya [12]. In a recent study, it 
has been shown that mangrove sediment can harbour novel cyanobacterial species 
[13]. Based on published literature, 73 genera of cyanobacteria represented by 276 
species have been reported (see review by [14]). Therefore, there is very limited 
knowledge on planktonic marine cyanobacterial communities in mangrove ecosys-
tems compared to other phytoplankton groups at the taxonomic and functional lev-
els, and thus their exact contribution to aquatic primary production seasonally and 
spatially remains largely unknown from this type of ecosystem. Moreover, many of 
these planktonic cyanobacteria could ultimately turn out to be extremely important 
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in translational research such as in the field of biotechnology such as bioremedia-
tion or generation of biofuels.

15.3  Bridging Taxonomy with Molecular Tools

Given that 41% of the world’s mangrove occurs in South and Southeast Asia, it has 
become imperative to accelerate our understanding of cyanobacterial communi-
ties such as planktonic forms from this particular ecosystem. Morphological identi-
fication using microscopy exclusively relies on observation of morphological 
features present within a cell. However, there is paucity of experienced taxonomists 
globally in the field of cyanobacterial taxonomy. Morpho-taxonomy may be diffi-
cult at times and thus can lead to underestimation of marine planktonic cyanobacte-
rial diversity across various types of marine ecosystems including mangroves [2, 
15]. Moreover, available identification manuals on cyanobacterial taxonomy include 
only a small fraction of genuine marine cyanobacterial taxa. This can be further 
compounded by the fact that coastal ecosystems in tropical and subtropical regions 
have remained largely unexplored from the viewpoint of cyanobacterial community 
composition.

The advent of molecular techniques has revolutionized biology over the last 
three decades. Techniques such as polymerase chain reaction (PCR), DNA sequenc-
ing, terminal-restriction fragment length polymorphism (T-RFLP) and in recent 
times the application of next-generation sequencing (NGS) are more increasingly 
used in biological research [16, 17]. The field of marine cyanobacterial taxonomy 
has been also benefited with the increasing application of molecular techniques. 
For example, molecular tools based on small subunit ribosomal RNA (16S rRNA 
marker) have been used to study planktonic cyanobacterial assemblages from vari-
ous types of marine environment including coastal ecosystems (e.g. [18–21]). The 
16S rRNA operons are known to be present in more than one copy per genome 
within a prokaryotic cell compared to protein coding genes. Thus this molecule has 
the ability to increase the possibility towards discovery of rare microbial taxa from 
the environment. It is also the most preferred molecular marker in prokaryotic 
studies including for cyanobacteria [19, 20]. One of the most widely used 
approaches for assessing prokaryotic diversity is based on 16S rRNA clone library 
and sequencing approach. Information obtained from clone library and sequencing 
approach can provide key information on novel prokaryotic species that are wide-
spread across marine environments (e.g. [22]). Moreover, in clone libraries cyano-
bacterial diversity can be also studied at microhabitat levels and thus allow 
improved phylogenetic resolution along with detection of uncultured cyanobacte-
ria [23]. Therefore, integration of taxonomy with molecular tools can help to 
unravel marine planktonic cyanobacterial assemblages from lesser known coastal 
ecosystems such as mangroves.

In this chapter, we have discussed how molecular tools can be integrated with 
taxonomy to unravel information on the marine planktonic cyanobacterial assem-
blages in a mangrove ecosystem using Sundarbans mangroves as an example.
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15.4  Sundarbans Mangrove Ecosystem

The mangroves in the Ganga-Brahmaputra-Meghna Delta shared between India and 
Bangladesh, popularly known as the Sundarbans, are the only contiguous and largest 
mangrove ecosystem in the world. The Sundarbans covers an area of approximately 
one million hectare which is greater than the combined area of Wadden Sea shared 
between Denmark, Germany and the Netherlands [24, 25]. The Sundarbans (21°32′ 
and 22°40′N; 88°05′ and 89°E), part of the world’s largest deltaic mangrove ecosys-
tem located at the apex of Bay of Bengal, encompasses over 102 islands with a net-
work of innumerable rivers, rivulets and creeks [26]. This vast deltaic region covers 
a total area of approximately 10,000 km2 and is strongly influenced by coastal water 
entering from the Bay of Bengal. There is huge freshwater flow from GBM riverine 
systems (42,000 m3/s), in particular during monsoon, along with saline water influ-
ences, which leads to variability in salinity across different parts of Sundarbans man-
grove. In 1987, UNESCO declared the core mangrove forest of Indian Sundarbans 
(2585 km2) as Sundarbans Biosphere Reserve (SBR) for protection and conservation 
of mangrove flora and fauna including the Royal Bengal Tiger from anthropogenic 
disturbances. One of the important attributes of this mangrove ecosystem is the high 
load of suspended particulate matter in water column compared to other coastal eco-
systems (e.g. [27, 28]).

Eukaryotic phytoplankton communities have been relatively well studied from 
the Sundarbans. Diatoms are the major contributor to aquatic primary production in 
Sundarbans, and they show temporal and spatial variability in link with prevailing 
environmental conditions [28–32]. The high fish productivity in the Sundarbans 
region is also dependent on aquatic primary production driven by phytoplankton 
communities [33]. However, knowledge on the marine planktonic cyanobacterial 
communities in estuarine or coastal water of Sundarbans is not very well under-
stood. Moreover, given the area of this ecosystem being vast with topographic and 
seasonal hydrological differences, planktonic cyanobacterial community structure 
can also vary at temporal and spatial scales.

Therefore, to disentangle complexity of marine planktonic cyanobacterial com-
munities and to understand their exact contribution to aquatic primary production in 
coastal ecosystems such as Sundarbans, it is necessary to integrate morphology- 
based taxonomy with molecular tools.

15.4.1  Sundarbans Biological Observatory Time Series

Since many of the mangrove ecosystems, especially in South and Southeast Asia, 
cover huge area, therefore in order to get an in-depth understanding of marine 
planktonic cyanobacteria, there is a need to establish time series focusing on a part 
within a mangrove ecosystem. The time series can help to understand temporal and 
spatial trends of biological communities, such as marine planktonic cyanobacteria, 
and ultimately link their importance to ecosystem functioning. Globally, there are 
numerous coastal time series and most notable among them include the Western 
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Channel Observatory and San Pedro Ocean Time Series. In case of Sundarbans, 
such a time series has been established in 2010 in its western part. This is known as 
Sundarbans Biological Observatory Time Series (SBOTS). SBOTS is located in 
Sagar Island, the largest island of Sundarbans which is approximately 6.7 m above 
sea level, and mean tidal amplitude of this island is 3.5–6.0 m throughout the year. 
Sagar Island is surrounded by Muri Ganga River in the east and Hooghly River in 
the north and west, while the southern part faces the coastal Bay of Bengal. SBOTS 
comprises three stations, namely, Stn1 (21°40′44.4″, 88°08′49.5″ E), Stn2 
(21°40′59.3′′N; 88°09′13.1′′E) and Stn3 (21°40′40.6″ N, 88°09′19.2″ E), which 
are routinely monitored on a monthly basis to disentangle complexity of biological 
communities such as marine planktonic cyanobacterial communities (Fig.  15.1). 
Stn1 is located upstream of the Chemaguri creek located in southeast of Sagar 
Island, while Stn2 is located at the mouth of creek facing the Mooriganga River. On 
the other hand, Stn3 is located on the Mooriganga River and directly influenced by 
coastal water entering from the Bay of Bengal on a diurnal basis. All these stations 

Fig. 15.1 Map of the study area as part of SBOTS (Source image modified from Google Earth)
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have shallow water depth. Interestingly, salinity in Stn1 is much lower compared to 
the other two stations of SBOTS [28, 34].

15.5  Monitoring Marine Planktonic Cyanobacterial 
Communities in SBOTS

In order to get an in-depth understanding of marine planktonic cyanobacterial 
communities and also their overall contribution to total phytoplankton assemblages 
in coastal ecosystems, there is an increasing need to study and unravel functional 
complexity in biological groups such as cyanobacteria either at the  temporal or 
spatial scales. In case of mangrove ecosystems, this approach is more relevant 
given the vast geographical expanse along with heterogeneity in topography and 
prevailing environmental conditions. In SBOTS, marine planktonic cyanobacterial 
community structure was elucidated at the temporal scale, in particular seasonal 
scale, by applying both microscopy and molecular tools.

In Sundarbans mangroves, monsoon and post-monsoon seasons strongly influ-
ences ecosystem level functioning [34, 35]. During monsoon time, seasonal precipi-
tation considerably increases freshwater flow from major rivers into this ecosystem. 
The increased freshwater flow is also accompanied with nutrient run-offs from land 
boundaries. Although tidal influences in this ecosystem during monsoon persist, 
nevertheless huge freshwater inflow lowers salinity during this season. Such changes 
also alter the aquatic primary production in this ecoregion. During post-monsoon 
season, the increased freshwater flow continues, and there is an in-depth increase in 
water column. This leads to improved light penetration in the water column and an 
overall increase in aquatic primary production in the region. Therefore seasons can 
influence the structure and functioning of biological communities in Sundarbans 
mangrove ecosystem including in marine planktonic cyanobacterial communities.

Time series can be particularly useful to understand seasonal influences on bio-
logical communities and also to unravel complexity of these communities such as 
for phytoplankton. As part of SBOTS, the seasonal influence on structure of marine 
planktonic cyanobacterial communities has been looked into, in addition to elucida-
tion of the community structure. Since salinity in Stn1 is much lower compared to 
Stn3 of SBOTS, therefore, these two stations were selected because the influence of 
monsoon and post-monsoon seasons on marine planktonic cyanobacterial commu-
nities will be evident. In 2012, marine planktonic cyanobacterial communities from 
Stn1 and Stn3 of SBOTS were monitored during monsoon (July to September) and 
post-monsoon (October to December) seasons. Briefly, surface water was collected 
on a monthly basis from Stn1 and Stn3 in above seasons and then subjected to PCR 
clone library and sequencing by targeting cyanobacteria-specific 16S rRNA region 
([19]; see protocols for clone library approach in [32]). At the time of collection, in 
situ environmental parameters were recorded in addition to collection of surface 
water for dissolved nutrient analysis and also for  undertaking bright field 
microscopy.
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The sequenced 222 clones showed varying identity (90–100%) at the nucleotide 
level with published uncultured and cultured 16S rRNA sequences belonging to 
Cyanobacteria. Interestingly, 160 out of 222 clones showed 95–100% identity with 
published 16S rRNA sequences available in nucleotide databases (GenBank/DDBJ/
ENA) belonging to 17 strains of cultured marine Synechococcus. From seasonal 
viewpoint, in monsoon, 105 sequences were Synechococcus-like, while in post- 
monsoon 55 sequences were Synechococcus-like. From SBOTS stations perspec-
tive, 69 sequences were Synechococcus-like in Stn1, while 91 sequences were 
Synechococcus-like in Stn3. In Stn1, the sequences showed significant identity with 
15 cultured strains of Synechococcus, while in case of Stn3, identity was observed 
with 12 cultured strains of Synechococcus (see relative abundances in Fig. 15.2). 
Most importantly, out of 160 Synechococcus-like sequences, 71 sequences showed 
95–100% identity at the nucleotide level with published 16S rRNA sequence of 
cultured Synechococcus sp. KORDI-78 strain (Acc. no. FJ497748) isolated previ-
ously from the coastal water of East China Sea. The KORDI-78-like sequences 
were found to be highly abundant in monsoon and post-monsoon seasons of 
SBOTS. Moreover, a new species of marine planktonic cyanobacterium belonging 
to the genus Synechococcus has been successfully isolated from SBOTS, and using 
polyphasic taxonomic approaches, it has been also confirmed that this species con-
tains unique signatures of fatty acids indicative of ecophysiological adaptation in 
this ecosystem.

Although Synechococcus-like sequences dominated SBOTS, nevertheless, 
sequences representative of other cyanobacterial taxa, although in low numbers, 
were also encountered from clone library approach. For example, some sequences 
showed identity with published 16S rRNA sequences belonging to Hapalosiphon 
sp., Fischerella sp., Chroococcidiopsis sp. and Trichocoleus sp. The detection of 
Hapalosiphon- and Fischerella-like sequences, albeit in low numbers from Stn1 of 
study area only during post-monsoon, indicates the importance of resuspension of 

Fig. 15.2 Relative abundance of sequences showing identity with cultured Synechococcus strains 
in Stn1 and Stn3 of SBOTS
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benthic cyanobacterial mats in surface water of Sundarbans which can be due to 
occasional vertical mixing as a result of increased freshwater flow especially during 
end of monsoon season. The resuspension of benthic cyanobacterial mats has been 
also reported from this ecosystem [28].

Sequences representing four major orders of planktonic cyanobacteria, namely, 
Chroococcales, Pleurocapsales, Oscillatoriales and Stigonematales, were encoun-
tered from SBOTS. Some of these orders have been also reported from other man-
grove ecosystems (e.g. [11, 12, 36]). Sequences representing the orders 
Pleurocapsales, Oscillatoriales, and Stigonematales were only found in Stn1 for the 
months of July and December of 2012. The Stn3 throughout monsoon and post- 
monsoon seasons was represented by sequences belonging only to Chroococcales.

The bright field microscopy approach adopted during elucidating marine plank-
tonic cyanobacterial communities from both stations of SBOTS also showed the 
presence of cells belonging to Synechococcus sp., Chroococcidiopsis sp., 
Phormidium sp., Trichocoleus sp. and Trichodesmium sp. Interestingly, 
Synechococcus cells were observed from July to December in both stations, while 
cells of Trichodesmium sp. were encountered only in Stn3 during October and 
November 2012. Generally, there was congruency between bright field microscopy 
and molecular tools while elucidating marine planktonic cyanobacterial assem-
blages from Sundarbans mangrove ecosystem.

The cyanobacterial 16S rRNA sequences generated from SBOTS stations were 
subjected to deep phylogeny to get an in-depth understanding of their ecophysiolog-
ical adaptation in this ecosystem. It was found that several novel clades of marine 
planktonic cyanobacteria exist in Sundarbans and that salinity could be an impor-
tant factor that could control distribution of these clades in estuarine waters of this 
ecosystem. For example, salinity-specific Synechococcus clades have been reported 
from other marine environments [37, 38]. The identification of these novel clades 
highlights that the number of undiscovered marine planktonic cyanobacteria in 
mangrove ecosystem such as Sundarbans is still potentially visited and integrative 
taxonomic approaches can help unravel the vast species richness of marine plank-
tonic cyanobacteria. The existence of undiscovered cyanobacteria in coastal ecosys-
tems has been also highlighted before and considered as an emerging challenge in 
cyanobacterial taxonomy [2].

At the same time, it was found that prevailing environmental parameters includ-
ing their variability, in particular salinity and dissolved nutrients (e.g. orthophos-
phate concentration), along seasonal scales such as in monsoon or post-monsoon 
can also influence the composition as well as seasonal variability of marine plank-
tonic cyanobacterial communities. Such trends are expected to be observed in other 
mangrove ecosystems which are influenced by freshwater influx, particularly those 
found in South Asia.

Interestingly, from SBOTS Prochlorococcus-like sequences were not encoun-
tered either during monsoon or post-monsoon, and the absence of this genus was 
also confirmed by bright field microscopy. This finding with respect to Sundarbans 
is significant, although implications of such in coastal primary production warrant 
further investigation. Moreover, this also opens up avenue for undertaking in-depth 
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research to look into the distribution of Prochlorococcus populations in other man-
groves of South as well as Southeast Asia.

15.5.1  Way Forward

The findings from SBOTS of Sundarbans indicate that populations of Synechococcus 
dominate this mangrove ecosystem across seasonal scales. Besides Synechococcus, 
other cyanobacterial genera, some of which are terrestrial and found in the estuarine 
water due to run-off as a result of freshwater flow, were also encountered. The 
importance of environmental parameters such as salinity is pivotal in controlling 
structure of marine planktonic cyanobacterial communities, especially in man-
groves such as Sundarbans which is influenced by freshwater inflow. The detection 
of novel clades once again reconfirms that unexplored marine cyanobacterial diver-
sity is unusually high in coastal ecosystems such as mangrove and this type of 
ecosystem is a ‘hotspot’ of cyanobacterial diversity including for marine planktonic 
cyanobacteria. Many of these novel sequences can be ultimately represented in the 
form of establishment of marine planktonic cyanobacterial cultures, and some of 
these could be potentially applied in the field of biotechnology (e.g. [39]). The 
unexplored marine planktonic cyanobacterial diversity holds key to broader under-
standing of biogeochemical cycling including carbon and nitrogen cycles in man-
grove ecosystems such as Sundarbans and also their role in sustaining the rich coastal 
fisheries.
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16Metabolic Engineering Prospects 
for Enhanced Green Fuel Production 
by Microalgae
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Abstract
The world has been entering into a phase of acute energy crisis due to the loga-
rithmic increase in global population and the continuous depletion of finite fossil 
fuel resources. Generation of greenhouse gasses due to combustion of fossil fuels 
adds further menace to the environment bringing about global warming. There is 
an urgent need to search for an alternative fuel source which is economic and 
environmental friendly. Microalgae are the photosynthetic microorganisms 
which have the potential to convert light energy into biofuel through series of 
biochemical reactions. However, the major drawbacks for algae-based biofuel 
production are the time-consuming processes. According to a report published 
by US Department of Energy, there are 3000 different microalgae having poten-
tial to produce TAG as main precursor of biofuel. There are several genes which 
encode enzymes for the lipid metabolism responsible for enhancing the lipid 
content in microalgae. Development of molecular tools and techniques and syn-
thetic biology may give more insight into the synthesis of triacylglycerides 
(TAG) in lipid-accumulating microalgae. In this article, we review the possibility 
of development of metabolic engineering for lipid synthesis in microalgae and 
discuss the various strategies such as single gene expression, carbon assimila-
tion, expression of transcription factors and flux balance analysis which increase 
the lipid accumulation via metabolic engineering.
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16.1  Introduction

Nowadays, the world is facing two major problems, i.e. energy crisis and global 
warming, due to increased transportation, population, industrialization and use of 
fossil fuels. In last three decades, the serious environmental problems are occuring 
in worlwide due to increasing consumption of fossil fuels. According to the reports 
of International Energy agency (https://data.worldbank.org/indicator/EG.USE.
COMM.FO.ZS), more than 80% energy from fossil fuel are consumed  in world 
wide. At present, staggering rate of consumption, available world fossil oil reserves 
will be exhausted in less than 50 years [36]. In recent times, many of the countries 
are extracting energy from different sources such as geothermal, agricultural waste, 
solar, wind and water, which can be used as alternatives to fossil-based fuels [25]. 
According to the International Energy Agency (IEA) report, the energy derived 
from waste biomass has higher potential for alternative fuel in comparison with 
other renewable energy sources [20]. Similarly, microalgal lipids are apprehended 
as a best source for biofuel as compared to other renewable energy sources and 
waste of both household and industries. Third-generation biofuels are derived from 
microalgae, which are less disadvantageous than first- and second-generation biofu-
els. Biofuels from agricultural and animal products such as soya bean oil, rapeseed 
oil, palm oil and animal fats are called first-generation biofuel, but it has created 
negative effect on global food market [12, 13]. Biofuels from nonedible oil plants 
such as Madhuca indica, Jatropha curcas, Pongamia pinnata and Simarouba glauca 
and lignocellulose biomass are called second-generation biofuel, but these plants 
require huge area of land for cultivation, and also due to less advanced technologies 
and knowledge for commercial utilization [31], these are not feasible.

Microalgae are group of unicellular eukaryotic organisms and found in large and 
diverse aquatic environment such as fresh water, saline water and sea water. Most of 
the microalgae are photoautotrophic and convert solar energy to chemical energy. 
There are 40,000–70,000 species belonging to nine phyla, and some researcher’s 
prophesize that there could be species that are undiscovered or unclassified [15]. 
Microalgae have the potential for biofuel production because they are capable of 
producing useful quantities of polysaccharides and triglycerides which are consid-
ered as raw materials for bioethanol and biodiesel and also have the ability to fix 
huge amount of CO2 from environment. They are also producing valuable proteins 
and compounds which can be beneficial source for animal feed and pharmaceutical 
industries. But the extraction of biofuel from microalgae is not commercially fea-
sible due to the low yield and cost of the downstream processing.

The growth rate of microalgae varies from species to species, and many research-
ers reported that microalgae are growing faster but producing less amount of lipid 
under environmentally favourable conditions. Under physiological (pH, temperature, 
salinity and nutrient availability) and chemical stress (heavy metals) conditions, 
microalgae accumulate lipid and carbohydrate [6, 19]. But, these conditions could be 
inhibitory for growth, and lower biomass production possibility of contamination 
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may increase [19]. For commercial feasibility of microalgae-based biofuel, is needed 
for better understanding of lipid biosynthesis pathway.

Metabolic pathway engineering is a powerful approach to enhance biofuel as 
well as biomass production by the microalgae. Bioengineering and recombinant 
DNA technology can be used for the alteration of cellular metabolism through the 
insertion deletion and/or modification of metabolic pathways to enhance biofuel 
production. So, biofuel from metabolically engineered microalgae/microorganism 
can be referred to as fourth-generation biofuel [26]. Now, the researchers are focus-
ing on the development of high lipid content microalgae and cultivated in large- 
scale open pond by  using metabolic engineering approach [5]. In this study, we 
discuss about metabolic engineering strategy for over production of lipid in micro-
algae and major challenges faced in commercial production.

16.2  Biochemistry of Algal Lipid

Microalgae are autotrophic organisms and producing rich reservoir of lipid, protein, 
vitamins, long-chain polyunsaturated fatty acids and bioactive compounds by using 
light energy and inorganic nutrients [29]. The production of lipids and secondary 
metabolites can be enriched under specific environmental stress condition like 
nitrogen and phosphate restriction [1, 7, 19]. Hence, controlling the environmental 
stress condition (pH, temperature, carbon, nitrogen, phosphate, ammonium, nitrate, 
light and some heavy metals) and microalgal strain selections are the common 
approaches used for enhancing the lipid accumulation. The complete knowledge on 
lipid metabolism and inducing factors for algal growths are the two important 
approaches for maximizing the production of biofuel.

The CO2 is converted to glycerol-3-phosphate (G3P) through photosynthetic 
reaction. This G3P molecule is an important precursor for the synthesis of polysac-
charides and lipid. The G3p molecule is converted to pyruvate and thereafter acetyl- 
CoA in the presence of pyruvate dehydrogenase. The acetyl-CoA and bicarbonate 
are converted to malonyl-CoA, which is catalysed by acetyl-CoA carboxylase 
(Fig. 16.1). Malonyl-ACP (acetyl carrier protein) is produced from malonyl-CoA 
and catalysed by malonyltransferase. After that, the acetyl group is condensed with 
malonyl-ACP to produce ketobutyryl-ACP in the presence of 3-ketoacyl-ACP syn-
thase (KAS). This ketobutyryl-ACP is converted to fatty acyl-ACP through sequen-
tial reactions, and the fatty acyl-ACP thioesterase is catalysed to release fatty acids 
from ACP.

Triacylglycerides (TAG) are produced by the sequential acylation of glycerol- 3- 
phosphate (G3P) with three acyl-CoA and fatty acids catalysed by a group of 
enzymes such as acyltransferases. The G3P is converted to lysophosphatidic acid 
(LPA) by the action of glycerol-3-phosphate acyltransferase, and further LPA acyl-
ated by lysophosphatidic acid acyltransferase (LPAT) produces phosphatidic acid 
(PA). Phosphate group removed from PA to produce diacylglycerol (DAG) and the 
reaction catalysed by phosphatidic acid phosphatase (PAP). The TAG is produced 
from DAG and catalysed by DGAT (diacylglycerol acyltransferase). TAG is stored 

16 Metabolic Engineering Prospects for Enhanced Green Fuel Production…



214

in the form of lipid bodies of the algal cell. The accumulation of TAG is not only 
resource of carbon and energy but also serves as important physiological function in 
algal cell. This algal lipid is transesterified to produce biofuel.

16.3  Conventional Approach to Enhance Lipid Content

In conventional approach, hyperaccumulation of lipid bodies in microalgal cell is 
only due to effect of physiological stresses (pH, light intensity, photo-oxidative 
stress and temperature(s)) and chemical parameters (nutrient deprivation and salin-
ity) [21, 38, 41], which are increasing the activity of several enzymes responsible 
for synthesis of lipid bodies. Many of the researchers found that TAG accumulation 
in different class of microalgae are induced by nutrient deficiency specifically 
nitrate, phosphate and iron. Lacking of nitrogen and phosphorus in growth medium 
which results stimulating the various acyltransferase and phosphorus transporter 
systems and converting acyl-CoA to TAG. De Bhowmick and co-authors [8] gave 
three possible reasons for lipid accumulation under nitrogen deficiency, i.e. 

Fig. 16.1 Microalgal lipid biosynthesis. ACCase acetyl-CoA carboxylase, MAT malonyl-ACP 
transacylase, KAS 3-ketoacyl-ACP synthase, ACP acyl carrier protein, KSIII 3-ketoacyl-acyl car-
rier protein synthase III, FAT fatty acyl-ACP thioesterase, GPAT glycerol-3-phosphate acetyltrans-
ferase, LPA lysophosphatidic acid, LPAAT lysophosphatidic acid acyltransferase, PA phosphatidic 
acid, LPAT lysophosphatidylcholine acyltransferase, DAGAT diacylglycerol acyltransferase, 
DHAP dihydroxyacetone phosphate, G3P glyceraldehyde-3-phosphate, G3PDH glycerol-3- 
phosphate dehydrogenase, TAG triacylglycerides
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thylakoid membrane content, acyl hydrolase activation and phospholipid hydrolysis 
stimulation [38, 43].

Other key enzymes like phosphogluconate dehydrogenase (PGD), glucose- 6- 
phosphate-1-dehydrogenase (GPD) and pyruvate decarboxylase (PDC) are 
expressed under deficiency of nitrogen [32]. Diacylglycerol trimethylhomoserine 
(DGTS) and digalactosyldiacylglycerol (DGDG) are inducing in the absence of 
phosphorus [22]. Malic enzyme is an important key player for providing NADPH 
for intracellular fatty acid synthesis and highly expressed in starvation of all nutri-
ents in Chlorella pyrenoidosa [11]. Similarly, physiological factors such as tem-
perature, pH, CO2 and heavy metals are also responsible for lipid accumulation. The 
growth temperature will vary depending upon the microalgae species. In daytime, 
the growth rate is higher which tends higher photosynthetic activity and also results 
higher biomass production. Similarly, higher concentration of CO2 results in higher 
biomass production, but it will decrease the pH [2, 24]. From this conventional 
approach, stress and starvation are the key players to increase the lipid bodies, and 
it is employed after attaining a significant quantity of algal biomass. The major 
disadvantage of conventional approaches are low photosynthetic activity and slow 
growth rate. However, the combination of bioengineering technique and insight of 
metabolic pathway and biochemical stresses could be possible to develop a new 
strain for greater lipid productivities.

16.4  Metabolic Engineering Approach to Enhance Lipid 
Content

Metabolic engineering approach is the genetic modification of biosynthesis path-
way in a cell that triggers the synthesis of target molecule. Several methodologies 
are implemented in enhancing the lipid accumulations in microalgae such as engi-
neering of gene towards biosynthesis of lipid, engineering of transcription factor, 
improvement of photosynthetic efficiency, modification of the carbon assimilation 
pathway, identification of the rate-limiting enzyme and flux balance analysis [2].

Several researchers have overexpressed the key enzymes which are involved in 
synthesis of TAG. Among these, acetyl-CoA carboxylase (ACCase) catalyses the 
carboxylation of acetyl-CoA to form malonyl-CoA, the first committed step for 
fatty acid synthesis. Dunahay et  al. [10] overexpressed of ACCase in Cyclotella 
cryptic and Navicula saprophila, and found only the increase of ACCase activity by 
two- to threefold but no effects on fatty acid accumulation. Other enzymes like 
3-ketoacyl carrier protein synthase III (KASIII) (catalyses the initial condensing 
reaction of fatty acid synthesis) from spinach (Spinacia oleracea) were overex-
pressed in tobacco, Arabidopsis and Brassica; lipid content in seed was not increased 
[9]. From the above study, the cloning and expression of the single genes related to 
fatty acid synthesis did not increase the fatty acid content as well as lipid. Ma and 
co-authors [27] reported that Phaeodactylum tricornutum was producing 82% total 
neutral lipid. They are using an antisense C-DNA which knocked down the regula-
tion of pyruvate carboxylase kinase (PDK). PDK is an enzyme which catalyses to 
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deactivate the pyruvate dehydrogenase complex (PDC) through phosphorylation. 
Similarly, malic enzyme was overexpressed in Phaeodactylum tricornutum, which 
resulted 2.5-fold increase of total lipid accumulation as compared to control [15]. 
Niu et  al. [34] cloned and overexpressed the type 2 DGAT in heterologous host 
Phaeodactylum tricornutum producing 35% increased TAG accumulation as com-
pared to control. Overexpression of individual genes like GPAT, LPAT, DAGAT and 
G3PDH (Fig. 16.1) of lipid biosynthesis pathway had partial effect on lipid synthe-
sis, whereas all the five genes are cloned in single construct and overexpressed 
twofold of total lipid content [17, 23].

In addition to that lipid accumulation of microalgae is not sufficient, refining of 
lipid is also desirable. Biodiesel are the methyl esters of fatty acids, which need to 
contain correct chain length (C10–C18). Thioesterase is an enzyme, which catalyse 
to termination of fatty acid chain elongation. Genetic engineering of this enzyme is 
an alternative strategy to alter the fatty acid content of the biodiesel. This enzyme 
was successfully cloned and expressed in plant species for altering the fatty acid 
composition [39]. In 2011, Gong et al. [16] applied the same approach in microal-
gae, but it did not alter fatty acid carbon chain. Blatti et al. [4] applied the same 
approach with some modification in Chlamydomonas reinhardtii; they did the 
protein- protein interaction between fatty acid acyl carrier protein (ACP) and thioes-
terase (TE) that regulates fatty acid synthesis. They found increased level of short- 
chain fatty acids within a chloroplast of Chlamydomonas reinhardtii. This review 
shows that fatty acid synthesis, altered fatty acid chain length and hyperaccumula-
tion of TAG can be possible through metabolic engineering. Blocking of the 
β-oxidation pathway can induce the lipid accumulation in microalgae [8]. This type 
of gene could be suppressed by random mutagenesis or RNA silencing [35]. Some 
reports suggested that lipid degrading enzymes like lipase, phospholipase and acyl-
transferase increased  the fatty acid synthesis without affecting the growth of 
Thalassiosira pseudonana [40].

In photosynthetic microalgae, Rubisco is a key enzyme which catalyses fixation 
of CO2 into ribulose-1,5-biphosphate (RuBP) to form 3-phosphoglycerate in the 
Calvin-Benson-Bassham cycle. Several reports have shown that Rubisco is the 
major enzyme in CBB cycle, when CO2 is absent in the medium or under high light 
intensity or high temperature. Engineering of Rubisco, can be improved the photo-
synthetic CO2 assimilation remains a matter of debate. Whitney and Andrews [42] 
successfully replaced the Rubisco from Tabaco plant with its counterpart from 
Rhodospirillum rubrum, which has a naturally highly CO2 specificity. They found 
that CO2 specificity of genetically engineered plant was very low as compared to 
wild plants. This study showed that expression of Rubisco and inaccurate folding of 
protein in heterologous host might be responsible for low specificity of CO2 assimi-
lation. In 2010, Genkov and co-authors [14] transformed the gene encoding the 
small subunit of Rubisco of Arabidopsis and sunflower into a Rubisco gene- deficient 
strain of Chlamydomonas. They observed 11% increased CO2 specificity in vitro as 
compared to control.

In every living cell, the regulation of growth, development, cell cycle progres-
sion, physiological and metabolic acclimation in variable environments, are the 
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results of the regulation of gene expression. The regulation (how much of DNA is 
transcribed to RNA) is controlled by DNA binding transcription factors. Similarly 
very few transcription factors were identified in microalgae which are responsible 
for lipid enhancement. The overexpression of transcription factors which induced 
50% in lipid production [37]. Zhang et al. [44] isolated soybean GmDoF4 transcrip-
tion factor and overexpressed in Chlorella ellipsoidea, which results in significant 
enhancement of lipid content as compared to control. Similarly, other transcription 
factors such as wrinkled 1 and LEC2 of Arabidopsis were overexpressed which 
resulted in crease of fatty acid and lipid accumulation, respectively. The overexpres-
sion of Wrinkled 1 transcription factor genes regulates acyl carrier protein (ACP1), 
acetyl-CoA carboxylase and ketoacyl-acyl carrier protein synthase (KAS1) [28]. 
LEC2 transcription factor is involved to regulate the lipid metabolism during seed 
maturation [8]. Hu et al. [18] identified 11 transcription factors in Nannochloropsis 
which have regulatory role in lipid metabolism. Engineering of microalgal tran-
scription factor can  be utilized as a multigene targeted approach, which has the 
ability to overproduce lipid in microalgae.

Flux balance analysis (FBA) is a mathematical method for studying the flow of 
metabolites in particular genome scale metabolic network reconstruction that have 
been built in the last decade. This metabolic network reconstruction contains com-
plete information about the genes which encode the enzyme regulating the meta-
bolic reaction and detailing of metabolic pathway of an organism. It calculates 
metabolite flow through metabolic network and also predicts growth rate of an 
organism or production rate of industrially important metabolites.

Mathematically, metabolic flux represents stoichiometric model, i.e. S.v  =  0, 
where S is stoichiometric matrix and v is the flux vector (represents relationship 
between metabolites and products) [30]. Stoichiometric matrix S is m x n matrix (m, 
number of metabolites; n, the number chemical reaction or fluxes within that of 
metabolic network). FBA can be used in microalgae metabolism to maximize the 
TAG accumulation. Recently, Baroukh et al. [3] have attempted a dynamic flux bal-
ance analysis to study the carbon storage in microalgae under diurnal light cycle. 
dFBA is one of the FBA, which can be used to study the metabolism of microalgae 
during the light-dark transition cycle [33]. The combination of metabolic modelling 
and in silico analysis of microalgae can be a useful strategy for the development of 
lipid overproducing strain.

16.5  Conclusion

Algae are the largest photosynthetic organisms in the world which converts the 
greenhouse gas into carbohydrate and lipid. These lipid bodies are used as biodiesel, 
which has major advantage over the plant-based biofuel. But they have some limita-
tion to produce quantitative amount of lipid. The metabolic engineering of microal-
gae is an approach for regulating multiple enzymes which control the lipid 
metabolism and generate significant amount of lipid.
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Abstract
The memento of environmental pollution is mounting so fast that if we don’t kill 
it, it will kill us. In the race to prove our supremacy, we have forgotten the rules 
of “Mother Nature,” thereby deteriorating the nature’s beauty and precious 
resources. We are living in the planet as if we have another option to go. Now we 
have to be a part of solution, not a part of pollution, and need to take stringent 
control measures to save the lives on earth. Several environmental management 
plans and policy have been implemented to seize pollution to some extent. 
However, one such application which has caught the attention of the world is use 
of microalgae as an indicator for removal of environmental pollutant. They can 
be used for biotransformation, bioaccumulation, and biodegradation of specific 
pollutants from wastewater. Nonetheless, the relevance of microalgae makes 
them a jewel for reducing pollution. Along with this, they have the ability to 
reduce biological oxygen demand, remove N and P, and suppress the growth of 
coliforms bacteria. Being a photosynthetic organism, they convert solar energy 
and CO2 into biomass enriched with N and P. They capture CO2 gas from the 
atmosphere during the basic photosynthesis process resulting in reducing green-
house gases. This algal-based system can help in removing pollutant from waste-
water by separating the biomass which is supersaturated with metal content from 
the medium resulting in high-quality reusable effluent water. Notably, another 
approach can also be made by immobilizing the algal components that can act as 
an absorbent and studying the adsorption capacity for uptaking of toxic metals 
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such as lead, cadmium, mercury, scandium, tin, arsenic, and bromine from 
wastewater. This will minimize the disposal cost and eliminate the generation of 
secondary pollutions, which would be a perfect replacement to the conventional 
technologies.

17.1  Introduction

The use of potential microorganisms and/or their aggregates is practically beneficial 
in the wastewater treatment process compared to different conventional physical 
and chemical processes. Microorganisms, such as bacteria, fungi, and microalgae, 
are competent to remove different targeted pollutants from the wastewater. The bio-
logical processes are operated either by the direct mixing of free microorganisms 
with the wastewater or by immobilizing/encapsulating the microbial cells within a 
matrix [1]. However, use of immobilized/encapsulated cells over free cells is more 
effective in the bio-treatment process due to different advantages such as higher 
biodegradation rates, easier solid-liquid separation, higher biomass loading, better 
operation stability, greater protection from toxic substances, and increased plasmid 
stability of immobilized cells.

The choice of right kind of microbial species is essential for the pilot plant scale-
 up of the bio-treatment process. In this context, microalgae prove to be efficient as 
they can grow very fast compared to the terrestrial plants which enormously fulfill 
the need of our present environmental scenario (www.allaboutalgae.com). In recent 
years, use of microalgae has not been limited to only food or feed, but rather they 
have equal potential in different bioremediation processes. Interestingly, it can cre-
ate jobs in various sectors ranging from construction to farming, research and devel-
opment to engineering, and marketing to financial services [23, 26, 30, 37].

Another interesting use of the biomass of microalgae is the role of active adsor-
bent in the biosorption of different pollutants from the wastewater. Similar to bio-
logical species like bacteria, fungi, and other species, the biomass of microalgae has 
sufficient active surface area to bind different metal ions present in the wastewater. 
Biosorption of heavy metal ions depends on different functional groups present in 
the microalgae biomass. Also the possibility of the bioaccumulation of different 
heavy metals has been accounted during the growth of microalgae in the active 
interaction, unlike the biosorption process which is the passive interactions between 
heavy metals and biomass  (https://www.witpress.com/elibrary/
wit-transactions-on-ecology-and-the-environment/78).
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17.2  Mechanism Involved in Biosorption 
and Bioaccumulation

Uptake of metal ions from the solution on the surface of either live or dead biologi-
cal cells by means of physical or chemical forces, like electrostatic interactions, van 
der Waals bonding, covalent bonding, and ion exchange, is called biosorption. 
However, from the solution metal ions entering to cells of different living organisms 
through the nutrient channels followed by their absorption within the cells due to 
the natural cellular metabolism is referred to as bioaccumulation [3, 8, 29]. 
Bioaccumulation renders toxicity and propagation of diseases in the organisms [37]. 
Biomass used as adsorbent in the biosorption can be regenerated absolutely; how-
ever, it is difficult in the case of bioaccumulation [13, 14, 41]. In the former case, the 
metal ions deposited can be removed from the cell surface by acid or alkali treat-
ment. Biomass of several species, such as fungi, cyanobacteria, bacteria, and algae, 
has been used for both biosorption and bioaccumulation process of metal ions from 
the solution. Biosorption of metal ions is a rapid process due to the structures, com-
positions, and presence of functional groups of the cell wall [6, 7, 18, 39]. The 
above properties of cell wall define the metal ion-binding mechanisms, affinities, 
and nature of the biosorption process [19]. However, bioaccumulation is a slow 
process as it depends on the natural cellular growth of the living organisms.

Although the mechanism is understood well and several reports are available so 
as to study the detail mechanisms involved in the bioprocesses, a pictorial represen-
tation showing the bacterial cell is shown in Fig. 17.1 in order to explain different 
biosorption mechanisms. Interactions that occur between dissolved metal ions in 
the solution and cellular components of the living or dead organisms are either of 

Fig. 17.1 Schematic diagram showing the different mechanisms of bacterial biosorption. 
(Adapted from Ref. [5])

17 Microalgae: Gizmo to Heavy Metals Removal



224

physical adsorption, ion exchange, complexation, coordination, microprecipitation, 
chelations, crystallization, and diffusion [16, 17, 42, 44, 45, 48].

There are two mechanisms such as binding of metal ions to different components 
of the cell surface and intracellular accumulation of metal ions through the cellular 
metabolism by living microorganisms. Whereas, Malik [25] pointed that the intra-
cellular accumulations is slow and mostly dependent on nutrients and environmen-
tal conditions. Nonetheless, biosorption is a passive process [33, 45]. Akhtar et al. 
[2] suggested that there were two phases of adsorption phenomenon, e.g., first one 
related to physical sorption and second due to both structural change and surface 
transformation, involved in the biosorption of uranium in live Trichoderma harzia-
num. In another study of copper bioaccumulation by the live yeast, Saccharomyces 
cerevisiae was found to be biphasic [22]. It consisted of an initial and rapid surface 
binding and then followed by a second slow intracellular uptake.

Muraleedharan and Venkobachar [31] reported that different metal ions may be 
transported into the cells and may react to form a product that remains within the 
cells. Furthermore, there may be formation of chelating complex when metal cat-
ions mixed with the negatively charged sugar units at the end of polysaccharides 
chain [40]. Besides, they cited that the extracellular polyphosphate groups were 
associated with the sugar metabolism and complex metal ions by chelating through 
negatively charged oxygen atoms.

The ion exchange reaction is an important mechanism involved in the biosorp-
tion process, where the cell walls of biomaterials act as the ion exchanger similar to 
different ion exchange resins. The cell walls contain a mixture of monovalent and 
divalent cations, and the substitution within the cations supports the formation of 
ligand complexes which act as the metal binding resins [4].

17.3  Algae

Algae are the diverse group of photosynthetic organisms and found in different 
aquatic habitats. Their size ranges from unicellular microalgae to multicellular giant 
kelp. The species biodiversity of microalgae is more than two million; however, 
only a tiny fraction of the total species biodiversity has been isolated and character-
ized [35]. They play a key role as initiator of different food webs in the biospheres. 
In addition, they produce oxygen gas during their photosynthesis which is a key 
process in restoring the atmospheric composition. They use different water resources 
like brackish and freshwater and wastewater for the purpose of micro- and macro-
nutrients. Other algae can grow heterotrophically in the absence of light using sugar 
or starch as nutrients. Some other algae species can grow both autotrophic and het-
erotrophic modes which is called mixotrophic growth. Contrasting to the terrestrial 
plants, they have no true roots, leaves, and stems. They contain high levels of pro-
tein, minerals, vitamins, and trace elements like iodine, calcium, and iron. They 
contain low amount of fat but high amount of fiber. Owing to several advantages, 
algal species are considered to be the best possible weapon to deal with different 
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pollution issues [9–12, 15, 24, 28, 32, 36, 38, 43, 47]. Figure 17.2 shows a simple 
wastewater treatment process using microalgae.

17.4  Immobilization Techniques

Immobilization technique confines either of the enzymes and live/dead cells on or 
within an inert support for their stability and functional reuse. There are four prin-
cipal methods available for immobilizing the enzymes, such as adsorption, covalent 
binding, entrapment, and encapsulation, as shown in Fig. 17.3.

There are different conventional treatment processes, such as filtration, sedimen-
tation, flocculation, chlorination, and activated sludge process, which have been 
used to remove different contaminants from the wastewater [27]. These methods are 
based on multiple steps conducted for separation followed by elimination of differ-
ent pollutants from the wastewater, which results in an expensive process. Therefore, 
search for a cost-effective and integrative wastewater treatment process is necessary 
for the complete removal of different pollutants (e.g., organic and inorganic) from 
the wastewater. In this context, the immobilization technique is effective for the 
complete eradication of different nutrients and mineral components from the 
wastewater.

17.5  Future Prospective

Biosorption of heavy metals is a self-driven process for enhanced heavy removal 
from industrial wastes and wastewater. For sustainable approach, development of an 
appropriate biosorbent is highly essential. The properties of algal biomass, such as 

Fig. 17.2 Wastewater treatment through microalgae. (Adapted from Ref. [34])
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cellular structure, polysaccharide contents, exposure of cell wall, presence of metal 
binding functional groups, and extracellular polysaccharides, determine the effec-
tive biosorption of metal ions. The algal species such as Chlorella and Dunaliella 
were used for biomass production and treating wastewater for more than 75 years. 
Although the process and mechanism are well understood, its commercial applica-
tions are a matter of concern. Beside the wastewater treatment, algae have other 
benefits like they can be used in pharmaceuticals, animal feed, composting, agricul-
ture, biofuels, aquaculture, etc. The genetically engineered products of algal bio-
mass have numerous health benefits such as antibacterial, antiviral, antitumor/
anticancer, and antihistamine. Probably some more beneficial properties of micro-
algae are yet to be explored (e.g., some microalgae can tolerate high level ionization 
radiations; perhaps there is a long way to go with microalgae).

Fig. 17.3 Different methods of immobilization technique. (Source: http://www.easybiologyclass.
com/enzyme-cell-immobilization-techniques)
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18Characterization of Extracellular 
Proteins to Explore Their Role in Bio- 
Flocculation for Harvesting Algal 
Biomass for Wastewater Treatment

Surajit Debnath

Abstract
Bioprocess technology aims to production of high-value end products from natu-
ral materials in an eco-friendly method. While doing so it can also solve environ-
mental and industrial problems in addition to product yield. Bio-flocculation is a 
dynamic phase in most of the bioprocess such as wastewater treatment, harvest-
ing of biofuels, bioremediation of activated sludge, and yielding of bio-materials 
from a bioreactor. In algae-based bioprocess technology, harvesting of algal bio-
mass is enormously energy-intensive step. This alone is the main constraint on 
commercial development of numerous conceivable methodologies of environ-
mental management through algal systems worldwide.

Several strategies are currently investigated in order to enhance auto-flocculation 
in a regulated way to avoid energy demanding centrifugation and successive process-
ing. A successful master plan in this domain would lead to potentially low-cost har-
vesting technique. Some approaches that are under scrutiny involve co-culture of 
bio-flocculent producing organisms. However, the bottleneck of biomass harvesting 
at minimal cost is yet to be circumvented. In this study, the flocculation enhancing 
proteins of Saccharomyces cerevisiae ie, Flo 1, Flo 5 and Flo 9 have been analyzed 
using computation biology tools to evaluate their structural and functional character-
istics to assess dynamic behavior and flocculating properties. It is followed by a dry 
run of molecular biology intervention. Bioinformatics simulations such as molecular 
dynamics, normal mode analysis, characterization of protein active sites, and protein 
network interaction are some low cost yet efficient tools that are used in this chapter 
for their near precise prediction on a protein behavior. This study is novel and aids to 
the ongoing brainstorming of the bioprocess biotechnology fraternity to establish an 
economical harvesting protocol for algal biomass for wastewater treatment.
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18.1  Introduction

The challenge of today’s world in the changing scenario of extensive industrialization 
is the sustainability of very basic livelihood resources such as drinking water. If the 
living world is considered as a single unit in the biosphere, then we can appreciate the 
role of water more logically. All physiological reactions that drive the living world 
take place in an aqueous environment. Therefore optimization of bioprocess that recy-
cles water from its waste counterpart is of great importance. Total bioremediation of 
wastewater would be a highly acclaimed bioprocess technology that would be sustain-
able and eco-friendly. With suitable inputs and some scientific breakthrough this can 
become the most impactful discovery of mankind. Wastewater treatment by microal-
gal system is the current hot topic towards achieving total bioremediation of waste 
water and sustainable environmental management. Microalgae harvesting for waste-
water treatment for purposes like drinking water supply and environmental manage-
ment of inland water [43, 56, 108] are being explored. Recycling of wastewater via 
microalgal systems have an added advantage of coproduction of industrially impor-
tant biomass. It was observed that the synergistic coupling of microalgae propagation 
with carbon sequestration and wastewater treatment can be potentially used to miti-
gate environmental impacts of high consumption of energy and fuel [10]. Historically 
it was Oswald and Gotaas [69] who first reported the use of wastewater ponds to cul-
tivate algae that may lead to recycling. Over the years it has been established that 
wastewater treatment is one of the favorable applications of algal systems [6–8, 52, 
82, 88]. In spite of the obvious advantages widespread application of algal biofilm-
based treatment of municipal, industrial, and agricultural waste streams has been lim-
ited so far [44]. The scientific deadlock that is limiting this promising bioprocess of 
algal system of wastewater treatment has been the lack of efficient separation tech-
nique  of the biomass from  the resultant product. So the bottleneck of sustainable 
downstream processing after the bioremediation process still persists. For a review on 
applications of microalgae in various sustainable process including wastewater treat-
ment the literature [37] can be followed.

In order to separate the treated water and the algal biomass, several processes 
were under inspection by the scientists. Assisted flocculation for separation of bio-
mass after recycling of wastewater was able to generate much attention due to sev-
eral advantages discussed later in the chapter. However, in the post-genomic era, 
molecular biology and genetic engineering can be a promising tool to overcome 
scientific hurdle of the bioprocess. In this chapter computational biology is har-
nessed to predict suitability of flocculation enhancing proteins from Saccharomyces 
which can be targeted for enhanced flocculation of algal biomass through molecular 
biology and genetic engineering platforms. FLO1, FLO5, and FLO9 gene products 
ie Flo1, Flo5 & Flo9 proteins were analyzed by structural bioinformatics so that the 

Recycling of wastewater in a sustainable way is a real challenge that should 
be addressed to mitigate the obvious impacts of climate change.
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best suitable candidate can be identified for transformation in a suitable algal host 
that may  be genetically modified for enhanced flocculation. Along with this  the 
molecular basis of flocculation is reviewed and perspective strategy for genetic 
modification of algal system for enhanced flocculation is critically discussed in this 
chapter.

18.2  Background

Figure 18.1 gives the glimpses of the wastewater recycling by algal systems and the 
scientific bottleneck we are facing today. The fresh water undergoes severe physico-
chemical modification through the process of industrialization that includes pollu-
tion caused by agrochemicals, mining, etc. The conservative mode of recycling the 
water is capital intensive and not viable for developing economies to sustain for 
long. For example, conventional technologies for the treatment of large volumes of 
wastewater, such as reverse osmosis, ion exchange, precipitation, etc., are less effi-
cient and commercially no viable [27].

On the other hand, using microalgal systems is a sustainable option once we can 
able to optimize the downstream processing of removing the accumulated algal 
mass from the treated water. The added advantage of the process is that, we can 
scale up the process to produce industrially important biomass as a by-product with 
no or minimal extra cost. The wastewater itself provide nutrients to sustain biomass 
yield. Several inorganic and organic compounds generally present in wastewater 
make it suitable as a substrate for biomass yield [14, 54, 76, 105, 109]. After the 
recycling of wastewater and formation of biomass, the products (recycled water and 
the biomass) must be separated from each other for their anticipated utilization. For 
this process a sustainable protocol is yet to be in place.

The promising sky of algal bioprocess for wastewater treatment is yet to be 
cleared from the dark cloud of the scientific bottleneck that hinders separation of 
products after the bioprocess.

18.2.1  Separation of Biomass from Algal Bioprocess 
for Wastewater: An Energy–Intensive Method

Currently, removing the biomass from treated water is conventionally done by 
energy-intensive methods. As mentioned already, the techniques used for harvesting 
microalgal cells such as centrifugation, filtration, flocculation, gravity sedimenta-
tion and flotation [33, 35, 61, 75, 87, 98], all have some major drawbacks. Large- 
scale harvesting and separation of biomass from algal bioprocess for wastewater 
remain an energy-intensive method mainly due to three microalgal features, which 

The concept of wastewater treatment by microalgae is promising but pos-
sesses the hurdle of biomass separation after microalgae treatment.
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are the small size of cells (5,30 mm), low concentration of the yield (0.02–0.05% 
DW), and negative surface charge [104] on the cells. Extraction of biomass 
after recovery of wastewater is also very costly due to expensive solvents and high 
electricity consumption [64, 65]. Slower growth rate on account of only 0.03–0.06% 
of atmospheric CO2 is another problem with microalgae culture [50] in normal con-
dition due to mass transfer limitation [57].

18.2.2  Bio-flocculation: A Promising Method for Separation 
of Biomass from Algal Bioprocess for Wastewater

To reduce the cost of removing the accumulated biomass from the treated water, 
bio-flocculation seems to be the most promising one among several options that 
have been studied with much detail. Flocculation, a process by which the algae 
forms a 3D structure or clumps called flocs which can be easily segregated, is a 
method of choice for removing algal biomass post-treatment of wastewater. However 
under normal growth conditions flock formation is inhibited by the negatively 
charged microalgal surfaces preventing their self-flocculation [30, 73, 83, 84]. 
Therefore various approaches are harnessed to address this by altering the surface 
charges [98]. For example, chemical or biological flocculants (inorganic and 
organic) for neutralizing or reducing microalgal negative surface charge can be used 
[98]. But these methodologies, however, are not universally successful and do not 
work for all microalgae strains [48, 49, 98]. However, bio-flocculation methods due 
to their high efficiency and low energy input are becoming increasingly popular [14, 
70]. Among biological organisms that promote flocculation are bacteria and fungi  
[48, 49, 54, 74] that enable the algae to form flocks. A review of current strategies 
for flocculation methods [101] can be read.

18.2.3  Fungal-Assisted Algal Bio-flocculation

Co-cultivation of fungal and microalgal cells or fungal-assisted bio-flocculation is 
getting high attention because of low energy inputs, high efficiency of bio-floccula-
tion of microalgal cells, and no requirement of added chemicals [66, 104]. 
Concentration of microalgal cells within fungal filaments can be achieved by bio-
flocculation via hydrogen bonds, electrostatic interactions, and/or using a matrix of 
extracellular polymeric substance (EPS) secreted by fungal and algal cells (that are 
vital for removing the biomass after treatment of the wastewater) [62] (Fig. 18.2).

Bio-flocculation of microalgae after wastewater treatment is a wonderful 
method but needs optimization.
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Cocultivation of microalgae and fungus showed an additive effect on wastewater 
treatment efficiency, as per previous studies [42, 104], and several species of fungi 
[4, 110] have been used for efficient wastewater treatment in experimental setups.

18.3  A Novel Strategy for Enhanced Flocculation Phenotype 
in Microalgae for Wastewater Treatment

In the above background, it is understood that bio-flocculation is an effective mean 
that may aid to separate the algal biomass after the algae has treated the wastewater 
by its much celebrated curative properties through accumulation of toxic compo-
nents from the wastewater. In order to enhance the flocculation efficiency of algae, 
a strategic approach of molecular biology-genetic engineering intervention is pro-
posed here which is fortified by the results of computational biology analysis 
described in the chapter (Fig. 18.3). To identify the candidate algal host, the suitable 
organisms with already proven track record of enhanced flocculation are also 
reviewed here. The focus is to pinpoint candidate proteins that may enhance floc-
culation features. A thorough practical analysis of perspective protein candidates 
enabled identification of most suitable proteins for further possible experiments 
using wet lab facilities. Results from the computational simulation of the study are 
at parity with published reports on the identified proteins. Thus the identified candi-
date proteins may be introduced in the suitable algal vector with established trans-
formation and expression characteristics. A possible work plan of the molecular 
biology-genetic engineering intervention is also described in this chapter.

Fig. 18.2 Algae-fungi cocultivation for enhanced separation
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18.4  Search for a Well-Understood Molecular Mechanism 
of Flocculation

Among fungi-based co-culture of microalgae, yeast is a suitable candidate since the 
physiology, biochemistry, and molecular biology of yeast flocculation are well 
understood. It has a track record of efficient flocculation, and there is a scope that 
molecular biology and genetic engineering is harnessed in this regard.

Cell flocculation is used for industrial wastewater treatment and harvesting yeast 
(Saccharomyces cerevisiae) biomass from the fermentation broth as cheap and simple 
method already [102]. The reason behind this is its economy and easy availability and 
potential accumulation of heavy metals irrespective of external conditions [89].

Saccharomyces cerevisiae cells are able to flocculate in Zn2+, Cu2+, Cd2+, Ni2+, or 
Cr3+ containing ionic solutions [53, 96]. As per studies carried out, the advantages 
of yeast flocculation in a bioreactor are threefold: (1) ability to function in high- 
throughput bioreactors that lead to high yield in a short processing time [24], (2) 
retention of biomass in a variety of suspended biomass reactor configurations [25], 
and (3) high metabolism that ensures lower risk of external contamination [51]. 
Another important advantage for using yeast for assisted bio-flocculation is well- 
understood molecular and genetic basis of yeast flocculation along with the under-
standing of the intricate control of its flocculation mechanism [15, 71, 111].

Fig. 18.3 Schema of a novel strategy for enhanced flocculation of algal systems

In the post-genomic era, molecular biology-genetic engineering interventions 
can revolutionize wastewater treatment by microalgae.
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18.5  Molecular Mechanism of Yeast Bio-flocculation and Role 
of Flocculation Enhancing Proteins (Flo) 

The hallmark of yeast flocculation is formation of aggregates through interaction of 
flocculins (FLO, lectin-like proteins) with their receptors on a neighboring cell wall 
[16, 99]. The classical lectin theory of yeast flocculation is schematically represented 
in Fig. 18.4. Flo proteins bind to Mannans (Carbohydrate residues) on the surface of 
neighboring cells leading to the cross binding of cells. Cross binding leads to flock 
formatuion. The resultant flocks thus produced would sediment much faster relative to 
the free cells due to reduced surface to volume ratio of the aggregated cells. CDC.dk).

The regulation of flocculation in yeast through Flocculation enhancing proteins 
is a complex process. And several FLO proteins that are involed in the complex 
orchestra has been identified. Among these, some FLO proteins are transcriptional 
regulators such as FLO8 and the rest are cell wall surface glycoproteins. Cell wall 
charge and hydrophobicity also play an important role in Flocculation. It is beacuse 
expression of several proteins (Flo1, Flo5, Flo9, Flo10, and Flo11p) in yeast cell 
wall is correlated to increased surface hydrophobicity of yeast [32, 36, 63]. FLO1, 
FLO5, FLO9, and FLO10 of the FLO gene family are in close proximity in the 
genome [60]. Although different FLO genes display different degree of flocculation 
and sugar sensitiveness, overexpression of these four genes induces flocculation 
[36, 63]. Several environmental factors such as cations, pH, temperature, and aera-
tion also impose regulation of flocculation via FLO genes [27, 45, 90, 100]. For a 
review on the yeast flocculation, the review can be read [27].

Fig. 18.4 Lectin theory of yeast flocculation. (After CDC.dk)
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Yeast can be a source of motivation for transgenic intervention for bio- 
flocculation since the mechanism and regulation of yeast flocculation is well 
understood.

18.6  Rationale Behind Choosing FLO1, FLO5, and FLO9 
genes of Yeast for Evaluation in Assisted Flocculation 
for Wastewater Treatment by Microalgal Systems

A heuristic literature review indicated that the FLO1, FLO5, and FLO9 of yeast are 
best suitable candidates for molecular biology and genetic engineering-based inter-
vention for genetically modified flocculation-enhanced phenotype in suitable micro-
algae. Initially to assess the molecular aspect of the Flo proteins of yeast, Flo1, Flo5 
and Flo9 of yeast were subjected to extensive phylogenetic analysis that is discussed 
in detail later in the chapter. From the comparative analysis from generated dendro-
gram (Fig. 18.5) it was clear that the proteins share extensive homology.

Among the several Flo proteins in yeast, the Flo1, Flo5 and Flo9 are responsible 
for cell-cell adhesion that subsequently leads to flocculation, whereas Flo11  is 
responsible for substrate adhesion [26]. According to studies conducted during the 
present decade, it was understood that methylation (addition of CH3 Group) of a 
regulatory protein Set1 (COMPASS) could be a critical point. It is because, a muta-
tion in COMPASS protein that renders the protein defective leads to induction of a 
flocculent behavior because of the increasing amounts of FLO1, FLO5, and FLO9 
mRNA transcripts [27] of the corresponding genes.

Other than that, in terms of the role of Flo1, it is observed that widely exposed 
flocculins are present on Flo1-expressing cell surface, which is the site of adhesion 
[31]. Figure 18.6 depicts the role of Flo1 in flocculation. It is also seen that multiple 
weak lectins interact together with strong unfolding forces (both of which are asso-
ciated with Flo1 molecules) lead to cell-cell adhesion bonds. Microscale cell adhe-
sion behavior correlates with single-molecule and single-cell data that suggests 
Flo1 mechanics to be critical for yeast flocculation [31].

On the other hand, the importance of FLO5 gene in the development of high floc-
culent characteristics of yeasts is also well understood [97]. Therefore it was clear 
that among the perspective candidates for molecular biology and genetic engineer-
ing, intervention of Flo proteins, Flo1 and Flo5 would be the target proteins for 
further study. The computational biology analysis later discussed in the chapter also 
indicate that Flo1 and Flo5 proteins are indeed the target proteins for generating 
genetically engineered enhanced flocculation phenotype in microalgal host for 
wastewater treatment.

Flo proteins may be excellent target for transgene expression for enhanced 
flocculation phenotype in microalgae for wastewater treatment.
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Fig. 18.6 Role of Flo1 in cell-cell adhesion

Fig. 18.5 Homology of yeast Flo1, Flo5 and Flo9 phylogeny
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18.7  Analysis of Flo Proteins Using Computational Biology

Computational simulations in the microprocessor environment become a method of 
choice due to near precise prediction capabilities of a bimolecular phenomenon and 
its economic operational costs. To examine the behavior of Flo proteins, a system-
atic bioinformatics analysis was done. The method described here is easy to per-
form and requires minimal investments in terms of infrastructure but sensitive 
enough to differentiate intricate differences among protein candidates that aids to 
prioritizing the suitable protein for molecular biology-genetic engineering experi-
ments. Thus this process helps to minimize cost of the overall trial and error expen-
diture. In the following sections, the materials and method used in the computational 
biology analysis and the results are also described.

18.7.1  Sequence and Structure Retrieval of Flo Proteins

UniProt, a global database, was queried for Flo proteins for the genus Saccharomyces. 
Only the reviewed entries were selected for the test run. The reviewed entries for 
Flo1, Flo5 and Flo9 were searched for their 3D coordinates. Among the entries of 
available proteins in a database, identification of the suitable structure often becomes 
a tricky job since several aspects of the structure parameters come in play. A suitable 
structure file should comply with the following: (1) a sufficient length of the pri-
mary structure indicated by the residue count should be present. If a small portion/
segment/domain of the desired protein is available, it may not represent the molecu-
lar behavior of the full-length peptide; (2) if a mutant of the original protein is avail-
able, the wild-type characteristics may be absent; so, the mutants may be excluded 
from study, (3) if experimentally induced ligands are present in the structure in large 
number, it may hinder desired study with the protein structure; (4) resolution of the 
protein is an important factor and retrieval of high-resolution protein structures are 
advised; and finally (5) the method through which the structure was generated is 
another important parameter. It is known that structures generated through X-ray 
crystallography are more suitable then NMR-generated coordinates. Therefore, 
prior to selection of a 3D structure co-ordinate of a protein consideration of theses 
5 factors would lead to suitable retrival of data sources.

18.7.2  3D Coordinates of the Flo Proteins and their 
Stereochemical Quality

The Flo1  in RCSB-PDB returned different entries of the protein for the genus 
Saccharomyces. The entry 4LHL.pdb was selected for the study. For the Flo5 pro-
tein among the numerous available entries, 2XJP.pdb was selected for further stud-
ies on the basis of the above mentioned  criteria for selection. However, for the 
Flo9 protein, there was no entry for its 3D coordinates (Table 18.1).
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In the absence of 3D coordinates of a protein, it is customary to design the pro-
tein using protein modeling algorithms. Among all known protein sequences, only 
a fraction have their structures determined experimentally by X-ray or NMR. Due 
to increased reliability of alignment algorithms and modeling programs, there is a 
way to predict 3D coordinates of proteins for which we only have knowledge of the 
primary sequence. Therefore protein sequences sharing certain homology with that 
of experimentally determined proteins can be modeled with high accuracy [18, 20].

Flo9 of Saccharomyces was modeled and validated following the protocol of [9] 
based on the primary structure from the reviewed UniProt entry. In this method, the 
algorithm uses multiple templates and analyzes them for suitability in terms of 
QMEAN Z-Score. The score is directly proportional to the model quality. The 
method returns results with respect to the modeled residue range, template used and 
its resolution, % of sequence identity, and E-value. The complete program uses lay-
ers of multiple algorithms with some benchmark, such as conservative BLAST 
search with restrictive parameters of E-value cutoff: 10−5 and 60% minimum 
sequence identity. The process also includes library search of hidden Markov mod-
els for SMTL using HHSearch.

The overall stereochemical quality of the protein models were assessed through 
the method of [13]. At both global and local levels, the model quality is evaluated. 
The functions of optimized hydrogen placement, all-atom contact analysis, and 
updated versions of covalent geometry and torsion-angle criteria are considered. A 
number of serious steric overlaps (>0.4  Å) per 1000 atoms are generated by all 
atoms clashscore. Analysis for the number and percentage of Ramachandran outli-
ers and Ramachandran favored residues done by classical Ramachandran plot. It 
also gives the number and percentage of poor roamers, Cβdeviations >0.25 Å, bad 
backbone bonds, and angles [13] (Table 18.2).

Table 18.1 Structural features of the selected 3D coordinates

Protein
PDB 
entry Details

Method of 
structure 
deduction Resolution

Residue 
count

Flo1 4LHL.
Pdb

Structure of the N-terminal 
domain of the Flo1 adhesin 
(N-Flo1p) from the yeast 
Saccharomyces
Cerevisiae

X-ray 
diffraction

1.43 Å 232

Flo5 2XJP.
Pdb

Structure of the N-terminal 
domain of the Flo5 from the 
yeast Saccharomyces
cerevisiae in complex with 
calcium and mannose

X-ray 
diffraction

0.95 Å 258

Flo9 NA NA NA NA NA
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18.7.3  Phylogenetic and Evolutionary Analysis of Flo Proteins

The pattern of evolutionary changes that ultimately shape proteins characteristics 
are also footprints of the evolution that candidate the origin of the protein. To deci-
pher the evolutionary strategy, the primary protein sequences were retrieved in 
FASTA format from the reviewed entries in UniProt. The FASTA sequences were 
subjected to protein BLAST in the NCBI tools [41] platform. For protein searches, 
the options are blastp (default), PSI-BLAST, and PHI-BLAST, but the default 
BLAST search is good enough to retrieve 100 sequences with sufficient match 
along with a matching score. The BLAST sequences were downloaded and sub-
jected to phylogenetic tree algorithm Phylogeny.fr. The Newick format tree was 
then loaded into a visualization program itol.embl.de/. The phylogenetic trees indi-
cate considerable homology in the evolutionary makeup of the Flo protein.

18.7.4  Analysis of Active Site Motifs and Energetics 
of Flo Proteins

The active site design of a functional protein determines its specificity and its 
uniqueness in a reaction. The Flo proteins interact with various carbohydrate resi-
dues as well as various ions in the environment for successful flocculation behavior. 
Therefore it is imperative that the active site architecture is well understood. The 3D 
coordinates of the proteins were subjected to multiple algorithms for analysis of the 
behavior of the active site and the energetics of the proteins.

The primary structural data was subjected to simple modular architecture 
research tool of embl-heidelberg.de for domain analysis. The algorithm is designed 
in such a way that it not only identifies conserved domains or motifs from a peptide 
primary structure but also  indicate their outlier homologues and homologues of 
known structure including PFAM domains, signal peptides etc, including internal 
repeated elements. The tool uses the databases such as Swiss-Prot, SP-TrEMBL and 
stable Ensembl proteomes. In this method E-values are calculated using hidden 
Markov models that leads to more accurate estimates (Table 18.3).

The secondary structural elements are functional aspects that determine how a 
protein behaves in the proximity of its substrate. The residues that built up the active 
site motif also give specific detail of the interactions that bound the substrate with 
the active site. The protein structural data as well as the validated homology model 
is subjected to Pymol [21] window to visualize these in their secondary structure 

Table 18.3 Domain analysis of Flo proteins

Protein Domain Start site (amino acid position) End site (amino acid position) E-value
Flo1 PA14 76 221 6.48e-25
Flo5 PA14 87 235 2.36e-27
Flo9 PA14 78 226 5.56e-24

PA14 domain indicates a domain for yeast adhesion
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(helix-sheet-loop). The substrates/solvents/ions were selected and proximal resi-
dues within a molecular distance of 4 Å were identified. Since the volume and the 
area of the catalytic cleft are important factor because they accommodate a substrate 
or a substrate inhibitor [19]. The proximal residues in this site and their nature gen-
erally determine the overall behavior of the active site. Among the proximal resi-
dues, detail search was made to identify continuous stretches of amino acid residues 
that may form a domain with in this site.

In terms of Bioenergetics the vacuum electrostatics or protein surface contact 
potentials were assessed for possible indication of protein-protein contact or protein- 
ligand contact information. Electrostatic potential of protein was mapped to the 
molecular surface of Flo proteins by vacuum electrostatics. The overall energetics 
of the proteins and hydrophobic surface patches were deduced by SPDBv tools 
[34]. Multiple file loading and handling simultaneously is one of the advantages of 
this tool. Each of the loaded file appears in a separate layer, and each layer holds 
individual chains that are composed of groups of either amino acids, nucleotides, or 
heterogeneous groups (e.g. NAD, HEME). Among the loaded coordinates, the first 
set will be considered the reference structure. For H-bond detection, SPDBv assigns 
Kollman’s atom types.

18.7.5  Molecular Dynamics Simulation of Flo Proteins

To predict the energy of the molecule as a function of its conformation molecular 
mechanics or force-field methods uses classical type models [47]. Mechanical prop-
erties such as equilibrium geometries, transition states, and relative energies between 
conformers or between different molecules can be predicted through simulations. 
For force-field analysis of selected proteins energy scores in terms of bond energy, 
non-bond energy, angles energy, torsion energy, improper energy, electrostatic 
energy and the total energy of the protein models in Kilo Jules/mole were estimated 
(GROMOS96). In this analysis the total energy is expressed as a sum of Taylor 
series expansions for every pair of bonded atoms. Additional potential energy terms 
contributed by bending, torsional energy, van der Walls energy, and electrostatics 
[85] are added. These energy parameters are compared for the three studied proteins 
that will indicate their relative stability.

Along with force-field calculation, normal mode analysis is another parameter 
that is used in this study to emphasize on protein structure stability. Normal mode 
analysis compares collective motions of a group of atoms with that of the minimum 
energy conformation of the same group. The minimum energy conformation is 
based on the harmonic approximation of the potential energy function [67]. In this 
method thermodynamic and mechanical properties of catalytic proteins that accom-
modate a substrate in its interior would be such that the channel gates of the cata-
lytic cleft will vibrate in a normal mode [92]. For studying collective motions in 
macromolecules, normal mode calculations can provide an alternative to molecular 
dynamic simulations [94]. The collective motions of the three Flo proteins were 
recorded and compared with each other.
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A constitutive approach for evaluation of structure and function relationship in 
proteins is high-end computational methods such as molecular dynamics (MD) 
simulation. Protein stability, flexibility, conformational behavior, etc. are different 
properties of a macromolecule that can be elucidated by the parameters used in 
molecular dynamic simulation studies.

The two approaches of molecular dynamics simulation are classical (i.e., 
Newtonian) mechanics and Brownian dynamics. Since macromolecules such as 
proteins are more flexible and dynamic in nature, their behavior can be analyzed by 
molecular dynamics simulation. External factors such as temperature, pH, charge, 
ion concentration, phosphorylation, or binding of a ligand can lead to conforma-
tional changes in a protein [67] so influence of these factors can also be examined 
via molecular dynamics simulation.

For doing so,  analysis of root mean square deviation (RMSD) is an effective 
measure. Root mean square deviation (RMSD) is the deviation observed between 
two heavy atoms to predict the stability of a protein. RMSD of the protein explains 
the protein folding nature, where the RMSD of “N” set of atoms at time “t” is cal-
culated using
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The Brownian analysis was performed in terms of analysis of B factor per resi-
due and the RMSD per residue analysis. The identified protein domains were plot-
ted on the RMSD plot to observe the behavior of active site residues in a Brownian 
simulation.

During the  simulation the program rectifies the alternate location for several 
parameters. These includes the amide assignment, improper chirality if any, residue 
insertion in gaps if any, unusual Cis-Trans configurations, steric clashes, polar donor 
clashes, and ionic positive/negative clashes etc. The protocol also assigns or recti-
fies ligands in the structures. After these rectifications in the structure file the force 
field is applied. For the present  analysis coarse-grained simulation of Brownian 
molecular dynamics (C-alpha) was opted mainly because of its ease of operation 
and informative results. Simulation parameters were set as follows : time - 100 PS; 
output frequency steps -  10; force constant (kcal/mole* Å2) -  40 and distance 
between alpha carbon atoms - 3.8 Å.

According to the observation on B-factor assessment of the proteins it was found 
that,  the Flo1  has a range of B-factor/residue of 0.0–16.0  units in Å2. For Flo5 
this range (B-factor/residue) is 0.0–25.0 units in Å2 and for Flo9 this range is 0.0–
14.0  units in Å2. From  the analysis of RMSD/residue, it was observed that for 
Flo1 the range of RMSD/residue is 0.1–0.8 units in Å, for Flo5 the range of RMSD/
residue is 0.1–1.0 Å, and for Flo9 the range of RMSD/residue is 0.1–0.7 units in 
Å. Another dynamic parameter, i.e., radius of gyration of proteins has also been 
calculated during the simulation run for the studied  Flo proteins. Radius of gyration 
of a protein indicates the overall dimension of a protein structure in space as well as 
compactness of the structure.
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18.7.6  Protein Network Analyses

Possible interaction of Flo proteins with other proteins and pathways STRING data-
base version 9 [94] was explored. The protein networks are used in bioinformatics 
of proteins for fine-tuning of interaction of protein functions. The major utilizations 
have been to increase the statistical power in genetics [72] and in study of gene 
interaction. This also aids to close gaps in metabolic enzyme knowledge [39]. The 
functionality that is harnessed in this study mainly deals with prediction of pheno-
types and gene functions [103]. The generated interactions include physical and 
functional associations derived from various knowledge bases. These 
includes  genomic context, high-throughput experiments, co-expression and prior 
knowledge [3]. After studying the interactions of Flo proteins individually, a com-
mon network comprising Flo1, Flo5 & Flo9 was designed. This would enable to 
identify similar interaction behavior for prioritizing the candidate proteins.

18.8  Insight on FLO Proteins from the Bioinformatics 
Analysis

For a successful experiment, the superior quality of study sample is an important 
prerequisite to ensure anticipated results. The Flo protein structures that are used in 
the study are qualitatively noble (Table 18.1 and Figs. 18.7). The retrieved coordi-
nates of Flo1 and Flo5 are of high-resolution X-ray analysis and therefore of good 
quality. Neither the retrieved sequences of Flo1 and Flo5 nor the generated model 
of Flo9 have Ramachandran outliers according to our stringent quality check, and 
95%< of residues in all the proteins are Ramachandran favored. The active site 
domain analysis reveals significant similarities of Flo1 and Flo9 (Table 18.2) and 
high homology of PA14 domain among the two. Therefore it is of no advantage 
using Flo1 and Flo9 together in the genetic transformation. Vacuum electrostatic 
analysis revealed Flo1  potential  to be  ±70.009, Flo5  potential ±69.749 and 
Flo9 potential to be ±60.007 (Figs. 18.7, 18.8, and 18.9). For evaluation of the elec-
trostatic properties of biomolecules, elucidation of the electrostatic potential is a 
standard practice in molecular biophysics which is  done through the Poisson- 
Boltzmann equation [17]. Vacuum electrostatics indicate protein contact potential 
and so an indicator of molecular interactions that influence various aspects of most 
biochemical reactions [18, 20]. In Figs.  18.7, 18.8, and 18.9 the red col-
ored area shows negatively charged and blue shows positively charged regions in 
the proteins. Potential surface maps between the Flo1 and Flo5 exhibit qualitative 
electrostatic similarity. The analysis of active site residues that interact the ions and 
the carbohydrates indicates that various residues interact with the ligands (Figs. 18.7, 
18.8, and 18.9). Hydrophobic topology is proposed to be involved in various struc-
tural features of a protein, such as ligand binding on a surface [11], stabilization of 
macromolecular structure and shielding effect from solvent [5] and protein ensem-
ble of orientation [22], etc. Therefore, the analysis of hydrophobic patches on the 
Flo proteins were done in silico (Fig. 18.10).
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The bioenergetics analysis of Flo  proteins (Table 18.4) indicates that the Flo9 is 
extraordinarily stable, and it is markedly different from Flo1 and Flo5. Similarly, 
the energy profiles of Flo1 and Flo5 are comparable.

Coarse-grained normal mode analysis (NMA) can predict experimentally 
observed functional motions of proteins [2]. In recent years NMA has reemerged as 
a powerful method for elucidating the structure-encoded dynamics of biomolecules. 
Information regarding the dynamics of molecular structures is required to establish 
the link between their structures and function because these entities are dynamic 
rather than static. To identify mobile regions and in some proteins to reproduce the 
direction of conformational change, normal modes can be used [23]. In this study 
highly mobile loops of Flo1 and Flo9 normal modes are seen, while Flo5 structure 
is comparatively stable (Figs. 18.11, 18.12, 18.13).

Fig. 18.7 (a) Ion-binding 
active site with vital amino 
acid residues of Flo1. (b) 
Electrostatic potential 
mapped to the molecular 
surface of Flo1 by vacuum 
electrostatics
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B factors may be indices of dynamic and static disorder and displacements of the 
atoms from their mean positions as well. Temperature-dependent fluctuations in the 
atomic positions lead to dynamic disorder that has been observed to be the major 
contributor to the B factor. Therefore, B factor may accurately predict the backbone 
and side-chain dynamics [28]. From the B factor analysis of Flo protein residues 

Fig. 18.8 (a) Ion and sugar binding sites of Flo5. (b) Ion and sugar binding active site with vital 
amino acid residues of Flo5. (c). Electrostatic potential mapped to the molecular surface of Flo5 
by vacuum electrostatics
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Fig. 18.9 (a) Ion-binding active site with vital amino acid residues of Flo9. (b) Electrostatic 
potential mapped to the molecular surface of Flo9 by vacuum electrostatics

(Fig. 18.14), it is apparent that Flo1 and Flo9 share considerable similarity which is 
also reflected in the pattern of radius of gyration in proteins (Fig. 18.15). However, 
when the ligand-binding residues and domains are plotted on the RMSD/residue 
patterns, it reveals the uniqueness of Flo5 interactions (Fig. 18.16). From the pro-
tein network analysis, several findings are worth mentioning in the context of 
Flo proteins. The vitality of Flo1 is established from the network (Figs. 18.17 and 
18.18). Seven interactions with factors associated with flocculation behavior are 
observed in Flo1, and in Flo5  there were five interactions, whereas in Flo9 only 
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Fig. 18.10 Hydrophobic patches in Flo proteins

Table 18.4 Energetics comparison of FLO proteins

Proteins

Energy (KJ/mole)

Bonds Angles Torsion Improper
Non- 
bonded

Electrostatic 
constraint Total

Flo1 1932.878 1821.126 1336.378 408.048 −7685.32 −4720.17 −6907.063
Flo5 1039.343 1773.216 1359.668 318.787 −6420.53 −4615.82 −6545.334
Flo9 869.335 2074.848 1475.964 192.754 −7939.65 −5473.03 −8799.784

Energy computations are done in vacuum devoid of a reaction field implementing GROMOS96
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three interactions were observed (Table 18.5). Therefore the analysis indicates that 
a transgene construct with Flo1 and Flo5 may promote flocculation in a transformed 
algae.

Transgenesis of Flo1 and Flo5 along with regulatory Flo8 in microalgae host 
would be the next big thing in wastewater treatment by microalgae.

Fig. 18.11 Normal mode analysis of Flo1 showing the vulnerable segments of the protein
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18.9  Recombinant Gene Expressions for Enhanced 
Flocculation and Harvesting of Microalgae 
for Wastewater Treatment

18.9.1  The Basis for Transgenic Flocculation in Microalgae

Comprehension of the biochemical and genetic basis of cell flocculation becomes 
prerequisite to engineer the flocculation phenotype [101]. Therefore a thorough 
study of the published reports on the molecular basis of flocculation was done. This 

Fig. 18.12 Normal mode analysis of Flo5 showing the vulnerable segments of the protein
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was followed by subsequent bioinformatics analysis on the behavior of flocculation 
enhancing proteins. Nonklang et al. [68] is referred here among other similar works 
on the construction of flocculent K. marxianus by introduction of FLO genes from 
Saccharomyces cerevisiae. The strategy followed was overexpression of floccula-
tion enhancing proteins via a transgene from a yeast species to another yeast spe-
cies. Overexpression of a protein ensures increased molecular concentration of a 
gene product or ensures high-level production of the protein and therefore a notice-
able change in the phenotype. In the experiment overexpression of S. cerevisiae, 
FLO genes were achieved by upstream insertion of constitutive TDH3 promoter, 

Fig. 18.13 Normal mode analysis of Flo9 showing the vulnerable segments of the protein
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Fig. 18.15 Radius of gyration in Flo proteins
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resulting in flocculent S. cerevisiae strains. These TDH3-FLO sequences were 
amplified by PCR and introduced directly into a K. marxianus strain which showed 
a flocculation phenotype. In another relevant experiment, controlled flocculation 
using ethanol-induced promoter in yeast strains was achieved [51].

On the basis of these molecular biology-genetic engineering experiments on 
transgenic flocculation phenotype, it is expected that the bottleneck of flocculation 
in microalgal systems can be effectively overcome. Transgenic expression of FLO 
1 and FLO5 in a suitable algal host will revolutionize algal biomass harvesting in 
near future.

18.9.2  The Suitable Microalgae Host for Yeast FLO1 and FLO5 
Transgene Expression

During last decades, mainly due to metabolic diversity, safety, sustainability, and 
scalability, biomanufacturing of recombinant proteins via microalga gained high 
advancement [95]. This includes cost-effective and easily scalable platform for pro-
duction of medical and industrial recombinant proteins [79] .

Fig. 18.16 RMSD/ residue and the effect of substrate binding in Flo proteins (bars indicate the 
interacting residues)
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Among the most promising microalgal hosts, Chlamydomonas reinhardtii can 
serve as a potential expression platform for recombinant protein synthesis in vitro 
for applications including industrial biomaterials, bioenergy, therapeutics, and 
nutraceuticals [1].

Scarcity of existing infrastructure for commercial production and due to  low 
product yield, commercial production of recombinant proteins from C. reinhardtii 
is hindered. Most of the recombinant proteins from C. reinhardtii are still in R&D 
phase [80].

The factors that made Chlamydomonas reinhardtii  a model organism are its 
well-understood genetics, easy culturability, and simple life cycle. These factors are 
also responsible for most of the progress in the field of microalgae research 
through C. reinhardtii. Therefore, C. reinhardtii emerges as the most suitable host 
for transgene expression of FLO1 and FLO5 for enhanced flocculation phenotype 
for wastewater treatment.

Fig. 18.17 Individual protein network of Flo
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18.9.3  Chloroplast or Nuclear Transformation of C. reinhardtii? Is 
the Question for Stable FLO1 and FLO5 Transgene 
Expression

Unlike the common bacterial transformation by a foreign transgene through bacte-
rial nucleoid, recombinant proteins in C. reinhardtii can be expressed from either 
chloroplast [86] or nucleus [77]. Therefore from the most recent experiments on C. 
reinhardtii transgenesis, it is understood that the microalga to be a versatile host, but 
at the same time, this leads to a whole new direction in the genetic engineering of C. 
reinhardtii posing the inevitable question, whether stable & high-level expression is 
achieved from chloroplast or the nucleus?

However, according to published reports, C. reinhardtii chloroplast seems to be 
the site of choice due to the following reasons:

 1. High copy number effect: Multiple chloroplasts in C. reinhardtii, which is a typi-
cal photosynthetic cell, ensure high transgene copy number, and so there would 
be no gene silencing, and multiple genes can be expressed in operons [40].

 2. Chloroplast-specific molecular mechanism:
 (a) Due to little or no posttranslational modification in chloroplast-expressed 

proteins, they would contain the correct amino terminal sequence that 
would conserve the functional aspects of the expressed proteins [29].

Fig. 18.18 Curated network of Flo proteins
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Table 18.5 Networked proteins of Flo

Interacting 
proteins Details of interaction

Score of 
interaction

Flo1 interactions
FLO11a GPI-anchored cell surface glycoprotein (flocculin); required 

for pseudohyphal formation, invasive growth, flocculation
0.892

FLO8a Transcription factor required for flocculation, diploid 
filamentous growth, and haploid invasive growth; flocculation

0.821

BPH1 Protein homologous to human Chediak-Higashi syndrome 
and murine beige proteins, which are implicated in disease 
syndromes

0.654

AGA1a Anchorage subunit of a-agglutinin of a-cells, highly 
O-glycosylated protein with N-terminal secretion signal and 
C-terminal signal

0.642

CWP2a Covalently linked cell wall mannoprotein, major constituent 
of the cell wall; plays a role in stabilizing the cell wall

0.642

HPF1a Haze-protective mannoprotein; reduces the particle size of 
aggregated proteins in white wines; involved in cell wall 
organization

0.627

MSS11a Transcription factor involved in regulation of invasive growth 
and starch degradation; controls the activation of MUC1 and 
STA2

0.578

TPK2 cAMP-dependent protein kinase catalytic subunit; promotes 
vegetative growth in response to nutrients via the Ras-cAMP 
signal

0.540

SAG1 Alpha-agglutinin of alpha-cells, binds to Aga1p during 
agglutination, N-terminal half is homologous to the 
immunoglobulin superfamily

0.540

TIR1a Cell wall mannoprotein of the Srp1p/Tip1p family of 
serine-alanine-rich proteins; expression is downregulated at 
acidic pH

0.540

Flo5 interactions
FLO11a GPI-anchored cell surface glycoprotein (flocculin); required 

for pseudohyphal formation, invasive growth, flocculation
0.862

FLO8a Transcription factor required for flocculation, diploid 
filamentous growth, and haploid invasive growth; flocculation

0.800

YDR476C Putative protein of unknown function; green fluorescent 
protein (GFP)-fusion protein localizes to the endoplasmic 
reticulum

0.704

FLO9a Lectin-like protein with similarity to Flo1p, thought to be 
expressed and involved in flocculation

0.594

NPA3 Member of the conserved GPN-loop GTPase family; has a 
role in transport of RNA polymerase II to the nucleus

0.572

SFL1 Transcriptional repressor and activator; involved in 
repression of flocculation-related genes and activation of 
stress response

0.518

MSS11a Transcription factor involved in regulation of invasive growth 
and starch degradation; controls the activation of MUC1 and 
STA2

0.509

(continued)
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 (b) Transgene expression in chloroplast has led to economically viable levels of 
protein accumulation in previous studies [55].

 (c) Heterologous enzymes can be successfully targeted to the chloroplast [79].
 (d) Lastly, eukaryotic transgene expression in Chlamydomonas reinhardtii chlo-

roplasts ([55, 58, 81, 91,  106]) and chloroplast transformation in higher 
plants [38, 93] demonstrated exceptational integrity in terms of the desired 
traits of the protein expression.

Besides this, the protocol of chloroplast transformation seems to be technically non- 
exhaustive and is easily executable. High-yield secretion of recombinant proteins 
can be achieved through the microalga Chlamydomonas reinhardtii following pro-
tocol of Ramos et al. [78].

18.9.4  Transformation of C. reinhardtii

The protocol for transformation may be designed as per established reports on this 
method and can be summerized  as follows: Chlamydomonas reinhardtii UVM4 

Table 18.5 (continued)

Interacting 
proteins Details of interaction

Score of 
interaction

HPF1a Haze-protective mannoprotein; reduces the particle size of 
aggregated proteins in white wines; involved in cell wall 
organization

0.449

YAL064W-B Fungal-specific protein of unknown function 0.437
YMR317W Putative protein of unknown function with some similarity to 

sialidase from Trypanosoma
0.418

Flo9 interactions
FLO11a GPI-anchored cell surface glycoprotein (flocculin); required 

for pseudohyphal formation, invasive growth, flocculation
0.791

BPH1 Protein homologous to human Chediak-Higashi syndrome 
and murine beige proteins, which are implicated in disease 
syndromes

0.673

NPA3 Member of the conserved GPN-loop GTPase family has a 
role in transport of RNA polymerase II to the nucleus

0.626

FLO5a Lectin-like protein involved in flocculation 0.594
MSS11 Transcription factor involved in regulation of invasive growth 

and starch degradation; controls the activation of MUC1 and 
STA2

0.573

SFL1a Transcriptional repressor and activator; involved in 
repression of flocculation-related genes and activation of 
stress responses

0.501

YAL064W-B Fungal-specific protein of unknown function 0.441
YMR317W Putative protein of unknown function with some similarity to 

sialidase from Trypanosoma
0.418

aInteractions associated with flocculation behavior
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strain may be transformed following the glass bead method [46]. This protocol uses 
1 μg of a suitable vector (Expression vector with in which the transgene will be 
inserted) linearized with restriction endonuclease ScaI. Following transformation 
Chlamydomonas reinhardtii cells are to be harvested by centrifugation as pellet. 
The cell concentrate are to be plated for selection of transformed cells which are 
paromomycin resistant. Paromomycin-resistant colonies are to be further cultivated 
to screen gene integration through colony PCR as described by [12], using gene- 
specific primers GSP3 and GSP4 to amplify the full-length expression cassette. The 
following subsections below would complete the transformation for desired 
phenotype:

18.9.4.1  Immunoblotting
This method is employed to detect the expression of a transgene using a monoclonal 
antibody targeted to the transgene product. The marker antibody is generally tagged 
by a fluorescent marker. A positive signal (flourecence) indicate expression of the 
protein and vise-versa.

18.9.4.2  Fluorescence Localization Analysis
This is employed to localize the expression site of the protein. Monoclonal antibod-
ies are again used which are fluorescent labeled. A fluorescence microscope is 
needed for the analysis. In general terms, presence of a gene can also be identified 
at nucleic acid level using fluorescent-labeled nucleotide probes. The method is 
generally termed as FISH (Fluorescent In Situ Hybridization).

18.9.4.3  Proteolytic Assay for Protein Stability
The expressed protein may be subjected to enzymatic, chemical, or physical (heat, 
pH change, ionic gradient, etc.) treatment which would lyse the protein. The degrees 
of lysis indicate relative stability of the expressed protein. Generally a spectropho-
tometer is employed in the test. For a review on chloroplast transformation, one can 
read Yusuke and Takashi [107] and Meyers et al. [59].

However, for expression of FLO1 and FLO5 transgene construct of yeast origin 
in Chlamydomonas reinhardtii (for enhanced flocculation phenotype for wastewater 
treatment) the nuclear transformation strategy also deserves a thorough evaluation. 
This is because either of the strategies, chloroplast or nuclear transformation, are yet 
to be experimentally validated for successful harvesting of algal biomass for waste-
water treatment.

The considerations for nuclear transformation for expression of FLO1 and FLO5 
transgene construct of yeast origin in Chlamydomonas reinhardtii are as follows:

 1. The FLO1 and FLO5 proteins are lectin-like proteins, and therefore a glycosyl-
ation in the algal Golgi complex is easily achievable via nuclear transformation.

 2. Secretion of FLO1 and FLO5 proteins to the cell wall surface is easily achievable 
via nuclear transformation.

 3. Nuclear transformation is an established protocol in genetic engineering.

18 Characterization of Extracellular Proteins to Explore Their Role…
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Therefore it is recommended that a thorough experimental evaluation is imperative 
for generation of successful microalgal transformation of FLO1 and FLO5 floccula-
tion enhancing proteins for enhanced flocculation of microalgae for wastewater 
treatment.

18.10  Discussion

The above sections give an overview of the strategy that indicates that the transfor-
mation of fungal genes that are capable of enhanced flocculation into algal hosts 
would lead to enhanced flocculation phenotype. For this, transformation of chloro-
plast can be efficiently achieved [59]. The genetic engineering strategy, construction 
of vector, and possible outcome of the stretegy are depicted in Fig. 18.19. The in 
silico analysis described here confirms that FLO1 and FLO5 cassettes that can be 
inserted into a suitable host under regulation of FLO8 will eventually lead to expres-
sion of flocculation promoting proteins in Chlamydomonas reinhardtii.

In this chapter a detail review of the problems associated with wastewater treat-
ment via algal systems and its solutions that may lead to their mitigation are 
described. Extensive review of literature indicates  that molecular biology and 
genetic engineering-based interventions are needed for genesis of a sustainable 

Fig. 18.19 Possible mechanism of chloroplast transformation for enhanced flocculation pheno-
type in microalgae for wastewater treatment
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solution for this fundamental problem of algal biomass separation after wastewater 
treatment by algae. For preliminary experimentation Chlamydomonas reinhardtii 
will be the most promising host that will lead to substantial understanding toward 
outcome of the strategy. A thorough protocol that may be followed for the molecular 
biology experiment is also described; however a meticulous assessment and rectifi-
cations may be necessary by algal biotechnologists before finalizing the protocol. A 
detail methodology that may be employed to evaluate flocculation enhancing pro-
tein prioritization by computational tools is described. The methodology of compu-
tational simulation can be replicated for any other protein of industrial importance 
of any other origin. The schematic representations of concepts are easily compre-
hensible that may endorse brainstorming among the scientific fraternity currently 
focusing on algal biotechnology for wastewater treatment. Since the threats of cli-
mate change is real and it will impact the basic livelihood resources significantly, all 
sorts experimental and conceptual notions must be tested by the scientists in this 
high time. The priority of FLO1 and the FLO5 as flocculation enhancers is apparent 
from the study, and therefore a transformation experiment by the algal biotechnolo-
gists is highly anticipated by the author. The experimentations by computational 
tools such as domain analysis, molecular dynamics, protein structural and func-
tional analysis, bioenergetics and protein network analysis, etc. employ the standard 
tools as per current norms. In this chapter several works, reviews, and papers by 
works of different fields are suggested which will aid the readers to have an in-depth 
understanding of the context that are discussed here. Therefore, the study is expected 
to aid in the understanding of bio-flocculation for wastewater treatment and other 
relevant sustainable utilization of microalgal systems.
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Abstract
Conventional treatment systems employ huge amounts of hazardous chemicals 
in the treatment of industrial and domestic waste waters. A variety of chemicals 
are added to the effluent to manage the major parameters, which causes more 
problems during disposal. In majority of textile and leather industries, water is 
recycled through R/O process. The R/O reject disposal is a major issue, and 
installation of multiple-effect evaporators (MEE) is recommended which is more 
expensive and energy-intensive. Can treatment technologies employing algae 
provide alternate viable solutions to these and other problems faced by conven-
tional systems? This is the question which will be answered through this article.

Phycoremediation technology, using algae for waste treatment, has become very 
popular now. More and more industries are coming forward to adopt this technology 
[1]. Like any other bioremediation process, this technology also has lots of advan-
tages which will benefit the industry and environment by reducing the operation 
costs and reducing/removing the toxicity and avoiding chemicals which are usually 
added in conventional treatment processes. The methodology involves three stages: 
(1) lab-scale trials, (2) pilot-scale trial at industry site, and (3) scale up. The design 
of the scaled-up system is custom designed based on infrastructure and facilities 
already available in the industries.

The success of phycoremediation depends mainly on acceptance. If this new 
technology addresses drawbacks of other conventional systems, this is accepted 
immediately. Phycospectrum Environmental Research Centre (PERC), Chennai, 
India, has implemented algal technology in several industries in India and other 
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countries. Vertical roof tank system with improved illumination/aeration panel sys-
tem developed by PERC is being installed with huge success rate in various indus-
tries. PERC has recently presented this technology at a meeting with Welsh Water, 
Wales, UK, and is in the process of signing an agreement to implement a demonstra-
tion plant at Swansea, UK.

Although removal of nutrients from waste water by algae is well established, 
Phycospectrum Environmental Research Centre (PERC) is the first organization in 
India to take micro-algal technology to industries with considerable amount of suc-
cess. The first large-scale phycoremediation (algae-based remediation) plant was 
established during 2006 in a chemical industry (SNAP) in India. The major problem 
addressed in this industry was pH correction which was done conventionally using 
huge amount of sodium hydroxide ending up in generation of sludge. Algal technol-
ogy has helped this industry to correct pH without using any chemicals, and since 
the total dissolved solids (TDS) of the effluent is around 40,000 mg/L, entire efflu-
ent is evaporated without generating any sludge. PERC, after the success with 
SNAP industry, has installed a number of pilot and large plants in India.

19.1  PERC’s Projects in Colombia

Phycospectrum joint with CORE BIOTECH, Colombia (PHYCORE), has success-
fully demonstrated through a 20 KL pilot plant installed at an oil drilling site of 
Pacific Energy, to handle petrochemical waste and efficiently reduce nutrient load, 
coliform bacteria and traces of aromatic hydrocarbons. PHYCORE has also installed 
a demo plant at a slaughter house in Barranquilla, Colombia, recently.

19.2  Can Multiple-Effect Evaporators (MEE) Be Replaced 
with Algal Technology?

A multiple-effect evaporator (MEE) is recommended by pollution control agencies 
to evaporate industrial effluents and R/O (reverse osmosis) rejects with very high 
total dissolved solids (TDS), and it results in huge amounts of hazardous solid waste. 
In India MEE is extensively used in R/O reject management of textile and leather 
industries. The major problems with MEE are the costs of installation and operation 
and finally management of solid waste generated due to evaporation. Because of 
these reasons, industries have been looking for alternate technology to handle R/O 
rejects. Phycospectrum Environmental Research Centre (PERC), India, has recently 
developed and successfully demonstrated micro-algae-based technology at Brintons 
Carpets Asia Pvt. Ltd., India, very successfully (Figs. 19.1, 19.2 and 19.3).

The R/O reject from Brintons has a TDS of 20,000 to 25,000 mg/L, and this was 
continuously loaded into a 10 KL demonstration plant in which selected micro- 
algae were also grown. The effluent with algae was allowed to run on a slope for 
capturing sunlight and heat and evaporate faster. After a short initial salt build-up, 
the system stabilized with no further increase in TDS, and further addition never 
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increased TDS. Algal biomass produced was collected on regular basis from the 
slope roof which is being analysed for possible utilization.

The system at Brintons Carpets, India, is stabilized and started producing almost 
0.75 g of dry algal biomass per litre per day, and water is getting evaporated result-
ing in zero sludge. This system is being scaled up now. This successful implementa-
tion has proved the efficiency of algae-based evaporation system in replacing MEE 
handling high TDS waste streams like R/O rejects of various industries and more 
specifically textile and leather industries.

Fig. 19.1 Slope tank for R/O reject treatment showing algal growth at Brintons Carpets

Fig. 19.2 Comparison of MEE and Algae Technology (based on 100 M3/day plant)
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19.3  Can Micro-Algal Technology Replace Bacterial 
Bioremediation?

Pasupati Acrylon Ltd. is one of the largest producers of acrylic fibre in India, with 
a range of options of products ranging from just raw white and bleached fibre to 
tow-dyed fabric. Recently, the company established a gel-dyeing unit to produce 
fabric of a much superior nature. Because the gel dye is a liquid, to prevent micro-
bial activity, significant amounts of antimicrobial agents are present in the dye. 
Bacterial system failed because of the toxic effluent. The industry has an activated 
sludge process of 7800 M3, but addition of just a 100 M3 of raw gel dye effluent in 
this reactor would upset the reactor for days. A more advanced and robust treatment 
system was needed for tackling this toxicity (Figs. 19.4, 19.5, 19.6, and 19.7).

PERC developed micro-algal technology, and a scaled-up plant (550 KL with 3 m 
depth) was commissioned last month. In a continuous flow of 3 M3/h or 76 M3/day, 
a complete removal of toxicity from effluent was achieved with more than 90% 
COD reduction.

19.4  PMF (Pulsed Magnetic Field) Technology to Improve 
Algal Growth and Efficiency of Effluent Treatment

PERC has been working on PMF (pulsed magnetic field) technology to improve 
algal growth and enhance remediation efficiency at industrial effluent treatment 
plants. PERC in collaboration with Madras Institute of Magnetobiology (MIM), 

Fig. 19.3 Brintons Carpets  – Actual TDS in tank varies between 20,000 and 60,000  ppm 
(Theoretical TDS based on actual TDS load is around 350,000 ppm)
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Fig. 19.4 Slope – illumination – aeration panel of algal ETP – large scale at Pasupati Acrylon

Fig. 19.5 Showing algal growth in the reaction tank and on the slope surface – Pasupati Acrylon

Fig. 19.6 Comparison of treated effluent with raw effluent – Pasupati Acrylon
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India, has been studying this phenomenon for the last 6 years and developed an 
optimized technology for various algal processes.

Pulsed magnetic field enclosure has been installed in a 35 KL micro-algal race-
way facility at Bharathidasan University, India, as part of Indo-UK joint research 
project on algal biofuels. This PMF enclosure is expected to enhance algal biomass 
productivity and increase oil content through an optimization protocol which is in 
progress right now. The idea of installing world’s first ever PMF unit to a raceway 
pond is based on PERC’s (Phycospectrum Environmental Research Centre) collab-
orative project with a technical support from Madras Institute of Magnetobiology, 
India, which was supported by MNRE (Ministry of New and Renewable Energy), 
Ministry of Science and Technology, Government of India, during 2011. The sum-
mary of the findings of this project is posted at MNRE website: -mnre.gov.in/file-
manager/UserFiles/bio-fuel/R_D_biofuel-Developement-of-hybridised....
production.pdf. MNRE’s support was given to PERC based on a research article 
published in Journal of Algal Biomass Utilization [2].

The findings of this project include optimization of sinusoidal magnetic field 
technology in developing a magnetic field-based technology to enhance biomass 
production and increase oil production in the micro-algae tested (Figs  19.8 and 
19.9).

19.5  PMF Helps to Improve Micro-Algae-Based Effluent 
Treatment

Trials carried out by PERC with effluent from a textile industry revealed that appli-
cation of PMF technology enhances remediation efficiency of micro-algae-based 
phycoremediation process (Table  19.1). Based on these trials, a field-scale PMF 

Fig. 19.7 Comparison of raw effluent with treated effluent in scaled-up plant at Pasupati Acrylon
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Fig. 19.8 Growth and biomass productivity of Chlorella vulgaris exposed to PMF

Fig. 19.9 Effect of PMF (10 HZ) on FAME % of Chlorella vulgaris
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enclosure is being developed to be installed at effluent treatment facility at Pasupati 
Acrylon, India. This is expected to improve the efficiency of micro-algae-based 
system already in operation.

PMF technology when properly optimized can be applied to multivarious algae- 
based processes like oil production, nutraceutical production, industrial effluent 
treatment, etc. PERC has installed the first large-scale pulsed magnetic field enclo-
sure in a 35 KL algae raceway pond. Similar PMF units are going to be installed in 
large-scale algae-based effluent treatment plants developed by PERC.

Phycoremediation technology has lots of advantages over conventional systems 
of treatment. Micro-algae are safe to handle and require minimal maintenance and 
operation cost. If algal technology works, there will be more than 90% reduction in 
operation cost when compared to conventional technologies. Added advantage is 
the production of valuable algal biomass which can become excellent feedstock for 
production of various products which will benefit the society.
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Table 19.1 Showing enhanced efficiency of phycoremediation of textile industry effluent when 
exposed to pulsed magnetic field (PMF)

Parameters
Raw textile 
effluent

Textile effluent treated 
with algae

Textile effluent treated  
with algae + PMF

Conductivity 12,130 12,290 10,790
pH 2.82 3.10 7.05
Nitrate 77 70.6 67.5
Phosphate 4.3 9.7 1.6
TDS 6897 7003 6178
TSS 7 11.8 9.6
COD 202 220 55
BOD 50 62 12
Chloride 3185 3328 2940
Sulphate 519 537 243
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