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Chapter 15
Enterococci As Nosocomial Pathogen

Preeti Sharma, Sumanpreet Kaur, and Sukhraj Kaur

Abstract Enterococcal species are Gram-positive lactic acid bacteria that are ubiq-
uitously present in environmental samples, plants, and gastrointestinal tracts of ani-
mals. As commensals they are known to benefit the host, but in recent years, they 
have earned dubious reputation as nosocomial pathogens. They are known to cause 
diseases like urinary tract infections, endocarditis, bacteremia, and intra-abdominal 
infections especially in immunocompromised patients that are subjected to 
prolonged antibiotic treatments. The various factors contributing to their status as 
nosocomial pathogens are their intrinsic and acquired resistance to various classes 
of antibiotics. They are known to persist on animate and inanimate surfaces for a 
long period of time which thus act as reservoirs for the spread of the infection in 
hospitals. Recent studies have shown that the nosocomial strains are genetically 
distinct from commensal Enterococcal strains. Thus, herein the various diseases 
caused by nosocomial Enterococcus spp., the problem of antibiotic resistance, and 
their treatment have been reviewed. Further, this chapter also discusses the various 
virulence factors contributing to its pathogenicity and highlights the genetic 
differences between pathogenic and commensal Enterococcus spp.
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15.1  Introduction

From the last three decades, Enterococcus spp. have emerged as one of the impor-
tant etiological agents of hospital-associated infections in immunocompromised 
individuals and in patients with prolonged antibiotic treatment and hospital stay 
(Gilmore et al. 2013). The two species Enterococcus faecalis and E. faecium out of 
50 known species of enterococci are particularly pathogenic to man; for example, E. 
faecalis accounts for 85–90%, and E. faecium accounts for 5–10% of all Enterococcal 
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diseases (Maki and Agger 1988). Other species that can also be pathogenic include 
E. gallinarum, E. casseliflavus, E. durans, and E. mundtii. In the USA and Europe, 
enterococci have been reported to be the second and third leading cause of 
nosocomial infections (Sievert et al. 2013; Zarb et al. 2012). In India, enterococci 
accounted for 2.3–9.7% of all nosocomial infections (Sreeja et al. 2012; Chakraborty 
et al. 2015; Karmarkar et al. 2004). Enterococci have immense genome plasticity, 
are prolific colonizers, and have the ability to persist in hospital environment for a 
long time owing to their sturdy nature. The various clinical manifestations of 
Enterococcal infection are urinary tract infections, bacteremia, endocarditis, and 
intra-abdominal infections (Murray 1990). Apart from E. faecalis, the incidence of 
nosocomial E. faecium infections is also on the rise, primarily due to antibiotic 
resistance in E. faecium. The ability to cause infection in E. faecium is mainly attrib-
uted to the increasing resistance to antibiotics, whereas E. faecalis has been reported 
to exhibit innate ability to cause infections irrespective of the antibiotic resistance 
(Mundy et al. 2000). To better understand the molecular mechanisms involved in 
the pathogenicity of Enterococcus, the whole genome sequences of various patho-
genic (Qin et al. 2012) and commensal (Brede et al. 2011) Enterococcus spp. have 
been published and compared.

15.2  General Characterization of Enterococci

Enterococci are Gram-positive, facultative anaerobic bacteria, which are ovoid 
in shape and may occur in diploids, in chains, or as single cells (Fig. 15.1). They 
are catalase- and cytochrome c oxidase-negative. According to the classification 
by Sherman (1937), the bacteria belonging to Enterococcus genera possess 
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Fig. 15.1 (a) Photomicrograph showing Gram-positive coccus-shaped Enterococcal cells in the 
pulmonary tissue. (b) Scientific classification of Enterococcus genera
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characteristic ability to grow at 10° and 45 °C, in media containing 6.5% NaCl, and 
do not produce gas from glucose (Schleifer and Kilpper-Bälz 1984). Hydrolysis of 
L-pyrrolidonyl- 3-naphthylamide and group D antisera test is also one of the charac-
teristic features of enterococci genera. The genera fall in low GC branch of bacteria, 
and G + C content ranges between 37 and 45 mol%. Species-level identification of 
Enterococcus genera is generally done by 16S rDNA sequencing or whole cell pro-
tein analysis. Till date approximately 50 species of Enterococcus have been reported. 
The prominent species present in the gut of animals and humans is E. faecium fol-
lowed by E. faecalis (Silva et al. 2012).

15.3  Habitat

Enterococci are ubiquitous members of gastrointestinal tracts (GIT) of various 
organisms. In the 1960s and 1970s, enterococci were isolated from GIT of reptiles 
(85.7%), mammals (71.3%), insects (53%), and birds (31.8%) by Mundt et  al. 
Enterococci have also been isolated from plants (Mundt 1963), soil (Mundt 1961), 
water, and fermented foods. It is postulated that enterococci may have been one of 
the earliest members of the GIT with their existence dating back from early Devonian 
period (Gilmore et  al. 2013). Due to their role in highly evolved and extremely 
competitive environment of GIT, enterococci have well-adapted and reduced 
genomes ranging from 2.6 to 3.6 Mb. These bacteria are fastidious in nature and 
draw a number of vitamins and amino acids from their habitats (Niven and Sherman 
1944). They have reduced their genome by eliminating genes necessary for the 
biosynthesis of amino acids and vitamins from simpler precursors.

15.4  Enterococcal Diseases

15.4.1  Endocarditis

Enterococcus spp. are known to cause endocarditis since 1899, when the first clini-
cal description of the strain which was most certainly E. faecalis was published 
(MacCallum and Hastings 1899). Enterococci are the third main causative agents of 
infective endocarditis (IE) and prosthetic valve endocarditis worldwide after 
Streptococcus spp. and Staphylococcus spp. Worldwide approximately 10–15% IE 
cases are caused by enterococci (Murdoch et al. 2009). Frequency of Enterococcal 
IE is more in elderly debilitated patients with prior valvular damage, intracardiac 
devices, or a prosthetic valve. It occurs more in men than women (McDonald et al. 
2005). Most common clinical findings of IE include subacute fever and the presence 
of a cardiac murmur. Almost half of the IE patients suffer from heart failure. 
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Mortality rate in Enterococcal IE is significant at 9–15%, but it is lower than IE 
caused by other pathogens such as S. aureus (McDonald et  al. 2005; Rice et  al. 
1991). The first report of IE by vancomycin-resistant E. faecium (VRE) appeared in 
the late 1990s (Vijayvargiya and Veis 1996). The risk of VRE IE increases in the 
patients with the history of hemodialysis and organ transplantation and presence of 
a central venous catheter (Stevens and Edmond 2005). The study on clinical 
outcomes of IE by E. faecalis and E. faecium showed high mortality rates and longer 
persistence of bacteremia in E. faecium IE patients (Forrest et al. 2011).

15.4.2  Urinary Tract Infections (UTIs)

Enterococcus spp. are the third most common pathogen isolated from catheter- 
associated UTIs in hospitalized patients causing approximately 15% of the UTI 
cases in ICU patients. UTIs occur most frequently in elderly men. Vancomycin 
resistance was found to be 81% in E. faecium and 6% in E. faecalis urinary isolates 
in catheter-associated UTI (Hidron et al. 2008)

15.4.3  Bacteremia

At present, enterococci are the second leading causative agent of healthcare-
related bacteremia (Hidron et al. 2008). The most common route of Enterococcal 
bloodstream infection (EBSI) is genitourinary tract and endovascular, intra- 
abdominal, or soft tissue infections. Other factors like old age, liver disease, male 
gender, renal impairment, hematologic transplant, diabetes, prior treatment with 
antibiotics, and malignancy have also been associated with EBSI (Noskin et al. 
1995; Gray et al. 1994). In a study on patients diagnosed with acute leukemia, it 
was demonstrated that the risk of EBSI increases with increase in duration of 
hospital stay and with administrations of carbapenes and corticosteroids, diar-
rhea, and severe neutropenia (Ford et  al. 2015). Twenty-five percent of EBSI 
cases have tendency to be polymicrobial in nature (Billington et  al. 2014). 
Mortality rate in polymicrobial EBSI is approximately two times higher than 
monomicrobial EBSI (McKenzie 2006). Almost 9.5% and 82.6% E. faecalis and 
E. faecium isolated from blood stream infections are vancomycin resistant 
(Lautenbach et al. 1999). Unlike S. aureus-associated bacteremia, Enterococcal 
bacteremia rarely causes metastatic abscesses or seeds distant organs. Some stud-
ies have reported more mortality rate in E. faecium caused by bacteremia than that 
caused by E. faecalis (Noskin et al. 1995). Death rates can be up to 75% in patients 
with serious health conditions like diabetes mellitus, transplantation, heart dis-
eases, or malignancy.
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15.4.4  Intra-abdominal Infections

Intra-abdominal infections (IAIs) include various pathological conditions, such as 
fecal peritonitis, uncomplicated appendicitis, perforated viscus, and postoperative 
complications (Menichetti and Sganga 2009). In a 14-year-long study on recurrent 
and relapsing peritonitis in patients undergoing peritoneal dialysis, enterococci 
were found to be common causative agents of recurrent peritonitis (Szeto et  al. 
2009). The data collected at 68 medical centers demonstrated that enterococci were 
the most commonly isolated Gram-positive bacteria from IAI patients and consti-
tuted almost 12.9% of the isolates out of which 9.2% were E. faecalis and 3.7% 
were E. faecium (Sartelli et al. 2014). Further, it was reported that the increased 
intrinsic and acquired resistance in enterococci pose great challenges in the effec-
tive treatment of the diseases.

15.5  Nosocomial Transmission

Nosocomial Enterococcal infections are caused by increased colonization of GIT 
by resistant enterococci. Prolonged exposure of hospitalized patients to antibiotics 
alters gut microbiota which decreases the prevalence of Gram-negative microbes in 
the GIT, thus facilitating colonization by resistant Gram-positive bacteria such as 
enterococci. The primary mode of transmission of resistant enterococci in hospital 
setting is through the hands of healthcare workers (Hayden 2000). Studies have 
shown that enterococci have the ability to persist on the hands for approximately 1 h 
and for 4 months on inanimate surfaces, which thus act as reservoirs for transmission 
in the absence of regular sanitization (Kramer et al. 2006). Medical equipments like 
thermometers, stethoscopes, blood pressure cuffs, intravenous fluid pumps, bed 
rails, gowns, bedside tables, urinals, bedpans, and bed linens are readily contaminated 
with high densities of VRE (Bonilla et al. 1997; Hota 2004). Other factors posing 
VRE colonization risk include duration of patient’s stay in hospital or intensive care 
unit and patient’s proximity to other VRE-colonized patients (Fig. 15.2; Tornieporth 
et al. 1996). Strict surveillance of health workers is required to curb the spread of 
nosocomial Enterococcal infections. Further, various precautions, such as proper 
decontamination of inanimate surfaces, use of gloves, hand sanitization, etc., should 
be strictly followed.

15.6  Virulence Determinants of Enterococci

Virulence of enterococci is a multifactorial process, with the participation of several 
genes and their products. The virulence genes are mostly known to be present on the 
genome in special regions which are termed pathogenicity islands (PAI). However, 
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some virulence factors may be present on plasmids also. E. faecalis are known to 
carry more numbers of virulence factors as compared to E. faecium.

15.7  Secreted Virulence Factors

15.7.1  Cytolysin

Cytolysin toxin belongs to the class of lantibiotic group of bacteriocins. Cytolysin 
production can be chromosomally encoded by PAI or encoded by a pheromone- 
responsive plasmid pAD1 (Ike et al. 1990). Cytolysin consists of two components 
CylLL and CylLS which are secreted as pro-peptides from the cell. These pro- 
peptides are proteolytically activated by CylM, CylB, and CylA.

Almost 30% of E. faecalis strains produce cytolysin, and its production has been 
associated with increased toxicity of Enterococcal infections. Cytolysin can lyse 
bacterial cells, mammalian erythrocytes, and other eukaryotic cells (Cox et  al. 
2005). In a rabbit endocarditis model, aggregation substance and cytolysin-positive 
strains caused 55% mortality as compared to 15% with only aggregation substance- 
positive strains (Chow et al. 1993).

Fig. 15.2 Factors affecting the transmission of vancomycin-resistant enterococci (VRE) in noso-
comial settings. The close proximity to VRE-infected patient passes on the contamination to hos-
pital staff or hospital equipments and finally to the immunocompromised patient
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15.7.2  Gelatinase

Gelatinase (Gel) is an extracellularly secreted Zn-metalloprotease which hydro-
lyzes casein, collagen, fibrinogen, complement components (C) 3 and C3a, and 
hemoglobin. Gel has been implicated as virulence factor by animal models and 
epidemiological studies. Gel expression is induced by fsr quorum-sensing system in 
response to high cell density (Qin et al. 2000). It mediates virulence by degrading 
host tissue and modulating host’s immune response (Park et  al. 2008). Gel can 
activate autolysin which is a peptidoglycan-degrading enzyme and leads to release 
of DNA and has a role in biofilm formation (Thomas et al. 2009).

15.8  Cell Surface-Associated Virulence Determinants

15.8.1  Aggregation Substance

Adherence to host tissue is important for pathogens to cause infection. In entero-
cocci, aggregation substance (AS) and extracellular surface protein (esp) have been 
reported to play a role in adherence (Waters et  al. 2004). In E. faecalis, AS is 
encoded by pheromone-responsive plasmid in response to pheromone (Clewell 
1993). AS mediates aggregation of Enterococcal cells and facilitates transfer of 
plasmid during conjugation. It also has been reported to promote internalization of 
Enterococcal cells by intestinal cells, adhesion to renal tubular cells, and survival of 
E. faecalis cells inside polymorphonuclear neutrophils (Olmested et al. 1994; Kreft 
et al. 1992). In endocarditis model, destruction of pulmonary and myocardial tissue 
was found to be caused due to AS.  Moreover, AS has been reported to mediate 
bacterial aggregation on cardiac valve resulting in increased pathogenesis in 
endocarditis (Schlievert et al. 1998).

15.8.2  Enterococcal Surface Protein

Esp is a large molecular weight protein expressed on the surface of E. faecalis. Esp 
is mainly associated with biofilm formation (Heikens et al. 2007) and plays a role in 
biofilm-associated infections such as UTI (Shankar et al. 2001), bacteremia, and 
endocarditis (Heikens et al. 2001) as demonstrated by studies with an esp deletion 
mutant. The esp gene located on PAI encodes a very large LPXTG-motif cell wall- 
anchored protein in both E. faecalis and E. faecium. It is widely present in E. faecalis 
strains, but E. faecium esp is predominantly found in hospital-associated isolates, 
suggesting its role in virulence.
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15.8.3  Adhesion to Collagen Proteins

The ability of E. faecalis to adhere to extracellular matrix proteins like collagen, 
fibrinogen, laminin, lactoferrin, fibronectin, thrombospondin, and vitronectin has 
been reported in many studies (Rich et al. 1999; Nallapareddy and Murray 2008). 
The search for the gene encoding these adhesion molecules led to the discovery of 
Ace, an adhesin to collagen of E. faecalis. Most of these studies also found that only 
few isolates of E. faecalis exhibit adherence to extracellular matrix proteins under 
laboratory conditions (Woodford et al. 2001). Further experiments have found that 
most clinical isolates of E. faecalis do not express adherence phenotypes constitu-
tively, but expression of these phenotypes is elicited under stress conditions or in the 
presence of host-derived factors (Nallapareddy and Murray 2008). The role of Ace 
was studied in experimental endocarditis rat model. Immunization with recombi-
nant anti-Ace antibodies decreased endocarditis development (Singh et al. 2010).

Adherence studies showed that like E. faecalis, many isolates of E. faecium can 
bind to collagen following growth in brain-heart media, and the protein responsible 
is a cell wall-anchored Acm (adhesin to collagen of E. faecium; Nallapareddy et al. 
2003). Collagen adherence of clinical isolates of E. faecium was found to be 
significantly more than the isolates from animal, community, or fecal origin, thus 
suggesting that it is an important factor responsible for infection-causing ability of 
E. faecium. Incorporation of acm gene in acm-negative mutants resulted in the 
expression of adherence phenotype. In E. faecium endocarditis mice model, acm 
mutant was less likely to develop endocarditis; thus it has been shown to be antigenic 
(Nallapareddy et al. 2008).

15.8.4  Endocarditis- and Biofilm-Associated Pili (ebp)

The ebp are surface-associated filamentous structures in E. faecalis. It plays a role 
in biofilm formation by binding to abiotic surfaces and adhering to platelets 
(Nallapareddy et al. 2011a). In animal models, it contributes to tissue colonization 
in IE and UTI (Sillanpaa et  al. 2013). Deletion of the ebp locus resulted in a 
diminished capacity of E. faecalis OG1RF to colonize kidneys and bladders in a 
murine model of ascending UTI (Nallapareddy et  al. 2011b) and in catheter- 
associated UTI (Nielsen et al. 2012).

15.9  Factors Contributing to Enterococcus Pathogenesis 
and Divergence from Commensals

Enterococci are part of normal GIT, and transition of commensals to pathogens is 
associated with change in ecology, acquisition of toxin genes, and mobile genetic 
elements carrying PAI.  Comparative studies of the genomes of nosocomial and 
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commensal strains show that nosocomial strains have acquired these virulent traits. 
Genome sequence analysis of V583, which is considered as representative strain of 
nosocomial lineage of E. faecalis, revealed that 26% of the genome comprised of 
mobile genetic elements, 38 insertion elements, remains of 3 integrative phages, 7 
apparent phages, and 3 independently replicating plasmids (Paulsen 2003). Similar 
evolutionary sequences are found in case of nosocomial E. faecium strains which 
are found to possess large PAI carrying several IS and esp gene (Leavis et al. 2007). 
Further, these virulent genes synergize with each other to express the virulence 
phenotype; for example, in an endocarditis model, AS was found to synergize with 
cytolysin protein.

Further, the genome of V583 when compared with commensal strain OG1RF 
revealed the presence of CRISPR-cas in commensal strains which provides defense 
against plasmid acquisition and phage infection. The absence of CRISPR in V583 
led to studies directed to find correlation between absence of CRISPR and accumu-
lation of mobile genetic elements in nosocomial strains. Sixteen E. faecalis strains 
representing the deepest phylogenetic nodes were studied to identify polymorphism 
in location and content of CRISPR loci. Results suggested that CRISPR loci were 
highly conserved and influenced the movement of pheromone- responsive plasmids 
and phages. A complete absence of CRISPR-cas in MDR Enterococcus strains was 
also reported (Palmer and Gilmore 2010). Based on the whole genome data and the 
comparison of the 2113 core genes of the eight E. faecium strains, they were placed 
in two different clades. Clade A mainly comprised of nosocomial infection-causing 
strains, whereas clade B comprised of commensal strains. Clades A and B have 
similarity in the range 93.9–95.6% that shows the degree of divergence between the 
species. In case of E. faecalis, the commensal and nosocomial pathogens can also 
be similarly differentiated into different clonal complexes, but the division is over-
lapping in some cases (Gilmore et al. 2013).

15.10  Treatment

The treatment of infections caused by susceptible Enterococcus strains is mainly by 
using ß-lactam antibiotics. Monomicrobial Enterococcal infections that are 
susceptible are usually treated with ampicillin and penicillin alone. On the other 
hand, polymicrobial infections are treated with the combination of ampicillin and 
other antibiotics having broad spectrum of activity against aerobic, anaerobic, and 
Gram-negative bacteria. Combination drugs containing β-lactam along with 
β-lactamase inhibitor such as piperacillin-tazobactam or ampicillin-clavulanic acid 
can also be used. In case of penicillin allergies, a single agent like vancomycin or 
teicoplanin can be used to treat nonresistant Enterococcal infections. In case of 
penicillin-susceptible VRE infections like cystitis, oral application of nitrofurantoin, 
doxycycline, and fosfomycin can be considered (Heintz et  al. 2010). Infections 
caused by VRE strains are mostly treated by antibiotic, linezolid, daptomycin, and 
quinupristin-dalfopristin (Q-D), but side effects are common in prolonged treatment. 
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For E. faecium Q-D is not used as it is resistant. UTI and skin and soft tissue 
infections caused by VRE are treated by fluoroquinolones or doxycycline depending 
upon the susceptibility patterns (Landman and Quale 1997). Adjunct measures 
including drainage of abscesses and removal of infected foci can also be used 
wherever possible.

Treatment of IE caused by E. faecalis mainly includes combination of ß-lac-
tams, gentamicin, and aminoglycosides. In case of IE caused by E. faecium, treat-
ment is challenging due to higher resistance to ß-lactams and aminoglycosides. 
Daptomycin and ceftaroline have also been found to be effective for the treatment 
(Pericás et al. 2015).

15.11  Antibiotic Resistance

Increasing antibiotic resistance in enterococci is a matter of concern because the 
increase in the cases of Enterococcal infections in humans is partially due to its 
ability to escape the action of commonly used antibiotics. Enterococci are known to 
be intrinsically resistant to many antibiotics due to which they can exist in 
environments enriched for antibiotic resistance (Mundy et al. 2000; Murray 1998). 
They are known to be intrinsically resistant to semisynthetic penicillins and 
cephalosporins due to the presence of low-affinity penicillin-binding proteins; for 
example, E. faecalis expresses PBP4, and E. faecium expresses PBP5. The minimum 
inhibitory concentrations (MICs) for penicillins are typically 2–8  μg/ml for E. 
faecalis and 8–16  μg/ml for E. faecium (Sifaoui et  al. 2001). They also show 
decreased susceptibility to penicillin, ampicillin, aminoglycosides, and clindamycin.

Among aminoglycosides, the MIC of streptomycin and kanamycin in E. faecalis 
is 250 μg/ml, whereas that of tobramycin and gentamycin is 8–64 μg/ml (Chow 
2000). Aminoglycoside resistance is due to the inability of the aminoglycoside to 
enter the thick cell wall (Aslangul et al. 2006). Therefore in the presence of cell 
wall-inhibiting antibiotics such as β-lactams, the enterococci become susceptible to 
aminoglycosides. The presence of aminoglycoside-converting enzymes such as 
acetyltransferases, phosphotransferases, and nucleotidyl transferases in E. faecium 
and E. faecalis also contributes to aminoglycoside resistance (Chow 2000; Miller 
et al. 2014). In E. faecium chromosomally encoded genes, rRNA methyltransferase 
(efmM) (Galimand et  al. 2011) and a 6′-N-aminoglycoside acetyltransferase 
(aac(6′)- Ii) (Costa et al. 1993) are associated with intrinsic resistance to tobramycin 
and kanamycin. Resistance to clindamycin in E. faecalis is probably due to the 
presence of protein product of lsa (lincosamide and streptogramin A resistance) 
gene, i.e., ATP-binding cassette (ABC)-efflux pumps, i.e., ABC-23 (Singh et  al. 
2002). Similarly, putative ABC transporter was identified in all E. faecium isolates 
that result in resistance to erythromycin, and chloramphenicol resistance has been 
linked to efflux of the antibiotic out of the cell (Aakra et al. 2010).

Enterococcus spp. are known to acquire resistance to various antibiotics such as 
vancomycin, chloramphenicol, erythromycin, and fluoroquinolones and high-level 
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resistance to aminoglycosides and penicillin. Acquired antibiotic resistance in a 
pathogen is due to either of the two mechanisms, i.e., either by mutation of the gene 
or by horizontal transfer of antibiotic resistance genes. However, in Enterococcus 
antibiotic resistance problem mainly stems from horizontal gene transfer. 
Enterococci exist in complex microbial environments where they come in contact 
with large diversity of genetic material, and in the presence of antibiotic pressure, 
they tend to acquire resistance to antibiotics. For example, there is a direct 
relationship between exposure to parenteral antibiotics, especially cephalosporins, 
antibiotics for anaerobes, and high-level gastrointestinal colonization by ampicillin- 
resistant E. faecium (Rice et al. 2004).

Enterococci were recognized as important agents of MDR nosocomial infections 
after vancomycin resistance was observed. In the USA, 87% E. faecium and 14% E. 
faecalis isolated from nosocomial infections are vancomycin resistant (Edelsberg 
et al. 2014). Vancomycin acts by binding to D-alanine-D-alanine moiety of peptide 
chain of peptidoglycans, thus preventing cross-linking of peptidoglycans. 
Enterococcus strains become resistant to vancomycin by altering peptidoglycan 
precursors from d-alanine-d-alanine to d-Ala-d-lactate or to d-Ala-d-serine. Nine 
gene clusters involved in vancomycin resistance are vanA, vanB, vanD, and vanM 
(Xu et al. 2010) leading to the formation of d-Ala-d-Lac and vanC, vanE, vanG, 
vanL, and vanN catalyzing d-Ala-d-Ser formation (Boyd et al. 2008; Lebreton et al. 
2011). VanA and vanB are the most relevant vancomycin-resistant determinants and 
are located on transposons (Courvalin 2006). In the 1970s Enterococcus acquired 
high level of resistance against ampicillin due to specific mutations in pbp genes, 
which encode for penicillin-binding proteins (Galloway-Peña et al. 2011).

15.12  Conclusion

The emerging problem of hospital-associated Enterococcal infections appears to 
be man-made due to injudicious use of antibiotics especially for non-therapeutic 
purposes such as avoparcin which was employed as growth promoter in the animal 
feed for the first time in 1975. The overuse of avoparcin led to avoparcin resistance 
in the gut flora of animals. The avoparcin-resistant gut flora showed cross-resis-
tance toward vancomycin (Mudd 2000). Thus, the first VRE was isolated from the 
gut flora of farm animals in the 1990s. Subsequently, the use of avoparcin was 
banned (Casewell et al. 2003) It is hypothesized that the VRE from farm animals 
were acquired by humans. This is a classic case that highlights the serious reper-
cussions of overuse of antibiotics both for therapeutic and non-therapeutic pur-
poses. To treat Enterococcal infections, antibiotics should be selected wisely based 
on various factors such as the age, immunocompromised status, type and location 
of infection, and antibiotic sensitivity spectrum of the Enterococcal pathogen. 
Further, general measures to prevent the spread of Enterococcus in the hospital set-
tings should be strictly followed such as sanitization of hospital environment and 
equipments.
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