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Chapter 10
Autophagy: A Potential Antibacterial 
Therapeutic Target

Madhu Puri, Trinad Chakraborty, and Helena Pillich

Abstract  Bacterial infections caused by pathogenic bacteria, like tuberculosis by 
Mycobacterium tuberculosis, listeriosis by Listeria monocytogenes, and gastroen-
teritis by Salmonella typhimurium, are on the rise. With the increase in pathogen 
resistance to antibiotics, novel approaches are required for therapeutic interventions 
to treat bacterial infections. Autophagy is an essential host defense mechanism 
against infections and, in recent times, has shown promising potential as a therapeu-
tic target in this regard. This article reviews the role of autophagy during infection 
with pathogenic bacteria and recent studies which highlight the importance of 
autophagy as a prospective therapeutic target.
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10.1  �Introduction

Autophagy is an evolutionarily conserved cellular defense mechanism which 
involves the cloistering of cargo molecules (viz., damaged cellular organelles, pro-
tein aggregates, or pathogens) in a double-membrane vacuole, known as an autopha-
gosome, which are ultimately degraded by lysosomal hydrolases. Autophagy can be 
triggered by a variety of factors, such as damaged cellular organelles, withdrawal of 
growth factors, amino acid deprivation, oxidative stress, hypoxia, endoplasmic 
reticulum stress, low cellular energy levels, and infection (Lin and Baehrecke 2015). 
The autophagy of cellular organelles and protein aggregates is an essential part of 
the maintenance of cellular homeostasis, whereas that of pathogens acts as a defense 
mechanism against infections (termed xenophagy) (Samson 1981).
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Autophagy can be classified into different types. In selective autophagy, 
molecules called autophagy adaptors or cargo receptors recognize and bind to a 
specific target cargo molecule and subsequently lead to its degradation by autoph-
agy. Nonselective autophagy involves the indiscriminate entrapment of cargo into 
developing autophagosomes (Moy and Cherry 2013). Autophagy adaptors like opti-
neurin (OPTN), sequestosome 1 (SQSTM1), neighbor of BRCA1 gene 1 (NBR1), 
nuclear dot protein 52 (NDP52), Toll-interacting protein (Tollip), TAX1-binding 
protein 1 (TAX1BP1), and nuclear receptor subfamily 1, group D, member 1 
(NR1D1) have been identified, and most of them have been shown to be involved in 
xenophagy (Bjørkøy et al. 2005; Kirkin et al. 2009; Thurston et al. 2009; Zheng 
et al. 2009; Dupont et al. 2009; Ogawa et al. 2011; Osawa et al. 2011; Newman et al. 
2012; Khweek et al. 2013; Lu et al. 2014; Chandra et al. 2015). Autophagy can also 
be further divided into three categories: macroautophagy, microautophagy, and 
chaperone-mediated autophagy. Macroautophagy is often referred to as conven-
tional autophagy, wherein cytoplasmic cargo is cloistered into autophagosomes, 
which is followed by fusion of lysosomes with autophagosomes to form 
autolysosomes and subsequent degradation of cargo by lysosomal hydrolases 
(Fig. 10.1). Microautophagy involves the uptake of cytosomal components directly 

Fig. 10.1  Stages in autophagy. The process of autophagosomal membrane formation starts when 
the autophagy-related genes (Atg) Atg5 and Atg12 conjugate to form an isolation membrane. The 
membrane then envelops cargo molecules and closes to form an autophagosome. Lysosomes fuse 
with autophagosomes to form autolysosomes, wherein the autophagic cargo is degraded via lyso-
somal hydrolases. In the LC3 pathway, Atg4 cleaves the C-terminal tail of sequence of the pro-LC3 
molecule to generate LC3-I (cytosolic). Atg7 activates LC3-I and is conjugated to Atg3. This Atg3-
LC3-I conjugate binds to the Atg16L complex, and LC3-I binds to phosphatidylethanolamine 
(PE), thereby generating LC3-II (membrane-bound). The PE of LC3-II is subsequently cleaved by 
Atg4 to produce LC3-I. (Modified from Noda et al. 2009)
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by the lysosomes by invagination, without forming intermediate autophagosomal 
structures. Chaperone-mediated autophagy is mediated by chaperone proteins rec-
ognized by the lysosomal membrane receptor lysosome-associated membrane pro-
tein 2A, which form a complex with cargo and are translocated across the lysosomal 
membrane (Glick et al. 2010).

At the molecular level, autophagy is mediated by autophagy-related genes (Atg), 
which are present both in yeast and mammals (Mizushima et al. 2011). The induc-
tion of autophagy is responsible for the activation of the Unc-51-like autophagy 
activating kinase 1 (ULK1), which, in turn, activates Beclin-1/Atg6 (Russell et al. 
2013). The class III phosphatidylinositol 3-phosphate kinase Vps34 phosphorylates 
phosphatidylinositol to produce phosphatidylinositol 3-phosphate (PtdIns(3)P) 
which provides a docking site for WD-repeat protein which then interacts with 
phosphoinositides (WIPI) protein family (Proikas-Cezanne et  al. 2015). Atg12 
binds to Atg5 and then to Atg16L1 to form a complex which binds and activates 
Atg3 (Hanada et al. 2007). Atg3 attaches Atg8 (microtubule-associated protein 1 
light chain 3 [LC3]), which is first processed by Atg4, to phosphatidylethanolamine 
(PE) on the surface of autophagosomes leading to the closure of autophagosomes 
(Fujita et  al. 2008; Kirisako et  al. 2000). The fusion of lysosomes with closed 
autophagosomes results in cargo degradation.

Autophagy is both pro- and antibacterial during infections. This review discusses 
the role of autophagy during bacterial infections and also if autophagy can act as a 
target for therapeutic interventions during bacterial infections.

10.2  �Role of Autophagy in Bacterial Pathogenesis

Several pathogenic bacteria are known to induce autophagy during infection, and 
some have also devised various strategies to evade autophagic recognition 
(Table 10.1). The following sections discuss these aspects in greater detail.

Table 10.1  Bacteria and bacterial factors that are involved in the induction or evasion of autophagy

Bacterium Bacterial factor(s) Autophagy induction Autophagy evasion

Listeria monocytogenes LLO, ActA, InlK Yes Yes
Salmonella typhimurium SipB, TTSS, SseL Yes Yes
Mycobacterium tuberculosis EspB, EIS Yes Yes
Shigella flexneri IcsB, IcsA Yes Yes
Legionella pneumophila RavZ, LpSpl Yes Yes
Streptococcus pyogenes SLO, NADase, SpeB Yes Yes
Streptococcus pneumoniae PLY Yes n.d.
Pseudomonas aeruginosa Phycocyanin, TpIE Yes n.d.
Francisella tularensis dipA, O-antigen Yes Yes
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10.2.1  �Mechanisms of Autophagy Induction by Bacteria 
During Infection

10.2.1.1  �Virulence Factors of Bacteria

Bacterial virulence factors play an essential role in mediating the recognition of 
pathogenic bacteria by the host autophagy machinery. The type III secretion system 
(TTSS) of Salmonella typhimurium ruptures the cytosolic compartments in which 
intracellular S. typhimurium are contained (termed as Salmonella-containing vacu-
oles [SCV]), and the entrapped bacteria are ubiquitinated and subsequently targeted 
by autophagy (Birmingham et  al. 2006). The key virulence factor of the Gram-
positive bacterium Listeria monocytogenes reported to be involved in autophagy 
induction is the pore-forming toxin listeriolysin O (LLO) (Py et al. 2007). Amino 
acid starvation can also be triggered by LLO-dependent phagosomal lysis during L. 
monocytogenes infection, which can result in induction of autophagy (Tattoli et al. 
2013). LC3-associated phagocytosis (LAP) is also induced by LLO and facilitates 
the formation of spacious Listeria-containing phagosomes (SLAPs: LC3-positive L. 
monocytogenes-containing phagosomes). These LC3-positive single-membrane 
compartments allow listerial survival and their slow replication (Lam et al. 2013; 
Birmingham et al. 2008).

10.2.1.2  �Regulation of Host Autophagy Signaling

Autophagy can also be induced when bacteria regulate host signaling pathways dur-
ing infection. Autophagy is activated when amino acid starvation is triggered by the 
infection of epithelial cells with S. typhimurium (Tattoli et al. 2012). It is already 
established that macrophage scavenger protein apoptosis inhibitor of macrophages 
(AIM) enhances the mycobactericidal activity of macrophages by increasing the 
levels of processed LC3 form and Beclin 1 (Sanjurjo et al. 2013). It has also been 
reported that during infection of macrophages with Mycobacterium tuberculosis, 
the cytosolic DNA sensor cyclic GMP-AMP synthase triggers STING/TBK1/IRF3-
dependent interferon production (Watson et al. 2015). Autophagy is regulated by 
eukaryotic microRNAs including miR-155 in macrophages. Thus, during infection 
with M. tuberculosis, miR-155 enhances bacterial elimination and, via binding to 
the Ras homologue enriched in brain (Rheb), a negative regulator of autophagy, 
accelerates autophagy (Wang et al. 2013). It is well established that infection with 
L. monocytogenes induces autophagy in host cells (Rich et  al. 2003). Toll-like 
receptor 2 (TLR2) and Nod-like receptors 1 and 2, acting via the downstream extra-
cellular signal-regulated kinases, have been shown to play a crucial role for autoph-
agy in Listeria-infected cells (Anand et al. 2011). The role of histone deacetylase 6 
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(HDAC6) during L. monocytogenes infection has been studied recently, and HDAC6 
has been reported to control innate immune and autophagy responses to TLR-
mediated signaling during infection with L. monocytogenes (Morenzo-Gonzalo 
et al. 2017). Additionally, Gluschko et al. (2018) have very recently reported that the 
in vivo infection of macrophages by L. monocytogenes leads to their interaction 
with the β-2 integrin macrophage-1 antigen (Mac-1), which activates Nox2 and 
induces the production of reactive oxidation species that subsequently leads to the 
recruitment of LC3 to L. monocytogenes-containing phagosomes.

10.2.1.3  �Recruitment of Autophagy Receptors

Numerous studies have reported on the recruitment of autophagy receptors to intra-
cellular bacteria in order to mediate their recognition by the host autophagy machin-
ery. Intracellular L. monocytogenes is ubiquitinated and detected by the autophagy 
receptors SQSTM1 and NDP52 (Yoshikawa et al. 2009; Mostowy et al. 2011). In 
response to M. tuberculosis infection, SQSTM1 is phosphorylated by TBK1 which 
also coordinates the assembly and function of the autophagic machinery. The trans-
membrane protein STING recognizes M. tuberculosis extracellular DNA which is 
ubiquitinated, and the autophagy receptors SQSTM1 and NDP52 are recruited to it 
(Watson et  al. 2012). The autophagy receptors SQSTM1 and NDP52 have been 
shown to be recruited to intracellular S. typhimurium independently of each other 
and with similar kinetics (Zheng et al. 2009; Thurston et al. 2009). The depletion of 
either of the receptors hampers autophagy. It has also been reported that SQSTM1 
and NDP52 have convergent roles in mediating antibacterial autophagy (Cemma 
et al. 2011). Moreover, NDP52 has been reported to target bacteria to autophago-
somes and thereby promote the maturation of Salmonella-containing autophago-
somes by binding to LC3A, LC3B, GABARAPL2, and myosin VI (Verlhac et al. 
2015). Thurston et  al. (2012) have reported that galectin-8 (a danger receptor) 
recruits NDP52 to damaged SCVs and restricts the growth of S. typhimurium by 
autophagy. We have recently reported the involvement of another autophagy recep-
tor, OPTN, in the growth inhibition of L. monocytogenes and that OPTN phos-
phorylation by TBK1 enhances the growth restriction of intracellular L. 
monocytogenes in an LLO-dependent manner (Puri et al. 2017). Moreover, OPTN 
and TAX1BP1 restrict the growth of S. typhimurium (Wild et al. 2011; Tumbarello 
et al. 2015). It has also been shown that the expression of the autophagy receptor 
NR1D1 increases the number of acidic vacuoles and the levels of processed LC3 
and also modulates lysosome biogenesis during M. tuberculosis infection (Chandra 
et al. 2015).

10  Autophagy as a Therapeutic Target
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10.2.2  �Mechanisms of Autophagy Evasion by Bacteria 
During Infection

Several infection-causing bacteria have also devised strategies to evade autophagy 
during infection. S. typhimurium produces the virulence protein SseL which deubiq-
uitinates S. typhimurium-induced aggregates which accumulate at SCV (Thomas 
et al. 2012). Another mechanism is the suppression of the overall autophagy by act-
ing on the Akt-mTOR signaling pathway (Owen et  al. 2014). L. monocytogenes 
expresses two phospholipases C, PlcA and PlcB, which allow escape from autopha-
gosomes (Birmingham et  al. 2007; Py et  al. 2007). Additionally, it produces the 
surface-located protein actin assembly-inducing protein (ActA) which binds to host 
cell actin machinery. This, on the one hand, allows bacterial intracellular movement 
and, on the other hand, disguises the pathogen as a host cell organelle and thereby 
allows autophagosomal evasion (Yoshikawa et al. 2009). In the absence of ActA, L. 
monocytogenes harbors another protein, internalin K (InlK), which camouflages the 
pathogen from autophagic recognition as it interacts with the major vault protein 
(MVP) (Dortet et  al. 2011). An interesting study by Mitchell et  al. (2018) has 
reported that upon L. monocytogenes infection, noncanonical autophagy is acti-
vated, whereas growth-restricting xenophagy is inhibited in a FIP200- and TBK1-
dependent manner. M. tuberculosis is capable of evading autophagy by various 
mechanisms including the expression of the early secretory antigenic target 6 
(ESAT-6) system 1 (ESX-1) secretion-associated protein B (EspB) of M. tuberculo-
sis which suppresses LC3B expression and autophagosome formation (Huang and 
Bao 2016). M. tuberculosis blocks also phagosomal maturation (via IL-27 induc-
tion) and can promote the intracellular growth of M. tuberculosis by the inhibition 
of IFN-γ- and starvation-induced autophagy (Sharma et al. 2014). M. tuberculosis 
growth is facilitated by the inhibition of autophagy by the overexpression of miR-
30A (Chen et  al. 2015). Another mechanism includes the enhanced intracellular 
survival (EIS) gene-dependent upregulation of IL-10 which acts, via acetylation of 
histone H3, on mTOR pathway and thereby suppresses autophagy (Duan et  al. 
2016). The phospholipase A2-dependent phagosome escape by some strains of M. 
tuberculosis is crucial because of their reduced capacity to tolerate phagosomal 
stresses, and it serves as a “virulence-rescue” mechanism which favors suppression 
of autophagy in macrophages (Jamwal et al. 2016).

10.2.3  �Role of Autophagy in Crohn’s Disease

Genome-wide association studies have implicated autophagy as an essential part in 
the pathogenesis of Crohn’s disease (Hampe et  al. 2007; Barrett et  al. 2008). In 
particular, Rioux et  al. 2007 have reported that the autophagy gene ATG16L1 is 
expressed in intestinal epithelial cells and its knockdown revokes the autophagy of 
S. typhimurium. Moreover, mice deficient in Nod2 have decreased expression of 

M. Puri et al.



209

α-defensins associated with Paneth cells and a severe defect in handling orally 
administered L. monocytogenes (Kobayashi et al. 2005). However, Atg16l1 hypo-
morphic mice are not deficient in handling L. monocytogenes despite differences in 
Paneth cell granule structure and composition (Cadwell et  al. 2008). ATG16L1 
T300A variant-transfected epithelial cells show impaired capture of internalized 
Salmonella within autophagosomes (Kuballa et al. 2008).

10.3  �Autophagy as a Potential Therapeutic Target

With a plethora of studies on bacterial infections and autophagy, the current research 
should focus on the potential of autophagy as a therapeutic target for bacterial infec-
tions. A promising strategy in this direction could be to target bacterial factors that 
antagonize the functions of autophagy or autophagy factors. The inhibition of bacte-
rial virulence factors which enable intracellular bacteria to escape autophagic rec-
ognition – such as ActA of L. monocytogenes or EspB of M. tuberculosis – could 
possibly enhance the xenophagic degradation of these bacteria and thereby provide 
an adjuvant therapy against bacterial infection. This approach may prove to be more 
specific and effective in the treatment of infections as it avoids the potential draw-
backs associated with the manipulation of autophagy itself. Another strategy that 
can be employed to control bacterial infections is to exploit the autophagy receptor-
bacteria interaction. Several autophagy receptors are known to bind to ubiquitinated 
bacteria and deliver them to autophagosomes like SQSTM1, NDP52, NBR1, opti-
neurin, and TAX1BP1. Therefore, approaches that increase the interaction of 
autophagy receptors and bacteria, and also which augment certain modifications of 
autophagy receptors, like the phosphorylation of OPTN by TBK1 increases its LC3-
binding affinity, may prove to be effective in enhancing the autophagic degradation 
of intracellular pathogens. Deciphering the molecular mechanisms of how autoph-
agy receptors function could provide new avenues for the development of com-
pounds that selectively enhance microbial autophagy. However, the downside of 
this strategy is that most autophagy receptors also mediate the selective autophagy 
of damaged cellular organelles and have other autophagy-independent functions; 
therefore, such manipulating these receptors may have undesired repercussions for 
the host.

Another plausible approach to target autophagy for antibacterial therapy involves 
the identification of novel autophagy-inducing compounds. Toward this end, chemi-
cal compounds can be screened on the basis of measurements of autophagosomal 
fluorescence (green fluorescent protein-LC3-positive puncta) by live-cell imaging 
methods, and the total LC3 levels can be determined by FACS analysis. Proteomic 
mapping methods like spatially restricted enzymatic tagging in living cells can be 
employed for the identification of autophagy-specific regulatory steps (Rhee et al. 
2013). A caveat for compounds which modulate autophagy is that they usually 
induce other effects which may be unrelated to autophagy, thereby making it 
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difficult to determine the contribution of the autophagy to their therapeutic effects. 
It is known that some autophagy-inducing agents fail to induce their beneficial 
effects in host organisms lacking autophagy genes (Levine et al. 2015). The upregu-
lation of autophagy has been shown to have promising effects in preclinical models 
of diseases, viz., trifluoperazine in Salmonella infection and statins in M. tuberculo-
sis infection (Conway et al. 2013; Parihar et al. 2014). It is unknown whether the 
therapeutic effects shown by the clinically recommended concentrations of these 
agents correspond to considerable increase in autophagy induction.

Several compounds have been shown to modulate the autophagy of pathogenic 
bacteria. The treatment with isoniazid has been shown to activate autophagy and 
decrease the pro-inflammatory responses induced by M. tuberculosis in macro-
phages (Kim et al. 2012). The intracellular growth of M. tuberculosis has also been 
shown to be inhibited by autophagy induction upon treatment with the anti-
protozoan drug nitazoxanide and its active metabolite tizoxanide (Lam et al. 2012). 
Lieberman and Higgins (2009) have shown that a small molecule called pimozide, 
which promotes autophagy (Zhang et al. 2007) and is used as an antipsychotic drug, 
inhibits L. monocytogenes infection. They have also reported that the antipsychotic 
drug thioridazine, also known to induce autophagy (Chen et al. 2015), inhibits vacu-
olar escape and the intracellular growth of L. monocytogenes in murine macro-
phages (Lieberman and Higgins 2010). It is, therefore, imperative to further examine 
the connection between antipsychotic drugs and their antibacterial and pro-
autophagy effects. Simvastatin, a drug known to modulate cholesterol turnover and 
to enhance autophagy, also prevents the phagosomal escape of L. monocytogenes 
and thereby decreases infection in mice (Parihar et al. 2013).

10.4  �Conclusions

Autophagy is an integral part of the host defense mechanism against infections. 
With current antibiotics being prone to drug resistance, alternate strategies should 
be adopted for the treatment of bacterial infections. Targeting autophagy as an addi-
tional novel therapeutic target apart from conventional antibacterial therapy has a 
promising potential, and that should be the focus of upcoming research in the field 
of pathogenic bacterial infections.
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