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Preface

Bioinformatics has established itself as an independent discipline and primarily deals
with sequence and structure data. This interdisciplinary subject has revolutionized
the biological research with potential application in almost all areas including
agriculture and medicine. Since my joining as an Assistant Professor (Bioinformat-
ics) in 2004 at Banasthali Vidyapith, Rajasthan, India, where I taught and guided
several students, the field of Bioinformatics has changed a lot. The students to whom
once I taught now became independent researchers. However, they still remember
that which I usually tried to convey last semester students “Always try to serve your
roots”. With a thought to show the contribution of my decade-old network in the
field of Bioinformatics, I planned to edit this book. Starting with the introduction to
the field, this book covers sequence, phylogenetic, and structure analysis. I hope it
will be beneficial to both a beginner and an experienced researcher.

I am thankful to all the authors for their generosity and willingness to contribute
book chapters. I am grateful to the reviewers for their time and efforts in providing
suggestions for the improvement of the chapters. I am also thankful to the staff at
Springer Nature for their support.

Earlier, I authored/co-authored three books; however, this edited book is the most
difficult project. I acknowledge Shefali, Akshita, and Parv for their constant love,
support, and cheerful moments.

Once again, I thank one and all who make this book a successful endeavour.
Thank you very much.

Gaya, Bihar, India Asheesh Shanker
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Intellectual Property Rights
and Bioinformatics: An Introduction 1
Shilpa and Umang Gupta

1.1 Introduction

Bioinformatics is a branch of science that works at an intersection of biology,
information technology, mathematics, and chemistry. It deals with the analysis of
biomolecules like DNA, RNA, and proteins, biological databases, and related
software to analyze the data. The increasing investments in the area of bioinformatics
have increased the need of adequate intellectual property laws which is one of the
key issues in any emerging area. Intellectual property rights (IPRs) are the legal
rights given to the inventor or creator to protect his creation for certain period of
time. These include patents, copyrights, designs, trademarks, trade secrets, and
geographical indications. Intellectual property (IP) protection is one of the very
important measures to be seen for economic growth and advancement in any
technological field. It drives the innovation and advancement in the competitive
society (Rogers 1998). IP also plays an important role in bridging the “valley of
death” by providing access to finance and infrastructure.

For intellectual property protection, bioinformatics is limited to patents,
copyrights, and trade secrets. This chapter discusses how different bioinformatics
components relate to the intellectual property law system specifically in the context
of patent and copyright law. Moreover, the requirements and limitations of intellec-
tual property in the field of bioinformatics and the patent trends in bioinformatics are
discussed.

Shilpa (*) · U. Gupta
Academy of Scientific and Innovative Research, CSIR-National Institute of Science Technology
and Development Studies, New Delhi, India

# Springer Nature Singapore Pte Ltd. 2018
A. Shanker (ed.), Bioinformatics: Sequences, Structures, Phylogeny,
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1.2 Intellectual Property Rights

Man with his skills, acquired through proper training and practice over the time, is
continuously involved in the development of either something which addresses the
challenges that exist at the time of development of that product or something which
emotionally pleases other persons. These creations in the earlier times fell in the
public domain as public goods and anybody could use them, or imitate them, without
any royalty paid to the original creator. With the passage of time, the importance and
value of such creations was realized, and a threat was perceived against their
development. Further, commercialization of these creations also started, and a
need arose for the development of a mechanism which protects the rights of creators
of such intellectual properties. Some of the very basic uses of IPR include the
following: intellectual property creates employment by promoting research and
development; it facilitates the development of solutions to existing challenges; it
drives economic growth and competitiveness among innovators; it encourages
incentivization to the innovators and entrepreneurs; and when properly enforced, it
also protects the rights of consumers.

These rights are (or need to be) embraced by all sectors of technology and
industry. A proper policy framework is needed for countries consisting of all types
of small, medium, and large industries. Obtaining intellectual property protection for
bioinformatics and related technologies is a critically important process.

1.2.1 Types of Intellectual Property

1.2.1.1 Patents
Patent is a document that discloses information to the public. In exchange of
disclosing the invention to the public, the government grants the rights to the
inventor to exclude others from making, using, or selling the invention claimed in
the patent generally for a period of 20 years (this varies from geographic location).
Patents are territorial rights and are confined to those regions only in which they have
been granted. To obtain rights in a country, it is necessary to apply for patents and
follow the procedures as required by the patent regime in that country. However,
with the development of more sophisticated systems like Patent Cooperation Treaty
(PCT), the applicants can file a single application for many countries. Further, after
obtaining patent right on his invention, the patent owner may issue license to another
person who provides the right to use his patented invention or sell the invention on
mutually agreed terms.

1.2.1.2 Copyrights
Copyright is a form of intellectual property protection given to content creators
through the assignment of specific rights to works such as musical compositions,
films, software programs, paintings, expression of creative ideas, and other literary
work. Although copyright is available on a work by virtue of its creation, still it
should be applied for protection by following proper laws. The main purposes of
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copyright are (1) to promote the progress of science and culture, (2) to provide
monetary incentives to copyright holders for their works, and (3) to encourage moral
principles of respect and trust. It protects the unauthorized reproduction or exploita-
tion of protected materials. Creators often sell the copyrights to individuals or
companies which are best able to market their work in return for royalty. Copyrights
in India are valid for life span of the creator and for an additional 60 years.

1.2.1.3 Trade Secrets
A trade secret could be any sort of data or information relating to the business and is
not known to the public because owner wants to keep it confidential. It confers some
sort of economic benefit on its holder over the competitors. The subject matter of
trade secrets may include sales methods, distribution methods, advertising strategies,
and manufacturing processes.1 This type of protection is generally valuable for
business corporations to enable them to recoup their investments. It can also be
used as an alternative of patent by start-ups which do not possess enough economic
resources for patenting. Trade secrets can be protected for an unlimited period of
time but a considerable amount of secrecy must exist. Figure 1.1 shows the infor-
mation of various Indian offices involved in IPR-related operations.

Offices 
Performing 
Various IPR 
Functions

Copyright Office

Patent Office

Trade Marks 
Registry

Geographical 
Indications 

Registry

Semiconductor 
Rigisttry

PIS and NIIPM

For Literary, Dramatic, Musical Works.  It recently shifted from 
Ministry of HRD to DIPP.Located at New Delhi.

For scientific inventions which are novel, non-obvious and have 
industrial application.Office at Delhi, Mumbai,Chennai, Kolkata

For facilitating the matters relating to trademarks and service 
marks. Located at Delhi, Mumbai Chennai, Kolkata, Ahmedabad

For training of examiners in IP Offices,IP professionals, imparting 
basic education to various stakeholders. Located at Nagpur

For goods referring to a specific place being the place of origin of 
that product.Located at Chennai.

For Layout-Designs of semiconductor integrated circuits. Located  
at Mumbai

Fig. 1.1 Indian offices for performing operations of various forms of IPR

1http://www.wipo.int/sme/en/ip_business/trade_secrets/trade_secrets.htm
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1.3 The Importance of Protecting Intellectual Property

IPR is a legal right given to the inventor or creator of original creation developed
through his intellect such as artistic, literary, technical, or scientific creation to
protect his creation for a certain period of time (WIPO2). These rights enable the
original creator to prevent competitors and others from using his creation for their
own profit without his consent. In lieu of the rights granted over the creation, the
creator is under the obligation to disclose his invention to the government in public
interest. It is well established that intellectual property plays an important role in the
present knowledge-based economy (Alikhan 2000). With the invigorating
investments in research and development, the stakes of innovators in knowledge
creation have become very high. There are two fundamental principles for the
development of IPR: (1) to provide proper incentives to the inventors and (2) eco-
nomic and social welfare of people of the state. Therefore, it is important to protect
these innovations to recoup costs associated with it (Elliot 2005; Commission on IPR
2002). Moreover, IPR plays an important role not only in the economic development
of the nations but also in many other aspects of development. The contribution of
IPR framework can be observed in different contexts including networking of the
organizations, trust building, building of scientific infrastructure, and development
of market rapport, standards development, and sustainable development of
technologies. Thus, IPRs promote healthy competition in the markets and thereby
support technological, social, and economic development of a country. A number of
instances regarding patent disputes enable us to understand the value and importance
of intellectual property protection. For example, the verdict in the case between
Monsanto and DuPont awarded $1 billion3 to the patent owner Monsanto, and
ultimately technology deal was agreed to between the companies wherein the
DuPont had to pay more than $1.75 bn to Monsanto to make use of its patented
technology.4 Similarly, Biogen agreed to pay Forward Pharma $1.25 billion to
secure an irrevocable license to all the intellectual property owned by Forward
Pharma. Companies use IPR not only for economic compensations and protection
of their technologies, but also for their portfolio development, and as a strategy for
increasing their brand value. In the India-US Basmati Rice Dispute, RiceTec was
forced to give up the title of its patent which had implications related to biopiracy
(Jayaraman 1998). In this case, the importance of two major forms of IPR were
discussed, i.e., patents and geographical indications. Dr. Vandana Shiva, director of
a Delhi-based research foundation which monitors issues involving patents and
biopiracy, said that, “the main aim for obtaining the patent by RiceTec Inc. was to
trick the consumers in believing there is no difference between spurious Basmati and

2http://www.wipo.int/edocs/pubdocs/en/intproperty/450/wipo_pub_450.pdf
3Monsanto Company and Monsanto Technology LLC v. E.I. Du Pont de Nemours and Company
and Pioneer Hi-Bred International, Inc., Docket No. 2013–1349 (May 9, 2014).
4http://www.reuters.com/article/us-monsanto-dupont-gmo-idUSBRE92P0IK20130326
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real Basmati” (Mukherjee 2008). A large number of farmers cultivating Indian
Basmati Rice would have been affected by this judgment because “Indian farmers
export $250 million in Basmati every year and USA is a target market.”5 India would
have lost US, European Union, and Middle East import market leading to huge
economic loss (Mukherjee 2008). These IPR disputes require a huge drain of
resources, and their results impact a considerable size of population; therefore, this
position of intellectual property protection can’t be overlooked.

1.4 Bioinformatics

Biological data is growing at an exponential rate. For example, number of sequences
in GenBank increased from 606 (release 3; Dec. 1982) to 201,663,568 (release 220;
June 2017).6 GenBank has been doubling in size about every 15 months. Similarly,
entries in UniProtKB/TrEMBL reached more than 90,050,000 in 2017.7 In addition
to these sequences, data also consists of gene expression records, protein structures,
and details on how these structures interact with one another. This exponential
growth in the amount of different types of biological data has necessitated the use
of information technologies for cataloging and retrieval of this data. Sophisticated
technologies (software and hardware) play a critical role in the analysis of this
complex data, and the advancement in these technologies has further established
this field (Shanker 2012; Gaudet et al. 2011).

Bioinformatics works at an intersection of various branches of science like
genomics, biotechnology, information technology, mathematics, and chemistry
with applications in various different areas like drug discovery (Blundell et al.
2006), biomarker development (Crichton et al. 2010), forensics (Bianchi and Lio
2007), plant sciences (Rhee et al. 2006), and molecular medicine (Maojo and
Kulikowski 2003). Bioinformatics is defined in many different ways as its scope
varies with different application areas (Box 1.1).

Box 1.1: Definitions of Bioinformatics
Oxford English Dictionary

“The science of collecting and analyzing complex biological data such as
genetic codes.”

National Institute of Health

(continued)

5Ibid.
6https://www.ncbi.nlm.nih.gov/genbank/statistics/
7http://www.uniprot.org/statistics/TrEMBL
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Box 1.1 (continued)
Bioinformatics is “research, development, or application of computational

tools and approaches for expanding the use of biological, medical, behavioral,
or health data, including those to acquire, store, organize, archive, analyze, or
visualize such data.”

National Center for Biotechnology Information

Bioinformatics is the “field of science in which biology, computer science,
and information technology merge to form a single discipline. The ultimate
goal of the field is to enable the discovery of new biological insights as well as
to create a global perspective from which unifying principles in biology can be
discerned.”

International Patent Classification (IPC) for Bioinformatics (G06F 19/10)

Bioinformatics, “i.e., methods or systems for genetic or protein-related data
processing in computational molecular biology (in silico methods of screening
virtual chemical libraries; in silico or mathematical methods of creating virtual
chemical libraries).”

National Agriculture Library, US Department of Agriculture

A “field of biology concerned with the development of techniques for the
collection and manipulation of biological data, and the use of such data to
make biological discoveries or predictions. This field encompasses all compu-
tational methods and theories applicable to molecular biology and areas of
computer-based techniques for solving biological problems including manip-
ulation of models and datasets.”

Immense opportunities in this area have driven various government initiatives
and funding from private sources which is continuously increasing the market size.
Bioinformatics is generating revenue of more than a billion dollars every year
globally.8 The “global bioinformatics market which accounted for $4.2 billion in
2014 and is poised to reach $13.3 billion by 2020”9 is among the fastest-growing
areas. The application of bioinformatics in drug development is expected to reduce

8Bioinformatics Market – Global Industry Analysis, Size, Growth Trends, Share, Opportunities,
and Forecast

http://www.prnewswire.co.uk/news-releases/bioinformatics-market-is-expected-to-reach-reve
nue-of-128-billion-globally-by-2020%2D%2D-allied-market-research-260945081.html
9Bioinformatics Market by Sector (Molecular Medicine, Agriculture, Forensic, Animal, Research &
Gene Therapy), Product (Sequencing Platforms, Knowledge Management & Data Analysis) &
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the annual cost of developing new drugs by 33% and time for drug discovery by 30%
(Jagadish 2013). Various governments and private sectors are investing heavily in
this area for the exploitation of biological data and developments in the field of
medicines (Shook 2002). It is now an important commodity and will benefit both
public and private sectors.

Various components of bioinformatics demand different forms of IPR to get
protected. Bioinformatics comprises of (1) biological sequences such as DNA,
RNA, and protein, (2) biological databases in which this information is organized,
and (3) software designed to analyze data.

1.4.1 Biological Sequences

Bioinformatics is focused to study the DNA, RNA, and proteins which altogether
reveal the secret of biology. Each of them are described using simple codes, i.e., A,
C,G,T for DNA; A,C,G,U for RNA; and 20 different amino acids for proteins. DNA
is the hereditary material which passes information to generations. Coding regions of
DNA, genes, transcribe to RNA which further translates to proteins. RNA acts as an
intermediator to translate a DNA sequence into an amino acid sequence. It is the
amino acid sequence that determines the trait. This is called central dogma of life;
DNA � > RNA � > Protein (Crick 1970). Sequencing of these molecules helps to
find out the arrangement of constituting units either in case of DNA, RNA, or
protein. Sequencing enables modeling of protein structure and function prediction.
It also allows extracting knowledgeable information from the data accumulated in
molecular biology.10

In the USA, with the settlement of patent issue of genetically modified bacteria in
the case of Diamond v. Chakrabarty (447 US 30, 1980), the granting of patents to
genes was considered by US court. Patents on biological materials became accepted
and the Supreme Court justice permitted the patenting of genetically modified
bacteria, and since then the US Patent and Trademark Office (USPTO) has permitted
the patenting of biological molecules which are isolated and purified from their
natural environment (Hultquist et al. 2002). However in 2013, the US Supreme
Court overruled that decision and now only cDNA is patentable as it is artificial
material. The USPTO now only includes DNA, RNA, and proteins as patentable
compositions as DNA and RNA are composed of nucleotides and proteins are
composed of amino acids.11 Contrasting to this, in Europe, the patentability of

Application (Genomics, Proteomics & Metabolomics) – Global Forecast to 2020.Report code –

BT 3321.
http://www.marketsandmarkets.com/Market-Reports/bioinformatics-39.html

10http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp2_1.shtml
11http://www.squirepattonboggs.com/~/media/files/insights/publications/2013/08/us-supreme-
court-holds-that-isolated-human-dna-i__/files/
ussupremecourtholdsthatisolatedhumandnaisnotpate__/fileattachment/
ussupremecourtholdsthatisolatedhumandnaisnotpate__.pdf
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isolated genes is expressly accepted in European law after the implementation of the
order on the Legal Protection of Biotechnological Inventions (EU Biotechnology
Directive12) in 1998.

1.4.2 Biological Databases

A database is a storage or collection of information that is organized so that it can be
easily accessed and managed. In scientific perspective, these are collection of
biological information from scientific experiments, high-throughput screening, and
computational analysis (Altman 2004). It includes experimental study of genomics,
proteomics, metabolomics, microarray gene expression, etc.

An important feature of biological databases is the requirement of knowledge
discovery like identification of links between different chunks of information. This
became possible by increasing sophistication of database management systems and
with increasing capability to manage large quantities of data and handling complex
operations in an efficient manner which is another important reason for the growth of
bioinformatics (Eriksson13). The trend of biological databases started after the first
insulin protein was sequenced in 1956. The first database, the Protein Data Bank
(PDB), a database of protein structures compiled in 1971, archived only 7 structures
in the beginning and has now grown to more than 134,000 entries. In 1986 another
consolidated database, SWISS-PROT,14 was developed. Currently, several
biological databases have been developed, and some of the widely used include
DDBJ, EMBL, GenBank, and PIR. These databases comprise not only biological
data but also sophisticated query services for data analysis.

In Europe two main forms of protection are available for databases – (1) copyright
protection for the structure and form of databases and (2) sui generis right for the
contents of database (Chang and Zhu 2010). The main drawback with copyright
protection for databases was that the contents of the databases can be copied or
reorganized without consent of the inventor. The sui generis right provided by
Europe deals with this deficiency in the copyright law. There is no sui generis law
on database protection in the USA.

The guidelines (1996) of USPTO state that if the database is merely a “data
structure” or “nonfunctional descriptive material,” it is not patentable, while the
approach of creating the database may constitute a patentable process as it is
application of algorithm which provides some concrete results. Therefore, in the
USA the process of creating database as database itself consists of numerous
applications that are patentable. Similar interpretation is also possible in Indian
patent law system.

12http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri¼CELEX:31998L0044:EN:HTML
13http://www.deroneriksson.com/tutorials/bioinformatics/biological-database-integration-com
puter-technology
14http://vle.du.ac.in/mod/book/view.php?id¼8928&chapterid¼12678
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1.4.3 Biological Software

Another sub-discipline of bioinformatics is to develop systems and programs to
utilize the information in these databases and extract the knowledge. Software
engineers have developed different programs to analyze this information. For exam-
ple, BLAST15 (Basic Local Alignment Search Tool) compares sequences for simi-
larity by aligning the two sequences and then calculating a similarity score. This is
useful for predicting the function of a gene or protein which is previously unknown
or to draw evolutionary relationships (Feng et al. 2000). Some other widely used
softwares include BioPerl, EMBOSS, and BioJava.

Copyright protection is a way of protecting software in most of the countries. In
the USA, software is protected as literary work under the copyright act. In Europe
computer program is protected as literary work under the European Union Computer
Programs Directive 2009/24/EC. In India also, bioinformatics software can be
protected as computer program under Section 2 of the Copyright Act, 1957. Copy-
right protection has some limitations as the protection is available for the original
expression of ideas while a change in the aspects of source code and object code
provides a scope for an independent copyright.

Another type of available protection is through patents. In the USA, computer
program is patentable if it meets the legal requirements for all patentable inventions
(USPTO 1996). European approach toward patenting a software invention is differ-
ent than the USA. To be eligible for patent protection in Europe, an algorithm should
solve a technical problem in a novel and nonobvious manner. According to Indian
Patent Office (IPO), computer program is not patentable per se, but in combination
with new hardware components a computer program can be considered patentable.16

Bioinformatics is experiencing an emerging phase where technology is advancing
while returns on investments are low. Therefore, it becomes important for public
research organizations and enterprises to protect the inventions and innovations with
intellectual property rights (Table 1.1). With further advancements in research and
development in this field, more sophisticated tools are being developed. In such a
scenario, there is no indifference in expecting a legal framework to encourage such
developments. This complements the need to discuss IPR in the field of bioinfor-
matics leading to the maximum return on investments in the given setup.

15NCBI, BLAST: Basic Overview.
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul_1.html

16Business Standard. 22 February 2016.
http://www.business-standard.com/article/economy-policy/no-patent-if-invention-lies-only-in-

computer-programme-says-indian-patent-office-116022200875_1.html
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1.5 Patent Trends in Bioinformatics

In 2011, the World Intellectual Property Organization (WIPO) has introduced new
International Patent Classification (IPC) search codes to cover patents in bioinfor-
matics. The search methodology for extracting patents granted in bioinformatics is
based on this IPC class search. USPTO and European Patent Office (EPO) were used
to analyze the patent trends. There is an increasing gap in terms of number of patents
granted in USPTO and EPO with 1406 patents granted in USPTO while 261 patents
in EPO from year 1991 to 2015 (Fig. 1.2).

The USA is far ahead in innovations as compared to Europe in bioinformatics as
reflected from patent trends. There could be many reasons behind this like
established market in the USA, availability of infrastructure and resources, mobili-
zation of human resource, and liberal patent laws at the policy level.

Further, data was extracted in different IPC classes to understand the distribution
of patents in sub-disciplines of bioinformatics. The patent distribution in different
IPC classes shows that patents are filed in wide range of subject areas in bioinfor-
matics including structural biology, gene expression, molecular simulations,
machine learning, data visualization, and database development. The difference in
preference of patents granted in different sub-disciplines of bioinformatics is also
visible in USPTO and EPO (Table 1.2).

The USA and Europe have typically distinct approach for protecting software
programs which is visible in their patent trends. The USA has maximum patents
granted in machine learning, data mining, and biostatistics (G06F 19/24) with
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Fig. 1.2 Patent trends in bioinformatics (patents granted). (Source: Data Extracted from Thomson
Innovation Patent Database)
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348 patents, while only 50 patents are granted in EPO. Another critical difference
visible is in molecular structure (G06F 19/16).

The combination of biology, mathematics, and information technology makes
bioinformatics a unique and knowledge-based area. It is one of the fastest-growing
markets, and intellectual property protection could be important for ensuring the
continuation of this growth. A key feature of this area is to analyze the increasing
amount of biological information from the molecular biology laboratories. It is
important to identify patterns from this data and convert the information into
knowledge. This will further help to solve numerous life science issues like improve-
ment in health and treatment of various diseases, increased agriculture production for

Table 1.2 Patent distribution in different IPC classes (1991–2015)

IPC
class Description

Number of
patents

USPTO EPO

G06F
19/10

“Bioinformatics, i.e. methods or systems for genetic or protein-
related data processing in computational molecular biology
(in silico methods of screening virtual chemical libraries; in silico
or mathematical methods of creating virtual chemical libraries)”

103 8

G06F
19/12

“For modelling or simulation in systems biology, e.g. probabilistic
or dynamic models, gene-regulatory networks, protein interaction
networks or metabolic networks”

157 26

G06F
19/14

“For phylogeny or evolution, e.g. evolutionarily conserved
regions determination or phylogenetic tree construction”

25 1

G06F
19/16

“For molecular structure, e.g. structure alignment, structural or
functional relations, protein folding, domain topologies, drug
targeting using structure data, involving two-dimensional or three-
dimensional structures”

271 72

G06F
19/18

“For functional genomics or proteomics, e.g. genotype-phenotype
associations, linkage disequilibrium, population genetics, binding
site identification, mutagenesis, genotyping or genome annotation,
protein-protein interactions or protein-nucleic acid interactions”

325 69

G06F
19/20

“For hybridisation or gene expression, e.g. microarrays,
sequencing by hybridisation, normalisation, profiling, noise
correction models, expression ratio estimation, probe design or
probe optimisation”

296 53

G06F
19/22

“For sequence comparison involving nucleotides or amino acids,
e.g. homology search, motif or SNP [Single-Nucleotide
Polymorphism] discovery or sequence alignment”

342 68

G06F
19/24

“For machine learning, data mining or biostatistics, e.g. pattern
finding, knowledge discovery, rule extraction, correlation,
clustering or classification”

348 50

G06F
19/26

“For data visualisation, e.g. graphics generation, display of maps
or networks or other visual representations”

130 12

G06F
19/28

“For programming tools or database systems, e.g. ontologies,
heterogeneous data integration, data warehousing or computing
architectures”

222 32

Source: Data extracted from Thomson Innovation Patent Database
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food security, etc. For such essential objectives, a balanced IP protection system is
extremely important which will further lead to the development of this domain. The
IP protection system is still emerging in the area of bioinformatics by taking the
understanding from the existing laws for biology, computers, and electronics.

Some of the bioinformatics components constitute patentable subject matter,
while some are debatable with regard to patentability. The scope of protection varies
among countries. This is also visible from patenting trends. Apart from this, copy-
right protection is also available but only for some elements of the software codes. It
needs to be more liberal for open sharing of information. Copyright protection is
significant for databases. Some other forms of protection are available like sui
generis law in Europe. Intellectual property rights ensure the protection of ideas
and have revolutionized science and technology which further motivate the system.
Indian patent law does not provide any specific protection for bioinformatics
components. The intellectual property protection system needs continuous revision
as bioinformatics is an emerging area. It is also important to strike a balance between
global and local intellectual property regulations by considering interests of creators,
entrepreneurs, society, and other players in the field.
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Next-Generation Sequencing: Technology,
Advancements, and Applications 2
Gourja Bansal, Kiran Narta, and Manoj Ramesh Teltumbade

2.1 Introduction

The most comprehensive way of obtaining information about the genome of any
living organism is to determine the precise order of nucleotides, known as sequenc-
ing, in its complete DNA sequence. Earlier, traditional methods which include
Sanger’s chain termination method and Maxam-Gilbert’s chemical degradation
method have been used for DNA sequencing. However, it is quite expensive and
time consuming to sequence whole genome of an organism using the traditional
method. Demand for low-cost and highly efficient sequencing gave rise to massively
parallel sequencing technology which is known as “Next-Generation Sequencing
(NGS)” (Koboldt et al. 2013). NGS refers to the high-throughput sequencing
technologies which can simultaneously sequence millions or billions of DNA
molecules.

Completion of Human Genome Project (HGP) in 2003 has marked a history in
the field of genetics. Later the significant advancements have been made in sequenc-
ing technologies which decreased the cost of sequencing per base and increased the
number of bases sequenced effectively per unit time (Metzker 2010).

Using the traditional sequencing method, it took nearly 15 years to sequence
J.C. Venter genome as part of Human Genome Project, whereas, with the advent of
NGS techniques, same can be completed in a couple of hours (Venter et al. 2015). In
the current era, sequencing technologies have advanced to such a level that one can
study the genome at a cellular level too. Single-cell sequencing techniques are now
available which enable researchers to study cells individually rather than relying on
an average signal from aggregate of cells (Wang and Navin 2015). In today’s time,
NGS methods have been applied to a variety of genomes ranging from singular to
multicellular organisms. With the advent of NGS techniques, a number of
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applications and methods that leverage the power of genome-wide sequencing have
increased at an exponential pace.

Rapid progress in sequencing techniques, as well as synchronized development in
bioinformatics tools, has provided the solution to many different problems in the
field of genetics and biology (Lelieveld et al. 2016). It allowed and helped
researchers from diverse groups across the globe to generate draft genome sequence
of any organism of their interest (Grada and Weinbrecht 2013).

Whole genome sequence of any organism cannot be read by traditional
sequencers in a single run. Instead in a typical NGS run, thousands or millions of
short overlapping sequences are produced concurrently in a single run. Each of the
short sequence is called as a read. Reads are usually short (<¼ 250 bp) and can
contain sequencing errors. To rule out sequencing errors, generally a genomic region
is sequenced more than once. The number of reads spanning a genomic region
determines the depth at which a genome is sequenced.

Along with whole genome sequencing, NGS techniques can also be applied to
transcriptome sequencing (RNA-Seq), whole exome sequencing (WES), candidate
gene sequencing (CGS), genotyping by sequencing (GBS), and chromatin immuno-
precipitation sequencing also called as Chip-Seq (Furey 2012). Whole exome
sequencing captures variations in all coding regions, or exons, of known genes
and covers more than 95% of the total exons. As exome represents around 2% of
the genome, it is a cost-effective alternative to whole genome sequencing if one is
interested in finding variations only in coding part of the genome (Rabbani et al.
2014). RNA sequencing provides transcriptional activity of all coding as well as
noncoding segments of the genome. As it can quantify alternative splice isoforms,
RNA-Seq provides more accurate and precise measurements of gene expression
levels than microarray platforms (Van Verk et al. 2013). Methylome sequencing
complements genome sequencing as it determines the active methylation sites and
provides a list of epigenetic markers that regulate gene expression, differentiation,
and disease state (Schubeler 2015). Along with increasing our understanding toward
genome sequence, sequencing methods also provide information about genetic
variations, differential gene expression, and different aspects of transcriptional
regulation.

There are several companies which make machines on which NGS can be done,
such as Illumina (http://www.illumina.com), Roche (http://www.454.com),
ABI/Life Technologies (http://www.lifetechnologies.com), Helicos BioSciences
(http://www.helicosbio.com), Pacific Biosciences (www.pacificbiosciences.com),
and Oxford Nanopore Technologies (http://www.nanoporetech.com). The different
platforms vary in their sequencing technologies in terms of the sequencing chemis-
try, read length, number of reads per run, speed of sequencing, and cost per base pair
sequenced (Goodwin et al. 2016). Table 2.1 provides a list of various NGS platforms
along with their features.

In this chapter, we will be mainly focusing on the technology, advancements, and
the applications of next-generation sequencing in the field of “-omics” development.
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2.2 History of NGS

The seeds of the genomics era were sown with the identification of DNA as the
genetic material in 1952 by Alfred Hershey and Martha Chase (Hershey and Chase
1952). One year later, another breakthrough came with the discovery of the DNA
double-helical structure by James Watson, Francis Crick, and Rosalind Franklin
(Watson and Crick 1953). The basic knowledge of the genetic material led to the
curiosity to know how a four-letter code (nucleotides) could govern all biological
processes. The order of occurrence of the nucleotides (sequence) in the DNA seemed
to play a major role in encoding the information in living organisms. This sequence
in the DNA is conserved across generations of a species and sometimes even across
different species. To unravel this information, many scientists focused on developing
methods to decode the sequence of the genes and genomes that constitute organisms.

In 1977 Frederick Sanger and Alan Coulson sequenced the first genome, Phage
Phi X-174 (PhiX), using a “plus and minus” method of sequencing (3). This
technique used polyacrylamide gel for identification of the varied lengths of the
amplified products. Since then the sequencing technologies have come a long way
and have revolutionized the field of genomics. Aggressive research in the area of
NGS has led to the development of novel chemistries and technologies, thereby
increasing the speed and reducing the cost and time of sequencing (Grada and
Weinbrecht 2013). This has led to an affordable sequencing of the human genome.
Veritas Genetics has sequenced the human genome at a price of 1000 USD. This is a
huge step in predictive and personalized medicine at an affordable price (Mardis
2006; Service 2006).

The efficiency of a sequencing technique is measured by its accuracy, speed, cost,
and automation. Although there is no official classification, depending on the above
parameters, the sequencing techniques can be broadly classified into three
generations. The first generation includes the earliest sequencers (developed by
Maxam-Gilbert and Sanger) where only small stretches of amplified DNA regions
were sequenced. After that came the high-throughput sequencing technologies,
which could sequence multiple DNA regions from multiple samples in one go and
generate huge data output. These include the second-generation and the third-
generation sequencers. Examples of second-generation technologies include
Roche’s 454, Illumina’s Hiseq, and Life Technologies’ SOLiD. The first- and
second-generation sequencing techniques are dependent on amplification steps.
This is mainly to ensure sufficient signal detection by the sequencer. The amplifica-
tion comes with inherent biases and errors, which get incorporated into the resulting
sequence. The third-generation sequencers do not require the amplification process.
These sequencers can detect signals generated from a single molecule of DNA. They
have longer reads, faster turnaround time, and higher output. The examples of third-
generation sequencers include Helicos BioSciences’ tSMS, Pacific Biosciences’
SMRT sequencing, Illumina’s Tru-seq Synthetic Long-Read technology, and
Oxford Nanopore Technologies’ sequencing platform. On the basis of advancements
in sequencing technologies, sequencing era has been divided into multiple
generations (Fig. 2.1).
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2.3 First-Generation Sequencers

First-generation sequencing techniques mainly used methods that could generate
DNA fragments of different sizes. These methods used chemicals/enzymes to cleave
DNA at specific sites or modified bases that could terminate the DNA amplification.
The fragments hence generated were separated by electrophoresis using polyacryl-
amide (PAA) gel slabs. The two methods primarily used in the first-generation
sequencers were chain termination method developed by Frederick Sanger and the
chemical degradation method developed by Maxam-Gilbert (Morey et al. 2013).

2.3.1 Chemical Degradation Method

This approach was developed by Allan Maxam and Walter Gilbert (1977). In this
method, each strand is chemically modified randomly, such that the backbone is
exposed for degradation by alkali treatment at specific points. This process generates
fragments of variable size. The fragmented DNA is terminally (both 30 and 50)
radiolabeled with 32P and denatured. This is carried out as four reactions depending
on the chemical treatment (e.g., G, A + G, C, C + T). The cleaved 32P-ssDNA is run
on PAA gel. Then the autoradiograph is obtained from which the sequence of the
fragment can be identified. This method involves the use of hazardous chemicals like
dimethyl sulfate (for G and with acidic conditions release A), hydrazine, piperidine
(for T and C), and NaCl (only C) (Maxam and Gilbert 1977). Also a huge amount of
DNA is required. This technique is now obsolete.

Fig. 2.1 Different sequencing generations
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2.3.2 Chain Termination Method

In 1977, Frederick Sanger and group published the chain termination method of
sequencing, also called as sequencing by chain termination (Sanger et al. 1977). This
is now known as the Sanger method. Even today variations of this method are widely
used by different sequencing techniques.

In the Sanger method (Fig. 2.2), the sample is first denatured by heat, and then
four reactions are performed with ssDNA. Each tube contains a primer, DNA
polymerase 1(Klenow enzyme), and all four dNTPs and one of four ddNTPs. The
ddNTPs have hydrogen (instead of hydroxy-) group at the 30 terminal. The amplifi-
cation is carried out by extension of the primer, using single-stranded DNA (ssDNA)
as a template. The presence of dNTPs and specific ddNTPs can randomly terminate
the extending DNA chain. The DNA is then denatured and run on PAA gel. The

Fig. 2.2 Sanger di-deoxy chain termination method for sequencing: in Sanger sequencing, the
template DNA is first primed with a fluorescently labeled (optional) primer. Then a sequencing
reaction is carried out. The essential ingredients include a DNA template, primer, DNA polymerase,
excess of dNTPs, and chain-terminating ddNTPs. The sequencing reaction can be performed either
in four separate tubes, one for each ddNTP (a), or if fluorescently labeled ddNTPs are used, then all
reactions can be performed in a single tube (b). After multiple rounds of template extension, the
DNA fragments are denatured. The denatured fragments are run in gel slabs (now capillaries
containing polymer) that separate the amplified products depending on their size. The sequence is
then deciphered by the relative position of the bands from bottom to top
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bands hence obtained are combined to form a single sequence (Sanger et al. 1977).
Initially, radioisotopes were used to label dNTPs (Fig. 2.2a); later it was completely
replaced by fluorescent dyes (Fig. 2.2b) (Smith et al. 1986).

Sanger sequencer ABI 370 was the first automated sequencer and it was launched
in 1986 by Applied Biosystems (now Life Technologies). This included some
significant improvements in the method like running DNA in capillaries instead of
gel slabs, introduction of dye-labeled ddNTPs making way for one tube reactions,
multicapillary electrophoresis, and automatic loading of samples (Ansorge et al.
1986; 1987).

Sanger sequencing was widely used in the 1990s to sequence genes and genomes.
Even today it plays a very important part in screening genes for disease mutations
and validation of data from the next-generation sequencers. The average read length
of sequence from Sanger data is still more than most of the second-generation
sequencers (Treangen and Salzberg 2011). Sanger sequencing formed the basis of
the first draft of the human genome. In 2001 two landmark papers were published,
which reported the sequencing of the human genome (Lander et al. 2001; Venter
et al. 2001). Celera Genomics used shotgun sequencing in which a large piece of
DNA is fragmented mechanically. Each fragment is sequenced independently, using
the Sanger method. The sequences obtained are then assembled using the
overlapping regions to get a complete sequence (Anderson 1981). Shotgun sequenc-
ing can be considered as the bridge between the first-generation and the second-
generation sequencers.

After the completion of the Human Genome Project, scientists everywhere
realized the enormous potential in identifying the DNA/RNA sequence information
of an organism. The primary limitation of the first-generation sequencers was their
low output and inability to scale up. The cost per base sequenced is also very high as
compared to the high-throughput methods (Mardis 2011). To overcome these issues,
automated, faster, and cheaper sequencers were developed. They were primed to
sequence longer and large number of DNA molecules parallelly.

2.4 Second-Generation Sequencers

The second-generation sequencers can generate a huge amount of data in one run at a
much lower cost and higher speed as compared to the first-generation sequencers.
These sequencers use amplified DNA fragments and the sequencing is performed in
parallel for millions of DNA fragments which is why it is also called as the massively
parallel sequencing. The second-generation sequencers include three major pro-
cesses: library preparation, amplification, and imaging/sequencing (Mardis 2008).
These steps may vary in different sequencers of this generation.

The basic steps in next-generation sequencing are represented in Fig. 2.3.

Library Preparation It primarily involves fragmentation of the DNA and adapter
ligation.
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The second-generation sequencing techniques can only sequence small stretches
of DNA molecules. Therefore, it is important to fragment the DNA molecules such
that they can be sequenced and after that reassembled. Fragmentation can be either
mechanical shearing or enzymatic cleavage (Morey et al. 2013).

The fragmented DNA is attached to universal adapters to facilitate amplification
and attachment to a surface for sequencing. Adapters are double stranded and have
sites for primer binding. They also have index sequences which are used to differen-
tiate the reads coming from various samples, if multiple samples are pooled together
during sequencing. Primer binding sites are used to prime the sequencing reaction
(Morey et al. 2013). The steps involved in library preparation are shown in Fig. 2.4.

Amplification of Template Most of the second-generation sequencers are not able
to detect fluorescence from a single DNA molecule. To overcome this, the DNA
molecules are attached/immobilized on a surface, which are then amplified (Morey
et al. 2013). This enables the sequencers to capture a clear signal while imaging. Two
major amplification techniques are:

(i) Emulsion PCR: Used by 454 (Roche), SOLiD, and Ion Torrent (Thermo Fisher)
(ii) Solid-phase amplification: Illumina

This step produces clonal templates for sequencing (Goodwin et al. 2016).

Sequencing The amplified products from the previous step are sequenced in this
step. A sequencing primer is added to the templates to start the addition of bases and
their simultaneous imaging. These steps are carried out in a cyclic fashion. Sequenc-
ing can be on the basis of one of the following two principles (Goodwin et al. 2016):

(a) Sequencing by synthesis: This technique makes use of the DNA polymerase to
add bases sequentially. The major platforms which use this approach are
454, Illumina, Qiagen, and Ion Torrent.

(b) Sequencing by ligation: In this technique, a fluorophore-bound probe is
hybridized to the template and ligated to the former previous base. Once ligation
is complete, the probes are imaged to identify the bases. SOLiD and Complete
Genomics use this method of sequencing.

Fig. 2.3 Basic steps in next-generation sequencing
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The basic principle involves the cyclic process of addition of bases to the primer
until the required number of bases is read (imaged) from the template. All the
reactions are performed in parallel.

Fig. 2.4 Diagrammatic view of library preparation: The first step involves fragmentation of the
DNA molecule. It can be carried out by (a) enzymatic methods by nonspecific endonuclease
treatments or tagmentation using transposase and (b) physical methods using sonication or acoustic
shearing using Covaris. In the case of RNA sequencing, the fragmentation is usually done by
heating in the presence of divalent cations and then the fragmented RNAs are converted to cDNA
After fragmentation the ends are repaired, i.e., the ends are blunted, the 50 ends are phosphorylated,
and the 30 ends are adenylated. The adapters are ligated to the fragments (represented here by blue
and black). The adapters are barcoded, using index sequences, so that multiple samples can be
sequenced together. The part of the template between the adapters (they are of constant length) is
called the insert, and it determines the library size. The insert size is in turn determined by the
application and the technology used for sequencing
Size selection involves the steps to obtain the library size within a desired range and to remove
adapter dimers. This is usually done with the help of magnetic beads (e.g., Agencourt AMPure XP
beads) or the library is run on agarose gel. Once the library is prepared, its quality and quantity is
checked before moving on to sequencing
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Imaging of Bases and Data Analysis After the sequencing is performed, the
information from images is converted to bases. This is generally carried out using
platform-specific software which generates raw files of sequence data for further
processing and analysis.

This is the step from where data comes out of the experimental lab to a high
configuration computer. Sequence analysis is done by a bioinformatician who
analyzes the data and draws meaningful insights out of it. Different open-source
algorithms are available for each step of analysis workflow.

Some of the widely used second-generation sequencers are discussed here:

2.4.1 Roche 454 Genome Sequencer

Genome Sequencer GS20 was the first commercialized second-generation sequencer
launched in 2005 (www.454.com). It was developed in 1996 at the Stockholm Royal
Institute of Technology and has been used to sequence Neanderthal, barley, and
Helicobacter pylori genomes (Rothberg and Leamon 2008).

Library Preparation
Nebulizer randomly fragments the DNA. These fragments are then flanked by two
types of adapters on different sides and denatured. One of the adapters contains the
sequencing primer binding site and the other adapter has a biotin label. Only the
fragments containing different adapters are selected and mixed with capture beads.
The capture beads have probes complementary to adapter containing the biotin label
so DNA fragments can bind to them. Excess of capture beads are added to bind only
one DNA molecule to each bead (Fig. 2.5b).

Amplification
This technique uses emulsion PCR to amplify the DNA fragments bound to the
beads clonally. By the end of this process, there are millions of clonal molecules on
the beads, which are denatured to obtain only ssDNA molecule. Sequencing primer
is attached to the ssDNA adapters.

Sequencing
The beads are then loaded on a picotiter plate containing wells. The dimensions of
wells are such that only one bead enters the individual well. Later smaller packing
beads containing immobilized sulfurylase and luciferase are added to the wells.
454 sequencing is based on pyrosequencing (Fig. 2.5b). In this technique, as the
nucleotides are incorporated, pyrophosphate (PPi) is released. PPi is then converted
to ATP using ATP sulfurylase and adenosine phosphosulfate. This ATP combines
with luciferase to convert luciferin to oxyluciferin. This generates a light signal,
which is detected by a charge-coupled device (CCD) at the bottom of the plate. Each
nucleotide is given one at a time in a predesigned order. Incorporation of more than
one nucleotide on the same molecule is read as stronger intensity. Therefore, the
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Fig. 2.5 Different platforms for second-generation sequencing
(a) Illumina sequencing: The prepared library is distributed over a flow cell. The flow cell contains a
lawn of primers that are complementary to the ends of the adapters, as a result of which the DNA
fragments bind to them. Solid-phase bridge amplification involves amplification of the attached
templates in the presence of unlabeled nucleotides, polymerase, and buffer. The dsDNA is then
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amount of light can be regressed to calculate the number of similar nucleotides
incorporated. After the completion of required number of cycles, the sequence is
acquired by combining the information generated (Rothberg and Leamon 2008).

This technique can generate reads up to 1 Kb in length and faces major problems
in identifying homopolymer stretches in the genome. Moreover, it has lower output
and sequence per base cost is higher than its competitors (Mardis 2008; Margulies
et al. 2005).

2.4.2 Illumina

It is one of the most successful sequencing platforms. The technology, developed by
Solexa, was first commercialized as Genome Analyzer (GA) in 2006. One year later,

�

Fig. 2.5 (continued) denatured and the original template is washed away, leaving behind the primer
and the elongated strand. This process is repeated for a number of cycles to generate clusters from
each attached template. After cluster generation, the strands are sequenced. The sequencing is
initiated once the sequencing primers are attached and the reagents containing labeled nucleotides
and polymerase are added. As each base is added, it is imaged after removing the unincorporated
bases. The fluorescent signal is then removed from the incorporated nucleotides. Multiple such
cycles are carried out to obtain sequential images of bases of each cluster
(b) Roche 454 sequencing: In this, the adapter-ligated fragments are attached to the beads. Then
amplification process takes place by emulsion PCR. One bead per well is distributed onto a
454 picotiter plate. The amplification is then carried out by pyrosequencing in which, unlike
Illumina, only one type of deoxynucleotide triphosphate base is provided to be incorporated by
the polymerase into a cycle. This addition is accompanied by the release of pyrophosphate (PPi).
With the help of enzymes (ATP sulfurylase, luciferase, and luciferin attached to the bead), the PPi is
converted to light, which is detected. The base addition in each well is recorded for the desired
number of cycles, and simultaneously the sequences on the template are deciphered
(c) SOLiD sequencing: The emulsion PCR (emPCR) amplification process is similar to Roche.
Then the beads with amplified template are deposited on a slide. SOLiD uses the sequencing by
ligation method. (c1) SOLiD uses two-base encoding and uses four different colored fluorescence
probes. In the probe color matrix, each color represents 4 out of 16 possible combinations. The
probes are made up of eight bases. The first two are the template bases, which match read positions
on the sequence to be read. The next three are degenerate bases that match the three unread bases
upstream to the template bases. The identity of these three bases is not needed for sequencing.
Finally, the three universal bases can bind to any of the nucleotides. They have a fluorescent dye
attached at 50 end and has cleavage site at the 30 end. (c2) The basis of SOLiD is that the labeled
probes get ligated to the primer only if they are perfectly matched. Once ligated, the three universal
bases at the 50 end are removed. The remaining ligated probe acts as a primer for the next probe.
This process is carried out for the desired number of ligation cleave cycles. Then the extension
product is removed and the template is reset with shorter n�1 primer revealing a thymidine (T) at
the adapter for next round. (c3) The numbers enclosed in white circles represent the sequence of
base position in the template. The cycle numbers are denoted on the top. It requires five iterations (n,
n�1, n�2, n-3, n�4) to decipher the complete sequence and to fill the gaps (of the two template
bases and three degenerate bases) formed during the first iteration. Also represented here is the
walk-through to obtain sequence information from multiple iterations
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Solexa was purchased by Illumina (Treangen and Salzberg 2011). It uses reversible
terminator reactions to carry out sequencing by synthesis.

Library Preparation DNA is first randomly broken into fragments, by mechanical
shearing (using Covaris) or by enzymes/transposomes. Generally 200–300 bp
fragments are selected using gel or SPRI/Ampure beads and adapters are ligated to
them. These are then denatured and injected onto a solid surface called flow cell. The
adapters are ligated to the end of the fragments such that one end serves to attach to
the flow cell and other is used for sequencing (Fig. 2.5a).

Amplification The surface of a flow cell has a lawn of probes, which has sequences
complementary to one end of the adapters bound to the DNA fragments. When the
adapter-ligated fragments are distributed over a flow cell, they bind to complemen-
tary probes. To obtain clonal copies of the DNA, a process called bridge amplifica-
tion is used. By the end of this process, thousands of copies are generated for each
attached fragment, which corresponds to a cluster. Reverse strands are cleaved and
the single strands are primed for sequencing (Adessi et al. 2000).

Sequencing by Synthesis The amplified products are sequenced by a process
similar to the Sanger’s chain termination reaction. Here the nucleotides are labeled
with four different fluorescent dyes and are capable of reversible termination. During
sequencing, the flow cell is flushed with all four nucleotides. A complementary
fluorescently labeled base is added to the primed template by the polymerase bound
to the template. After addition of a single base, the reaction is terminated. To obtain
signal from the bound nucleotide, the remaining unbound nucleotides are washed
away. The bound-labeled nucleotides are then illuminated with the help of lasers.
Imaging is performed to identify location and type of base incorporated in each
cluster. Then the fluorescent label is cleaved thereby exposing the 30-OH group, to
which a base can be integrated. This process is carried out with the help of Tris
(2-carboxyethyl) phosphine (TCEP, reducing agent).

This cycle of addition of dNTPs, imaging, and cleavage is carried out until all the
bases are read. Then all the images can be simultaneously combined to create the
sequence for each cluster.

Illumina provides with the ability to sequence DNA from one end (single-end
sequencing) or both ends of the fragment (paired-end sequencing) and mate pair
sequencing (used to sequence the ends of long fragments, ignoring the bases in
between) (Fuller et al. 2009; Pettersson et al. 2009; Rothberg and Leamon 2008).

Over the past decade, this technology is continuously improving its sequencers in
terms of efficiency and accuracy. It generates one of the highest outputs with lowest
reagent cost among all the sequencers present to date (Liu et al. 2012).

Applied Biosystems’ SOLiD
George Church in 2005 developed small oligonucleotide ligation and detection
(SOLiD) system for high-throughput DNA sequencing (Shendure et al. 2005). It
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was commercialized by Applied Biosystems (now Life Technologies) in 2007. Its
principle involves sequencing by ligation (SBL).

Sample Preparation and Amplification
SOLiD uses emulsion PCR, similar to Roche’s 454. Fragmentation is achieved by
nebulization/sonication or digestion. Universal adapters are attached to the ends of
the fragmented template which are then deposited onto microbeads. The templates
undergo clonal amplification reaction in water/oil emulsion microdroplets. The
microbeads are then distributed on a glass slide to which they bind covalently.
Based on application, slides may have one, four, or eight compartments.

Sequencing and Imaging:
The sequencing reaction starts by annealing of primer to the amplified template. In
SOLiD sequencing, each cycle constitutes the following four steps:

1. The chemical reaction involves the binding of eight-nucleotide-long probes. Only
the first two bases (di-base) at 30end have a known sequence. The rest of the probe
is degenerate. The probe is fluorescently labeled at the last base on 50 end such
that it corresponds to a specific di-base. The probe binds to complementary
sequence next to the primer. Due to restriction in available fluorescent dyes, the
complementary and reverse di-bases are encoded by the same color (FAM for
AA, CC, GG, TT; Cy3 for AC, CA, TG, GT; TXR for AG, GA, TC, CT; Cy5 for
AT, TA, CG, GC) (Fig. 2.5c1). After the primer is ligated to the adapter, octamer
probes with same fluorescent label are added (Fig. 2.5c2).

2. When a complementary probe binds to the template, DNA ligase hybridizes the
probe to the primer. During this process, a fluorescent signal is emitted, which is
captured by the detector.

3. After ligation, the three bases (including the dye) at the 50end of the probe are
cleaved.

4. These steps are repeated with the three remaining fluorescent dye pool of probes.
After each successful annealing, each probe is ligated to the previous probe in the
second step. So at the end of one cycle, two bases are read per three skipped bases
per probe. This process can be carried out for the desired number of times
(Fig. 2.5c2).

After this, the primer along with all the probes is removed. Then a new primer is
added such that it anneals to the penultimate base from the adapter-template junction
(n�1). The abovementioned steps are repeated. This cycle is carried out four times
(for n�2, n�3, and n�4 also) and every time primer shifted one base toward 50 end
(Fig. 2.5c3) (Mardis 2008; Valouev et al. 2008).

Data Analysis: Exact Call Chemistry It uses eight-base interrogation system, with
four different colored primers to map possible combinations in sequences.
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SOLiD sequencers are known to have problems while handling palindromic
sequences. However, they are less error prone, as each base is read twice as
compared to other second-generation sequencers. They are flexible, allowing for
sequencing in different applications. It detects single nucleotide variants (SNVs) and
insertion/deletion (indels) with ease.

Despite a high output and multi-sample processing by the second-generation
sequencers, there is still scope for improvement. Second-generation sequencers
face issues related to errors due to amplification and need for repeated “wash and
scan” cycles (Metzker 2010) which are not only time consuming but also lead to
asynchronous (dephasing) sequencing (Whiteford et al. 2009). These issues result in
erroneous base calls and also limited read lengths (Metzker 2010).

2.5 Third-Generation Sequencing

Given a very rapid evolution of the successive sequencing technologies over the past
few years, and therefore small time lapse, there has been a continuum of
improvements among the successive next-generation sequencers. The next-
generation sequencers are considered as the third generation primarily on the basis
of the following features: First, they do not require amplification of template DNA.
Second, the sequencing is performed in real time. They also do not require repeated
“wash and scan” cycles. These sequencers generate longer reads and have higher
speed and accuracy with lower cost and effort (Gut 2013; Heather and Chain 2016;
Morey et al. 2013; Niedringhaus et al. 2011; Pareek et al. 2011; Schadt et al. 2010).

Three of the third-generation techniques are discussed below.

2.5.1 Helicos: tSMS (True Single-Molecule Sequencing)

Helicos BioSciences’ tSMS was the first commercially available third-generation
single-molecule sequencer (Heather and Chain 2016).

Library Preparation The DNA is broken down into 100–200 bp fragments, and a
poly A sequence of approximately 50 bp is attached to 30 end of each fragment. The
fragments are labeled with fluorescent adenosine. These labeled fragments serve as
templates for sequencing and are hybridized on the surface of a poly-T-containing
flow cell. The flow cell containing 25 channels has oligo-dT (50 bases) primer
attached to the surface. The 30OH of the tailed molecules are blocked by terminal
transferase and dideoxynucleotides to prevent extension.

Sequencing Before sequencing begins, the location of each fluorescently labeled
template is captured, by illuminating with a laser. After imaging the fluorescent label
is washed away. To start sequencing reaction reversible terminator fluorescently
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labeled nucleotides (Bowers et al. 2009) and DNA polymerase is added to the flow
cell. The sequencing chemistry is similar to Illumina, where signals are captured
after a laser illuminates the flow cell. In the case of Helicos, a single type of
nucleotide is added at a time (e.g., A). The camera records the addition of each
nucleotide on a single DNA fragment. After imaging, the labels are cleaved and
washed. This process takes place for the remaining three bases also (C, G, T). This
cycle of sequencing is repeated until the required read length is achieved (Fig. 2.6a).

This method requires shorter sample preparation time and can be used to
sequence degraded molecules also. A higher accuracy is achieved, as there is no
PCR amplification step, but the sequencing time is long due to repeated cleaving and
washing steps and also per base cost is high.

2.5.2 Single-Molecule Real-Time Technology (SMRT)

Single-molecule real-time technology was developed by Pacific Biosciences.

Library Preparation The DNA fragmentation is performed depending on required
insert size, with a range from 500 bp to 10 kb. End repair is carried out to create blunt
ends and addition of dA tail. Then SMRTbell hairpin loop adapters are ligated to
both ends of the double-stranded fragments. A SMRT library is prepared after
purification steps which ensure that only the fragments having adapter ligated to
both ends are selected. AФ29 DNA polymerase is attached to the DNAmolecules of
the library. This enzyme also has a strand displacement property, so the double-
stranded DNA can be opened up into circular template (Eid et al. 2009).

Sequencing The sequencing reactions are carried out in a chip containing small
wells (10^–21 L). Each of these reaction cells, also called zero mode waveguide
(ZMW), has a molecule of Ф29 DNA polymerase attached to the bottom. ZMW are
small pores surrounded by metal film and silicon dioxide (Foquet et al. 2008). Once
the template is added, it binds to the DNA polymerase. Then the fluorescently
labeled dNTPs are added to the wells. All four nucleotides are phospho-linked and
have different colored fluorophores (Korlach et al. 2008a). In this method, the
fluorescence is attached to the terminal phosphate of the nucleotide (instead of the
base as in previous cases).

During sequencing, the complementary dNTP enters the polymerase and emits a
fluorescence signal in the ZMW. This signal is detected as a light pulse in the
detection volume of 20 zeptoliters (Korlach et al. 2008b). The fluorescence label is
released after cleaving the phosphate chain. Then a new base is incorporated
(Fig. 2.6b).

This is a high-speed process as ~10 nucleotides can be added in a second.
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Fig. 2.6 Detailed view of third-generation sequencing platforms
(a) TSMS: The poly A tailed fragmented strands are hybridized to the poly-T-bound Helicos flow
cell plate. Then the fluorescent labeled nucleotides are added one at a time. The addition is done in a
cycle of “quads,” where a quad consists of adding each base (A, T, G, and C) once. The labeled
bases are then illuminated by a laser, and the images are taken, which helps in detecting the strands
that have bound nucleotides. Before adding the new labeled bases, the labels from the hybridized
bases are cleaved
(b) SMRT: A SMRT cell with ZMW nanostructures has a DNA polymerase immobilized to the
bottom of the well. The fluorescently labeled phospho-linked nucleotides are added to the primed
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2.5.3 Nanopore Sequencing

Nanopore-based chemical and biological molecule detection is among the most
advanced sequencing technologies available today (Morey et al. 2013). The
nanopores can be synthetic solid-state or biological in nature. The biological
nanopores are modeled on the transporters and ion channels present inside the living
cell (Haque et al. 2013). The nanopores decode a sequence, as the string of DNA is
transported through it. They capture the modulation in the ion flow through these
channels or optical signals in real time (Astier et al. 2006).

The α-hemolysin ion channels were the first ones to be used for this purpose
(Kasianowicz et al. 1996) and were commercialized by Oxford Nanopore
Technologies (Schadt et al. 2010). The modified α-hemolysin protein is embedded
in a lipid bilayer and has an exonuclease on the outer surface, and a cyclodextrin
sensor is attached on the inside. The exonuclease cleaves each base as it enters the
pore. As the base crosses the channel, the variation in current is detected, which
correlates with the specific parameters of the nucleotide (Fig. 2.6c).

Improvements in this technique and various other approaches have led to more
accurate and a variety of nanopore sequencing platforms. These include:

(a) Using Mycobacterium smegmatis porin A (MspA) protein to sequence an intact
ssDNA (Derrington et al. 2010).

(b) Optical detection in nanopore sequencing via multi-colored readouts using
synthetic DNA (McNally et al. 2010).

(c) Synthetic material has also been incorporated for improvements in this technol-
ogy; among them solid-state graphene nanopores and carbon nanotubes are of
particular interest (Bayley 2010; Liu et al. 2010; Schneider et al. 2010; Zhao
et al. 2012).

The nanopore sequencing is inexpensive as there is no addition of modified/fluores-
cent bases. Nanopore sequencing is marketed by Oxford Nanopore Technologies
through their sequencing platform GridION along with a portable device MinION
and the scalable PromethION (https://nanoporetech.com).

�

Fig. 2.6 (continued) DNA template (green). A signal is recorded when a base is bound to the
template in the active site. The fluorophores are activated by the lasers only when they are in the
detection volume. As the detection volume is minimal, bottom 20–30 nm, therefore only the
correctly bound nucleotide is detected. After the phosphodiester-bond formation, the template is
translocated so that next base can be attached. The location of the detector for the optical image is
under the nanostructure. (c) A voltage-biased membrane (lipid bilayer/graphene) separates two
aqueous electrolytes containing chambers. A flow of ionic current occurs through pores (blue)
present across the membrane. The passage of the DNA is controlled by the enzymes present in the
nanopore, as a result of which there is a disruption in the passage of the ions, which is measured by
the very sensitive ammeter. A record showing the measurement of the passage of ions
corresponding to the type of nucleotide crossing the pore is also represented alongside
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The third-generation sequencing techniques promise to deliver longer reads than
any of the previous technology. These long reads (5–15 kb) are proving to be
important in many areas (Lee et al. 2016). They are instrumental to fill the gaps in
the human genome (Chaisson et al. 2015; Pendleton et al. 2015) and also used to get
highly accurate reassembly and reconstructs of many bacterial, plant, and animal
genomes (Berlin et al. 2015; Chen et al. 2014; Gordon et al. 2016; Koren et al. 2013;
Loman et al. 2015). The third-generation sequencers are of particular importance in
deciphering the diversity of the metagenome and identifying novel transcript
isoforms and gene fusion events (Oulas et al. 2015; Sharon et al. 2013).

2.6 Bioinformatics Analysis Pipeline

Through next-generation sequencing technologies, it is now possible to describe
methylated regions in the genome sequence, sequencing whole genomes,
transcriptome, catalog noncoding RNA, and protein-DNA interaction sites. Each
of these applications generates gigabases of sequence information which imposed an
increasing demand on statistical methods and bioinformatics tools for analysis and
management of enormous data produced by different sequencing platforms (Grada
and Weinbrecht 2013).

The first step in sequence data analysis is to produce short nucleotide sequence
also referred as reads and their associated quality scores from raw light intensity
signals. This is called as base calling and the related software are usually provided by
the manufacturer of the sequencing platforms (McGinn and Gut 2013). For example,
CASAVA is a base calling software provided by Illumina for converting intensity
files to human readable file format, e.g., FASTQ. Short reads generated are stored in
the short read archive (SRA) in FASTQ format.

SRA compact design allows storage and retrieval of sequence data including
metadata from experiments and reads with associated quality scores in a very
effective manner. We can convert SRA to FASTQ file using SRA Toolkit.

FASTQ is a text-based format for storing biological sequences. It is basically a
FASTA file associated with the quality score for each base (Mills 2014). A FASTQ
file normally uses four lines per sequence.

Line 1 begins with a ‘@’ character and is followed by a sequence identifier and an
optional description (like a FASTA title line).

Line 2 is the raw sequence letters.
Line 3 begins with a ‘+’ character and is optionally followed by the same sequence

identifier (and any description) again.
Line 4 encodes the quality values for the sequence in Line 2 and must contain the

same number of symbols as letters in the sequence.
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A FASTQ file containing a single sequence might look like this:

@SEQ_ID
TTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACT

CACAGTTT
+
*((((***+))%%%++)(%%%%).1***-+*”))**55CCF>>>>>>CCCCCCC65

Phred Score:
A Phred score is a measure of quality of nucleotide bases identified using DNA
sequencing (Table 2.2). It is commonly defined as

Q ¼ �10log10P

where P is the probability that base is incorrectly called.

Quality Filtering
Before doing any downstream analyses, it is always advisable to check for read
quality. Sequencing artifacts like base calling errors, poor quality reads, adapter
contamination, PCR duplication, and GC biasedness are common factors that need
to be checked. Filtering is the most crucial step to remove low-quality reads as
during further analysis one cannot have control on quality of reads (Watson 2014).
Alignment or mapping is the next step in NGS analysis. Two different ways are
possible for mapping millions of reads. One is a comparative mapping of reads with
the reference genome (DNA sequence of species under consideration), and another
is de novo assembly. Reference genome is the DNA sequence database of an
organism representing species set of genes. Mapping of reads onto reference genome
provides a tentative map indicating regions from where the reads belong. A reference
genome for individual organisms can be accessed from various web resources like
NCBI, Ensembl, or UCSC genome browser. In the absence of reference genome, de
novo genome assembly is done with the help of overlapping reads to stitch consecu-
tive regions in the genome (Fonseca et al. 2012). A variety of tools are available for
both comparative mapping and for de novo assembly. Alignment results are stored in
BAM (Binary Alignment Map)/SAM (Sequence Alignment Map) file (Li et al.
2009). Best mapping hits can be filtered out using multiple parameters like mapping
quality score. For every study, filtering and alignment are common steps in sequence

Table 2.2 Phred score and corresponding incorrect base call probability

Phred Quality Score Probability of incorrect base call Base call accuracy (in %)

10 1 in 10 90

20 1 in 100 99

30 1 in 1000 99.90

40 1 in 10,000 99.99

50 1 in 100,000 100.00
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data analysis. Real fate of sequence analysis is decided only after alignment. Using
different kinds of high-throughput data, various analyses can be done (Fig. 2.7).

Exome or whole genome sequencing can be used to detect structural variations
that can give rise to different phenotypes in different individuals. Somatic as well as
germline mutations can be identified with high precision using exome sequencing.
Genes that are expressed differentially in various conditions/groups can be identified
through transcriptome analysis. Different software are available for each step of data
analysis. Table 2.3 describes freely available commonly used software for various
purposes.

For data visualization, a graphical interface usually called as genome browser is
required to display analysis results. Comparative analysis with other genomic
resources (dbSNP, 1000 genome), expression changes, and peak folding is also
possible on these browsers. The real strength of analysis is reflected from the power
to display the results in an easy-to-interpret manner. Common IGV, UCSC, Tablet,
and MapView are examples of genomic browsers.

Fig. 2.7 Basic workflow in NGS data analysis and their applications
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Table 2.3 List of software commonly used in NGS data analysis

Commonly used softwares in next generation data analysis

Reads quality control softwares Web URL

fastQC http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

filteR http://scbb.ihbt.res.in/SCBB_dept/filter.php

Trimmomatic http://www.usadellab.org/cms/?page¼trimmomatic

FastX toolkit http://hannonlab.cshl.edu/fastx_toolkit/

DNA/RNA alignment

BWA http://bio-bwa.sourceforge.net/

Bowtie http://bowtie-bio.sourceforge.net/index.shtml

Stampy http://www.well.ox.ac.uk/stampy

TopHat https://ccb.jhu.edu/software/tophat/index.shtml

STAR https://github.com/alexdobin/STAR

HiSAT2 http://ccb.jhu.edu/software/hisat2/index.shtml

Denovo assembly DNA/RNA

Vcake https://sourceforge.net/projects/vcake/

Velvet https://www.ebi.ac.uk/~zerbino/velvet/

Trinity https://sourceforge.net/projects/trinityrnaseq/

Trans-Abyss https://github.com/bcgsc/transabyss

Variant detection and
annotation

GATK https://software.broadinstitute.org/gatk/

VarScan http://varscan.soureeforge.net/

SnpEff http://snpeff.sourceforge.net/

SeattleSeq http://snp.gs.washington.edu/SeattleSeqAnnotation138/

Differential expression

Limma http://bioconductor.org/packages/release/bioc/html/limma.
html

Cufflinks http://cole-trapnell-lab.github.io/cufflinks/

DeSeq2 http://bioconductor.org/packages/release/bioc/html/DESeq2.
html

EBSeq http://bioconductor.org/packages/release/bioc/html/EBSeq.
html

Metagenomics

QIIME http://qiime.org/

RDP-Pyro https://rdp.cme.msu.edu/

Visualization

IGV http://software.broadinstitute.org/software/igv/

Circos http://www.circos.ca/

Tablet https://omictools.com/tablet-tool

Brig http://brig.sourceforge.net/brig-in-action/

Cytoscape http://www.cytoscape.org/

Web resources for NGS data

Ensembl http://asia.ensembl.org/index.html

ExAC Browser http://exac.broadinstitute.org/

(continued)
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2.7 Applications of Next-Generation Sequencing

Earlier, hundreds of publications have been published in which next-generation
sequencing is applied for a variety of applications in the field of genomics and
transcriptomics. In accelerating biological and biomedical research, NGS
technologies have been useful in a number of ways including whole genome
sequencing, targeted sequencing, gene expression profiling, novel gene discovery,
chromatin immunoprecipitation, etc. (Buermans and den Dunnen 2014).

2.7.1 Genomic Applications

NGS technology enabled a new era of genomic research through massively high-
throughput sequencing data which has solved various research problems. It has
provided the most comprehensive view of genomic information and associated
biological implications. Using comparative genomics, one can obtain a correlation
between variations and its associated clinical features. Through international efforts
like UK10K and 1000 genome projects, it is now possible to find variations present
in normal healthy individuals belonging to different ethnicities. Various applications
of NGS in genomics can be described as:

• Whole genome sequencing: With the advent of NGS technologies, it is now
possible to sequence genome of simple as well as complex organisms at a faster
rate with much low cost. Personalized treatment plans can be offered by
healthcare providers using WGS. Based on the variations present in genomic
sequence with respect to controls or reference genome, one can predict probable
predispositions toward disease in future. Healthcare professionals can suggest any
lifestyle-related changes to avoid future complications (Shapiro et al. 2013).

• Detection of rare variations: Many international efforts are going on with a sole
aim to catalog various kinds of variations like SNPs, mutations, indels, and copy
number variations present in the genome. One such global effort is 1000 genome
consortium which has cataloged more than 79 million variations in around 2500
individuals (Consortium 2015). Through exome sequencing, one can find
mutations in genes which are responsible for rare Mendelian disorders such as
sickle cell anemia, Miller’s syndrome, as well as common diseases like obesity,
diabetes, etc. Structural variations including copy number variations and indels

Table 2.3 (continued)

Commonly used softwares in next generation data analysis

1000 Genome http://www.internationalgenome.org/

TCGA http://cancergenome.nih.gov/

Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/

Genome 10K https://genome10k.soe.ucsc.edu
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have been successfully identified in diseased vs. non-diseased individuals.
Genome-wide variations identified using NGS techniques help in understanding
why some people respond to some therapy easily while many cannot (Boycott
et al. 2013).

• Prenatal diagnosis of genetic diseases: Sequencing technologies have been
applied to detect biomarkers for genetic disorders including Down’s syndrome
(Palomaki et al. 2011), Edwards’ syndrome, and many others. It is now possible
to test for genetic abnormalities before the birth itself (Cram and Zhou 2016).
Maternal cell-free plasma sequencing is done to detect various chromosomal
anomalies in the fetus (Canick et al. 2013). This technique successfully detected
22q11.2 deletion syndrome, Down’s syndrome, myotonic dystrophy, and various
single gene disorders.

• Transplantation: The human leukocyte antigen (HLA) system is a gene complex
encoding the major histocompatibility complex (MHC) proteins in humans.
These proteins are responsible for the regulations of the immune system in
humans. Differences in HLAs are the major cause of organ transplant rejection.
Mapping the variations is important to identify the possible course of patient body
in accepting or rejecting the transplant. Nowadays, doctors go for HLA-typing to
find the suitable match for transplantation (Lan and Zhang 2015).

• Forensics: Genome sequencing can be used to find the suspected criminal from
the proof like blood and hair obtained from the crime site. As every individual has
unique DNA sequence, patterns obtained from sample can be used as proof to
identify criminal. Similarly, DNA sequencing has been applied to find paternity
of the child (Yang et al. 2014).

• Population adaptation: People are adapted to diverse environmental conditions.
It is possible with NGS to catalog variations which help them to survive under
extreme environments (Long et al. 2015). Classic example of one such kind of
gene is EGLN1 whose variations are reported in literature which makes a person
able to adapt in low oxygen conditions (Aggarwal et al. 2015).

• Disease gene identification: Different gene panels for disease like cancer are
available which can detect presence of specific tumor in patients and help in
planning a proper treatment for the same.

2.7.2 Transcriptomics Applications

All transcripts expressed by the genome in different tissues at different time points
can be captured using RNA sequencing. It is now possible to map all transcribed
regions in the genome with a great precision. Currently, two important publicly
available databases, the Encyclopedia of DNA Elements (ENCODE) and Genotype-
Tissue Expression (GTEx; The GTEx Consortium 2013), are used to map functional
elements that can regulate gene expression in different human tissues. Various
applications of transcriptome data sequencing are:
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• Gene expression quantification: NGS technologies have been successfully
applied to measure gene expression of thousands of genes at any given point of
time. Through RNA sequencing, it is possible to measure expression levels of
different transcripts as well. It is now possible to find quantitative expression in
different biological conditions, in different cells as well as in different tissues.
Genes which are expressed differently in diseased conditions as compared to a
normal control can be identified using high-throughput expression quantification
techniques (Chen et al. 2012).

• Noncoding RNA quantification: Noncoding RNAs (ncRNA) which include trans-
fer RNA (tRNA), ribosomal RNA (rRNA), small nucleolar RNA, micro-RNA
(miRNA), and small interfering RNA (siRNA) are not translated into proteins.
However, ncRNA plays an important role in various posttranscriptional
modifications. It is now possible to measure ncRNA with great precision. Long
noncoding RNAs can be easily identified and are found to be associated with
various neurological diseases like Alzheimer’s and different cancer types
(Brunner et al. 2012).

• Transcript annotation: RNA sequencing is capable of detecting novel transcript
isoforms, promoter elements, and untranscribed regions which can be of func-
tional importance in the genome (Trapnell et al. 2010).

• Variant detection: Allele-specific expression detection is very useful to find
causal variations in various case control studies. It is now possible to detect
tissue-specific transcript variants in different samples accurately.

• Fusion detection: A fusion transcript is a chimeric RNA containing exons from
two or more different genes and has the potential to code for novel proteins.
Through different RNA sequencing experiments, fusion transcripts have been
found to be associated with different cancer types including breast and prostate
cancer (Bao et al. 2014).

2.7.3 Epigenetics

The study of heritable gene regulation that does not involve DNA sequence itself is
called epigenetics. Two major kinds of epigenetic modifications are DNA methyla-
tion and histone tail modifications. Epigenetic modifications are of prime importance
in oncogenesis and development. These changes decide whether the genes will be
turned on or off and ensure proper production of proteins in specific cells only
(Holliday 2006).

• DNA methylation: Methylomics is the study of genome-wide DNA methylation
patterns and their effect on gene regulation. In methylation, when methyl groups
are added to a particular gene, that gene is turned off, and no protein is produced
from it. Bisulfite sequencing is done to determine methylation patterns of DNA.
Bisulfite treatment of DNA converts cytosine to uracil but leaves
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5-methylcytosine residues unaffected. Therefore, only methylated residues will
be retained. The Human Epigenome Project is an initiative to identify, catalog,
and interpret genome-wide methylation patterns of all human genes in all major
tissues (Eckhardt et al. 2004). Different methylation clusters are found to be
present in cancer patients as compared to control (Soto et al. 2016).

• Histone tail modification: Histones are the proteins which package and order the
DNA into structural units called nucleosomes. Chromatin immunoprecipitation
sequencing (Chip-Seq) is used to analyze histone modifications which determine
the accessibility of DNA to transcriptional regulators. It is widely used in gene
regulatory networks to find transcription factors and any other protein interactions
with DNA on a genome-wide scale. Transcription factors controlling the progres-
sion of disease in an individual have been identified through Chip-Seq; for
example, GABP is a transcription factor and is a promoter for TERT gene and
is found to be associated with multiple cancer types (Messier et al. 2016).

2.7.4 Metagenomics

Metagenomics is the branch of genomics which involves genetic analysis of micro-
bial genomes contained within an environmental sample. NGS-based metagenome
analysis has revolutionized our understanding of ecology around us. To reveal the
importance of microorganisms that surrounds us, various international efforts such
as the Human Microbiome Project (HMP) (Turnbaugh et al. 2007) and Human Gut
Microbiome Project have been initiated worldwide. The main goal of all these efforts
is to find out the association of changes in the human microbiome with human health
and diseases. Various studies have shown the applications of metagenomics to
microbial ecology and industrial biotechnology.

• Human health: Diet and nutrition intake are the most important identifiers of
human health and both govern human microbiome too. Gut microbiome plays a
major role in metabolic, nutritional, physiological, and immunological processes
in the human body. Studies have shown that perturbations in intestinal
microbiome have been associated with various diseases including obesity (Flint
et al. 2014), inflammatory bowel syndrome (Kostic et al. 2014), and celiac disease
(David Al Dulaimi 2015).

• Bioremediation: Biosurfactants are low molecular weight surface-active
compounds mainly produced by bacteria, yeast, and fungi. They are used in
agriculture for plant pathogen elimination and for increasing the bioavailability
of nutrients for beneficial plant microbes. As metagenomics is culture-
independent technique, it is used these days to find novel compounds associated
with natural ecosystems (Edwards and Kjellerup 2013).

• Ecology: Microorganisms play an integral part in history and function of life on
earth. Studies in metagenomics have provided valuable insights into the
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functional ecology of the microbial community. For example, bacterial
communities found in defecations of sea lions in Australia suggest that nutrient-
rich feces of these lions are an important nutrient source for coastal ecosystems
(Lavery et al. 2012).

• Biofuel: Due to diminishing fossil fuel reserves and increased CO2 accumulation
in the atmosphere, biofuels have been viewed as an alternative for sustainability
and protecting the environment. Biofuels are fuels derived from biomass conver-
sion like in the conversion of cellulose into cellulosic ethanol (Morrison et al.
2009). Lignocellulose represents the largest terrestrial carbon source on earth, but
cannot be broken down without a combination of acids, industrial chemicals, and
heat. Various fungi and bacteria have been identified that can enzymatically
decompose lignocellulose to its monomeric compounds for use as carbon sources.
Various metagenomic studies have identified the key genes and enzymes
involved in lignocellulose digestion and conversion into biofuels (Chandel and
Singh 2011; Hess et al. 2011; Xing et al. 2012).

NGS technologies are now considered a routine part in multi-omics research.
Reduction in cost of sequencing per base facilitated sequencing technologies at
different genomic centers and private companies. Low-cost and high-throughput
methods are providing physicians with the tools to translate genomic knowledge into
clinical practice. Due to current NGS technologies, major advances are possible in
many areas especially in understanding and diagnosis of complex and rare diseases.
As our understanding of genome variability increases, functional annotation of the
genome will also rise. However, no advancements will prove fruitful without
developing efficient algorithms which can transform sequence reads and data into
meaningful information. There is a need for innovative bioinformatics methods for
analysis and infrastructure to store available wealth of data. A year-by-year rise in
the number of publications related to the field of NGS is a proof of its wide
applicability and advancements. In the coming years, novel sequencing solutions
are expected from additional sequencing providers.
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Sequence Alignment 3
Benu Atri and Olivier Lichtarge

3.1 Introduction

Life originated on Earth about 3.5 billion years ago and evolved from the last
universal common ancestor (LUCA) through processes of speciation and extinction
(Fig. 3.1). The diversity that we see around us today is a result of years of evolution.
A shared ancestry is evident in the morphological, biochemical, and genetic
similarities of the organisms as we see today. Based on this observation, Charles
Darwin, in 1859, submitted his groundbreaking theory of evolution by natural
selection, in his book On the Origin of Species. Natural selection (Darwin 1859)
(Fig. 3.2), mutation theory (de Vries 1900–1903), and the laws of inheritance
(Mendel 1865; rediscovered by Correns 1950), along with the works of many
notable geneticists, laid the foundation of what would later become the modern
evolutionary synthesis or modern synthesis theory, which provides a recognized
explanation of evolution. In the simplest of terms, evolution (species or macromo-
lecular level) can be defined as the change in heritable traits of living organisms over
generations. An updated version of the universal tree of life is presented by
Forterre (2015).

Application of Darwin’s speciation concept to a molecular level gave rise to the
field of molecular evolution, which is the study of variations and evolution in the
molecular components of a cell, e.g., DNA, RNA, and proteins (Zuckerland and
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Pauling 1965). These variations are usually the result of an accumulation of
mutations, which are rightly called the raw material for evolution (Fig. 3.3). Molec-
ular evolution studies brought to light that biological sequences (DNA, RNA,
proteins) contain important evolutionary information, revealed by comparison.
Technological breakthroughs such as DNA sequencing (Sanger et al. 1977)

Fig. 3.1 The tree of life. (Adapted from Woese et al. 1990)

Natural Selection Algorithm

If, during the long course of ages and under varying conditions of life, organic beings vary at all 
in the several parts of their organization, and I think this cannot be disputed; if there be, owing to 
the high geometric powers of increase of each species, at some age, season or year, a severe 
struggle for life, and this certainly cannot be disputed; then, considering the infinite complexity of 
the relations of all organic beings to each other and to their conditions of existence, causing an 
infinite variety in structure, constitution, and habits, to be advantageous to them, I think it would 
be a most extraordinary fact if no variation ever had occurred useful to each being’s own 
welfare, in the same way as so many variations have occurred useful to man. But if variations 
useful to any organic being do occur, assuredly individuals thus characterized will have the best 
chance of being preserved in the struggle for life; and from the strong principle of inheritance 
they will tend to produce offspring similarly characterized. This principle of preservation, I have 
called, for the sake of brevity, Natural Selection.

Fig. 3.2 Charles Darwin submitted his theory of evolution by natural selection. Darwin and Alfred
Russel Wallace (On the Origin of Species, 1859) proposed a common descent and the tree of life,
wherein divergence between species could have emerged from a common ancestor
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followed. Eventually, the deluge of data from sequencing and experiments made
manual comparison impractical and slow, therefore requiring automation. Remark-
able feats in computational biology (Hagen 2000) have made possible not only the
storage and retrieval of large sequence data (Fig. 3.4) but also simultaneous

Mutations Despite strict proofreading and error-checking mechanisms, every once in a while,

there is an error in the genetic material due to failed DNA replication machinery or environmental 

mutagens. A mutation is a random event that can be in a single nucleotide(point mutation), or an 

insertion, deletion, inversion, duplication, or translocation. In order to be hereditary, a mutation 
needs to occur in the germ line cells and can have a neutral, deleterious or even abeneficial effect 

on the organism. Mutations are considered the raw materials of evolution as they bring about

generation of new phenotypes, which could affect the fitness of an organism. Mutations occur 

randomly. If a mutation affects the fitness of the organism in a positive manner, it leads to 

adaptation on exposure to stress or selection.

Type of Point Mutations Description

Substitutions

▪   Synonymous
▪   Non-synonymous

Single nucleotide change

▪   Unaltered gene product
▪   Different amino acid (Missense) or a STOP codon (Nonsense) 
     or a STOP codon to an amino acid leading to a transcription 
     termination error

Transitions Purine or pyrimidine change to another purine or pyrimidine

Transversions Purine to a pyrimidine or vice versa

Indels Insertion or deletion of one or more bases 

Frameshifts
Alteration in the codon reading frame due to indels leading to 
incorrect parsing of the genetic message

A single DNA substitution that occurs commonly in a population is termed a Single Nucleotide 
Polymorphism or SNP (pronounced snip) where a single nucleotide differs among members of the 
population. SNPs make for the most frequent type of variants in the human genome 
(https://ghr.nlm.nih.gov/primer/genomicresearch/snp).

Fig. 3.3 Genetic variations are the genotypic differences between individuals of a population or
between different populations. In order to be hereditary, these variations must occur in a germ line
cell. There are several sources of genetic variations and they can occur at the genomic, chromo-
somal, or genic level
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comparative analyses of many sequences. The differences in sequences due to
mutations over time can be used to infer relationships between the sequences and
their common ancestor.

Sequences evolve over time due to an accumulation of mutations causing them to
diverge from one another (Alberts et al. 2002). Despite this divergence, biological
sequences can still maintain enough similarity, which can be used to compare them
and map their evolutionary history.

In this chapter, we will go over terminology, parts of and various ways to perform
sequence comparison (sequence alignment), as well as how to find the optimal
alignment for two or multiple sequences.

3.2 Sequence Alignment

The first step in annotating a new gene is to sequence it and then infer its function by
finding similarities with genes of known function. For that, sequence alignment is
performed, which involves arranging two or more sequences into rows, with
characters aligned in successive columns (Fig. 3.5). Each element in an alignment
is a match, a mismatch, or a gap. When a residue is aligned to an identical (or similar)
residue, it is a match. Mismatches represent substitutions. If a position (column) is
conserved (in multiple sequences) or has only conservative substitutions, it strongly
suggests a functional or structural role of that position or region.

DNA Sequence Databases Raw sequence data generated from laboratories are directly  
submitted to the three primary databases developed as repositories for different types of 

biological sequences: the National Center for Biotechnology Information (NCBI) database 

(www.ncbi.nlm.nih.gov/), the European Molecular Biology Laboratory (EMBL) database 

(www.ebi.ac.uk/embl/), and the DNA Data Bank of Japan (DDBJ) database

(www.ddbj.nig.ac.jp/). Sequence retrieval requires unique identifier called an Accession 

number. For example, the Escherichia coli K-12 Genome accession number is NC_000913     

(GenBank) or GI number, species name, protein’s name, and author information or 

keyword combinations. GenBank and EMBL have their own individual flatfile formats. 

Other formats are plain text and FASTA, pronounced as fast ‘A’. One can easily switch file 

formats using web-based programs available at http://www.ebi.ac.uk/Tools/sfc/ 

Fig. 3.4 DNA sequence databases are repositories of different types of nucleotide sequences. All
published sequence data are submitted to one of these three databases. These three organizations
exchange data on a daily basis, so they essentially contain the same data. (International Nucleotide
Sequence Database Collaboration, INSDC)
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3.2.1 Sequence Identity, Sequence Similarity, and Sequence
Homology

Sequence identity (percent identity) is the number of identical bases (DNA) or
residues (amino acids) in an alignment at the same positions, relative to the length
of the sequence:

Sequence identity ¼ Number of identical bases or residues
min length i; length jð Þ � 100 ð3:1Þ

Identity is not a very sensitive and reliable measure (Pearson 2014) because
identity calculations do not include gaps. Another reason is that the shorter of the
two sequences is used to measure identity, and, therefore, it is not transitive, i.e., if
A ¼ B and B ¼ C, then A does not necessarily equal C (Fig. 3.6).

Sequence similarity refers to similar residues/amino acids at corresponding
positions (column of an alignment). In nucleotide sequences, sequence identity
and sequence similarity mean the same. In proteins, amino acids can be more or
less similar based on their physical, biochemical, functional, and structural
properties. Similar substitutions (Table 3.1) in a protein may not affect the functional
and structural properties of the protein. The protein tolerates such substitutions well.
In an alignment, similar substitutions are not penalized as strictly when scoring the
alignment. Sequence similarity is a measure of evolutionary distance and is often
confused with sequence homology.

Sequence homology refers to having a common origin. Homology is an absolute
qualitative term, i.e., it is either present or absent. Just as a bird’s wing is homolo-
gous to a human hand (and not highly homologous), there is no gradient or percent or

Fig. 3.5 A sequence alignment is the arrangement of the biological sequences to identify regions
of similarity that could be of functional, structural, or evolutionary importance. Shown above is a
domain of the sequence of tumor suppressor protein p53 (F6SSG7–1) aligned to two of its
homologs and visualized using the MView program (EMBL). Color coding, in this case, is based
on identity and property of the residue and can be changed depending on the alignment
program used

Fig. 3.6 Sequence identity takes into consideration the smaller of the two sequences compared,
which could be unreliable. On the left are three hypothetical nucleotide sequences, i, j, and k. If i is
identical to j and i is identical to k, it is not necessary that j is identical to k. In this case, identity (i,
j) ¼ 100%, identity (i, k) ¼ 100%, but identity ( j, k) � 71%
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degree of homology. The term homology is often incorrectly used quantitatively as
X% homology or high homology. Since homology refers to common ancestry, two
species cannot have a 50% common ancestor. This, however, needs to be distin-
guished from the specific case of large proteins where some domains of the protein
share homology with a common ancestor and some do not.

Additionally, all inferred homology is just that inferred. It is a speculation. There
is no way to confirm the common ancestor two sequences share. But we can use
sequence identity or similarity to infer homology with higher confidence. Usually, a
high sequence identity or similarity indicates that the two sequences did not originate
independently of each other and, therefore, are possibly homologous (Koonin and
Galperin 2003). Homologous sequences can be orthologs (genes or proteins from the
same ancestor separated by a speciation event) or paralogs (genes/proteins within the
same species separated by a duplication event).

3.2.2 Parts of a Sequence Alignment

Query The sequence of interest, which is used to fetch and compare one or more
homologous sequences. In any sequence analysis, identification of homologous
sequences is usually the first step. A query (and its homologs) could be a complete
sequence or short substring of a long sequence.

Sequence(s) Two (pairwise) or more (multiple) nucleotide or protein sequences

Substitution Scores Sum of scores for aligned pairs of characters. For substitution
scores (for mismatches), we refer to substitution matrices.

Gaps Gaps are introduced to maximize the matches in any column and obtain an
optimal alignment. Gaps are a result of indels in sequences introduced over evolu-
tionary time. On deleting a residue from one sequence, its absence generates a gap in
the row for that sequence. When a residue gets inserted in one sequence, its presence
generates a gap in the opposite sequence(s) Fig. 3.7.

A gap is represented by one or more “�” characters and can be placed in any
sequence (query or homolog) to make the alignment optimal.

Table 3.1 Substitution to a similar amino acid is not penalized as strictly as a mismatch

Side chain Property Similar amino acids

Hydrophilic Positive Lysine, arginine

Negative Aspartic acid, glutamic acid

Hydrophobic Aliphatic Isoleucine, leucine, valine, alanine

Aromatic Phenylalanine, tryptophan

Tools for exploring different properties of amino acids as well as commonly occurring substitutions
are available via the NCBI http://www.ncbi.nlm.nih.gov/Class/Structure/aa/aa_explorer.cgi
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Gap Penalty Sum of gap opening and gap extension scores (See Sect. 3.2.2).

3.2.3 Significance of Sequence Alignment

Sequence alignment is a useful tool to identify functional, structural, and evolution-
ary information from biological sequences. An alignment can reveal levels of
similarity between sequences and a possible common ancestor (homology). Using
sequence alignment, one can identify similar regions or motifs (Fig. 3.8) and similar
functions or predict the 3D structure of proteins. Other applications include genome
analysis, RNA secondary structure prediction, and database searching.

3.3 Achieving an Optimal Alignment

To achieve an optimal sequence alignment suited for our biological problem, we
should answer the following questions leaving little room for assumptions as
possible:

What do we want to align?
What is the best scoring strategy?
Which method to use?

3.3.1 What Kind of Sequences Do We Want to Align?

It is important to understand the problem at hand as it will help us decide whether we
are looking to align entire sequences (global) or simply substrings/subsequences/
motifs of the sequences (local).

Fig. 3.7 Introducing gaps
can improve an alignment
thereby revealing otherwise
buried domains of similarity

Fig. 3.8 In this example of a
multiple sequence alignment,
most evolutionarily conserved
residue columns are
highlighted red, and ones with
similar residue substitutions
are highlighted blue
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Global sequence alignment (Fig. 3.9) covers the entire length of sequences
involved when the sequences are roughly the same length and are reasonably similar.
They are used to identify similar DNA and protein sequences (homologs) that
suggest a similar biological role as well as, in the case of proteins, to identify similar
3D structures.

Local sequence alignments cover parts of the sequence and are used to compare
small segments of all possible lengths when sequences have domains or regions of
similarity and have different overall lengths. Local alignments are useful for identi-
fication of common motifs or domains in DNA and protein sequences that globally
appear different.

3.3.2 What Is the Best Scoring Strategy?

Sequence alignment score is the column-by-column sum of the aligned letters, which
could be matches or mismatches, using scoring or substitution matrices. Gaps in an
alignment incur a gap penalty score subtracted from the total.

3.3.2.1 Substitution Matrices
Substitution matrices serve as lookup tables with substitution scores for aligning a
pair of residues. A substitution matrix consists of rates or probabilities at which one
amino acid (or nucleotide) substitutes or mutates into another.

For nucleotides, the likelihood of substitution between bases varies, e.g.,
transitions (between two purines or two pyrimidines) are more frequent than
transversions (between a purine and a pyrimidine). Nucleotide scoring matrices
comprise of two parameters – mismatch penalty and gap (or indel) penalty.

Amino acid substitution matrices are probability ratios, usually written in the
form of a log-likelihood ratio (or log odds ratio), defined as the likelihood of one
amino acid substituting to another (observed over the expected) based on available
mutation data:

Log odds ratio ¼ log2
observed
expected

� �
ð3:2Þ

Fig. 3.9 Global alignments (a) find similarity over the whole length of the sequences, while local
alignments (b) focus on identifying domains of similarity
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In a substitution matrix (Fig. 3.10), amino acids are written across the top and
along the side, and each cell in the matrix is a probability score of how one amino
acid (row) would substitute to the other (column). The likelihood information about
which amino acid substitutions are most and least common allows us to construct
such matrices and score alignments. The two most common amino acid substitution
matrices are the point accepted mutation (PAM) and blocks substitution matrix
(BLOSUM).

Point Accepted Mutation or PAM Matrices Developed using 71 families of
closely related proteins containing ~1500 observed mutations (Dayhoff and
Schwartz 1978). These were used to calculate mutation rates, which in turn were
used to model evolutionary relationships. The proteins were selected based on high

Fig. 3.10 A PAMmatrix has 20 rows and 20 columns – each representing 1 of the 20 amino acids.
Each cell at position (i, j) in a PAM matrix is the probability of the amino acid in the row, i, to be
substituted by the amino acid in column j, over a given evolutionary time. PAM can be treated as a
unit of evolution, defined as 1 accepted point mutation per 100 amino acids, after a particular
evolutionary interval/distance. Based on this evolutionary distance, there can be different PAM
matrices. Usually this distance is denoted by a number associated with the acronym PAM, e.g.,
PAM1 refers to a substitution matrix of proteins with an evolutionary distance of 1% mutation/
position. Most commonly, PAM250 is used as the default matrix in similarity search programs
(Dayhoff and Schwartz 1978)
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sequence identity (85%) to ensure that the mutation observed was one mutation only
and not the result of successive mutations. The term point accepted mutation refers
to a point mutation of one amino acid to another that does not change the function of
the protein significantly and is accepted by natural selection. For scoring protein
sequence alignments, the amino acid substitution probabilities are reported in a
normalized, logarithmic form. Therefore, PAM matrices are log odds matrices
(Fig. 3.10).

Blocks Substitution Matrix or BLOSUM Based on local multiple alignments of
evolutionarily distant proteins, Henikoff and Henikoff (1992) developed a series of
blocks substitution matrices using 2000 blocks of aligned sequence segments
characterizing more than 500 groups of related proteins.

To generate a BLOSUM matrix, multiple alignments of short regions of related
sequences are first grouped. In each of these alignments, the sequences similar at
some threshold percent identity are grouped and averaged. Such a group of
sequences is called a block. This grouping is done to reduce the bias produced by
using closely related sequences. After that, substitution frequencies for all pairs of
amino acids are calculated, thereby generating log odds for BLOSUM. Instead of
looking at the whole, the focus is on blocks of conserved sequences. These blocks
have functional or structural importance. Usually wriiten as BLOSUMX, where the
X represents the threshold percent identity of sequences clustered in that block. For
example, in the BLOSUM62 matrix, the sequences grouped in a block are 62%
identical. BLOSUM62 is the default matrix to score the alignment in most similarity
search tools. Selection of scoring matrix depends on the nature of sequences to be
aligned (Fig. 3.11).

Fig. 3.11 How to choose a substitution matrix?
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3.3.2.2 Gap Penalties
For best alignments, possible insertions and deletions must be considered. Since
indels are expected to occur less often than substitutions, an introduction of a gap in a
sequence incurs a penalty, known as the gap penalty. This penalty is to ensure that
the total number of gaps does not get out of hand. Gap penalties are subtracted from
the alignment score. When a new gap is opened, a gap opening penalty is incurred. If
the gap is extended, a gap extension penalty is considered (Fig. 3.12). Smith and
Waterman (1981) argued that a single mutational event creating an insertion (and,
therefore, a gap) of x number of adjacent residues is more likely than many
nonadjacent mutations.

The following equation represents the simplest implementation of gap scores:

Gtotal ¼ Go þ Ge:L ð3:3Þ
Gtotal ¼ Total gap penalty, Go ¼ Gap opening penalty, Ge ¼ Gap extension

penalty, L ¼ total number of gaps – 1

3.3.3 Which Alignment Method to Use?

The choice of alignment method to use for sequence analysis depends on the dataset,
i.e., whether we want to align two or multiple sequences.

3.3.3.1 Pairwise Sequence Alignment
It refers to the alignment of two sequences. The top three techniques for generating
pairwise alignments are dot-matrix methods, dynamic programming, and word
methods.

Dot Matrix (Gibbs and McIntyre 1970)
A dot-matrix plot is a 2D matrix with each of the two sequences written along the top
row and left column (Fig. 3.13). A match between two characters is shown by a dot
(hence the name). A line along the diagonal reflects that the pair of sequences has
high similarity.

A dot-matrix plot can be used to identify regions of similarity, indels, repeats, and
inverted repeats. Moreover, a dot plot can also be used to detect self-complementary

Fig. 3.12 In this example, it is more likely that an insertion of CGTG occurred once in the
sequence on top, rather than four individual insertions. That is why a gap extension penalty is less
than a gap opening penalty. It also encourages algorithms to introduce gaps of more than one length,
if that improves the alignment
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regions in an RNA sequence. However, dot plots are limited to only two sequences,
and there is an inherent noise which can be reduced by using a sliding window.

Dynamic Programming
Dynamic programming, a very popular bioinformatics optimization method,
involves dividing a large problem into smaller subproblems and then using the
individual solutions to reconstruct the solution for the larger problem. Dynamic
programming algorithms also find use in gene recognition, RNA structure
prediction, etc.

Needleman-Wunsch Dynamic Programming Algorithm for Global Alignment
Needleman and Wunsch (1970) applied dynamic programming for the first time to
solve a biological problem, specifically, biological sequence alignment. The algo-
rithm consists of three main steps:

Matrix Initialization
Consider two sequences AGACTAGT and CGAGACGT, and create a 2D matrix or
grid as shown with each of the two sequences written across the top starting at the
third column and down along the left side starting at the third row. In order to
initialize the matrix, C, a scoring system needs to be established for the matches,
mismatches, and penalty for gaps (Fig. 3.14). One such scoring system could be
matches ¼ 1, mismatches ¼ �1, and gaps ¼ �1.

To initialize, place a 0 in the cell at second row, second column or C (2,2).

Fig. 3.13 A dot matrix
provides a useful visualization
tool in the form of a 2D
matrix, for comparing a
sequence against itself (for
self-complementary regions)
or two sequences against each
other (for similarity, indels,
repeats, and inverted repeats).
In this example, the matrix
compares yes-associated
protein 1 from two species –
mouse and human. The
prominent diagonal reflects
high sequence similarity
between the two sequences
(www.bioinformatics.nl)
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Filling the Matrix
Next, move through the matrix row by row filling the cells. For the second row and
second column (after the sequences), follow this formula:

C i; jð Þ ¼ max
C i� 1; j� 1ð Þ þ S ai; b j

� �
,

C i� 1; jð Þ � g
C i; j� 1ð Þ � g

8<
:

9=
;, ð3:4Þ

where

i ¼ row, j ¼ column
S(ai, bj) ¼ match/mismatch score between column i of sequence a and row j of

sequence b
g ¼ gap penalty

For i ¼ 2, j ¼ 2 since there is no i�1, j or i, j�1, take C (2,2) as 0, and fill the
second row and second column as shown. Add a � 1 for every shift to the right for
the second row and a � 1 for every down in the second column (Fig. 3.14b, c).

Traceback
Trace back the steps from the last cell (lowermost right) of the matrix back to the 0 at
the origin, following the arrows. If two steps can be taken, both can be considered to
generate different alignments. A diagonal arrow is a match (or mismatch), an arrow
going up is a gap in the sequence on the top, and an arrow going left will introduce a
gap in the sequence on the left (Fig. 3.14d). Based on the traceback, the optimal
alignment generated is shown in Fig. 3.14e.

Fig. 3.14 (a–e) Needleman-Wunsch algorithm
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Smith-Waterman Dynamic Programming Algorithm for Local Alignment
Smith and Waterman (1981) developed a dynamic programming approach for local
alignments with a few differences from the Needleman-Wunsch method:

All elements of the first column and the first row are set to 0.
Traceback starts at the cell with the highest score.

All negative cells are set to 0, which is how best aligned local segments show
up. In order to do this, the formula for calculation of each C (i, j) value includes 0 as
one of the options:

C i; jð Þ ¼ max

0,
C i� 1; j� 1ð Þ þ S ai; b j

� �
,

C i� 1; jð Þ � g
C i; j� 1ð Þ � g

8>><
>>:

9>>=
>>;
, ð3:5Þ

Word Based
These methods are also known as k-tup or k-tuple methods, designed to be more
efficient than dot matrix or dynamic programming methods but do not necessarily
find the most optimal alignments. Therefore, these methods find use in large
database searching. As the name suggests, word-based methods use words or
windows of short (k-length), nonoverlapping subsequences in the query sequence,
which are matched to each of the sequence in the database. Two of the most
commonly used implementations of the word-based methods are FASTA and
BLAST.

FASTA David J. Lipman and William R. Pearson developed FASTA (pronounced
FAST-“A”; Lipman and Pearson 1985) as a sequence alignment software. The
FASTA format (where the file description starts with a “>”), which is now used
significantly in bioinformatics, was first defined in this software.

FASTA takes a DNA or protein sequence as input and searches sequence
databases using local alignment to find a match. To increase the speed of searching,
FASTA employs a word search to narrow down segments of hits (located close to
one another). K-tup specifies the size of the word and controls the sensitivity and
speed of the search. A larger word size or k-tup will generate fewer hits (or matches),
and a smaller k-tup will lead to a more sensitive search, e.g., a k-tup of 3 for
BIOLOGY would generate the following words:

BIO
IOL
OLO
LOG
OGY
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The program then looks for segments with clusters of nearby hits and scrutinizes
them for a complete match. After a word-by-word search, FASTA goes on to
perform a more detailed and optimized search based on a local alignment and
Smith-Waterman algorithm for a query sequence to every sequence in the database.

FASTA Programs
Initially developed for protein sequence similarity search, the FASTA programs
(collective term for the suite) are now used to find regions of local or global
similarity between proteins or DNA along with the statistical significance of
matches.

A complete list of FASTA programs and a web-based server can be found at
http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml.

BLAST Basic Local Alignment Search Tool is also an algorithm for comparing
nucleotide and/or protein sequences developed by Stephen Altschul, Warren Gish,
Webb Miller, Eugene Myers, and David J. Lipman, and their publication is one of
most cited (over 64,000 citations) in the field of bioinformatics (Altschul et al. 1990).
BLAST was developed to be faster than FASTA without compromising sensitivity.
However, unlike Smith-Waterman, BLAST may not always yield the most optimal
alignments. Like other methods, BLAST compares a query to a large database of
sequences to detect homologs or a set of sequences that have a certain level of
similarity with the query. A large number of databases are available to customize
searches; for example, one can choose to restrict the search to a single type of
organism. To make the right choice, the user should compare methodologies and
software available and choose the one best suited to answer their biological
questions within the constraints of the assumptions and limitations of the
method used.

Input (or query) is a FASTA-formatted sequence, accession number, or GI
number. The different tabs on the top – blastn, blastp, blastx, tblastn, and tblastx –

refer to various types of BLAST searches. Once complete, a BLAST report is
generated. One or more sequences can be downloaded in different formats, to
perform multiple sequence alignments or generate a phylogenetic tree.

Types of Scores in BLAST

Score, S: Describes the overall quality of the alignment between the query and the
hit. Higher scores correspond to a higher-quality alignment and can be used to
infer similarity.

Bit-Score: It is the log scale normalized version of raw score S, reported in units
called bits:

S0 ¼ λS� lnK
ln 2

ð3:6Þ
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Important Difference Between Score and Bit-Score
Raw scores are dependent on the size of the search space; therefore because of scale
variations, raw scores of different alignments cannot be compared. On the other
hand, a bit-score is normalized for the scoring system and, therefore, does not
depend on the size of the search space. Bit-scores, therefore, can be used to compare
different alignments from various searches.

E-Value The number of BLAST hits expected by chance.
A higher score means a sequence is less likely to have been picked up randomly;

therefore, there is a higher possibility of biologically meaningful relationships
between the sequences.

The E-value is calculated as follows:

E ¼ Kmne�λS ð3:7Þ
where m, n ¼ sequence lengths

K, λ ¼ parameters that act as scaling depends on the scoring system (substitution
matrix), gap penalties, and the size of the search space. The most widely used
substitution matrix is BLOSUM62.

E-value is used to find whether an alignment is meaningful. E-value, however, is
not homology. BLAST does not predict homology, but can be used to infer homol-
ogy. E-value depends on the query and the size of the database, so no specific E-
value could be used to determine homology or significance of hits. There is no gold
standard cutoff or universal threshold. Every search is different, and user must
decide which E-value to consider best based on their query, goals, and the biological
question asked. It is why two E-values cannot be compared when searching different
databases, i.e., an E-value from one query against a certain database cannot be
compared to or used to draw similar inferences when using a different database. If
the E-value is less than 1e-179, it is usually reported as 0.0.

Relationship between score and E-value: The higher the score S, the lower is the
E-value.

Advantages of BLAST

It detects local regions as well as global alignments.
It can be used to infer homology.
It can provide insights into the function of new/uncharacterized proteins.
It is faster than FASTA without losing sensitivity.
It is worth stating here that the underlying algorithms for FASTA and BLAST have a

long history of development and use. New variants continue to be added to the
FASTA and BLAST suites. These methods are constantly evolving with time and
continue to find wider applications in biology and bioinformatics.

It is important to keep in mind that the results of any searches made using the above
tools will depend upon the query, databases used, and the goal of research.
Different inputs will result in different results.
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3.3.3.2 Multiple Sequence Alignment
Multiple sequence alignment (MSA) is an alignment of more than two sequences
and is most commonly used to study similarity/differences between several
homologs. MSA methods attempt to find the best alignment between all sequences,
thereby detecting conserved regions, which could have critical structural and func-
tional importance including catalytic sites of enzymes.

MSAs are used as inputs for the construction of phylogenetic trees. For pairwise
sequence alignment, coming up with a scoring system with matches, mismatches,
and penalties for gaps is pretty straightforward. However, scoring gets complicated
in MSA. One way to score is to find the sum of pairwise alignment scores of pairs of
columns. MSA algorithms have two most important characteristics that should be
considered while making a choice of which method to use: accuracy and computa-
tional complexity (running time as well as space requirements).

Applications

Multiple sequence alignments reveal evolutionary history by allowing us to find
biological importance in a set of sequences, which are not necessarily close.

Detect regions of similarity or variability between members of a protein family.
Critical residue identification and making significant structural and functional

inferences.
Serve as the first step in most phylogenetic reconstructions.
The two approaches to generating multiple sequence alignments include progressive

and iterative MSAs. Progressive MSA starts with a single sequence and progres-
sively adds the others to the alignment, while iterative MSA realigns the
sequences during multiple iterations of the process.

Progressive Methods (Feng and Doolittle 1987)
These methods have the underlying assumption that a high level of similarity
between sequences indicates evolutionary relatedness. They are also sometimes
known as hierarchical or tree-based methods.

Steps
Using Needleman-Wunsch algorithm for global alignment, calculate evolutionary
distance between every pair of sequences.

Generate a reference phylogenetic tree or a guide tree.
Starting from the two closest branches of this tree, generate a consensus sequence,

which is then used as a proxy for the pair of branches.
Progressively (hence the name), this is repeated for the next closest pair of

branches until all sequences of the query set have been added to the consensus.
Usually computed between a query and a subject, pairwise alignments can also
include a query-query, query-consensus, or consensus-consensus pairs of sequences.

The choice of the two closest branches early on in the consensus calculation has a
higher weight in the overall alignment quality and, therefore, should be made very
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carefully. If distant branches are included before all close branches have been
included, the overall quality of the alignment will go down drastically. The reference
phylogenetic tree, therefore, serves as a good way to guarantee that this mistake is
not made.

Advantages: Faster and more efficient than dynamic programming methods
Disadvantages: Heuristic and needs high accuracy

Error propagation: Since, this method is progressive in nature, errors can get
propagated.

Most popular software that employ progressive methods of multiple sequence
alignment include Clustal suite, MUSCLE, T-Coffee, and MAFFT.

Clustal (Higgins and Sharp 1988) The Clustal suite is the most commonly used
method for MSA. It includes several versions of Clustal which is the original version
for progressive alignment based on a reference guide tree. Some incarnations
include:

Clustal V – serves to combine different phases of progressive alignment.
Clustal W (Thompson 1994) – in addition to what Clustal V does, this adds other

features like sequence weighting, position-specific gap penalties, and choice of
weight matrix to be used. In Clustal W, sequences with high similarity are placed
close on the reference/guide tree and, therefore, get added to the alignment and
consensus sequences much earlier than the more divergent sequences.

Higgins and Sharp noticed that adding too many similar sequences early on can
lead to a bias in the way the reference tree is generated. In an attempt to correct this,
sequence weighting was introduced. Groups of similar sequences are given lower
weights as compared to groups of more different/divergent sequences. A user has the
choice of substitution matrices PAM or BLOSUM as well as the freedom to adjust
gap penalties (based on position, content, and length of sequences).

Input NBRF/PIR, FASTA, EMBL/Swiss-Prot, Clustal, GCC/MSF, etc.

Steps
Perform progressive pairwise alignment.

Create a guide/reference tree.
Use the tree to create a multiple sequence alignment.

Output Format Clustal, NBRF/PIR, GCG/MSF, PHYLIP, GDE, or NEXUS.
Available at http://www.ebi.ac.uk/Tools/msa/clustalw2/
Clustal Omega (Sievers et al. 2011) is a new high-quality aligner that uses seeded

guide trees and hidden Markov model profile-profile techniques to generate
alignments for multiple sequences. Input can be GCG, FASTA, EMBL, GenBank,
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PHYLIP, etc., and output is an alignment in Clustal, FASTA, MSF, NEXUS, etc. It
is available at http://www.ebi.ac.uk/Tools/msa/clustalo/.

The European Bioinformatics Institute (EBI) provides access to a large number of
databases and analysis tools. Detailed overview of all EMBL-EBI services are
presented in Li et al. (2015) and McWilliam et al. (2013).

MUSCLE (Edgar 2004) MUSCLE stands for MUltiple Sequence Comparison by
Log-Expectation. MUSCLE is used to obtain better alignments than Clustal, which
depends on the options chosen. For larger alignments, MUSCLE is a slightly faster
method. It uses two distance measures for a pair of sequences: a kmer distance (for
an unaligned pair) and the Kimura distance (for an aligned pair).

Input FASTA format

Steps
Draft Progressive Stage: It produces a rough draft of a multiple alignment from a
guide tree with more stress on speed. The kmer distance is computed for each pair of
input sequences.

Improved Progressive Stage: The tree is re-estimated using Kimura distance to
avoid any errors stemming from approximated k-mer distance measure. Kimura
distance is more accurate but requires an alignment and produces a better tree.

Refinement Stage: Refines the alignment produced above.

Output FASTA, Clustal W, MSF, and HTML formats.
Available at http://www.drive5.com/muscle.
T-Coffee (Notredame et al. 2000) T-Coffee stands for Tree-based Consistency

Objective Function for alignment Evaluation. Progressive alignment methods tend
to suffer from errors because of the greedy approach of including all sequences one
by one, progressively. T-Coffee was developed as an implementation of the progres-
sive alignment method, which could correct the propagation of errors, and on
average produces more accurate alignments than the other methods. First, it creates
a whole library of global as well as local pairwise sequences to guide the multiple
sequence alignment. Next is an optimization step that is used to find the best fitting
multiple sequence alignment. However, in an attempt to correct for errors, this
method sacrifices speed and, therefore, is not considered suitable for larger datasets.

Input FASTA and PIR are supported.

Output As a default, the output is generated in the aln format (Clustal) but also
produces other formats.

Available at http://www.tcoffee.org/
MAFFT (Katoh et al. 2002) Acronym for Multiple Alignment using Fast Fourier

Transform. MAFFT is a multiple sequence alignment program for DNA and protein
sequences.
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Input FASTA format
MAFFT identifies homologous regions by using fast Fourier transform where an

amino acid sequence is changed to a sequence consisting of each amino acid’s
volume and polarity values. This method uses a simplified scoring system to reduce
CPU time and works well with distant sequences or those with large indels. This
method continues to go through improvements in accuracy, speed, and applications
(Katoh and Standley 2013).

Available at: http://mafft.cbrc.jp/alignment/software/

Iterative Methods
Iterative methods use multiple iterations to realign the sequence several times. They
start with a pairwise realignment of sequences within subgroups and then realign the
subgroups. Subgroups are chosen based on sequence relationships as seen on the
guide tree or randomly. Iterative methods try to correct for the overdependence of
progressive methods on the accuracy of the seed pairwise alignment. Most conven-
tional approaches to iterative multiple sequence alignment use machine learning
algorithms such as genetic algorithms and hidden Markov models (Churchill 1989;
Baldi et al. 1994; Krogh et al. 1994) and have been extensively reviewed (Thompson
et al. 2011).

3.3.3.3 Whole Genome Alignment and Visualization
Whole genome alignment (WGA) is the alignment of two or more genomes at DNA
level. It is an amalgamation of linear sequence alignment and gene ortholog
predictions. However, rapidly growing databases of whole genome sequences, the
sheer size, and complexity of whole genomes make WGA a challenging analysis to
perform. Another difficulty in alignment of genomes arises from the fact that all
genomes undergo complex rearrangements and structural changes, such as
duplications (Dewey 2012). Despite all these facts, WGAs are a powerful method
of alignment since they allow for both large- and small-scale study of molecular
evolution. On a large scale, these alignments can be used to locate rearrangements
and duplications along with their frequency. On a small scale, like the alignments
discussed before, WGAs can be used to analyze indels and single or multiple
substitutions across the entire genome (Fig. 3.15). In addition to phylogenetic
inference, WGAs are also used for genome annotation and function prediction of
genes.

Evaluation: Just like any other tool, assessing the accuracy of whole genome
alignments is important. However, a challenge is presented by the fact that on several
occasions the true phylogeny of a set of genomes is not known. The following are
four main approaches for a robust evaluation of WGAs: (1) simulation, (2) descrip-
tive statistics, (3) comparison with other tools, and (4) confidence analysis of
alignments to annotated regions. In the recent past, Alignathon, a comprehensive
comparison of different WGA methods and their evaluation, was organized (Earl
et al. 2014). OmicTools.com is a great compilation of several tools that perform
WGA. A few notable examples from OMICTools include MUMmer4 (v4, released
2017) that rapidly aligns genomes, complete, draft form, or incomplete; FLAK, an
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ultrafast fuzzy whole genome alignment; and visualization system that has a built-in
native mechanism for approximate sequence matching (Healy 2016). Another family
of tools for comparative genomics, WGA and visualization are VISTA (Frazer et al.
2004) and the newer version GenomeVISTA (Poliakov et al. 2014) – a comprehen-
sive suite of programs and databases for analysis of multiple genomes.

As a concluding remark, it is imperative to say that sequence alignment reveals
the amount and pattern of divergence among a set of sequences. Based on how
conserved or variable a region is, between two or more sequences, much can be said
about the importance of the region for functional and structural integrity. For
instance, conserved regions could be responsible for binding site specificity in a
protein-protein interaction, while a relatively variable region could be more promis-
cuous. Additionally, sequence alignment is the first step in any phylogenetic analy-
sis. Regions of high similarity could be a consequence of evolutionary relationships,
i.e., shared ancestry, and can be uncovered by using sequence alignment. The choice
of alignment strategy to use must be directed by formulating relevant hypotheses to
discover information guided by the problem at hand, including structure prediction,
identification of a specific regulatory element, domain, motif, and family.

Things to Think About When Choosing Your Alignment Strategy
Is the length of the sequences the same?
Is it possible that only a small region in the sequences matches?
Are partial matches allowed?
Which substitution matrix is the best option for a given dataset?
Have there been indels from a common ancestor?

Fig. 3.15 Visualizing whole genome alignment: pairwise whole genome alignments can effec-
tively reveal structural rearrangements, for example, in the form of insertions/deletions when a
query genome is compared to a known reference genome
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Understanding Genomic Variations
in the Context of Health and Disease:
Annotation, Interpretation, and Challenges

4

Ankita Narang, Aniket Bhattacharya, Mitali Mukerji,
and Debasis Dash

4.1 Introduction

The completion of the Human Genome Project (HGP) marked an important episode
in the history of human genetics (Lander et al. 2001). It was the culmination of
concerted efforts over a decade’s time that empowered researchers and clinicians
with the exact sequence of the 3 billion nucleotides that constitute the human
genome. However, no two genomes are exactly alike; two unrelated individuals
differ from each other at more than a million genomic loci (Consortium 2015b).

A. Narang (*)
G.N. Ramachandran Knowledge Centre for Genome Informatics, Council of Scientific and
Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India

Epigenetics Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi (North
Campus), Delhi, India

A. Bhattacharya
Genomics and Molecular Medicine, Council of Scientific and Industrial Research – Institute of
Genomics and Integrative Biology (CSIR-IGIB), Delhi, India

Academy of Scientific and Innovative Research (AcSIR), Delhi, India

M. Mukerji
G.N. Ramachandran Knowledge Centre for Genome Informatics, Council of Scientific and
Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India

Genomics and Molecular Medicine, Council of Scientific and Industrial Research – Institute of
Genomics and Integrative Biology (CSIR-IGIB), Delhi, India

Academy of Scientific and Innovative Research (AcSIR), Delhi, India

D. Dash
G.N. Ramachandran Knowledge Centre for Genome Informatics, Council of Scientific and
Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India

Academy of Scientific and Innovative Research (AcSIR), Delhi, India

# Springer Nature Singapore Pte Ltd. 2018
A. Shanker (ed.), Bioinformatics: Sequences, Structures, Phylogeny,
https://doi.org/10.1007/978-981-13-1562-6_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1562-6_4&domain=pdf


Subsequently, there have been many international efforts with the aim to systemati-
cally catalog the variation data from different ethnic populations across the world.
Such initiatives have now enabled population geneticists to understand variants in
the context of population history, demography, environment, and disease. With the
technological advancements propelled by next-generation sequencing (NGS),
variants can now be identified at the single nucleotide level rather than estimating
across few kilobases, using high-resolution genomic data. Today, while the number
of repositories housing data from different variation studies is plenty (some of them
well curated, regularly updated), there still remains a significant challenge in
deciphering the functional roles of these variations. Assigning consequentiality to
a variation is further complicated by its contextual nature; not all variations are
meaningful in every context, and this might contribute, in part, to the paradox of
missing heritability. In post-ENCODE (Encyclopedia of DNA Elements) era of
genomics, when most of the genome is assigned functionality (Consortium
2012a), it becomes more important to annotate the non-coding variations (which
have not been studied so extensively as their exonic counterparts, but hold immense
importance with respect to the regulatory network dynamics in a highly context-
specific fashion). This chapter highlights how to sieve “meaningful” variations from
the “noisy” background and discusses how to annotate and ascribe functionality to
these variants in the light of existing genomic knowledge.

4.2 Understanding the Variability in the Human Genome

There exists an extensive variability between the genomes of two different
individuals. Variability in terms of the number of nucleotide changes ranges from
single base pair (single nucleotide polymorphisms, SNPs) or a few base pairs
(insertion-deletions, indels) to more complex events where an entire stretch of
DNA gets altered due to deletion, duplication, or inversion. Figure 4.1 illustrates
the major classes of genomic variations. SNPs and structural variations (SVs)
occupy the two extreme ends of the polymorphism spectrum and differ substantially
both in terms of their magnitude and effect (Zhang et al. 2009). The genomic
distribution of SNPs is more uniform and widespread than that of the SVs. Recent
estimates suggest that a typical human genome differs from the reference genome by
4.1–5 million base pairs, where more than 99.9% of the variants are SNPs and indels,
while SVs are estimated to be in the range of 2100–2500 (Consortium 2015b).
Despite being fewer in number than SNPs, SVs have a more pronounced effect
because they encompass a larger fraction of the genome.

Variability among genomes can be defined at different hierarchies of organization
(Table 4.1). Variants, with the exception of de novo and somatic variations, are
genetically transmitted and, consequently, inherited from parents. De novo and
somatic variations bring sporadic changes to an individual’s genome; in a de novo
event, all the cells of that individual contain the novel genetic change, while somatic
variations lead to differences in the genomic content within a specific group of cells
in that individual (Freed et al. 2014). In this chapter, we primarily discuss the
methods to infer consequentiality to heritable human genetic variations, the
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resources and bioinformatic tools that are currently available, and some of the
pivotal studies dealing with the functionality of these variants. We mention the
problems commonly encountered in these kinds of research endeavors and conclude
with the way forward. The methods and resources related to the annotation of de
novo and somatic variants have not been discussed in detail in this chapter.

4.2.1 Classification of Variations

Genomic variations can broadly be classified on the basis of their frequency and their
function.

4.2.1.1 Frequency
On the basis of their frequency in the population(s), variations are majorly classified
into two types – common and rare. Those having a frequency of �5% in population

Fig. 4.1 Major classes of genomic variations (Adapted from Frazer et al. 2009)
SNPs, repeats, and structural variations are the three major classes of genomic variations. SNPs are
point mutations, while CNVs are the more complex structural variations that encompass a larger
fraction of the genome. Depending on their type, they have the ability to alter regulation and
expression of genes, protein structure, and thus function

Table 4.1 Broad categorization of variations based on different characteristics

Broad categorization of genomic variants

Type Genetic, de novo, and somatic

Class SNPs and structural variations

Frequency Common, rare, and private

Consequence or functional impact Coding (synonymous, non-synonymous) and non-coding
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(s) are referred to as common variations, while the frequency of rare variations ranges
between 0.5% and 5% across different population(s). Private mutations are present
only in the proband or close/immediate relatives (Cirulli and Goldstein 2010).
Common variants are usually shared among different global populations, while rare
variants are more restricted to one population or a continental group. Almost 86% of
the rare variants are restricted to a certain continental group and, thus, have higher
frequency in that population (although these are rare when their frequency is com-
pared globally). The distribution of common and rare variations may have a potential
effect on their phenotypic variability and disease risk (Consortium 2015b).

4.2.1.2 Function
On the basis of their functional consequences, variations are divided into different
categories – synonymous, non-synonymous, loss-of-functional (LOF) variants
( frameshift indels in coding regions, stop gains, and disruptions to essential splice
sites), and regulatory regions (non-coding RNA, transcription factor binding sites,
motifs). Most of the variations are either common or rare; however, estimates suggest
an enrichment of rare and deleterious non-synonymous variations in the functional
genomic regions. It was estimated that on an average, 76–190 rare non-synonymous
changes and nearly 20 LOF variants contribute to disease risk and are important
pathological candidates. Such variations, however, never reach to high frequencies in
the population gene pool because of the constraint of a strong purifying selection. In
the regulatory regions, there are around 18–69 variants that disrupt the transcription
factor binding sites and may affect the regulation of the genome (Consortium 2012b).
The trend of findings was consistent across various studies, though exact numbers
may vary. Sequencing artifacts and annotation errors can bias the estimates.
MacArthur et al. (2012) reported that healthy genome(s) have ~100 LOF variations
that are majorly maintained in the heterozygous state and may cause recessive
Mendelian disorders in the homozygous state. Thus presence of LOF variants confers
differential disease risk among individuals. Distribution of common LOF variants is
biased toward the nonessential genes with a potential to affect the phenotype
(MacArthur et al. 2012).

De novo and somatic events are less studied in comparison to the genetic variants.
Phenotypic consequence of these variants is culmination of effect from multiple
factors in both healthy and diseased individuals, e.g., gene expression and epigenetic
changes owing to such variants in combination with environmental factors
(De 2011). Trio-based whole genome sequencing suggests presence of approxi-
mately 74 de novo single nucleotide variants in the genome of an individual, while
the frequency of other complex de novo events is not exactly known (Veltman and
Brunner 2012). De novo variants are known to be the primary cause of sporadic
genetic disorders. Moreover, the number of these events is observed to be higher in
the affected individuals (since these variants are rare and can be potentially deleteri-
ous to the gene functionality) (Veltman and Brunner 2012). Similarly, somatic
variants have implications in the process of aging and their role in different forms
of cancer has been well established (De 2011).
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4.3 Factors Affecting the Frequency of Variation
(s) in the Population

According to the principle of Hardy-Weinberg equilibrium (HWE), frequency of
variation in a population will remain unchanged/constant from generation to gener-
ation in the absence of any external evolutionary forces (Hardy 1908). However, in
the real-world scenario, conditions defined for HWE are rarely met. It is more of a
hypothetical concept because dynamic demographic events and changes in environ-
mental factors can alter the frequency of an allelic variant in a population which
leads to deviation from HWE. Genetic drift, gene flow, and selection are such
mechanisms that can cause deviation in the frequency of an allele (Andrews
2010). Genetic drift is a random change in allelic frequency due to chance events.
For example, population bottleneck shrinks the population size and decreases the
overall genomic heterozygosity by complete loss of some alleles from the population
(Griffiths et al. 1999). Gene flow or migration among different populations can also
lead to change in the allele frequency by introduction of new alleles in a population
(Andrews 2010; Lenormand 2002). These events are non directional, ultimately
culminating in random consequences which needs to be examined on a case-to-case
basis (Griffiths et al. 1999; Hartl and Clark 1997).

However, changes in the frequency of variant(s) in response to environmental or
geographical factors that triggers the adaptability of an organism is termed as
“selection” (Andrews 2010). In contrast to drift, selection doesn’t affect the genome
randomly and has locus-specific effects (Biswas and Akey 2006). Differences
between genetic drift and selection are briefly described in Table 4.2.

In 1968, Motoo Kimura proposed the theory of neutral evolution, which provides
a completely different view about selection (He 1994; Kimura 1984). According to
this theory, all genomic loci evolve neutrally, and changes in the frequency of an
allele can be considered to be a stochastic event which doesn’t necessarily impact
adaptation or fitness. With the availability of genomic data and development of
better statistical methods, there are numerous convincing evidences of selection
found in literature. Genomic selection can operate in three ways – “Positive selec-
tion” leads to increase in the frequency or fixation of an allele that favors the fitness
of an individual. One of the most important features of positive selection is “genomic
hitchhiking” which tends to increase the frequency of nearby linked loci also and
sweeps the frequency of the entire genomic region to fixation or near fixation. On the
contrary, “negative selection” or “purifying selection” purges out deleterious alleles
(that decrease the fitness or potential for adaptation) from the population, while
“balancing selection,” a more general form of selection, favors the presence of
heterozygotes over homozygotes (Biswas and Akey 2006; Nielsen 2005).

Table 4.2 Features of
genetic drift and selection

Parameter Genetic drift Selection

1. Occurrence Random Non random

2. Mode Non directional Directional

3. Effects Genome-wide Locus-specific
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4.4 High-Throughput Methods to Identify Genetic Variations

Gel-based methods were used for the identification of first-generation genetic
markers such as restriction fragment length polymorphisms (RFLPs), minisatellites,
random amplified polymorphic DNAs (RAPDs), and amplified fragment length
polymorphism (AFLP) (Griffiths et al. 1999; Pattemore 2011). These methods had
a strong impact on the emerging field of molecular biology, but their applicability
was limited because of inherent drawbacks like high cost, labor intensiveness,
greater time consumption, and inability to yield high-throughput results (Pattemore
2011). These methods become obsolete, and the present scenario is dominated by
high-throughput technologies like arrays and sequencing for detection of SNPs and
structural variations.

In the present scenario, two major approaches to identify genetic variations are
genotyping arrays and NGS platforms.

4.4.1 Genotyping Arrays

Genotyping arrays were originally developed to detect SNPs but their utility was later
extended to detect copy number variations (CNVs) also. Consequently, these arrays are
now routinely being used to genotype both common SNPs and CNVs. Fragmented
sample DNA is hybridized to unique set of thousands of probes. Each probe harbors SNP
sites and there are replicates for both alleles of a SNP for a particular probe (probe set).
The intensity of probe hybridization with its complementary target DNA determines the
sample genotype for a particular SNP (Syvänen 2001). Computational algorithms are
required to convert raw intensity values into genotype data (LaFramboise 2009).
Affymetrix and Illumina are the two major genotyping platforms available till date.
These differ from each other in terms of their chemistry but the principle of decoding
genotype from intensity value remains the same. Initial versions of both platforms could
detect fewer SNPs, but now latest versions (Affymetrix 6.0 and Illumina’s
HumanHap1M) of both platforms probe against approximately 1 million SNPs
(LaFramboise 2009). In the initial versions of genotyping arrays, there were no probes
for CNVs. Therefore, deviations from expected hybridization intensity values were used
to find CNV regions from SNP arrays (LaFramboise 2009). These versions of arrays had
some limitations due to scarcity of probes near duplicated and repeat-rich regions of
genome that are known to harbor CNVs. To improve CNV detection, latest versions of
Affymetrix and Illumina have now included probes for copy number regions which are
known to be variable among populations. Customized genotyping arrays allow
researchers to focus on specific regions, pathways, or genes of their interest. Exome
arrays for rare variants, metabochip for metabolic and cardiovascular disorders, and drug-
metabolizing enzymes and transporters (DMET) microarray for pharmacogenomics are
few of the celebrated examples for the targeted research questions.
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4.4.2 Next-Generation Sequencing-Based Methods

All probe-based methods require a priori knowledge of the genome sequence of an
organism for designing probes to capture variations. But the applicability of
NGS-based approaches is not limited to known organisms; whole genome sequenc-
ing of both novel and known organisms provides unbiased approach to detect all
variations that exist in an organism (Ekblom and Galindo 2011; Mardis 2013). Thus
sequencing-based methods are free from the bias of genotyping chips as both
common and rare/private variations are captured (Cirulli and Goldstein 2010; Frazer
et al. 2009). These methods allow identification of all forms of complex variations
like inversions, translocations, and breakpoints of copy number variations at single
nucleotide resolution which traditional genotyping-based methods cannot confi-
dently resolve (Alkan et al. 2011; Medvedev et al. 2009). The major platforms that
are used for sequencing are Roche’s 454, Illumina, ABI’s SOLiD, and recently
introduced Ion Torrent, PacBio, and Nanopore. These platforms use different
chemistries for sequencing. Efficiency of these sequencing methods can be com-
pared on the basis of a number of parameters, viz., read length and number, base
calling accuracy, and efficiency in capturing heterochromatin regions. Each has its
own pros and cons (Mardis 2013; Shendure and Ji 2008). Targeted sequencing,
another variant of NGS, allows us to sequence specific areas of interest in the
genome. Exome sequencing is one of the most celebrated examples of targeted
capture of exonic regions of the genome. It requires an additional step of exome
enrichment, pulling out known exonic regions/fragments selectively from the
fragmented DNA (Clark et al. 2011). Exome sequencing has its major strength in
the identification of causal variation/gene in single-gene disorders (Gilissen et al.
2011; Ng et al. 2010). Variation calling from sequencing-based methods suffers
from instrument-generated errors, so the major challenge is to accurately distinguish
a real variant from a sequencing artifact (Nielsen et al. 2011).

From the above discussion, it is clear that inherent drawbacks and biases are
associated with technologies that are used to identify variations. Irrespective of this,
many discoveries have been made in the field of genomics by using genome-wide
variation data from both genotyping arrays and sequencing platforms. Mapping of
known and novel genetic variations helps in the identification of genes implicated in
diseases. Genome-wide variation data have also contributed a lot in understanding
evolution and population history. Initial studies based on a single or a few marker
datasets didn’t have enough resolution to provide complete understanding of demo-
graphic events and population history.

Advancements in sequencing technologies also allow us to study ancient DNA.
For example, genome sequencing of extinct hominins – Neanderthals and
Denisovans – provides clues about population divergence events (Stoneking and
Krause 2011).
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4.5 Catalogs of Basal Variation Data from Global Populations

One of the major goals post HGP is to capture the genetic diversity of different
global populations so as to decipher the underlying genetic basis of their disease
susceptibility and phenotypic variability. There are numerous concerted efforts
worldwide to make these genetic resources as informative as possible.

dbSNP (Sherry et al. 1999, 2001; Smigielski et al. 2000) was one of the major
projects initiated by the National Center for Biotechnology Information (NCBI) and
National Human Genome Research Institute (NHGRI) in 1999 to catalog variations
submitted by laboratories, industries, genome sequencing centers, etc. It is a central
repository which gathers data from all major projects and databases and is regularly
updated. It also provides a standard nomenclature to variations that allows users to
navigate variation through specific identifiers. These unique identifiers are known as
RefSNP IDs or rsIDs. With the completion of HGP in 2003, the HapMap (Haplotype
Map) project was initiated (Gibbs et al. 2003; Thorisson et al. 2005). Initial phase of
HapMap genotyped approximately 1.3 million common SNPs in 269 individuals
from four major world populations – (i) Yoruba in Ibadan, Nigeria (abbreviation
YRI); (ii) Utah, USA, from the Centre d’Etude du Polymorphisme Humain collec-
tion (abbreviation CEU); (iii) Han Chinese in Beijing, China (abbreviation CHB),
and (iv) Japanese in Tokyo, Japan (abbreviation JPT). In 2007 and 2010, HapMap
released data for the next two phases. The major aim of this project is to build an
informative genetic resource of common variations among individuals or
populations. There were other initiatives like the Human Genome Diversity Project
(HGDP) that expanded the horizon of human genetic variation by analyzing
variations in 52 worldwide populations (Li et al. 2008). Apart from SNPs, catalogs
for more complex variations like CNVs were also developed. The Database of
Genomic Variants houses data for structural variations in healthy individuals from
published studies (MacDonald et al. 2014). But the genetic diversity of Indian
populations was not captured by any of these major global initiatives. The Indian
Genome Variation Consortium (IGVC) project (Consortium 2005, 2008; Narang
et al. 2010), an initiative of the Council of Scientific and Industrial Research (CSIR),
had cataloged variations across diverse ethnic groups in India. Initial phases of this
project had markers from candidate gene-based studies. In the subsequent phases,
genome-wide markers for 26 Indian populations were genotyped. These populations
were a subset of previous study. In 2009, the Human Genome Organization (HUGO)
Pan-Asian SNP consortium (Abdulla et al. 2009) mapped the diversity of Asian
populations which are underrepresented in other genomic surveys. PanSNPdb
(Ngamphiw et al. 2011), an initiative of HUGO Pan-Asian SNP consortium, houses
both SNP and CNV data from 71 Southeast Asian populations. Another break-
through in genomics research was marked by the 1000 Genomes Project. In 2010,
data from pilot phase of this project was released, and variations (SNPs, CNVs,
indels) having frequency of 1% or higher in populations were captured which
represents 95% of the human genetic diversity (Consortium 2010). This phase
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included sequencing of 179 complete genomes from 4 different ancestries and
679 exomes of 697 individuals from 7 different world populations. The ultimate
aim of the project is to sequence ~2500 genomes from 26 global populations to
identify 99% of the variants (with frequency > 1%) across different ancestries. This
aim was finally accomplished in 2015, after the release of the intermediate phase 1 in
2012 (Consortium 2012b). Cumulatively, there are nearly 84.7 million SNPs,
3.6 million indel polymorphisms, and 60,000 structural variants reported till
September 2015 by the 1000 Genomes Project (Consortium 2015b). Timeline of
development of major human variation catalogs is shown in Fig. 4.2. Apart from
providing an extensive catalog of variants, genome analysis tools were also devel-
oped and provided as open-source software for the benefit of the research
community.

Other than these global initiatives, population-specific genome sequencing
projects (like UK10K project) demonstrated the need of population-/continent-
specific high-quality reference panels for detection and imputation of
low-frequency or rare variants, which is not feasible with the representation in global
projects, i.e., small sample size would not allow detection of these rare variants and,
consequently, would be missed (Huang et al. 2015). Many such initiatives are in
progress with a promise to aid development of more accurate reference panels and
individualized diagnostics.

Fig. 4.2 Timeline for the development of major human variation catalogs
The figure depicts the chronological development of human variation catalogs from 2001 through
2012. Before HGP, dbSNP was the only major catalog for human variations. But, after the
completion of the HGP in 2003, efforts toward the development of such catalogs were accelerated.
HapMap project was initiated after the completion of the Human Genome Project with four
worldwide populations. In spite of the worldwide coverage, Indian populations were missed by
the HapMap project. A major attempt toward cataloging Indian variation data was carried out by the
IGVC after its announcement in 2005 using 55 ethnic Indian populations in the first phase released
in 2008. Efforts for cataloging the structural variation data were also initiated and thus DGV was
developed in 2006. As a part of HUGO Pan-Asian SNP consortium, PanSNPdb was developed in
2011 that catalogs variation data from 71 Southeast Asian populations. In 2008, 1000 Genomes
Project made the first announcement to catalog variations from sequencing data. The pilot project
was released in 2010, followed by its completion in 2015
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4.6 Applications of Cataloging Population Genomic Data

Variations are static but their dynamic behavior in response to environmental cues
contributes to an immense genomic and phenomic diversity in populations.
Examples that elucidate the potential applications of population-level variation
data are discussed below.

4.6.1 Genomic Signatures of Selection and Adaptation

Migration and the subsequent exposure of modern humans to diverse niches forced
them to adapt selectively in response to different climatic zones, diet, pathogens, and
other factors (Coop et al. 2009). The allele that increased the fitness of a population
had selectively increased in frequency and sometimes had even reached fixation for
better adaptability (to the physical parameter which drove selection). There are many
examples that have shown association between selection and adaptation in response
to diverse conditions. Few case studies are discussed below.

4.6.1.1 Selection in Response to Geographical and Climatic Changes
One of the classical examples for understanding the phenotypic variability and
adaptation in response to climatic changes is the spectrum of skin color in diverse
human populations. The quantity and the distribution of the pigment melanin in
melanosomes are the major determinants of skin color in humans (Quillen and
Shriver 2011). The gradient of human skin tone across diverse world populations
is well correlated with latitudes (Hancock et al. 2008, 2011; Jablonski and Chaplin
2000, 2010). This observation at the phenotypic level is also in line with an
important biological balance which needs to be maintained between Vitamin D
synthesis and folate metabolism. People living in the equatorial regions have darker
skin, while people residing at higher latitudes have a comparatively lighter skin tone.
The melanin content of the skin is directly proportional to the amount of UV
radiation absorbed by it. The fine balance between Vitamin D synthesis and folate
degradation thus depends on exposure to sunlight (the environmental trigger driving
selection) (Jablonski and Chaplin 2000, 2010). Darker skin prevents folate degrada-
tion from direct UV radiation in the tropics. Lighter skin pigmentation is an
advantage for people at high latitudes as it helps in absorption of UV radiation and
thus promotes vitamin D synthesis. This clearly indicates that the difference in skin
melanin levels across latitudes acts as an adaptive trait at different geographical
clines. Variations linked to this adaptive trait have different frequencies across
diverse populations. One of the landmark discoveries in this context was elucidating
the role of SLC24A5 gene in golden phenotype (lighter skin color) of zebra fish
mutants (Lamason et al. 2005). This gene encodes NCKX5 protein, a putative cation
exchanger. There exists a human ortholog for this gene and to study its role in human
pigmentation; researchers have looked for variations in it. A coding variation
rs1426654 (A/G) in the third exon of this gene (which leads to substitution of
alanine by threonine at position 111 in the encoded protein) was the only coding
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SNP found in the HapMap project at that time. Interestingly, it is known to be one of
the highly differentiated SNPs between Europeans and West Africans. Ancestral
allele and derived allele of this SNP are almost fixed in Western Africans and
Europeans, respectively (Fig. 4.3). Significant association between melanin index
and genotypes of SLC24A5 gene in admixed populations also explained the pigmen-
tation differences. However, it is important to note that the ancestral allele of this
SNP is almost fixed in East Asians as well, but they have a pale skin tone which
suggests that genes involved in skin pigmentation have evolved independently and
are not shared across global populations. Many other candidate genes related to skin
pigmentation including SLC45A2, OCA2, TYR, KITL, and MITF are also under
selection in different populations around the globe (Sturm 2009).

4.6.1.2 Selection Against Pathogen Load
Malaria resistance is one of the well-known examples of human adaptation to
pathogen load in malaria-endemic regions like parts of Africa. Such endemic
geographical zones have a selective advantage; populations residing there experi-
ence a strong selection pressure and harbor protective variations which reduce the
risk of infection. Genes that are expressed in red blood cells, such as human
leukocyte antigen (HLA), glucose-6-phosphate dehydrogenase (G6PD), and Duffy

Fig. 4.3 Geographical distribution of the allele frequencies for rs1426654 across the world.
(Source: HGDP Selection Browser)
rs1426654 is highly differentiated among Europeans and West Africans. Ancestral allele “G” and
derived allele “A” are almost fixed in the Europeans and West Africans, respectively. This
polymorphism in the SLC24A5 gene has been found to play a major role in the skin pigmentation
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factor (FY), accumulate variations that provide advantage against malaria (Tishkoff
et al. 2001). Another example is the variation in apolipoprotein L1 (APOL1) gene
that provides resistance against human African trypanosomiasis (HAT) or sleeping
sickness but with the susceptibility to chronic kidney disease (CKD) in African-
Americans (Ko et al. 2013). There are numerous such examples of balancing
selection where resistance against one pathogen is counterbalanced by susceptibility
to some other disease.

4.6.1.3 Adaptation to Dietary Shifts
Humans have adapted to different diets in response to agriculture and this had
resulted in lifestyle shifts during the process of evolution (Laland et al. 2010).
Several studies have shown selection for genomic variations that favor adaptation
with changes in diet patterns across different populations. Apart from single nucleo-
tide changes, Perry et al. (2007) demonstrated copy number variation in amylase
gene AMY1 (which varies across different populations in response to their starch
intake). The concentration of amylase present in the saliva is directly proportional to
the copy number of AMY1. Populations that have a high starch intake also have more
copies of AMY1 than populations that are accustomed to a low-starch diet. For
example, Japanese, European-Americans, and Hadza hunter-gatherers of Africa
consume high-starch diets and also have higher copies of AMY1 gene in comparison
to populations like Biaka, Mbuti, Datog pastoralists, and Yakuts who consume less
starch. This positive correlation between number of copies of AMY1 gene and starch
intake is independent of geography. Lactose tolerance in European populations is
another celebrated example of dietary adaptation.

4.6.2 Pharmacogenomics

Genetic variations in drug-metabolizing enzymes, receptors, and transporters are
known to be responsible for differences in drug responses among individuals and
hence, populations (Zhou et al. 2008). Variations in genes related to drug response
can be important determinants of drug efficacy and toxicity. One of the major aims of
personalized genomics is to prescribe medicine or specify dosage on the basis of an
individual’s genetic architecture (Ginsburg and Willard 2009; Zhou et al. 2008). The
concept of personalized medicine has important implications in translational and
therapeutic research.

4.6.3 Designing Disease Association Studies

Genome-wide association studies (GWAS) are performed to decipher the genetic
basis of common diseases including diabetes, cardiovascular diseases, autoimmune
diseases, and psychiatric disorders (Bush and Moore 2012; McCarthy et al. 2008),
where common variants influence disease predisposition. Since the variation is
common in the population, its effect size is smaller than that of rare variants. In
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GWAS, disease risk is explained by the cumulative effect of multiple common
alleles of small effect size (Bush and Moore 2012; Manolio et al. 2009). GWAS
involves scanning of common variations to identify the loci where frequency of an
allele (or genotype) is higher in cases than in controls from the same population
background; such loci stand a greater chance of being associated with disease(s).
Linkage disequilibrium (LD) is another important factor or parameter that determines
the number of markers required for GWAS. In general, populations that have
undergone higher number of recombination events have decreased LD, while a
population with less number of recombination events has extended
LD. Association between alleles in a region decreases with increasing age of the
population, and thus variants that act as proxies or tags for each other will no longer
be correlated. Hence, populations with older histories like African populations
require genotyping of a large number of markers than populations with compara-
tively recent histories like America, Europe, etc. (Ardlie et al. 2002; Slatkin 2008).
Homogenous population background in such studies is a prerequisite to avoid
spurious results (which is a reflection of the genetic variability among cases and
controls). Thus, the representation of different ethnic populations or groups in
genomic databases may aid in the selection of appropriate controls.

4.6.4 Reference Panels for Genome Imputation

Before the advent of high-throughput sequencing technology, missing common
variants (or genotypes) in GWAS meta-analysis were imputed using HapMap
reference panels, which has cataloged variation data from different ethnic
backgrounds (genotyped on chip). Many novel associations using GWAS meta-
analyses of many complex disorders like diabetes, vitiligo, cardiovascular, and
neurological disorders were reported, while many known associations could not be
replicated. Accuracy of such references for imputing common variants was quite
good. However, the imputation of low-frequency and rare variants was a limitation
at that time. With the easy accessibility to genome and exome sequencing data,
imputation of low-frequency/rare variants has become quiet feasible by sequencing
sufficient number of samples required for rare variants’ imputation. Another cost-
effective alternative is the use of customized exome chips for rare variants to impute
genotypes (Auer et al. 2012; Consortium 2015b; Huang et al. 2015; Spencer et al.
2009; Zheng et al. 2015a). Such approaches allow the discovery of association of
novel and rare/low-frequency variants with many complex traits or phenotypes. A
study reported the association of rare coding variants with blood cell traits, where
exome sequencing data from 761 African-American individuals was used to impute
novel genotypes in 13,000 individuals with the same ancestry (Auer et al. 2012).
UK10K project evaluated the association of rare/low-frequency variants with
31 core traits common in 2 cohorts of European ancestry. They reported two novel
associations of non-coding rare and low-frequency variants with triglycerides,
adiponectin, and low-density lipoprotein cholesterol levels (Consortium 2015c). In
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another study from the same project, they reported novel association of non-coding
genetic variants with bone mineral density (BMD) and fracture (Zheng et al. 2015b).

4.7 In Silico Strategies for Prioritizing Genomic Variants Using
Genomics and Annotation Databases: An Approach
to Reduce the Search Space

One of the daunting challenges in population genetics today is to make sense of the
huge repertoire of genetic variations and thousands of associations from GWAS and
genome-wide scans of selection. This issue can be addressed by prioritization of
functionally important variation(s) that can affect phenotype and disease. Annotation
resources and prediction servers gather functional information from computational
predictions and/or experimental evidences to predict the effect of variation on
phenotype. Assessment of the functional potential of a variant is dependent on its
type and nature. Functional interpretation of the coding variations is quiet straight-
forward compared to that of the non-coding variations because of the assumption
that the former might have a direct effect on protein structure and function, while the
latter can alter regulation in the genome in a number of ways (not all of which are
properly understood).

Recently, exome and genome sequencing have been used as powerful tools to
identify rare protein-coding variation(s) in extreme phenotypes like monogenic or
Mendelian disorders (Ng et al. 2010). Many prioritization strategies and pipelines
have been developed to narrow down the search space by identifying few putative
candidates out of several thousands (Biesecker 2010; Stitziel et al. 2011). The
variants in Mendelian or rare diseases are first filtered on the basis of their frequency
reported in the population genomic databases. Presence of ancestry-specific variants
(markers) becomes more valuable when there is a lack of background control data
for the population in which the study was conducted. For filtering out the exonic
variants, large exome repositories were developed wherein thousands of individuals
across different ancestries were sequenced. Exome Aggregation Consortium
(ExAC) and the National Heart, Lung, and Blood Institute (NHLBI) Grand Oppor-
tunity Exome Sequencing Project (ESP) are the landmark efforts in this direction.
Another filtering criterion used for prioritization of coding variants includes evolu-
tionary approaches that predict tolerance to amino-acid substitutions (substitutions at
the evolutionarily conserved sites are more damaging than the non-conserved ones)
and the choice of disease model in pedigree-based case studies. Foo et al. (2012)
described a simplistic approach for the prioritization of coding variants in Mendelian
or rare diseases with large effects. In cases of consanguinity, homozygosity mapping
can be used to find stretches of DNA in affected siblings, and these regions can
further be used for targeted resequencing which minimizes the cost of sequencing
multiple genes (Smith et al. 2011).

The coding genome (~1.5%) is very small in comparison to the non-coding
portion that encompasses a large number of variations which, in turn, modulate the
genome dynamics by regulating gene expression (Brown 2002). Non-coding
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variations can exert their effect either by changing the binding potential of transcrip-
tion factors or other regulatory elements (Boyle et al. 2012). It further helps in
elucidating the molecular mechanism of variation that may explain phenotype. Most
of the variants identified in genome scans of selection or GWAS are intronic, and in
some cases multiple variants in the same gene have been reported to be associated
with phenotype or disease. Prioritization of coding variant is quiet straightforward in
case of highly penetrant or Mendelian diseases, but this is not the case with
non-coding variants. Narrowing down the list of associations into one or few
regulatory causal candidates requires integration of variation data with multiple
and diverse functional information like conservation patterns in the genome, envi-
ronmental variables, epigenomics, expression, and regulatory signature. In another
case, where variants from different genes have been associated with the same
phenotype, differences in gene expression patterns relevant to phenotype/disease
can be measured in different tissues.

Many studies have integrated population genomics along with classical molecular
biology experiments to elucidate the functionality of non-coding variants. For
example, adaptive variation in serum- and glucocorticoid-regulated kinase1
(SGK1) gene regulates its expression in stress responses (Luca et al. 2009), function
of adaptive variation in ectodysplasin A receptor (EDAR) is associated with hair
thickness in the Han Chinese population and is identified as a biological target of
adaptive variation (Kamberov et al. 2013), cis-acting sequence variation in the
promoter of VNN1 gene is found to be associated with cardiovascular disease
(Kaskow et al. 2013), etc.

In the current-day scenario, the availability of high-throughput functional data
from collaborative efforts like ENCODE (Consortium 2012a), Fantom5 (Consor-
tium 2014), Roadmap Epigenomics (Bernstein et al. 2010), and Genotype-Tissue
Expression (GTEx; Consortium 2015a) allows integration of multiple omics datasets
to annotate and understand the functionality of candidate genomic regions or
variations. Target variants may have different impacts on the regulation and/or
expression based on their genomic position. Regulatory potential of a variant in
the intra-/intergenic region and untranslated region (UTR) can be assessed by
mapping DNaseI hypersensitivity (HS) data (a marker of active regulatory elements)
along with histone modifications, transcription factor, and RNA Pol II occupancy
datasets. The presence of DNaseI HS site is a proxy for open DNA and may suggest
the presence of enhancer or transcription factor along with the assessment of
signatures of associated chromatin modifications (Kellis et al. 2014). Therefore, it
might be possible that variant allele disturbs or favors that potential binding. Further,
the expression of this variant in different cell types and/or tissues can be evaluated
which helps in the selection of appropriate or impacted cell lines for the experimental
validation (Fig. 4.4). For example, rs12203592 in IRF4 gene is one of the GWAS
candidates that has been shown to be associated with pigmentation traits.
Overlapping this intronic region with ENCODE data suggest the presence of DNaseI
HS as well as its expression in melanocyte-derived cell lines. This prediction aided in
conducting the directed experiments for validation (Praetorius et al. 2013).
Variations in the 3’UTR of genes which overlap with miRNA target sites (especially
in the seed region) may have important downstream ramifications. If both the
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miRNA and its target transcript are co-expressed in a particular tissue, the miRNA-
mRNA duplex formation is often favored for one allele over the other. 3’UTR SNPs
overlapping with miRNA binding sites can both create and abolish miRNA-
mediated gene regulation. TCF21, a transcription factor pivotal to vascular develop-
ment, is differentially regulated by miR-224 depending on whether an individual has
C or G at rs12190287. The risk allele C facilitates RNA structure formation which
can allow easy access to the miRNA to ensure efficient binding and subsequent
degradation of the transcript in coronary heart disease (Miller et al. 2014). These
variations can add and alter players in miRNA networks. For example, in case of
rs2168518 (G > A), a seed region variant of miR-4513, regulation of one of its target
genes GOSR2 is completely altered (Ghanbari et al. 2014).

Another aspect is association of genetic variants with the methylation of CpG
islands in the promoter regions. Variation in the methylation levels at CpG blocks

Fig. 4.4 Brief outline for annotating the non-coding variants
In silico integrated omics approach is used to annotate the candidate non-coding variations either
from GWAS or genome-wide selection studies. (i) Using population genomics, estimates of global
allele frequency differences and linkage disequilibrium (LD) were retrieved or computed. In
addition to this, impact of environmental selection on allele frequency can be assessed – association
of the variant with different climatic parameters can be inferred using resources like dbCLINE.
(ii) Comparative genomics helps to delineate the conserved genomic regions across species.
Evolutionary conservation is a parameter which suggests regions of importance; however, it is
not much informative about functionality of genome. (iii) Mapping/overlaying candidate genomic
regions over the functional elements using functional genomics resources like ENCODE, GTEx,
etc. provides insights about the regulation and/or expression. Variants in 3ÚTR can further be
scanned to understand the impact of different allelic variants on the formation of miRNA-mRNA
duplex
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contributes to phenotypic variability, and it has also been linked to genetic variants,
which are known as methylation quantitative trait loci (meQTLs). Correlation
between GWAS candidate SNPs and methylation has been tested, and many signifi-
cant associations were reported (Bjornsson et al. 2004; Hidalgo et al. 2014; Rushton
et al. 2015).

Schaub et al. (2012) have assessed the functionality of variation using a scoring
scheme (Regulomedb scores: http://regulomedb.org/help). Score assignment is
based on known and predicted functional evidences from multiple resources includ-
ing ENCODE, Roadmap Epigenome Consortium, GEO (Gene Expression Omni-
bus), and published literature. Utility of this scoring scheme has been demonstrated
by assigning functional role to GWAS SNPs associated with different traits/
phenotypes (Schaub et al. 2012). Enrichment of GWAS SNPs (lead SNPs) or
SNPs that are in LD with GWAS SNPs (functional SNPs) in experimentally
identified functional regions supported their likely role in regulation.

GTEx is an important addition to the armory of resources for prioritization of
functional variants. It houses data for 175 healthy individuals who have been densely
genotyped and their RNA-Seq data is also available across 43 tissue types (Consor-
tium 2015a). Taking gene expression as a quantitative trait, the consortium has
cataloged a list of SNPs whose allelic states are linked with the expression of certain
genes in particular tissues (along with its effect size). These SNPs are known as
expression quantitative trait loci (eQTLs) and serve as an anchor point to connect
the static information of genetic variation with dynamic gene expression. GWAS
SNPs can be queried using these data to ascertain their associated functional
consequences in different tissue types. Regulatory eQTLs shared among tissues can
also be detected. A celebrated example of the use of such paired variation-expression
data is the discovery of sun-exposure eQTLs in an European population (Kita and
Fraser 2016).

4.7.1 Resources for Functional Annotation of Variation Data

Availability of millions of variations from sequencing studies has further increased
the complexity of annotation and analysis as the size of the search space has now
increased by several orders of magnitude and this has generated the need for
computational resources and automated pipelines that are fast and can bypass
manual errors and increase the sensitivity. There were numerous (and continuous)
efforts by different groups to make databases, web servers, and pipelines for
annotating variations that can identify the underlying genotype to phenotype
correlations. Table 4.3 provides a list of all major databases, web tools, servers,
and pipelines that are categorized into different sections on the basis of the type of
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Table 4.3 Catalogs and pipelines for functional annotation of variation data

Type Name URL

Annotation resources – databases and web servers

Disease association databases GWAS Catalog http://www.genome.gov/
gwastudies/

GWAS Central http://www.gwascentral.org/

GAD (Genetic Association
Database)

http://geneticassociationdb.
nih.gov/

OMIM (Online Mendelian
Inheritance in Man)

http://www.omim.org/

Genomic selection 1000 Genomes Selection
Browser

http://hsb.upf.edu/

dbPSHP http://jjwanglab.org/dbpshp

Environment-related variables dbCLINE http://genapps2.uchicago.
edu:8081/dbcline/main.jsp

Pharmacogenomics PharmGKB https://www.pharmgkb.org/

CNV annotation DECIPHER http://decipher.sanger.ac.uk/

CNVD http://202.97.205.78/
CNVD/

eQTLs, gene expression (cell
type and tissue specific),
epigenomics and regulation

Genotype-Tissue
Expression (GTEx)

http://www.gtexportal.org/
home/

eQTL browser http://eqtl.uchicago.edu/
Home.html

SNPExpress http://compute1.lsrc.duke.
edu/softwares/SNPExpress/
1_database.php

HaploReg http://www.broadinstitute.
org/mammals/haploreg/
haploreg.php

ENCODE https://www.encodeproject.
org/

Roadmap Epigenomics
Project

http://www.
roadmapepigenomics.org/

Annotation from multiple resources

Multi-annotation tools SNPnexus http://www.snp-nexus.org/

BioMart - Ensembl http://www.ensembl.org/
biomart/martview

ANNOVAR, wANNOVAR http://annovar.
openbioinformatics.org/en/
latest/, http://wannovar.usc.
edu/

SeattleSeq Variant
Annotation

http://snp.gs.washington.
edu/
SeattleSeqAnnotation141/

UCSC Genome Browser
(visualization), UCSC table
browser (data retrieval)

https://genome.ucsc.edu/,
https://genome.ucsc.edu/cgi-
bin/hgTables

SCAN http://www.scandb.org/
newinterface/about.html

(continued)
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annotation and prioritization method. It can be a valuable resource that can be used to
annotate and prioritize variations based on their effect and function.

4.8 Challenges in Inferring Genotype to Phenotype
Associations

To address pertinent biological questions from a large repertoire of variation catalogs
and to narrow down huge search space to a few genomic leads, we need to
understand the challenges associated before making these inferences.

4.8.1 Genetic Architecture of the Population

Population variation data from different genetic backgrounds is a rich resource and
has an enormous applicability if it is used in a systematic and contextual manner.
Context or the meaning of a particular variation depends on the genetic architecture
of population in question. In simple words, a variation which is beneficial in one
population may confer susceptibility/risk in another. Therefore variation is a

Table 4.3 (continued)

Type Name URL

Variation prioritization

Variation prioritization Coding variations

PolyPhen-2 http://genetics.bwh.harvard.
edu/pph2/

SIFT http://sift.jcvi.org/

VnD http://vnd.kobic.re.kr:8080/
VnD/

Var-MD http://research.nhgri.nih.
gov/software/Var-MD/

MetaRanker http://www.cbs.dtu.dk/
services/MetaRanker-2.0/

Coding and non-coding

VAAST 2 http://www.yandell-lab.org/
software/vaast.html

RegulomeDB http://www.regulomedb.org/

Ingenuity Variant Analysis https://www.ingenuity.com/
products/variant-analysis

Combined Annotation-
Dependent Depletion
(CADD)

http://cadd.gs.washington.
edu/

Variant Effect Predictor
(VEP)

http://asia.ensembl.org/info/
docs/tools/vep/index.html?
redirect¼no
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multifaceted variable. There can be different scenarios (Fig. 4.5) that can explain this
property of variation.

4.8.2 Presence of Modifiers or Buffering Variants

Apart from the identification of rare variants which may predispose an individual to a
disease or a specific phenotype, many large national and international sequencing
projects are now focusing on identifying the modifier or buffering mutations which
protect an individual from exhibiting disease phenotype in spite of the presence of
the disease variant(s). Such individuals are referred to as “human knockouts,” and
this also paves the way for the new approach for drug target identification. Apart
from rich genomic data, well-curated phenotype data is a prerequisite to conduct
such studies. In today’s scenario, where we are struggling to make sense of “big
data,” sequencing a small number of individuals with extensive phenomic data is
suggested as a better approach rather than sequencing genomes without any
associated phenotypic information (Mich and Glenwoo 2014).

4.8.3 Estimation of Missing Heritability

Put in simple terms, missing heritability means where the associated or implicated
genetic markers largely fail to explain their contribution or role in complex disorders

Fig. 4.5 Contextual nature of variations
This figure depicts differential inference of the same variation in a particular disease or in a
population. In one scenario, this variation can be a risk factor in one population but protective in
another. However, in a different scenario, this variation within a population can confer risk for some
disease but protect against others
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because of their small effect size. Complex disorders are the outcome of some genetic
and environmental interactions; however, contribution of environment toward dis-
ease is not measured in association studies. Thus, additive contribution of genetic
markers explains small proportion of heritability which implies that there could be
other factors such as environment, genetic interactions (epistasis), epigenetics, and
other complex structural variants that may contribute to disease heritability (Eichler
et al. 2010). Since initial efforts were completely focused on the common disease-
common variant (CD-CV) hypothesis, it has been postulated that analyzing associa-
tion of both rare and common variants could be a better model to explain the
heritability. Designing such studies could be expensive as they require larger sample
size (Consortium 2015c; Zuk et al. 2014) Integrative omics could be an alternative
approach for delineating the etiology of complex disorders. Integrating genetic
information with different tiers of regulation such as gene expression, regulatory
signatures, epigenomics, and microbiomics via network/system biology approaches
provides insights about perturbations in underlying molecular networks in diseased
state (Björkegren et al. 2015). Construction of cell-type networks is more informa-
tive in understanding the pathology of disease rather than generic networks.

4.8.4 Data Sharing and Interoperability

Linkage-based studies, GWAS, and high-throughput genomic studies have
implicated large number of associations in both rare and complex disorders. There
are certain challenges which limit the application of data integration for system-wide
analyses. Data sharing among the scientific community, data curation (reliability of
reported associations), and interoperability (the use of standard nomenclatures,
database architecture) are some prerequisites to make informative data repositories
or knowledge base (Flannick and Florez 2016). Developments of open-source
softwares such as locus-specific database (LSDB) system and genome browsers
are some of the successful initiatives toward data formatting, integration, and
interoperability (Fokkema et al. 2005; Stein et al. 2002). It allows data submission
in standard formats that is scientifically acceptable. Such resources can also be used
by users with limited informatics knowledge. These efforts are much needed for the
translation of genomics applications to clinical diagnostics and treatment.

With the availability of whole genome data from different populations, the
dimension of genomic search space has now been increasing exponentially. Combi-
natorial possibilities of number, frequency, and type of variations can lead to many
outcomes that can explain the phenotypic consequences. Apart from finding mean-
ingful variations from a set of millions, there are computational challenges
associated with processing and analysis of “big data.” Every variation is not infor-
mative in every context. To churn out a meaningful set of variations, one needs to
follow a “Divide and conquer” approach, i.e., minimizing large set of variations into
smaller sets in a stepwise fashion.

Aided by the recent advancements in genome editing technologies (like CRISPR-
Cas9), variations are no longer static sacrosanct genomic entities. SNPs can now be
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“engineered” with exemplary precision, and this allows studying their role under
different experimental conditions in systems ranging from human embryonic cells to
mouse and fish disease models. While the last decade and a half has been spent in
comprehensively curating and annotating variation data, the thrust of tomorrow’s
research should primarily be based upon deciphering their biological functions. With
technologies such as CRISPR around the corner, the ground is all set to move
beyond association studies to actual perturbation experiments. This would improve
the functional annotation of variations in their proper genomic perspective and hence
provide a more holistic understanding of them.
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Metagenomics: Focusing on the Haystack 5
Indu Khatri and Meenakshi Anurag

5.1 Introduction

The term “metagenomics” was first used to describe composite genomes of cultured
soil microorganisms (Handelsman et al. 1998). In the context of the environmental
studies, metagenomics, also known as “community genomics” or “ecogenomics” or
“environmental genomics,” is the study of composite genetic material in an environ-
mental sample. There are a large number of microbes that are considered as
uncultured in different environments, be it air, soil, water, mines, and animals, and
are considered inaccessible for study with traditional approaches. Humans are
constantly exposed to a large and diverse pool of microorganism, which can reside
in, on, and around our bodies. These microbiotas and their genomes, collectively
called as the microbiome, are being characterized by “metagenomics” approaches
that integrate next-generation sequencing (NGS) technologies and bioinformatics
analysis. The primary focus is on the assembly of 16S ribosomal RNA hypervariable
region called as targeted sequencing or whole-genome shotgun DNA sequencing
reads. Such studies have been possible because of advances made in the field of
genomics and its constant growth in terms of sequencing technology. Apart from
this, assembly algorithms and annotation pipelines have provided key opportunities
to be exploited by the scientific community. Advances in single-cell genomics,
transcriptomics, and metagenomics have revolutionized studies related to cancer
genomics, gene expression, metabolic pathway studies, cellular analysis, environ-
mental analysis, and many more areas. There has been tremendous growth in terms
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of sequencing, assembly, and annotation at the genomics level. However, for
metagenomics there is a critical need to develop new technologies and in-depth
analytical approaches. Here, we present a generalized methodology that can be used
for sampling and analysis of metagenomics samples acquired from any environmen-
tal location.

5.2 Metagenomics: General Methodology

Metagenomics projects utilize various methodologies which depend on the aim, and
a standard metagenomics analysis protocol is depicted in Fig. 5.1. The basic steps in
metagenomics analysis including sampling, sequencing, metagenome assembly,
binning, annotation of metagenomes, experimental procedures, statistical analysis,
and data storage and sharing are discussed.

Fig. 5.1 Flow diagram of a typical metagenomic experiment
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5.2.1 Sampling and DNA Extraction

The first and most crucial step is sample acquisition, which critically depends on the
sample source. Collection of environmental samples from specific sites across
various time points is analyzed in relative metagenomics studies which provide
significant insight into both temporal and spatial characteristics of microflora.
Another important step in a metagenomics data analysis is the processing of the
samples efficiently and to ensure that DNA extracted from the sample represents all
the cells present in the sample. In addition, special considerations should be given for
sampling and DNA extraction which depends specifically on the sample source. For
example, in a soil sample, physical separation and isolation of cells are important for
maximizing DNA yield or avoid the co-extraction of enzymatic inhibitors which
may interfere further in subsequent sample processing (Delmont et al. 2011).
Samples from biopsies or groundwater often yield very small amounts of DNA
(Singleton et al. 2011); therefore multiple displacement amplification can be
performed (Lasken 2009) to amplify femtograms of DNA to micrograms.

Handling of metagenomics data with precision is a challenge for the scientific
community due to large data volume leading to storage issues. Metagenomics data
can be exploited for various purposes; therefore, strict and comprehensive guidelines
are needed to make data publicly available with a proper format known as metadata.
The metadata is known as “data about the data” that contains the when, where, and
under what conditions the samples were collected. Metadata is as important as
sequence data (Wooley et al. 2010), and minimum information about metagenome
sequence (MIMS) contains standard formats that minimally describe the environ-
mental and experimental data. The Genomic Standards Consortium (http://gensc.
org/), an international group, has standardized the description, the exchange of
genomes and metagenomes, and the rules for the associated metadata.

5.2.2 DNA Sequencing

Sequencing technologies revolutionized the genomics and metagenomics field with
high-throughput sequencing. Big, dream projects consisting of sequencing genomes
have become a relatively routine task owing to advances in NGS, multiplexing,
reduced sequencing cost, and improved algorithms. Metagenomics samples are
sequenced in the same manner; however, these samples contain both culturable
and non-culturable organisms and also many such genera that have not been
exploited yet by the field of genomics. The assignment of taxa to a larger percentage
of the metagenome data is still a challenge. Currently, the majority of metagenomics
analysis deals with sequencing of the 16S rRNA of the microbial community or a
particular gene to trace the community composition which is not typical
metagenomics and is referred as metagenetics or metabarcoding. In contrast,
whole-genome sequencing is performed on metagenomics samples instead of
sequencing a single gene. Of the various NGS sequencing technologies,
454/Roche and Illumina/Solexa have been used extensively for sequencing
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metagenomics samples. 454/Roche generates longer reads facilitating the assign-
ment of a read to a particular operational taxonomic unit (OTU) which is more
reliable as compared to very short reads generated through Illumina high-throughput
sequencing.

5.2.3 Assembly and Annotation

The majority of current assemblers have been designed to assemble single, clonal
genomes, and their utility for assembling and resolution of large number of complex
organisms has to be evaluated critically. Standard assembly methods and algorithms
such as de novo assembly and reference mapping are employed in metagenomics
data analysis; however, to tackle the significant variation in strain and at the species
level, metagenomics assemblers have been designed with the “clonal assumption”
that does not allow contig formation for some heterogeneous taxa. Out of various
assemblers, de Bruijn graph-based assemblers like MetaVelvet (Namiki et al. 2012)
and Meta-IDBA (Peng et al. 2011) deal explicitly with non-clonality in sequencing
data and try to identify a subgraph that connects related genomes. The meta-
assemblers are still in development, and their accuracy assessment is still a major
goal of developers as no complete reference exists to which the interpretations can be
compared. Assembly is more efficient for genome reconstruction when reference
genomes of closely related species are available and in low complex samples (Luo
et al. 2013; Teeling and Glockner 2012). However, low read coverage, high fre-
quency of polymorphism, and repetitive regions can hamper the process (De Filippo
et al. 2012).

The assembled contigs with minimal length of 30,000 bp or longer can be
annotated through existing genome annotation pipelines, such as rapid annotation
using subsystem technology (RAST; Aziz et al. 2008) or integrated microbial
genomes (IMG; Markowitz et al. 2007, 2009). For the annotation of the entire
communities, the standard genome annotation tools are less significant, and a
two-step annotation is preferentially followed. First, genes or features of interest are
identified, and second, functional assignments are performed by assigning gene
functions and taxonomic neighbors (Thomas et al. 2012). FragGeneScan (Rho et al.
2010), MetaGeneMark (McHardy et al. 2007), MetaGeneAnnotator (Noguchi et al.
2008), and Orphelia (Hoff et al. 2009) are the metagenome annotation tools used for
defining gene features, e.g., codon usage to find the coding regions. Also, nonprotein-
coding genes such as tRNAs (Gardner et al. 2009; Lowe and Eddy 1997), signal
peptides (Bendtsen et al. 2004), or clustered regularly interspaced short palindromic
repeats (CRISPRs; Bland et al. 2007; Grissa et al. 2007) can be identified but might
require long contiguous sequences and vast computational resources.

The functional annotations are provided as gene features via gene or protein
mapping to existing nonredundant (NR) protein sequence database. The sequence
that cannot be mapped to the known sequence space is termed as ORFans which
represents the novel gene contents. ORFans could be erroneous coding sequence
(CDS) calls or may be biochemically uncharacterized bona fide genes or have no
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sequence but structural homology to the existing protein families or folds. The
reference databases including Kyoto Encyclopedia of Genes and Genomes
(KEGG; Kanehisa et al. 2004), eggnog (Muller et al. 2010), cluster of orthologous
groups/eukaryotic orthologous groups (COG/KOG; Tatusov et al. 2003), PFAM
(Finn et al. 2014), and TIGRFAM (Selengut et al. 2007) are used to provide
functional context to metagenomics CDS. Three prominent systems Metagenome-
RAST (MG-RAST; Glass et al. 2010), integrated microbial genomes and
microbiomes (IMG/M; Markowitz et al. 2007), and CAMERA (Sun et al. 2011)
perform quality control, feature prediction, and functional annotation through
standardized protocols and also serve as large repositories of metagenomics datasets.
These web servers have a graphical user-friendly interface that assists users to
perform taxonomical and functional analysis of metagenomes, which, unfortunately,
might be saturated and not customizable at times. Earlier it was reported that the
standard metagenome annotation tools can only annotate 20–50% of the
metagenomics sequences (Gilbert et al. 2010) and requires further refinement in
the annotation algorithms, where sequence and structural homology can be taken
into account altogether which is the major computational challenge.

Pathway reconstruction, one of the annotation goals, could be achieved reliably if
there is robust functional annotation. To reconstruct a pathway, every gene should be
in an apt metabolic context, missing enzymes should be filled in the pathways, and
optimal metabolic states should be found. MinPath (Ye and Doak 2009) and
MetaPath (Liu and Pop 2011) use KEGG (Kanehisa et al. 2004) and MetaCyc
(Caspi et al. 2014) repositories for building networks. Most of the current platforms
are not able to reconstruct variant metabolic pathways (de Crécy-Lagard 2014), since
pathways and enzymes are not conserved among different environment and the
inhabiting species. A web service implementation by KEGG, GhostKOALA
(Kanehisa Laboratories www.kegg.jp/ghostkoala/), relates taxonomic origin of the
metagenomes with their respective functional annotation, and the metabolic
pathways from different taxa can be visualized in a composite map. Metabolic
pathways can be constructed using gene-function interactions, synteny, and copy
number of annotated genes and integrating them with the metabolic potential of
metagenome consortium.

5.2.4 Taxonomic Classification and Binning

Binning, as name suggests, is to group the sequencing reads representing an individ-
ual genome or genomes of closely related organisms. The algorithms employed in
grouping related sequences act either as supervised classifiers or unsupervised
classifiers. Binning can be performed based on either sequence similarity/alignment
or compositional features or both. Another strategy employed by tools is composi-
tional binning that bins the genomes based on the property of conserved nucleotide
composition that carry weak but detectable phylogenetic signals, e.g., GC content or
particular K-mer (tetramer or hexamer) abundance distribution (Pride et al. 2003), or
based on similarity-based binning where the unknown DNA fragments are binned
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according to the known genes in the reference database. Compositional-based
binning algorithms have been exploited in PhyloPythia (McHardy et al. 2007) and
PCAHIER (Zheng and Wu 2010), whereas a similarity-based binning algorithm was
employed in IMG/M (Markowitz et al. 2007), MG-RAST (Glass et al. 2010),
MEtaGenome ANalyzer (MEGAN; Huson et al. 2016), CARMA (Krause et al.
2008), MetaPhyler (Liu et al. 2010), and many more. Some programs such as
PhymmBL (Brady and Salzberg 2009) and MetaCluster (Leung et al. 2011) employ
both compositional- and similarity-based algorithms. All these tools employ either
an unsupervised or supervised approach to define the bins. The compositional-based
binning is not reliable for short reads of approximately 100 bp length, but if reference
data is available, then with supervised similarity-based method, the taxonomic
assignment of the read can be made (McHardy et al. 2007). The bins obtained will
be assigned taxonomy at the phylum level which is very high and results in chimeric
bins composed of two or more genomes that belong to the same phylum. The
similarity-based binning algorithm if improved to assignments at lower taxonomic
levels may help in creating accurate bins for a specific organism at least to a species
level. Such binned reads can be assembled to obtain partial genomes of
yet-uncultured or unknown organisms. The binning of reads before assembling
reduces the complexity of assembly efforts and computational requirements.

The metabolic potential of the metagenome can be deciphered after the microbial
diversity is known. Whole-metagenome approach where whole DNA of the com-
munity is sequenced can be used to obtain the complete information of a microbial
community. The choice of sequencing platform will influence the computational
resources and selection of available software to process the sequencing results.
These choices in turn will be reflected in taxonomic species/genus/family level
classification. Novel microorganisms identified from the analysis can potentially
establish new genes with novel functions.

Taxonomic annotation can be made better by using more than one phylogenetic
marker. Metagenome shotgun sequencing allows for the identification of single copy
marker genes among various databases. Parallel-META (Su et al. 2014) can be used to
extract ribosomal marker genes from metagenomics sequences to conduct taxonomic
annotations. Single copy marker genes can be extracted using MOCAT (Kultima et al.
2012) that uses the RefMG database (Ciccarelli et al. 2006), a collection of 40 single
copy universal marker genes, and “a pipeline for AutoMated PHylogenOmic infeR-
ence” (AMPHORA; Wu and Eisen 2008), a database with 31 single copy marker
genes. This pipeline, distinct from identification of marker genes, performs multiple
sequence alignment, distance calculations, and clustering. The reference genomes
were used to perform taxonomic annotation at a species-level resolution.

5.2.5 Statistical Analysis

The metagenomics data consists of large number of species, corresponding genes, and
their functions as compared to the number of samples analyzed. Thus, multiple
hypotheses are to be formed, tested, and implemented for comprehensive presentation

102 I. Khatri and M. Anurag



of data. Various multivariate statistical visualization programs such as Metastats
(White et al. 2009) and R packages, viz., ShotgunFunctionalizeR (Kristiansson et al.
2009), have been built to statistically analyze the metagenome data.

5.2.6 Data Storage and Sharing

Genome research has always been connected to sharing raw data, the final
assemblies and annotations; however, to store metagenomics data, database man-
agement and storage system are required. All the data is stored at the National Center
for Biotechnology Information (NCBI), the European Bioinformatics Institute
(EBI), and other metagenomics repositories. The digital form of data storage is
generally preferred, and despite the decreasing cost of generating NGS data, storage
costs may not decline (Weymann et al. 2017); therefore, acquiring data storage in a
cost-effective manner is also important.

The microbial systems can be very dynamic at different time points, e.g., as in the
human gut; therefore, temporal sampling has substantial impact on data analysis,
interpretations, and results (Thomas et al. 2012). Due to the magnitude of variation
in small-scale experiments (Prosser 2010), a sufficient number of replicates are
needed. Samples should be collected from the same habitat and should be processed
in a similar fashion. The experimental plan and interpretations, if done carefully,
facilitate dataset integration into new or existing theories (Burke et al. 2011). The
critical aim of metagenomics projects is to relate functional and phylogenetic
information to the biological, chemical, and physical characteristics of that environ-
ment and ultimately achieve retrospective correlation analysis.

5.3 Species Diversity

The diversity of species in an environmental sample is a critical question where the
vast majority of marker genes have been used to classify metagenomics reads.
Species-specific gene markers such as 16S/18S ribosomal DNA (rDNA) sequences
have been used to estimate the species diversity and coverage in most of the
analyses. rDNA as a marker gene has limitations including horizontal transfers
within microbes (Schouls et al. 2003) and the presence of multiple copies of the
marker gene (DeSantis et al. 2006). Other housekeeping genes such as rpoB (Walsh
et al. 2004) are strong candidates, and also amoA, pmoA, nirS, nirK, nosZ, and pufM
(Case et al. 2007) have been exploited in different contexts as molecular markers.

Quantifying species diversity is not trivial due to the incorporation of species
richness, evenness of species, or differential abundance (Simpson 1949). In
comparison of two communities, if both the communities have the same number
of species but their abundance varies, then the community with the shortest differ-
ence with “assumed even abundance” will be considered as more diverse.
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The diversity indices of the species are measured as α-diversity, β-diversity, and
γ-diversity in ecology and microbial ecology. The α-diversity is defined as the
biodiversity in a defined habitat (i.e., a smaller ecosystem), whereas β-diversity
compares species diversity between habitats (or between two ecosystems).The
γ-diversity is considered as the total biodiversity over a large region containing
several ecosystems (Wooley et al. 2010). Rarefraction curves are used to estimate
the coverage obtained from sampling which tells whether the species in a particular
habitat has been exhaustively sampled or not. All these indices are calculated in
metagenomics data analysis by employing various software and tools including
EstimateS (Colwell et al. 2004), Quantitative Insights Into Microbial Ecology
(QIIME; Caporaso et al. 2010), and Kraken (Davis et al. 2013). Another method
to calculate species diversity is through the use of statistical estimators, in particu-
lar nonparametric estimators. Simpson’s index (Simpson 1949) is based on the
probability of the same species taken randomly from the community and is used to
assign two independent subjects. The Shannon–Wiener index H´ (Shannon 1948)
is an entropy measurement and is directly proportional to the number of species in
the sample. These methods are used for heterogeneity measurements and differ
primarily in calculating the taxa abundance to measure the final richness estimation
(Escobar-Zepeda et al. 2015). Simpson and Shannon–Wiener indices prioritize
more-frequent and rare species, respectively, in the sample (Krebs 2014).

The use of diversity indices which quantify and compare microbial diversity
among samples is a better approach as compared to ones based on molecular
markers. The species diversity analysis should be done carefully as it can be
uninformative. The biases related to sampling should be reduced considering the
criteria for species or OTU definition.

5.4 Comparative Metagenomics

The comparison between two or more metagenomes facilitates the understanding
of genomic differences and how they are affected by the abiotic environment.
Various sequence-based traits such as GC content (Yooseph et al. 2007), microbial
genome size (Raes et al. 2007), taxonomy (von Mering et al. 2007), and functional
content (Turnbaugh et al. 2006) have been compared to gather biological insights
through comparison between two or more metagenomes. Statistical analysis is a
necessity to analyze several metagenomics datasets, and principal component
analysis (PCA) and nonmetric multidimensional scaling (NM-MDS) have been
used to visualize the metagenomics data analysis and reveal major factors that
affect the data most (Brulc et al. 2009).
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5.5 Challenges in Metagenomics Analysis

Sequencing of a complex environmental community for metagenomics analysis
often represents only a minute fraction of the vast number of culturable and
unculturable microorganisms actually present (Desai et al. 2012). To obtain just
onefold coverage of the entire community in a gram of soil requires hundreds of
millions of reads without guarantee that every member of that community was
sequenced. The unknown community composition and relative abundance of
microorganisms limits our ability to calculate the coverage robustly. Even perfect
16S amplicon-based characterization of microbial species fails to distinguish
between different strains (Desai et al. 2012). Furthermore, no tools are available
that determine the availability of sufficient coverage to interpret data of a certain
depth for a community. The low coverage data represents randomly subsampled
genomic content of the community. Despite complete coverage with millions
invested, the analysis of metagenomics data requires tools and protocol development
comparable to genomic analysis. Moreover, if the approaches led to the identifica-
tion of new microbial community members and discovery of new molecules,
problems associated with cloning biases, sampling biases, misidentification of
“decorating enzymes” and incorrect promoter sites in genomes, and dispersion of
genes involved in secondary metabolite production (Escobar-Zepeda et al. 2015)
should be considered.

Similarly, human metagenomic experiments and analysis also have associated
limitations and pitfalls as they are sensitive to the environment including any
particular condition or intervention (Kim et al. 2017). Various factors including
diet, drugs, age, geography, and sex have all been reported to influence function and
composition of the human microbiome (Blaser et al. 2013;Dave et al. 2012;
Lozupone et al. 2012). Another challenge is the longitudinal stability. Unlike gut,
the microbiome of other sites, like the human vagina, can vary in short periods
without always indicating dysbiosis (Williams and Lin 1971). In animal
experiments, the prime limitation is the cage effect, which is best studied in mice
kept in the same cage and can share the same microbiome because of coprophagia
(Campbell et al. 2012). When it comes to handling and analyzing samples, issues
pertaining to low microbial biomass, environmental contamination, and presence of
negative/positive control samples should be addressed. The major informatics
challenges associated with human metagenome analysis, similar to other
metagenomes, are the large volume and bulkiness of the data and the heterogeneous
microbial community. One additional challenge has been the rapid identification of
host sequences contaminating metagenomics datasets, which is time- and memory-
extensive process and hence needs to be revisited. There have been efforts to
overcome these challenges with tools like CS-SCORE (Haque et al. 2015); however,
algorithm improvement is needed.
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5.6 Applications of Metagenomics

5.6.1 Correlations Between Environmental Data and Metadata

Metagenomics studies aid in investigating genomic potential of the bacterial com-
munity and how it is affected by and is affecting its habitat. The correlation between
sequence data, environment, and environmental attributes or their correlation among
themselves reveals new biological insights. For example, a bivariate metagenome
study in obese vs lean mouse reveals that obese individuals are enriched in
carbohydrate-active enzymes (Turnbaugh et al. 2006). Multivariate correlation anal-
ysis in a nutrient poor ocean habitat revealed covariation in amino acid transport and
cofactor synthesis molecules (Gianoulis et al. 2009).

5.6.2 Investigating Symbiosis

Symbiotic relationships occur when two or more organisms are symbionts which
represent a small-scale metagenomics and can be analyzed in a similar fashion. The
organisms in symbiotic relations are few, and their distance to each other
phylogenetically eases the binning of the reads in separate bins and can be assembled
separately. Wu and collegues (2006) exploited a similar method to bin the ESS data
from bacterial symbionts living in the glassy-winged sharpshooter and inferred that
one member of a symbiont synthesizes amino acids for the host insect, while the
other produces cofactors and vitamins (Wu et al. 2006).

5.6.3 Gene Family Enrichment

The immense amount of genetic material has led to the possibility of associating new
gene families with new members of existing gene families. The small bacterial
eukaryotic protein kinase-like (ELK) gene family was enriched severalfold through
the Global Ocean Sampling (GOS) metagenomics project (Wooley et al. 2010).

5.6.4 Human Microbiome

Symbiotic microbes have coevolved with humans for millions of years and play a
critical role in health of the host. The focus of human microbiome research has been
on the bacteria residing in the gut, which represents the most abundant and diverse
part of the human microbiome (Consortium 2012). Colonization of these bacteria
commences at birth, and the method of delivery (i.e., vaginal or cesarean section)
influences the basal community (Dominguez-Bello et al. 2010). Early-life events,
such as mode of delivery (Fig. 5.2 – adapted from Rutayisire et al. 2016), dietary
transitions or restrictions (Bergstrom et al. 2014; Rutayisire et al. 2016), and antibi-
otic use (Cho et al. 2012), shape the dynamic microbiome of infants. This gradually
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stabilizes with age and leads to adult gut microbiota, which is highly resilient to
minor perturbations. This longitudinal stability, collectively with vast interpersonal
diversity of the microbiome, allows identification of ~80% individuals by their
distinct “microbial fingerprint” (Franzosa et al. 2015). The human microbiota
communities contribute to various host biological processes, thus deeply influencing
human health. Global initiatives have been taken to understand the healthy
microbiome and its composition.

5.6.5 Metagenomics in Diseases

Recent findings have emphasized the effect of gut microbiome in human health and
therapeutic response (Scarpellini et al. 2015). The gut microbiome, primarily, is
composed of viruses and fungi and has been shown to be modulated in diet-
associated insulin resistance in type 2 diabetic patients using a metagenome-wide
association analysis (Qin et al. 2012). Gut microbiota has been established as a
metformin action site, and metformin–microbiota interactions have been studied to
show that altered gut microbiota mediates some of metformin’s antidiabetic effects
(Wu et al. 2017). The Human Pan-Microbe Communities (HPMC) database (http://
www.hpmcd.org/) is an excellent source of highly curated, searchable, metagenomic
resource focusing on facilitating the investigation of human gastrointestinal
microbiota (Forster et al. 2016).

Historically, cancer has been associated with different forms of microorganisms.
The metagenomics era has revolutionized microbiome profiling which helps to boost
a number of studies exploring microbial linkage to cancer. Several studies on
microbes and cancers have shown distinct associations between various viruses
and different types of cancers. Human papilloma virus (HPV) causes the majority of

Fig. 5.2 Microbiota colonization pattern significantly associated with the mode of delivery during
the first 7 days after birth. Bacterial species with quantified colonization rate has been shown.
(Adapted from Rutayisire et al. 2016)
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cervical, anal, and oropharyngeal cancer (Chaturvedi et al. 2011; Daling et al. 2004;
Gillison et al. 2008; Winer et al. 2006). Similarly, Epstein–Barr virus has been found
to be responsible for nasopharyngeal carcinoma, Hodgkin’s, Burkitt’s lymphoma, etc.
(Anagnostopoulos et al. 1989; Henle and Henle 1976; Leung et al. 2014).

5.6.6 Clinical Implications

In translating the role of microbiomes into clinical applications, Danino et al. (2015)
engineered a probiotic E. coli to harbor specific gene circuits that produce signals
allowing detection of tumor in urine, in case of liver metastases. This concept was
based on the fact that metastasis leads to translocation of the probiotic E. coli to the
liver. Metagenomics has also allowed physicians to probe complex phenotypes such
as microbial dysbiosis with intestinal disorders (Antharam et al. 2013) and
disruptions of the skin microbiome that may be associated with skin disorders
(Weyrich et al. 2015). Recently, different bacterial profiles in the breast were
observed between healthy women and breast cancer patients. Interestingly, higher
abundances of DNA damage causing bacteria were detected in breast cancer
patients, along with decrease in some lactic acid bacteria, known for their beneficial
health effects (Urbaniak et al. 2016). Such studies raise important questions regard-
ing the role of the mammary microbiome in risk assessment to develop breast cancer.

Metagenomics analytics is changing rapidly with evolutions of tools and analysis
procedures in terms of scalability, sensitivity, and performance. The field allows us
to discover new genes, proteins, and the genomes of non-cultivable organisms with
better accuracy and less time as compared to classical microbiology or molecular
methods. However, no standard tool or method is available that can answer all our
questions in metagenomics. The lack of standards reduces reproducibility and is still
a case by case study. The major problem associated with metagenomics study is also
data management as most institutes lack computational infrastructure to deal with
long-term storage of raw, intermediate data, and final analyzed datasets.

Comparison between different biomes and different environmental locations will
provide insight into the microflora distribution and help understand the environment
around us.

All the advances in the field of human metagenomics add up to the profound
impact that the microbiome and their metagenomics have on human health in
providing new diagnostic and therapeutic opportunities. However, existing thera-
peutic approaches for modulating microbiomes in the clinic remain relatively under-
developed. More studies focused on metagenomics of different organs need to be
performed, comparing the tissues from healthy versus affected individuals. Further
exploration of additive, subtractive, or modulatory strategies affecting the human
microbiota and its clinical implementation could potentially be the next big mile-
stone in the field of translational and applied microbiology. The near future chal-
lenge is in the accurate manipulation and analysis of the vast amounts of data and to
develop approaches to interpret data in a more integrative way that will reflect the
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biodiversity present in our world. The development of more bioinformatics tools for
metagenomics analysis is necessary, but the expertise of scientific community to
manipulate such tools and interpret their results is a critical parameter for successful
metagenomics studies.
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Computational Epigenomics and Its
Application in Regulatory Genomics 6
Shalu Jhanwar

6.1 Introduction

A genome contains the entire genetic instructions essential to develop and direct the
activities of an organism, thereby acting as a blueprint for gene regulation. However,
the genome does not work in isolation. The regulation of the chromatin and gene
expression is affected by tissues and cell types, developmental stages, aging, as well
as diverse surrounding factors including chemical pollutants, dietary components,
and temperature changes. Therefore, the interpretation of the instructions provided
by the genome differs among the cell types irrespective of having the same genome
in all the (nucleated) human cells. To describe the mechanisms of cell fate and
lineage specification during animal development, Conrad Hal Waddington first
introduced the term epigenetic landscape (Waddington 2012). Thus, epigenetics
endeavored to bring together two important bio-streams, i.e., genetics and develop-
mental biology, to unfold the genetic program for development. In contrast to the
early epigenetics that was originated exclusively in embryology and development,
the modern epigenetics emphasizes on defining mechanisms of transmission of
information that are not encoded in DNA (Felsenfeld 2014). In a nutshell,
epigenetics deals with the effects of changes in chromatin structure excluding any
modification in the primary DNA sequence that subsequently leads to heritable
alterations in gene expression (Wu and Morris 2001). The epigenetic mechanisms
may result in either activation or repression of regulatory elements as well as genes
by compacting (heterochromatin) and unfolding (euchromatin) the chromatin,
respectively. Thus, linking genomics with epigenetics is crucial to determine the
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dynamics of chromatin states that shapes underlying gene expression. In this chapter,
an application of epigenetics in the field of regulatory genomics, specifically
enhancer-mediated regulation, is explored. With the extensive usage of NGS, the
paradigm has shifted from the experimental-based characterization to the omics-
based characterization of enhancers. In particular, a number of sophisticated
machine-learning-based enhancer predictors have been widely used to integrate
information of genomic and epigenomic features. Thus, the catalog of enhancers
and its annotation has increased rapidly.

The important concepts learned so far indicate that the modern epigenetics
comprises of covalent modifications of DNA bases, wrapping of DNA around the
nucleosomes, posttranslational modifications of histones, noncoding RNA-mediated
mechanisms, and a higher order of chromatin folding (Fig. 6.1).

DNA methylation, first reported by Hotchkiss (1948), is a heritable epigenetic
mark that directly modifies the bases in DNA. The predominant modifications in
animal and plant DNA involve the covalent transfer of a methyl group to cytosine
nucleotides through DNA methyltransferases (DNMTs), followed by adenine and
guanine methylation. DNA methylation plays a fundamental role in the maintenance
and regulation of crucial biological processes such as pluripotency, X-chromosome
inactivation, embryonic development, genomic imprinting, regulation of chromatin

Fig. 6.1 The epigenetic code: an example of a higher order of chromatin folding, where DNA is
packaged around nucleosomes. The DNA double helix wraps around histones that contain unstruc-
tured N- or C-terminal tails and a globular structure domain. (Adapted from Marx 2012)
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structure, chromosome stability, and transcriptional activity. When DNA methyla-
tion is dysregulated, it contributes to diseases ranging from cancer to neurodegener-
ative and autoimmune disorders (Robertson 2005).

The DNA double helix wraps around tripartite proteins known as histones that
contain unstructured N- or C-terminal tails and a structured globular domain
(Fig. 6.1). The flexible tails may undergo several posttranslational modifications
(PTMs) such as acetylation, methylation, phosphorylation, and ubiquitylation (tan
et al. 2011). These PTMs either directly change the chromatin structure and dynam-
ics (Choi 2013) or work via an indirect mechanism by communicating with
“readers” like chromatin remodeling agents, histone acetyltransferases (HATs),
and transcriptional coactivators (P300) (Strahl and Allis 2000). Moreover, recent
studies have precisely demonstrated their role to directly shape nucleosome
functions (Xu et al. 2005). The patterns of histone PTMs correlate with the distinct
chromosomal states that regulate access to the open chromatin (DNA accessibility)
for precise binding of DNA-binding proteins, thus, leading to the concept of the
histone-code hypothesis (see details in Sect. 6.3).

Further, eukaryotic chromatin is made up of subunits called nucleosomes; each
consists of histone octamer core wrapped around by 147 bp of DNA. The position of
nucleosomes across a genome plays a significant regulatory function by modifying
the accessibility of the binding sites of transcription factors (TFs) and the transcrip-
tional machinery. This affects processes such as DNA repair, DNA transcription, and
DNA replication. The regions possessing regulatory activity, i.e., regulatory
elements (RE), generally reside in open or accessible genomic regions. A wide
range of recently developed high-throughput sequencing-based approaches such as
DNase-seq (Song and Crawford 2010), ATAC-seq (Buenrostro et al. 2013), FAIRE-
seq (Giresi et al. 2007), and MNase-seq (Schones et al. 2008) provide a comprehen-
sive view of nucleosome-depleted open accessible DNA at genome-wide level.
When integrated with DNA-binding protein data, they enable to localize and delin-
eate REs controlling cell fate.

A major quest to understand what molecular mechanisms underlie gene regula-
tion lies in understanding the constraints of interactions between the genes and their
surrounding REs. In particular, how the 3D landscape of the genome confines
enhancer-promoter interactions is central to the scientific community (Plank and
Dean 2014). Recently developed chromosome conformation capture (3C)-based
methods have made great strides toward dissecting these chromatin interactions
(Dekker et al. 2013). Present consensus supports the hypothesis that enhancers
make direct physical contact with promoter regions through “looping” mechanism
to form a compact topology (de Wit and de Laat 2012). It has become possible to
capture “one to one,” “one to all,” and “many to many” forms of 3D interactions
throughout the genome. A close spatial proximity may result in direct or indirect and
specific or nonspecific random interaction between the pair of a locus (Dekker et al.
2013).
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6.2 Computational Epigenomics

Over the past decades, a succession of robust technological advances in next-
generation sequencing (NGS) has allowed us to resolve the genome-wide maps of
epigenomic features with high accuracy and comprehensiveness.

A timeline of sequencing-based technologies for mapping of human epigenomes
is presented in Fig. 6.2 (Martens and Stunnenberg 2013). These key technology
platforms of DNA methylation and chromatin profiling could be easily integrated
with expression profiling and existing genome data to study the underlying complex
regulatory mechanisms guiding gene expression. The availability of large-scale
epigenome data in public domain has created ample of opportunities and inspired
computational efforts that aim to develop new algorithms to systematically analyze
and integrate different types of genomic and epigenomic data.

6.2.1 DNA Methylation

Commonly implemented experimental methods involve three relevant approaches
(Bock 2012): (1) genomic DNA digestion with methyl-sensitive restriction enzymes
(MRE-seq) (Maunakea et al. 2010), (2) affinity-based enrichment of methylated
DNA regions by either a methyl-binding domain or an antibody (MeDIP-seq)
(Down et al. 2008), and (3) use of chemical conversion methods such as bisulfite
modification of DNA (Frommer et al. 1992) either in a restricted region of the
genome (RRBS) or at the whole-genome (WGBS) level. These techniques behave
differently concerning CpG coverage, resolution, quantitative accuracy, efficiency,
and sequencing cost (Fig. 6.3). The unique characteristics of each method provide an
opportunity to choose an appropriate method best suited to answer a particular
biological question while maintaining a trade-off between cost, coverage, resolution,
cohort size, and a number of affordable replicates.

Fig. 6.2 Mapping of human epigenome: sequencing-based methods for mapping of human
epigenome features in chronological order of release. It includes commonly used NGS techniques
for DNA methylation, histone modification, DNA accessibility, nucleosome identification, and
chromatin interaction. (Adapted from Rivera and Ren 2013)
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Despite the high sequencing cost, WGBS is essential to investigate DNA meth-
ylation changes at a single base-pair resolution systematically. A typical computa-
tional analysis pipeline of bisulfite sequencing (BS-seq) involves four basic steps:
(1) quality control of the raw sequencing reads, (2) alignment against the reference
genome, (3) methylation calling, and (4) identification of the differentially
methylated regions. To obtain a correct alignment is a crucial and challenging
step. As a result of bisulfite treatment, the complexity of the libraries is reduced,
i.e., the GC content is reduced. Moreover, both strands of DNA from the reference
genome must be considered separately because cytosine methylation might not be
symmetric (non-CpG). Correct sequencing and mapping against the genome are of
utmost importance to obtain accurate methylation state from a BS-seq experiment. A
recommended workflow with the computational tools and details of each step is
shown in Fig. 6.4 (Krueger et al. 2012).

Finally, differentially methylated regions (DMR) can either be annotated for the
overlap with genomic regions (promoters, introns, exons, and intergenic regions) or
could be associated to the gene ontology (GO) to determine enriched biological
processes and molecular functions within DMRs. Computational tools (Table 6.1)
identifying DMRs mainly differ regarding statistical tests used, ability to define
differentially methylated regions, type of the data being analyzed, and support for
covariate adjustments (Robinson et al. 2014).

6.2.2 Chromatin Immunoprecipitation

In the past decades, chromatin immunoprecipitation followed by high-throughput
sequencing (ChIP-seq) has emerged as the method of choice replacing the previously
used microarray hybridization (ChIP-chip) technique to study the genome-wide
binding of the proteins such as histone modifications, transcription factors (TFs),

Fig. 6.3 DNA methylation
techniques: an overview of
existing DNA methylation
methods concerning base
pairs and estimated
sequencing cost. (Adapted
from Rivera and Ren 2013)
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Fig. 6.4 A comprehensive workflow to analyze BS-seq data. Black and gray arrows represent
necessary as well as optional steps, whereas * indicate tools dedicated to base-space data. (Adapted
from Krueger et al. 2012)
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chromatin remodeling enzymes, and chromosomal positions of nucleosomes and
polymerases (Ku et al. 2011) in a wide variety of organisms.

Briefly, the primary ChIP-seq computational pipeline includes quality control of
raw sequencing reads, statistics-based enrichment of genomic regions, and func-
tional annotation of the enriched regions as outlined in Fig. 6.5.

Table 6.1 A list of commonly used tools to identify differentially methylated loci and regions

Method Citation
Designed
for

Determines
regions or uses
predefined

Accounts
for
covariates

Statistical
elements used

Minfi Aryee et al.
(2014)

450k Determines Yes Bump hunting

IMA Wang et al.
(2012)

Predefined No Wilcoxon

COHCAP Warden
et al. (2013)

450k or
BS-seq

Predefined Yes FET, t-test,
ANOVA

BSmooth Hansen
et al. (2012)

BS-seq Determines No Bump hunting
on smoothed
t-like score

DSS Feng et al.
(2014)

Determines No Wald

MOABS Sun et al.
(2014)

Determines No Credible
methylation
difference

BiSeq Hebestreit
et al. (2013)

Determines Yes Wald

DMAP Stockwell
et al. (2014)

Predefined Yes ANOVA, χ2,
FET

methylKit Akalin
et al. (2012)

Predefined Yes Logistic
regression

RADMeth Dolzhenko
and Smith
(2014)

Determines Yes Likelihood
ratio

methylSig Park et al.
(2014)

Predefined No Likelihood
ratio

Bumphunter Jaffe et al.
(2012)

General Determines Yes Permutation,
smoothing

ABCD-
DNA

Robinson
et al. (2012)

MeDIP-seq Predefined Yes Likelihood
ratio

DiffBind Ross-Innes
et al. (2012)

Predefined Yes Likelihood
ratio

M&M Zhang et al.
(2013)

MeDIP-
seq + MRE-
seq

Determines No Similar to FET

The table summarizes key features such as data type (450k or BS-seq), definition of methylated
regions (predefined or dynamic), ability to perform covariate adjustment, and statistics explored by
different computational methods (Robinson et al. 2014)
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For an efficient ChIP-seq analysis, sufficient sequencing depth is essential that
mainly depends on the size as well as the number of the protein binding sites, and the
size of the genome itself. A minimum of 20 and 40 million uniquely mapped tags
corresponding to a TF (point source) and histone (broad source) ChIP, respectively,
is highly recommended in mammals. The fraction of nonredundant mapped reads
(nonredundant fraction or NRF), i.e., the ratio between the number of genomic
positions covered by uniquely mapped reads and the total number of uniquely
mapped reads, is a useful measure of ChIP library complexity (Landt et al. 2012).
Computation of the precise fragment length is crucial to determine the accurate
binding sites of DNA-binding proteins. Fragment length can be calculated based on
the distance either between the peaks of tag density on positive and negative strands
(single-end reads) or between the pairs of the reads (paired-end sequencing).

After mapping, the location of the DNA-binding proteins (regions of ChIP
enrichment) is determined using peak callers (Bailey et al. 2013) that considers
different design strategies for signal smoothing and statistical background models,
normalization methods (Table 6.2), and assessment of the peak quality to calculate
P-values and false discovery rates (FDR). The final set of peaks obtained is highly
relying on the algorithm used and parameter settings such that relaxed thresholds
may lead to many false positives and are more likely to be noise. However, a global
ChIP enrichment can be depicted using FRiP (fraction of all mapped reads within
peaks) (Ji et al. 2008). A FRiP enrichment of 1% or more is recommended by
ENCODE (Landt et al. 2012). Another useful metric to assess signal-to-noise ratio is

Fig. 6.5 Schematic of a typical ChIP-seq data analysis pipeline: The usual steps are divided into
(1) data preprocessing and quality control, (2) statistical analysis, and (3) functional analysis. Each
step comprises of underlying subparts as shown in the figure. (Adapted from Henry et al. 2014)
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given by strand cross correlation, i.e., the Pearson linear correlation between the
Crick and theWatson strand, after movingWatson by k base pairs (Kharchenko et al.
2008). The consistency of the peaks among the replicates is immensely useful as the
most significant peaks are expected to measure same underlying biology across
multiple biological replicates. Irreproducible discovery rate (IDR) is a widely

Table 6.2 A list of frequently used peak callers for the analysis of ChIP-seq

Software tool Version Availability

Point
source
(peaks)

Broad
regions
(domains)

BayesPeak 1.10.0 http://bioconductor.org/packages/
release/bioc/html/BayesPeak.html

Yes –

Beadsa 1.1 http://beads.sourceforge.net/ Yes Yes

CCAT 3 http://cmb.gis.a-star.edu.sg/ChIPSeq/
paperCCAT.htm

– Yes

CisGenome 2 http://www.biostat.jhsph.edu/~hji/
cisgenome/

Yes –

CSAR 1.10.0 http://bioconductor.org/packages/
release/bioc/html/CSAR.html

Yes –

dPeak 0.9.9 http://www.stat.wisc.edu/~chungdon/
dpeak/

Yes –

GPS/GEM 1.3 http://cgs.csail.mit.edu/gps/ Yes –

HPeak 2.1 http://www.sph.umich.edu/csg/qin/
HPeak/

Yes –

MACS 2.0.10 https://github.com/taoliu/MACS/ Yes Yes

NarrowPeaksa 1.4.0 http://bioconductor.org/packages/
release/bioc/html/NarrowPeaks.html

Yes –

PeakAnalyzer/
PeakSplittera

1.4 http://www.bioinformatics.org/
peakanalyzer

Yes –

PeakRanger 1.16 http://ranger.sourceforge.net/ Yes Yes

PeakSeq 1.1 http://info.gersteinlab.org/PeakSeq Yes –

polyaPeaka 0.1 http://web1.sph.emory.edu/users/
hwu30/polyaPeak.html

Yes –

RSEG 0.6 http://smithlab.usc.edu/histone/rseg/ – Yes

SICER 1.1 http://home.gwu.edu/~wpeng/
Software.htm

– Yes

SIPeS 2 http://gmdd.shgmo.org/
Computational-Biology/ChIP-Seq/
download/SIPeS

Yes –

SISSRs 1.4 http://sissrs.rajajothi.com/ Yes –

SPP 1.1 http://compbio.med.harvard.edu/
Supplements/ChIP-seq/

Yes Yes

Useq 8.5.1 http://sourceforge.net/projects/useq/ Yes –

ZINBA 2.02.03 http://code.google.com/p/zinba/ Yes Yes

The table lists tools for processing of enriched regions (peaks, domains, and mixed signals)
identified using ChIP-seq. (Bailey et al. 2013)
aOnly for post-processing
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accepted statistic to quantify the consistent and inconsistent groups of peaks present
between the replicates (Li et al. 2011). Finally, ChIP-seq peaks are linked with
functionally important genomic regions to obtain the biological inference and could
be further investigated to find the consensus motifs (see details in Sect. 6.2.3).

Future challenges include the development of novel methods integrating ChIP-
seq data with other NGS techniques from a statistical viewpoint to perform in-depth
data analysis, for example, how an integration of ChIP-seq and RNA-seq can deduce
gene regulatory networks that might help to explain mechanisms of gene regulation.

6.2.3 DNA Accessibility: Open Chromatin

Genome-wide maps of open chromatin sites are explored to study transcriptional
regulation and footprinting of DNA-binding proteins using high-throughput
sequencing: DNase-seq (Song and Crawford 2010), FAIRE-seq (Giresi et al.
2007), ATAC-seq (Buenrostro et al. 2013), and MNase-seq (Schones et al. 2008).
Among all, ATAC-seq is the fastest procedure and provides sequencing libraries
using the lowest amount of the cells. Moreover, a detailed application of ATAC-seq
in determining TF footprinting, nucleosome positioning, as well as chromatin
accessibility usually makes it a method of choice. Therefore, the computational
analysis presented here is mainly concerned with ATAC-seq.

Both tag counts and tag length (currently varies between 36 and 300 bp) are the
most instrumental parameters to access the sequencing quality (Fig. 6.6). Briefly, the
analysis involves alignment of raw sequencing reads using aligners (Maq, RMAP,
CloudBurst, SOAP, SHRiMP, BWA, and Bowtie) (Li and Homer 2010); removal of
short, duplicated, or overrepresented reads using Picard (Li et al. 2009, http://
broadinstitute.github.io/picard) and SAMtools (Li et al. 2009); and visualization of
the signal on genome browsers (IGV; Thorvaldsdóttir et al. 2013) and UCSC
genome browser (Fujita et al. 2011). A high percentage of the tags (~20–80% of
the sequencing reads) usually maps to the mitochondria (Montefiori et al. 2017).
Thus, it is essential to typically discard these mitochondrial reads from the down-
stream analysis as the open chromatin regions of interest are usually present in the
nuclear DNA. From this point, the analysis can proceed further in different directions
(Fig. 6.6) based on the question of interest such as determining nucleosome posi-
tioning (NucleoATAC, Schep et al. 2015) and identification of enriched open
chromatin regions (F-seq, Boyle et al. 2008; Hotspot, John et al. 2011; MACS,
Zhang et al. 2008; and ZINBA, Rashid et al. 2011) using peak callers.

A comprehensive set of noncoding enriched regions, obtained either using
ATAC-seq or ChIP-seq, usually lacks annotation and might correspond to
cis-regulatory regions such as promoters and enhancers (see below). To achieve
the functional relevance, these cis-regulatory regions are commonly assigned
biological meaning based on the annotation of nearby genes (GREAT; McLean
et al. 2010). Thus, the peak-to-gene assignment is a highly crucial step (see Sect.
6.4). Moreover, these enriched regions (peaks) often harbor short sequences of
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actual binding sites of TFs that are usually found in the vicinity to the summit of
enriched peaks. Identifying the conserved known/de novo motifs using MEME and
FIMO (Bailey et al. 2009) and HOMER (Heinz et al. 2010) in these sequences is
highly beneficial to gain fundamental insights of underlying biological mechanisms
associated with these putative regulatory regions.

Taking advantage of the high sequencing depth of ATAC-seq, TF analysis can be
further streamlined to identify TF footprints ((CENTIPEDE; Pique-Regi et al. 2011)
and (PIQ; Sherwood et al. 2014)) that combine known information of positional
weight matrices (TF motifs) with enriched open chromatin regions (DNase-seq/
ATAC-seq). The use of open chromatin data in expression QTL (eQTL) studies
linking regulatory regions with disease phenotypes might help develop epigenetic
and regulatory biomarkers of disease.
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Fig. 6.6 Computational analysis of DNA accessibility: a comprehensive analytical workflow
describing major steps involving the analysis of high-throughput chromatin accessibility sequenc-
ing methods. The basic alignment steps are common to all. The color boxes incorporate different
steps dedicated to each method. (Adapted from Tsompana and Buck 2014)
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6.2.4 Chromatin Conformation

Chromosome conformation capture (3C)-based techniques have been explored to
understand the physical wiring diagram of the genome (Fig. 6.7). The target-based
methods (3C and 4C), though they provide interaction profiles corresponding to
individual loci, are limited to the prior knowledge of the possible interactions with
the targets, while ChIA-PET, 5C, and Hi-C provide a comprehensive, genome-wide,
and unbiased portrait of the regulatory chromatin looping, thereby potentially
revealing all interactions between promoters and enhancers (de Wit and de Laat
2012). However, a close spatial proximity might be due to a direct or indirect and
specific or nonspecific (random) interaction between a pair of loci. Interestingly, a
graphical representation of a high-resolution interaction map reveals the presence of
highly self-interacting topologically associating domains (TAD; Dekker et al. 2013),
where loci lying within the domains interact more often with limited interaction with
regions in other domains.

Computational approaches to analyze chromatin interaction involve either chro-
matin interaction restraint-based modeling or polymer ensemble-based approach.
Specifically, restraint-based modeling has proven informative and efficient for
analyzing stable chromosomal looped domains. Instead, a polymer-based method
is robust to determine statistical organizational features of chromosomal folding,

Fig. 6.7 Chromatin conformation capture methods: a summary of the experimental workflow of
conformation capture methods for the analysis of 3D chromatin organization within a cell (Risca
and Greenleaf 2015). These techniques have different approaches for fragmentation, enrichment,
and detection of the ligation junctions, thereby giving rise to a diverse set of methods. (Adapted
from Risca and Greenleaf 2015)
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their dynamics and variability across different cells, and specific interactions
between chromosomes (Dekker et al. 2013). With the maturation of computational
epigenomics, various methods have recently been implemented to process Hi-C
data. A recent benchmark study of commonly used Hi-C methods including
HiCCUPS, TADbit, HIPPIE, and HiCseg has discussed key features of each tool
in detail that differs with respect to usability, computing resources required to finish
the analysis, type of interactions given (cis or trans), and alignment, filtering, and
normalization of contact matrix strategies (Forcato et al. 2017).

These 3D representations provide a way to leverage information about the higher-
order chromosomal organization such as the formation of globular domains, chro-
mosome territories, and mechanism involved in folding (Dekker et al. 2013) as well
as interactions between REs. For instance, in a particular case of Hox genes, i.e., the
primary determinants of the animal body plan, a landscape of the two topological
domains (TADs) flanking a HoxD cluster illustrates the modular organization
containing distinct regulatory capacities around the HoxD cluster (Andrey et al.
2013). The transition of Hox genes between separate regulatory landscapes is a
useful paradigm to interpret the functional rationale underlying this organization as
well as its evolutionary origin.

6.3 Chromatin Dynamics Mediated by Regulatory Elements

Apart from the well-understood 1.5% coding region, various attempts have been
made to understand the function of the noncoding portion of the human genome over
the years. The noncoding part of the genome harbors REs containing binding sites
for various DNA-binding proteins such as TFs and cofactors that work in synchrony
at these REs to regulate the transcription of the eukaryotic genes (Sheffield and
Furey 2012). However, the accessibility of the binding site of TFs within REs might
be affected because of the epigenetic factors such as chromatin remodelers, histone
modifications, and DNA methylation. The dynamism of specific epigenomic factors
at REs is instrumental in characterizing distinct regulatory states within the genome
(see the Sect. 6.4), since gene expression is regulated by affecting either the
accessibility or the affinity of TFs at the regulatory sites. Therefore, REs act as
decision-making entities (Fig. 6.8) governing the cell’s response to stimuli from
surrounding cells and the environment (Sheffield and Furey 2012).

The distinct classes of REs typically include silencers, promoters, enhancers,
insulators, and locus control regions (LCRs), each performing specific functions
(Maston et al. 2006; Dunham et al. 2012; Heintzman et al. 2009). The landscape of
promoters and enhancers is better characterized than the other classes. In contrast to
the promoters that lie immediate upstream to the transcriptional start site of their
gene targets, enhancers can regulate target gene expression irrespective of their
location (either distal or proximal to the target genes) and orientation within the
genome. These enhancers may interact with promoters through looping mechanism
(Wang et al. 2005). A repertoire of all REs in the entire genome constitutes the
regulome of an organism.
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6.4 Challenges and Opportunities to Study Regulatory
Elements, Particularly Enhancers

Elucidating the functional meaning of noncoding part of the genome is challenging.
Unlike a few thousand well-conserved protein-coding genes, the proposed number
of REs has grown to millions and seems to lack high conservation even between
genetically closely related species. Intriguingly, REs can modulate target gene
expression by either a direct interaction or indirectly via action on TFs. Moreover,
the regulome is dynamic and varies with factors such as age, genetic background,
developmental time, cell/tissue type, and the environment. Apart from this, each
class of RE harbors distinct functional states that may perform a variety of specific
functions. There are certain histone modifications governing rules to determine
operational states of enhancers. For instance, the most common histone acetylations
(H3K27 and H3K9) and H3 monomethylated at lysine 4 (H3K4me1) enrich at active
enhancers. Additionally, active H3K4me1 along with the repressive polycomb
protein-associated H3K27me3 marks closed or poised state of the enhancer
(Shlyueva et al. 2014) and so on. Overall, multiple layers of complexity in
RE-mediated mechanisms pose an interesting challenge to fully understand the
robust system of gene regulation mediated by REs.

In spite of the challenges mentioned above, a rapid advancement in DNA-protein
interaction techniques and genome-wide epigenomic interaction studies has
provided new functional insights into RE-mediated mechanisms. The unprecedented
availability of the genome-wide epigenomic data has been instrumental in
identifying regulatory regions, especially enhancers that are located anywhere in
the genome unlike promoters lying immediate upstream to the target genes. Existing
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computational endeavors have typically explored the dynamic patterns of histone
posttranslational modifications (histone-code hypothesis) integrating DNA accessi-
ble regions using sophisticated machine-learning (ML) approaches (Table 6.3) to
identify either distinct regulatory states (ChromHMM) or putative enhancers
(RFECS) in particular. Also, sequence-based features (Fig. 6.9) such as CpG islands,
GC content, sequence conservation, and TF binding sites assist in identifying
enhancers (Whitaker et al. 2015) such as in DEEP (Kleftogiannis et al. 2015).
Moreover, transcription of enhancers in the form of noncoding enhancer RNA
(eRNA) has increasingly exploited by in silico methods as an important feature to
detect functionally active enhancers. As enhancers share common structural and
functional characteristics with promoters, few epigenetic modifications coexist at
different REs, thereby showing dynamic and ambiguous epigenomic patterns
(Weingarten-Gabbay and Segal 2014).

Due to the peculiar characteristics of enhancers such as their distal location from
the target genes, high cell-type/tissue specificity, expression in the form of eRNA,
and ambiguous epigenetic modification patterns, computational methods are still
struggling to achieve accurate enhancer predictions in a cell-type/tissue-specific
manner. Further, due to the complex mechanism of the gene regulation mediated
by enhancers, a precise mapping to their gene targets is not so straightforward.
Beyond experimental approaches elucidating enhancer-target relationship, a couple
of widely accepted enhancer-mediated gene regulation hypotheses include distance-
based approach to associate enhancer state with the most proximal target gene
expression or promoters and chromatin structure-based approach to map enhancer
and promoter interactions through looping mechanism. Other factors such as eQTL
information, eRNA co-expression, and TF co-expression might improve gene-
enhancer association (Fishilevich et al. 2017).

6.5 Computational Advancements to Elucidate Effect
of Regulatory Variants in Disease Pathogenicity

Both loss- and gain-of-function mutations associated with cis-regulatory regions
have potential to generate transcriptional alterations, thereby causing a gradient of
phenotypes. A huge portion of the disease associated variants (GWAS: 88%) falls
into the noncoding regions that might be causal and contribute to either an altered or
a diseased phenotype (Hindorff et al. 2009). The exact mechanisms that lead to these
altered phenotypes are not yet elucidated in the majority of cases. Noncoding
variations in active enhancers constitute one of the major groups responsible for
functional interpretation of GWAS loci that might lead to the changes in the
expression of target genes (Degner et al. 2012). The binding site of DNA-binding
proteins can be considered to drive on/off switches for gene transcription, which, if
mutated by noncoding variations, might be associated with human diseases and
evolution (Fig. 6.10).

Unlike protein-coding variants, the amount and frequency of intergenic variants
are high. Moreover, only a small fraction of the plethora of noncoding variants is
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deleterious. Hence, one of the main challenges is to prioritize these causal
cis-regulatory variations disrupting the functional regulatory machinery and subse-
quently uncover their molecular mechanisms in gene regulation. Several tools
including GWAS3D (Li et al. 2013), FunSeq (Fu et al. 2014), regSNP (Teng et al.
2012), and RAVEN (Andersen et al. 2008), resources like RegulomeDB (Boyle
et al. 2012), and scoring (GWAVA (Kircher et al. 2014) and CADD (Ritchie et al.
2014)) mechanisms have been developed to assess and prioritize deleterious effects
of regulatory variants. To establish the relationships between genotype and expres-
sion, regulatory QTLs such as eQTLs, sQTLs (splicing QTL), and cis-eQTLs have
been comprehensively studied concerning diseases.

Enhancer

Promoter Exon Intron
Downstream

Chromatin
remodelling

complex

Sequence features Epigenetic features

Sequence
motifs

ChIP-seq

TF-bindingComparative
genomics DNA

methylation

Regulatory TFs

Upstream

Histone 
modifications

TFs P300/CPB/
Mediator

EnhancerExposed DNA
(chromatin is relaxed)

TSS

A

B

Fig. 6.9 Enhancers – working mechanism and relevant characteristics. (a) An overview of the
transcriptional regulatory event that includes regulatory TFs, chromatin remodeling complex
(coactivators), and histone acetyltransferases (HATs). (b) Epigenomic and genomic features rele-
vant for computational prediction of cis-regulatory elements. Features associated with DNA
sequence are pertinent to identify the TF binding and conservation across species, whereas
epigenetic features determine chromatin structure modifications. Thus, the epigenomic along with
the sequence-based signatures are very well exploited by unsupervised and supervised machine-
learning (ML)-based approaches. (Adapted from Whitaker et al. 2015)
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6.6 Available Epigenomic Resources

Post-completion of the human reference genome in 2002 (Human Genome Sequenc-
ing Consortium 2004), the analysis of the epigenome was enabled by the introduc-
tion of several new high-throughput sequencing protocols. With the aim to identify,
catalog, and interpret epigenomic mechanisms, several large initiatives and dedi-
cated academic centers were established, which collectively improve our knowledge
of associated epigenetic mechanisms across diverse cell types and species
(Table 6.4). These consortia have generated unprecedented, complex, and compre-
hensive genome-wide epigenomic maps over the past decades. These expanding
bodies of chromatin data in the public domain have fostered the development of
databases and epigenomic repertoires to fulfill the pressing need for organization of
raw and processed epigenomic data in a cordial manner.

Commonly used data resources include 4DGenome, 3CDB, Histone,
MethylomeDB, DiseaseMeth, NGSmethDB, MethBase, and MpromDB. Moreover,
TF binding motif collections of hundreds of transcription factors such as JASPAR,
PreDREM, HOCOMOCO, and TRANSFAC enable systematic analysis of
DNA-binding proteins.

Over the years, our model of the epigenetic landscape has become increasingly
complex. With the increasing knowledge of molecular mechanisms, epigenetics
currently provides a comprehensive global perspective on its role in fundamental
cellular processes as well as in causing disorders. Epigenetic mechanisms are tightly
interwoven that cooperatively control the wrapping of the DNA for regulation of
target genes in a complex network of synergistic and antagonistic interactions.

Fig. 6.10 A schematic representation of the potential role of regulatory variants in disease
pathogenicity. A point mutation (from G to C) in the enhancer region co-localizing with the
transcription factor binding site is causing differential expression of a gene causing pathogenicity
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Untangling this network, both mechanistically and statistically, and linking the
outcomes to disease and development are central goals of the modern epigenetics.
Current NGS methods have revolutionized our capacities to decipher different
building units of the dynamic chromatin such as nucleosomes, open chromatin
regions, and DNA-binding proteins (histones and TF).

Taking advantage of existing unprecedented volume of NGS data, novel
hypotheses and computational methods have emerged and are still developing.
This provides a unique opportunity to integrate various techniques, further elucidate
chromatin dynamics and foster new hypotheses uncovering molecular mechanism of
gene regulation. With an ultimate goal to uncover the complicated relationship of
in vivo system, a new frontier of whole-genome analysis is the amalgamation of data
from several thousands of experiments. Upon integration of genomic and
epigenomic data including histone modification, chromatin accessibility, nucleo-
some dynamics, RNA expression, transcription factor binding, and sequence-based
genome annotation, a comprehensive view of chromatin structure and function can
be obtained that enables the discovery of the complex underlying mechanism of gene
regulation. Recently, new experimental and computational methods have emerged
integrating single-cell DNA methylation with single-cell RNA-seq data (Clark et al.
2016) overcoming the issues with cell-type composition in complex tissues and
batch effects between epigenomic and transcriptomic analyses. Overall, recent
studies and methods in the field of regulatory genomics have remarkably improved
our ability to identify variants altering gene expression. However, the identification
of variants creating de novo active transcriptional sites remains an unsolved issue.
Moreover, a complete understanding of regulatory mechanisms is only feasible if
tissue-specific, high-resolution information on 3D interactions of REs is taken into
account, a type of data that is available for a small number of cell lines and might be
more readily accessible in the near future.

In summary, given our still limited knowledge, the past decades have witnessed
remarkable progresses in our understanding of mechanisms of gene regulation.
Combined efforts of both experimental and computational research have made
such great advancements possible. The number of bioinformatics tools developed
within the last few years reflects the growing interest in this field. The diversity of the
proposed strategies has highlighted their advantages, challenges, and weaknesses.
These next-generation sequencing methods have been instrumental to decipher
important biological questions in the field of gene regulation. Moreover, a continu-
ous expansion of experimental and computational methods and the availability of
benchmark datasets are likely to further improve in silico enhancer prediction as well
as enhancer-target gene linkage.
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Data Mining to Detect Common, Unique,
and Polymorphic Simple Sequence Repeats 7
Aditi Kapil, C. K. Jha, and Asheesh Shanker

7.1 Introduction

Data mining is at its simplest a process (manual or automated) to extract information
from large amount of data and transform it into an understandable pattern for further
use. Mined information can be stored and made available through databases so that it
can be easily managed and accessed. Data mining plays crucial role in bioinformat-
ics which is an interdisciplinary field with an aim to develop different methods and
software tools to store, analyze, and further utilize the stored biological information
for various purposes. Incorporating computational data mining in bioinformatics
helps in better organization of huge biological data and making it available as a data
source for other scientific research. Many data mining tools (online and offline) are
available for examining both sequential and structural forms of biological data, and a
large number of specialized online databases are also present. They offer very
interactive features to easily retrieve and reuse the required information of interest.
In the present chapter, computational data mining of simple sequence repeats (SSRs)
has been discussed.

Simple sequence repeats, also known as microsatellites, are repetitive DNA
sequences of 1–6 nucleotides (mono–hexa) that are repeated tandemly many times
at a locus (Vogt 1990), for example:
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Mononucleotide (G)12 GGGGGGGGGGGG

Dinucleotide (AT)6 ATATATATATAT

Trinucleotide (ATG)4 ATGATGATGATG

Tetranucleotide (CTGA)3 CTGACTGACTGA

Pentanucleotide (GAAT)3 GAATGAATGAAT

Hexanucleotide (CGAATG)3 CGAATGCGAATGCGAATG

Depending upon the arrangement of repeat motifs, SSRs can be perfect, com-
pound, or imperfect (Bachmann and Bare 2004), for example:

Perfect SSR (uninterrupted repeat) GTGTGTGTGTGTGTGT

Compound SSR (contains >1 repeat motifs) (ATG)n(GC)n
Imperfect SSR (repeat with atleast a single base interruption) ACACACACATACACACAC

Slippage mechanism during the DNA replication or errors in repair or recombi-
nation processes have been considered to create these repeats (Tautz and Schlotterer
1994; Levinson and Gutman 1987). SSRs are found in the genome sequences of
eukaryotic as well as prokaryotic organisms (Field and Wills 1996) and are ubiqui-
tously present in both noncoding and coding regions (Katti et al. 2001); however,
they are more frequent in noncoding regions (Hancock 1995). A number of
evidences suggest that noncoding SSRs may also be functionally significant
(Kashi et al. 1997).

SSRs are also found in the chloroplast (Kapil et al. 2014) and mitochondrial
(Kumar et al. 2014) genomes. Plant genomes contain large number of SSRs (mostly
di- and tri- repeats) scattered over many loci of chromosome (Shanker et al. 2007a, b;
Jones et al. 2009; Gutiérrez-Ozuna and Hamilton 2017). The hypervariability,
reproducibility, specificity, and codominant nature of SSRs together make them
potential molecular markers (Squirrell et al. 2003). Moreover, they are widely used
for population-level evolutionary studies and genotyping (Sung et al. 2010). The
conserved flanking DNA sequences of SSRs are used to design primers for PCR
which in turn amplify the SSR in target species (Botstein et al. 1980; Kabra et al.
2016).

Due to insertion or deletion of repeat motif, SSRs show high level of polymor-
phism (Tautz and Renz 1984) which may be essential in the evolution of gene
regulation (Moxon and Wills 1999). Gerber et al. (1994) demonstrated that simple
homopolymeric stretches of proline or glutamine amino acids, encoded by rapidly
evolving trinucleotide SSRs, may cause modulation of transcription factor activity.
Sometimes transcriptional activity may also be affected by the length of SSRs lying
in promoter regions (Kashi et al. 1997). SSR mining through available conventional
biotechnological methods is quite tiresome, lengthy, and costly (Kumpatla and
Mukhopadhyaya 2005), so now they are being replaced by in silico methods,
since use of computational approaches for data mining of available massive sequen-
tial data from open data sources allows more economical and efficient way of
extraction of SSRs (Shanker et al. 2007a, b).
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A large number of complete genome sequences and expressed sequence tags
(ESTs) are available at National Center for Biotechnology Information (NCBI)
which is a major resource for molecular biology information with access to many
public databases. Many of these genomes have been mined for SSRs (Coenye and
Vandamme 2005; Batwal et al. 2011; Kabra et al. 2016). Earlier, a large amount of
sequence data downloaded from NCBI was mined and online databases of obtained
information were developed (Kumar et al. 2014; Kapil et al. 2014; Kabra et al.
2016). These databases contain detailed information of perfect, imperfect, and
compound SSRs. A number of interactive features for easy and efficient searching
are provided. To mine perfect and compound SSRs, microsatellite identification tool
(MISA; http://pgrc.ipk-gatersleben.de/misa/download/.pl) was used on FASTA for-
matted nucleotide sequences. A minimum length criterion (�12 mono-, �6 di-, �4
tri-, and � 3 for tetra-, penta-, and hexanucleotide repeats) of repeating motif with a
difference of 0 between two SSRs was taken. To mine imperfect SSRs, Imperfect
Microsatellite Extractor (IMEx 2.0; Mudunuri and Nagarajaram, 2007) with 10%
imperfection percentage was used. The results of MISA and IMEx were parsed with
Perl scripts. To generate PCR primers, Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/;
Untergrasser et al. 2012) with default parameters was used considering 200 bases of
SSR upstream and downstream regions each. A brief description of these databases
is as follows:

MitoSatPlant (Kumar et al. 2014; www.compubio.in/mitosatplant/) is an online
database of mitochondrial microsatellites (mtSSRs) of Viridiplantae. mtSSRs hold
importance in various fields like plant phylogenetics, genome mapping, and popula-
tion genetics which made MitoSatPlant a very useful resource for plant scientists.
ChloroSSRdb (Kapil et al. 2014; www.compubio.in/chlorossrdb/) is a repository of
perfect and imperfect chloroplast simple sequence repeats (cpSSRs) of green plants.
To calculate relative frequency, chi-square statistics, and correlation coefficient of
perfect and imperfect SSRs, statistical analyses were performed for each species.
Along with this, a graphical representation of the comparison of chi-square values of
imperfect and perfect SSRs is also provided which will help in understanding
evolutionary pattern of cpSSRs. CyanoSat (Kabra et al. 2016; www.compubio.in/
CyanoSat/) is a database of cyanobacterial perfect and imperfect microsatellites.

In order to explain data mining to detect common, unique, and putative polymor-
phic SSRs using a methodology developed by our group (Kabra et al. 2016), a case
study on complete chloroplast genome sequences of three species of genus Triticum
(Triticum aestivum, NC_002762; Triticum monococcum, NC_021760; and Triticum
urartu, NC_021762) is discussed here. The genus Triticum belongs to the tribe
Triticeae of the Pooideae subfamily of grasses. It has been used in many cytogenetic
and taxonomic studies (Barkworth 1992; Heslop-Harrison 1992). Bread wheat
(Triticum aestivum), a hexaploid, is an important member of the tribe and is
produced at a very large scale in the world. Earlier, molecular markers have been
used in study of genetic diversity and phylogeny among the species of Triticeae
(Ogihara and Tsunewaki 1988; Dvorak and Zhang 1992) out of which SSRs become
the markers of choice (Gupta and Varshney 2000). Moreover, studies were also
conducted in wheat genome for genome mapping (Gupta et al. 2002), physical
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mapping (Roder et al. 1998), and gene tagging (Roy et al. 1999) using SSRs. In
present study, only perfect SSRs were mined which were further utilized to detect
putative polymorphic, unique, and common SSRs.

7.2 Mining of Perfect SSRs

FASTA (*.fna) and GenBank (*.gbk) formatted files of chloroplast genome
sequences of the selected species were downloaded from NCBI (www.ncbi.nlm.
nih.gov/). Only perfect SSRs were mined as discussed above. The analysis of three
Triticum species yielded 60 perfect SSRs. The highest density of SSRs was observed
in T. aestivum (1 SSR/5.38 kb) followed by T. monococcum (1 SSR/6.47 kb) and
T. urartu (1 SSR/6.81 kb) which is in accordance with the decreasing order of their
chloroplast genome size. Earlier, studies were conducted to analyze the relationship
between the genome size and SSR content. From these studies, mixed conclusions
were drawn wherein some suggest that the abundance of SSR is directly proportional
to the genome size (Primmer et al. 1997), whereas other studies proved that they are
inversely proportional (Morgante et al. 2002). The observed density of SSR for
T. aestivum was higher than the previously observed SSR density for the wheat
chromosome arm 3AS-specific library (1/10.4 kb; Sehgal et al. 2012) but similar to
wheat chloroplast genome (1 SSR/5.38 kb; Tomar et al. 2014). Higher density of
SSRs was observed in T. aestivum and T. monococcum when compared to cpSSR
density of rice (1SSR/6.5 kb; Rajendrakumar et al. 2007) while lower in T. urartu
(1 SSR/6.81 kb). Similar decreasing pattern was observed in the average length of
SSR, viz., T. aestivum (13.04 bp) > T. monococcum (12.44 bp) > T. urartu
(12.41 bp). The information of SSRs in three Triticum species is represented in
Table 7.1.

Among the identified perfect cpSSRs, only 13 (21.67%) were present in the
coding regions which are considered to be highly conserved. Therefore, the designed

Table 7.1 Information of SSRs identified in chloroplast genomes of genus Triticum

Organisms

Parameter T. aestivum T. monococcum T. urartu

Chloroplast genome size 134545 bp 116399 bp 115773 bp

Total SSRs identified 25 18 17

Density of SSR 1 SSR/5.38 kb 1 SSR/6.47 kb 1 SSR/6.81 kb

Coding region 5 (20%) 4 (22.22%) 4 (23.52%)

Average length of SSR 13.04 bp 12.44 bp 12.41 bp

Repeat type

Mononucleotides 10 (40%) 6 (33.33%) 4 (23.53%)

Dinucleotides 1 (4%) – –

Trinucleotides 3 (12%) 3 (16.66%) 3 (17.65%)

Tetranucleotides 8 (32%) 8 (44.44%) 9 (52.95%)

Pentanucleotides 3 (12%) 1 (5.55%) 1 (5.88%)
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primers corresponding to coding SSRs can be used to develop molecular markers
and genetic diversity studies. Tetranucleotides were the most abundant repeat type
with a frequency of 9 (52.95%) in T. urartu and 8 in both T. monococcum (44.44%)
and T. aestivum (32%). Trinucleotide repeats with a frequency of 3, bearing similar
motifs, length, and region, were present in all. Moreover, 20 mononucleotide
repeats, 5 pentanucleotide repeats, and 1 dinucleotide repeat was found.
Hexanucleotide repeats were not detected in these chloroplast genomes.

7.3 Identification of Putative pSSRs

The mined cpSSRs were used to retrieve putative polymorphic SSRs (pSSRs) with
the help of Perl scripts. Length variations in SSRs with identical repeating units in all
other species were identified, for example, motif AC repeating six times, i.e., (AC)6
with a total length of 12 nucleotides, and motif AC repeating seven times, i.e., (AC)7
with a total length of 14 nucleotides. The upstream and downstream regions of both
the SSRs containing 200 nucleotides for each were retrieved from FASTA sequence.
A reciprocal similarity search of the flanking regions of SSR was performed using
BlastN (Altschul et al. 1997). Reciprocal similarity search is a two-step process
where in first step one sequence is taken as database and the other as query and in the
second step query sequence will become database and the database sequence in
previous step will be treated as query. Significant match thus obtained was reported
as putative pSSR. MapChart (Voorrips 2002) was used to represent the location of
identified SSRs and to highlight the identified putative pSSRs on the respective
chloroplast genomes.

Of the identified 60 perfect SSRs, length variation was detected in 20 SSRs, and
only 3 (Fig. 7.1) were identified as putative pSSRs (Table 7.2). All the identified
putative pSSRs were present in intergenic regions. Mononucleotide repeat (A) was
the only putative pSSR detected in all species, and these can be utilized for species
identification. The length of identified pSSRs ranged from 12 to 15 nucleotides, and
these were found only in noncoding regions of chloroplast genomes. T. monococcum
and T. urartu take up same PCR primer pair; however, T. aestivum differs in right
primer. These primers can be used for the validation of identified pSSRs and to test
genetic variability among Triticum species.

7.4 Identification of Common SSRs

To detect common SSRs, identical repeating units with equal length of SSRs in all
other species were considered, for example, motif GT repeating 7 times, i.e., (GT)7
with a total length of 14 nucleotides, and motif GT repeating 7 times, i.e., (GT)7 with
a total length of 14 nucleotides in another species. A significant match of SSRs with
flanking regions in reciprocal similarity search was recorded as common SSRs.
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A total of 12 such cpSSRs in all the 3 Triticum species (Table 7.3) were found that
are common, and 2 SSRs were detected to be common between T. monococcum and
T. urartu (Fig. 7.2). Out of these 12 SSRs, 4 repeats lie in coding regions.

7.5 Identification of Unique SSRs

To identify unique SSRs, identical repeating units among all the species (including
species to which the query sequence belongs to) were used. Repeats with no
significant match of flanking regions in any of the species considered were treated
as unique. A total of 13 unique SSRs were identified (Table 7.4). Locations of these

Fig. 7.1 Position of SSRs and putative pSSR identified in the chloroplast genomes of genus
Triticum
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SSRs in respective chloroplast genomes are represented in Fig. 7.3. Maximum
frequency of unique SSRs was found in T. aestivum (10) and minimum in
T. urartu (1). Two unique SSRs were detected in T. monococcum. Mononucleotides
were most abundant repeat type found as unique SSRs. Except for one SSR in
T. aestivum, i.e., (TCGT)3, which codes for 4.5S ribosomal RNA, the rest of all
unique SSRs lie in intergenic regions and will also help in the identification of
species.

The methodology used in this analysis can be applied to detect unique, common,
and putative polymorphic SSRs in nucleotide sequences of other organisms.

Fig. 7.2 Position of common SSRs identified in the chloroplast genomes of genus Triticum
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R-Programming for Genome-Wide Data
Analysis 8
Arunima Shilpi and Shraddha Dubey

8.1 Introduction

Organisms on this planet are specified by myriad genomes which differ from
individual to individual. Genome contains the biological information of an organ-
ism and is needed to sustain life. Human genome and all other cellular life forms
have genome made up of deoxyribonucleic acid (DNA); only a few viruses have
ribonucleic acid (RNA) genomes. With the advancement of sequencing
technologies, several genome projects have been successfully accomplished. Con-
sequently, a large amount of genomic data is available and easily accessible from
various genomic databases. This genomic dataset is further analysed for better
understanding of organisms and the interaction with the environment (Zhao and
Tan 2006). In the intervening period of time, this genomic data and its analysis
provide the scientific community with noble challenges which stimulates
perplexing array of new algorithms and relevant software. Due to this several
new approaches and outputs are generated for a wide variety of genomic data. The
easy accessibility of biological data makes it convenient for researchers to isolate
the gene responsible for a particular symptom in a diseased person (Lander et al.
2001). Drugs for several non-curable dreadful diseases are now available in market
based on the genomic data analysis. The effectiveness of the genome data analysis
has reached to new heights with the availability of various programming languages
incorporating the statistical analysis and validation of results. Several statistical
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tools are available for the users to generate most appropriate output with high
accuracy and precision values (Zhao and Tan 2006).

With the recent advancement in high-throughput technology comprising of next-
generation sequencing (NGS), which produce millions of sequences in a single
instrument run, it is now possible to catalogue genetic variants in population to
understand disease and its evolution. The extensive genome-wide analysis generates
ample of data, and it requires computational call to translate the output into high-
quality variant calls. Unified analytic framework has been developed to analyse and
interpret the variation in genetic dataset characterized by single nucleotide polymor-
phism to achieve sensitive and specific findings in characterizing the disease diag-
nosis and prognosis. The genome-wide data analysis incorporates several software
tools which are further divided into many categories such as tools for segregation
analysis, tools for linkage analysis, tools for mapping polygenic traits and experi-
mental crosses including mapping of quantitative trait loci. Further, it includes
genetic association studies, phylogenetic analysis, family history of organisms,
and microarray analysis using genomic datasets (Lander et al. 2001).

Earlier, Fortran programming language was used for the development of Likeli-
hood in Pedigrees (LIPED) program which estimates recombination fractions for
linkage analysis (O’Neill et al. 1998). Further, several other software tools were
designed for linkage and segregation analysis. Apart from this, vigorous efforts have
been done for the development of various software tools for facilitating the analysis
task. MORGAN is one of the programs based on Bayesian methods (Brooks et al.
2000). These programs were written in different computer languages such as C,
Cþþ, Fortran, Pascal, Java, Perl, Stata, SAS, and S-PLUS. These were tested for
specific computer systems and take input data in specific format, and sometimes it
becomes difficult for the users to use the output generated by these programs (Guo
and Lange 2000). Old parsing algorithms have been used for some programs, while
some lacks the graphical user interface which sometimes becomes a tough task for
the end users operating them, with no customized utilities for these programs if
operated for a large dataset. For writing the customized utility programs and for
operating the tools, different programming languages and skills are required which
often results into redundant work, low maintenance, and lack of validation.

As a result of which for a data analyst, it becomes sometimes tedious to operate
various software and keep check on every input and output programs which results
into lack of accuracy and precision. Ideally a computer program must be designed in
a language which is easily operated on any computer systems, having excellent data
management and established algorithms and clear documentation, which provides a
graphical user interface (GUI), and which manages large data set in batches. The
programs must be designed in a language which is eloquent and flexible for the users
to track the errors and modify accordingly the source codes. The input system must
be designed in a way such that it has connectivity with online and offline data
sources such as the large genomic databases available publicly.

However, all these features are difficult to achieve by programmers, but with the
recent development of computational techniques and operating systems, such a
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platform have become possible. Several programs based on Linux operating system
have overcome these pre-existing problems, and in recent years R-statistical pro-
gramming has undergone revolution in high-throughput analysis and interpretation
of genomic data. R could potentially serve as an integrated platform for genetic data
analysis.

8.2 R: A Brief Overview

R is a de facto programming language for statisticians as it holds wide application in
high-throughput data analysis (Clayton and Leung 2007). R is freely available with
an open source interface and is platform independent. Moreover, R is a scripting
language, so it provides an ease to assemble several packages, adds on personalized
routines, and provides link to pipeline for processing raw data to desired results.
Consequently, it minimizes the time and effort for the analysis of complex data. R is
compatible with most of the operating systems like Linux, Unix, Windows, and
Mac. R is an object-oriented programming language and provides useful application
for representation of classes and methods. In addition, R provides graphic interface
(R-studio) which facilitates in reading and editing the data having variable formats
(SPSS, Stata, SAS, dBase). R can be run both as GUI and in batch mode which allow
the user to customize their needs. It also connects common gateway interface (CGI)
and HTML/XML outputs. The packages constituting RODBC (Sanders et al. 1997)
and RMySQL are beneficial for connecting the MySQL databases with open data-
base connectivity.

The greater strength in implementing R lies on the fact that it has enormous
modules and packages available freely in the repositories primarily Bioconductor
(http://www.bioconductor.org/) and Comprehensive R Archive Network (CRAN;
http://cran.r-project.org) (Gentleman et al. 2004). The packages have been autono-
mously developed from the core program and can be directly obtained from central
repositories. The availability of these packages saves time and can be a shortcut to
the desired results. Several packages have been made available for the analysis of
data in genome-wide association studies (Amos 2007). These packages have wide
application in importing data having varying formats, preprocessing, quality control,
and computing statistical significance. Most recent methodologies demand the
updated R packages which are made available as per the requirement. A large
number of algorithms and methods are being published in order to minimize the
turnover time for commercial application.

8.3 R Bioconductor in the Study of Next-Generation
Sequencing Data

The advent of next-generation sequencing technologies has revolutionized in
genome-wide analysis of sequences. High-throughput sequencing brought by
Illumina, Roche, ABI, and Helicos generates enormous data. The data generated
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by NGS primarily 1000 Genome Project exclusively holds data in terabases. R
Bioconductor provides good support for Illumina- and Affymetrix-based data anal-
ysis and also has some support to Roche 454. It can be successfully implemented in
study of several research questions including:

(a) Analysis of variation in DNA-seq data: Bioconductor helps in analysis of whole-
genome sequence or exomic DNA. Genome-wide analysis dictates in identifica-
tion of indels, single nucleotide polymorphism (SNPs), CNV (copy number
variation), and methylation pattern.

(b) Analysis of gene expression or RNA-seq data: Bioconductor guides in genome-
wide study of reverse complement mRNA from the transcriptome.

(c) Analysis of ChIP-seq data. ChIP-seq or chromatin immune-precipitation is
analysed to identify the presence of regulatory elements mainly the transcription
factor associated with genomic DNA.

(d) Analysis of metagenomics data: Study of metagenomics data directs towards
sequence analysis of multiple species, analysis of microbial niches, and phylo-
genetic study of species.

8.4 File Formats As an Input in Bioconductor Packages

Enormous data generated through high-throughput sequencing has to be converted
into variable format for input. Different packages have their own input format as
described below:

(a) FASTQ: FASTQ format is like FASTA format differing in few contexts like it
also has quality score which can be read from Illumina machine. It is a text-based
file format such that each record constitutes an identifier, followed by sequences
and (þ) sign, and at the end is the quality score in ASCII format.

(b) BAM (binary format of sequence alignment/mapping): Results obtained from
alignment of the query sequence (reads) to the reference genome are stored in
BAM file format. Mapping tools such as Bowtie, BWA, and STAR are
implemented to align the sequences.

(c) bigWig (genome browser signal wiggle files in indexed binary format): User can
transform BAM file into bigWig format in order to visualize the number of reads
mapped to the reference genome in the form of continuous signal.

(d) bigBed (genome browser bed files in indexed binary format): ENCODE data
analysis produces annotation files for RNA-seq, CHIP-seq, and bisulphite
sequencing data. These annotated files can be visualized in the bigBed format
in UCSC genome browser.
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(e) VCF (variant call format): Gene sequence variation in the form of indel, SNP,
and structural variants is represented in standard text file format which is also
labelled as VCF format. The file format was developed due to upcoming of DNA
sequencing and large-scale genotype project.

8.5 Method for Input and Output in R

Analysis in R begins with input of data stacked in databases and files. Once the data
is imported, necessary functions are applied to analyse the data producing an output.
Input of the data can be brought about by basic functions such as read.table (tabular
data) and read.CSV (CSV files).

# Input

setwd(“home/user_name/directory_name”) # set up the path to which

the file in directory

x <- local(get(load(“filename.R”))) # file obtained is stored in

local variable x

# output

save(output_file, file= “output_file.RData”) # save output file with

extension .RData

#Input

Data <- “home/user_name/directory_name/filename”

x <- read.table(Data, sep = “”, header= T ) # Read input file and

mention any delamination or header if required

#output

write.table(output_file, file = “output_file.txt”, sep = “\t”) # save

output file as (txt/csv) with or without delamination

8.6 Data Types in R

Usually, while executing programming language, a user is required to use the data
containers or variables to store the data. These variables are like reserved memory
which stores values. Therefore, whenever variables are created, space is reserved in
memory. Variables can store various data types mainly integer, float, double floating
point, character, Boolean, etc. Unlike C and Java, the variables are not assigned to
any data type in R. These variables are allocated to R objects. There are several types
of R objects, some of which constitute vectors, list, arrays, matrices, factors, data
frames, etc. Some of the other variables are logical, numeric, integer, and complex
data type. Basic data types in R objects are called vectors which contain elements of
variable classes. Here are the examples to see how variable data type can be
implemented.
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8.6.1 Vector

colour <- c (“blue” , “black”, “white”)

print (class(colour))

Result

[1] character

8.6.2 List

y <- list (c(3,4, 5), 22.4, cos)

print(y)

Result

[[1]]

[1] 3 4 5

[[2]]

[1] 22.4

[[3]]

[1] function (x) .Primitive("cos")

8.6.3 Matrices

y <- matrix( c('1', '2', '3', '4', '5', '6'), nrow = 3, ncol =2,

byrow = T)

print(y)

Result

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

8.6.4 Arrays

y <- array(c ('black' , 'white'), dim = c(2,2,3))

print(y)

Results

, , 1

[,1] [,2]

[1,] "black" "black"

[2,] "white" "white"

, , 2

[,1] [,2]

[1,] "black" "black"
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[2,] "white" "white"

, , 3

[,1] [,2]

[1,] "black" "black"

[2,] "white" "white"

8.6.5 Data Frames

Metabolic_rate <- data.frame (

gender = c(“Male”, “Female”),

weight = c(75, 60),

height = c(170, 153),

Age = c(35, 28))

print(Metabolic_rate)

Result

gender weight height Age

1 Male 75 170 35

2 Female 60 153 28

8.7 Functions in R

To carry out a specified task, a piece of code written in a programming language acts
as function. There are large numbers of functions in R. Some of the functions are
enlisted in Table 8.1. Moreover, additional advantage of studying R is that user can
also define their own function. Classification of functions can be numeric, character,
or statistical.

8.8 Genome-Wide Analysis of Expression Data

Recent inventions in DNA microarray and Illumina platform-based NGS technol-
ogy have provided high quality of gene expression and transcriptome activity to
create genome-wide profile of cellular function in an organism. These methods
quantify both gene and isoform level expression estimates, including identification
and annotation of novel transcripts. The Human Genome Project have revealed the
presence of probably 20,000 to 25,000 protein haploid coding genes such that only
15% encodes for coding RNA (exon), while the rest constitute non-coding genes
mainly the introns and regulatory sequences. These genes undergo alternative
splicing forming multiple transcripts or isoforms. The information is available
for more than 100,000 spliced variants ((https://www.genome.gov/). These gene
and isoform expression estimates determine the physiological changes and the
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aberrant expression associated with several diseases including cancer. The
databases like The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.
gov), International Cancer Genome Consortium (ICGC; https://icgc.org), and

Table 8.1 List of primary functions in R

Functions Description

Numerical
sqrt(y) Calculating square root of y

trunc(y) Truncate y to manage the output

round(y, digit ¼ n) Round of y to n decimal place

cos(y), sin (y), tan(y) Determining cos, sin, and tan value of y

log(y) Calculating natural logarithm of y

exp(y) Calculating exponential value for y

Character
install.packages Install R packages from online repository

%in% (match function) Matching the elements of one vector with another

substr(y, start ¼ n1,
stop ¼ n2)

Used to extract or replace substring y that starts with n1 and
stops at n2, for example,

Substr(mathematics, 1,4) is “math”

sub(old, new, y) Old pattern is replaced by new in string y, for example, y < �
“he lives in Delhi”

Sub(“Delhi”, “Mumbai now”, y) returns “he lives in Mumbai
now”

grep(pattern, y, ignore.
cases ¼ T, fixed ¼ F)

Pattern y is searched, and if fixed is false, it returns regular
expression otherwise text string

Grep(“X”, c(“w”, “X”, “y”), fixed ¼ T)

toupper(y) Coverts lowercase to uppercase

tolower(y) Converts uppercase to lowercase

Statistical
mean(y) Calculating mean for object y

median (y) Calculating median for object y

sd(y) Calculating standard deviation of y

quantile(vec, probs) Quantile value for numeric vector is assigned in terms of
probability which lies between 0 and 1; for example, quantile
(vec, c(0.04, 0.96)) corresponds to 4% and 96% probable
findings

t.test(y) To find confidence interval for population mean (y) and level of
significance is determined in terms of p-value

wilcox.test(y, conf.int ¼ T) Implemented to compute median’s confidence interval

shapiro.test(y) To determine the normal distribution of data

cor.test(x, y) To determine the correlation between two variables x and y. For
normal distribution default is Pearson

cor.test(x, y,
method ¼ spearman)

Correlation between two variables having non-normal
distribution is determined by Spearman

aov(y ~ x, data ¼ data frame) One-way ANOVA is extended form of two-sample t-test which
covers more than two independent groups
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Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo) are the
repositories for expression profile of tumour and normal samples in different
cancers. Bioconductor offers several packages for differential expression analysis
of high-throughput sequence data. The sequence information contained in FASTQ
files are aligned to reference genome. The count matrix is generated based on the
number of reads/fragments for each gene/isoform aligned to the reference genome.
The software used for alignment and quantification to generate count matrix are
RSEM (Li and Dewey 2011), Kallisto (Bray et al. 2016), Sailfish (Patro et al. 2014),
and Salmon (Patro et al. 2017). These raw count matrices generated for different
samples are normalized, and statistically significant differential gene expression
(DGE) is determined using R packages such as limma (Law et al. 2014), DESeq1/
2 (Love et al. 2014), EBseq (Leng et al. 2013), edgeR (Robinson et al. 2010), and
baySeq (Hardcastle and Kelly 2010). Stepwise DGE analysis using limma and
edgeR package is as follows:

Installation of package on R-interface

source("http://www.bioconductor.org/biocLite.R")

biocLite("limma")

biocLite("edgeR")

library(limma)

library(edgeR)

help.start()

(a) Download raw count gene expression dataset for tumour and normal samples
from TCGA GDC data portal (https://portal.gdc.cancer.gov) (Fig. 8.1).

(b) Assemble the raw counts for tumour and normal samples to build data matrix
of dimensions (T_data; 20531 � 516) and (N_data; 20531 � 5), respectively.
They are combined to build a new matrix of dimension (20531 � 521)
(Fig. 8.2);

Fig. 8.1 Selection of gene expression dataset from TCGA GDC portal
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(c) The expression matrix is normalized to remove the low raw counts, and the
background correction is done to subtract the low intensity expression. Generally
the upper-quartile normalization process is used where the read count for each
gene is divided by the 75th percentile of the total read counts. The following
steps are used for normalization:

group <- factor(c(rep(0, times=5), rep(1, times=516)))

# grouping of normal and tumor samples into two class

y <- DGEList(counts=combined_data,group=group)

# Determination of the differential gene list for the dataset into

two groups

z <- calcNormFactors(y, method = "upperquartile")

# Upper quartile normalizes the data to its 75% percentile

keep <- rowSums(cpm(z)>1) >= 2

# Filter out genes such that total raw-count is lesser than

1. This filtration is user dependent.

z1 <- z[keep, , keep.lib.sizes=FALSE].

Fig. 8.2 Overview of data matrix such that the row name is the gene id and column name is the
sample
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# keep remaining in the list

combined_norm_counts <- data.frame(as.matrix(z1$counts))

# Generate matrix for genes selected after filtration. The dimen-

sion of the matrix after filtration is 17347 x 521

(d) The raw count can be transformed to log2 scale for calculating fold change
values and to determine up- and downregulated genes (Fig. 8.3).

combined_norm_log <- log2(combined_norm_counts+1)

(e) Differential gene analysis

design <- data.frame(TCGA_id = colnames(combined_norm_log))

row.names(design) <- design$TCGA_id

design$Normal_ovary <- 1

design$OSCvsNormal_ovary <- 1

design$OSCvsNormal_ovary[1:ncol(N_Data)] <- 0

design$TCGA_id <- NULL

Fig. 8.3 log2 transformation of the matrix with the raw count values
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design <- as.matrix(design)

# Design matrix is created to determine the two group of dataset

as Tumor and the control (Normal) to compute the difference in

expression.

fit_LT <- lmFit(combined_norm_log, design)

#Lmfit: function is used to convert the expression estimates into

weights for quality assessment and discarding poor quality arrays.

fit_LT <- eBayes(fit_LT)

# eBayes function is moderated F-statistic test that combines with

t-statistic to compare the expression between the groups and output

as log2 Fold change, p-value, adjusted p-value.

LT <- toptable(fit_LT, coef=ncol(design),number = dim(fit_LT)[1],

p.value = 1) # different cut-off

The toptable function determines the content of the table based on p-value cut-off
(Fig. 8.4).

8.9 R Packages for Analysis of Large Data

The enormous amount of data generated through sequencing requires large memory
for storage. Moreover, it confronts challenge to identify algorithm or design a tool
for handling of data with an ease. R provides an interface where an efficient code
restricts large data into subset as an input for subsequent statistical evaluation. Some
of the packages that can be implemented in the analysis of large genetic data are
described in Table 8.2.

# Command to install package in R interface

install.packages(“pacakagename”, repos = http://cran.us.r-project.

org”, type = “source”)

# repos is the repository url address which contain the desired

package

# type corresponds to installing source package

OR

install.packages(“packagename”) # Can be directly downloaded from

the following command

Besides, there are packages that can be implemented in phylogenetic analysis,
data manipulation, normalization, and population genetics. These packages are:

• APE (analysis of phylogenetic and evolutionary data): Reading and plotting of
phylogenetic tree is brought about by the functions provided in the package. It
provides functions for reading and plotting phylogenetic trees in Newick format.
It helps in comparing the nucleotide or protein sequences in phylogenetic
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framework. The comparison of data leads to the identification of macro and micro
evolution of species. The phylogenetic distance determines the era of evolution.

• BIM (Bayesian mapping of intervals): Functions are used to interpret quantitative
trait loci Bayesian mapping (Satagopan et al. 1996).

• Bqtl: It is a QTL (quantitative trait loci) mapping package implemented in
analysis of recombinants and inbred crossed lines. Functions are based on
Bayesian and likelihood tools.

• Genetics: Classes and modules are being employed for handling genetic data.
Variable classes are being implemented to identify genotype and haplotype
markers on chromosomes. Different functions are being implemented in calculat-
ing allelic frequency-based Hardy-Weinberg equation and estimating linkage
disequilibrium.

Fig. 8.4 Displaying top 18 differentially expressed genes which details about log fold change, t-
statistics, significance in terms of p-value, and adjusted p-value
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• hapassoc: Functions are being used in inferring trait associated with haplotypes
and simultaneously other co-variables in linear model. Functions can also identify
uncertain haplotype and missing genotype for few SNPs (Burkett et al. 2004).

• haplo.score: It comprises of routines and functions to assess the haplotypes in
wide variety of traits including ordinal, binary, and quantitative, based upon score
(Schaid et al. 2002). The analysis is based upon the assumption that all the
variables are unrelated and haplotype is equivocal. It envisages on global haplo-
type pattern, and the significance is computed based upon the p-values.

• haplo.stats: It contains multiple S-plus/R functions to evaluate the presence of
haplotypes indirectly. The statistical analysis is based on assumption that all the
subjects are discrete and the haplotypes are indistinct (Lake 2003). The genetic
marker identified is anticipated to exhibit codominance. The important functions
recognized in haplo.stats are halpo.score, halplo.gem, and haplo.em.

Table 8.2 Packages in R for genome-wide study

Data concept Packages

Input/output ShortRead (fastQ), rtracklayer (wig, bed, gff), GenomicRanges, Rsamtools
(bam), BSgenome, Biostrings, VariantAnnotation (vcf), readxl, Google
Sheets, MonetDBLite

Alignment DECIPHER, MSA, bios2mds, seqinR, Rsubread, GraphAlignment, R-Coffee,
GitHub, gmapR

Annotation AnnotationDbi, VariantAnnotation, TxDb.*, annotate, NLP, biomaRt,
Annotables, GOsummaries, GenomicFeatures GitHub, dcGOR,
ChIPpeakAnno, AnnotationHub

Visualization iPlots, ggvis, ggplot, visualize, quantmod, dygraphs, googleVis,
metricsgraphics, RColorBrewer, shiny, flexdashboard, rcdimple, plotly

Quality
assessment

DatABEL, GenABEL, MetABEL,MixABEL ParallABEL, PredictABEL,
ProbABEL RepeatABEL, VariABEL, OmicABEL

DNA
methylation

methylPipe, BiSeq, bsseq, ChAMP, COHCAP, comet, DMRcate,
DMRforPairs, lumi, MassArray, methyAnalysis, methylumi

ChIP-seq ChIPpeakAnno, motifStack, rGADEM, ChIPXpress, les, iChip, Starr, MotIV

RNA-seq ArrayExpressHTS, dcGSA, DEGseq, DEXSeq, DER Finder, easyRNASeq,
globalSeq, metaSeq, NOISeq, rnaSeqMap, SeqGSEA, sSeq, subSeq, transcript

SNPs BBCAnalyzer, crlmm, beadarraySNP, deepSNV, GMRP, logicFS,
GWASTools, oligo, SNPchip, trio, snpStats, SeqVarTools

Exon array Limma, puma, oligo, TIN, siggenes, PECA, snm SELEX, motifRG,
BCRANK, TFBSTools

Motifs CNAnorm, CrispRVariants, myvariant, CINdex, myvariant,
SomaticSignatures

Genomic
variation

BasicSTARRseq, geneplast, GSReg, ISoLDE, tRanslatome, IVAS, InPAS

Gene
regulation

digitmetagenomeSeq, phyloseq, mmnet, rRDP

Microbiome ABarray, affyPara, AnnotationForge, beadarraySNP, bioCancer, BioQC,
coMET,

Workflow DNABarcodes, flowcatchR, flowClust, flowMap, GSVA, ideogram, Heatplus,
LBE
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• hierfstat: The function is implemented in assessment of hierarchical F-value in the
genetic haploid and diploid set of data, and level of significance is computed.

• hwde: It constitutes the model that fits for genotypic disequilibrium, and the
analysis accounts for the interaction between the loci of first order (Weir and
Wilson 1986).

• Kinship: The package constitutes variable functions, mainly Coxme, which is
implanted to analyse the data based upon cox proportional hazard model.
Routines are used to create n by n matrices which define the genetic relationship
amid of two individuals, pedigree, which provides functions for creating the
pedigree plots, and bdsmatrix, which constitutes number of classes for block
diagonal matrices.

• IdDesign: This package is built to identify the linkage disequilibrium. The
presence of biallelic quantitative trait loci (QTL) and the markers are detected
based on deterministic power calculation together with Bayes factor (Sen et al.
2005).

• LDheatmap: Package has function to generate heat map associated with linkage
disequilibrium for particular SNP.

• PHLOGR: Various functions are implemented for analysis and manipulation of
phylogenetic dataset.

• qtlDesign: Contains functions to determine QTL experiments.
• R/gap: Constitute integrated package for analysis of genetic data for both family

and human population. It holds several functions for calculation of sample size,
probability of having particular disease within a family or in population, calcula-
tion of kinship, statistical linkage analysis, and association between the genetic
markers. Some of the functions identified are hwe.hardy for Hardy-Weinberg
analysis involving SNPs and polymorphic satellites; s2k for analysis of single
locus associated with genomic control and polymorphic markers; gene counting;
gcp for interpretation of haplotype for all chromosomes (Zhao 2004); kbyl, tbyt
for computing linkage disequilibrium associated with SNPs and multi-allelic
markers; htr for haplotype extraction based upon regression analysis; and kin.
morgan for simple calculation of kinship.

• Rmetasim: It provides an interface between metasim and R. It helps in building
individual-based population genetics using metasim simulation.

R provides an ease to data handling as it incorporates multiple packages having
an application in research, neuroimaging, disease mapping, and social network
analysis. Further, multiple functions in packages can serve in variety of data analysis
including determination of haplotype frequencies, assigning of probable haplotypes,
and heat map for linkage disequilibrium. Most standard feature of R in data
management, graphics, and statistical analysis renders it to be valuable for
microarray and next-generation sequencing data analysis. Besides, packages are
also enriched in phylogenetic analysis, population studies, quantitative trait analysis,
and QTL mapping in human pedigrees. However, ease of drafting packages from the
available code will not obstruct the researcher in subsequent analysis of complex
data. In summary R constitutes an integrated platform for genome-wide data
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analysis. It will be rewarding for theoretical and applied scientist in software
development for long term.
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Computational Approaches to Studying
Molecular Phylogenetics 9
Benu Atri and Olivier Lichtarge

Even if we didn’t have a single fossil, the evidence for
evolution would be absolutely secure because of comparative
anatomy, comparative biochemistry, and geographical
distribution

Dr. Richard Dawkins (The Blind Watchmaker)

9.1 Introduction

Molecular phylogenetics is the study of evolutionary history, development, and
relationships among organisms using molecular sequence or structure data (DNA,
RNA, or proteins). The premise of any phylogenetic analysis is the hypothesis that
the two organisms or sequences are evolutionarily related. Phylogenetics involves
representation of said relationships in the form of branches of a tree. Features
including the location of a species and the length of the branches from a given
node to the end depend on the information obtained from methodically comparing
sequences and hence making inferences about the relatedness of the sequences to
each other and a common ancestor.

In this chapter, we show how one can use sequence alignment information to
visualize evolutionary relationships between organisms in the form of a phylogenetic
tree. We will briefly discuss the common terminology used in molecular
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phylogenetics, the most common tree-building methods describing in detail
character-based, distance-based, and Bayesian inference methods and how to decide
which one to use, computing the accuracy of phylogenetic inferences statistically,
i.e., to assess the level of confidence, one has in an inferred tree through methods like
bootstrapping and jackknifing. Next, we consider the underlying assumptions of
various models of evolution that different tree-building algorithms use, and finally,
we list a number of popular tools and briefly go over a couple of applications of
phylogenetic analyses.

9.1.1 Terminology

A tree is a 2D graphical structure used to model the evolutionary relationships
between groups of organisms and sequences represented by nodes connected to
each other by branches. Rooted trees have a common ancestor represented by a
single lineage at the base that connects all the branches of the tree. The common
node is called the root. On the other hand, unrooted trees depict relationships among
organisms but do not have a common ancestor and do not require the knowledge of
an ancestral root.

A rooted bifurcating tree has exactly two descendants arising from each ancestral
node (interior node), i.e., it is a binary tree. An unrooted bifurcating tree is also
binary with three neighbors at each node. Multifurcating refers to more than two
daughter branches. A labeled tree has values assigned to the nodes, whereas an
unlabeled tree is simply the overall topology of the tree.

A clade is a group of organisms that include all descendants of a common
ancestor, for example, birds or insects. A cladogram is a tree generated using
cladistics. Cladistics refers to the biological classification of categorizing organisms
based on shared characteristics that can be traced to the group’s most recent ancestor,
which are not present in further distant ancestors. A dendrogram is a tree diagram
used to illustrate clustering.

A reference group used to determine evolutionary relationships among three or
more monophyletic groups of organisms is known as an outgroup. It is chosen based
on whether it is closely related to the other groups but not more than any single one
of the groups to each other. Operational taxonomic units (OTUs) are terminal
branches represented by sequences for which molecular sequence data or structure
is known.

Branch length is the estimated amount of evolutionary time taken from a node to
the end. A tree with branch lengths indicated is known as a weighted tree.

Phylogenetics aims to classify all organisms by making groups and subgroups of
those that share biological information with a common ancestor thereby allowing us
to reconstruct ancient evolutionary events as well as relationships and perhaps
missing links with a level of certainty. The most common phylogenetic tree-building
methods are either (1) character or tree-searching based or (2) algorithmic or distance
based (Fig. 9.1). Moreover, the criteria to choose the most suitable phylogenetic tree-
building method are shown in Fig. 9.2.
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9.1.2 Character-Based Methods

Character-based methods rely on character states, which refer to an alignment of
molecular sequences – nucleotides or proteins. Three ways of character-based
phylogenetic analysis are maximum parsimony, maximum likelihood, and Bayesian
inference.

9.1.2.1 Maximum Parsimony (MP) or Minimum Evolution Method
Edwards and Cavalli-Sforza (1964) proposed to analyze gene frequency data and
subsequently applied to sequence data and phylogenetics by Fitch (1971) and
Felsenstein (1983), among others; this method attempts to reduce the number of
steps needed to explain the observed data. It states that the most preferred tree is one

Fig. 9.1 Tree-building algorithms

Fig. 9.2 Choosing the most suitable phylogenetic tree-building method will ultimately depend
upon the quality of sequences and the degree of similarity between the homologs. (Adapted from
David W. Mount 2004)
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with the least number of steps (most parsimonious) or character changes. A step can
be defined as the change from one-character state to another. Character state, in the
context of molecular biology, refers to the four nucleotide bases, A, T, C, and G (for
DNA) or the 20 amino acids (for proteins).

MP defines a function to score an input tree topology. All trees are scores one by
one, by determining how many steps were taken to obtain the distribution of each
character in a tree. The characters are evaluated column by column. The trees are
then ranked and compared to each other based on the set optimality criterion. The
shortest or the most parsimonious tree for the given problem represents the preferred
relationships among the sequences that explain the divergence pattern among
sequences.

This method involves two steps:

1. Calculating the amount of character change required by a tree.
2. Searching all the returned tree topologies for one with the minimum length. If the

number of trees returned is large, the search can become computationally
expensive.

Trees resulting from MP are usually unrooted. While one can infer relationships,
there is no way to infer the time of divergence. For that, choosing an outgroup
(a branch taken outside of the tree) will provide a relative understanding of time. The
choice of an outgroup is very crucial, and an incorrect choice could result in a tree
with incorrect relationships between the sequences.

Drawbacks

1. Does not always estimate the most statistically significant tree.
2. Could lead to a large number of tree topologies, thereby, slowing the method.
3. Often computes out many equally most parsimonious trees (MPTs), and a large

number of such trees are considered as a failure of the algorithm. Inherently, the
method lacks any information on how sensitive these conclusions are. Using
statistical resampling procedures such as jackknifing or bootstrapping,
uncertainties can be quantified.

9.1.2.2 Maximum Likelihood (ML)
This method uses probabilities to find a phylogenetic tree that can best explain the
observed divergence patterns (Felsenstein 1973, 1983). It is similar to MP in a way
that ML algorithm also moves along the alignment, one column at a time. Since all
possible trees are evaluated, this method works well with smaller datasets. Like MP,
ML also considers the fewest steps, i.e., for each of the possible trees, the number of
mutations needed to achieve the observed patterns of divergence in the sequences is
considered, and the more mutations needed to get a given tree, the less likely it is the
true tree. That is because the rate of mutations is generally small.

However, the uniqueness of the ML method lies in the fact that it allows one to
incorporate evolutionary models like Jukes-Cantor69 or Kimura models (see Sect.
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9.1.5). These models explain the variations in nucleotides; therefore, provide ML the
additional power to analyze sequence datasets with more divergences.

Steps

1. Choosing an evolutionary model to provide the probability/rates of nucleotide
substitutions (transitions/transversions).

2. Sequence alignment.
3. Within each column, the substitutions are evaluated to how well they fit a set of

trees describing the phylogenetic relationships among the sequences. Based on
the succession of mutations needed to reach the given sequence data, the trees are
given a likelihood score, the product of the rate of substitutions in each branch of
the tree (which in turn is calculated as the product of substitution rate in a branch
to its branch length). Because each tree can have multiple substitution
possibilities, usually a combined probability (sum of the probability of each set
of changes) is considered.

4. Sequentially, all columns are analyzed. Column likelihoods are multiplied to
obtain the tree likelihood score.

5. The tree with the highest likelihood score (hence the name maximum likelihood)
is identified. Usually, these scores are reported in terms of log likelihood.
Such a methodical manner of scoring each column within several trees can

quickly become computationally expensive, so first a small subset of trees is
evaluated and eventually more trees are added to the set. Several random iterations
must be completed, and a flexible rate of evolution must be considered to avoid any
biases. While ML is a computationally expensive method, lately, it is less of an issue
due to the current advancements in computational power.

9.1.2.3 Bayesian Inference Method
This method employs a likelihood function to generate a posterior probability of trees
based on a prior probability evolutionary model producing the best-fit tree for a given
data using Bayes theorem (Huelsenbeck et al. 2001). It can be represented as follows:

Pr Tree j Data½ � ¼ Pr Data j Tree½ � � Pr Tree½ �
Pr Data½ � ð9:1Þ

Here, combining the prior probability of a phylogeny Pr [Tree] with the likeli-
hood Pr [Data | Tree] or the posterior probability of the tree could be used as a proxy
for the correctness of the tree. That is to say that the higher the posterior probability,
the better the estimated tree is.

In order to computationally approximate the posterior probability, the most useful
and popular method is the Markov Chain Monte Carlo (MCMC) method. The
incorporation of MCMC algorithm and increase in computing speeds have made
Bayesian methods very popular. The idea behind MCMC is to construct a Markov
chain, which is a sequence or chain of random samples taken throughout the parameter
space at specified intervals. MCMC allows sampling based on posterior probabilities.
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Steps

1. Create a new tree by randomly perturbing the current tree.
2. Either accepts the new tree or rejects it based on the probability using MCMC

algorithm. The Metropolis-Hastings method is a widely used MCMC algorithm
that allows random sampling from a dataset with complicated and multidimen-
sional (multi-parametric) distribution probabilities (Metropolis 1953; Hastings
1970).

3. If accepted, repeat steps 1 and 2.
Since the results of a Bayesian approach are directly related to the evolutionary

model, in order to avoid incorrect phylogeny, it is important to choose a model that
fits the observed data well.

Advantages

1. High computational efficiency.
2. Complicated datasets and models of evolution can be handled with ease.
3. It is considered a better method because it gives the probability of the estimated

tree in the context of the given problem/dataset.
Mr. Bayes, a computer program, is the most commonly used implementation of

the Bayesian method (Huelsenbeck and Ronquist 2001, 2003). The software uses
both MCMC and MCMC coupled with Metropolis-Hastings algorithms for
performing the Bayesian method for phylogenetic inference.

Another implementation of the Bayesian phylogenetic inference method is the
open-source software Phycas (Lewis et al. 2015), which uses marginal likelihoods
and the generalized time-reversible evolutionary model. Phycas takes input in Nexus
format.

9.1.3 Distance-Based Methods

Distance-based methods infer phylogenetic relationships using a matrix of genetic or
evolutionary distances between the sequences, and then a tree is fit to those
relationships. Evolutionary distance measures sequence divergences, which occur
due to the acquisition of mutations over the course of evolution.

Easiest ways to calculate divergence is to count the number of mismatches
between two aligned sequences also known as the observed distance ( p). However,
this is not necessarily the best measure, especially if there is a high degree of
divergence, as not all the substitutions that occurred will be revealed. That also
holds true for any reversion mutations, in which case there will not be an observed
difference. This issue can be fixed by using a model of evolution with rules related to
evolutionary divergence. Failing to use accurate assumptions while choosing the
evolutionary model could result in artifacts, false conclusions, and a tree
representing wrong phylogenetic relationships. It is important to remember that the
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ultimate goal is to infer a tree that correctly and best fits the observed patterns of
divergence.

There are two types of tree inference methods based on evolutionary distance:
cluster analysis methods and neighbor-joining methods.

9.1.3.1 Cluster Analysis/Unweighted Pair Group Method
with Arithmetic Mean

Sneath and Sokal (1973) developed this method to generate tree topologies for
ultrametric data. Ultrametric data assume the molecular clock hypothesis, i.e., all
sequences have evolved at a constant rate throughout the tree (Swofford 1996) and
meet the following for taxa A, B, and C:

dAC � max dAB; dBCð Þ,
where, d ¼ evolutionary distance

As the molecular clock is assumed, all trees are rooted trees and all end or
terminal nodes are equidistant from the tree root. Ultrametric data are rarely encoun-
tered with real sequences; therefore, if the molecular clock is wrongly assumed, it
could be misleading. The most common cluster analysis is the unweighted pair
group method with arithmetic mean (UPGMA) method that uses sequential or
agglomerative clustering. A tree is built sequentially by grouping the sequences in
a pairwise manner, starting from the most similar pair, with the lowest value of the
genetic distance. The input to this method is a matrix of genetic/evolutionary
distances, which captures the divergences between the sequences.

Steps

1. Find the shortest pairwise distance.
2. Join the two sequences with the shortest distance.
3. Calculate the depth of the new branch using ¼ 1

2 shortest distance:
4. Tip to tip path length ¼ the shortest distance.
5. Calculate mean pairwise distance with the remaining sequences and create a new

matrix.
6. All tip-to-tip distances via the root will have the same total distance equal to the

total sum.
This method has some inherent limitations. For example, UPGMA is only

responsive to equal evolutionary rates. If one of the sequences has acquired more
mutations over time, we might obtain a tree with erroneous topology using this
method. Additionally, for non-ultrametric distances, one needs to correct for unequal
rates of mutation by comparing with a reference sequence, also sometimes known as
an outgroup.

The UPGMA weighs each sequence equally; the averaging of distances depends
on the total number of items in the cluster/group. For example, A, B (grouped), and
C are grouped into a new node ABC. Then the distance of ABC to any other node
(D or E) is calculated as
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dABC D ¼ NAB dABD þ Nc dCD
NAB þ Nc

ð9:2Þ

where, NAB ¼ number of items/units in the cluster AB (two in this case) and

Nc ¼ 1

A version of UPGMA called the weighted pair group method with arithmetic
mean or WPGMA weighs the member most recently added to the group the same as
all the previous members of the group. The averaging of distances is not based on the
total number of items in the groups, and for the example above, the distance of ABC
to any other node (D or E) is

dABC D ¼ dABD þ dCD
2

ð9:3Þ

When the data are ultrametric, UPGMA and WPGMA give the same result.
We must remember that any phylogenetic analyses and all inferences derived

from such analyses are only postulations, and enough evidence must be collected to
support such hypotheses. One must be careful of pitfalls like the fact that while most
of the biological information are passed from parents to the offspring in a vertical
fashion, there could also be the possibility of horizontal gene transfer, DNA trans-
formation, transposon-mediated shuffling, etc.

9.1.3.2 Neighbor Joining
Neighbor joining (NJ) involves bottom-up clustering and is one of the most com-
monly used tree inference methods (Saitou and Nei 1987). The NJ method employs
the star decomposition method. The input is a distance matrix and an initial star
network tree. The input data does not have to be ultrametric.

Steps

1. Calculate matrix M, based on the distance matrix d, given by

Ms1, s2 ¼ n� 2ð Þds1, s2 �
Xn
k¼1

ds1, k �
Xn
k¼1

ds2, k ð9:4Þ

where,

ds1, s2 is the distance between sequences s1and s2
and n is the total number of sequences.
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2. Find the pair of sequences (s1, s2) for which Ms1, s2 is the smallest.
3. Connect this pair to a node that is connected to the central node. To calculate the

distance of each of pair of sequences (s1, s2) to the new node, n0, use

for s1:

ds1,n0 ¼
ds1, s2
2

þ 1
2 n� 2ð Þ

Xn
k¼1

ds1,k �
Xn
k¼1

ds2,k

" #
ð9:5Þ

for s2:

ds2,n0 ¼ ds1, s2 � ds1,n0 ð9:6Þ
where, s1 and s2 are the paired sequences in step 2 and n0 is the new node.

4. Calculate the distance from each of the remaining sequences to the new node n0,
using

dn0,k ¼
ds1, s2
2

þ ds2,k � ds1, s2 ð9:7Þ

where, n0 ¼ new node

k ¼ sequence or node we want to find the distance of from node n0
s1, s2 ¼ pair joined in step 2

5. Replace the pair (s1, s2) with new node n0. This pruning is done to change the
new node n0 to a terminal node and to get a smaller tree.

6. Repeat the calculations as given in steps 1 through 4; the algorithm is repeated
until left with two nodes connected with one branch.

Advantages
Fast and suited for large datasets, permits a variable evolution rate among the
sequences, considers the possibility of multiple substitutions, and allows for
corrections

Disadvantages
The result is one possible tree and depends on the assumed evolutionary model.

• It is worth restating that the neighbor-joining method does not assume the
molecular clock hypothesis and generates an unrooted tree, while the UPGMA
method assumes the molecular clock hypothesis and generates a rooted tree.
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9.1.4 Statistically Computing Accuracy of Inferences

It is important to question the level of confidence one has in the inferred tree. The
jackknife and bootstrap are statistical techniques for empirically approximating the
variability of any estimate. They differ but are of the same family of methods. A third
resampling technique is permutation testing.

9.1.4.1 Bootstrapping
Bootstrapping (Efron, Halloran and Holmes 1996) is one of the most popular
resampling procedures used to assess the reliability of branches of a phylogenetic
tree. Felsenstein first applied the bootstrapping methodology to phylogenetic
analyses (Felsenstein 1985). It can provide the confidence for each unit or taxon of
the tree in a two-step process:

Steps

1. Generate new datasets (several) by sampling columns of characters from the
original dataset at random with replacement, to ensure the sampling of each
column with equal probability. Each new dataset is of the same size (number of
columns) as the original, but the actual columns are sampled in different ways
than the original. The process of resampling and tree construction is repeated
several times (100–1000), and the percentage of times a branch is given a value of
a certain score is noted.

2. Compute the relative number of times a given branch appears in the tree. This
number is called the bootstrapping value, which is a measure of the accuracy of
the inferred tree branch, suggesting how close it is to representing true evolution-
ary relationships.
Hillis and Bull (1993) suggested that under favorable conditions such as equal

rates of change, and more or less symmetric branches, bootstrapping values of 70%
can be considered equal to 95% probability that the inferred tree is the true tree.
While under unfavorable conditions, bootstrapping of more than 50% could mean a
higher chance of false positives, i.e., giving a higher score to a wrong tree. One must,
therefore, be careful to evaluate the conditions under which the tree is generated and
the assumptions (e.g. molecular clock) that were met by the original data.

Problems Encountered Sites may not evolve independently, sites may not come
from a common distribution (but can consider them sampled from a mixture of
possible distributions), and bootstrapping does not correct biases in phylogeny
methods

9.1.4.2 Jackknifing
Another method for estimating support was first used by Mueller and Ayala in 1982
for phylogenetic analyses. The jackknife, which is the older of the two, involves
dropping one observation at a time from one’s sample and calculating the estimate
each time. It is very similar to bootstrapping, but jackknifing does not resample the
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data. Instead, it uses subsets of the data, which is referred to as resampling without
replacement. The goal is to create a smaller dataset to see if removing a subset
changes the tree in large part to estimate its influence. Jackknifing is less commonly
used than bootstrapping.

9.1.5 Models of Evolution

Most of the phylogenetic analyses methods require some inference or probability-
based statistical models of how DNA or protein sequences evolve. Such evolution-
ary models compute the probability of nucleotide or amino acid change as well as
correct for changes during evolution. Evolution of sequences happens on a variety of
timescales; therefore, it is easier to define these models regarding the rate of change
between the different states (substitutions). An evolutionary model is of great
usefulness when it can fit the data well and provides accurate predictions. When
conducting phylogenetic analyses on different data (e.g., coding and noncoding
sequences), one must make sure that the model fits all of the data well, assuming
different amounts of selection pressure on different types of sequences. The choice
of which model to use depends on the underlying assumptions of the model, and a
wrongly chosen model could lead to underestimated variations and incorrect branch
lengths.

JC69 Model (Jukes and Cantor 1969) This model is the simplest and most
restrictive model that assumes equal rates of substitution between all nucleotides.
This model has only one parameter μ, the rate of change. For example, in the case of
nucleotides, a 4X4 matrix can be created with the rates of nucleotide substitutions
(Fig. 9.3).

A T G C

A - μ μ μ

T μ - μ μ

G μ μ - μ

C μ μ μ -

Fig. 9.3 JC69 model
assumes equal rate of
substitution in nucleotides
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K-80 Model (Kimura 1980) This consists of a slightly more complex combination
of two rates (or parameters). In the case of nucleotides, these two can be classified as
rates of transitions and transversions. It makes sense to separate these two rates since
transitions occur more frequently than transversions.

F-81 Model (Felsenstein 1981) It is an extension of the JC69 model. It assumes all
substitutions to be equal, but base frequencies can vary from 0.25 (A 6¼ C 6¼ T 6¼ G).
Base frequencies are the values for the rate (n) by which any nucleotide i changes to
nucleotide j.

HKY-85 Model (Hasegawa et al. 1985) This combines the K80 and F81 models
and assumes different rates of substitutions between each nucleotide (base fre-
quency) and also different rates for transitions and transversions.

TN-93 Model (Tamura and Nei 1993) This includes new parameters that consider
different rates of substitutions for pyrimidines and purines (two types of transitions).

Generalized Time-Reversible Model (GTR Model) (Tavare 1986) It is the most
general, independent, and time-reversible model. It assumes six classes of
substitutions and base frequencies are not the same.

9.2 Phylogenetic Tools

There are a large number of online tools available to construct phylogenetic trees.
Phylogeny.fr (www.phylogeny.fr/) provides a robust tool for nonspecialists for
reconstructing and analyzing phylogenetic relationships between molecular
sequences (Dereeper et al. 2008, 2010).

MEGA (http://www.megasoftware.net/) is an integrated tool for conducting
sequence alignment, inferring phylogenetic trees, estimating divergence times,
mining online databases, estimating rates of molecular evolution, inferring ancestral
sequences, and testing evolutionary hypotheses (Kumar et al. 1994; Tamura et al.
2013).

PHYLogeny Inference Package (PHYLIP) is a free package of programs for
inferring phylogenies (Felsenstein 1989, 2013; Revell 2013). It is distributed as
source code, documentation, and different types of executable files. PHYLIP is
available at http://evolution.genetics.washington.edu/phylip.html. PHYLIP includes
methods for parsimony, distance matrix, and likelihood methods and also performs
bootstrapping and consensus tree generation.

Phylogenetic Analysis Using Parsimony (PAUP) is a commercially available
software for inferring phylogenies (Swofford 1991) from discrete character data
using maximum parsimony, i.e., searches for minimum-length trees resulting in trees
that minimize the amount of evolutionary steps needed to explain the divergence
patterns in the available data. PAUP (http://paup.csit.fsu.edu/) includes maximum
likelihood and distance methods as well.
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MacClade is another popular downloadable phylogenetic tool which provides an
interactive view to visualize phylogenies (Maddison and Maddison 1999).
MacClade data editor has several editing and visualization options. It is available
at http://macclade.org/macclade.html

A more comprehensive list of available tools can be found at
http://molbiol-tools.ca/Phylogeny.htm and http://evolution.genetics.washington.

edu/phylip/software.html.

9.3 Evolutionary Trace (ET) and Evolutionary Action

To guide mutagenesis experiments (and other studies), phylogenetics can provide a
reliable and cohesive computational analysis of the protein evolution by analyzing
the proteins’ sequences, structures, and functions. One such phylogenetic strategy is
called the evolutionary trace (Lichtarge et al. 1996), which is based on two features
of protein’s functional domains:

A high level of identity is seen among amino acids that share a common ancestor,
and

Under evolutionary pressure, domains that are functionally important for any protein
will resist new mutations and try to maintain function and integrity.

Analysis For a given protein, ET uses an alignment of homologs from sequence
databases and generates a multiple sequence alignment. The output is the whole
alignment and the phylogenetic tree, and most importantly, each residue is assigned
a rank or a score based on its functional importance. This rank comes from the
columns (residue positions) in the multiple sequence alignment by tracing whether
variations in a particular residue during evolution show a relationship with large or
small divergences among orthologs and paralogs (given by the tree). These ranks
reflect the functional importance of that residue in the overall protein. From these
ranks, we can formulate hypotheses on the molecular determinants of activity and
specificity and rationally target experiments to the most relevant sites of the protein.
The concept is illustrated in Fig. 9.4. The first trace is computed with the entire
family in one group (red). The second trace is done with the family divided into two
classes defined by the first two branches of the tree (orange). The third trace is done
with the family split into the three groups defined by the first three branches of the
tree (blue). This is repeated up until the family is divided into N classes, where N is
the total number of sequences (green). Thus, each residue eventually becomes class
specific; some do so when the division is into fewer branches than others that need
finer division. A residue’s evolutionary rank, therefore, can be defined as the
minimum number of branches into which it is necessary to divide the family for
this residue to become class specific.

Applications Evolutionary trace is a well-validated method to identify functional
sites and their residue determinants in proteins. ET ranks residues by relative
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functional importance based on the variation observed in the phylogenetic tree, and
top-ranked residues are seen clustered on the protein’s structure revealing known
(Madabushi et al. 2002) or putative functional sites (Wilkins et al. 2010).

ET is also a reliable predictor for ligand specificity determinants in allosteric
pathways (e.g., pharmacologically important class of G-protein-coupled receptors
(GPCRs)). A study by Rodriguez et al. (2010) used a version of ET called
Difference-ET which compares ET ranks between functionally distinct branches of
the phylogenetic tree. It guided experimental residue swapping to successfully
pinpoint ligand specificity determinant residues of two GPCRs, which despite highly
similar functions and nearly identical binding site structures operate differently on
their respective ligands. These applications make ET a powerful tool for an efficient
redesign of protein function and drug targeting. Another use of ET is the Evolution-
ary Trace Annotation (ETA) Server that predicts enzymatic activity by using func-
tional residue positioning to generate a 3D template or motif. All available annotated
structures are searched for matches with the template. Positive matches have been
experimentally shown to be predictive of molecular and functional similarity (Ward
et al. 2009).

ET has also been shown to be a valuable tool for peptide design revealing
evolutionarily relevant domains (Sanae Shoji-Kawata et al. 2009). Moreover, ET
helps in narrowing down our choices before mutational analysis, assists in determin-
ing the separation of function residues, and provides drug targets to combat antibi-
otic resistance (Adikesavan et al. 2011).

Finally, a recent application of ET is the quantification of genotypic variations
(amino acid mutations in coding regions) to predict their phenotypic impact. This
mutational impact prediction tool called as evolutionary action (action) computes the
effects of mutations as Action scores reflecting predicted phenotype. It is
hypothesized that the phenotypic impact can be computed as the product of evolu-
tionary gradient to the genotypic change. In order to compute the score, the

Fig. 9.4 Evolutionary Trace (ET) utilizes a tree-based approach to narrow the analysis to
subfamilies within which the sequence similarity is higher. ET is freely available for use at http://
mammoth.bcm.tmc.edu/
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evolutionary gradient is approximated using ET ranks for residue functional impor-
tance and genotypic perturbation is approximated using substitution odds, defined as
the rate of amino acid change (Fig. 9.5) (Katsonis and Lichtarge 2014). Action can
optionally incorporate structural features as well.

Action estimates phenotypic impact robustly and on a large scale by predicting
scores for all possible substitutions at each residue position in a protein.

This predictive power of Action can help in guiding mutational studies of protein
function, interpreting the numerous polymorphisms data revealed by exome
sequencing, and importantly, distinguishing disease causing from harmless
mutations since these variations can be powerful indicators of diseases, especially
in a clinical setting.

ET-Related Software and Links

• PyETV (Lua and Lichtarge 2010) is a freely available PYMOL (Delano 2002)
plugin to identify the protein’s functional determinants and functional sites
(http://mammoth.bcm.tmc.edu/traceview/HelpDocs/PyETVHelp/pyInstructions.
html).

• Universal Evolutionary Trace (UET at http://mammoth.bcm.tmc.edu/uet/) is a
database with pre-computed ET analyses for protein structures and sequences
(Lua et al. 2015).

• ETA is available at http://mammoth.bcm.tmc.edu/eta/.
• The EA server is accessible at http://mammoth.bcm.tmc.edu/EvolutionaryAction.

Evolutionary Trace Substitution Odds

Evolutionary
Gradient

Genotype
Perturbation

Predicting Impact of Mutations

Fig. 9.5 Action equation computes the phenotypic impact of mutations as the product of evolu-
tionary gradient to the genotype perturbation. The gradient is measured using evolutionary trace
ranks of functional importance of each residue and the genotypic variation is measured using
substitution odds. Together, the terms of this equation are used to calculate the substitution impact
scores or the action scores for all residues of a protein
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As a concluding remark, it is imperative to say that the primary objective of
molecular phylogenetics is to approximate amount of divergence between sequences
(DNA or protein) and reconstruct ancient evolutionary events as well as the phylo-
genetic tree, which represents the probable evolutionary relationships between these
sequences. The features of a phylogenetic tree will depend upon the underlying
assumptions of our experimental methods and the models used to make our
inferences of evolutionary relatedness. In the end, however, every researcher must
remember that any phylogenetic analyses and all inferences derived from such
analyses are only postulations, and attempts must be made to support such
hypotheses with available data or evidences.
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Structural Bioinformatics: Life Through
The 3D Glasses 10
Ankita Punetha, Payel Sarkar, Siddharth Nimkar, Himanshu Sharma,
Yoganand KNR, and Siranjeevi Nagaraj

10.1 Introduction

Structural bioinformatics can be considered as synergy of computational and struc-
tural biology. The premise of informatics approaches is to uncover the complexity
underlying structures and propose hypothesis for understanding the cellular pro-
cesses. Broadly, it encompasses two aspects � the development of methods for
studying structures of biomolecules and the application of these methods in solving
biological problems and elucidation of new biological knowledge. The latter mainly
involves analyzing three-dimensional (3D) structures and establishing their link to
function.

It has been almost 64 years from inception of structural biology, which started
with X-ray diffraction studies of DNA double helix by Rosalind Franklin and
Maurice Wilkins (Watson and Crick 1953; Wilkins et al. 1953) and followed by
structural determination of myoglobin by John Kendrew and Max Perutz (Kendrew
et al. 1958). Since then growth in structural biology has been phenomenal, and this
particular field has been pranced from understanding simple protein structure to
underpinning complex molecular machines such as proteasome and ribosomes (Liu
et al. 2017; Li et al. 2016; Groll et al. 2000; Amunts et al. 2015; McClary et al. 2017;
Desai et al. 2017; Myasnikov et al. 2016). To decipher the modes of interaction and
the consequences, it is essential to know the individual structures, because structure
defines the function of macromolecule. Insight into the structure deep down to
atomic level assists in manipulating the biological system for powerful therapeutic
potential, as in drug designing. Thus, structural biology is given paramount impor-
tance in recent days, and it is incomplete without bioinformatics/computational
biology. For example, algorithms are required to visualize the molecules, modeling

A. Punetha (*) · P. Sarkar · S. Nimkar · H. Sharma · Y. KNR · S. Nagaraj
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati,
Guwahati, Assam, India

# Springer Nature Singapore Pte Ltd. 2018
A. Shanker (ed.), Bioinformatics: Sequences, Structures, Phylogeny,
https://doi.org/10.1007/978-981-13-1562-6_10

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1562-6_10&domain=pdf


tools for analyzing molecular interactions, knowing energetically favorable
conformations that allow molecular stability, and decipher putative interactions
with the environment.

The structural information can be obtained either by experimental methods using
structure determination techniques like X-ray crystallography, nuclear magnetic
resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM) or can
be predicted using bioinformatics tools (Venko et al. 2017; Dorn et al. 2014; Floudas
2007). All this requires knowledge about computational geometry, computer
graphics, and algorithms to analyze and deconvolute the crystallographic data, to
fit the resulting electron densities to more manageable ball and stick models, and to
use distance information from NMR data to solve the structure. The priority in usage
of these methods over one another depends on the question that needs to be
addressed.

Obtaining macromolecular structure at one conformation hinders us to know its
versatility. One static structure refers to a conformation, and there can be many
conformations in a particular state. Knowledge of all states completes the conforma-
tional landscape. For example, protein with 10 amino acids will have 9 peptide
bonds and therefore 18 different dihedral angles. Assuming each bond angles is in
two stable conformations, then possible different conformations are 218 (Zwanzig
et al. 1992). Knowing the dynamic behavior of the macromolecule in all
conformations is a must to capture its various interactions. In other words, under-
standing of conformational state of proteins enables us to study its mechanism.

Robust techniques are still in the state of infancy, to capture dynamic functional-
ity of the macromolecule machineries, although it is possible to seize static details
that could provide sufficient information to reconstruct the structure of the whole
interacting system to yield detailed dynamics as in vivo. Computer simulations such
as molecular dynamics (MD) and Monte Carlo simulations can help in understand-
ing the putative mechanism of these molecular machineries (Hospital et al. 2015;
Kroese et al. 2014; Paquet and Viktor 2015; Pandey et al. 2017). Thus, bioinformat-
ics is indispensable in structural biology, though the extent to which it is applied may
vary from simple to complex computational programs. For instance, determining
structure for visualization from electron density maps (X-ray diffraction) or fre-
quency distribution graph (NMR) or bio-imaging (cryo-EM) in experimental
methods is quite simple relative to comparative modeling, molecular threading, ab
initio structure prediction of proteins with unknown structure, and molecular simu-
lation of the processes for investigating the dynamics detail. However, what we infer
from simulation process may not be the same as in vivo, if we do not provide the
conditions that mimic the in vivo system. Run-time errors, wrong coordinates as
source for processing, and force fields that do not fit in to solve the targeted question
are few issues that need to be addressed. Stringent validation involving evaluation of
bond length, bond angle, torsion angles, and free energy cutoff is always required to
accept the model. Further, assessment of root-mean-square deviation is vital to
measure deviation of predicted structure with the known closely related structure
obtained through experimental methods. A holistic approach of using bioinformatics
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with structural biology can unleash unprecedented information, which can be
explored for resurrection from menacing diseases.

10.2 Fundamentals of Macromolecular Structure

The realization of the need of understanding the structural principles to know the
functioning led to remarkable growth in structure of macromolecules like
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein. The
macromolecules can attain various shapes responsible for particular function. There-
fore, in order to understand the function of these macromolecules, their structure
needs to be understood.

10.2.1 DNA

Deoxyribonucleic acid is the genetic material that carries the biological information
on how an organism will grow, develop, maintain, and reproduce. It is a biopolymer
composed of repeating units of nucleotides and usually comprises of two strands,
which coil around each other to form a double helix. Each nucleotide is made up of a
pentose sugar called as deoxyribose (lacks hydroxyl group at the 2nd carbon of the
pentose sugar), a nitrogenous base – either purine like adenine (A) and guanine
(G) or pyrimidine like thymine (T) and cytosine (C) – and a phosphate group. The
backbone of this polynucleotide chain has alternating sugar-phosphate molecules in
which the sugar of a nucleotide is covalently linked to phosphate of the next. The
hydrogen bonding between the nitrogenous bases of the two polynucleotide strands
(A with T and G with C) results in the formation of double-stranded DNA.

The first extraction of DNA dates back to 1869 by Friedrich Miescher (Dahm
2008), but its double-helical nature was revealed in 1953 by Watson and Crick from
the X-ray diffraction data of Rosalind Franklin (Watson and Crick 1953; Wilkins
et al. 1953). The nucleic acid research focus was soon shifted to fiber diffraction
(Arnott 1970; Arnott et al. 1974a, 1976; Rodley et al. 1976), which provided insight
into a variety of structures adopted by nucleic acid like single-stranded helices
(Arnott et al. 1976), parallel helices (Rich et al. 1961), and triple and quadruple
helices (Arnott et al. 1974b). DNA being flexible can exist in various forms
depending on the environmental conditions. Its conformation is governed by the
sequence, extent and direction of supercoiling, base modifications, level of hydra-
tion, ionic strength, and the presence and concentration of metal ions or polyamines
in the solution (Basu et al. 1988; Cheng and Pettitt 1992; Ghosh and Bansal 2003;
Choi and Majima 2011; Zhou et al. 2015; Porrini et al. 2017; Dickerhoff et al. 2017;
Sathyamoorthy et al. 2017; Kriegel et al. 2017a). The publication of B-DNA
structure in 1980 revealed it to be a right-handed double helix (Wing et al. 1980).
Also the unusual Z-DNA, the left-handed form of DNA structure, was elucidated
(Wang et al. 1979). Tremendous growth in the fine structures of DNA followed,
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which increased our understanding manifolds (Kocman and Plavec 2017; Kriegel
et al. 2017b; Porrini et al. 2017; Yella and Bansal 2017; Gajarsky et al. 2017; Artusi et al.
2016; Arcella et al. 2012; Adrian et al. 2012; Choi and Majima 2011; Chou et al. 2003;
Wahl and Sundaralingam 1997).

10.2.1.1 Primary Structure
The primary structure of DNA is made of linear sequence of nucleotides linked by
phosphodiester bonds. Each nucleotide itself consists of three components:

1. A pentose sugar – a five-carbon sugar
2. A nitrogenous base – adenine, guanine, cytosine, and thymine
3. A phosphate group

The nitrogenous bases have planar aromatic heterocyclic structure and can be
categorized into purines and pyrimidines. Adenine and guanine are purines in
structure (a nitrogen containing double ring having a six- and a five-membered
ring) and form a glycosidic bond between their 9 nitrogen and 10-OH group of the
deoxyribose. Cytosine and thymine are pyrimidines (a nitrogen containing single
six-membered ring) and form glycosidic bond between their 1 nitrogen and the
10-OH of the deoxyribose. The phosphate group forms a bond with the deoxyribose
sugar through an ester bond between one of the negatively charged oxygen groups
and 50-OH of the sugar. The nucleotides in a polynucleotide chain are linked by
phosphodiester bond between 50and 30carbon atoms. The oxygen and nitrogen atoms
in the backbone make the chain polar. The order of nucleotides within a DNA forms
its sequence and represented by the series of letters of its base.

10.2.1.2 Secondary Structure
In DNA double helix, the two strands are held by intermolecular hydrogen bonding
between the bases of the two strands. The purines and pyrimidines bonded by
specific hydrogen bonds form planar base pairs. The adenine base pairs with thymine
using two hydrogen bonds, while guanine pairs with cytosine using three hydrogen
bonds (Zamenhof et al. 1952; Watson and Crick 1953). The secondary structure is
determined by the set of interactions between the bases of the two strands, which is
responsible for the shape of the molecule. In DNA, the asymmetric attachment of
sugar moiety to the bases on the same side of the base pairs dictates the mutual
positions of the two sugar-phosphate strands. In the helix, the successive base pair
stacking on each other results in two indentions with different dimensions called
major and minor groove, formed by atoms at the backbone surface.

10.2.1.3 Tertiary Structure
The tertiary structure of DNA represents the location of atoms in the 3D space taking
account of geometrical and steric constraints. The linear polymer chain of DNA
folds to form a specific 3D shape, which might result in various structural forms
based on the folding (left- or right-handed), size difference between major and minor
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grooves, length of helix turn, and the number of bases per turn. The tertiary
organization of DNA double helix results in its three forms – B-DNA, A-DNA,
and Z-DNA.

The B-DNA is right-handed helix and the most common form of DNA under
physiological conditions, neutral pH, and low salt concentration. It attains a narrow,
elongated structure with narrow minor groove and wide major groove with helix axis
being perpendicular to base pairs. The deoxyribose sugar ring of B-DNA has
C20endoconformation, i.e., the C20atom is above the plane of C40-O-C10. The base
separation is the same as the helical rise 3.4 Å. The right-handed double helix has ten
base pairs per complete turn, with the two polynucleotide chains antiparallel to each
other and linked by Watson-Crick base pairs (A-T, G-C). The Watson-Crick base
pairing results in asymmetry of the two deoxyribose sugars linked to the bases of an
individual pair on the same side of it. The helix winds along, parallel to the sugar-
phosphodiester chains with base pairs almost centered over the helix axis. The wide
major groove has similar depth (distance of base pairs from the helix axis) as much
narrower minor groove. The major groove is richer in base substituents – O6, N6 of
purines and N4, and O4 of pyrimidines compared to minor one. The major groove
width renders it accessible to proteins. B-DNA occurs at high water concentration, as
the hydration of the minor groove appears to favor B-DNA form. The X-ray
diffraction analysis of oligonucleotides crystals reveals that even the same sequence
can adopt distinct structures, which may differ in propeller twist between bases
within a pair to optimize the base stacking, or the two successive base pairs can move
relative to each other showing twist, roll, or slide.

The right-handed DNA duplex attains A-DNA form in dehydrating
environments, which is shorter and wider than B-form. It occurs at low water
concentration. The A-DNA has C30 atom above the C40-O-C10 plane, i.e., it has
C30endoconformation in contrast to the C20endoconformation of B-DNA. The
C30endoconformation brings both the consecutive phosphate groups on the nucleo-
tide chain closer together reducing the distance between the adjacent nucleotides by
1 Å in A-form relative to B-form. In A-DNA, the base pairs are twisted, tilted, and
displaced nearly 5 Å from the helix axis, which results in different groove
characteristics. The major groove is deep and narrow and not easily accessible to
proteins, while the minor groove is wide and shallow which can be accessed by
proteins but has lower information content than the major groove. Thus, the A-DNA
has a hollow cylindrical core. The helical rise is consequently reduced to 2.56 Å, and
the helix is wider with 11 base pair per turn.

The Z-DNA is a relatively rare left-handed double helix with pronounced zigzag
pattern in the phosphodiester backbone (Wang and Vasquez 2007). Its helix is more
narrow and elongated than A- and B-DNA with convex outer surface of the major
groove and a deep central minor groove. Z-DNA formation can occur when the
DNA has alternating purine-pyrimidine sequence with purines and pyrimidines in
different conformation, leading to the zigzag pattern. Usually, there is alteration of
cytosine and guanine with cytosine at the first position. It occurs when there is a high
salt concentration (Bae et al. 2011). In a base pair, Z-DNA has one nucleotide with
sugar in the C30endoconformation (like A-DNA and in contrast to B-DNA) and the
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base in synconformation which places the base over the sugar ring (in contrast to
anticonformation in A- and B-DNA). The advantage of having base in
anticonformation is that it places the base in a position where it can readily form
hydrogen bonds with the complementary base on the opposite strand. The duplex in
Z-DNA has to accommodate the distortion of this nucleotide in the synconformation,
while the adjacent nucleotide of Z-DNA is in the normal C20endo, anticonformation.

The comparison between the three forms of DNA is shown in Table 10.1.

10.2.1.4 Quaternary Structure
The interactions between distinct nucleic acids or between nucleic acid and proteins
define the quaternary structure. It is a higher level of organization like the nucleo-
some formation that involves DNA-histone binding and their further organization
into chromatin fibers. The DNA quaternary structure governs the accessibility of
DNA sequence to the transcription machinery for gene expression. Since a portion of
DNA is condensed or exposed for transcription, its quaternary structure tends to vary
over time.

10.2.2 Quadruplex Structures

The guanine base has the ability to utilize both its faces at once to form hydrogen-
bonded arrays, resulting in multi-stranded structures in guanine-rich DNA
sequences. Guanine (G) quartet is one such arrangement with four guanines. The
G-quartet is stabilized by forming stacked sets of four bases, where first the four
guanine bases form a flat plate, which then stacks over another flat plate to form a
quadruplex structure. Each four base unit is stabilized by hydrogen bonding between
the base edges and metal ion chelation in the center (Burge et al. 2006; Parkinson
et al. 2002). Numerous conformations can be formed from a set of four bases, either

Table 10.1 Comparison of B-, A-, and Z-DNA

S. no. Property

Type of DNA

B-DNA A-DNA Z-DNA

1. Helix sense Right-handed Right-handed Left-handed

2. Helical diameter (Å) 20 23 18

3. Number of base pair per turn 10 11 12

4. Vertical rise per base pair (Å) 3.4 2.56 3.7

5. Sugar pucker conformation C20-endo C30-endo Pyrimidines – C20-endo
Purines – C30-endo

6. Conformation of glycosyl
bond

Anti Anti Pyrimidines-anti
Purines-syn
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from different parallel strands that contribute a base to the central structure or from a
single strand that folds around a base. Diverse quadruplexes can be formed
depending on the length and number of strand involved and also in the intervening
non-guanine loop sequence. The diverse topologies adopted by G-quadruplexes
include interlocked G-quadruplexes, double-chain-reversal and V-shaped loops,
triads, mixed tetrads, adenine-mediated pentads, hexads, and snap-back G-tetrad
alignments (Dolinnaya et al. 2016; Huppert 2010; Campbell and Parkinson 2007;
Perrone et al. 2017; Kocman and Plavec 2017).

The presence of DNA tetrameric structure was first shown in 1947 (Arnott et al.
1974b), but the biological relevance was discovered in 1995 (Rhodes and Giraldo
1995). The tetrameric arrangement of DNA exists in the G-rich eukaryotic telomeres
(at the ends of the linear chromosomes) and also in non-telomeric genomic DNA,
e.g., nuclease-hypersensitive promoter regions (Burge et al. 2006), and viral
genome, e.g., the human herpes simplex-1 (HSV-1) genome (Artusi et al. 2016). It
has been reported that the DNA G-quadruplex structures are involved in gene
expression and telomere maintenance (Takahama et al. 2013; Murat and
Balasubramanian 2014; Rhodes and Lipps 2015; Fukuhara et al. 2017).

Cells have specialized regions called telomeres that permit chromosomal end
replication utilizing enzyme telomerase (Greider and Blackburn 1985) and also
protect the DNA ends from the DNA repair systems of the cell from treating them
as damage to be corrected (Nugent and Lundblad 1998). The telomeres in human
cells usually contain single-stranded DNA with several thousand repeats of
TTAGGGG, which loop back to form DNA quadruplex having conformation very
different from the usual DNA helix (Wright et al. 1997). The large loop structures in
telomeres called T-loops are extensive circle of the single-stranded DNA stabilized
by telomere-binding proteins. Slight variations of human telomeric sequences can
form different types of G-quadruplex structures (Griffith et al. 1999; Li et al. 2014).
Toward the T-loop end, the single-stranded telomere DNA strand disrupts the
double-stranded DNA to base pair with one of the strand to form a triple-stranded
arrangement termed displacement loop or D-loop (Parkinson et al. 2002). The
G-quadruplex formation at telomeric ends seems to negatively regulate the activity
of the enzyme telomerase, which maintains telomere length (Patel et al. 2007;
Kuryavyi et al. 2010).

Another addition to tetrahelical families are AGCGA-quadruplexes, which
comprises of four 50-AGCGA-30 tracts stabilized by G-A and G-C base pairs,
forming GAGA- and GCGC-quartets, respectively. Residues in the core of the
structure are connected with edge-type loops. Sequences of alternating
50-AGCGA-30 and 50-GGG-30 repeats form AGCGA-quadruplexes instead of
G-quadruplexes. These structurally unique AGCGA-quadruplexes have lower sen-
sitivity to cation and pH variation. This indicates their biological significance in
regulatory regions of genes responsible for basic cellular processes that are related to
neurological disorders, cancer, and abnormalities in bone and cartilage development
(Kocman and Plavec 2017).
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10.2.3 RNA

Ribonucleic acid (RNA) is also a biopolymer made up of repeating unit of
nucleotides and is involved in various biological processes including coding,
decoding of genetic information, regulating gene expression, sensing and communi-
cating the responses to cellular signals, and catalyzing the biological reactions.
According to the central dogma, the genetic information stored in DNA is tran-
scribed into RNA called messenger RNA (mRNA). The genetic information in the
mRNA is then decoded, and specific protein is synthesized on ribosomes. This
process also uses other forms of RNAs called the transfer RNA (tRNA) molecules
which deliver amino acids to ribosomes and the ribosomal RNA (rRNA) molecules
which link the amino acids together to form proteins. In many viruses, RNA is the
genetic material.

RNA is usually a single-stranded molecule folded onto itself instead of paired
double strand as in DNA. Intramolecular hydrogen bonding and complementary
base paring stabilize the folded structure. Although RNA is a single-stranded
molecule, it can also form double-stranded structures which are important to its
function (Rich 1956). In 1960, the first experimental demonstration of how informa-
tion can be transferred from DNA to RNA was revealed by the RNA/DNA hybrid
structure (Rich 1960). In 1965, the structure of tRNA was worked out, a structure
that carried amino acid and arranged them in order that corresponded to sequence in
DNA (Holley 1965; Holley et al. 1965), followed by the elucidation of phenylala-
nine tRNA structure from yeast (Kim et al. 1974; Robertus et al. 1974). Soon, the
structural studies of RNA gained interest, and many structures were subsequently
deposited (Ferre-D’Amare and Doudna 1999; Doherty and Doudna 2000; Piccirilli
and Koldobskaya 2011; Arieti 2014; Ahmed and Ficner 2014; Patel et al. 2017;
Nguyen et al. 2017; Gebetsberger and Micura 2017; Schlick and Pyle 2017; Sun
et al. 2017; Zhao and Pyle 2017).

10.2.3.1 Primary Structure
The primary structure of RNA is made of linear sequence of nucleotides linked by
phosphodiester bonds. Each nucleotide itself consists of three components:

1. A pentose sugar – a five-carbon sugar
2. A nitrogenous base – adenine, guanine, cytosine, and uracil
3. A phosphate group

RNA is similar to DNA in chemical composition except for a few differences.
The sugar composition of RNA is ribose (that has additional hydroxyl group at
20 position in the pentose ring) as compared to the deoxyribose sugar present in DNA
(having no hydroxyl group at 20 position in the pentose ring). The presence of the
hydroxyl groups makes RNA more susceptible to hydrolysis. RNA also differs from
DNA in having uracil base instead of thymine, which base pairs with adenine. Uracil
is an unmethylated form of thymine and lacks methyl group at the 5 position. Other
than these differences, RNA and DNA are the same, having the same bonding
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pattern of sugars, bases, and phosphates to form nucleotide which then binds to form
nucleic acid in similar fashion.

As in DNA, RNA nitrogen bases are divided into types – purines and
pyrimidines. Adenine and guanine are purines in structure (a nitrogen containing
double ring having a six- and a five-membered ring) which form a glycosidic bond
between their 9 nitrogen and 10-OH group of the ribose. Cytosine and uracil are
pyrimidines (a nitrogen containing single six-membered ring) and form glycosidic
bond between their 1 nitrogen and the 10-OH of the ribose. The phosphate group
forms an ester bond between one of the negatively charged oxygen groups and
50-OH of the ribose sugar. The nucleotides are linked by phosphodiester bond
between 50 and 30carbon atoms in a polynucleotide chain. The oxygen and nitrogen
atoms in the backbone make the chain polar. The RNA sequence is the order of
nucleotides in the polynucleotide chain and represented by the series of letters of its
nitrogenous base A, U, G, and C, denoting adenine, uracil, guanine, and cytosine,
respectively. Unlike DNA, RNA has much shorter nucleotide chain.

10.2.3.2 Secondary Structure
The secondary structures in RNA result due to two-dimensional (2D) base pair
folding in which local sequences have regions of self-complementarity, giving rise
to base pairs and turns. The pairing between the complementary bases within single-
stranded polynucleotide chain of RNA results in the existence of both single- and
double-stranded areas in the same RNA molecule. The secondary structure elements
of RNA can be categorized into four basic types – helices, loops, bulges, and
junctions (Tinoco and Bustamante 1999).

Double Helix
The antiparallel strands form the helical shape. RNA double helices have structures
similar to the A-form of DNA.

Stem-Loop Structures
Stem-loop or hairpin loop is the most common RNA secondary structure, which is
formed when the nucleotide chain folds back onto itself to form double-helical
portion called stem. Loop is the single-stranded region formed by the unpaired
nucleotides. It serves as the building block for larger structural motifs like cloverleaf
structures, which are four-helix junctions like in tRNA.

Bulges and Loops
The unpaired nucleotide region in between the long double-helical region resulting
from the parting of the double helices on any one side of the strand forms the bulge
and on both the strands forms the internal loops. The four-base hairpin arrangement
is called tetraloop. Three common families of tertraloops are present in ribosomal
RNA – CUUG, UNCG, and GNRA (where N is a nucleotide and R is a purine).
Among tetraloops UNCG is the most stable (Hollyfield et al. 1976).
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Pseudoknots
Another form of RNA secondary structure is pseudoknot, which is a helical segment
resulting from the pairing of nucleotides from the hairpin loop with a single-stranded
region outside of the hairpin. Pseudoknots fold into knot-shaped 3D conformations
but are not true topological knots. The base pairing occurs that overlaps one another
in sequence position. Pseudoknots are found in most classes of RNA and have
diverse functions. It was first identified in turnip yellow mosaic virus (Rietveld et al.
1982). Among the pseudoknots H-type fold pseudoknots are best characterized. It
has two stems and two loops. The second stem loop is formed as a result of pairing of
nucleotides in hairpin loop with bases outside the hairpin stem (Staple and Butcher
2005). Pseudoknots are involved in several important biological processes like the
pseudoknot of RNA component of human telomerase that is critical for activity
(Chen and Greider 2005).

10.2.3.3 Tertiary Structure
The three-dimensional structure of single-stranded RNA is formed by base pairing in
all the self-complementary regions and can be very complex. It consists of the
conformations adopted by the double-helical form, which is stabilized by intramo-
lecular hydrogen bonding. It also forms RNA-DNA duplexes, which are mostly
A-form because of the additional 20 hydroxyl of the ribose sugar that interferes with
the arrangement of the sugar in the phosphate backbone. Due to this, it becomes
difficult for RNA to adopt the highly ordered B-form, but some RNA-DNA duplexes
and localized single-strand dinucleotide of RNA do exist in B-form also (Chen et al.
1995; Sedova and Banavali 2015). The A-RNA helix has 11 base pairs per turn,
which are tilted and displaced from the helix axis, having C30 endoconformation of
sugar, a narrow and deep major groove, and a wide, shallow minor groove.

The miscellaneous biological functions of RNA are determined by its complex
structure being stabilized by both secondary and tertiary interactions. An important
tertiary structure motif is RNA triplex, commonly found in many pseudoknots and
other structured RNAs. It usually forms through tertiary interactions in the major or
minor groove of a Watson-Crick base-paired stem. In isolation a major-groove RNA
triplex structure remains stable by forming consecutive major-groove base triples
such as U�A-U and C(þ)�G-C. Almost all large structured RNAs possess minor-
groove RNA triplexes. Since double-stranded RNA stem regions are often involved
in biologically important triplex structure formation and protein binding, they hold
great potential for sequence-specific targeting of any desired RNA duplexes by
triplex formation (Devi et al. 2015).

10.2.3.4 Quaternary Structure
The quaternary structures represent the interactions between separate RNA units or
between RNA and proteins like in ribosome or spliceosome.

10.2.3.5 Quadruplex Structures
In G-rich RNA sequences, noncanonical secondary structures held together by
Hoogsteen-bonded planar guanine quartets form G-quadruplexes. They occur in
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transcripts associated with telomeres, in noncoding sequences of primary transcripts,
and within mature transcripts. At these specific locations, they play important roles
in key cellular functions, including telomere homeostasis, regulation of pre-mRNA
processing (splicing and polyadenylation), RNA turnover, and mRNA targeting and
translation (Fay et al. 2017). RNA G-quadruplexes govern regulatory mechanisms
like the binding of protein factors that modulate G-quadruplex conformation and/or
serve as a bridge to recruit additional protein regulators (Dolinnaya et al. 2016;
Agarwal et al. 2012; Millevoi et al. 2012). Current methods for identifying RNA
G-quadruplex involve the use of short, purified RNA sequences in vitro in the
absence of competition with secondary structures or protein binding. In case of
long functional RNAs and in cellular context, a comparison of RNA and 7-deaza-
RNA is used (Weldon et al. 2016; Weldon et al. 2017).

10.2.3.6 Transfer RNA
The yeast phenylalanine tRNA exists in L-shape, with two arms at right angle to
each other as revealed by its crystal structure (Kim et al. 1974; Robertus et al. 1974).
The arms consisting of short A-helices are held by extensive base-base interactions.
The helix-helix stacking is observed. The D stem’s short helix is stacked onto the
longer double-helical anticodon arm, while the other arm has acceptor stem helix
stacked with four base pair helix of T arm. Overall, it displays a cloverleaf structure
with interactions between distant parts of structure. It shows nine additional non-
Watson-Crick base-base interactions and several triplet interactions at the two-arm
junction, which helps to maintain the structural fold.

10.2.4 Protein

Proteins perform innumerable functions that mediate structural and mechanistic
basis of various life processes, for which they interact with various other
biomolecules and tolerate different physical factors like pH, temperature, and ionic
strengths. Functional versatility of proteins can be attributed to variability in their
structure that is optimized by the evolution process. The protein is a biopolymer
made up of amino acids. Protein structural folding brings particular amino acid
residues to vicinity that further helps in enzyme catalysis, transport, metabolic
regulation, and structural functions. Thus, various functions of proteins are driven
by variability in structure, which in turn is the function of its amino acid sequence.

Diversity and complexity of protein structures possess a great challenge for the
researchers in the area of structural biology. Initially, proteins were considered to
lack structural regularity as in DNA double helix but later found to contain various
types of regular subunits (Pauling and Corey 1951; Ramachandran 1963;
Ramachandran et al. 1963; Eisenberg 2003; Amzel and Poljak 1979; Tilton et al.
1992; Mixon et al. 1995; Sammito et al. 2013; Weisser et al. 2017). Proteins are
primarily a linear chain of amino acids (in various combinations); these chains fold
to form regular structures termed as secondary structure. In protein, secondary
structural elements group together to satisfy various intramolecular interactions to
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form a tertiary structure. Not all but in few cases, tertiary structures associate with
each other (intermolecular) to form quaternary structure.

10.2.4.1 Primary Structure
Protein’s primary structure is composed of covalently linked amino acids forming a
linear polymer chain. Each protein can be identified by unique composition of its
amino acids. Amino acids are small organic molecules comprising of a central
carbon atom (α-carbon) attached to carboxyl group (–COOH), amino group (–
NH2), a hydrogen atom, and a side-chain group (–R). The proteome comprises of
20 amino acids. The basic structure of amino acids remains the same except the side-
chain group. Based on the properties of side-chain group, amino acids are
categorized into polar, nonpolar, and charged. Generally amino acids show chirality
and hence exhibit two forms (i.e., D and L forms) which are mirror images of each
other. Exception to this is glycine, which is an achiral molecule due to the presence
of single hydrogen atom as side chain. Cellular machinery prefers and incorporates
only L form amino acids.

The protein is formed by linking two amino acids by a covalent bond called
peptide bond, which is resultant of condensation reaction between the carboxyl
group of the first amino acid and the amino group of the next. Two or more amino
acids linked in this way are called peptides. Thus, a protein can be termed as
polypeptide.

The peptide bond characteristics have important implications on the polypeptide
3D structure. The peptide bond being planar and rigid imparts rotational freedom to
the polypeptide chain only about the bonds formed by the α-carbons (i.e., Cα-N and
Cα-C0). These are termed as Phi (ф) and Psi (ψ) angles, respectively. Steric hin-
drance between the residues side chain and the peptide backbone further limits the
rotational freedom about the ф (Cα-N) and ψ (Cα-C0) angles. Due to this constraint,
only few conformations are possible. Based on sterically allowed ф and ψ angles of
a polypeptide chain, the entire conformational space can be plotted (ф vs ψ angles)
into allowed and disallowed conformations (Ramachandran et al. 1963). It is called
the Ramachandran plot, with exceptions of glycine and proline amino acids. The side
chain of glycine has a simple hydrogen molecule, which reduces the steric hindrance
to a greater extent, thus increasing its flexibility and expanding the conformational
space, whereas proline has markedly reduced conformational flexibility due to the
covalent linkage of side chain to the main chain carbon (Cα), which reduces the
conformational space.

10.2.4.2 Secondary Structure
The local conformation of the backbone of the polypeptide chain can be termed as
the protein secondary structure. Based on the known physical limitations of poly-
peptide chains, Linus Pauling, Robert Corey, and H. R. Branson (Pauling et al. 1951)
predicted protein to possess alpha (α) helix and beta (β) sheets, which were experi-
mentally proven in the course of protein research. Ramachandran plot also maps two
major areas of allowed conformation denoting α-helices and β-sheets. A high degree
of regularity is displayed by these structures. In the polypeptide chain, a particular ф
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and ψ angle combination is approximately repeated in its secondary structure.
Helices and sheets satisfy the peptide bond constraints, but this is not the only factor
that explicates their ubiquity. Hydrogen bond formation between the backbone
atoms of the partaking residues makes them a highly favorable conformation for
the polypeptide chain. In proteins, apart from the regular secondary structural
elements like helices and sheets, irregular secondary structural elements are also
present that are vital to both structure and function.

Alpha (α) Helix
Helix is a regular coiled structure produced as a resultant of polypeptide backbone
curving. These coils are mostly right-handed in proteins. Steric clashes restrict the
left-handed coiling of polypeptide backbone. Among the right-handed helices,
α-helix is the most predominant form. The amino acid side chains point away
from the helical axis, which form the surface of the helix. An α-helix consists of
3.6 amino acids per turn. The helix structure is stabilized by hydrogen bond
formation between the oxygen atom of carboxyl group of each residue and the
hydrogen atom of the amide group belonging to 4th residue ahead in the helix.
Except at the ends, all backbone hydrogen bonds are satisfied within the α-helix. In
this arrangement, the carbonyl groups of all amino acids are arranged in the same
directions, whereas the amide groups are oriented in opposite way. Here each amino
acid of the α-helix acts as a small dipole. Thus, alignment of all the amino acids in
the same orientation gives a directionality to α-helix, i.e., negative to positive in
C-terminus to N-terminus direction.

Based on the complexity of the side chain, different amino acids have different
tendencies to form α-helix. Residues with a higher frequency of occurrence in
α-helices are alanine, glutamate, and leucine. Alanine is the most prevalent amino
acid in helix, as it has a small side chain that fits well into α-helix, whereas bulky side
chain containing amino acids like tryptophan occurs less often. The presence of
hydrogen bond donors and acceptors in the side chains of aspartate, asparagine, and
serine makes the least preferable amino acids by α-helices as they can form hydrogen
bonds with the main chain when in close proximity, thereby disrupting the core
helical structure. Glycine and proline are also less in helix as they act as helix
breaker. Glycine with its single hydrogen as a side chain has a flexible movement
around alpha-carbon (Cα), whereas proline has reduced flexibility due to its ring
structure, and absence of NH group introduces kinks in the main chain.

310 Helix and pi (π) Helix
In addition to α-helix, proteins may rarely contain tightly packed 310 helix and
loosely packed pi (π) helix. The 310 helix has three residues per turn, with hydrogen
bonding occurring between each residue and the residue 3 positions ahead. The
seldom-occurring π-helix has 4.4 residues per turn and exhibits hydrogen bonding
between each residue and the residue 5 positions ahead. Both 310 helix and π-helix
are seen only at the ends of α-helix.
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Beta (β) Sheets
In β-sheets, the hydrogen bonding between the main chain C¼O and NH groups
does not form between the residues of the same strand but with other parts of the
polypeptide, which means a single β-strand does not exist in isolation but spatially
adjacent to other strands. This results in the formation of twisted, pleated structure
called β-pleated sheet, formed by consecutive, spatially adjacent hydrogen-bonded
strands. The individual polypeptide chains participating in the sheet formation are
termed as β-strands. In these types of structures, dihedral angles (ф and ψ angles) are
nearly 180

�
with respect to each other, producing pleated sheet with the residue side

chains approximately perpendicular to the pleated plane. These side-chain groups
are further oriented in altering positions on opposite sides of the sheet. The β-sheets
are of two types – parallel and antiparallel. In both the types, Cα atoms of adjacent
strands are aligned closely, and their side-chain groups face in the same direction. In
parallel arrangement, adjacent strands orient in the same direction such that their
amino terminus (N-terminus) or carboxy terminus (C-terminus) lie adjacent to each
other. These are less frequent and can be only formed by β-strands that are very
distant in sequence (as in β-α-β motifs). This type of sheet results in less stable
nonparallel inter-strand hydrogen bonding. Antiparallel arrangement orients strands
in reverse direction, thus bringing the N-terminus of the first strand besides the
C-terminus of the adjacent strand. In this configuration, more stable parallel inter-
strand hydrogen bonds are formed. This is the more prevalent form of β-sheet
configuration.

In addition to abovementioned configurations, β-sheets can also seldom form
mixed configuration, containing a mixture of both parallel and antiparallel aligned
β-strands. All the β-sheets exhibit some degree of right-handed twist. In topology
diagrams, flat arrows pointing in N-terminus to C-terminus direction represent
β-strands.

Valine and isoleucine are most commonly found amino acids in β-strands. The
reason for not contributing to α-helices can be drawn to the bifurcation at their
β-carbon atom that results in steric clashes, thereby destabilizing the secondary
structure, while β-strands can readily harbor these amino acids since their side chains
are directed outward to the plane that contains the main chain.

Loops and Turns
In a protein, apart from stable α-helix and β-sheets, unordered structures like loops
(coil) and turns also exist. These structures often interconnect ordered secondary
structural elements. These structures majorly occur on the surface of the protein and
generally contain hydrophilic amino acids. Glycine, asparagine, and proline are
commonly found in turns. In many proteins, loop regions bear the active site for
enzymatic function. Hairpin loops or reverse turns are the most common in the
proteins. These are usually made up of 4–5 amino acids. Reverse turns usually
increase the compactness of protein structure by reversing the polypeptide chain
direction, by folding it to 180

�
. These structures are usually connected by internal

hydrogen bonds and generally contain proline and/or glycine. Proteins can also
contain longer (5–15 residues) loops called omega (Ω) loops, which in addition to
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polypeptide backbone are also networked by interaction of side-chain groups. Other
than these, proteins may also contain highly flexible irregular regions termed as
random coils.

10.2.4.3 Tertiary Structure
The tertiary structure is the actual form of the protein structure that is responsible for
biological function. The various ordered secondary structural elements interact with
their side chains of amino acids and fold in three dimensions to form tertiary
structures. The folding is driven by the hydrophobic effect, i.e., the hydrophobic
side chains fold to the core regions away from the hydrophilic surroundings. In
addition to this, other interactions like hydrogen bonding, salt bridges, covalent
disulfide bridges, and weak van der Waal forces contribute significantly in tertiary
structure building. This three-dimensional folding allows elsewhere located active
site residues of peptide chain to associate closely, thus allowing the substrate binding
and catalysis process. Though tertiary structures in total appear to be irregular and
lack symmetry, they are comprised of smaller conserved super-secondary structures
termed as motifs.

Motifs
Motifs act as structural subunits of the protein and comprise of various secondary
structural elements, which are arranged in regular patterns. Based on these
arrangements, these super-secondary structures are classified into various types
enumerated below.

1. Helix-loop-helix

Helix-loop-helix (HLH) is a simple motif comprising of two helices
interconnected by a shorter loop. These motifs are generally located in the
DNA-binding regions of transcription factors. Generally, this motif comprises of
longer basic amino acid-containing helix (DNA interacting) connected to a smaller
helix.

2. Helix-turn-helix

In this motif, two helices are joined by a loop that makes a turn, thus folding back
the polypeptide chain. These are commonly found in DNA-binding domains of the
proteins.

3. Beta (β) hairpin

This motif comprises of two β-strands connected by a loop forming a hairpin
bend. The bending causes reversal of strand direction in the peptide chain. β-Hairpin
structures either exist as individual motifs or form a continuous antiparallel β-sheet.
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4. Beta-alpha-beta (β-α-β) motif

The β-α-β motif commonly exists in proteins with parallel β-sheets. The
C-terminus of first β-strand is connected to the N-terminus of a second by a loop-α
helix-loop. Generally, in 3D structure parallel β-sheet exists in a plane, where
intermittent helices are placed above the sheet plane. Varying lengths of loops are
observed in different motifs. In some proteins, catalytic sites are found in the loop
regions of β-α-β motif.

5. Greek key motif

The Greek key motif consists of four adjacent antiparallel strands arranged in the
form of an ornamental Greek key. Three β-antiparallel strands of this motif are
connected by two hairpin loops, while the fourth is placed adjacent to the first and
linked to the third by a longer loop.

Protein Folds and Domains
Protein fold is a large and complex structure formed by combination of simple
motifs. The types of folds that a protein can attain are limited and are commonly
related to the type of function. An independently folding large subunit of protein
with conserved protein fold and/or specific function is called domain. It is quasi-
independent modular units with simpler functions. Based on the structural features,
domains are classified into following types.

1. Alpha (α) domains

The α-domains comprise of only parallel or antiparallel α-helices. Examples
include helix bundle and globin fold.

(a) Four-helix bundle

This is one of the common folds present in various proteins. In most cases, four
antiparallel helices are bundled to pack hydrophobic core at the helix interface and
expose the hydrophilic residues to the aqueous solvent.

(b) Globin fold

This fold is present in globin family of proteins (e.g., hemoglobin and myoglo-
bin). This fold contains eight helices forming an active site pocket for binding of
heme group. In this domain, two helices at the C-terminus form a helix-turn-helix
motif, thus arranging themselves antiparallel. The other helices in the remaining
domain pack against each other with angle around 50

�
.
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2. Beta (β) domains

The β-domains are made up of β-sheets alone. Examples include up and down
β-barrels, jelly roll barrel, and β-sandwich.

(a) Up and down β-barrel

The large antiparallel β-sheet wraps around in circular fashion so that the strands
that would be on the edges of the sheet are spatially adjacent and hydrogen bonded
forming a barrel structure with large void in the center. The amino acid side chains
alternatively point above and below the sheet. This space in the center acts as a
transporting channel in various membrane proteins.

(b) Jelly roll barrel

Jelly roll barrel also consists of single sheet wrapped around itself, but here longer
loops transverse the channel core, thus leaving no void. The core region consists of
hydrophobic residues. It usually consists of eight beta strands arranged in two four-
stranded antiparallel beta sheets.

(c) β-sandwich

In this fold, two antiparallel β-sheets are arranged in parallel planes stacking each
other like a bread sandwich. In contrast to β-barrel, they conceive a hydrophobic core
with no void spaces. The number of strands found in such domains may differ from
one protein to another. This type of fold is found in immunoglobulins.

3. αþβ-domains

The secondary structure of αþβ-domains is composed of α-helices and β-strands
that occur separately along the backbone. The β-strands are therefore mostly anti-
parallel. Examples include the ferredoxin fold, the DNA clamp fold, and the SH2
domain.

(a) Ferredoxin fold

A ferredoxin fold is a common αþβ-protein fold with a signature βαββαβ
secondary structure along its backbone. The ferredoxin fold has as a long, symmetric
hairpin that is wrapped around once, so that its two terminal β-strands hydrogen
bond to the two central β-strands, forming a four-stranded, antiparallel β-sheet
covered on one side by two α-helices.
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(b) DNA clamp fold

A DNA clamp or a sliding clamp is a protein fold that serves as a processivity-
promoting factor in DNA replication. It is an αþβ-protein that assembles into a
multimeric structure that completely encircles the DNA double helix as the poly-
merase adds nucleotides to the growing strand. The clamp because of its toroidal
shape of the assembled multimer cannot dissociate from the template strand, thereby
preventing the enzyme from dissociating. Thus, it acts as a critical component of the
DNA polymerase III holoenzyme.

(c) (Src homology 2) SH2 domain

The SH2 domain is a structurally conserved protein domain contained within the
Src oncoprotein and in many other intracellular signal-transducing proteins. It
contains two α-helices and seven β-strands and is approximately 100 amino acids
in length. It shows high affinity to phosphorylated tyrosine residues and is known to
identify a three to six amino acid sequence within a peptide motif.

4. α-/β-domains

In these domains, the secondary structure is composed of alternating α-helices
and β-strands along the backbone. The β-strands are therefore mostly parallel. They
contain either spread or curved β-α-β motifs. Examples include TIM barrel,
flavodoxin fold, Rossmann fold, and leucine-rich repeat (LRR).

(a) α-/β-barrel

This type of structure is found in triosephosphate isomerase (also termed as TIM
barrel). A sheet of four β-α-β-α units is wrapped into a circle, forming internal core
made up of parallel β-sheet covered by α-helices as outer layer. Core region is not
entirely hollow. Substrates interact with the loops above the barrel.

(b) Flavodoxin fold

It is a common three-layered α-/β-protein fold that has a five-stranded parallel
β-sheet sandwiched between two α-helical layers.

(c) Rossmann fold

This type of fold is routinely found in nucleotide-binding proteins. It contains
open twisted parallel β-sheet with α-helices on both sides. A specific spot in a cleft
between two parallel sheets connected by a helix acts as nucleotide binding motif.
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(d) α-/β-horseshoe fold

A leucine-rich repeat (LRR) is a structural motif that forms an α-/β-horseshoe
fold. It is composed of repeating 20–30 amino acid stretches that are unusually rich
in hydrophobic amino acid leucine. Many such repeat units consisting of β-strand-
turn-α helix fold together to form a leucine-rich repeat domain that takes up a
horseshoe shape. Seventeen stranded parallel β-sheets form the interior, whereas
interconnecting 16 α-helices form the outer covering of the horseshoe. The hydro-
phobic core formed between the helices and sheets has tightly packed leucine
residues. This type of fold is found in placental ribonuclease inhibitor.

10.2.4.4 Quaternary Structure
Many proteins do not function as single folded polypeptide chains; instead they form
a non-covalent association with two or more folded polypeptide chains. Each subunit
of this multimeric protein is termed as protomer. Proteins with identical protomers
are termed as homomeric, whereas proteins with different protomers are known as
heteromeric. In some cases, these proteins possess active site in the interface of
protomers, whereas in others each protomer carries a separate active site. Similar
interactions stabilize both tertiary and quaternary structures. Formation of quaternary
structures grants certain advantages like cooperativity in function (e.g., one protomer
of hemoglobin bound to oxygen promotes other three peptide chains to bind to
substrate), structural assembly (e.g., multiple heterodimers of tubulins associated
with each other to form microtubules), and co-localization of different functions
which results in various protein multimers, i.e., multifunctional complexes.

10.3 Structure-Function Relationship

The protein is able to perform its biological function by forming stable 3D structure
in normal environment. For example, enzymes use a cavity in the surface of their 3D
structure called active site, which is accessible to reactants to catalyze the reactions.
The multifunctional active sites contain key catalytic machinery of the protein,
consisting of one or more residues that are actively involved in catalyzing the
reaction and transition-state stabilization. Based on the active site shape and
physiochemical properties, only a particular class of molecules can bind and
catalyzed. All this depends on the active site attaining proper 3D conformations,
which in turn depends on the folding of the polypeptide chain. In general, all proteins
rely on specific 3D structure to perform their biological function. All proteins are not
enzymes and may have other functions such as molecular recognition like transport
proteins need to recognize and carry specific molecules, or the antibodies which need
to recognize the foreign proteins, or the interaction of components in signaling
pathway or the complex formation. The recognition of other macromolecules is
very important in gene expression regulation by DNA-binding protein and formation
of nucleoprotein complex like ribosome. The recognition of molecular signal by
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receptor proteins is important in sensing (e.g., the receptors present in cell nucleus
sense steroids).

The basic requirement for molecular recognition requires binding of the
molecules in energetically favorable conformation, which depends on complemen-
tarity of shapes and physiochemical properties, i.e., they must fit snuggly together
and their surface atoms in contact must have complementary properties. Thus, the
hydrophobic area of one interacting partner must be in contact with hydrophobic
area of the other, and the negatively charged area of one must contact the positively
charged area of the other. All this is dependent on the formation of specific 3D
structure of proteins. Therefore, the protein function is dependent on its attaining a
stable specific 3D structure.

Various approaches have been developed to predict function from the structural
information. The basic approach that uses structural data for predicting function of a
protein relies on finding globally similar structural features (Sleator and Walsh
2010). However, if the match is not significant, similarities between the functional
sites are assessed. Typically, it involves either protein fold comparison, use of local
3D templates, or the local structural feature comparison. Proteins having similar
structural features along their entire sequence are more likely to have similar
functions (Whisstock and Lesk 2003; Tosatto and Toppo 2006). Some of the popular
web services available for quantifying this relationship are DALI (Holm and Laakso
2016), CATHEDRAL (Redfern et al. 2007), SALSAs (Wang et al. 2013), and
FLORA (Redfern et al. 2009). The significance of the similarity is assessed based
on the number of amino acid residues considered in the alignment and the quality of
superposition. Detecting the presence of common motifs distributed over the range
of diverse folds within the structure hints the key functional similarity. The analysis
of CATH database (Dawson et al. 2017) reveals that the protein domains having the
same folds tend to have a specific function, but a few number of additional
superfolds can completely change the key function. Recent advancement in the
similarity-based scoring methods involves the comparison of protein’s internal
residue contact that identifies the residues co-located in the range of 8–10 Å in the
structure and finally detects additional similarities using conventional global align-
ment methods.

Though whole fold comparison is the most common method used to assign
protein functions, it has some limitations. It does not consider the conservation of
the local environment distinctly, which is very important as small changes in the
active site residues can cause a complete alteration in protein functions. For example,
the function of enzymes and DNA-binding proteins is solely dependent on the
conservation of their active site residues. Thus, methods have been developed that
compare smaller structural motifs to assign specific functions to proteins. The
Catalytic Site Atlas (Furnham et al. 2014) is a protein structure database that stores
all manually annotated catalytic site residues of different proteins. It helps to provide
a structural template that can be compared to the protein structures of unknown
function using a fast search algorithm to transfer and assign the closest Enzyme
Commission (EC) numbers. Hydrophobic residues are often eliminated while
constructing a structural template because they tend to be buried in the core of the
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protein. The EzCatDB database houses manually classified enzymatic reactions
based on enzyme active site structures, their catalytic mechanisms based on litera-
ture, amino acid sequences of enzymes (UniProtKB), the corresponding tertiary
structures from the Protein Data Bank (PDB), and ligand information classified in
terms of cofactors, substrates, products, and intermediates. It provides various
sequence search methods, including the detection of remote homology (Nagano
et al. 2015). The structure-function linkage database (SFLD) is a manually curated
classification resource describing structure-function relationships for functionally
diverse enzyme superfamilies. SFLD enables rational transfer of functional features
to unknowns in cases where the members of superfamilies have diverse functions but
share an ancestry and some conserved active site features associated with conserved
functional attributes and therefore tend to misannotate (Holliday et al. 2017).

Protein surface analysis as well as analysis of the conformation of the active site
cleft also provides information on protein function. It can fetch information on small
molecule binding and potential protein-protein interaction. The ability of a protein to
maintain a unique chemical environment and specific binding pocket conformation
aids them to distinguish between their substrates and catalyze reactions effectively.
Based on the local structural features, the binding sites in unannotated proteins can
be compared against a database of known sites. For example, the web server pocket
and void surfaces of amino acid residues (pvSOAR; Binkowski et al. 2004) performs
such comparisons.

Recent approaches of protein function assignment include comparison of the
physiochemical properties of the active site residues, the charge conservation,
hydrophilicity, and information about the electrostatic potential surfaces that helps
to identify similarities in the charge distribution pattern in the interaction sites
(Dudek et al. 2017; Quester and Schomburg 2011; Ruiz-Blanco and Aguero-Chapin
2017; Wang et al. 2017; Stahl et al. 2017).

10.4 Macromolecular Structure Determination

There are several methods to determine the protein structure like X-ray crystallogra-
phy, nuclear magnetic resonance (NMR) spectroscopy, and electron microscopy
(EM). The priority in usage of these methods over one another depends on the
biological question that needs to be addressed. If one has to study small protein with
<50 amino acids, NMR is the obvious choice. Not all proteins behave the same,
some are easy to crystalize, and some are not amenable for crystallization. For easily
crystalizing proteins, X-ray crystallography is preferred. Cryo-EM helps to unravel
overall topology of the protein interactions by direct imaging the macromolecular
interactions. Other techniques such as electrospray ionization mass spectrometry
(ESI-MS) have also been developed to study macromolecular structures that are not
accessible by either NMR or X-ray crystallography. All these techniques have some
pitfalls. The major issue with X-ray crystallography is the complexity of amino
acids, which decides the protein’s fate to get into crystal or not. Additionally, the
expression of protein in larger quantity for structural studies is often difficult.
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Uncertainties are associated in predicting crystallization feasibility of a protein.
Solving phase problem in attaining the information from both phase and amplitude
is crucial, which will account for complete information about the electron density
maps. Isomorphous replacement and anomalous dispersion with heavy atom cluster
improve this phase problem. Radiation damage is the common problem with X-ray
crystallography and cryo-EM technique. Theoretically, higher electron dose gives
higher resolution. However, in practice, exposing higher electron dose damages the
sample, and thus only low-resolved structures are attained. This problem can be
rectified by exposing the sample with moderate level of electron dose and capturing
the signal from different orientations followed by reconstruction to attain highly
resolved structure. The major issues with solution techniques such as NMR are that it
allows increased conformational flexibility of proteins, resolution is limited, and
complex data analysis makes it cumbersome at times.

10.4.1 NMR Spectroscopy

Nuclear magnetic resonance is used to determine the structure of macromolecule in
solution at the atomic-level resolution (Sugiki et al. 2017). The purified protein is
placed in strong magnetic field and probed with radio waves. The resonance pattern
is analyzed to get information about atomic nuclei close to one another and local
conformation of bonded atoms. The model of protein is then built using the list of
restraints. NMR can also be used to study the various other properties of protein such
as changes in protein domain on ligand or substrate binding, enzyme kinetic, etc. at
the atomic level. However, it is limited to small or medium proteins because the large
protein results in overlapping peaks in NMR spectra. For larger proteins (>30 kDa),
more powerful NMR spectrometers are required which are currently unavailable.
Commercially up to 900 MHz NMR are available with the latest being 1,020 MHz
NMR (Hashi et al. 2015).

10.4.1.1 The Principle of NMR Spectroscopy
All the atoms contain nuclei, which have certain angular velocity and harbor
neutrons and proton. Protons are charged particles and when rotated create a spin
angular momentum. The spin angular momentum vector characterizes the spin. The
rotating nucleus creates a magnetic field in the direction perpendicular to the rotation
as described by the right-hand rule (RHR). RHR states that when the fingers of the
right hand are curled in the direction of circular motion, the thumb points in the
direction of the angular momentum vector. This is called as magnetic moment
vector, μ. This magnetic moment and spin angular momentum are directly propor-
tional. When an external magnetic field is applied to a nucleus, the nucleus aligns
itself in the external magnetic field. If electromagnetic pulse in the form of radio
frequency (RF pulse) is applied to the aligned nucleus, a perturbation in the
alignment is created, which is proportional to the external magnetic field and the
nuclei under observation. Thus, when an RF pulse is in on state, the alignment of the
nuclei gets disturbed, and when the RF pulse is in off state, the nuclei try to realign
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itself with the external magnetic field. It is measured as declining amplitude with
time and is called as free induction decay. This gives a measure of frequency and
decay as a function of time. In order to get the spectrum with a particular peak for
particular nuclei, the data is subjected to Fourier transform. Each peak in an NMR
spectrum defines certain magnetically different nuclei. The presence of other nuclei
in vicinity in the form of atomic bonds, van der Waals interaction, ionic interaction,
etc. will have an effect on the position of the peak. This is termed as chemical shift.
The chemical shift for an NMR signal is normally measured in Hertz (Hz) shifted
relative to a reference signal of tetramethylsilane.

10.4.1.2 Protein NMR
For protein NMR mainly H1, C13, and N15 NMR spectra are measured. Since the
abundance of these nuclei except H1 is very less in nature, the protein is labeled with
C13 and N15 isotopes. Labeling is done while growing bacterial culture in the media
containing these nuclei in the form of nutrients. N15 and C13 labeling are commonly
referred to as double labeling. The protein is produced by expression from bacteria,
which are grown on minimal medium supplemented with 15NH4Cl and

13C-glucose.
In order to determine protein structure, two-dimensional (2D) NMR is preferred

over one-dimensional (1D) NMR, where only a single type of nucleus is taken into
consideration. The following methods are used to obtain the 2D data.

10.4.1.3 Correlation Spectroscopy (COSY) and Total Correlation
Spectroscopy (TOCSY)

It is the most popular and widely used method for 2D NMR. COSY transfers the
magnetization through chemical bonds between the adjacent atoms. A COSY data
shows the frequencies of a single atom on both axes. The diagonal peaks have the
same frequency coordinates on both the sides and hence appear on the diagonal. The
cross peaks are due to the phenomenon called as magnetization transfer, which
indicates that two nuclei are coupled.

TOCSY differs with COSY in the fact that in TOCSY magnetization is trans-
ferred to all the protons that are connected to the adjacent atom, i.e., the magnetiza-
tion is transferred from primary to secondary atom and then to tertiary atom.

10.4.1.4 Heteronuclear Correlation Spectroscopy
A heteronuclear correlation spectroscopy gives the data based on the interaction/
coupling between two different nuclei types.

10.4.1.5 Heteronuclear Single-Quantum Correlation Spectroscopy
(HSQC) and Heteronuclear Multiple-Quantum Correlation
Spectroscopy (HMQC)

HSQC is used to detect the correlation between two nuclei of different types, which
are separated by a single bond. This method gives one peak per coupled nuclei, and
the coordinate for this peak is the chemical shifts in the same coupled nuclei.

HMQC is similar and gives identical spectra to HSQC but uses a different pulse
program. However, HSQC is often considered better than HMQC.
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10.4.1.6 Nuclear Overhauser Effect Spectroscopy (NOESY)
This method detects the correlation between the two nuclei, which are not bonded
but are closely placed in space. The spectrum which is obtained is similar to COSY
with both cross and diagonal peaks. Here cross peaks arise due to correlation through
space rather than through bond.

10.4.2 X-Ray Crystallography

X-ray crystallography employs X-rays to determine the atomic structure of a mole-
cule. It is by far the best method to solve protein structure (Ilari and Savino 2008,
2017; Yang et al. 2004). X-rays are diffracted from protein crystal, and the diffrac-
tion angle and the intensities of diffracted rays are calculated to create a 3D view of
electron density. This electron density is then used to solve the molecular structure.

X-ray crystallography can be said to share resemblance with microscopy. In
visible microscopy, the shortest wavelength used is around 300 nm, and it is
sufficient to visualize cells and subcellular structures. With electron microscopy,
the wavelengths used can go as less as 10 nm. In order to understand the protein
structure with the distances between the atoms, around ~1 Å X-rays are used. X rays
used ranges between 0.5 and 1.5 Å in wavelengths. The structure determination
using X-ray crystallography requires protein crystal as the diffraction pattern from a
single protein molecule is too weak to be measured. A protein crystal is a solid
material in which each protein molecule is arranged in a highly ordered microscopic
structure, forming a lattice that extends in all the directions. If the internal structure
of the protein crystal is highly ordered, X-rays will be diffracted to high angles and
high resolution. On the other hand, poor crystal packing leads to lower resolution,
and the data generated is not useful to solve the molecular structure.

10.4.2.1 Protein Crystallization
The process begins with purification of protein to be crystallized. Protein can either
be isolated from its source or it can be overexpressed and isolated from an expression
platform. The following points should be followed to obtain a good crystal:

1. Protein should be pure and homogenous.
2. Protein should be active and properly folded.
3. Protein should be soluble.
4. Concentration of protein should be as high as possible. Typically, more than

15 mg/ml is used.
5. Protein should be monodisperse and there should be no aggregation.

If any of the above criteria is not met, it becomes very difficult to obtain crystals,
and one has to modify expression and purification conditions such as pH, salt
concentration, etc. The solubility of protein depends on the interactions with other
compounds present in the solution. At physiological conditions, proteins are soluble,
but as the concentration rises, the protein tends to precipitate, a process called as
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salting out. The basic idea behind crystallization is to slowly salt out protein to form
crystals. Precipitant concentration is increased gradually, which allows protein to
enter metastable state leading to crystal formation (Fig. 10.1).

Many factors influence the crystal formation, such as the following:

1. Protein purity – If the protein is not pure, the lattice will not be properly formed,
which will lead to the disintegration of crystals.

2. pH of the solution – Protein tends to precipitate and form crystal near its pI as the
charge on protein becomes null, which leads to easy precipitation.

3. Concentration of protein – If the protein concentration is too low, it tends to
remain in soluble form, while the molecular crowding due to high concentration
of protein easily forms crystals.

4. Temperature – It affects the rate of precipitation and hence the crystal formation.
Typically, 4 and 18

�
C are used.

5. Precipitant – Different proteins tend to precipitate with different precipitants.
Hence, the choice of precipitant depends on the protein.

6. Additives – The use of additives is to increase intermolecular attraction between
the proteins molecules, or it may help in decreasing the interaction between the
solvent and protein, thereby increasing the propensity of protein to crystallize.

10.4.2.2 Methods of Crystallization

Vapor Diffusion or Hanging Drop
It is the most common method used for protein crystallization, also called hanging
drop method. In this method, a known volume of drop of concentrated protein is
mixed with certain volume of crystallization buffer containing precipitant and is
allowed to equilibrate with a large reservoir of the same crystallization buffer

Fig. 10.1 The effect of
titration of protein with
precipitant
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(Fig. 10.2). Initially the precipitant concentration in the drop is less, and the water
concentration is more as compared to the reservoir buffer. However, as the system
tends to achieve equilibrium, water from droplet evaporates into reservoir, thereby
increasing the precipitant concentration in the droplet. This slow increase in precipi-
tant concentration leads to crystal formation.

Microbatch Crystallization
In microbatch method or sitting drop method, the protein drop and reagent are
combined and sealed in a plate, tube, and container or sealed under a layer of oil
(Fig. 10.3). It can be categorized in two types:

1. Microbatch under oil

In microbatch under oil method, the protein drop is placed at the bottom of the
tank, and it is then covered with a layer of oil – either paraffin oil or Al’s oil
(a mixture of 1:1 silicon oil and paraffin oil). Oil acts as a barrier between the
reservoir and the protein drop, allowing little to no diffusion of water through the oil.
Microbatch under Al’s oil permits diffusion of water from the drop through the oil,
hence allowing for concentration of the sample and the reagents in the drop.

2. Microbatch without oil

Microbatch can be performed without oil. For example, batch crystallization
experiments used for small molecules that involve larger volumes in the order of
milliliters rather than micro- or nanoliters. Such experiments are performed in a

Fig. 10.2 Protein drop
setting using hanging drop
method

Fig. 10.3 Protein drop
setting using sitting drop
method
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sealed container, with or without the possibility of evaporation, and usually involve
temperature control. No oil is used to cover the protein and reagent. Microbatch
without oil can also be performed on a micro- or nanoliter scale in a sealed plate,
which is termed as drop drop crystallization.

Micro-dialysis
This method employs a semipermeable membrane across which precipitant can pass,
whereas larger molecule like protein cannot pass. A salt gradient is established
across the membrane, which allows slow diffusion of precipitant into protein drop.

Data Collection
The second step in X-ray crystallography is bombardment of protein crystal with
high-intensity X-rays. Four types of X-ray sources are available for protein
crystallography:

1. Bombardment of metal (Cr, Cu, or Mo) with high-energy electron beam
2. From a synchrotron radiation source
3. From a radioactive decay that generates the X-rays
4. By exposing substance to primary beam of X-rays to generate secondary X-rays

X-rays once generated are then shot to protein crystal. Most of the X-ray pass
through the crystal without any diffraction, but some X-rays are scattered from the
electron, and this phenomenon is called as X-ray diffraction. Although these waves
cancel one another out in most directions through destructive interference, they add
constructively in a few specific directions, determined by Bragg’s law:

2d sin θ ¼ nλ

Here d is the spacing between diffracting planes, θ is the incident angle, n is any
integer, and λ is the wavelength of the beam. These specific directions appear as
spots on the diffraction pattern called reflections.

Phase Problem
In order to solve the structure, phase information is required. The destructive
interference of waves lead to phase problems as no diffraction pattern is obtained
in such case. There are few ways to solve phase problem. If the coordinates are
already present from similar protein structure, molecular replacement can be used to
solve the phase problem. Molecular replacement takes coordinates from the existing
system and tries to fit into the experimental data until a good match is obtained. If it
is successful, it can be used to create electron density map. In other methods, heavy
atoms are allowed to diffuse into the crystal without affecting the crystal lattice.
Since heavy atoms are large in size, it is assumed that one unit cell will have only one
heavy atom. Heavy atoms are electron dense and hence give a very clear diffraction
pattern. The diffraction data is also collected without the heavy atoms. The differ-
ence between the two data can allow easy calculation of phase using vector
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simulation method. This method is called as isomorphous replacement. Once the
phase is known, electron density map can be created using Fourier transform.
Sometimes atoms which cause significant scattering are used such as sulfur or metals
from metalloproteins. Sulfur can be easily replaced with selenium to solve the phase
problem. If multiple wavelengths from sources such as synchrotron are used, then it
is termed as multiwavelength anomalous diffraction (MAD), and if single wave-
length is used, then it is called as single-wavelength anomalous diffraction (SAD).
The next step is the creation of model using the electron density map. Model
building starts first with fitting protein backbone to electron density map. The
amount of details depends upon the resolution of the data. Once the backbone is
fitted, the protein chains are fitted. Building a model is like solving a jigsaw puzzle.
The best-fitted model is taken for structure refinement. In refining, the model is
further improved, which results in better phase and resolution. The solved structure
is then deposited in PDB.

10.4.3 Electron Microscopy

Electron microscopy is used to determine structures of large macromolecular
complexes. It uses a beam of electrons to image the molecule directly. The resolution
of microscopy depends upon the wavelength of light used, which can be increased
by decreasing the wavelength. The wavelength of electron waves is 0.1 million times
smaller than visible electromagnetic waves; hence it has a higher resolution. The
resolution is given by the Rayleigh formula:

r ¼ 1:22 λ
2nsin θ

Here r is the resolving power, λ is the wavelength of the beam, n is the refractive
index of the view medium between the objective lens and the object, and θ is the
semi-angle of collection of the magnifying lens.

It uses electromagnetic and electrostatic lenses to control the electron beams and
direct it toward the specimen. Majorly two types of electron microscopes are used,
namely, transmission electron microscope (TEM) in which electrons are transmitted
through ultrathin section of specimen and scanning electron microscope (SEM) in
which specimen is scanned with beams of electron. TEM has one order higher
magnitude of resolution than SEM.

10.4.4 Cryo-electron Microscopy (Cryo-EM)

For determining the structure of protein, TEM at cryogenic temperature is used
where the samples are cooled with the help of liquid nitrogen. This technique is
called as cryo-electron microscopy. Cryo-EM has gained popularity in structural
biology and is being used either singly or with NMR/X-ray crystallography to
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understand the molecular structure. This technique is specialized in visualizing
viruses, organelles, large protein complexes, or nucleic acid molecules (Frank
2017; Bai et al. 2015; Subramaniam et al. 2016; Skiniotis and Southworth 2016;
Razi et al. 2017). It requires quick freezing of the biological sample using liquid
nitrogen so that the innate structure of the sample remains preserved and the aqueous
environment around it is not disturbed. In contrast to X-ray crystallography where
protein needs to be crystallized, which can be expensive, cryo-EM can be used to
visualize samples without staining and with maintaining the native environment
around the protein. However, minimum size of protein or protein complex that can
be visualized is around 170 kDa with a resolution of around 2.2 Å. For smaller
molecules NMR or X-ray crystallography needs to be used. The development of
methods to quickly freeze the samples into thin layer made cryo-EM more popular.
The liquid nitrogen reduces the radiation damage caused by high-intensity electron
beams. Other than liquid nitrogen, liquid helium has also been used as a cryogen.

Recent advances have revolutionized cryo-EM, which include the use of direct
electron detectors that yield images of unprecedented quality, better movie-
processing methods that correct the beam-induced sample movements, new classifi-
cation methods that separate images of different structures, and field emission gun
microscope that provides stronger signal with higher resolution. These technological
breakthroughs have enabled cryo-EM to achieve near-atomic resolution structural
information for a wide variety of biological complexes (Frank 2017; Bai et al. 2015;
Orlov et al. 2017).

10.4.5 Cryo-electron Tomography (Cryo-ET)

Cryo-electron tomography is a powerful technique that can image the native cellular
environment (Asano et al. 2016; Bharat et al. 2015). It relies on the intrinsic contrast
of frozen cellular material for direct identification of macromolecules. In cryo-ET,
multiple 2D projections of biological sample are computationally integrated to
reconstruct its 3D image. Multiple images are taken with every image tilted at a
certain angle as compared to the previous image, and then all images are merged to
create a complete 3D image. This allows densities to be resolved in 3D that would
otherwise overlap in 2D projection images. To increase signal-to-noise ratio and
resolution, the structures present in multiple copies within tomograms are extracted,
aligned, and averaged. This reconstruction approach is termed subtomogram aver-
aging and can produce 3D pictures (tomograms) of complex objects such as asym-
metric viruses, cellular organelles, or whole cells (Bharat and Scheres 2016; Wan
and Briggs 2016). Subtomogram averaging or single particle tomography (SPT) is
gaining enormous momentum and becoming a widely used technique, owing to its
potential for in situ structural biology at subnanometer resolution. With recent
advances in sample preparation, detector technology, and phase plate imaging, it
can be applied to unambiguously determine the structures of macromolecular
complexes that exhibit compositional and conformational heterogeneity, both in
situ and in vitro (Galaz-Montoya and Ludtke 2017).
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The limitation with cryo-ET is that the samples must be cut into thin sections to
allow proper freezing and TEM images to be taken. If the sample is too thick, then it
must be sliced into fine sections to obtain better image. Another limitation is that the
samples have to be kept at cryo-temperatures to avoid radiation damage, which
limits the 3D resolution of the sample.

10.5 Structural Data Representation

With the increase in structural information of macromolecules, there aroused the
need to represent the structural data in uniform format, so that it can be easily
accessed and compared. For that purpose, different formats were formed in which
the structural data can be represented and stored in respective databases like the PDB
(Rose et al. 2017) and the nucleic acid database (NDB; Narayanan et al. 2014). The
data is usually represented in the PDB format or the dictionary built representations
like macromolecular Crystallographic Information File (mmCIF).

10.5.1 The Protein Data Bank Format

PDB at Brookhaven National Laboratory was established in requirement of a
common repository for biological macromolecular structural information by Walter
Hamilton in 1971 (Bernstein et al. 1977; Berman et al. 2000b; Berman et al. 2000a)
with addition of advanced extensions in the format in 1992 and 1996. A detailed
description of the format is provided in the PDB Contents Guide, which enumerates
the field formats for each PBD record, remarks, and defines the convention for
naming atoms, residues, and nucleotides. The PDB format consists of a collection of
fixed format records that describe the atomic coordinates, the refinement details,
experimental details of structure determination, biochemical features, secondary
structural assignments, hydrogen bonding, active site, and biological assemblies.
This uniform representation has enabled comparative analysis of the data.

10.5.2 mmCIF: Dictionary-Based Approach

The macromolecular Crystallographic Information File archives the information
about crystallographic experiments and results (Hall et al. 1991; Hall 1991), which
is also the accepted format of articles in Acta Crystallographica C, a scientific
journal. The International Union of Crystallography (IUCr) in 1990 formed group
to expand the dictionary to satisfactorily describe the macromolecular crystallo-
graphic experiment and its results, which included description of all records in a
PDB entry. Subsequently, many improvements were incorporated to provide suffi-
cient data names, which would help in writing the experimental section of a structure
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paper. Tools were also developed so that mmCIF data files could be easily accessed
and validated using computer programs. The structure of the dictionary was further
improved to deal with complexity of macromolecules data, and the Dictionary
Definition Language (DDL; Westbrook and Hall 1995) was used. Soon it was
realized that it was not sufficient. Its data typing was not efficient with missing
links among data items. This led to the development of enhanced DDL (DDL2). The
dictionary was placed on World Wide Web, and mmCIF list server was used to
receive comments from the community, which resulted in continuous correction and
update of the dictionary. mmCIF dictionary version 1.0 containing 1700 definitions
was released in 1997 after the review of the IUCr committee that supervises the
dictionary development. The dictionary extensions were managed using a scientific
journal as model with proposed extensions being sent to the specialized editors of the
mmCIF dictionary for scientific review and then sent to technical editors. New
definitions came with succeeding years, which were incorporated in the mmCIF
dictionary version 2. To parse and access CIF and mmCIF, software libraries were
produced for many languages including C, Cþþ, Java, Fortran, Perl, and Python.
The syntax of mmCIF data files and dictionaries is similar to the syntax of core CIF
(used for describing small molecule crystallography) and is derived from the Self-
defining Text Archive and Retrieval (STAR; Hall 1991) grammar. The mmCIF
simplest data file has paired collection of data item names and values.

10.5.3 Dictionaries of Other Data

These dictionaries contain the number of contents that were not covered in mmCIF
dictionary but are developed on the same methodology used for mmCIF data and are
consistent with its data representation. For example, imgCIF dictionary details the
crystallographic data in ASCII and binary formats from image detectors, symmetry
extension adds crystallographic symmetry details, cryo-electron microscopy exten-
sion adds the structure and volume data for 3D EM experiments, BioSync dictionary
describes the features and facilities available at synchrotron beamlines, MDB dictio-
nary provides homology models, and PDB exchange dictionary provides data
internally used by PDB and data required to describe high-throughput structure
determination. Thus, a single file format cannot be used for all users and application.
Application program interfaces (API) are used to access data to avoid file format
issues. Data is accessed collection of functions, procedures, and methods depending
on the language used which is standardized by Object Management Group (OMG)
using Common Object Request Broker Architecture (CORBA). The language- and
platform-independent programmable interfaces are defined using interface definition
language (IDL), which is supported by CORBA. Thus, CORBA supports the cross-
platform access and often called middleware. The mmCIF data representation in
CORBA IDL for macromolecular structure provides efficient program access to all
the data in PDB entries.

Each of the representation of macromolecular structural data has their own
strength and weaknesses. The PDB format is accessible with simple tools, while
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the mmCIF format based on data dictionary provides comprehensive ontology,
precise definitions, and examples with robust metadata model, which can be used
to perform thorough checks on individual data and of internal consistency of data
items.

10.6 Macromolecular Structure Prediction

Structure of a biomolecule is required to appreciate the functional dynamics of the
living system. The protein 3D structure enables us to understand its function and
mechanism of action. The information about a protein structure and its interactions
with ligands and other proteins, nucleic acids, are also essential for pharmaceutical
industry in structure-based drug discovery and drug design. The structural informa-
tion is less as compared to the sequence information because the experimental
structure determination is a slow process and also not possible for many. This result
in gap between sequence and structural knowledge is called the sequence-structure
gap. The computational methods provide structural information of the proteins
whose experimental structure is not available. This unavailability may be due to
the difficulties in obtaining the protein (at various steps – cloning, expression, and
purification, amount obtained) or failures in experimental determination (may be too
large for NMR analysis or cannot be crystallized for X-ray diffraction or other
difficulties in using Cryo-EM). In such cases, protein modeling helps to predict the
structure of proteins from its sequence.

Structure prediction is the prediction of the relative position of every protein atom
in 3D space using the information from the protein sequence. According to the
theoretical basis, the prediction methods can be characterized into knowledge-based
(like comparative modeling/homology modeling and fold prediction/threading) or
ab initio. The knowledge-based methods predict structures using information from
the databases of known structures. It assumes that a sequence similar to the sequence
of known structure will adopt a similar structure. The ab initio methods on the other
hand predict structure based on fundamental physical principles using quantum
mechanics and statistical thermodynamics. This method attempts to calculate and
minimize free energy. The difficulties arise due to current computational power that
is not sufficient to model proteins with enough solvent molecules, as this forms
enormous system with thousand atoms making it difficult to calculate exact free
energies. Suitable approximations of free energy are therefore required, which still
capture the essentials of protein folding.

The approaches to predict 3D structure are selected based on sequence identity of
the target protein with the available homologous sequences with known 3D struc-
ture. The accuracy of the structure prediction is measured in terms of root-mean-
square deviation (RMSD) between the α-carbon positions in predicted and actual
structure of the target and depends on the target-template sequence identity. RMSDs
less than 1.0 Å represent good prediction but it is difficult to achieve. If the
percentage sequence identity is 70% or more, the model is accurate to an RMSD
of less than 2–3 Å. If the sequence identity is above 50%, models tend to be reliable,

222 A. Punetha et al.



with only minor errors in side-chain packing and rotameric state. If the sequence
identity is in the range of 30–50%, errors can be more severe and are often located in
loops. The regions above 30% sequence identity fall in safe zone (Fig. 10.4) for
homology modeling, while the regions below it fall in twilight zone (Rost 1999). In
this low-identity region, fold recognition methods are preferred over homology
modeling as serious errors can occur like wrong prediction of basic fold (Blake
and Cohen 2001; Baker and Sali 2001). The primary source of error at high sequence
identities (where homology modeling is done) can arrive due to wrong selection of
the template or templates for model building, while at lower identities error can
occur in sequence alignment inhibiting high-quality model generation (Venclovas
and Margelevicius 2005).

10.6.1 Homology Modeling

Homology modeling, often called as template-based modeling, is a comparative
modeling of protein, where 3D structure of the target protein is constructed from its
amino acid sequence and an experimentally determined structure of a homolog
called as template. It depends on identifying template/templates that might resemble
the structure of the target/query and on the production of an alignment, which maps
target-template sequence residues. It is advantageous to check alignment of
conserved key structural and functional residues. During evolution, the protein
structures are more stable and conserved and change much slower than protein
sequences among homologous. Therefore, similar sequences might adopt identical
structures, and distantly related sequences may still fold into similar structures
(Chothia and Lesk 1986; Sander and Schneider 1991). The theoretical basis of this
prediction method is that the sequences with more than 30% identity over an
alignment of 80 residues or more may adopt the same basic structure. But sequences
which have less than 30% sequence identity can have very different structures
(Chothia and Lesk 1986). Homology modeling provides information about the

Fig. 10.4 Zones in sequence
alignment – safe zone can
provide reliable results for
homology modeling, while
fold prediction or threading is
safer in the low-identity
twilight zone
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spatial arrangement of residues in protein structure, which can serve as guide to
design new experiments like site-directed mutagenesis.

Homology modeling is a multistep process and can be summarized in seven steps.
Mostly in all the steps, choices have to be made. The best one has to be chosen from
multiple seemingly similar choices:

1. Template identification and amino acid sequence alignment – it involves the
alignment of the target sequence with unknown structure and the template or
templates of known protein structure.

2. Alignment correction – alignment needs to be checked with caution before
proceeding for structure prediction as the quality of the structure produced
depends on the target-template alignment.

3. Backbone generation – it involves structure prediction of the core region com-
prising mainly the secondary structure elements (helices and strands) of the
target. If more than one template structures are used, the atomic position frame-
work having average position of atoms is calculated by superimposing all the
structures in 3D. The template contribution in the process is weighted according
to the similarity with the target sequence. If there is more similarity, more is the
weight.

4. Loop modeling – it involves structure prediction of loop regions, which are
usually not conserved, and thus requires more sophisticated prediction
algorithms, the simplest being spare parts algorithm, which uses database of
known loop structures from other proteins.

5. Side-chain modeling and optimization – it involves prediction of the side-chain
atoms using side-chain rotamer library resulting in filling of available space in the
interior of the protein without having internal clashes with other protein atoms.

6. Model optimization – it involves slight changes in the atomic position to produce
a lower-energy model using energy minimization software.

7. Model validation – it involves validation of the predicted structure. It checks the
accuracy of the predicted structure. The backbone dihedral angles of the predicted
structure should fall in the allowed regions, and the hydrophobic core should be
compactly packed. The structure should have minimum free energy.

There are various resources available for structure validation. Some of them are
enumerated below:

1. MolProbity – It validates structure of the uploaded file, using all-atom contact
analysis tools and updated geometrical criteria for ф-ψ, side-chain rotamer, and
C-β deviations (Chen et al. 2010, 2015).

2. PDBsum – It summarizes all protein structures including validation checks
(de Beer et al. 2014).

3. Procheck Structure validation suite – It is a program that checks the stereochem-
ical quality of a protein structure (Laskowski et al. 1993, 1996).

4. CheckMyMetal – It checks for metal-binding site and validates it (Zheng et al.
2017).
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5. ProSA-web – It gives quality scores of a protein in the context of all known
protein structures, and problematic parts of a structure are shown in a 3D
molecule viewer (Wiederstein and Sippl 2007).

6. NQ-Flipper – It recognizes unfavorable rotamers of asparagine and glutamine
residues in protein structures obtained from X-ray crystallography, NMR, or
modeling studies (Weichenberger and Sippl 2007).

7. Uppsala Electron Density Server – It generates density maps (Kleywegt et al.
2004).

8. SFCheck – It helps to validate the experimental structure factors associated with
an X-ray diffraction experiment (Vaguine et al. 1999).

9. Verify3D – It is a structure evaluation server (Eisenberg et al. 1997).
10. PROSESS – It is a protein structure evaluation suite and server (Berjanskii et al.

2010).

10.6.2 Comparative Modeling Software

There are many comparative modeling software available (Table 10.2). Some are
stand-alone, while others are automated web servers.

Table 10.2 List of comparative modeling software

S. no. Name Method Description

1. MODELLER (Webb
and Sali 2016)

Satisfaction of spatial restraints Stand-alone
program

2. EasyModeller (Kuntal
et al. 2010)

GUI to MODELLER

3. BHAGEERATH-H
(Jayaram et al. 2014)

Combination of ab initio folding and
homology methods

Automated
web server

4. SWISS-MODEL
(Biasini et al. 2014)

Local similarity or fragment assembly

5. 3D-JIGSAW (Bates
et al. 2001)

Local similarity or fragment assembly

6. HHpred (Söding et al.
2005)

Template detection, alignment, 3D
modeling

7. ESyPred3D (Lambert
et al. 2002)

Template detection, alignment, 3D
modeling

8. PROTINFO (Hung
et al. 2005)

Minimum perturbation, loop building, 3D
modeling

9. RaptorX (Kallberg et al.
2014)

Automated web server and downloadable
program

10. PROTEUS2
(Montgomerie et al.
2008)

Comprehensive protein structure prediction
and structure-based annotation
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10.6.3 Fold Recognition Methods

Fold recognition is about searching the most compatible fold that the target protein
might adopt from a library of known folds (known protein structures), using both
sequence and structural information. Fold recognition uses alignment of the target
sequence with one or more distantly related sequences of known structures and can
be considered as extension of comparative modeling to discover distant
relationships. Fold is detected even when there is no significant sequence similarity
to any protein of known structure. Thus, the distant structural and evolutionary
relationship is detected with separation from chance sequence similarities associated
with the shared fold.

Fold recognition methods are effective because protein folds are limited in nature,
mostly because of evolution but also due to constraints imposed by the polypeptide
chain’s chemistry. Hence, it is likely that a protein with similar fold to the target has
already been experimentally studied and can be found in PDB.

10.6.4 Critical Components of Fold Recognition Techniques

1. Useful alignment between sequences and distantly related known structures
2. Selection criteria for identifying native like sequence-structure combinations
3. Sets of energy functions to provide a realistic description of protein-solvent

systems

Fold recognition methods can be broadly classified into profile-based methods and
threading. The profile-based fold recognition approach (Bowie et al. 1991) involves
fitting of the physicochemical properties of the amino acids of the target protein with
the environment in which they are placed in the modeled structure. In profile
representation, each amino acid in the structure is labeled as either buried (protein
core) or exposed (surface), whether it is part of α-helix or β-sheet (i.e., its local
secondary structure) and/or its conservation (evolutionary information). The 3D
representation describes a structure as a set of interatomic distances; although it is
much richer and more flexible, it is harder for alignment calculation. The similarity
in sequence detected by amino acid substitution matrices is added with structural
information. For example, the three-dimensional position-specific scoring matrix
(3D-PSSM; Kelley et al. 1999) uses both – the fold library structures which are
described in terms of ordinary 1D sequence profiles generated by position-specific
iterated basic local alignment search tool (PSI-BLAST; Altschul et al. 1997; Jones
and Swindells 2002) and the 3D profiles holding secondary structure and solvation
potential information. The secondary structure component describes the similarities
between secondary structures of the predicted and of the member in fold library,
while the solvation potential takes account of the tendency of hydrophobic amino
acids to bury in hydrophobic core. Thus, this method requires a sequence-structure
alignment. It can be done by using PSI-BLAST, which constructs a multiple
sequence alignment followed by creation of a profile or a PSSM customized to the
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query to search matches in the database and estimation of statistical significance
(E-values). PSI-BLAST detects weak but biologically meaningful relationships
between proteins. Thus, this method is useful in detecting distant homologs.

The term threading coined in 1992 (Jones et al. 1992) is a fold recognition method
to model proteins that have the same fold as proteins of known structures but do not
have significant sequence similarity. It utilizes statistical information to draw rela-
tionship between existing structures in the PDB and the protein sequence to be
modeled. Each amino acid in the target sequence is threaded (i.e., placed and
aligned) to a position in the template structure, and fitting is evaluated. The best-fit
template is selected and utilized for target’s model building. Protein threading is
grounded on two observations – first, the number of folds is limited in nature and
secondly, in past few years most of the new structures deposited exhibited similar
structural folds to ones already existing in the PDB. Sequences are fitted directly
onto the backbone coordinates in 3D space including specific pair interactions
explicitly from the library of protein folds derived from the database of known
protein structures. Each fold can be considered as a chain tracing through space
irrespective of the sequence. The fitting of the target with the template fold is
optimized to allow for relative insertions and deletions in loop regions, and energy
of each possible fit (threading) is calculated by summing the pairwise interactions
and the solvation energy. The library of folds is then ranked in ascending order of
total energy, and the lowest-energy fold is taken as the most probable match.
Usually, protein threading consists of four steps:

1. Selection of template protein structure from the protein structure databases such
as PDB (Rose et al. 2017), FSSP (Holm and Sander 1996), SCOP (Lo Conte et al.
2000), or CATH (Knudsen and Wiuf 2010), after removing protein structures
with high sequence similarities.

2. Designing of a good scoring function to measure the fitness between target
sequences and templates based on the knowledge of the known sequence-
structure relationships. It should contain pairwise potential, mutation potential,
secondary structure compatibilities, gap penalties, and environment fitness poten-
tial. The energy function quality relates to the alignment accuracy.

3. Threading alignment – it aligns target sequence and structure templates utilizing
the designed scoring function. This is crucial for threading-based structure
prediction programs that take pairwise contact potential into consideration. Alter-
natively, a dynamic programming algorithm is used.

4. Threading prediction – statistically the most probable threading alignment is
selected for construction of target structure. The target sequence’s backbone
atoms are placed at the positions aligned with the backbone of structural template.

10.6.5 Comparison with Homology Modeling

Homology modeling and protein threading are template-based methods, which
require knowledge from previously known structures of protein. In case of targets
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with available homologous protein structure, homology modeling is used, but when
only fold-level homology exists, threading is used for model generation. In other
words, homology modeling handles easier targets, while protein threading handles
harder targets.

Homology modeling utilizes sequence template and sequence homology in
prediction, while protein threading utilizes structural template and extracts both
sequence and structure information from the alignment. In the absence of significant
homology, protein threading predicts based on the structural information.

In case of low sequence identity (<25%) in a sequence alignment, homology
modeling may not produce reliable prediction. In such cases, protein threading could
generate a good prediction if a distant homology is found for the target.

10.6.6 Fold Recognition Software

Many fold prediction software are now available (Table 10.3).

Table 10.3 List of fold recognition software

S. no. Name Method Description

1. RaptorX (Kallberg
et al. 2014)

Integer programming based fold
recognition, probabilistic graphical
models, statistical inference

Stand-alone
program

2. SUPERFAMILY
(Madera et al.
2004)

Hidden Markov model Automated web
server/stand-alone
program

3. HHpred (Söding
et al. 2005)

HHsearch, pairwise comparison of hidden
Markov models

Automated web
server

4. Phyre and Phyre2
(Kelley et al. 2015)

Multi-templates, ab initio modeling

5. MUSTER (Wu and
Zhang 2008)

Dynamic programming and sequence
profile-profile alignment

6. SPARKS-X (Yang
et al. 2011)

Probabilistic-based, fold recognition
according to sequence profiles and
structural profiles

7. BioShell Threader
(Gniewek et al.
2014)

Profile-to-profile dynamic programming
algorithm, sequence profiles and
secondary structure profiles

8. I-TASSER (Yang
and Zhang 2015)

Iterative Threading ASSEmbly
Refinement – threading and ab initio
method

9. pGenTHREADER
(Lobley et al. 2009)

Sequence profile and predicted secondary
structure

10. ORION (Ghouzam
et al. 2016)

Fold recognition and structure prediction
using evolutionary hybrid profiles

11. FALCON (Wang
et al. 2016)

A position-specific hidden Markov model,
iterative refining of dihedral angles
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10.6.7 Ab Initio Structure Prediction

Ab initio modeling (Klepeis et al. 2005; Liwo et al. 2005) or de novo modeling
(Bradley et al. 2005b), or physics-based modeling (Oldziej et al. 2005), or free
modeling (Bradley et al. 2005a; Jauch et al. 2007) is a fundamental test of our
knowledge of protein folding, how and why a protein adopts a specific structure out
of many possibilities. Ab initio structure prediction uses the understanding of
physicochemical principles of protein folding in nature and directly applies it to
predict the native conformation of a protein from the amino acid sequence alone
without the use of framework of earlier known structures, i.e., predicts from the
scratch. It uses physical science theories like quantum mechanics and statistical
thermodynamics.

Usually, the easiest way to predict the structure of a protein is to find a high-
resolution structure of its homolog (analog in some cases) and use its framework to
build model, which is the case of template-based modeling. This cannot be used
many times because the corresponding protein structure might not be available as the
protein structures lag far behind the protein sequences. Plausible, due to technical
difficulties, intensive labor and time costs of the experimental structure determina-
tion, whereas an exponential increase in protein sequences can be attributed to the
tremendous success of the genome sequencing projects. In such cases, computer-
based algorithm efficient to predict 3D structures directly from sequences can be
used to bridge the big gap between the number of protein sequences and the
availability of their corresponding structures. A lot of advancement is needed in
ab initio methods to handle the enormous system made of proteins in their natural
solvation environment, which involves accurate calculations for thousands of atoms
in 3D space.

Ab initio modeling is based on the consideration that all of the necessary
information for a folding of protein into native conformation resides in its amino
acid sequence. In the absence of large kinetic barriers in the free energy landscape,
the protein’s native conformation is the lowest free energy conformation for its
sequences (Anfinsen 1973) with a few exceptions (Baker and Agard 1994). The
protein folding is actually governed by the physical forces acting on the atoms of the
protein, and thus the most accurate way of structure prediction is in consideration of
all-atom model subjected to the physical forces. However, such a representation that
contains all atoms of the protein and surrounding solvent molecules increases the
complexity and makes the solution computationally expensive, which is beyond the
current computational capacity. Moreover, the representation of huge number of
atoms and the interactions between them might not be necessary during the initial
phase of the search that is far from the native conformation. So, reduced
representations of the polypeptide chain are used to reduce calculations and limit
the conformational space to manageable size. This can be done in various ways:

1. Use of implicit solvent models instead of explicit solvent models.
2. Use of united atom representations where hydrogens are drawn into their base

carbon, oxygen, and nitrogen atoms.
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3. Representation of the side chains by limited set of conformations prevailing in
PDB structures.

4. Replacement of the side-chain atoms completely by locating the side-chain
properties either at the centroid of the side chain or at the β-carbon, which results
in averaging of the side-chain degrees of freedom and enhances the performance
at the loss of some degree of specificity.

5. The conformations available to the polypeptide backbone can be restricted to
discrete values that are commonly observed in existing structures. It can be done
either by using a small set of ф-ψ pairs by selecting pairs from an ideal set from
predicted regular secondary structure or by using fragments from existing protein
structures. The torsion angles can be restricted based on the knowledge that in
particular local structures, amino acids prefer certain torsion angle pairs.

Thus, ab initio modeling requires a suitably defined protein representation with
compatible energy functions that capture the most significant interactions that drive
the folding of the protein sequence toward the native structures and efficient and
reliable algorithms to search the conformational space in that protein representation
to minimize the energy function. The conformations that minimize the energy
function are considered likely structures of the protein in native conditions. Thus,
all ab initio methods conduct a conformational search using an efficient energy
function, generate a number of possible conformations, and select a final model from
them. Therefore, success in ab initio modeling depends on three key features:

1. Accurate free energy function sufficiently close to the true potential for the native
state that results from the native structure of a protein corresponds to the thermo-
dynamically most stable state, i.e., lowest free energy minima among all possible
conformations.

2. Efficient search method that swiftly does the conformational search to identify the
low-energy states.

3. Efficient native-like model selection criteria from all the protein conformations.

10.6.8 Energy Functions

There are two kinds of energy functions – the physics-based energy functions and
the knowledge-based energy functions. In the physics-based ab initio methods, all
atoms are represented by their atom types, and only the number of electrons is
significant. The interactions amid atoms are based on quantum mechanics, electron
charge, and Planck constant (the fundamental parameters of the coulomb potential)
(Hagler et al. 1974; Hagler and Lifson 1974; Weiner et al. 1984). However, even for
small protein structure prediction, the complete use of quantum mechanics requires
extensive computational resources. So in practice, the ab initio protein modeling
uses a compromised force field with a huge number of selected atom types (Weiner
et al. 1984; Hagler and Lifson 1974). The physics-based force fields which take all
atoms into consideration include AMBER (Weiner et al. 1984; Cornell et al. 1995;
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Duan and Kollman 1998; Kaus et al. 2013), CHARMM (Brooks et al. 1983; Neria
et al. 1996; MacKerell et al. 1998; Hynninen and Crowley 2014), and OPLS
(Jorgensen and Tiradorives 1988; Jorgensen and Tirado-Rives 1998; Jorgensen
et al. 1996; Kaminski et al. 2001), with the major difference among them being
the choice of atom types and interaction parameters. These potentials contain
information about the bond lengths, angles, torsion angles, van der Waals, and
electrostatic interactions, while the knowledge-based energy functions use the
empirical energy terms obtained from the statistics of the existing 3D structure of
proteins in PDB and can be divided into two categories (Skolnick 2006). One of
them contains the generic and sequence-independent terms like the hydrogen bond
and the local backbone rigidity of a polypeptide chain (Zhang et al. 2003), while the
other contains amino acid or protein sequence-dependent terms, like pairwise resi-
due contact potential (Skolnick et al. 1997), distance-dependent atomic contact
potential (Samudrala and Moult 1998; Shen and Sali 2006; Lu and Skolnick 2001;
Zhou and Zhou 2002), and secondary structure propensities (Zhang et al. 2003,
2006; Zhang and Skolnick 2005). The most successful ab initio methods using the
knowledge-based energy functions are ROSETTA (Simons et al. 1997; Bender et al.
2016) and TASSER (Zhang and Skolnick 2004; Yang and Zhang 2015).

10.6.9 Conformational Search Methods

The success of ab initio modeling is dependent on conformational search method. It
should be efficient enough to find the global minimum energy structure for a
particular energy function in rugged energy landscape of protein conformational
space (containing many energy barriers). The conformational search methods
include the following:

1. Monte Carlo simulations – Simulated annealing (SA) is the most commonly used
method (Kirkpatrick et al. 1983; Lee 1993).

2. Molecular dynamics simulations.
3. Genetic algorithm – Conformational space annealing (CSA) is one of the most

widely used genetic algorithms (Lee et al. 1998).
4. Mathematical optimization (Klepeis et al. 2005; Klepeis and Floudas 2003).

Ab initio structure prediction is challenging because the current potential
functions have limited accuracy, and the conformational space to be searched is
vast. The successful modeling is limited to small proteins, less than 100 residues.
Many ab initio methods have shown improvement in protein structure prediction by
using reduced representations, coarse search strategies, and simplified potentials
(Simons et al. 1997; Samudrala et al. 1999; Oldziej et al. 2005; Pillardy et al. 2001).
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10.6.10 Ab Initio Modeling Software

Many software are available for ab initio modeling (Table 10.4).

10.7 Role of Structural Bioinformatics in Drug Discovery
and Health Care

The recent advances in the sector of health care and disease prevention have come as
a collimated effort of understanding disease biology and development of efficacious
drug molecules to overcome the irregularity. The field of drug discovery dates back
to the late 1800s when chemists at Bayer synthetically synthesized the first drug
aspirin (Desborough and Keeling 2017; Sneader 2000). Since then the drug discov-
ery pipeline has traversed from being highly dependent on identifying inhibitors of
target molecule inferred from crystallographic structures (Beddell et al. 1976;
Newman and Cragg 2012) to a paradigm of high-throughput format using computa-
tional as well as wet lab resources (Doman et al. 2002). The trend has arisen
concurrently with the demand for new medicinal compounds for emerging diseases
as well as the rising cost and the financial risks while introducing a drug into the
market. The estimated value of introducing a new drug into the market has surged up
from $400 million to $2.6 billion (DiMasi et al. 2003; Basak 2012) and has further

Table 10.4 List of ab initio modeling software

S. no. Name Method Description

1. UniCon3D
(Bhattacharya et al.
2016)

De novo modeling, united-residue
conformational search, stepwise probabilistic
sampling

Stand-alone
program

2. QUARK (Xu and
Zhang 2012)

Monte Carlo fragment assembly Automated
web server

3. CABS-FOLD
(Blaszczyk et al.
2013)

De novo modeling can also use alternative
templates (consensus modeling)

4. PEP-FOLD
(Lamiable et al.
2016)

De novo modeling, based on a HMM
structural alphabet

5. BHAGEERATH
(Jayaram et al.
2014)

Predicts protein structure using ab initio
folding

6. ROBETTA (Kim
et al. 2004)

Rosetta homology modeling and ab initio
fragment assembly

7. I-TASSER (Yang
and Zhang 2015)

Iterative Threading ASSEmbly Refinement –
threading and ab initio method

8. Rosetta@home
(Bender et al.
2016)

Distributed-computing implementation of
Rosetta algorithm

Downloadable
program
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risen. The issue is also thwarted by frequent failure of drugs at the clinical trial stages
due to their insufficiency to meet the adsorption, distribution, metabolism, excretion,
and toxicity (ADMET) criterions or even the withdrawal of marketed drugs due to
unforeseen implications on their use. The current scenario calls for increasing the
productivity of the pharma sector by screening for new drug targets or effector
molecules that can elicit the desired effects as well as sustain the strict criterion laid
by monitoring agency.

Efforts to integrate structural biology and drug discovery pipelines through
computer-aided drug design (CADD) are underway. There are various steps
involved in rational drug design (Fig. 10.5):

1. Target identification and validation – it involves understanding of disease biology
and identification of potential drug target, followed by testing of the target
molecule for therapeutic potential, i.e., assessing target druggability, obtaining
structural information of target, and if not available predicting the structure or
using ligand information.

2. Lead discovery – identification of drug candidate that interacts with the target. It
involves generation (de novo ligand design) and screening of large chemical
libraries to derive smaller sets of potential drug candidates (leads) that can be
validated experimentally. Virtual high-throughput screening (HTS) is used for
lead discovery.

3. Lead optimization – it focuses on improving efficacy of effector molecule by
improving their drug metabolism and pharmacokinetics (DMPK) properties also
called as ADMET properties. It uses either docking, side-chain modeling, or
pharmacophore modeling depending on the particular requirement.

4. Clinical trials – the investigational new drug has to pass the clinical trials before it
can come to market.

The approaches in the computational drug discovery can be divided into two
categories:

1. Structure-based drug design (SBDD)
SBDD relies on availability of structural information of a target molecule,

which is used to design potential inhibitors. The protein structural data is used to
predict the type of ligands that will interact with a given target. Considerations
include the importance of protein in a disease, the involved pathway, availability
of its structure or ease of prediction, and its ability to bind small molecules.

Target 
identification 

and 
validation

Lead 
identification

Lead 
optimization

Drug 
cadidates Clinical trials Drug 

molecule

Fig. 10.5 The pipeline of rational drug design
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2. Ligand-based drug design (LBDD)
LBDD uses information about the known drugs and compound libraries in

cases when the structural information of target is not available. It is an indirect
drug design; the knowledge of other molecules that bind to the biological target of
interest is used. A pharmacophore model can be derived that defines the minimum
necessary structural characteristics a molecule must possess in order to bind to the
target. The quantitative structure-activity relationships (QSAR) are used to pre-
dict the activity of new analogs. These QSAR relationships derive a correlation
between calculated properties of molecules and their experimentally determined
biological activity.

The choice of method to be used for finding effector molecule depends on the
availability of information – the structural knowledge of the target proteins or its
homologs, existence of any previously known drugs or compound libraries, and the
required computational resources. In both approaches, each step moves through
numerous iterative cycles in order to present the best possible prediction of a target
or the ligand molecule and their interaction.

Bioinformatics aids in the analysis of sequences and structure; in the development
of algorithms and software for modeling the drug-target interaction, building the
compound libraries, and easy retrieval system; and in the development of high-
throughput screening (HTS) system (Matter et al. 2001; Scapin 2006; Edwards 2009;
Cheng et al. 2013; Lagorce et al. 2015; Villoutreix 2016; Daina et al. 2017; Miteva
and Villoutreix 2017; Lagorce et al. 2017).

10.7.1 Target Identification and Validation

The first step of SBDD methodology involves gathering all information on a target
of interest: a thorough understanding of the mechanism of disease progression and
the involvement of the target protein in particular stage/stages. The implicated
proteins are identified, cloned, purified, and crystallized for solving their structure
through X-ray crystallography, NMR, or a relevant structure prediction method, in
case of experimental structure determination failure. The structure of the target
molecule (usually a protein) is used to analyze its druggability. Not all proteins
can act as valid drug targets. For being an effectual drug target, the protein must
possess an active site that can be inhibited. In other words, protein should accom-
modate ligands – either analogues of the natural ligand or other small molecules in
the active site by electrostatic interactions. The likelihood of finding suitable drug
targets can be assessed using surface and active site properties like volume, charge,
and shape that can be calculated using tools like CAST (Liang et al. 1998), CASTp
(Dundas et al. 2006), GRASP (Nicholls et al. 1991), VICE (Tripathi and Kellogg
2010), POCKET (Levitt and Banaszak 1992), and TRAPP web server (Stank et al.
2017). The procedure of identifying targets also entails the possibility of having no
functional overlap between the drug target and other host proteins, which is inferred
using phylogenetic relationships between the target and host proteins. Structure
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activity relationship homology, SARAH (Frye 1999), based searches analyze and
group proteins based on sequence similarity and their ability to bind a ligand in high
throughput manner. The proposed drug targets must pass through a validation step in
order to qualify for the next rounds of drug discovery process. Possible means to
validate drug targets involve gene disruption by deletion or suppression of expres-
sion by RNA interference (RNAi) studies (Smith 2003; Ghosh et al. 2017) or site-
directed mutagenesis (Zeng et al. 2010). The reverse (Eyers et al. 1998) and forward
(Choi et al. 2014) chemical genetic screening is focused on creating or isolating
mutants of target proteins sensitive to known inhibitors.

10.7.2 Lead Identification

The identification of the lead molecule involves the search for a substance with
desirable biological activity, which may serve as drug (Di et al. 2009). The ligand
molecule that binds only to the target molecule with medium or high potency is
needed to ensure that only the safest and the most bioactive compounds pass through
the trail cycles. This further reduces the risk of failures at later stages of the discovery
process. The drug molecule should have some basic properties as listed in
Table 10.5.

Appropriate assay systems to monitor the target-ligand binding should highlight
the binding preferences of a particular target molecule and consider the physiologi-
cal outcome expected for a living system and also pass well on criterion of cost and
reproducibility and hold potential to assess the effects of drug. Counter-screening
approaches using bioinformatics analysis rely on finding all possible targets (Davies
et al. 2000). A vast pool of biochemical knowledge exists on protein-ligand interac-
tion and protein-analog interaction. The existing knowledge of a target binding to a
drug can be applied to a related target protein. Thus, focused set of library are
required if the structure of the target is known. This will define particular set of
ligands, i.e., focused on one region of the chemical space. Various chemical leads
have been derived using structural similarity, which includes the development of

Table 10.5 General properties of lead compounds

Property Definition/requirement

Potency Ability to produce a desirable pharmacological response

Bioavailability Ability to pass through multiple barriers like the gastrointestinal tract and
liver and further get absorbed into the bloodstream

Stability or half-life Capability of the compound to remain in the bloodstream for adequate
time to elicit a significant pharmacological response

Safety Specificity of the drug candidate to the target and minimal off-target
response

Pharmaceutical
acceptability

Chemical parameters relating to the cost of synthesis, stability at various
temperatures and pH conditions, rate and level of solubility in an
aqueous medium, etc.
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enzyme inhibitors like angiotensin-converting enzyme, neutral endopeptidase, and
thermolysin (Roques 1985; Oefner et al. 2000).

If the information about the binding properties of drug target is less or not
available, diverse chemical libraries are required for efficient lead discovery. The
diversity can be defined by comparing the lead molecules based on molecular
descriptors (functional groups) and how the chemical space is filled. The initial
screening of lead molecules requires computational approach to identify the most
suitable lead amongst the vast databases. A high-throughput approach of virtual
screening has been pioneered over the years to identify a suitable lead. It is divided
into two categories – target-based virtual screening and ligand-based virtual
screening.

10.7.3 Target-Based Virtual Screening

Once the target molecule is identified and biochemically characterized to detect its
active site, its ligand-binding pocket is screened for finding a suitable ligand from a
library of existing compounds. For this, docking tools like AutoDock (Osterberg
et al. 2002), DOCK (Kuntz et al. 1982), FlexX (Rarey et al. 1996), Glide (Friesner
et al. 2004), LigandFit (Venkatachalam et al. 2003), MOE-Dock (Corbeil et al.
2012), and UCSF Dock (Allen et al. 2015) are used (Pagadala et al. 2017; de Ruyck
et al. 2016; Lohning et al. 2017). Boltzmann-weighted potentials of mean force are
derived from the structural data of protein-ligand complex, and a scoring function is
used to score and identify candidates. The approaches to analyze the empirical
changes in the free energy and other changes in thermodynamic parameters on target
binding to different ligand are taken into consideration. Finally, a Gaussian method
to estimate the volume exclusion and solvent forces applies the Poisson-Boltzmann
equation to small and larger molecules. Thus, if the target structural data is available,
these algorithms can be applied to identify the interacting ligands that can serve as
candidate drugs based on goodness of fit. Relenza and Captopril are the well-known
drugs developed in this manner.

The important requirement of drug discovery is the availability of compound
libraries with small drug-like molecules. For becoming a potential drug candidate,
the ligand must follow the Lipinski’s rule of five. It comprises set of physical
parameters designed to predict the bioavailability of a molecule and other important
pharmaceutical characteristics. To ensure maximal bioavailability, a compound must
fulfill the following parameters of Lipinski’s rule of five (Lipinski 2004; Oprea et al.
2001; Lipinski et al. 2001):

1. The molecular weight should be less than 500 daltons.
2. The compound’s lipophilicity or the logP value (the logarithm of the partition

coefficient between water and 1-octanol) is less than 5.
3. The number of groups in the molecule that can donate hydrogen atoms to

hydrogen bonds is less than 5 (the total number of oxygen-hydrogen and
nitrogen-hydrogen bonds).
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4. The number of groups that can accept hydrogen atoms to form hydrogen bonds is
less than 10 (all nitrogen and oxygen atoms).

Many variations in this rule have been introduced to increase the druglikeness
(Ghose et al. 1999; Xu and Stevenson 2000; Avdeef 2001; Tice 2001, 2002; Veber
et al. 2002; Congreve et al. 2003; Lovering et al. 2009; Meanwell 2011; Leeson
2012; Vallianatou et al. 2015; Meanwell 2016; Shekhawat and Pokharkar 2017).
Nonetheless, the abovementioned measures form the basis of the well-established set
of ADMET properties.

Recent developments in the field of pharmacokinetics have focused on creating
alternative methods to design parameters that benchmark the properties a compound
should possess for entering the lead discovery process. To quantify the druglikeness,
the concept of desirability was implemented which provides a quantitative metric for
assessing druglikeness called as quantitative estimate of druglikeness (QED;
Harrington 1965; Derringer and Suich 1980; Bickerton et al. 2012). The QED
approach assigns desirability values to a molecule for its assessment as drug based
on categorical parameters built on desirable functions. Further, the functions are
summed to provide a single numerical QED value ranging from 0 to 1 signifying an
unfavorable to a highly favorable candidate. The desirability is simple but powerful
approach for multi-criteria optimization. It can be implemented in numerous drug
discovery applications like selection of compound, library design, molecular target
prioritization, permeation of central nervous system, and reliability estimation of the
screening data. It takes several numeric parameters measured on different scales and
labels each by an individual desirability function, which are then combined into a
single dimensionless score. A series of desirability functions (d) are derived for a
particular compound, each of which corresponds to a different molecular descriptor.
The individual desirability functions are combined into the QED by taking the
geometric mean of the individual functions, as shown in the following QED
equation:

QED ¼ exp
1
n

Xn

i¼1
ln di

� �

For deriving the desirability, the eight widely used molecular properties include
molecular weight, octanol-water partition coefficient, number of hydrogen bond
donors, number of hydrogen bond acceptors, the number of aromatic rings, number
of rotatable bonds, molecular polar surface area, and number of structural alerts
(Bickerton et al. 2012). The selection is based on their relevance in determining
druglikeness.

10.7.4 Ligand-Based Virtual Screening

The ligand-based screening approach uses the classification of existing or virtual
ligands in a library based on 3D similarity or pharmacophore matching. It involves
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various software to query the chemical libraries. Once the lead is identified, it needs
to be optimized for increasing its efficacy and specificity to the target.

10.7.5 Lead Optimization

Chemical leads that pass the initial screening process may still require further
optimization to improve their potency. The inherent problem of solving complex
crystal structures of target-ligand having variable side chains and problems in
determining the kinetic parameters for target-ligand derivative binding makes it
challenging to perform the task in high-throughput manner. The computational
approaches for lead optimization depend on designing derivatives of lead
compounds by addition of various side chains followed by prediction of 3D models
for target-ligand complexes and their virtual ADMET profiles (Cheng et al. 2013;
Honorio et al. 2013; Meanwell 2011).

The final optimized candidate drugs (CDs) are then passed through sets of clinical
trials involving preclinical phase (animal model studies), phase I (studies on normal
healthy human volunteers), phase II (selection of dose regime and the evaluation of
safety and efficacy in patients), phase III (testing on large population of patients with
potential drug and placebo – the commercial launch can be taken after this by
regulatory authorities), and phase IV (monitoring the long-term effects or any
adverse reactions reported by doctors). Thus, the drug discovery itself is a time
taking and lengthy process, which therefore requires the aid of computational
methods to cut down the time and cost at various steps in the process. This requires
development of efficient prediction algorithms, methods to efficiently model the
target-ligand interaction, efficient software, databases, and retrieval tools.

Thus, structural bioinformatics is not only an integral part of structural biology
but is also indispensable in drug discovery and health care.
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for Computational Prediction of Protein
Folding Process

11

Gulshan Khalique and Tambi Richa

11.1 Introduction

Proteins are one of the most important biomacromolecules, made up of a linear chain
of amino acids held together by peptide bonds, having a unique 3D structure which
gives them a distinguishing function (Campbell et al. 2008; Pace et al. 2004; Nelson
et al. 2005). The function of a protein depends on its structure, such that any change
at the structural level will be directly reflected in its biological activity. Structure of
proteins can be ordered into four levels: primary, secondary, tertiary and quaternary
structure. The complexity of the structure imparted through the covalent and
non-covalent interactions increases with the level. Each structural level is outlined
below.

11.1.1 Primary Structure

The linear sequence of amino acid connected by peptide bonds is the primary
structure of a protein. There are 20 different L-α amino acids which commonly
form the primary structure. These amino acids differ from each other in their side
chain (known as the R-group), while all of them have the α-carbon atom to which a
carboxylic (-COOH) group and an amino (-NH2) group are attached (Fig. 11.1).
They are represented by a three-letter code as well as a one-letter code. Based on
their R-group, they can be classified into hydrophobic, hydrophilic, acidic and basic
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Fig. 11.1 Structure of amino acids. Amino acids are represented by their three-letter and
one-letter codes. Ala, Val, Leu, Ile, Pro, Phe, Trp and Met are hydrophobic amino acids. Gly,
Ser, Thr, Cys, Tyr, Asn and Gln are hydrophilic uncharged amino acids. Acidic amino acids are Asp
and Glu. Lys, Arg and His are the basic amino acids
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amino acid. Apart from these 20 amino acids, certain uncommon amino acids such as
hydroxyproline, thyroxine and selenocysteine are also found in some proteins. More-
over, a few non-proteinogenic amino acids are also present in cells performing specific
functions such as histamines involved in allergic reactions, ornithine and citrulline as a
part of the urea cycle, serotonin as a neurotransmitter and so on. Two proteinogenic
amino acids form a peptide bond through a condensation reaction by removal of
water from a carboxylic group of one amino acid and the amino group of another.

A polypeptide chain consists of an N/amino-terminal (end with the free amino
group) and a C/carboxyl-terminal (end with free carboxyl group). These two free
ends, as well as the ionisable R-groups of the residues constituting a polypeptide
chain, are responsible for its acid-base behaviour. Some proteins consist of a single
polypeptide chain, while a few others comprise of multiple identical or dissimilar
polypeptide chains. For example, haemoglobin found in red blood cells is a tetra-
meric protein which has two identical α-chains made up of 141 amino acid residues
and two identical β-chains made up of 146 amino acid residues, whereas other
proteins such as ribonuclease A (124 residues) and lysozyme (129 residues) are
made up of the single polypeptide chain. Another important detail regarding proteins
is that many of them (known as conjugated proteins) are often associated with
chemical groups other than amino acids (prosthetic group), for example, haem-
containing proteins such as haemoglobin, myoglobin and cytochrome c and
glycoproteins like ovalbumin, transferrin and mucin which contain different levels
of carbohydrates, etc. The primary structure of a protein determines its sequence and
lays the foundation for the next level in the structural hierarchy.

11.1.2 Secondary Structure

Secondary structure is the local substructure of proteins in which backbone hydro-
gen bonds play an important role. Secondary structures can be classified predomi-
nantly as regular and irregular. The regular secondary structure includes α-helices
and β-sheets, whereas coils and turns constitute the most common type of irregular
secondary structures. As their name suggests, helices and sheet have a regular pattern
of hydrogen bonding which is missing in the irregular structures (Chan and Dill
1990; Lim 1974).

The commonly occurring α-helix is a right-handed coiled structure (Fig. 11.2).
The side-chain substituent of the amino acid groups in an α-helix extends outside. A
hydrogen bond is formed between the oxygen molecule of the backbone C¼O group
of the ith residue and the hydrogen molecule of the N-H group of the i+4th residue. It
consists of 3.6 amino acid residues per turn and 1.5 Å rise per residue. It adopts a phi
(φ) angle (torsion angle involving a carbonyl carbon, the connecting α-carbon, an
amide nitrogen and the next carbonyl carbon defining rotation of polypeptide
backbone around N-Cα bond) of �60� and psi (ψ) angle (torsion angle involving
an amide nitrogen, a carbonyl carbon, an α-carbon and a second nitrogen defining
rotation of polypeptide backbone around Cα-C bond) of �45� to �50�. A plot of ψ
versus φ which explains the allowable regions and disfavoured regions (due to steric
clashes) is known as the Ramachandran plot (Fig. 11.3), developed by
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G.N. Ramachandran in 1963. Right-handed alpha helices are usually occupying the
third quadrant of the Ramachandran plot. Amino acids have a varying propensity
towards different secondary structures. Met, Ala, Leu, Glu and Lys favour α-helix,
whereas Pro and Gly are helix breakers.

Another commonly occurring regular secondary structure is a β-sheet (Fig. 11.4).
In β-sheet hydrogen bonds are found between rather than within the strands, and side
chain mostly occupies a position above and below the sheet. The two strands can be
either parallel or antiparallel depending on the directions of the strand (N-terminus to
C-terminus). Parallel β-sheet adopts φ angle of �120� and ψ of �115�, and
antiparallel adopts φ and ψ of �140� and � 135�, respectively. The sterically
allowed conformations of β-strand occupy the second quadrant of the Ramachandran
plot (Fig. 11.3)

Irregular secondary structures such as turn, loops and bends are mostly found
joining the regular secondary structures. They are more flexible, and residues
occupying irregular structures are usually exposed in comparison to the regular
secondary structure residues. They confer a compact structure to the protein by
connecting the regular secondary structure. Usually, they are made up of 2–16
residues and assist in the interaction of proteins with other biomolecules. β-Turns
are the third most abundant secondary structure after helices and sheets and aid in
reversing the direction of a polypeptide chain.

Fig. 11.2 α-Helical
structure of the protein. The
side chains are represented by
stick model superimposed on
the cartoon representation of
helix, rendered using Pymol
(The PyMOL Molecular
Graphics System, Version
1.2r3pre, Schrödinger, LLC).
The side chain in α-helix
extends outward
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Fig. 11.3 Ramachandran plot for hen egg-white lysozyme (PDB ID: 5O6Q) generated by the
Ramachandran server (http://eds.bmc.uu.se/ramachan.html - Kleywegt and Jones 1996). This
two-dimensional ф,ѱ-plot represents the energetically allowed region for this protein

Fig. 11.4 β-Sheet: (a)
parallel and (b) antiparallel.
The side chains are
represented by stick model
superimposed on the cartoon
representation of sheets,
rendered using Pymol (The
PyMOL Molecular Graphics
System, Version 1.2r3pre,
Schrödinger, LLC). β-Sheets
are more extended than
α-helices
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11.1.3 Tertiary Structure

The third level of protein structural hierarchy is the tertiary structure which is the
global 3D structure of proteins. Once secondary structures are formed, they spatially
arrange themselves into domains which can evolve and function independently from
the rest of the protein. Smaller proteins are usually made up of a single domain (such
as cytochrome c and myoglobin), whereas large complex proteins (e.g. protein
kinases) often consist of multiple domains. The side-chain bonding interactions
which facilitate the tertiary structure of the protein are disulphide bonds, hydrogen
bonds, salt bridges and hydrophobic interactions. Disulphide bond also known as
S-S bond is a covalent bond formed between two cysteine (containing thiol –SH
group). It may be formed within the same chain or between two polypeptide chains
in a protein. These bonds provide stability to the protein structure by keeping the
structure intact. Hydrogen bond is the interaction between two electronegative atoms
through hydrogen bound covalently to one of the atom. Side chain of Ser, Thr and
Tyr, or Asp and Tyr, or Asp and Glu or Ser and Lys or that of Ser and Asn may be
hydrogen bonded. Salt bridge is the ionic bond between a positively and negatively
charged side chains. The most important stabilizing interaction is the non-polar
hydrophobic interaction. The hydrophobic residues will be protected from the
aqueous medium and remain buried forming the core of protein structure. On the
contrary, the hydrophilic residues will be usually present on the surface of proteins.

The precise demonstration of tertiary structure of a protein is a tedious task as it
takes a very long time. Based on the information of primary and secondary structure
of a protein, various softwares are used to predict its tertiary structure.

11.1.4 Quaternary Structure

All proteins share three levels of structural hierarchy and a few of them also entail a
quaternary structure. Proteins are often made up of several polypeptide chains,
which are termed as protein subunits which may be the same (as in a homodimer)
or different (as in a heterodimer). Interaction of these protein subunits with each
other in order to organize them to create a larger protein complex is termed as the
quaternary structure. Some proteins with quaternary structure are dimeric creatine
kinase, tetrameric haemoglobin and octomeric tryptophanase. The same kind of
covalent as well as non-covalent interactions which facilitate the tertiary structure
also stabilizes the quaternary structure of a protein.

11.2 Folding Process of Proteins

The ‘protein folding problem’ is defined as the quest to understand the mechanism
by which a protein spontaneously adapts its native structure from its primary
sequence within the biologically relevant timescale (Creighton 1995; Dill and
MacCallum 2012; Dill et al. 2008; Ivarsson et al. 2008; Rose et al. 2006). The
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protein folding problem has intrigued the researchers since decades (Dill and
MacCallum 2012; Dill et al. 2007; Gianni and Jemth 2016; Ivarsson et al. 2008).
The in vivo protein folding process is often facilitated by molecular chaperones
(Balchin et al. 2016; Mogk et al. 2002). Molecular chaperones are protein molecules
which help other proteins to attain their error-free biologically active conformation.
A decrease in these ubiquitous protein molecules in the cell is often associated with
an increase in typically folded proteins (Chaudhuri and Paul 2006; Welch 2004;
Hartl et al. 2011). Errors in the protein folding process vitiate the biological function
of proteins. This leads to an array of diseases either due to accumulation of toxic
aggregates constituted by the misfolded proteins or due to the inactivity of the
protein at their site of action (Balchin et al. 2016; Betts and King 1999; Bross
et al. 1999; Chaudhuri and Paul 2006; Chi and Liberles 2016; Cohen 1999; Dobson
1999; Ivarsson et al. 2008; Jaenicke 1995; Ogen-Shtern et al. 2016). Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease, prion disease, type II diabetes,
amyloidosis, Creutzfeldt-Jakob disease, cataracts and cystic fibrosis are some of the
lethal diseases caused by protein misfolding (Walker et al. 2006; Fadiel et al. 2007;
Harrison et al. 2007; Eftekharzadeh et al. 2016; Santucci et al. 2008; Winklhofer
et al. 2008; Luheshi et al. 2008). Resolving the protein folding problem will help us
in finding a possible cure to these fatal diseases. Once we are aware of the rules of
protein folding process, structure prediction from the sequence will be much easier.
Moreover, the rules dictating the folding-unfolding mechanism will also help in
interpreting ‘the inverse folding problem’, allowing us to navigate through the
structure to sequence (Khoury et al. 2014; Godzik et al. 1993; Park et al. 2004).
Therefore, unravelling the protein folding puzzle will help in stimulating research in
the field of protein misfolding/aggregation as well as protein designing.

In the early 1970s, Christian Anfinsen showed that proteins can fold reversibly
and the knowledge about the mechanism by which a linear polypeptide chain
acquires its native, biologically active structure is stored in its primary structure
(Anfinsen 1973). The protein should fold back from its unfolded state to its native
conformation within a reasonable time frame. In principle, a polypeptide chain can
adopt numerous conformations. Hence, if the protein needs to sample out all the
possible conformation to decide on its global minimum, then for a protein consisting
of 100 amino acids, it would take more than the age of universe (about 1066 years, if
one assumes that only 10�13 s is required to convert from one conformation to other)
to fold into its native conformation (Tompa and Rose 2011; Karplus 1997; Dill and
Chan 1997). However, the protein folds within seconds, in general. This puzzle is
popularly called as the ‘Levinthal paradox’.

The different aspects of the protein folding mechanism are studied using a variety
of experimental techniques such as nuclear magnetic resonance spectroscopy
(NMR), circular dichroism (CD), fluorescence spectroscopy, dual polarization inter-
ferometry and mass spectrometry (Sikder and Zomaya 2005; Miles and Wallace
2016; Kuwajima and Schmid 1984; Nguyen et al. 1995; Sheu et al. 2010; Santucci
et al. 2008). The mechanism is also assessed utilizing the statistical methods and
molecular dynamics approaches (Gipson et al. 2012; Carugo and Pongor 2002;
Lazaridis and Karplus 2003; Richa and Sivaraman 2012).
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One of the most important facets of the protein folding problem being extensively
studied using both experimental and theoretical methods is ‘analysis of the protein
folding rate’. Experimentally, it is equally time-consuming and expensive; therefore
more and more computational algorithms have been developed (Richa and
Sivaraman 2014; Chaudhary et al. 2015; Schafer et al. 2012; Gromiha and Huang
2011). These algorithms are based on the principle that the native state topology of
the small two-state folding (folding by ‘all or none’ mechanism without the accu-
mulation of intermediate states) proteins is directly linked to their folding rates
(Gromiha 2003; Riddle and Grantcharova 1999). Usually, these theoretical methods
test their accuracy using the data generated from the experimental methods. One of
the most important requirements for computational investigation of proteins is their
3D structure. Protein structures are usually solved experimentally and deposited in
the Protein Data Bank (PDB), which forms the basis of the in silico protein research,
explained concisely in the next section.

11.3 The Protein Data Bank

The atomic coordinates of many of the macromolecules have been experimentally
determined and deposited in the Protein Data Bank (www.rcsb.org). PDB was
formed in 1971 at the Brookhaven National Laboratories (BNL) and initially
consisted of only the following structures: carboxypeptidase, chymotrypsin, cyto-
chrome b5, haemoglobin, lactate dehydrogenase, myoglobin, rubredoxin, subtilisin
and trypsin inhibitor. In order to make PDB global and uniform, wwPDB was
created in 2003 by Research Collaboratory for Structural Bioinformatics (RCSB)
PDB in the USA, PDB in Europe (http://pdbe.org) and PDB in Japan (http://pdbj.
org). In 2006 BioMagResBank (http://bmrb.wisc.edu) also joined wwPDB (Berman
et al. 2012; Berman 2008). Currently (Feb 2018), the PDB contains 137,322
biological macromolecular structures which involve 127,490 distinct protein
sequences. X-ray crystallography, NMR spectroscopy and electron microscopy are
widely used for solving the biomolecular structures. PDB is weekly updated and is
freely available to the public domain. In PDB each biomolecule is denoted by a four-
letter alphanumeric code, and they have a uniform format as shown in Fig. 11.5. The
PDB format consists of a line of information known as records described in a text
file. Some of the important record types are SEQRES, polypeptide sequence
represented using three-letter coding of amino acids; ATOM, atomic coordinate
record for the standard residues; HETATM, non-standard residue’s atomic coordi-
nate records; TER, end of a chain; HELIX, position of helices; SHEET, position and
type of sheet; and SSBOND, position of disulphide bonds formed by cysteine
residues. The structure of proteins deposited in PDB is the primary source for
starting most of the in silico analysis of proteins.

The alignment of the regular secondary structure of proteins, also known as
protein topology, plays an important role in understanding the relationship between
protein structure and its folding mechanism (Dokholyan et al. 2002; Baker 2000;
Martin 2000). Protein topology can be directly inferred in terms of number and type
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of contacts formed by its residues. Protein with simple native topology will have a
number of local contacts, and complex protein will have a higher number of long-
range contacts. A protein with higher local contacts usually folds faster when
compared to the one with non-local contacts. Based on these observations, many
structural descriptors have been formulated in the past years (Plaxco et al. 1998;
Fersht 2000; Ivankov et al. 2003; Gromiha and Selvaraj 2001; Nolting et al. 2003).

Fig. 11.5 PDB format of cytochrome c (PDBID: 1HRC). SEQRES field contains the protein
sequence, and 3D coordinates are recorded under ATOM field
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In the following section, we discuss few of the most important structural descriptors
which have been widely used to predict the protein folding rates.

11.4 Structural Descriptors for Computational Prediction
of Protein Folding Rate

11.4.1 Contact Order

Contact order is a topological descriptor of protein proposed by Plaxco et al. (1998).
It was then correlated to the logarithm of folding rate for 12 two-state folding
proteins. A correlation coefficient of 0.81 was observed. The test set proteins were
28–70% homologous and shared similar topologies. ‘Relative contact order’ as it
was typically called by Plaxco et al. (1998) is calculated using the following
formula:

CO ¼ 1
L •N

XN
ΔSij ð11:1Þ

where L is the length of proteins (i.e. the total number of amino acid residues
constituting the protein), N is the total number of contacts and Sij is the sequence
separation between the ith and jth residue, which are in contact. Two residues were
considered to be in contact if the interatomic distance between any two
non-hydrogen atoms was within 6 Å. Therefore, contact order is basically the
average sequence separation of protein normalized over the protein length. It has
been shown that slow-folding proteins, which usually involve more of non-local
interactions, have larger contact order, whereas comparatively fast-folding proteins
have a number of local networks and a smaller value for a contact order (Fersht
2000). One more modified form of contact order is absolute contact order computed
using the following equation:

Abs CO ¼ CO∗L ð11:2Þ
However, absolute contact order showed weaker correlation with respect to folding
rates of two-state proteins (Grantcharova et al. 2001; Ivankov et al. 2003). A direct
correlation between contact order and protein folding rate indicates that native
interaction of protein plays a dominant role in kneading the folding mechanism of
proteins. Contact order of a protein can be easily calculated by uploading the
structural coordinate file of protein at http://www.bakerlab.org/contact_order/.

11.4.2 Long-Range Order

Long-range order (Gromiha and Selvaraj 2001) is a statistical measure of the number
of long-range contacts constituted by a protein structure under study. Long-range
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contacts are contacts which are far off in the polypeptide sequence and imminent in
space. Long-range order often abbreviated as ‘LRO’ is computed using the follow-
ing formula:

LRO ¼
X

Nij=L Nij
¼ 1 if j i� j j> 12
¼ 0 otherwise

ð11:3Þ

where ‘i’ and ‘j’ are the residues for which contact is being computed. Two residues
are considered to be in long-range contact when the distance between their Cα atoms
is within 8 Å, and they are at least separated by 12 residues. ‘L’ is the length of the
polypeptide chain. As per the formula, LRO is the average number of long-range
contacts for each residue of a protein structure. LRO and folding rates of 23 small
two-state proteins were correlated, and an inverse correlation of �0.78 was
observed. This data set consisted of four all-α proteins, ten all-β proteins and nine
mixed-class proteins. LRO also had a strong correlation (�0.82) with CO of mixed-
class proteins and weaker correlation of �0.56 and � 0.46 for all-α and all-β
proteins, respectively. This shows that the structural classification of protein pre-
dominantly affects its folding rates. Grohima’s group has also developed a web
server, Fold-Rate (Gromiha et al. 2006), which predicts the folding rates of proteins
from its sequence using the amino acid property of each structure.

11.4.3 Total Contact Distance

Total contact distance (TCD; Zhou and Zhou 2002) combines the concept of both
contact order and long-range order. The effect of TCD on folding rates was
measured using a database which contained experimental data for 28 proteins
belonging to all three classes (Dinner and Karplus 2001). It consisted of 4 all-α
proteins, 13 all-β proteins and 11 mixed proteins. TCD can be enumerated using
Eq. 11.4 explained below:

TCD ¼ 1

L2

X
Sij ð11:4Þ

where two residues ‘i’ and ‘j’ were considered to be in contact when a heavy atom of
these residues was within 6 Å and they were separated by lcut (cut-off for sequence
separation – 2 � lcut � 14). Sij is the sequence separation between the contacting ith
and jth residue. When same distance cut-off and sequence separation limits are used,
the product of CO and LRO yields TCD. Jackknife correlation was used to test the
efficacy of the method. A correlation coefficient of 0.89 between experimentally
obtained folding rates and predicted (using TCD) folding rates was observed. When
the same dataset was used to examine the prediction efficiency of CO and LRO
methods, a correlation coefficient of 0.71 and 0.80, respectively, was observed.
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11.4.4 Chain Topology Parameter

Chain topology parameter (CTP; Nolting et al. 2003) is very similar to the previously
explained contact order. CTP is calculated using Eq. 11.5:

CTP ¼ 1
L •N

X
ΔS2i, j ð11:5Þ

where ‘L’ is the number of residues in proteins, ‘N’ is the total number of contacts
and ‘Si,j’ is the sequence separation for the contacting residues ‘i’ and ‘j’. This
equation was formulated in order to find out the best exponential power defining the
curvature observed for the plot of CO versus lnkf, which indicated a non-linear
relationship between the sequence separation and free energy change. The dataset
used to study the relationship between kf and CTP consisted of 20 proteins and
2 small peptides (16-residue β-hairpin and a 10-residue helical polyalanine peptide)
structures. A correlation coefficient of 0.86 was observed between CTP and folding
rate of these proteins. The prediction of folding rates using CO was weaker when
compared to CTP which worked preferably well for small peptides. It was concluded
from these studies that protein having kf in the range of 10

�1 s�1
– 108 s�1 could be

efficiently predicted using CTP.

11.4.5 Cliquishness

Based on contact order, another parameter known as cliquishness was developed
(Micheletti 2003). Cliquishness/clustering coefficient for the ith residue is calculated
using Eq. 11.6 given below:

Cliquishness ið Þ ¼

P
j<l

ΔijΔilΔ jl

Nc Nc � 1ð Þ=2 ð11:6Þ

where ‘Δij’, ‘Δil’ and ‘Δjl’ is 1 when ‘i’ and ‘j’, ‘i’ and ‘l’ and ‘j’ and ‘l’ are in
contact, respectively. Else, it will be zero. ‘Nc’ is the total number of contacts of
residue ‘i’. It defines the cross-interaction of the residues interacting with the ith
residue. A correlation coefficient of around 0.6 was obtained between cliquishness
and folding rates of two-state folding proteins.

Protein folding is a complex process – this puzzle is a combination of many
questions. What is the protein folding code? How is the native state of protein
acquired? What is the mechanism of this process? How fast the primary sequence
folds to its native state? How many intermediates are involved in this process? What
are the structures of these partially unfolded states and so on? A combination of
experimental and computational techniques has been used to understand this pro-
cess. A lot of progress has been made in providing theoretical insights to the energy
landscape of proteins, protein designing and protein folding simulations. These
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solutions indeed help towards finding a cure or treating fatal diseases associated with
the misfolding of proteins. Still a larger part of this problem remains unsolved and a
lot is yet to be learned and discovered. The freely accessible archive of protein
structures – the PDB – acts as a goldmine for the theoretical scientists. Here we
introduced our readers to the field of protein folding and hope that it will aid in
developing their interest in this captivating research arena.
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Quality Assessment of Protein Tertiary
Structures: Past, Present, and Future 12
Ankita Singh, Rahul Kaushik, and B. Jayaram

12.1 Introduction

Unavailability of protein tertiary structures is a foremost bottleneck in structural
biology for gaining better insights into biological functions of proteins (Jayaram
et al. 2006; Cheng 2008; Jayaram et al. 2014). Cost and time efficiency involved in
experimental methods of structure elucidation via X-ray crystallography and NMR
spectroscopy restrict it further. On the other hand, owing to worldwide genome
projects, the relatively faster rate of new protein sequences being explored is
increasing the gap between known protein sequences and experimentally solved
structures (Fise 2010; Kaushik and Jayaram 2016). Despite continual improvements
in the experimental methods of structural determination of proteins, the number of
available protein structures is limited to ~22% of known protein sequences
(Fig. 12.1). However, when only unique proteins are accounted, this percentage
availability of protein structures declines to ~11% of the known protein sequences.
In the present scenario, the yearly growth of Protein Data Bank (PDB) indicates
insufficiency of experimental methods in bridging this gap, thus necessitating
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development of reliable computational approaches for structure prediction and their
quality assessment (Samudrala and Levitt 2000; Kryshtafovych and Fidelis 2009;
Wang et al. 2011).

In recent years, the protein structure prediction community has dedicated huge
endeavor to predict more accurate structural models of proteins, and consistent
improvements have been reported through Critical Assessment of Protein Structure
Prediction (CASP) experiments (Zemla et al. 2001; Bourne 2003; Venclovas et al.
2003). The CASP experiments emphasize on chronological assessment of the
developments in the field of protein structure prediction biennially via its blind
prediction. The interested research group can register for the CASP experiment in
different categories including tertiary structure prediction, protein structure quality
assessment, contact prediction, data-assisted modeling, and protein structure refine-
ment category. The participant state-of-the-art methods for different categories are
subjected to perform for the given targets, and the submitted predictions are
evaluated by the organizers. After every CASP experiment, the rankings of the
participants are released for different categories. There have been 12 previous
CASP experiments. The details pertaining to any individual CASP experiment can
be accessed at http://predictioncenter.org. The lately introduced quality assessment
(QA) category of these experiments ensures better quality of predicted model
structures (Melo and Sali 2007). With highly efficient quality assessment methods,
the model structures resulting from continuous improvements in structure prediction
approaches can be optimally utilized for ligand-binding studies, drug designing, and
biological function annotations of proteins. The fields of protein structure prediction
and protein structure quality assessment have evolved together, leading to some of
the best state-of-the-art methods in respective fields (Zhang and Skolnick 2004;
Narang et al. 2005; Cozzetto et al. 2007).

Fig. 12.1 Comparison of annual growth of PDB and UniProtKB (as of 13th November, 2017)
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In this chapter, we focus on the various quality assessment methods along with
their merits and limitations.

12.2 Classification of Quality Assessment of Protein Structures

The quality assessment of protein structures can be performed mainly in two ways,
namely, single-model-based QA (Cao et al. 2014) which evaluates the quality of
individual model without using the information of other models and multiple-model-
based QA (McGuffin and Roche 2010) which uses the mutual structural similarity
among the models of the same protein to assess their quality. The various methods
performing single-model-based QA and multiple-model-based QA are discussed in
detail, further in this chapter. The single-model-based QA methods execute better
with models having diverse quality range. Most of the currently available single-
model-based QA methods implement evolutionary statistics, residue environment,
structural features, and physics-based information while performing quality assess-
ment. The multiple-model-based QA methods often perform better when the decoy
set of model structures is derived from different structure prediction methods. The
performance of these QA methods is hugely affected by the proportion of good
quality model structures and poor quality model structures in the decoy set. The
relative ranking among the diverse model structures for the same protein can also be
performed by implementation of structural topology-based clustering methods. The
main assumption for clustering-based approaches is the tendency of native-like
structures to get clustered in a large free energy basin. Therefore, these usually end
up with an average model rather than the best model (Cao and Jianlin 2016; Jing and
Dong 2017).

12.3 Algorithms in Quality Assessment of Protein Structures

Generation of a large number of protein structural decoys for a given sequence is
made possible with the recent developments in protein structure prediction field
which has necessitated development of highly efficient quality assessment methods
to precisely discriminate good model structures from bad ones. The initial efforts in
the field were focused on the detection of the erroneous experimentally solved
protein structures. With the passage of time, the field has advanced to evaluating
model structures. The various approaches implemented in such methods can be
broadly classified into three categories. These approaches and their implementation
in different softwares/tools are discussed.
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12.3.1 Physics-Based Approaches

This approach implemented mainly in the form of energy functions accounting for
various bonded and nonbonded interactions among all the atoms of protein
structures for use in energy minimization/geometry optimization and molecular
dynamics simulations. The bonded interactions include distances, angles, and tor-
sional angles, while nonbonded interactions account for electrostatic and van der
Waals interactions. AMBER (http://amber.scripps.edu; Pearlman et al. 1995),
CHARMM (http://www.charmm.org; Brooks et al. 1983), and GROMOS (http://
www.igc.ethz.ch/gromos/; Soares et al. 2005) are among the most widely used
packages which implement physics-based energy functions that incorporate diverse
parameters derived from experiment and quantum mechanical calculations. Various
versions of these functions are proposed which have succeeded in discriminating
native-like structures from non-native-like structures efficiently, and integration of
solvation terms has played a vital role in the success achieved by these approaches
(Melo and Feytmans 1998). The various energies calculated via these energy
functions directly give the estimation of quality of protein structures. Ideally, these
energies should be highly negative for a good protein structure depending upon the
size of the protein under consideration.

12.3.2 Knowledge-Based Approaches

The knowledge-based approaches implement rules of evolution and statistical
preferences of different amino acid residues for performing quality assessment of
protein structures. Usually these preferences are derived from a benchmark dataset
consisting of selected experimentally solved protein structures. Since 1970, attempts
have been made to derive some statistical rules from protein structures (Sippl 1995).
The inverse Boltzmann distribution is most widely implemented to calculate pseudo-
energies from nonredundant set of protein structures. Further, several other
parameters are also used in evaluation of structural features of protein model
structures which include contact-based features (Olechnovic and Venclovas 2017),
distance-based features, solvent accessibility-based features, and pairwise
interactions.

The concept of statistical preferences was initially successfully utilized in 1990
via PROSA (Wiederstein and Sippl 2007) which accounted for Cα/Cβ distances and
benchmarked it with the data taken from 163 protein structures. It was claimed to
detect native conformation with a considerably high success rate. The random
interaction approximation with lately developed alternative reference state has
further boosted the precision of protein structure quality assessment. DFIRE (Yang
and Zhou 2008) scoring function used an ideal gas reference state and showed 84%
success rate in identifying native structures from 32 decoy sets. Likewise, discrete
optimized protein energy (DOPE) scoring function (Shen and Sali 2006) employed
noninteracting atom-dependent reference state in a homogeneous sphere and
segregated 87% native structures in the 32 decoy sets. MolProbity uses a variety
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of physics-based and knowledge-based algorithms to assess a structure. More
recently, some new scoring functions utilizing relative orientation of different
residues have been developed and shown promising prospects.

Overall knowledge-based approaches proved advantageous in the evaluation of
protein structures. The implementation of various reference states may deliver the
desired precision for large-scale protein structure quality assessment.

12.3.3 Consensus-Based Approaches

The accuracy achieved through “physics-based approaches” and “knowledge-based
approaches” can be boosted by implementation of “consensus-based approach”.
Various scoring functions have been established via weighted integration of discrete
functions from physics- and knowledge-based approaches. The collective effect of
weighted individual scores has been shown to outperform their individual
accuracies.

For instance, ProQ (Wallner and Elofsson 2003) uses a number of structural
features, viz., atom- and residue-based potentials, secondary structure information,
solvent accessibility, Cα–Cα distances, and globularity, implemented via a neural
network. QMEAN (Benkert et al. 2009) is one of the more recently developed
scoring functions which employs linear combination discrete scores from torsional
angle potentials, secondary structure pairwise potentials, solvent accessibility, etc.
Among the latest developments in the field, pcSM (Mishra et al. 2013) and D2N
(Mishra et al. 2014) also implement consensus-based approach for efficient quality
assessment. Very recently metaserver-based approaches have been introduced in the
field of protein structure quality assessment and have shown improved results over
individual servers.

12.4 Individual Servers/Tools for Quality Assessment

The servers/tools which integrate the features directly derived from protein
structures and perform the quality assessment in completely independent manner
are categorized in individual servers/tools for quality assessment. Some of the
thoroughly validated and highly accurate tools are described.

12.4.1 PROCHECK

PROCHECK (Laskowski 1993) evaluates “stereo chemical quality” of a given
protein structure by calculating deviation in the geometry of residues from their
standard values which are derived from well-refined, high-resolution native
structures. It accounts for bond lengths, angles, main-chain and side-chain
parameters, residue contacts, geometry, and distribution of backbone torsion angles
(Φ and Ψ) in Ramachandran plot while evaluating the stereochemical quality of a
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protein structure. For a good protein structure, most of the residues (represented by
solid blue squares) should be falling in red-shaded regions (most favorable),
followed by orange-shaded region (favorable regions) and yellow-shaded region
(generously allowed regions).

Protein structure of interest in pdb file format is required as input. A summary of
overall quality assessment using PROCHECK is shown in Fig. 12.2.

12.4.2 ProSA

ProSA (Wiederstein and Sippl 2007) quality assessment tool calculates overall
protein structure quality score in terms of Z-score and performs statistical compari-
son with experimental protein structures. It exploits knowledge-based Cα potentials
of mean force to estimate model accuracy. The Z-score lying within a defined range
in the plot differentiates native-like protein structures from erroneous structures. The
position dark black circle represents the quality of input structure, and ideally it
should be falling in blue or light blue region for a good model structure. Protein
structure of interest in pdb file format is required, and ProSA generates a graphical
interpretation of assessment as shown in Fig. 12.3.

12.4.3 ProQ

ProQ (Wallner and Elofsson 2003) is a neural-network-based method for quality
assessment of protein structure which utilizes various structural features, including
frequency of atom–atom contacts, solvent-accessible surface area, and residue–

Fig. 12.2 Summary of overall quality assessment performed via PROCHECK
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residue contacts. Models are evaluated on the bases of both the LG score and the
MaxSub score. The LG score is a P-value for the importance of a structural similar-
ity, and higher values represent better quality of model structure. Similarly, the
MaxSub score identifies the largest subset of correctly predicted Cα atoms of a
model and furnishes a single normalized score which characterizes the quality of the
model structures. The MaxSub score varies from 0 to 1, where 0 is insignificant and
1 most significant. Correctly predicted model structures should have at least 1.5 LG
score and 0.1 MaxSub score. ProQ also requires protein structure of interest in pdb
file format and predicts

LG score and MaxSub score as shown in Fig. 12.4.

12.4.4 Verify-3D

Verify-3D (Luthy et al. 1992) evaluates protein models by comparing 3D-1D
profiles. The match of an atomic model (3D) is assessed with its own amino acid
sequence (1D), and a quality score is predicted with parameters derived from

Fig. 12.3 A graphical interpretation of quality assessment performed using ProSA
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database of experimental structures. The 3D profile of a protein structure is calcu-
lated from the atomic coordinates of the experimentally solved structures. The 3D
profiles derived from a protein structure should counterpart its sequence with a high
score. An incorrectly modeled structure can be recognized by inspecting the profile
score in a moving-window scan. Average 3D-1D profile score for each residue in a
21-residue sliding window is represented in the form of a plot. The scores vary from
�1 (bad score) to +1 (good score). A protein structure of interest in pdb file format is
required, and Verify-3D generates 3D-1D profile score for individual residue as
shown in Fig. 12.5.

12.4.5 Naccess

Naccess (Lee and Richards 1971) calculates solvent-exposed surface area of all
atoms and residues with defined probe size. The probe is moved around the van der
Waal’s surface of protein structure provided in pdb file format. Usually, the probe
considered is of same radius as water (1.4 Å). Naccess helps in better insights on
structure by comparing residue-wise surface area with experimental structure. Con-
sidering globular nature of monomeric proteins, lower overall exposed surface area
indicates better quality of a protein structure.

Naccess generates two files having accessible surface area at atomic level (.asa
file) and at residue level (.rsa file). An overall accessible surface area for the input
structure is also provided in the output.

Fig. 12.4 A quality assessment performed using ProQ server
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12.4.6 QMEAN

Qualitative Model Energy Analysis (QMEAN) is a composite scoring function to
evaluate the major geometrical aspects of protein structures (Benkert et al. 2009). It
utilizes various structural descriptors such as analysis of local geometry of dihedral
angles with a window size of three amino acids, secondary structure-specific
pairwise long-range interactions, solvation potential derived from solvent-accessible
surface area, etc. The long-range interactions among secondary structural elements
and solvation potential take account of protein structure stability. The overall
QMEAN quality score ranges from 0 to 1 where 0 represents badly modeled and
1 represents accurately modeled structures. A protein structure in pdb file format is
required, and the overall quality score in the form of QMEAN score is calculated as
shown in Fig. 12.6.

Fig. 12.5 A quality assessment plot generated by Verify-3D for an input protein structure.
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12.4.7 Errat

Errat (Colovos and Yeates 1993) distinguishes correctly modeled regions from
incorrectly modeled regions in the protein structures by evaluating certain character-
istic atomic interactions. It also provides an overall quality factor for a protein
structure expressed as the percentage of protein with error value falling under 95%
limit. The proposed threshold overall quality factor is 91% for medium resolution
structures and 95% or above for high-resolution (good) structures which is derived
from experimental structures. The overall quality factor represents the percentage
number of residues predicted accurately in the given protein. Moreover, the plot
provides the residue-wise insight in terms of percentage error value per residue. The
quality assessment performed via Errat helps to identify the error prone regions in
the predicted model structures. Errat requires a protein structure in pdb file format as
an input and generates a quality factor and residue-level assessment in the form of
plot (Fig. 12.7).

12.4.8 PSN-Ensemble

PSN-Ensemble (Ghosh and Vishveshwara 2014) employs networks of experimental
and modeled protein structures, integrated with support vector machines for
performing quality assessment. These networks mainly take account of

Fig. 12.6 Graphical representation of QMEAN quality assessment where the model structure is
showing an overall QMEAN score of 0.71
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non-covalent interactions among side chains in protein structures. A PSN-QA score
above 16 reflects features of native-like conformation, and a score below 10 is
indicative of non-native-like conformation. A pdb file is required to generate overall
quality assessment scores and relative ranking of protein structure.

12.4.9 D2N (Distance 2 Native)

D2N (Mishra et al. 2014) is a random forest approach-based machine learning tool
which predicts the quality of a protein structure derived from different physicochem-
ical features of native protein structures. It accounts for all atom nonbonded energy,
solvent-accessible surface area of polar and charged residues, Cβ geometrical con-
straint, and secondary structure penalties. It predicts root-mean-square deviation
(RMSD), template modeling (TM) score, and global distance test (GDT) score for
a given protein structure. The predicted parameters for the input protein structure are
direct indicative of quality of structure. The RMSD is measured in angstroms (Å)
and should be as low as possible. The TM score assesses the local accuracy of model
structure and varies from 0 to 1 where 0 represents randomly modeled structure and
1 represents the most accurately modeled structure. The GDT score is another
measure used for calculating the structural similarity. Similar to TM score, the
GDT score also varies from 0 to 1 where 0 represents worse model and 1 represents

Fig. 12.7 A graphical illustration of quality assessment for an input protein structure via Errat
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best model structure. D2N requires protein structure of interest in pdb file format and
generates predicted RMSD, TM score, and GDT score (Fig. 12.8).

12.4.10 dDFIRE

It is an energy function which reports for pairwise atomic interactions and dipole–
dipole interactions among the amino acid residues. For a given protein structure, it
provides a set of free energy scores. The energy score provided in the first column
represents dDFIRE total energy which needs to be highly negative for a good model
structure. The other energy terms give rise to the total energy via their algebraic
addition. dDFIRE predicts the free energy scores of a given pdb file of a protein
structure (Yang and Zhou 2008).

12.4.11 MolProbity

MolProbity (Chen et al. 2010) uses a variety of physics-based and knowledge-based
algorithms to assess a structure. All-atom contacts, side-chain clashes, and
Ramachandran distribution of backbone dihedral angles (ɸ and Ψ) are the major
parameters for MolProbity-dependent protein structure quality assessment. An over-
all MolProbity score, derived from these parameters, with lower values reflects good
quality of the model structures and vice versa.

MolProbity takes protein structure of interest in pdb file format as an input and
predicts MolProbity score (in case of single-model structure) and MolProbity rank
(in case of multiple-model structures).

Fig. 12.8 Quality assessment performed using D2N for input protein structure
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12.5 Metaserver Approaches

The metaserver approaches integrate some of the already existing individual servers
or the features calculated by individual servers to perform the quality assessment of
protein structures. Since metaservers utilize the quality assessment performed by
individual servers, therefore, these servers are expected to perform better than
individual server. A metaserver may either provide a combined score which is
indicative of quality of protein structure or provide a common platform to utilize
the individual servers without any combined score. Different types of metaservers
including MetaMQAP (Pawlowski et al. 2008), ProTSAV (Singh et al. 2015), and
SAVES (http://services.mbi.ucla.edu/SAVES) are discussed.

12.5.1 MetaMQAP

It is based on a multivariate regression model, which implements scores generated
via eight different individual tools, namely, Verify-3D, ProSA, BALA, ANOLEA,
PROVE, TUNE, REFINER, and PROQRES. MetaMQAP predicts the C-alpha
atoms’ absolute deviation in terms of RMSD for the given model structure along
with its GDT score. The predicted local model accuracy has a correlation coefficient
of 0.7, and the global score has a correlation coefficient of 0.9 with true deviations
from native structures. The predicted scores have a significant improvement over all
constituent individual tools. A pdb file of protein structure is required, and
MetaMQAP predicts RMSD and GDT score.

12.5.2 SAVES

Structural Analysis and Verification Server (SAVES) is a metaserver which provides
a common platform for performing quality assessment with five different individual
servers/tools, namely, PROCHECK, What-Check, ERRAT, Verify-3D, and
PROVE. It neither integrates these individual servers for predicting overall quality
nor does it perform its own analysis for quality assessment of given structure.
SAVES provides an interactive user interface for the analysis of results of individual
servers. A protein structure of interest in pdb file format is required, and SAVES
produces results of individual servers (Fig. 12.9).

12.5.3 ProTSAV

Protein tertiary structure analysis and validation (ProTSAV) is a metaserver which
efficiently integrates ten different quality assessment individual tools (modules) to
evaluate predicted model structures which necessarily take care of most of the
quality assessment parameters used in previously discussed approach (Table 12.1).
It outperforms the individual accuracies of constituent modules and provides an
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overall score (ProTSAV score). The quality assessment via ProTSAV classifies a
protein structure in any of the predefined four classes on the basis of its structural
features. The predefined classes are indicated by green color (structures with RMSD
0–2 Å), yellow color (structures with RMSD 2–5 Å), orange color (structures with
RMSD 5–8 Å), and red color (structures with RMSD beyond 8 Å). The ProTSAV
score with lower value reflects better quality of protein structure and vice versa.
ProTSAV is also capable of performing relative ranking in case of multiple model
structures.

Coordinates of the structure of interest in PDB file format in case of individual
model and zipped file (.zip) in case of multiple models are required as an input

Fig. 12.9 A snapshot of SAVES quality assessment metaserver

Table 12.1 Different modules of ProTSAV metaserver and their quality assessment parameter.
The solid green-filled boxes represent the implemented parameter in respective module

The solid green filled boxes represent the implemented parameter in respective module 
Assessment 

Features DFIRE Errat Naccess ProSA Pro-
check

Verify-
3D

Mol-
Probity D2N ProQ PSN-

QA
Van der Waals 

Clashes
Contact 
Potential
Burial 

Preferences
Accessible 

Surface Area
Residue 
Packing 

Globularity

Secondary 
Structure 
Φ and ψ

Distribution 
Energy Based 

Scorings
Side Chain 

Packing
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ProTSAV generates a graphical representation of quality assessment for input
protein structure into any of the predefined classes in case of individual model
(Fig. 12.10) and relative rankings in case of multiple models.

12.6 Case Studies on CASP11 (T0760) and CASP12 (T0860)
Targets

In this section the performance of different quality assessment tools/metaservers on
protein tertiary structures modeled by Zhang-Server for a CASP11 target T0760
(http://www.predictioncenter.org/casp11/targetlist.cgi) and modeled by
BhageerathH+ for a CASP12 target T0860 (http://predictioncenter.org/casp12/
targetlist.cgi) is presented. These models were predicted by respective servers in
the absence of their native experimental structures and post-CASP compared with
native experimental structures to calculate their RMSD.

In the case study, we assessed the quality of the modeled structures via various
quality assessment tools as shown in Table 12.2 and compared the quality assess-
ment prediction with actual RMSD values.

Fig. 12.10 A snapshot of ProTSAV metaserver for protein tertiary structure quality assessment
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The tertiary structure quality assessment performed via different methods
(Table 12.2) indicates that the consensus approaches are able to perform better
prediction as compared to individual method approaches. The individual servers,
while capturing some of the quality assessment feature, miss out the other. On the
other hand, the consensus approaches, implemented in metaservers, account for all
the quality assessment features simultaneously and perform better predictions.

In recent years, methodological developments in the field of protein structure
prediction and their availability to scientific community have raised the necessity of
highly accurate protein structure quality assessment for better understanding of
structural features and their further application, viz., drug designing, functional
characterization, and annotation.

All approaches described in the chapter utilize the structural features and perform
with considerable accuracy within their limitations. However, all QA server scores
predict model quality differently according to their individual parameters which
sometimes further complicate the assessment to select the best model. Thus, the
metaserver approaches, where various combinations of multiple QA tools are used to
address the issue, perform much better quality assessment of structures. The
metaserver approaches, while combining the individual servers, also overcome
their individual limitations with their efficient combination. Post-protein structure
prediction and selection of best model structure are very critical and can be
performed by implementing suitable quality assessment tools/servers/metaservers.

Table 12.2 Quality assessment prediction scores via different tools/metaservers and their
interpretations for structure (T0760, Zhang-Server Model 1, and T0860, BhageerathH+ Model 1).
The actual RMSDs for T0760 and T0860 are 2.9 Å and 3.3 Å, respectively

Servers T0760 scores T0860 scores Threshold values

Errat 91.4% 77.9% >95% considered as good

Verify-3D 90.1% 92.0% >95% considered as good

ProSA �6.6 �3.5 > �5 considered as good

PSN-QA 5.3 5.5 >16 considered as good

QMEAN 0.45 0.71 Range 0 (bad) to 1 (good)

Naccess 12,819 8462 Lower values preferred

ProQ LG score ¼ 4.7 LG score ¼ 4.0 >3 considered as good

MaxSub score ¼ 0.2 MaxSub score ¼ 0.2 >0.5 considered as good

PROCHECK �0.69 (overall
G-score)

�0.05 (overall
G-score)

> �0.5 considered as good

D2N 5.5 Å (RMSD) 6.4 Å (RMSD) <5 Å RMSD

dDFire �477.9 �274.8 Lower value is considered as
good

MolProbity 3.3 2.3 >2 considered as good

MetaMQAP 4.2 Å (RMSD) 5.1 Å (RMSD) <5 Å RMSD

ProTSAV Yellow region Yellow region Green and yellow as good
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Predicting Protein Function Using
Homology-Based Methods 13
Swati Sinha, Birgit Eisenhaber, and Andrew M. Lynn

13.1 Introduction

In general, it is very important to define ‘function’ of a protein. There are two main
aspects of protein function, namely, ‘molecular function’ and ‘cellular function’. The
molecular function of a protein is defined by various actions including binding,
activation, inhibition or catalysis, while the cellular function tells us more about the
context in which a protein operates within a cell (Marcotte et al. 1999, 2000).
Homology that depicts common evolutionary ancestry among different organisms
plays a crucial role in the prediction of protein function. Traditional homology-based
methods transfer a function to an unknown protein based on the sequence similarity
between the known and unknown protein. In other words, the function of a protein
can be deciphered by analysing similarity of the protein with other proteins of well-
characterized functions. In case of significant sequence similarity, the annotations of
protein with known function are transferred to the protein with unknown function.

Here, in this chapter, we explain the advantages and limitations of different
methods for protein function prediction and emphasize on improvements that were
implemented for better prediction of protein function. Towards the end, we highlight
a list of tools which are helpful to perform deep sequence analysis of a protein
sequence with unknown function.
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13.2 Sequence-Sequence Comparison Methods

One of the first and most informative steps to analyse an unknown protein involves
sequence similarity-based search in order to identify homologous sequences. It is
effective because sequences that share significant similarity can be predicted as
homologous (Pearson 2013). The traditional and the most commonly used approach
for sequence-sequence comparison between two proteins is BLAST.

13.2.1 BLAST

• Basic Local Alignment Search Tool (BLAST) was developed in 1990 and is one
of the major contributions in the area of sequence homology detection indicated
by the high number of citations (64,388 as of 11 August 2017) of the original
article (Altschul et al. 1990). The method identifies regions of local similarities
between the sequences by comparing DNA or protein sequences to well-
characterized sequences. The method performs ‘local’ alignments and uses a
heuristic approach to accelerate the process of producing these alignments. It is
known that most of the proteins are modular in nature, possessing one or more
domains or motifs which can be uniquely correlated to functionality. The local
alignments help to find sequence signatures representative of these motifs.
BLAST has many different flavours including:

• blastn searches nucleotide databases with a nucleotide query.
• blastp searches a protein query against protein databases.
• blastx searches protein databases with a translated nucleotide query.
• tblastn searches translated nucleotide databases with a protein query.
• tblastx compares all the six-frame translations of a nucleotide query against

translated nucleotide sequence database.

BLAST is one of the most widely used methods for the first line of preliminary
analysis to predict the function of a protein, but the method is known to have a
variety of limitations which are discussed subsequently.

13.2.1.1 Limitations of BLAST
Since its development, BLAST is one of the best tools for sequence homology
detection; however, there are limitations of this method like the following:

• Sequences having low-complexity regions often give artificially high scores.
• BLAST-based annotation can fail to distinguish members of subfamilies which

have significant variation or in other words lower level of sequence similarity
among the different members of a protein family, for example, membrane
proteins.

• Presence of a small number of substrate specificity-determining residues, for
example, protein kinase subfamilies where high levels of interfamily sequence
similarity allow the selection of false positives.
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• The local alignments are not able to find similarity when there are discontinuous
conserved patterns in a sequence which can only be captured by global alignment
algorithms.

13.3 Sequence-Profile Comparison Methods

The limitations of sequence-sequence comparison methods necessitate the develop-
ment of more sensitive methods using sequence-profile comparisons. The alignment
of a set of homologous sequences is used to build a sequence profile which includes
information about the probability of occurrence of all the amino acids along each of
the columns in the multiple sequence alignment. This profile is more sensitive than a
single sequence because it has information of all the sequences from the entire
family (Söding 2005). PSI-BLAST is one such method (Altschul et al. 1997).

13.3.1 PSI-BLAST

Position-Specific Iterative BLAST (PSI-BLAST) is a flavour of BLAST which
performs multiple iterations to search for distant homologs in a sequence database.
The first step in PSI-BLAST is similar to BLAST which provides a number of hits
for the query proteins. In the next step, it creates an alignment of all the high-scoring
top hits from the first step and converts the alignment into a position-specific scoring
matrix (PSSM) which is used in the subsequent steps. In a PSSM, the highly
conserved residues in the alignment are assigned a comparatively higher score
than the less conserved residues. The following step utilizes this PSSM to perform
the similarity search between the profile and the sequence database. These steps are
repeated iteratively until convergence, that is, no new sequences appear further in the
iteration. This type of iterative search helps in the identification of remote homologs
which could possibly be missed by methods like BLAST. Therefore, these methods
are said to increase the sensitivity of identification of distant homologs. PSI-BLAST
is faster than BLAST and could extensively find divergent homologs with low
percent identity.

13.3.1.1 Limitations of PSI-BLAST
Since PSI-BLAST works on the principle of iterative search, one has to be very
careful about selecting the homologous sequences in each step which are used for
construction of a PSSM. Addition of non-homologous sequences in any iteration
will further enable inclusion of more such sequences reducing the overall sensitivity
of the method. Moreover, this method might provide incorrect results when the
database includes sequences having low-complexity regions or transmembrane
regions or coiled-coil regions which usually have a high ratio of biased amino acid
residues. These regions are prone to reflect significant sequence similarity even in
the absence of homology (Altschul et al. 1997).
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13.4 Sequence-Profile HMM Comparison Methods

The simple sequence profiles (PSSMs) only contain the frequency of each of the
amino acid in an alignment but do not have information for the insertions and
deletions present in an alignment. Hence, these profiles are replaced by profile
hidden Markov models (HMMs) (Eddy 1998) which contain position-specific
probabilities for deletions and insertions along the alignment (Söding 2005). These
profile HMMs tend to perform better than the sequence profiles for the detection of
remote homologs. ‘HMMER’ (Eddy 2009) is one such method that illustrates
biological sequence analysis using profile HMMs which are very useful for the
identification of homologs.

13.4.1 HMMER

HMMER is one of the most commonly used methods to search sequence databases
for distant homologs of protein sequences (Stein 2001; Yoon 2009) and also is the
basis for the popular Pfam database (Finn et al. 2014). It implements methods based
on probabilistic models called profile HMMs (Eddy 1998). In a profile HMM, each
column is modelled by three states: a match state, an insert state and a delete state
along with state transitions. A typical profile HMM has different types of
probabilities like the transition probability which defines the transition from one
state to another and the emission probability where each match state in a HMM emits
a symbol with a defined probability of a residue at a particular position in an
alignment.

In comparison with traditional sequence-sequence comparison methods (BLAST,
FASTA), HMMER is known to be more accurate and detects distant homologs due
to its strength based on underlying mathematical models. Earlier, the method was
computationally very expensive, but the newer version of HMMER (HMMER3) is
essentially equally fast as BLAST (Eddy 2011).

13.4.1.1 Limitations of HMMER
The conservation pattern in an alignment of protein families arises from ‘fold’--
specific signals shared across the entire family and ‘function’-specific signals unique
to the subfamily level. A profile HMM built from such an alignment will have both
fold- and function-specific signals; therefore, it is prone to detect a large number of
false positive (FP) sequences. For example, the multiple sequence alignment (MSA)
in Fig. 13.1 shows an example of profile HMMs picking up a large number of FPs.
This alignment is built for the six subfamilies: the cAMP-dependent protein kinase
(PKA), protein kinase C (PKC), protein kinases related to PKA and PKC (RAC), G
protein-coupled receptor kinase (GRK), ribosomal S6 PK and PVPK protein kinase
of AGC kinase family (Srivastava et al. 2007). It is coloured on the basis of
conservation of amino acid residues where pink and red columns are conserved
and identical, respectively, across all families corresponding to fold signals, while
green and blue are conserved and identical within a family. The columns highlighted
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in yellow signify positions which are predicted to confer specificity for the family. A
profile HMM built using such an alignment will pick up sequences from other
subfamilies due to shared fold- and function-specific signals.

13.5 Sequence-Modified Profile HMM Comparison Methods

A profile HMM needs to be modified in order to reduce the fold-specific signals and
maximize the function-specific signals. A profile HMM modified in such a way
should be able to differentiate protein sequences based on their function even when
they share conserved common fold. Methods utilizing pre-classified data that make
use of positive as well as negative training sequences to refine transition and
emission probabilities using Viterbi algorithm (Mamitsuka 1996; Wistrand and
Sonnhammer 2004) have been used earlier. In addition, methods based on positional
entropy (Hannenhalli and Russell 2000) and support vector machines (SVMs) have
been developed (Jaakkola et al. 2000; Karchin et al. 2002) to discriminate between
function- and fold-specific signals. A similar method, HMM-ModE (Srivastava et al.
2007; Sinha and Lynn 2014), was developed that uses negative training sequences to

Fig. 13.1 Multiple sequence alignment showing the common fold- and function-specific signals.
The alignment is only a part of the full alignment of six protein kinase families discussed in the text.
It is coloured based on residue conservation: pink and red, conserved and identical across all
families correspond to fold-specific signals; green and blue, conserved and identical within a
family; and yellow, positions which are predicted to confer specificity for the family (Liu et al.
2004). Deleted regions are marked by dashes (- - -). The figure is only a part of the full alignment
that has been published. (Srivastava et al. 2007)
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modify the emission probabilities in the profile HMM in order to improve the
specificity of prediction.

13.5.1 HMM-ModE

HMM-ModE (Srivastava et al. 2007; Sinha and Lynn 2014) creates family-specific
profile HMMs by optimizing the discrimination threshold based on the mode of
average Matthews correlation coefficient (MCC) distribution from tenfold cross
validation. It also modifies the emission probabilities using negative training
sequences. Modification of emission probabilities provides increased discrimination
by identifying the differentiating alignment positions from the profile-profile align-
ment of positive and negative sequences using relative entropy (RE). The RE is
calculated using the probability distributions of positive (p) and negative (q) sets for
a particular position ‘i’ through the following equations:

REi ¼
P

pi,xlog
pi,x
qi,x

REiNeg ¼
P

x¼1::20pi,xlog
pi,x
qi,x

REiNull ¼
P

x¼1::20pi,xlog
pi,x
PxNull

where

pi,x and qi,x are the probabilities of the amino acid ‘x’ at a position ‘i’ in the positive
and negative sets of sequences, respectively.

The log-odds score is then calculated as

S ¼
X

i¼1::n

P
x¼1::20log

pi,x
qi,x

, REiNeg > REiNull

P
x¼1::20log

pi,x
PxNull

, otherwise

8
><

>:

This score is calculated from the emission probabilities of the model, and a
heuristic method that modifies the emission probabilities of the model was used to
implement this score.

The modified profile HMMs in terms of their emission probabilities represent the
method HMM-ModE. In this protocol, only the sequences selected as false positives
by the subfamily HMM are used to modify model parameters and optimize the
discrimination threshold; therefore, the training of the model is much faster. The
method provides a significant improvement over all the other existing methods for
differentiation and classification of function- and fold-specific signals. In general,
HMM-ModE protocol is a stepwise procedure to construct such modified profiles
and uses the following steps to prepare modified profiles:
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• Clustering of pre-classified datasets: The protocol uses Markov chain clustering
(MCL) (Dongen 2000) for clustering of sequences. It is a fast and scalable
unsupervised clustering algorithm for graphs based on simulation of flow in
graphs. In order to cluster sequences using MCL, BLAST is used for performing
all-against-all sequence comparisons to identify highly similar sequences within a
given family of sequences. Once the sequences are scored based on similarity,
they are being clustered using MCL.

• Generation of TP and FP profile: Each cluster of sequences is aligned using
MUSCLE, and a profile HMM is built using ‘hmmbuild’ (HMMER). These are
known as true positive (TP) profiles which are scanned across all the training
sequences using ‘hmmsearch’ (HMMER) to identify the FP sequences. These FP
sequences are then aligned in similar manner using MUSCLE to generate FP
profile HMMs.

• Modification of emission probability: The emission probability of the TP profile
is modified by identifying the discriminating alignment positions between the TP
and FP alignment using relative entropy as described earlier (Srivastava et al.
2007; Sinha and Lynn 2014).

• Tenfold cross validation: Tenfold cross validation is performed to estimate the
accuracy of the modified profiles to provide a discrimination threshold that helps
to separate the TPs from FPs efficiently as compared to the default threshold
(zero) of the profile HMM built using HMMER. These thresholds can be used
with the profiles using the ‘-T’ option of ‘hmmsearch’ to search against the
desired sequence database.

13.5.1.1 Limitations of HMM-ModE
HMM-ModE profiles provide significant improvement in specificity of prediction
with minimal loss in sensitivity for the classification of sequences based on their
function as compared to methods like PSI-BLAST or HMMER which are highly
sensitive but much less specific for the identification of protein function. However,
even BLAST, PSI-BLAST, HMMER or HMM-ModE fails to detect remote
homologs where the sequence identity is very low (less than 20%). More sensitive
methods based on HMM-HMM comparisons are used in these cases.

13.6 HMM-HMM Comparison Methods

The HMM-HMM comparison methods generalize the protein sequence alignment
with a profile HMM to the case of pairwise alignment of two profile HMMs to detect
distant homologs. The HMM-HMM comparison increases the sensitivity of predic-
tion. One such method is ‘HHsearch’.
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13.6.1 HHsearch

HHsearch is a powerful tool to find remote homology by performing a HMM-HMM
comparison and by incorporating the information from protein’s secondary structure.
Previously it was shown that involvement of protein secondary structure improves
homology detection (Kabsch and Sander 1983; Hargbo and Elofsson 1999; Kelley
et al. 2000; Kawabata and Nishikawa 2000). The method has been benchmarked on
a dataset which is below the twilight zone (20% sequence identity) with other
methods of homology detection like BLAST (Altschul et al. 1990), PSI-BLAST
(Altschul et al. 1997) and HMMER (Eddy 2009). HHsearch outperforms all these
methods (Söding 2005). When compared to similar profile-based method HMMER,
the standard Viterbi algorithm used by HMMER is replaced by more accurate
maximum accuracy (MAC) algorithm in HHsearch.

13.6.1.1 Case Study to Identify Putative Z-Ring-Associated Cell Division
Proteins in Helicobacter pylori (H. pylori) Using HHsearch

In this case study, HHsearch was used to identify unknown candidate proteins
involved in the process of cell division in H. pylori. The known set of these cell
division proteins include FtsZ, FtsA, FtsW, FtsK, MurD, MinD and MinC, while
some of the unknown ones are ZapA and ZapB. Traditional methods (like BLAST,
PSI-BLAST, HMMER) scored only the already known cell division proteins but do
not score any unknown candidate protein. Therefore, HHsearch which is a highly
sensitive method was used to predict candidate proteins for ZapA and ZapB. As
expected, some high-confidence hits were observed for the unknown proteins as
listed in Table 13.1. One of the predicted homologs for ZapA, P64659, was tested
experimentally using techniques like genetic complementation, biochemical analysis
and immuno-colocalization (Kamran et al. 2016). The take-home message from this
case study is to use sensitive methods based on sequence-profile comparisons when
there is a low sequence similarity. These methods though have a lower specificity as
they may score many false positives for the query protein. This problem was handled
later on by the development of HMM-based comparison methods like HMM-ModE
which aims to improve specificity of prediction without any significant loss in the
sensitivity. In cases where all of these methods fail to detect any homology between
the proteins of unknown function and well-characterized sequences, methods like
HHsearch could serve as a reasonable alternative (Kamran et al. 2016).

13.7 Web-Based Tool for Homology-Based Sequence Analysis:
ANNOTATOR

In addition to these very basic methods, there exist many other concepts in protein
sequence analysis and function prediction like the presence of globular and
non-globular segments typically in all the protein sequences (Eisenhaber et al.
2004; Eisenhaber and Eisenhaber 2007). In simple terms, globular segments have
balanced amino acid composition, while the non-globular segments tend to have
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more biased composition with high number of repetitive patterns (low-complexity
regions). Therefore, these two types of regions require a substantially different kind
of algorithms for function prediction. Most of the methods discussed so far facilitate
to annotate the globular part of the protein sequences. The non-globular segments
usually require the assistance of numerous tools to predict their location in the
sequence.

One of the very useful tools to perform automated sequence analysis for a query
protein to annotate both kind of segments, i.e. globular and non-globular, is ANNO-
TATOR (Eisenhaber et al. 2016). It is an open-source tool available at http://
annotator.bii.a-star.edu.sg/. The method is a web-based platform integrating various
tools for protein sequence analysis using a plugin-style mechanism. The various
algorithms integrated in ANNOTATOR are listed in Table 13.2.

13.8 Limitations of Homology-Based Methods for Function
Prediction

As discussed in the previous sections, homology-based methods are widely used to
transfer functions to novel sequences. In general, these methods fail to infer the
function of a protein in case of absence of annotation of a homolog. There are still

Table 13.1 Various tools used to predict distant homologs of cell division proteins in H. pylori

Protein
name/
UniProt ID

Presence in
H. pylori/
Essentiality BLAST

HMMER/
HMM-
ModE HHsearch

Probability of
prediction
(HHsearch)

FtsZ/
P56097

Y/Y √ √ √ 1

FtsA/
O25629

Y/Y √ √ √ 1

FtsW/
P56096

Y/Y √ √ √ 1

FtsK/
O25722

Y/Y √ √ √ 1

MurD/
O25236

Y/Y √ √ √ 1

MinD/
O25098

Y/N √ √ √ 1

MinC/
O25693

Y/N √ √ √ 1

ZapA/
P64659

N/N – – √ 0.96

ZapB/
O25147

N/N – – √ 0.99

HMMER/HMM-ModE and BLAST detected already known proteins in H. pylori; however, only
HHsearch predicts the unknown proteins. Prediction made by the methods is presented as ‘√’, while
‘–’ represents that there is no prediction made. The last columns represent the probability of scoring
the protein as a putative homolog using HHsearch
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Table 13.2 List of tools along with their description available in the ANNOTATOR system

Tools available in ANNOTATOR
(Eisenhaber et al. 2016) Description of the method

CAST (Promponas et al. 2000) Detects low-complexity regions in a protein
sequence

DisEMBL (Linding et al. 2003a) Detects disordered or unstructured regions in a
protein sequence

GlobPlot (Linding et al. 2003b) Detects if a protein sequence is ordered or
disordered

IUPred (Dosztanyi et al. 2005; Dosztányi
2018)

Detects intrinsically disordered and ordered
regions in a protein sequence

SAPS (Brendel et al. 1992) Performs statistical analysis of various
properties of protein sequences

XNU (Claverie and States 1993) Detects internal and intrinsic repeats in a protein
sequence

DISOPRED (Ward et al. 2004) Tool to predict protein disorder

SEG (Wootton 1994) Tool to identify low-complexity regions

big-Pi (Eisenhaber et al. 1999) Tool to predict suitable candidate for GPI-lipid
anchoring

MyrPS/NMT (Maurer-Stroh and Eisenhaber
2004; Eisenhaber et al. 2004)

Tool to predict the myristoylation site in a
protein sequence

PrePS/Prenylation-FT (Maurer-Stroh et al.
2003a, b; Neuberger et al. 2003)

Tool to predict the prenylation site and aim to
model the substrate enzyme interaction based on
refinement of the recognition motif of the
eukaryotic enzyme farnesyltransferase (FT)

PeroxyPS/PTS1 (Neuberger et al. 2003) Tool to predict whether a protein has the
C-terminal peroxisomal targeting signal PTS1
or not

SIGCLEAVE (von Heijne 1986) Tool to identify the cleavage site between a
signal sequence and the mature exported protein

SignalP (Nielsen 2017) Tool to identify the cleavage site and a signal
peptide/non-signal peptide prediction based on
artificial neural networks

DAS-Tmfilter (Cserzö et al. 2002; Cserzo
et al. 2004)

Tool to predict the TM regions and differentiate
them from non-TM regions

HMMTOP (Tusnády and Simon 2001) Tool to implement a HMMmodel to predict TM
protein topology

PHOBIUS (Käll et al. 2004) Tool to predict and differentiate between the
signal regions and transmembrane regions

TMHMM (Krogh et al. 2001) Tool to predict membrane topology based on
HMM model

TopPred (Claros and von Heijne 1994) Tool to predict the location of the TM segments

TM-complexity (Wong et al. 2010, 2012) Tool to predict the complexity of the TM
regions as simple, twilight or complex

ImpCOIL (Frishman and Argos 1996) Tool to predict the coiled-coil regions in
proteins

Predator (Frishman and Argos 1997) Tool to predict the secondary structural elements

(continued)
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Table 13.2 (continued)

Tools available in ANNOTATOR
(Eisenhaber et al. 2016) Description of the method

SSCP (Eisenhaber et al. 1996) Tool to predict the secondary structural
elements, i.e. alpha helices, beta sheets and coil
state

HMMER (Eddy 2009) Tool to search HMM profiles against the HMM
libraries of known domains and motifs

ModEnzA (Desai et al. 2011) Tool to identify the enzyme class

IMPALA (Schäffer et al. 1999) Tool to compare a query sequence against a
library of position-specific scoring matrices
(PSSMs)

HHpred (Soding et al. 2005) Tool to query a HMM against a database of
HMMs

HHblits (Remmert et al. 2012) Tool to generate HMM-HMM-based alignments

HHsearch (Hargbo and Elofsson 1999;
Kelley et al. 2000; Kawabata and Nishikawa
2000)

Tool to detect remote homology using
HMM-HMM comparisons

PROSITE (Sigrist et al. 2002) Tool to detect protein’s domain

RPS-BLAST (Marchler-Bauer et al. 2011) Tool to compare query against a library of
PSSMs

ELM-patterns (Puntervoll et al. 2003) Tool to predict functional sites in eukaryotic
proteins

PROSITE-patterns (Sigrist et al. 2002) Tool to search patterns from a collection of
annotated protein motifs

EF-Patterns (Berezovsky et al. 2000) Tool to predict the function of a protein based on
a combination of elementary functional patterns

PROSPERO (Mott 2000) Tool to analyse repeats within a sequence by
comparing a sequence to itself, another
sequence or a profile and print all local
alignments

NCBI-BLAST (Altschul et al. 1990) Tool to perform local alignments to detect
sequence homology

OMA-BLAST (Altenhoff et al. 2011) Tool to find orthologs of query protein

PSI-BLAST (Altschul et al. 1997) Tools to identify remote homologs using
iterative blast searches

CSI-BLAST (Biegert and Söding 2009) Tool to derive context-specific amino acid
similarities

GLSearch (Pearson 2000) Tool to search a query sequence against a
sequence database using an optimal algorithm
that requires an entire query to match at least
part of the database sequences

Prim-Seq-An (Schneider et al. 2010;
Eisenhaber et al. 2016)

It runs a standard set of algorithms on a
sequence of interest

Orphan-Search (Schneider et al. 2010;
Eisenhaber et al. 2016)

Tool to determine whether a sequence is an
orphan within a specific sequence database

Family Searcher (Schneider et al. 2010;
Eisenhaber et al. 2016)

Tool to trace distant evolutionary relationships
involving large protein families

(continued)
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many orthologs whose function are not well defined but conserved across multiple
organisms. In the eggNOG database (Jensen et al. 2008) which is a resource of
orthologs to be used for functional annotation, 74% of the orthologous groups (OGs)
are provided with nontrivial descriptions, whereas only 54% of the OGs are assigned
to informative functional categories (Powell et al. 2014). In addition, these methods
also generate other errors while assigning a function to an unknown protein. Various
studies have quantified such intrinsic errors in annotation of genomes and proteomes
(Brenner 1999; Devos and Valencia 2001). Since these methods are based on
comparison of sequences to predict the function of a protein, there are different
possible reasons in transferring incorrect function annotations to novel sequences.
These errors might include mistakes in original method that identifies the homologs
to be similar enough to transfer the annotation (Liu et al. 2004), errors in the
annotations of original database which is being used to transfer the functional
information resulting in extrapolation of wrong annotation and errors caused when
the homolog (gene/protein) is lost or acquired a function due to evolutionary
divergence (Ofran et al. 2005).

In addition to these errors, homology-based methods tend to investigate only the
molecular functions of proteins and provide very little information about the context
in which proteins operate within the cell. While assigning a function to an unknown
protein, it is crucial to understand that proteins never function in an isolated manner
within a cell but interact with other biomolecules. Protein networks and protein
interactions constitute an important area of study to understand such behaviour of
proteins. Therefore, a new class of computational methods has been gradually

Table 13.2 (continued)

Tools available in ANNOTATOR
(Eisenhaber et al. 2016) Description of the method

Orthologue Search (Schneider et al. 2010;
Eisenhaber et al. 2016)

Tool to identify the orthologs of a protein

Disan (Sirota et al. 2010) Tool to run a set of disorder predictors to allow
consensus predictions

MCL (Dongen 2000) Tool to cluster sequences based on all-against-
all BLAST searches

CD-HIT (Li and Godzik 2006) Tool to cluster sequences by counting the
number of identical words in a pair of sequences

T-Coffee (Di Tommaso et al. 2011) Tool for multiple sequence alignment using
progressive approach

MUSCLE (Edgar 2004) Tool for multiple sequence alignment using
iterative improvements to the progressive
alignments

ProbCons (Do et al. 2005) Tool for multiple sequence alignment using
progressive approach using HMM formalism

MAFFT (Katoh and Standley 2013) Tool for multiple sequence alignment using fast
Fourier transforms (FFT) with residue volume
and polarity
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evolved to understand the cellular function of proteins. These methods are not based
on comparison of sequence or structure but draw inferences about relationship
between proteins by analysing the context in which they are found and are referred
to as non-homology-based methods or context-based methods (Huynen et al. 2000;
Snel et al. 2000; Ofran et al. 2005).

Undoubtedly homology-based analysis remains the core methodology of func-
tional annotation, but the context-based methods go beyond sequence or structure
comparisons. Context-based methods include all types of associations between
genes and proteins of the same or different genomes providing information on
functional interactions between them (Aravind 2000). Such use of contextual infor-
mation in genome analysis provides a simple logic to ensure a systematic and
powerful way to assign function to genes or proteins that have no sequence similarity
to experimentally characterized homologs (Pellegrini et al. 1999).
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Drug Discovery: An In Silico Approach 14
Sukriti Goyal, Salma Jamal, Abhinav Grover, and Asheesh Shanker

14.1 Introduction

14.1.1 Traditional Drug Discovery and Its Disadvantages

The course of development of one new medicine from an original idea to the time it
is available for treating patients is a complex and tedious task that can take up to
15 years. An average amount of expenditure required for research and development
(R&D) of a drug with successful outcome lies within the range of $800 to $1000 mil-
lion, including the cost of failures. For instance, only one potent lead is approved out
of a batch of 5000–10,000 that enter the R&D pipeline. The preliminary research,
usually taking place in academic world, produces information to generate a hypoth-
esis that either the blocking or activation of the target protein or a particular pathway
will produce a remedial effect in the diseased condition. The result of this step is the
selection of a drug target that might entail more validation before entering the lead
discovery phase so as to rationalize the effort of drug discovery. Lead discovery is an
exhaustive search with an aim to identify small molecules or biological therapeutic,
usually termed as development candidate, having drug-like properties. It proceeds to
preclinical phase followed by clinical phase if successful and eventually be a
marketed medicine (Fig. 14.1).
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Traditionally, the process of drug discovery is time-consuming involving synthe-
sis of compounds, by a step-by-step protocol against a series of in vivo biological
screens followed by investigation of the potential lead compounds for their pharma-
cokinetic properties (Hughes et al. 2011). For the last two decades, researchers
employed in the drug discovery domain at various places such as universities,
biotech, and pharmaceutical companies have employed a reductionist target-based
approach, which focuses on identifying and validating small-molecule compounds
possessing specific activity against a specific drug target (usually a protein). This
entire procedure can be explained in three main phases: drug target identification and
validation, lead identification, and optimization. The repercussion of this complete
procedure is high attrition rates with failures accredited to adverse effects in humans
(10%), animal toxicity (11%), lack of efficacy (30%), poor pharmacokinetics (39%),
and numerous commercial and various factors. A plethora of highly effective
technologies including high-throughput screening, in vitro and in silico ADMET
screening, de novo design, combinatorial chemistry, and virtual screening along with
bioinformatics, genomics, and proteomics in addition to structure-based drug design
have revolutionized the process of drug discovery.

14.1.2 Significance and Advantages of In Silico Methodology

Fortunemagazine, in an issue published in 1981 on October 5, featured a cover story
titled the “Next Industrial Revolution: Designing Drugs by Computer at Merck”
(Van Drie 2007). This article has been accredited as “the commencement of extraor-
dinary interest in the potential for computer-aided drug design (CADD)” which in

Fig. 14.1 Flowchart depicting the basic steps involved in process of drug discovery
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addition to requiring minimum ligand design or prior information provides an
advantage of technologies capable to screen large libraries more efficiently. With
preexisting small-molecule libraries representing the standard compound catalogue
of pharmaceutical companies, novel drug candidate designing is a significant
evolving element of drug discovery. The integration of in silico CADD into
in vitro experimental methodology has led to a new approach known as “smart”
drug design (Drews 2000; Kapetanovic 2008; Owen 2002). CADD possesses the
ability of escalating the hit rate of new drug molecules owing to a more targeted
search unlike traditional drug discovery methodology. Furthermore, while it
explains the molecular basis of remedial or inhibitory activity, it also predicts potent
compound derivatives that might enhance activity. The expenditure of drug discov-
ery can be reduced significantly by using computational tools (Kotz 2013; Van Drie
2007).

CADD usually serves three main purposes in any drug discovery campaign: the
first is filtering huge chemical repositories into smaller sets of potent lead molecules
for in vitro validation; the second is optimization of those lead compounds by
improving its affinity or by optimizing the drug metabolism and pharmacokinetic
properties; and the last is designing of new therapeutics, by either building up new
compounds one chemical entity at a time or by amalgamating different moieties into
new chemotypes (Jorgensen 2004; Terstappen and Reggiani 2001).

14.1.3 Methods of Computer-Aided Drug Discovery

Based on the amount of data present for the chosen protein drug target, drug
discovery protocols can be classified into two main groups. The first category,
structure-based drug discovery (SBDD) approach, depends on the information of
the 3D model of protein to compute interaction energies for lead molecules, whereas
ligand-based drug discovery (LBDD), the second approach, utilizes the information
of biologically identified active and inactive compounds through common moiety
search or by generation of quantitative structure-activity relationship (QSAR)
models with predictive abilities (Kalyaanamoorthy and Chen 2011). SBDD is
usually favored when high-resolution structural information of the drug target is
present, whereas LBDD is usually favored when structural information is not present
or is trivial (Jorgensen 2004; Terstappen and Reggiani 2001). Computing plays a
very useful role in both methods.

14.1.4 Structure-Based Computer-Aided Drug Discovery

SBDD has emerged as a new approach which involves comprehending the funda-
mental concept of molecular recognition in ligand-bound protein structures. The
information of the experimentally obtained 3D crystal structures or a model prepared
based on the crystal structure of the target protein’s close homolog using computa-
tional modeling approaches, preferably in complex with a ligand, can be used for
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retrieval and development of potent lead candidates. This complex deciphers the
mode of binding along with the conformational state of the compound under
investigation and exhibits the imperative features responsible for its binding poten-
tial. The observed data is exploited for producing novel ideas for enhancing an
already existing ligand or for development of novel alternative bonding chemical
moieties. Computational methods along with molecular graphics are implemented to
aid this step of hypothesis generation. The essential characteristics of the protein
binding pocket can be rendered into queries that can then be utilized either for high-
throughput virtual screening of huge chemical repositories or for designing new
ligands de novo. Later these ligands are enhanced toward increased affinity and
better selectivity. The selectivity aspect is of vital significance in understanding and
controlling the pharmacological profile of a ligand.

14.1.5 Ligand-Based Computer-Aided Drug Discovery

In case information regarding experimental structure of the target of interest is
unavailable, a different protocol called LBDD, based on the validated inhibitors of
a drug target, can be used. It involves methodologies like quantitative structure-
activity relationships (QSAR), molecular similarity approaches and pharmacophore
modeling (Blake and Laird 2003; Lahana 1999). Information about the molecular
fingerprints of validated compounds is exploited to virtually screen large compound
databases to find molecules with analogous fingerprints (Gillet et al. 1999).
Pharmacophore modeling approach can be employed to obtain common structural
characteristics of ligands that can be utilized to virtually screen chemical repositories
to find hits with those characteristics (Taylor et al. 2002). Since pharmacophore
models only specify the essential characteristics responsible for inhibitory properties
of a ligand, QSAR models are better in elucidating the relationship between the
various characteristics of drug and the biological activity and thus predicting the
activity of the ligand (Doman et al. 2002).

14.2 Structure-Based Drug Discovery

14.2.1 Molecular Modeling of Protein Structures

The first essential step after identification of the drug target is obtaining precise
structural information. The four primary methodologies utilized for this purpose
include nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography,
comparative modeling in case of presence of some initial information and ab initio
modeling in case of complete absence of any structural information. The first two
methods are experimental and offer several advantages over modeling methods.
Structures acquired by application of experimental methods are of high resolution
and possess ordered water molecules which are helpful when designing a lead
compound. The acceleration in the rate of determination of target structures can be
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owed to structural genomics. However, numerous virtual screening campaigns with
successful results have been described using comparative modeling approach of
target proteins in absence of experimentally resolved structure (Becker et al. 2006;
Budzik et al. 2010; Warner et al. 2006).

Comparative modeling is an approach applied for prediction of target structure
that works on the basic principle that proteins having homologous sequences possess
similar structures. Homology modeling, a particular form of comparative modeling,
can be used when evolutionary origin of the template and target protein is same. The
complete process of comparative modeling comprises of three main steps. The
beginning step involves identification of homologous proteins with known crystal
structures as templates and alignment of the sequences of target protein with
template protein. The next step comprises constructing the coordinate file of the
target protein by duplicating 3D coordinates for confidently aligned regions and
modeling coordinates for missing atoms. The last step is model refinement and
evaluation. The comparative modeling process can be automated by various com-
puter programs such as MODELLER (Martí-Renom et al. 2000) and web servers
such as PSIPRED (Buchan et al. 2010). The steps involved in homology modeling
are as follows:

14.2.2 Template Identification and Alignment

In this step, a Basic Local Alignment Sequence Tool (BLAST; Altschul et al. 1990)
search is performed using a Protein Data Bank (PDB) database against the query
(protein sequence of the drug target) for recognition of template structures with high
sequence similarity (Altschul et al. 1990). In case PDB-BLAST search fails to result
in any hits, additional sophisticated fold recognition methods available can be
utilized (Kelley and Sternberg 2009; Söding and Remmert 2011). After obtaining
structures of template protein, sequence alignment for template and target protein
sequences is performed using tools such as ClustalW (Thompson et al. 1994). For a
group of structurally related proteins, conserved regions in the sequence alignment
are recognized and utilized for building the homology model. Repeated production
and assessment of numerous homology models from various high-scoring sequence
alignments may upgrade the standard of homology model (Chivian and Baker 2006;
Misura et al. 2006). The key to successful homology modeling is template selection.
Meticulous attention should be given to the resolution of the template structure along
with alignment length and sequence identity of query with hit obtained.

14.2.3 Model Building

The primary cause of occurrence of gaps or insertions in the sequence alignment is
that they lie mainly outside the secondary structure elements, thus leading to chain
breaks. The anchor amino acids or the N- or C-terminal amino acids of the target
protein sequence on both sides of the missing regions need to be connected in order
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to model the same. Based on the information present for the missing region, two
methods, namely, de novo and knowledge-based methods, are known. Knowledge-
based technique utilizes structured regions from crystal structures having roughly the
same anchors as present in target structure which is then applied to the target model.
On the other hand, de novo methods produce numerous loop conformations, quality
of which is then judged using various energy functions (Hillisch et al. 2004). The
next action in this step involves prediction of conformations of side chain. Rotamer
library, a cluster of 3D coordinates of conformations of side chain, is generally
employed during all side-chain prediction protocols (Krivov et al. 2009). Side-chain
conformation sampling employs methodology, for instance, dead-end elimination
(Desmet et al. 1992) applied in SCRWL (Bower et al. 1997; Dunbrack and Karplus
1993, 1994) and Monte Carlo searches (Rohl et al. 2004).

14.2.4 Model Refinement and Evaluation

Steps, namely, addition of correct bond geometries and removal of unfavorable
interactions brought in by the initial modeling process, are performed to refine
developed atomic models. This step involves energetically minimizing the generated
atomic models by employing techniques such as genetic algorithms (Xiang 2006),
minimization using Monte Carlo Metropolis (Misura and Baker 2005), or molecular
dynamics simulations (Raval et al. 2012).

Model evaluation is performed by comparing structural characteristics observed
in developed atomic models with experimentally determined structures. Many
research groups contribute in a worldwide experiment named, Critical Assessment
of Structure Prediction (CASP; Cozzetto et al. 2009), for an objective assessment of
their respective structure prediction methods. In CASP assessment, a generated
atomic model and the corresponding experimental structure are compared to evalu-
ate if they are statistically similar and thus implemented for numerically assessing
and ranking the developed models. Alignment accuracy (AL0 score), global distance
test-total scores (GDTTS) and full model root mean square deviation are some
examples of evaluation methods used in CASP (Cozzetto et al. 2009).

14.3 Molecular Docking

An eminent prerequisite for drug activity is protein-ligand interaction. Ligand-bound
experimentally determined crystal models of the protein target or its analogous
protein with the natural substrate or non-natural substrate is often the source of
possible binding cavities for small molecules. However, if the information regarding
the binding cavity or catalytic site of the protein is unknown, new binding sites can
be identified using various computational platforms including Q-SiteFinder,
SURFNET and POCKET (Henrich et al. 2010; Laurie et al. 2006).
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The degree of flexibility considered for compound and protein during the docking
process classifies these methods into rigid-body docking and flexible docking (Dias
et al. 2008; Halperin et al. 2002). The rigid-body docking method takes into account
only static geometric/physiochemical complementarities during complex generation
while disregarding flexibility as well as induced-fit binding models (Halperin et al.
2002). In conformational selection paradigm, further advanced algorithms also
account various potential conformations of either compound or receptor or both
simultaneously (Changeux and Edelstein 2011). This docking methodology is
usually chosen when the target is to be screened against a huge chemical repository
during an initial screening. After filtering out potential hits using the initial screen-
ing, flexible docking methods are applied for optimization and refinement of binding
conformations resulting from initial rigid docking process. Flexible docking
approach is now being used more frequently owing to the advancement of computa-
tional resources and efficiency. Systematic arrangement of conformations, Monte
Carlo search algorithms with Metropolis criterion (MCM), molecular dynamics
simulations and genetic algorithms are examples of some popular approaches used
for flexible docking.

Structure-based high-throughput virtual screening (HTVS), an in silico method,
is employed for finding potent lead compounds from a large chemical library using
docking approach and it thus depends on the match of crystal structure of the
compound with the binding cavity of target protein. HTVS provides an advantage
over traditional HTS by selecting ligands with potential ability to bind to a particular
binding site instead of experimentally asserting its general ability to hinder the target
protein’s function. HTVS is a time-efficient approach that screens a huge chemical
repository in finite time by limiting the conformational space of the target and
chemical compound and by rapid computing of binding energy through simplified
approximation. Although these approximations introduce some inaccuracies which
in turn leads to false-positive hits, refined docking with more specialized protocols
including iterative docking and clustering technique of the top resulting molecules is
a good and time-efficient approach. The main steps involved in this technique
include preparation of the target and chemical repository for docking, identifying
favorable binding conformation for each molecule and then ranking the ligand-
bound protein structures. The most probable lead compounds are then evaluated
with additional refined scoring functions. The goals of applying this extra-precise
protocol for refining the initial docking poses include improving the judgment how
well the compound will interact with drug target, precise prediction of docked
structures poses and precise prediction of binding affinity. HTVS has been employed
successfully for identification of novel and potent lead compounds in numerous drug
designing studies (Becker et al. 2006; Dhanjal et al. 2014a, b; Grover et al. 2014; Lu
et al. 2006; Ruiz et al. 2008; Tyagi et al. 2013, 2015; Zhao et al. 2006).
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14.4 ADMET Properties and Its Prediction

A satisfactory profile describing absorption, distribution, metabolism, excretion and
toxicity (ADMET) properties plays an important role in deciding the success of the
drug. Even though a large range of in vitro ADMET screens are present, the
capability to foretell few of these characteristics in silico is helpful. An acceptable
balance of safety, toxicity, potency and appropriate pharmacokinetics recognizes a
successful medicine. Numerous studies (Kennedy 1997) carried out during the late
1990s reported that the main causes of late-stage failures of potent lead molecules in
the process of drug discovery were poor pharmacokinetics and toxicity. In silico
ADMET tools are an effort toward addressing this problem. In silico tools provide
many advantages including speeding the process of drug discovery by screening out
more potent molecules in small amount of time, selecting an appropriate balance of
numerous properties from huge virtual repositories for chemical synthesis by screen-
ing these models on virtual molecules and gaining a correlation between the struc-
tural profile and physiochemical properties of a drug and its corresponding ADMET
properties. These in silico tools differ in their prediction accuracy and throughput
and also in the array of statistical methodology and descriptors. For instance,
descriptors can be either derived from properties of simple whole molecule (e.g.,
logP/D, size, hydrogen-bond donors and acceptors, etc.) or from quantum theory-
based semi-empirical methods (van de Waterbeemd 2002; Van De Waterbeemd and
Gifford 2003).

14.5 A Case Study Using Schrödinger Glide Module

Schrödinger is an integrated software platform comprising of many modules for drug
designing including those for docking, QSAR, and pharmacophore development.
Glide module of this platform provides tools for HTVS of huge chemical repository
and extremely accurate binding conformation predictions.

The purpose of this study is to search for small natural compounds with potent
antileishmanial properties targeting Oligopeptidase B (OPB) and to comprehend the
inhibitory action of the natural compounds against OPB. The protocol employs
screening a large repository of compounds with natural origin against OPB.

14.5.1 Preparation of Protein and Ligand

The experimental structure of target protein was extracted from RCSB Protein Data
Bank [PDB: 2XE4] (Rose et al. 2011). Accelrys ViewerLite Version 5.0 (Lite 1998)
was utilized for preprocessing the protein structure. The protein structure was again
processed followed by optimization by employing Maestro’s protein preparation
wizard (Schrödinger 2008b, 2009) before docking analysis. A natural compound
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library of about 0.2 million natural compounds (Irwin and Shoichet 2005) was
obtained and prepared using Schrödinger’s LigPrep module (Ligprep 2009).

14.5.2 Receptor Grid Generation

A receptor grid of size 20 � 20 � 20 Å was generated around the binding site,
comprising of the catalytic triad of OPB (Ser 577, Asp 662, and His 697) along with
Tyr 499 and Glu 621 which are known to be conserved throughout the OPB family,
by employing receptor grid generation utility of Glide module (Fig. 14.2a) (Friesner
et al. 2004; Schrödinger 2008a, b).

14.5.3 Docking and Scoring

Glide high-throughput virtual screening and Glide extra precision (XP) (Friesner
et al. 2004; Halgren et al. 2004) were applied for screening of the natural compound
repository against OPB. Compounds possessing HTVS docking scores more than
(in magnitude) �7 kcal/mol (in this case 423) were screened further using a refined
XP docking protocol (Fig. 14.2b). The top two scoring ligands with a score of
�13.183 kcal/mol and � 10.3 kcal/mol resulting from XP docking were chosen for
evaluation of their ADMET properties.

Fig. 14.2a Generation of grid around receptor binding site
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14.5.4 Calculation of ADMET Properties

ADMET properties of the resulting compounds were predicted using Schrödinger’s
QikProp module (Fig. 14.2c) (Ioakimidis et al. 2008; Schrödinger 2008b). An online
web server admetSAR was used for prediction of toxicity (Cheng et al. 2012). Forty-
nine descriptors were calculated and the results were compared with 95% known
drugs. The two resulting compounds exhibited satisfactory ADMET properties with
good absorption power. They were observed to be non-carcinogenic with toxic

Fig. 14.2b Hydrogen-bond formation and hydrophobic interactions between target enzyme and
ligand

Fig. 14.2c Calculation of ADMET properties of ligand
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properties toward Tetrahymena pyriformis, fish and honeybee. For detailed results
please refer to the original paper (Goyal et al. 2014).

14.6 Ligand-Based Drug Discovery

14.6.1 Quantitative Structure-Activity Relationship

In case the crystal structure of the drug target is unresolved, the approach for drug
development can instead be based on the knowledge available for known inhibitors
of the corresponding drug target. Information about compounds that are known to
bind and affect their target receptor in a three-dimensional manner forms the basis of
3D techniques in ligand-based virtual screening. One such ligand-based 3D proce-
dure is quantitative structure-activity relationship (QSAR) that quantifies or
generates a relationship between properties of chemical profile of the compound
with its biological or chemical activity by application of mathematical models (Put
et al. 2003; Tropsha 2003). If the biological activity of a group of compounds against
the corresponding target protein can be determined, a mathematical model describ-
ing this relationship can be developed. In addition to encoding only the crucial
characteristics of a biologically active ligand as in a pharmacophore model, the
QSAR model also delineates the effect of a particular property of the molecule on its
inhibitory activity. The set of active molecules chosen for QSAR is required to cover
an extensive activity range (three orders of magnitude is the minimum range) against
that particular target for the generation of a robust and statistically sound QSAR
model. Quality of the dataset, its activity range, and the specificity of its activity
decide the quality of the developed model. Since the aim of QSAR is quantifying the
structure and activity of a compound, quantifying the structure of compound poses a
crucial problem as representation of the structure by a numerical value is not viable.
To address this problem, a collection of features, also called descriptors, are assessed
using the structure, and these are utilized to enumerate the same. A QSAR model is
built to illustrate the relationship between independent variable (evaluated
descriptors) and dependent variable (inhibitory activity) (Esposito et al. 2004;
Svetnik et al. 2003). Post QSAR model building and its validation, the biological
or inhibitory activity of new molecules can be predicted using their structural
descriptors. This QSAR model can also be utilized to virtually screen a large
chemical database to identify potent lead compounds. Owing to the wide range of
biological, chemical, or physical descriptors, QSAR model can also be employed in
industries other than drug design (Du et al. 2008; Put et al. 2004), such as toxicology
(Bradbury 1995), food chemistry (Martinez-Mayorga and Medina-Franco 2009),
and other fields.

The first step to develop a QSAR model comprises of collection of compounds
and their inhibitory activities. It is then followed by calculation and selection of
descriptors prior to choosing a mathematical modeling method which together with
activity values is used for the generation of QSAR models. Protocols of internal as
well as external validation are performed to test the developed models. Validated
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QSAR models are employed for the activity prediction of novel compounds. Inhibi-
tory or biological activity is generally quantified in terms of half maximal inhibitory
concentration (IC50s) (de Melo 2010), half maximal effective concentration (EC50s;
Zhou et al. 2010), and Ki values (inhibition constant; Karolidis et al. 2010).
However, depending on the property of the ligand to be predicted, more activity
indexes can be employed for the quantification of inhibitory activity during QSAR
model development. The descriptors quantifying ligand structures need to be calcu-
lated and verified prior to building a QSAR model.

After the dependent variable (inhibitory activity) and independent variables
(descriptors) are specified for the dataset of compounds, a variable selection method
and a model building method are chosen. To eliminate redundancy, removing all
invariable descriptors and building the QSAR model using the remaining descriptors
with unique values is a rational approach (Karelson 2000). For instance, in case two
descriptors correspond to an analogous biological or chemical factor, either of them
should be eliminated. Stepwise, principle component analysis (Xue et al. 2000),
simulated annealing, genetic algorithms (Chen et al. 1998; Rogers and Hopfinger
1994), and artificial neural networks (Wikel and Dow 1993) are some selection
methods employed for descriptor selection. Conventional statistical protocols such
as principle least square, multiple linear regression, and k-nearest neighbor
(Itskowitz and Tropsha 2005) are employed for generation of a linear QSAR
model. The key difference between frequently applied QSAR algorithms exists in
their methods of descriptor generation. CoMFA (Cramer et al. 1988b), CoMSIA
(Klebe et al. 1994), CoMMA (Silverman and Platt 1996), and HypoGen (Kurogi and
Guner 2001) are some examples of QSAR algorithms that utilize comparable linear
statistical models for exploring the structure-activity relationship. In the first two
methods (CoMFA and CoMSIA), the aligned compounds are positioned into a grid.
Calculation of descriptors is carried out by the contact of the compound and the
probe, positioned at every intersecting point of the grid. The difference between
CoMFA and CoMSIA lies in the application of distinct probes along with functions
used to calculate interactions. Probes signifying only steric and electrostatic contacts
are utilized in CoMFA, while probes signifying hydrophobic and hydrogen bonds
are also selected in CoMSIA. CoMSIA employs a Gaussian-type function for
calculation of contacts between probe and molecule. Using this smooth function
provides an advantage as the result value is more rational in comparison with the
function employed in CoMFA, and thus specifying a threshold value for removal of
invariable descriptors is not required. In CoMMA, the descriptors are produced by
computation of the spatial moments of the compounds. The single descriptor applied
in HypoGen model development procedure is fit value which explains robustness of
the alignment of a compound with a pharmacophore model (explained in the next
section).

Validation of the developed QSARmodel is imperative before it can be employed
for prediction of inhibitory activity. Protocols like internal validation (“leave-one-
out- LOO method” or “leave-n-out” methods) (Cramer et al. 1988a) and external
validation are examples of some popular protocols utilized for validation of QSAR
model (Verma et al. 2010). In internal validation, either one (in case of LOO) or
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more (in case of leave-n-out) training set compounds are eliminated, and the model is
reconstructed with reduced training set that is utilized for prediction of inhibitory
activity of the excluded compounds. This process is continued till all compounds
belonging to the training set have been eliminated and their activity is predicted. The
accuracy of predicted activity determines the robustness of the QSAR model
(Cramer et al. 1988a). Unlike internal validation, which uses training set compounds
for validation of the model, this second validation protocol, known as external
validation, is an extensively employed protocol which tests the potential of the
QSAR model with compounds not present in the training set (Consonni et al.
2009). In order to ensure reliability of the developed QSAR model, both internal
and external validation protocols are executed. After these validation procedures, if
the model satisfies these tests, it can be employed for the prediction of inhibitory
activity of novel compounds.

14.7 Pharmacophore Modeling

Ehrlich was the first to define the term “pharmacophore” as “a molecular framework
that carries the essential features responsible for a drug’s biological activity” (Ehrlich
1909). It can be understood from the description that a pharmacophore model
describes the imperative characteristics that any compound needs to possess in
order to be active. A pharmacophore model usually encodes characteristic type, its
position, and direction of an active compound in addition to its probable steric
constraints (van Drie 2003). A three-dimensional pharmacophore depicts the posi-
tioning of important active site amino acids in cavity of the drug target (Wolber et al.
2008). For instance, a residue acting as an acceptor of hydrogen bond must be
located near a hydrogen-bond donor characteristic in the pharmacophore model,
responsible for ligand interaction with the protein. Based on the process of protein
interaction with the ligand, the target protein might change its conformation or lock
itself upon interaction (Drews 2000). A set of known inhibitors can be utilized for
generation of a pharmacophore model. However, data related to crystal structure or
structure in complex with ligand in combination with data on active site residues can
also be utilized for pharmacophore modeling (Yang 2010). The building of
pharmacophore models is based on the information of target protein structure by
analyzing the binding cavity, probable molecular contacts between the ligand
(active) and target protein. Pharmacophore models have been widely used for
generation of disease-related protein-specific inhibitors, for instance, inhibitors
against enzymes, ion channels, and G-protein-coupled receptors (Kubinyi 2006). It
can also be implemented in combination with other drug designing methods.

Although a comprehensive work plan of pharmacophore model development
depends on the software used, the common protocol followed is as mentioned by
van Drie (2003). Generally, a software package is used for the generation of
pharmacophore models as they conduct the whole workflow and comprise of all
tools required for this purpose. The first step involves assembling a set of active
ligands, usually with the help of literature reviews and querying molecular
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databases. All accessible databases including commercial or public can be employed
for this purpose. However, a steady threshold should be applied to classify a
compound as active while identifying active compounds from several sources. For
construction of a 3D pharmacophore model, generation of conformers of the ligand
is a prerequisite. International Union of Pure and Applied Chemistry (IUPAC)
defines the conformations of any molecule as “the spatial arrangement of the
atoms affording distinction between stereoisomers” (McNaught and Wilkinson
1997). After generation of the conformers, the set of ligands are superimposed or
aligned (Yang 2010) to determine the common characteristics of the selected set of
ligands. Pharmacophore elucidation algorithm is employed for construction of
pharmacophore models after completion of the ligand alignment. Usually, multiple
pharmacophore models are constructed from the set of selected ligands. The next
step comprises ranking of all the models generated using the scoring function. In
general, the pharmacophore model possessing the highest score is chosen. The final
step includes validation of the pharmacophore model generated. If information
pertaining to binding mechanism of ligand is clearly known, it can be applied for
model validation, since pharmacophore models might also reflect the 3D structure of
the binding cavity (Wolber et al. 2008). A rational approach in case of any
discrepancies observed between the experimentally reported binding data and the
chosen pharmacophore model would be rejecting the model. Any selected
pharmacophore model must always be validated using compounds not belonging
to training set irrespective of whether information regarding binding mechanisms is
present or not.

14.8 A Case Study Using VLife Software

14.8.1 Selection of Dataset and Its Presentation

An experimentally reported set of 38 thiazolyl-pyrazoline derivatives along with its
template was prepared using ChemSketch (Spessard 1998) and was minimized using
VLife molecular design suite (Fig. 14.3a) (Akamatsu 2002; Vlife 2008). These
molecules were then aligned using VLife Engine (Vlife 2008).

14.8.2 Force Field Computation

Dataset of derivatives of thiazolyl-pyrazoline along with their pIC50 values (nega-
tive logarithm of IC50) were provided for the calculation of force field. The grid
dimensions were kept as default (21.6 � 6.9 � 21.4) and all three classes of
descriptors, namely, steric, electrostatic, and hydrophobic, were calculated
(Fig. 14.3b).

320 S. Goyal et al.



14.8.3 Building the 3D-QSAR Model of Thiazolyl-Pyrazoline-Derived
Compounds

The experimentally reported compounds were classified into two sets, training and
test, using sphere exclusion method. This step resulted in test set with 11 compounds,
while the remaining 27 molecules in training dataset. Wizard for variable selection
and building of QSAR model was employed using stepwise forward multiple
regression method with default values for generation of 3D-QSAR model
(Fig. 14.3c).

Fig. 14.3a An alignment of thiazolyl-pyrazoline derivatives

Fig. 14.3b Calculation of steric, electrostatic, and hydrophobic descriptors
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14.8.4 Validation of Developed 3D-QSAR Model

Reliability of generated 3D-QSAR model is established using internal and external
validation protocols. Statistical criteria setup for testing reliability of generated
model is (correlation coefficient) r2 and (cross-validated correlation coefficient) q2

> 0.6 and (predicted correlation coefficient) pred_r2 > 0.5. The descriptors selected
in QSAR model were E_337, E_832, E_424, S_151, S_335, and E_721. Alphabets
preceding the chosen descriptors refer to the steric and electrostatic class, while the
associated numbers represent their corresponding spatial grid points (Fig. 14.3d).
The 3D-QSAR model obtained was:

pIC50 ¼ 0:2989 �0:0020ð Þ � E 337½ � þ 3:2763 �0:5560ð Þ � S 335½ �
þ 0:1785 �0:0003ð Þ � E 832½ � þ 0:4938 �0:0033ð Þ � E 424½ �
� 11:7460 �0:3402ð Þ � S 151½ � � 0:6486 �0:0019ð Þ � E 721½ �
þ 5:0198

14.8.5 Model Cross-Validation

As described previously, validation of QSAR model was performed using both
internal and external protocols. The statistical parameters for generated QSAR
model comprised of r2 (0.9751), q2 (0.9491), pred_r2 (0.9525), standard error
value, r2_se (0.0966), q2_se (0.1380), and pred_r2_se (0.1282) which validates
model as reliable (Fig. 14.3e). The detailed study can be seen in our paper (Goyal
et al. 2015).

Fig. 14.3c Generation of QSAR model
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Among the various computational tools available for drug discovery, the perfor-
mance of each method differs with the target protein, other information, and
resources used. Even though computer-aided drug discovery has been employed
extensively, some advantageous targets such as interactions between protein-protein
or protein-DNA are still difficult issues due to the massive size of interaction sites.
Interfaces which are not user-friendly, a large number of variables, and the expertise
required to derive successful results are a few problems faced in this field.

Fig. 14.3e Parameters calculated for cross-validation of generated QSAR model

Fig. 14.3d The QSAR model generated
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Nevertheless, ongoing efforts to make user-friendly softwares and protocols have
improved the issues and promise better tools in the future.
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Advanced In Silico Tools for Designing
of Antigenic Epitope as Potential Vaccine
Candidates Against Coronavirus

15

Mehak Dangi, Rinku Kumari, Bharat Singh, and Anil Kumar Chhillar

15.1 Introduction

Coronaviruses are remarkably large, positive-stranded RNA viruses that are
enveloped with the nucleocapsid having helical symmetry. The corona in coronavi-
rus is a Latin word that means a “crown”, and it indicates to the typical presentation
of virions underneath electron microscopy with a periphery of hefty, globular surface
projections similar to that of a crown. Coronavirus is a pathogen associated with
severe respiratory symptoms and was first identified from the nasal cavities of
sufferers with the common cold in the early 1960s (de Groot et al. 2013; Brown
et al. 2012). These were named human coronavirus OC43 and human coronavirus
229E. A total of 40 sequenced genomes of different strains of coronavirus are
accessible from National Center for Biotechnology Information (NCBI), out of
which 7 are pathogenic to humans. A coronavirus, i.e. SARS-CoV, was responsible
for outbreak of severe acute respiratory syndrome (SARS) in the year 2003, whereas
Middle East respiratory syndrome coronavirus (MERS-CoV) caused the most recent
outbreak in 2012 causing acute respiratory disease in affected people with signs of
fever, cough and difficulty in breathing. After first reported from Saudi Arabia in
2012, this novel virus has also dispersed to other countries like the United States and
was known to have high death rate. MERS-CoV infections are highly communica-
ble, and no explicit antiviral cure has been designed for it till date (Azhar et al. 2017).
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It compelled us to apply the well-known reverse vaccinology (RV) approach on
available proteome of coronavirus. RV approach has been successfully applied on
many prokaryotes, but there are very few known applications on eukaryotes and
viruses. So, it is worthwhile to explore the potential of this approach to identify
potential vaccine candidates for coronavirus. RV basically does the in silico exami-
nation of the viral proteome to hunt antigenic and surface-exposed proteins. This
approach was initially applied successfully to Neisseria meningitidis serogroup B
(Kelly and Rappuoli 2005) against which none of the prevailing techniques could
develop a vaccine. The present book chapter is intended to explore the potential of
RV approach to select the probable vaccine candidates against coronavirus and
validate the results using docking studies.

15.2 The Elementary Concept of Reverse Vaccinology

Undoubtedly, the traditional approaches for vaccine development are fortunate
enough to efficiently resist the alarming pathogenic diseases of its time. However,
the traditional approach suffers from certain limitations like it is very time-
consuming, the pathogens which can’t be cultivated in the lab conditions are out
of reach, and certain non-abundant proteins are not accessible using this approach
(Rappuoli 2000). Consequently, a number of pathogenic diseases are left without
any vaccine against them. All these limitations are conquered by reverse
vaccinology approach utilizing genome sequence information which ultimately is
translated into proteins. Hence all the proteins expressed by the genome are accessi-
ble irrespective of their abundance, conditions in which they expressed. The credit of
fame of reverse vaccinology should go to the advancements in the sequencing
strategies worldwide. Accordingly, improvement in the sequencing technologies
has flooded the genome databases with huge amount of data which can be computa-
tionally undertaken to reveal the various crucial aspects of the virulence factors of
the concerned pathogen. Reverse vaccinology is based on same approach of com-
putationally analysing the genome of pathogen and proceeds step by step to ulti-
mately identify the highly antigenic, secreted proteins with high epitope densities.
The best epitopes are selected as potential vaccine candidates (Pizza et al. 2000).
This approach has brought the unapproachable pathogens of interest in spotlight and
is evolving as the most reassuring tool for precise selection of vaccine candidates and
brought the use of peptide vaccines in trend (Sette and Rappuoli 2010;
Kanampalliwar et al. 2013).

15.3 Successful Applications of Reverse Vaccinology

Bexsero is the first universal serogroup B meningococcal vaccine developed using
RV, and it has currently earned positive judgement from the European Medicines
Agency (Gabutti 2014). Whether it is discovery of pili in gram-positive pathogens
which were thought to not have any pili or the sighting of factor G-binding protein in
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meningococcus (Alessandro and Rino 2010), the reverse vaccinology steals all the
credits from other conventional approaches. Most of the applications of RV are
against prokaryotes and very few against eukaryotes and viruses because of com-
plexity of their genome. Corynebacterium urealyticum (Guimarães et al. 2015),
Mycobacterium tuberculosis (Monterrubio-López et al. 2015), H. pylori (Naz et al.
2015), Acinetobacter baumannii (Chiang et al. 2015), Rickettsia prowazekii (Caro-
Gomez et al. 2014), Neospora caninum (Goodswen et al. 2014) and Brucella
melitensis (Vishnu et al. 2017) are the examples of some pathogens that are recently
approached using this in silico technique in order to spot some epitopes having
potential of being a vaccine candidate. Herpesviridae (Bruno et al. 2015) and
hepatitis C virus (HCV) (Kolesanova et al. 2015) are the examples of the viruses
that are addressed using this approach.

15.4 Workflow of Reverse Vaccinology (with Example
of Coronavirus)

15.4.1 Retrieval of Proteome of Different Strains of Coronavirus
from NCBI

The proteome of different strains of the coronavirus of interest was downloaded from
NCBI’s ftp site (ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/; NCBI Resource
Coordinators 2017). The proteome information is available for download in many
formats including FASTA format for different sequenced viruses. Strains pathogenic
to humans were selected for further analysis. Among them a single strain was
selected as the seed genome on the basis of literature. Sequence similarity searches
using Blastp (http://blast.ncbi.nlm.nih.gov/blast, http://ugene.unipro.ru/) were
performed to reveal the orthologs in different strains (Altschul et al. 1990;
Okonechnikov et al. 2012; Golosova et al. 2014). Multiple sequence alignment
(MSA) was done via ClustalW, and the phylogenetic tree was constructed using
NJ method from Unipro UGENE 1.16.1 bioinformatics toolkit (Okonechnikov et al.
2012).

15.4.2 Analysis of Secondary Structure of Proteins from Seed
Genome

Analysis of secondary structure of the proteins of seed genome was done by means
of ExPASy portal. The aim is to forecast the solvent accessibility, instability index,
theoretical pI, molecular weight, grand average of hydropathicity (GRAVY), ali-
phatic index, number of charged residues, extinction coefficient etc. (http://web.
expasy.org/protparam/; Gasteiger et al. 2005).

15 Advanced In Silico Tools for Designing of Antigenic Epitope as Potential. . . 331

http://www.ncbi.nlm.nih.gov/pubmed/25818402
http://www.ncbi.nlm.nih.gov/pubmed/25751377
ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/
http://blast.ncbi.nlm.nih.gov/blast
http://ugene.unipro.ru
http://web.expasy.org/protparam/
http://web.expasy.org/protparam/


15.4.3 Subcellular Localization Predictions and Count
of Transmembrane Helices

Virus-mPLoc was used to identify the localization of proteins of virus in the infected
cells of host (http://www.csbio.sjtu.edu.cn/bioinf/virus-multi/; Hong-Bin Shen and
Kuo-Chin Chou 2010). This information is important to understand the destructive
role and mechanism of the viral proteins in causing the disease. In total six different
subcellular locations, namely, host cytoplasm, viral capsid, host plasma membrane,
host nucleus, host endoplasmic reticulum and secreted proteins, were covered. These
predictions could help in formulation of better therapeutic options against the virus.
As per the protocol of RV, secreted and membrane proteins are of special interest,
therefore, filtered for further analysis. To predict the number of transmembrane
helices TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/; Krogh
et al. 2001) was used.

15.4.4 Signal Peptides

Signal peptides are known to impact the immune responses and possess high epitope
densities. Moreover, most of the known vaccine candidates also possess signal
peptides. Hence, it is worthwhile to predict signal peptides in proteins prior to
epitope predictions. Signal-BLAST web server is used to predict the signal peptides
without any false predictions (http://sigpep.services.came.sbg.ac.at/signalblast.html;
Frank and Sippl 2008). The prediction options include best sensitivity, balanced
prediction, best specificity and detect cleavage site only. We choose to make the
predictions using each option, and the proteins predicted as signal peptide by all the
four options were preferred for further investigation.

15.4.5 Adhesion Probability

The most appropriate targets as vaccine candidates are those which possess the
adhesion-like properties because they not only mediate the adhesion of pathogen’s
proteins with cells of host but also facilitate transmission of virus. Adhesions are
known to be crucial for virulence and are located on surface which makes them
promptly approachable to antibodies. The stand-alone SPAAN with a sensitivity of
89% and specificity of 100% was used to carry out the adhesion probability
predictions, and the proteins with having adhesion probabilities higher than or
equal to 0.4 were selected (Sachdeva et al. 2004).

15.4.6 BetaWrap Motifs

BetaWrap motifs are dominant in virulence factors of the pathogens. If the proteins
are predicted to possess such motifs, then they are appropriate to be taken under
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reverse vaccinology studies. BetaWrap server is the only online web server to make
such predictions. The proteins having P-value lower than 0.1 were anticipated to
contain BetaWraps (http://groups.csail.mit.edu/cb/betawrap/betawrap.html; Bradley
et al. 2001).

15.4.7 Antigenicity Predictions

For added identification of the antigenic likely of the proteins, they were subjected to
VaxiJen server version 2.0. It is basically an empirical method to hunt antigenic
proteins. So, if the proteins are not found antigenic using other sequence-based
methods, then they can be identified using this method. This step confirms the
antigenicity of proteins selected using above-mentioned steps (http://www.ddg-
pharmfac.net/vaxijen/VaxiJen/VaxiJen.html; Doytchinova and Flower 2007).

15.4.8 Allergenicity Predictions

For being a probable vaccine candidate, the protein should not exhibit the
characteristics of an allergen as they trigger the type-1 hypersensitivity reactions
causing allergy. Therefore, to escape out such possibilities, the proteins were also
subjected to allergenicity predictions using Allertop (http://www.pharmfac.net/
allertop; Dimitrov et al. 2014) and AlgPred tools (http://www.imtech.res.in/
raghava/algpred/submission.html; Saha and Raghava 2006a, b).

15.4.9 Similarity with Host Proteins

To check whether the filtered proteins possess any similarity to host proteins or not,
the standard Blastp (http://blast.ncbi.nlm.nih.gov/blast) searches were performed. In
case of sequence similarity, there is a feasibility of generation of immune responses
against own cells.

15.4.10 Epitope Mapping

Predicting the epitopes binding to MHC class I is the main decisive phase of the
RV to carry out valid vaccine predictions. The epitopes showing their affinity for
T-cells were first selected via IEDB (http://tools.immuneepitope.org/mhci/),
ProPred-I (http://www.imtech.res.in/raghava/propred1/; Singh and Raghava
2003), BIMAS (http://www-bimas.cit.nih.gov/molbio/hla_bind/; Parker et al.
1994) and NetCTL tools (http://www.cbs.dtu.dk/services/NetCTL/; Larsen et al.
2005). For the epitope to be included in the hit list, it must be predicted by any
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three of these four mentioned tools. For making the predictions of B-cell epitopes,
BepiPred (http://www.cbs.dtu.dk/services/BepiPred/; Larsen et al. 2006) and
ABCPred tools (http://www.imtech.res.in/raghava/abcpred/ABC_submission.
html; Saha and Raghava 2006a, b) were used. The overlapping B-cell and T-cell
epitopes were identified.

15.4.11 Docking of the Predicted Epitopes with HLA-A*0201

The predicted epitopes were docked with receptor that is HLA-A*0201 using
ClusPro (http://cluspro.bu.edu/login.php; Kozakov et al. 2017) that is an automated
protein-protein docking web server. The literature searches provided the information
of conserved residues of the receptor site. The default parameters were used for
docking (Comeau et al. 2004a, b; Kozakov et al. 2006).

15.5 Results and Discussion

15.5.1 Retrieval of Proteome from NCBI

A total of 40 different sequenced strains of coronavirus are available at NCBI.
Among them 7 strains are pathogenic to humans. Various information regarding
source, host and collection of these strains are presented in Table 15.1 and 15.2. This
information can be obtained from NCBI’s genome database, the Virus Pathogen
Database and Analysis Resource and Genomes OnLine Database (Liolios et al.
2006; Pickett et al. 2012). The MERS strain is taken as seed genome as it is the
most prevalent and disastrous strain among others. Its proteome consists of total
11 proteins as shown in Table 15.3. The results of sequence similarity to reveal
orthologs using Blastp are shown in Table 15.4. The sequences with greater than
30% identity score are considered as homologs. The phylogenetic tree is depicted in
Fig. 15.1 and the MERS-CoV, taken as seed genome, found clustered with different
Bat coronaviruses.

15.5.2 Analysis of Secondary Structure

The results of analysis of secondary structure of the proteome using ExPASy tools
are shown in the Table 15.5. From the analysis of charge on the residues and pH
values, it is concluded that six of the proteins are basic and positively charged unlike
allergens which are acidic in nature. However, five proteins are acidic and show
negative charge. The negative GRAVY score of five proteins justify them to be of
hydrophilic nature with majority of the residues positioned towards the surface. For
the rest of six proteins, the GRAVY score is positive; it means that these are
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hydrophobic proteins. The proteins with less than 40 value of instability index are
quite stable than those with higher values. All the proteins are having the molecular
weight less than 110 kDa except 3 (YP_009047202.1, YP_009047203.1 and
YP_009047204.1). This exhibits the effectiveness of lightweight proteins as targets
as they can be easily purified because of their low molecular weights. The protein
YP_009047204.1 is reported as a spike glycoprotein. It is acidic with prominent
negative charge, with negative GRAVY score which suggests its hydrophilicity and

Fig. 15.1 Phylogenetic tree of 40 different strains of coronavirus using whole genome sequences
(Alignment of genome sequences is done using ClustalW, and tree is created using NJ method from
Unipro UGENE 1.15.1 bioinformatics toolkit)
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presence on surface. However the envelope protein YP_009047209.1 and membrane
protein YP_009047210.1 are basic and hydrophobic.

15.5.3 Subcellular Localization Predictions

Figure 15.2 depicts the subcellular localization of proteins of the seed genome, i.e.
MERS-CoV. Only one protein was predicted to be localized in host cytoplasm,
four in host membrane, two in both host cell membrane and endoplasmic reticu-
lum (ER) while two in only ER, and two are left unrecognized. The known spike
protein is predicted to be localized in host ER. From these results we decided to
pick the proteins which are located in host membrane or were predicted to be
localized in both host membrane and ER. The two are known envelop protein and
membrane protein from bibliographic studies, and along with that, the known
spike protein was also included in the filtered results. Out of the filtered proteins,
only two (YP_009047210.1 and YP_009047208.1) contain more than two trans-
membrane helices, therefore filtered out. The results of transmembrane helices
prediction are tabulated in Table 15.6. Figure 15.3 depicts the subcellular
localization of proteins of all the four selected genomes using Virus-mPLoc
prediction tool.

Fig. 15.2 Subcellular localization of seed genome proteins predicted using Virus-mPLoc
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15.5.4 Signal Peptides

The proteins that are predicted to possess the signal peptides by Signal-BLAST web
server are YP_009047204.1 and YP_009047205.1. The results of Signal-BLAST
web server are tabulated in the Table 15.7.

15.5.5 Adhesion Probability

This step takes into account the concept of adhesion-based virulence. Adhesions
cause pathogen recognition and initiation of inflammatory responses by the host.
SPAAN predicted 2 (YP_009047204.1 and YP_009047205.1) out of 11 proteins of
MERS strain as adhesive (Table 15.8).

15.5.6 BetaWrap

Only one protein (YP_009047204.1) was predicted to contain BetaWrap motifs
within it (Table 15.8). Hence, it is considered virulent and might be responsible
for initializing the infection in the host.
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Table 15.8 Table illustrating the prediction results made for selecting adhesion proteins using
SPAAN, BetaWrap predictions and antigenicity predictions using Vaxijen version 2.0

S. no Accession no. Adhesion probability P-value Vaxijen value TMHMM

1 YP_009047202.1 0.439813 No 0.4908 14

2 YP_009047203.1 0.442577 No 0.4884 14

3 YP_009047204.1 0.634711 0.0046 0.4849 1

4 YP_009047205.1 0.635586 No 0.4226 0

5 YP_009047206.1 0.44212 No 0.3288 0

6 YP_009047207.1 0.269269 No 0.4978 0

7 YP_009047208.1 0.237608 No 0.3369 3

8 YP_009047209.1 0.389879 No 0.5119 1

9 YP_009047210.1 0.461965 No 0.5503 3

10 YP_009047211.1 0.690125 No 0.6036 0

11 YP_009047212.1 0.342692 No 0.6078 0

The transmembrane prediction results using TMHMM are also tabulated

Table 15.7 The signal peptide prediction results for proteins of MERS coronavirus strain

S. no. Accession no.
Signal blast
(Sensitivity) Specificity

Balanced
prediction Cleavage site

1 YP_009047202.1 No No No Yes

2 YP_009047203.1 No No No Yes

3 YP_009047204.1 Yes Yes Yes Yes

4 YP_009047205.1 Yes Yes Yes Yes

5 YP_009047206.1 No No No Yes

6 YP_009047207.1 No No No Yes

7 YP_009047208.1 No No No Yes

8 YP_009047209.1 No No No No alignment found,
unable to predict

9 YP_009047210.1 No No No No alignment found,
unable to predict

10 YP_009047211.1 No No No Yes

11 YP_009047212.1 No No No No alignment found,
unable to predict
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15.5.7 VaxiJen 2.0

A total of 9 out of 11 proteins of MERS strain were predicted antigenic (prediction
values greater than 0.4). The protein with accession number YP_009047206.1 and
YP_009047208.1 were among the filtered proteins, however, not predicted
antigenic, therefore filtered out. As a result, only four proteins
(YP_009047204.1, YP_009047205.1, YP_009047207.1 and YP_009047209.1)
were kept for further analyses.

15.5.8 AlgPred and Allertop

None of the 11 proteins of MERS-CoV possessed any clue of allergenicity as per
prediction results from AlgPred and Allertop tools; it means that no vigorous
immune responses will be mounted if the epitopes from these proteins will be
adopted as vaccine candidates.

15.5.9 Similarity with Host Proteome

None of the protein of MERS strain shows similarity with the proteins of host that
demonstrates that the epitopes from these proteins can safely elicit the required
immune response without the hazard of autoimmunity.

15.5.10 Epitope Mapping

In total 12 different 9-mer epitopes with potential to bind to receptors of both B-cell
and T-cell were predicted. The list of the predicted epitopes can be found in the
Table 15.9 and are specific for MERS-CoV strain. All these epitopes displayed no
conservancy with proteins of other human and non-human pathogenic strains.

15.5.11 Docking Analysis

Docking permits to reveal the binding energy or potency of connection among
epitopes and the receptor in appropriate orientation. The ClusPro docking server
was used to dock the predicted 90 epitopes against HLA-A*0201. The structure of
the receptor was available from PDB and was optimized before docking to free it
from the complexed self-peptide (4U6Y, Resolution 1.47 Å, Bouvier et al. 1998).
PEPstr (Peptide Tertiary Structure Prediction Server; Kaur et al. 2007) was used to
derive the tertiary structure of the predicted peptides.
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Figure 15.4 depicts the quaternary structure of the receptor HLA-A*0201 with its
conserved active site known to form complex with the peptides (Bouvier et al. 1998).
The binding energy results obtained after performing docking analysis are listed in
Table 15.9.

The 9-mer epitope VVCAITLLV at site 21 of protein YP_009047209.1 docked
to the receptor with smallest amount of binding energy (�951.7) and 12 hydrogen
bonds. The next epitope in the list was also from the same protein
YP_009047209.1 at site 27, i.e. TLLVCMAFL. The predicted structure of the top
5 potent epitopes on the basis of docking energy and the snapshots of docking results
are displayed in Figs. 15.5, 15.6, 15.7, 15.8 and 15.9.

The most chief restriction for developing a safe and sound vaccine against any of
the virus is to identify the protective antigens. The present study is an effort of
application of reverse vaccinology approach to investigate a choice of coronavirus
proteomes to identify possible vaccine targets. This technique has demonstrated to
be a competent way to forecast 12 different epitopes from the selected seed genome.
These epitopes are from spike glycoprotein, NS3 protein, NS4B protein and enve-
lope protein. Unfortunately none of the epitope is found conserved in other strains,
and all are specific to MERS-CoV. The docking analysis studies revealed perfect
binding between HLA-A*0201 receptor and epitopes. The conserved residues of the
receptor site are also involved in H-bonding with epitope residues. Further, the
selected antigenic epitopes must be validated using in vitro and in vivo studies to
confirm their potential as vaccine candidates.

Fig. 15.4 3D structure of
receptor site of HLA-A*0201
visualized using Swiss PDB
viewer 4.10. The residues
shown in globular structure
are known to be conserved
and form hydrogen bonds
with the binding peptides
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Fig. 15.5 (a) 3D Structure of
the 9-mer epitope starting
from 21(VVCAITLLV)
position of protein
YP_009047209.1 (b)
Docking results of epitope
“VVCAITLLV” with A chain
of HLA-A*0201 using
ClusPro. (c) The snapshot
representing the epitope
docked in the pocket of
molecular surface of the
receptor (all the structures are
visualized using Chimera
1.10.1)
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Fig. 15.6 (a) 3D Structure of
the 9-mer epitope starting
from 27(TLLVCMAFL)
position of protein
YP_009047209.1. (b)
Docking results of epitope
“TLLVCMAFL” with A
chain of HLA-A*0201 using
ClusPro. (c) The snapshot
representing the epitope
docked in the pocket of
molecular surface of the
receptor (all the structures are
visualized using Chimera
1.10.1)
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Fig. 15.7 (a) 3D Structure of
the 9-mer epitope starting
from 716(GLVNSSLFV)
position of protein
YP_009047204.1. (b)
Docking results of epitope
“GLVNSSLFV” with A chain
of HLA-A*0201 using
ClusPro. (c) The snapshot
representing the epitope
docked in the pocket of
molecular surface of the
receptor (all the structures are
visualized using Chimera
1.10.1)
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Fig. 15.8 (a) 3D Structure of
the 9-mer epitope starting
from 18(YVDVGPDSV)
position of protein
YP_009047204.1. (b)
Docking results of epitope
“YVDVGPDSV” with A
chain of HLA-A*0201 using
ClusPro. (c) The snapshot
representing the epitope
docked in the pocket of
molecular surface of the
receptor (all the structures are
visualized using Chimera
1.10.1)
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Fig. 15.9 (a) 3D Structure of
the 9-mer epitope starting
from 160(KMGRFFNHT)
position of protein
YP_009047204.1. (b)
Docking results of epitope
“KMGRFFNHT” with A
chain of HLA-A*0201 using
ClusPro. (c) The snapshot
representing the epitope
docked in the pocket of
molecular surface of the
receptor (all the structures are
visualized using Chimera
1.10.1)
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Machine Learning: What, Why, and How? 16
Salma Jamal, Sukriti Goyal, Abhinav Grover,
and Asheesh Shanker

16.1 Introduction

Machine learning involves a set of algorithms which deal with the automatic
recognition of hidden patterns in data and making predictions about the future
unseen data (Kohavi and Provost 1998). It has been defined by Arthur Samuel
(1959) as “Field of study that gives computers the ability to learn without being
explicitly programmed” (Simon 2013). As quoted from Tom M. Mitchell’s defini-
tion of machine learning which is “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with experience E”
(Mitchell 1997). Due to its importance, machine learning has become the integral
part of analysis pipeline in this era of ever-increasing amounts of data.

The fundamental part of machine learning is to learn from the known properties
of the data and from past experiences and then give accurate predictions on new
cases based on learning from the trained sets. A specific set of methods/algorithms
including decision tree-based learning, support vector machines, Bayesian networks,
instance-based learning, and artificial neural networks has been used for training the
model system. Various parameters are needed to be tuned to optimize the perfor-
mance of the learned model systems (Bishop 2006). Machine learning helps in
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finding solutions to a wide range of problems, and its applications include search
engines, information retrieval, bioinformatics, cheminformatics, disease diagnosis,
speech and handwriting recognition, image processing, and many more to mention.

16.1.1 Types of Machine Learning

Machine learning is usually classified into two types based on the availability of the
data and the input given to the learning system; these include supervised learning
and unsupervised learning approach (Stuart and Peter 2003). A third type of learning
approach, rather less frequently used, is the reinforcement learning approach.

16.1.1.1 Supervised Learning
In the supervised learning approach which is also known as the predictive approach,
the task is to predict for the unknown from a labeled set of training data (Mohri et al.
2012). The training data comprises a set of input objects say i, which are basically
represented by vectors describing the properties of the objects and the corresponding
output classes, forming input-output pairs. Consider the input space as X and output
space as Y in the training data and an example which lies in the form, {(xi, yi)i ¼ 1 to N}n;
then xi is the feature vector of the i-th object of the training data and yi where y is the
output label of the i-th object. These properties, whichmay be anything, say the age and
height of a person contain information about the input objects and are known as
features or attributes. It is advised that the number of features must not be too large
as it would result in many dimensions which may confuse the learning algorithm. A
supervised learning approach examines the training data and results in a function using
which it further attempts to determine the output class for unobserved cases (Murphy
2012). Various supervised learning algorithms use a subset of training data, known as a
validation set, to determine the accuracy of the learning algorithm by means of
cross-validation.

16.1.1.2 Unsupervised Learning
In unsupervised learning, also known as descriptive learning, the data is unlabeled
and the task is to find some hidden interesting patterns in the data (Murphy 2012).
This differentiates the unsupervised learning approach from the supervised learning
and the reinforcement learning. The data consists of only input space which lies in
the form {(xi,)i ¼ 1 to N}, and there are no input-output pairs. This algorithm does not
use any explicit output labels; therefore, it uses various other approaches such as
clustering of the input data based on the similarities in the features and further
placing the unseen instances into one or the other cluster (Daumé 2012). Other
approaches used by unsupervised learning include discovering the most contributing
attributes employing dimensionality reduction techniques like principal component
analysis (PCA) and also by determining the correlated variables using graph theory.
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16.1.1.3 Reinforcement Learning
Reinforcement learning is a less commonly used area of machine learning in which
learning is associated with a reward or a punishment and the behavior of the learning
algorithm or agent is based on a set of environment states. The task of the agent is to
determine the ideal behavior and maximize the rewards (Sutton and Barto 1998).

16.1.2 Applications of Machine Learning

Machine learning is used widely in the plethora of tasks, mostly for classification
purposes; some examples include email filtering, web page ranking, disease diagno-
sis, face detection, and many more (Alex and Vishwanathan 2008).

Through machine learning, a system can be generated which can sort the emails
by redirecting received emails containing significant information into the inbox, sent
mails in the outbox, and other emails about discounted products and offers into the
spam section. The learning algorithm is trained to classify the mails based on the
information they carry and process them automatically as spam or not spam
(Tretyakov 2004).

One of very interesting application of machine learning is information retrieval
where when a user enters a query in a search engine, it displays a list of web pages
sorted according to the significance of the information they contain matching the
user’s query term. The training data consists of the content of various web pages, the
link structure, etc., and the learned system classifies the information as relevant or
irrelevant (Yong et al. 2008).

Another application of machine learning is face detection in security systems
where the computer system or the software identifies a person or tells if the face is
unknown. The system takes into account various features like the complexions,
person wearing glasses or not, hairstyle, expressions, shape and size of eyes, nose,
etc. and learns to recognize a person based on these features (Brunelli and Poggio
1993).

Machine learning can also be used in the disease diagnosis. The learned model
predicts if a person suffers from a particular disease or not. The system uses all the
data related to the disease including the associated symptoms, the histological data,
the time period, and regional information as attributes and deduces if a person is a
sufferer or non-sufferer (Sajda 2006).

Translation between two documents is a tedious task as one needs to fully
understand a text prior to its translation plus it involves huge chances of loss of
accuracy of information and grammatical errors. Machine learning has proved to be
quite successful in automatic translation of the documents making it fast and
accurate.

Optical character recognition (OCR) involves electronic translation of images of
the handwritten documents, say scanned documents, into machine-readable lan-
guage like ASCII code. The technique is used for entering data into the system for
a wide range of documents that include passports, bank statements, printed receipts,
and other different documents. The role of machine learning in OCR is to classify a
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character into a character region; the features of the character regions are already
stored in the classifier. Whenever a new character comes across, the classifier tries to
match the properties of the character to the character region and assigns a region best
matching the properties (Dervisevic 2006).

There are other areas where machine learning is applied efficiently like in
bioinformatics, computational and systems biology, and cheminformatics which
include bioactivity data analysis, gene expression data classification and gene
prediction, protein structure prediction, identification of biomarkers, and many
more. Various learning algorithms have been increasingly used for analyzing gene
expression data from microarrays for more accurate phenotypic classification of
diseases and diagnosis in addition to the prediction of novel disease-associated genes
(Jamal et al. 2017; Moore et al. 2007). Protein structure prediction, which is one of
the most complex problems in structural biology and bioinformatics, has also been
addressed by machine learning methods (Cheng et al. 2008). Machine learning
algorithms have been widely used for generating predictive classification models
which could identify probable active compounds from large unscreened chemical
compounds libraries (Singh et al. 2016).

16.2 Steps to Build a Machine Learning Model

16.2.1 Inputs in the Form of Instances and Features

Machine learning is basically training a model using some objects and then
performing predictions on some other objects. An instance can be any example,
object, case, or item to be classified by the learned model system. The instance is an
object used by the learning algorithm for training a model and on which the model
carries out the predictions. These objects or instances are represented by feature
vectors (Christopher 2006). Features, also known as descriptors or attributes, are the
set of predetermined quantifiable properties of an object; say in flower classification,
an object is the flower, so the features might be color of the flower, number of sepals,
number of petals, sepal length, petal length, etc., the objects are encoded as features,
and then these features are used to decide the class for the object (Murphy 2012). If
the instance is a molecule, the chemical information encoded within the molecule is
transformed into a mathematical representation of that molecule which is known as
the molecular descriptors or features. A number of commercial and free molecular
descriptor generation software are available which include ADAPT (Valla et al.
1993), ADMET Predictor [Simulations Plus Inc., Lancaster, CA], Dragon [Talete,
Milano, Italy], JOELib (JOELib/JOELib2 cheminformatics library), Marvin Beans
[ChemAxon], Molecular Operating Environment (MOE; Chemical Computing
Group Inc. 2015), PaDEL (Yap 2011), PowerMV (Liu et al. 2005), and many more.

Choosing a subset of features which contain relevant information toward the
classification to overcome the dimensionality curse and simplify the classification
process is a primary step in machine learning.
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16.2.2 Feature Selection

Feature selection is a method that involves discovering an optimal subset of features
from the original set of features. The accuracy and robustness of some machine
learning algorithms depend on the number of features chosen to represent the
objects/instances (Mitchell 2014). Feature selection techniques, one of the most
significant steps in machine learning, are used to simplify and fasten the learned
system generation process and increase the accuracy of the classification by reducing
the dimensionality and noise from the data. The irrelevant features, those which do
not give any information in making predictions by the classifier, add noise and
increase the complexity of the data. In feature selection, descriptors which contribute
most toward the prediction task have been searched. A subset of relevant features,
though may be a few in number, prove to be extremely important for the prediction
task (Daumé 2012). The remaining irrelevant features are not considered during the
training process.

Another issue to be taken care of is the redundancy in the descriptors. If two
features have very similar values for the objects, then they are highly correlated and
thus can be discarded without much information loss (Ethem 2009).

The basic principle behind feature selection techniques is testing each subset of
features and finding the subset which decreases the error the most. Two methods are
employed in the subset selection process, backward selection and forward selection.
The backward selection method starts with the complete set of features and removes
the features by deleting one feature at a time. The process continues until the removal
of a feature increases the error. In forward selection algorithm, the process starts with
an empty set of features, and then the features are added one by one till the error is
decreased (Guyon and Elisseeff 2003).

16.2.3 Methods to Search Features

16.2.3.1 Best First
The best-first search approach employs greedy hill climbing algorithm and derives a
subset of features. Once this subset is obtained, its features are examined for the
information gain. A new feature is defined on the basis of the information available
from the features of this subset, and then previously chosen features are removed.
The procedure is repeated until all the features have been taken into account (Dang
and Croft 2010).

16.2.3.2 Exhaustive Search
Exhaustive search is a simple approach which starts from a random point, selects an
empty set of features, and then performs a comprehensive search over all probable
subsets of features (Karuppasamy et al. 2008).
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16.2.3.3 Genetic Search
The genetic search approach uses the genetic algorithm and finds an optimal feature
subset. The data is in the binary form, i.e., a feature is either present or absent from
the subset. Further the fitness function values, the larger the better, for these features
are calculated. This process is continual till better solutions are obtained (Tiwari and
Singh 2010).

16.2.3.4 Greedy Stepwise
The algorithm performs a greedy forward and backward search throughout the
feature space. The algorithm either starts with no attributes or does a random
selection of attributes considering the most descriptive attributes and discards the
remaining ones. The process stops when addition or deletion of attributes effect the
accuracy of prediction (Farahat et al. 2011).

16.2.3.5 Scatter Search
Unlike other feature selection algorithms, the scatter search is a directed search
which includes a predefined reference subset of diverse attributes. This subset acts as
a reference point and an attempt is made to increase its diversity. Further, the search
is applied and the reference set is updated, and the procedure terminates when a
predecided threshold is achieved or the search no longer produces improved results
(López et al. 2006).

16.3 Machine Learning Algorithms

16.3.1 Naïve Bayes

The Naïve Bayes (NB) algorithm is a simple classifier that employs Bayes formula
and estimates the probability of an object belonging to a particular class. The
classifier assumes that the occurrence of one feature does not relate to the presence
or absence of any other feature and considers all attributes as statistically indepen-
dent of each other. For example, an animal is an elephant if it has large ears and has
trunk and tusks; all these features are dependent on each other, but the Naïve Bayes
classifier considers all these features as independently contributing toward the
probability of the animal of being an elephant. The algorithm computes the posterior
probability of each class, and the object is placed in the class which is the most
probable (Friedman et al. 1997). The Bayesian classifier provides a flexible approach
to machine learning where the probability for each hypothesis can be increased or
decreased and the test instances are assigned the class based on the observed data,
i.e., it calculates the prior probability and then the posterior probabilities. The
Bayesian learning-based NB classifier finds its application in a wide range of
classification problems (Mitchell 2014).
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16.3.2 Random Forest

Random Forest (RF) classifier is an ensemble classifier developed by Leo Breiman.
The algorithm uses decision trees which are generated by randomly selecting the
features from the training data. The nodes of the tree are the features, the branches
are the values, and the edges correspond to the classes. Each node in the tree links to
an attribute, and each branch from this node represents a value of that attribute. The
classifiers consist of a forest of trees which are then used to categorize a new
instance. Initially the tree, at each node, uses the subset of features chosen randomly,
and the best subset is used to split the node. The attribute which has the maximum
information gain provides the best prediction and thus is selected as the decision-
making attribute (Ali et al. 2012). The classifier does not involve pruning of the trees,
and each tree is grown as long as possible, and the process is terminated when each
attribute has been incorporated at least once or if all the training instances associated
with that attribute have the same value. When a test instance is encountered, each
tree is examined for the features at the nodes, and the instance is assigned the class
which is the output of the larger number of trees (Mitchell 2014).

16.3.3 Support Vector Machines

Support vector machines (SVM) are non-probabilistic classifiers that use a kernel
function and attempts to find a hyperplane in a high-dimensional space. The algo-
rithm tries to find a linearly separating hyperplane amid the two classes, and then the
margins of the hyperplane are maximized. The support vectors lie on either side of
the margins of the hyperplane. In case of high-dimensional data, the algorithm
makes use of kernel functions which convert the original input space into nonlinear
input space. For SVM to perform multiclass classification task, the algorithm will
reduce it to several binary classification problems. The various kernel functions
include linear, radial basis function (RBF), polynomial, and the sigmoid kernel. The
efficiency of the SVM classifier depends on the choice of the kernel function and
kernel parameters and one more parameter, which is the trade-off between training
error and the margin (Platt 1998). The use of the type of the kernel function depends
on the type of the classification problem; however, RBF is the kernel of choice in
most cases. The SVM training generates learned model system which classifies the
test instances into any of the two categories which are on either side of the separating
hyperplane (Hsu et al. 2003).

16.3.4 Artificial Neural Network

Artificial neural network (ANN) is a widely used algorithm inspired by the central
nervous system and works on the same principle as the human brain works. ANNs
are generally complex interconnected neurons which transfer messages to and from
each other. The algorithm consists of three layers, an input layer where the input is
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given, a hidden layer where the processing takes place, and an output layer which
records the output. A number of features are fed into the input unit which is then
forwarded to the hidden unit, and the hidden unit further feeds these features to the
single output layer. The edges that connect these layers are the weighted neurons,
and during the training phase, the algorithm tries to fluctuate these weights for the
system to learn to connect between the input and output layers (Mitchell 1997).
Initially, the weights are varied in the hidden layer based on the features in the input
layer following which the output units are computed based on the hidden layer
features and weights.

16.3.5 k-Nearest Neighbors

The k-nearest neighbor algorithm (kNN), also known as the lazy learning algorithm,
is one of the simplest nonparametric machine learning algorithms which is based on
instance-based learning. The algorithm takes as input the training instances and
assigns a test instance the class voted by the majority of its closest neighbors, i.e.,
where k is a positive integer. Mostly, the value of k is kept small if k ¼ 1 the
algorithm will assign the instance same class as of its nearest neighbor (Mitchell
2014). The training instances lie as position vectors in the feature space and the
distance between the training instances and the query is calculated. Euclidean
distance matrix is generally used to calculate the distances. To increase the accuracy
of the classification, weights can be added to the closest neighbors so that they
contribute more toward the classification. The effectiveness of the classifier depends
on the value of k; it is preferred to choose an odd value for k in the binary
classification problems (Altman 1992).

16.4 Model Validation

16.4.1 Testing Set

A learned model system generated is only effective if it can make the prediction for
the previously uncharacterized data which is known as the testing set. The model
systems are generated using the training data in which the class to which a particular
instance belongs is already known. However, the model systems generated are
validated to assess the performance of the classification algorithms using the testing
data in which the outcome is not already known to the learned system. The test set is
a set of instances that did not have any role during the learning of the model system.

16.4.2 Cross-Validation

To gain insights into the performance of the learned system on previously unknown
data and to use the best parameter values for generating the model, cross-validation
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technique is used. An internal assessment of the learned system is performed by
breaking the training data into subsets which are known as validation sets. The
validation sets are used for tuning of the parameters during the formation of the
classifiers.

16.4.2.1 N-Fold Cross-Validation
In n-fold cross-validation, the training data is divided into N equally sized folds, and
each time during the learning process, N-1 folds are employed for training, and the
onefold left is used as test set. This procedure is repeated N times until every fold has
been used as the test set at least once following which the average performance over
all the folds is taken to produce a single output. Usually, five- or tenfold cross-
validation is used depending upon the dimensions of the training set.

16.4.2.2 Leave-One-Out (LOO) Cross-Validation
In LOO cross-validation, if the training data is comprised of K instances, K-1
instances are used to generate the model, and the remaining one instance is used
as the testing set. K-learned systems are obtained at the end among which either any
of the K model is used as final learned system or a newly learned system can be
generated on the whole data using the best parameter values selected by cross-
validation. The LOO form of cross-validation makes comprehensive use of the data
and thus is computationally very expensive.

16.4.3 Evaluating Classifier Performance

A variety of statistical figures have been suggested to test the predictive ability of the
learned model system. A learned system is not considered as an accurate system if it
produces an error on training data predictions. In case of binary classification
problems, the instances are divided into true positives, TP (positive prediction);
true negatives, TN (negative prediction); false positives, FP (negative predicted as
positive); and false negatives, FN (positive predicted as negative). There are various
metrics used which include true positive rate or sensitivity or recall, (TP/(TP + FN)),
which is the proportion of the positive predictions. True negative rate or specificity,
(TN/(TN + FP)), is the percentage of negative predictions identified as negative.
Another very popularly used metric is precision (TP/(TP + FP)) also referred to as
positive prediction value, which is the fraction of positive predictions which are
actual positives. Accuracy (TP + TN/(TP + TN + FP + FN)) is the percentage of the
correct positive and negative predictions. A good model system is one which gives
highly accurate prediction on training data; however, accuracy alone cannot be used
as a measure for classification tasks as it will always predict the majority class for all
the instances. A balanced measure is required to overcome the accuracy paradox.
F-measure or F-balanced score, (2 � PrecisionxRecall/Precision + Recall), is the
harmonic mean between precision and recall which is used to evaluate the accuracy
of the model systems.
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The performance of the learned systems can also be visualized by computing
curve between sensitivity and 1-specificity; the plot is known as receiver operating
characteristic (ROC; Fig. 16.1). The area under curve (AUC) value can be computed
from the ROC plot which gives information about the performance of the learned
systems. The value of AUC lies between 0 and 1 which is the best possible value. A
range of other useful evaluation metrics have also been proposed which can be used
depending on the requirement of the classification task (Demsar 2006).

16.5 Machine Learning Software

The following software suites are the implementations of various machine learning
algorithms:

16.5.1 Open Source Software

• dlib, a C++ based machine learning library
• OpenNN, a C++ implementation of neural networks
• Torch, LuaJIT-based computing framework for machine learning algorithms
• ELKI (for Environment for Developing KDD-Applications Supported by Index-

Structures), a Java-based platform for knowledge discovery in databases
• Orange, C++ and Python-based machine learning suite
• Scikit-learn, largely Python-based machine learning library
• R, a programming language that implements a range of techniques, one among

which is m machine learning
• Weka (Waikato Environment for Knowledge Analysis), a very popular Java-

based suite of machine learning techniques

Fig. 16.1 A ROC plot
generated using Weka
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There is a wide range of other open source software suites including Apache’s Spark,
Intel’s OpenCV (Open Source Computer Vision), Encog, and Shogun.

16.5.2 Commercial Software

• Amazon machine learning, machine learning platform offered by Amazon.
• KXEN modeler.
• Neural designer developed by Intelnics.
• Mathematica, written in Wolfram language.
• STATISTICA Data Miner developed by StatSoft.
• MATLAB (matrix laboratory) is a programming language developed by

MathWorks that allows implementation of machine learning algorithms.

Other commercial software for machine learning includes Microsoft Azure, RCASE,
SAS Enterprise Miner, IBM SPSS Modeler, and NeuroSolutions.

16.6 A Case Study Using Weka Machine Learning Platform

Weka is one of the most popularly used free accessible machine learning suite
developed by University of Waikato, New Zealand (Fig. 16.2). The suite consists
of tools for preprocessing of data, classification, clustering, regression, and
visualization.

Fig. 16.2 Weka: (a) GUI chooser indicating the explorer interface, (b) explorer interface
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16.6.1 Predicting Activity Outcome for Chemical Compounds

The goal of the present study was to generate machine learning-based predictive
model which can find bioactive compounds from a high-throughput bioassay dataset
consisting of the active and inactive compounds.

16.6.1.1 Dataset Description
The high-throughput bioassay dataset was downloaded from the PubChem database
maintained by National Center of Biotechnology Information (NCBI). The bioassay
was conducted to identify inhibitors and substrates of cytochrome P450 2D6. The
dataset consisted of 1623 active and 6338 inactive compounds.

16.6.1.2 Data Preparation
The attributes or features for the compounds were generated using the descriptor
generation software, PowerMV. A total of 179 attributes were generated, and the
problematic attributes were removed. The dimensionality of the dataset was reduced
by removing the attributes having identical values throughout the dataset, using the
RemoveUseless filter of Weka. Figure 16.3 shows reading in the compounds data
and choosing RemoveUseless filter.

Fig. 16.3 Reading in the compounds data and choosing RemoveUseless filter
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16.6.1.3 Training and Testing Set
The resultant significant attributes were saved in CSV (comma space value) format,
and the data was divided into 80% training set which was to train the model and 20%
test set which was used to assess the performance of the generated model.

16.6.1.4 Model Generation Using Different Learning Techniques
The train and test files were converted to ARFF (Attribute-Relation File Format)
using Weka, and the different machine learning algorithms were used to generate the
predictive models using the training set. The machine learning algorithms can be
used by going to “Classify” tab in Weka, and the different algorithms can be chosen
under the Classifier category (Fig. 16.4). The number of folds for cross-validation
can also be specified in the box placed under “Cross-validation.”

Once the model is generated, its performance can be evaluated using the testing
set which can be supplied using “Supplied test set” option available in “Classify” tab
of Weka (Fig. 16.5).

The performance of the model can be improved by changing the machine learning
algorithm used and altering the parameters of the algorithm.

Fig. 16.4 Weka classify tab, model generation using Naïve Bayes classifier
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16.6.1.5 Statistical Assessment of the Generated Models
The suitable metrics can be computed for the data, and the values can be
recorded for the components of the confusion matrix which takes account of
TP, FP, TN, and FN (Fig. 16.6). The various statistical figures of merit which
can be employed have already been discussed in Sect. 16.4.3.

The increasing amount of data generated in recent years and the growing curiosity
in using this data to discover new facts and make better and improved decisions for
the future has led to the development of various robust and effective machine
learning algorithms discussed in this chapter. The types of learning method to be
used depend on the nature of the data and can be employed to various applications of
machine learning to generate learned model systems for prediction.

Fig. 16.5 Supply test set to Weka for evaluation of the generated learning model
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Command-Line Tools in Linux for Handling
Large Data Files 17
Deepti Mishra and Garima Khandelwal

17.1 Introduction

Before the 1990s Unix was well known in scientific community and used exten-
sively by the experts. However, in the beginning of the 1990s, Linus Torvalds started
working on creating a freely available and academic version of UNIX popularized as
Linux which is a stable and reliable operating system (OS). These days it has become
very well known and acceptable in scientific community. Bioinformaticians and
computational chemists are one of the prime users of Linux system because it
handles large data files generated as an output while working in the field of genomics
and proteomics. Handling and mining these files to extract useful information with
basic and some advanced commands of Linux proved as a blessing for people
working in this area.

Linux works on some basic commands which help in the management of files and
system resources. The file system is arranged in a hierarchical structure, as shown in
Fig. 17.1. The top of the hierarchy is traditionally called root (written as forward
slash /). Root user’s home directory, i.e. /root, differs from primary hierarchy root (/).

To gain access to a Linux-based machine, one should first ask the system
administrator to provide an account (username) and password. Once the username
and password is done, one should open the terminal and use basic commands to
handle file and its processing. Some of the basic Linux commands are shown in
Table 17.1.

The one-line description of the UNIX system is also applicable to Linux system,
i.e. “On a UNIX system, everything is a file; if something is not a file, it is a process”.
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For the sake of generalization and simplicity, one can say everything in a Linux
system is a file; however there are some special files which are more than just a file,
e.g. pipes and sockets.

The regular files which contain normal text data are executable files or program
files or output of a program execution. There are some exceptions to say while
keeping in mind that everything is a file in a Linux system, and these are as follows:

• Directories: files that are lists of other files.
• Special files: the mechanism used for input and output. Most special files are in /

dev.
• Links:

a system to make a file or directory visible in multiple parts of the system’s
file tree.

Fig. 17.1 Hierarchy of a
Linux operating system

Table 17.1 Some commonly used Linux commands

Command Description

cd To change the current directory

ls Displays a list of files in the current working directory

pwd Print/display present working directory

exit or logout Leave this session

man Read manual pages on command

cat text file Throws content of text file on the screen
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• (Domain) sockets: a special file type, similar to TCP/IP sockets, providing inter-
process networking protected by the file system access control.

• Named pipes: act more or less like sockets and form a way for processes to
communicate with each other, without using network socket semantics.

List of these file can be listed by giving the following option with ls command.
The -l option to ls displays the file type (Table 17.2), using the first character of each
input line:

17.1.1 Advantages of Linux

1. The very first and important advantage of Linux is that it comes with zero cost.
2. It is portable to any hardware platform.
3. Linux was made to keep on running which means that it is supposed to run

without rebooting it every time.
4. Linux is scalable, secure, and versatile.

17.1.2 Disadvantages of Linux

1. Linux is considered difficult for beginners.
2. There are too many distributions available for Linux OS.

17.2 Partitioning in Linux: Why and How?

It is necessary to have a dual booting hard drive if the user wants to have both Linux
and Windows working on the same machine. Partitioning of the hard drive is needed
in that case. The whole drive can be allocated to a single partition, or multiple ones in
case of dual-booting, maintaining a swap partition. The layout of partition is
described through the partition table which are of two types, namely, Master Boot
Record (MBR) and GUID Partition Table (GPT). MBR is also called as MS-DOS,

Table 17.2 File type
displayed by Linux
command ls -l

Symbol Description

- Regular file

d Directory

l Link

c Special file

s Socket

p Names pipe

b Block device
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whereas GPT is the more recent one. MBR’s two major limitations led to the
development of GPT. These limitations are as follows:

• More than four main partitions are not allowed in MBR which are considered as
the primary partitions.

• 2 TB is the limit for disk partitions.

After the partition the Linux installed workstation has many more things to
explore and make the OS comfortable according to user needs and workstyle. One
such advantage is editing the .bashrc file which is a shell script that Bash runs
whenever it is started interactively. It initializes an interactive shell session. One can
write the commands here for the particular environment and customize it according
to the preferences needed. A common thing to put in .bashrc are aliases that one
wants to be always available. The .bashrc runs on every interactive shell launch. The
user can locate the .bashrc file in the /home directory.

17.3 Advanced Linux Commands

The next level of advanced commands is for experienced Linux user, and these
should be used carefully with the specified option. A list of commonly used
advanced commands is given in Table 17.3.

Table 17.3 Some commonly used advanced Linux commands

Command Description

find Search for files in mentioned directory, hierarchically from the parent directory
moving to sub-directories

grep Search for the specific string/words for a line in a given file

ps Give the status of the running processes with their unique id known as PID

kill Use to kill the process which is not relevant or not responding using pid of that
particular process

pkill Kill the process using pattern specifying job/process. PID is not needed in this case

alias Use to make complicated commands to use in a simple way by assigning an alias
comfortable for the user

df Track on disk usage by the file system

passwd To change or modify the password in terminal

wget Directly download the file from web. It supports HTTP, HTTPS, FTP protocols, and
HTTP proxies

sftp File transfer protocol to transfer file on a remote host

scp Copy file from or to the remote host

ssh Use to connect to the remote host
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17.4 File Permissions

To prevent the accidental deletion or manipulation of a file by others Linux provides
a very safe option to allow its user to prevent their data. There are three types of file
permissions available in Linux:

Read permission (r): content of the file can only be read.
Write permission (w): content of the file can be read and edited.
Execute permission (x): indicates that file can be executed as a program.
To change the permission of a given file a command called chmod is used.

The above explanation gives the flavour of Linux, its history, hierarchical system,
and some basic and advanced commands. To make the user comfortable for handling
large data files, a very good application called Vi/Vim editor is used.

17.5 Vi/Vim

Vi is a visual text editor, developed by William Joy in the late 1970s. Vim is an
improved version (“Vi IMproved”) of vi, which incorporates all the utilities of vi
along with many additional features. Bram Moolenaar made most of vim with the
help of many others. Vim is described as compatible with vi. It is included as “vi”
with most UNIX systems and with Apple OS X. Vim is a charityware whose licence
is GPL-compatible and is distributed freely. Vim is based on commands given in a
text user interface and it also has a GUI mode called gVim. Vim has six modes:

1. Normal mode
2. Command mode
3. Insert mode
4. Visual mode
5. Select mode
6. Ex mode

Vim always starts in normal mode, and insertion mode begins with entering an
insertion or change command. [ESC] or Ctrl þ C returns the editor to normal mode.
In the command mode, a single line of text can be entered at the bottom of the
window.

Recent command history can be looked up by typing :history command in the
normal mode. Help on vim can be obtained by typing :help in the normal mode. This
shows the help menu, which can then be used to select help on a particular topic. A
menu number (n) can be provided with help (:help n) to open the help on the given
topic.
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17.5.1 Inserting Text

i Insert before cursor

a Append after cursor

I Insert at beginning of line

A Append at the end of line

o Open a new line after current line

O Open a new line before the current line

r Replace one character under cursor

R Replace many characters

gi Return to insert mode with the cursor at its previous location

17.5.2 Saving and Quitting

:w Save the edited file

:x Exit, saving changes

:q Exit as long as there have been no changes

:q! Exit without saving any changes

ZZ If any changes have been made, exit and save them

:wq! Exit and save changes

:saveas file or wq! file Save the file with new filename “file”

17.5.3 Copying and Pasting Text

yy or :y Copy the current line

yw Copy the current word

y$ Copy to the end of the line

p Put after the current line

P Put before the current line

17.5.4 Deleting Text

x Delete a character to the right of cursor

X Delete a character to the left of cursor

dw Delete the word from the right of the cursor

db Delete the word from the left of the cursor

:d or
dd

Delete current line

(continued)
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ndd Delete “n” number of lines from the current line (e.g. 5dd – deletes five lines starting
from the current line)

d^ Delete to the beginning of the line

D or
d$

Delete to the end of the line

17.5.5 Undo and Redo

. Repeat last text-changing command

u Undo last change

U Undo all changes to line

Ctrl þ r Redo last change

17.5.6 Changing Text

The change command is basically a deletion command, but it leaves the editor in
insert mode.

C Change to the end of the line

cw Change the word

cc Change the whole line

17.5.7 Read and Write Files

:r file.txt Insert the contents of “file.txt” in current file

:10r file.txt Insert the contents of “file.txt” in current file after tenth line

:1,40 w test Write the lines 1 to 40 in file named “test”

:1,40 w >> test Append lines 1 to 40 in file named “test”

17.5.8 Find and Replace Strings

The search and replace function is accomplished with the :s command. It is com-
monly used in combination with ranges.

/Chr Search “Chr” in the forward direction

?Chr Search “Chr” in the backward direction

n Search for next instance of matching pattern

(continued)
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N Search for previous instance of matching pattern

/Chr/;/AA Searches for “AA” that is preceded by “Chr”

:s/X/Y/flags Replace X with Y according to flags

g Flag – Replace all occurrences of matching pattern

c Flag – Ask for confirmation of the replacement (single replacement)

0-9 Flag – Number of instances to be replaced

:2,10s/X/Y/g Replace all occurrences of X with Y between line 2 and 10

:%s/AA//n Counts the number of occurrences of “AA” in the file

:%s/^$/d Delete all blank lines

:g/Chr/d Delete all lines containing “Chr”

:v/Chr/d Delete all lines except the ones containing “Chr”

& Repeat last :s command

17.5.9 Cursor Movement

All these commands work only in the normal mode.

h Move left

j Move down

k Move up

l Move right

w Move to next word

W Move only to the next blank delimited word

b Move to the beginning of the word

B Move only to the beginning of a blank delimited word

e Move to the end of the word

E Move to the end of blank delimited word

( Move a sentence back

) Move a sentence forward

{ Move a paragraph back

} Move a paragraph forward

0 Move to the beginning of the line

$ Move to the end of the line

1G Move to the first line of the file

gg Move to the top of file

G Move to the bottom of file

nG or :n Move to nth line of the file

fx Move forward to a single character “x”

Fx Move back to a single character “x”

H Move to top of screen

M Move to middle of screen

(continued)
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L Move to bottom of screen

Ctrl þ f Move forward full screen

Ctrl þ b Move backward full screen

Ctrl þ u Move up half screen

Ctrl þ d Move down half screen

17.5.10 Regular Expressions

All the expressions to be matched are preceded by a forward slash (/).

. (dot) Any single character including except newline

* One or more occurrences of any character

< Beginning of a word

> End of a word

[...] Any character specified in the set

[^...] Any character not specified in the set

^ Beginning of the line marker

$ End of line marker

\d Any digit

\D or ^[0-9] Any non-digit

\a Alphabetic character [a-zA-Z]

\A Non-alphabetic character [^a-zA-Z]

\l Lowercase character

\u Uppercase character

\c Ignore case while matching

\s Whitespace character

\t Tab character

\n End of line character

\%nl Match in a particular line

\%>al\%<cl Match between lines numbered “a” and “c”

If the characters mentioned in the options above need to be used literally, a
backlash (\) should always precede them.

17.5.11 Regular Expression Matching

/^Chr10$/ First occurrence of the line containing only “Chr10”

/Chr/þ5 Position the cursor five lines after the first match of “Chr”

/^[a-zA-Z]/ Search for lines starting with any alphabet (both upper and lower case)

/^[a-z].*/ Lines where first character is a-z which is followed by at least a single character

/TTTT$/ Search for line ending with “TTTT”

/\(GC\CG)/ Search for line containing either “GC” or “CG”

(continued)
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/[0-9]*/ Matches if there are zero or more numbers in the line

/\<\d\d\d\> Matches exactly three numbers (digits)

/^[^#]/ Matches all the lines where the first character is not a #

17.5.12 Other Useful Commands

:set nu Display the line numbers

:set nonu Turn off the line number display

:set hlsearch Highlight all the matches of the given pattern

:set noh Remove highlight from current search

:sort Sort contents of the file

:set ignorecase Ignore the case during search

J Join the line below to the current one

ggguG Change all the text to lowercase

Ctrl þ n Auto completes the word or gives suggestions to choose in case of
multiple words matching the pattern

Ctrl þ xl Auto complete a line

g; To go to previous edited positions

Ctrl þ i Move forward in jump history

Ctrl þ o Move backward in jump history

:>> Shift current line to right by two indents

:<< Shift current line to left by three indents

:set shiftwidth ¼ 5 Sets indent size as five spaces

:set autoindent Turns on auto indentation

mx Bookmark current location (x ¼ any key for assigning the bookmark)

`x Jump to the bookmark with the assigned key (x)

:marks Show all the bookmarks with line and column information

:delm x Delete the bookmark assigned to key x

:delm! Delete all bookmarks

:split Split screen horizontally

:vsplit Split screen vertically

:new file.txt or :split
file.txt

Open a new file with name file.txt in a horizontal split screen

:vnew file.txt Open a new file with name file.txt in a vertical split screen

Ctrl þ ww Move between screens

:set scrollbind Set it up in both files on a split screen for to scroll both of them together

:tabnew Opens a new tab

:tabedit file.txt Open a new tab with the file “file.txt”

gt Move between tabs

:tabfirst Move to first tab

:tablast Move to last tab

:tabdo %s/X/Y/g Executes the substitute command in all the tabs

:wqa Write and quit all open tabs

(continued)
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:sh Returns to Linux prompt temporarily. Typing exit on the command
prompt will bring it back to the vim

:!pwd Execute pwd command in Linux prompt and returns to vim by pressing
return

:browse oldfiles To get the list of old files edited using vim

All the commands in vim are case sensitive, including pattern matching (unless
set ignorecase is executed).

17.5.13 Counts

Some commands can be performed multiple times by preceding the command with a
number that specifies how many times a command is to be performed. For example,
5dw will delete five words, and 6fm will move the cursor forward to the sixth
occurrence of the letter “m”.

17.5.14 Visual Mode

As seen above, most of the commands are performed in the normal mode, while
some can be executed in the insert mode. Visual mode lets the user select a block of
text and execute commands on them. User can enter visual mode by typing “v” in
normal mode and can quit using ESC. Arrow keys can be used to move in visual
mode. Some useful commands for visual mode are provided below (these are
executed only on the selected text).

v Enter and select in visual mode

V Select complete row

Ctrl þ v Select blocks/columns

o Move to the other end of the selected area

aw Select a word

> Indent text right

< Indent text left

Y or Y Copy text

d Delete text

~ Toggle case

gu Convert to lower case

The Vi/Vim editor is used to edit the document/codes from within the files, but
there are commands like tools that can manipulate files from the shell prompt. One of
these tools is “AWK” which is explained in detail in the next section.
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17.6 AWK

Awk is an interpreted programming language that allows easy manipulation of
structured data. ‘AWK’ is derived from the names of its creators – “Aho,
Weinberger, and Kernighan”. Awk is mostly used for:

1. Pattern matching and processing text files
2. Generating formatted files
3. Performing string and arithmetic operations
4. Filtering text

Awk reads from standard input or a file and writes to the standard output, which can
also be redirected to a file by using “>” symbol. The basic schema of awk is to search
lines or files for the specified pattern and perform the desired action as shown below:

awk 'pattern {action}' infile > outfile

Awk reads one line at a time from input, performs an action based on a pattern if
provided, and repeats it till the end of input. By default awk splits input lines into
fields, based on spaces and tabs, and each column is assigned to variables as $1,
$2 for column 1 and column 2 and so on. The variable $0 is assigned to the whole
line. The default option of splitting the input on white spaces can be changed by
providing a field separator (FS) using the –F option. The default output separator in
awk is a white space, which can be changed with output field separator (OFS) option.
Other built-in variables in awk are record separator (RS), output record separator
(ORS), number of records (NR), number of fields (NF), name of current file
(FILENAME), and number of records in current file (FNR). Usage for some of the
in-built awk variables is described in the examples below.

17.6.1 Print a File

In this case no pattern is specified, so the action is performed on all the lines of file

awk '{print}' file OR awk '{print $0}' file

17.6.2 Print a Particular Column (Second Column) from a File

This command can be used to print the second column from a file separated with
white spaces.

awk '{print $2}' file
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17.6.3 Print Second and Third Column from a Comma-Separated File

Note the use of –F option followed by the field separator (,) to split the lines on
comma instead of white space.

awk –F, '{print $2, $3}' file

17.6.4 Print the Second Last Column (If the Number of Columns Is
Not Known)

The total number of columns in each line can be obtained by using number of field
(NF) variable as - awk '{print NF}' file. Note the difference with the use of “$” for
obtaining the value stored in the variable, rather than the number of fields.

awk '{print $(NF - 1)}' file

17.6.5 Print the Total Number of Lines in a File

Just like NF, number of records can be obtained by using NR variable. As NR
contains the number of records, when it is used with the “$” sign, it returns the nth
field of the nth record, for example, awk ' {print $NR}' file will print first field of the
first record, second field of the second record, and so on.

awk '{print NR}' file

17.6.6 Print Lines Greater than 70 Characters

The length function can be used to obtain the length of the string (including white
spaces), which can then be used to specify any pattern. The example given below
calculates the length of each line ($0) and returns only those lines having more than
70 characters.

awk 'length($0) > 70' file

17.6.7 Print Lines Where Second Column Is Greater than 50

This will check the length of string in column 2 and will only print the lines which
satisfy the pattern.

awk 'length($2) > 50' file
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17.6.8 Print Every Non-empty Line

Every non-empty line will have at least one field, so NF can be used as a quick
solution to remove any blank lines from the output.

awk 'NF > 0' file

17.6.9 Print Even-Numbered Lines from a File

This can also be altered to print all the odd-numbered lines by using 'NR % 2 !¼ 0'
(note: blank lines are counted as a record).

awk 'NR % 2 ¼¼ 0' file

17.6.10 Calculate and Print Sum of the First Two Columns
for Each Line

Simple arithmetic operations can easily be performed in awk on numerical values.

awk '{print $1þ$2}' file

17.6.11 Calculate and Print Sum of Second Column from a File

BEGIN and AND are special patterns in awk that match the start and end of file. A
BEGIN rule is executed only once, used for performing actions before reading the
first input, such as initializing counters. Similarly an END rule is also executed only
once, after all the input is read, such as printing the final calculations. In the example
given below, we first calculate the total of second column into a variable named
“total”, finish the calculation on the file using END construct, and then print the final
total. When END block is not used, total is printed after reading each record.

awk '{total þ¼ $2} END {print total}' file

17.6.12 Calculate and Print the Average of the First Column

Simply calculate as above using NR as the counter. A separate counter can also be
used (note: blank lines are also counted as records).

awk '{total þ¼ $1} END {print total/NR}' file
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17.6.13 Sort and Print File on the Basis of Length of Each Line

Other Linux commands including sort, grep, and rev can also be combined within
awk to get the desired output. In the example below, the output of print command is
piped to sort command that will output the file in increasing order of the length of
each line.

awk '{ print $0 | "sort -n" }' file

17.6.14 Print Lines with “Chr” (Regular Expression Matching Is Case-
Sensitive)

Awk can also be used for regular expression matching as grep.

awk '/Chr/' file

17.6.15 Print All Lines with “RNA” in Third Column

Regular expression matching can also be performed on a particular column by
restricting the search space.

awk '$3 ~ /RNA/' file

17.6.16 Print Only Second Column from the Lines that Have Either
of the Two Regular Expressions (“Chr” or “Human”)

AND/OR operators can be used with awk to combine regular expression patterns.

awk '/Chr/ || /Human/ {print $2}' file

17.6.17 Print All the Lines that Are Between the Line Starting
with Chr and Human

Some commands can be combined without the use of any of the logical operators.
The following command will print all the instances of blocks of lines occurring
between “Chr” and “Human”, along with all the occurrences of the first match (Chr)
as it looks for more blocks in the file.

awk '$1 ¼¼ "Chr", $1 ¼¼ "Human"' file

17 Command-Line Tools in Linux for Handling Large Data Files 389



17.6.18 Count the Number of Lines with Chr in a File

This command only prints the number of lines with the matched pattern (the line is
counted once even if the pattern is present multiple times in the same line).

awk '/Chr/ {countþþ} END {print count}' file

17.6.19 Adding a Column at the End of File Based on the Calculation
of Other Columns (Difference Between Value in Fourth
Column and Third Column) in the File

Quick calculations and file processing can be performed in awk as shown by a
simple example:

awk '{print $0"\t"($4-$3)}' file

17.6.20 Add a New Line After Every Two Lines

Another quick text processing example where blank lines are added after every
second line, where the first print command prints the record, NR % 2 ¼¼ 0 checks
for the pattern, and second print command adds a blank line.

awk '{print;} NR % 2 ¼¼ 0 { print ""; }' file

17.6.21 Quartile Calculations (Second Quartile) on Second Column
of the File

Using sort and awk, where sort command arranges the file in increasing order; piping
the output to awk where every value is stored in an array (all[NR]) and then after the
END of the file, print the record at the second quartile position.

sort –n –k2 file | awk '{all[NR] ¼ $2} END {print all[int(NR*0.5)]}'

17.6.22 Count Number of Reads in a fastq File

As each read has four lines of information associated with it, dividing the total
number of records by 4 provides the answer. Note the use of END at the start of the
awk, which means that the command is to be executed only after the file reading is
completed.

awk ‘END {print NR/4}’ file.fastq
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17.6.23 Convert fastq to fasta

Simply get the read sequence from the fastq file, and add the “>” sign along with the
read information for the fasta format.

awk 'NR % 4 ¼¼ 1 {print ">" $0 } NR % 4 ¼¼ 2 {print $0}' file.fastq > file.fasta

17.6.24 Get Reads Matching a Sequence Pattern (ATGCGCCC)
and Print Them

Use of NR, AND logical operator (&&), and pattern matching in a fastq file for the
required result.

awk 'NR%4 ¼¼ 2 && $1~/ATGCGCCC/ {print $0}' file.fastq

17.6.25 Separate Reads Based on Their Length (Print Reads > ¼ 35
Base Pairs with All of Their Information) from a fastq File

When we need to store information for the output, multiple variables could be used
in the awk command to store temporary information.

awk 'NR%4¼¼1{a¼$0} NR%4¼¼2{b¼$0} NR%4¼¼3{c¼$0} NR%4¼¼0 &&
length(b)>¼35 {print a"\n"b"\n"c"\n"$0;}' file.fastq

17.6.26 Extract the Amino Acids from a pdb (1ata.pdb) File

This gives us the amino acid sequence making the pdb file in a three-letter code
(if the amino acid sequence needs to be converted into a single-letter code, just pipe
in the output to a sed command containing the substitutions for all the three-letter
codes to a single-letter code).

awk '/ATOM/ && $3 ¼¼ "CA" && $5 ¼¼ "A" {print $4}' 1ata.pdb

17.6.27 Remove Hydrogen from a pdb (1ata.pdb) File

This edits a pdb file to remove all the hydrogen atoms and their coordinates ($12 has
the element value for each atom).

awk '/ATOM/ && $3 ¼¼ "CA" && $5 ¼¼ "A" {print $4}' 1ata.pdb
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Awk as a text processor can be used to edit any type to text/data file even though
most of the examples shown above deal with sequence data. Also, multiple awk
commands can be used together separated by pipes.

17.7 Conclusion

It might seem difficult to work with the Linux command-line environment initially,
but it is well worth to learn it if one is going to deal with large data. The handling and
analyses of large data sets generated in the field of genomics, proteomics, and
bioinformatics can be easily done with Linux command-line and editing tools –

Vi/Vim and AWK. These commands and tools help user to easily manage the data
available at hand in a timely manner.
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Glossary

Ab initio Latin terms meaning “from the beginning.”
Ab initio modeling Uses fundamental principles of physical sciences like statistical

thermodynamics and quantum mechanics to predict the 3D structure of
macromolecule.

Accuracy It is the fraction of the correct predictions among the total number of
instances to be examined.

ADMET A set of parameters for assessing a molecule to qualify for drug candidate
and stands for adsorption, distribution, metabolism, excretion, and toxicity.

Algorithm A procedure for solving a problem.
Alignment See sequence alignment.
Alignment score It represents the number of matches, substitutions, insertions, and

deletions (gaps) within an alignment. Alignment scores are often reported in log
odds units and higher scores denote better alignments.

Allele frequency It is the proportion of a particular allele among all the possible
alleles at the same locus in the population.

Alpha helix A secondary structure in protein having spiral conformation (helix), in
which every backbone N–H group donates a hydrogen bond to the backbone
C¼O group of the amino acid located three or four residues earlier along the
protein sequence.

Amino acid residues In a polypeptide chain, two amino acids combine to form a
peptide bond by removal of a water molecule. Each amino acid in the polypeptide
chain is referred to as an amino acid residue.

Amplified fragment length polymorphism Amplified fragment length polymor-
phism (AFLP) is a PCR-based genetic technique used to selectively amplify DNA
fragments to genotype individuals based on the differences in their alleles.

Attribute It is a quantifiable property of the objects to be classified. Also known as
feature.

Beta sheet It consists of beta strands connected laterally by hydrogen bonds,
forming a pleated sheet. A beta strand has three to ten amino acids in an extended
conformation.

Binning Clustering sequences based on their nucleotide composition or similarity
to a reference database.
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BLOSUM matrices BLOck SUbstitution Matrices, computed using local multiple
alignments of more distantly related sequences, as compared to PAM matrices
where the dataset consisted of closely related protein families.

Bootstrap analysis One of the most popular resampling procedures used to assess
the reliability of branches in a phylogenetic tree. A bootstrap value denotes the
confidence for each unit or taxon of the tree.

Branch length The number of sequence changes along a branch of a
phylogenetic tree.

CASP Critical Assessment of protein Structure Prediction (CASP) is a community-
wide, worldwide biennial experiment for protein structure prediction.

ChIP-seq data Chromatin immunoprecipitation dataset incorporates sequence
information for protein binding regions (transcription factor) on DNA.

Classifier It is a mathematical system based on machine learning algorithm (e.g.,
decision-tree based) that categorizes the unlabeled data to distinct output classes.

Clustering It is a grouping of objects such that the most similar objects are in the
same group. For example, genes can be grouped based on similar structure or
function.

Computer-aided drug designing Computer-aided drug design uses computational
algorithms to discover, enhance, or study drugs and related biologically active
molecules.

Conformations Alternative structures of the same molecule.
Copy number variations A particular gene can have multiple copies which can

lead to the change in genotype and phenotype of an individual.
Correlation spectroscopy Correlation spectroscopy (COSY) is a 2D NMR that

transfers magnetization through chemical bonds between adjacent atoms.
Coverage (in sequencing) The mean number of times a nucleotide is sequenced in

a genome.
Cross-validation It is a validation method used to assess the classifier’s

performance.
De novo See ab initio.
Deoxyribonucleic acid Deoxyribonucleic acid (DNA) is a biopolymer made up of

repeating units of nucleotides containing a sugar moiety (deoxyribose), nitroge-
nous bases (purines, adenine, guanine; pyrimidines, thymine, cytosine), and a
phosphate group.

Discrete optimized protein energy Discrete optimized protein energy (DOPE) is
used to assess the quality of the model via a statistical potential optimized for
model assessment.

Distance The number of observed changes in an optimal alignment of two
sequences, usually not counting gaps.

Docking A method that predicts the preferred orientation of one molecule with
respect to another when bound to each other to form a stable complex. Knowl-
edge of the preferred orientation is used to predict binding affinity between two
molecules.
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Domain It is a compact, conserved 3D part of protein structure that can evolve,
function, and exist independently from the rest of the protein chain.

Dot matrix A graphical method for comparing two sequences where one is written
horizontally across the top and the other along the left hand side. Dots are placed
within the graph to indicate matches of characters appearing in both sequences.

Drug discovery Drug discovery is a process through which potential new
medicines are identified. It involves a wide range of scientific disciplines, includ-
ing biology, chemistry, and pharmacology.

Dynamic programming It involves dividing a large problem into smaller
subproblems and combines their solutions to find the solution of the larger
problem.

Effect size In simple terms, it is a statistical measure to quantify the strength or
effect of a phenomenon. In the context of GWAS, it is the contributory effect of
multiple variations toward disease association.

Encyclopedia of DNA Elements ENCODE is a consortia initiative that aims to
identify the functional elements in the human genome.

Ensemble methods These are meta-algorithms which use more than one machine
learning techniques to achieve higher accuracy of prediction.

European Patent Office (EPO) It is a patent office for Europe and delivers
services under the European Patent Convention.

Exome Refers to the portion of the genome that is the complement of all the exons.
False positives (FPs) The false positives are the proportion of all negatives that still

yield positive test outcomes.
Feature See Attribute.
Feature vector In machine learning a feature vector is an n-dimensional vector

comprising of numerical features of the input objects.
Fold recognition A knowledge-based method that uses existing information of

folds from already known structures to build the structure of a sequence. It
identifies distant relationship among proteins.

Format (file) Sequences can be available in different formats. GenBank and
EMBL have their own individual flat file formats. Additionally, the other com-
monly used formats for nucleotide sequences are plain text format and FASTA
formats.

Frameshift As a result of an insertion or deletion of nucleotides in any number
which is not a multiple of three, a shift occurs in the codon reading frame and
hence changes the amino acid.

Gap Gaps are a result of either insertion or deletion, jointly refer as indels, in
sequences. Gaps are introduced to maximize the matches in any column to obtain
the most optimal alignment (see indel).

Gap penalty A numeric score to penalize gap opening and gap extension in an
alignment.

GDT score Global distance test (GDT) score is another measure of structural
similarity which gives the percentage of residues predicted accurately within
given cutoff.
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Gene flow Introduction/loss of new alleles into/from the gene pool of a population
when organisms move in/out of it. Migration leads to change in the gene pool of
the new population, due to gene flow.

Genetic drift Change in allelic frequency owing to random or chance events.
Genome-wide association study GWAS is an approach for scanning genetic

markers across the complete sets of DNA, or genomes, and identifies genetic
variations linked to any particular disease.

Global alignment Covers the entire length of sequences involved and is used when
the sequences are reasonably similar with almost same length.

Haplotypes Haplotypes constitute group of genes on a chromosome which are
inherited from single parent. It also refers to inheritance of cluster of single
nucleotide polymorphism in an organism.

Hardy-Weinberg equilibrium A principle of population genetics given by GH
Hardy and Wilhelm Weinberg independently in 1908, which states that in a
panmictic (randomly mating) infinitely large population, the allele frequencies
will remain constant over generations in the absence of external perturbations like
natural selection, genetic drift, gene flow, etc.

Heterozygosity Presence of different alleles at a genomic locus.
Hidden Markov model (HMM) A hidden Markov model (HMM) is a statistical

Markov model in which the system being modeled is assumed to be a Markov
process with unobserved (hidden) states.

High-throughput virtual screening HTVS is a computational screening method
which is widely applied to screen in silico collection of compound libraries to
check the binding affinity of the target receptor with the library compounds.

Homolog A set of sequences that share certain level of similarity due to a common
ancestor of the two or more organisms during evolution. Homologs may apply to
the relationship between genes separated by the event of speciation (ortholog) or
to the relationship between genes separated by the event of gene duplication
(paralog).

Homology modeling A comparative modeling method which uses a framework of
already known 3D structure and predicts the structure of a homologous sequence.

Human Genome Project HGP is an international collaborative project undertaken
to sequence all the 3 billion nucleotides that make up the haploid human genome,
with an aim to understand its structure, organization, and function. Draft of the
human genome was published in 2001, and subsequently the HGP was completed
in 2003. Human genome sequencing was also carried out in parallel by Celera
Genomics, a private company.

In silico In silico is an expression used to mean “performed on computer or via
computer simulation.”

In vitro Studies that are performed with cells or biological molecules studied
outside their normal biological context.

In vivo Studies in which the effects of various biological entities are tested on
whole, living organisms usually animals including humans and plants as opposed
to a partial or dead organism.
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Indel An insertion or deletion in a sequence alignment.
Indian Patent Office (IPO) This is a subordinate office of the Government of

India and administers the Indian law of Patents, Designs, and Trade Marks.
Instance It is an input object of a study which can be a chemical compound or

anything which is to be classified.
International Patent Classification (IPC) IPC provides a hierarchical system of

language-independent symbols for the classification of patents and utility models
according to the different areas of technology to which they pertain.

Irregular secondary structure Secondary structures that lack a regular pattern of
hydrogen bonding.

K-tup A parameter to specify the size of the word and control the sensitivity and
speed of the search in programs like FASTA.

Lead A chemical compound that has biological activity likely to be therapeutically
useful but may still have suboptimal structure that requires modification to fit
better to the target.

Linkage disequilibrium LD is defined as nonrandom association between two or
more loci.

Local alignment Covers parts of the sequence and are used to compare small
segments of all possible lengths when sequences have domains or regions of
similarity and have different overall lengths.

Log odds score The logarithm of an odds score. Usually substitution matrices are
populated with log odds scores.

Loops A secondary structure in protein that has irregular structure, which connects
other secondary structure elements. It is present on protein surface and contains
hydrophilic residues.

Machine learning To use algorithms for observing and exploring predictive
relationships by learning from data and performing predictions on previously
unseen data.

Macromolecular crystallography It is a technique to determine atomic 3D struc-
ture of biological molecules such as proteins and nucleic acids (RNA and DNA).

Metabarcoding Metabarcoding is a rapid method of biodiversity assessment that
combines two technologies: DNA-based identification and high-throughput DNA
sequencing. It uses universal PCR primers to mass-amplify DNA barcodes from
mass collections of organisms or from environmental DNA.

Metadata Definitional data that provide information about other data.
Metagenome The DNA representing all cells of organisms obtained from an

environmental sample.
Metagenomics The study or community analysis of genomic DNA obtained from

environmental samples.
Microsatellites Repetitive regions of one to six nucleotides.
Molecular chaperones Protein molecules which assist other proteins to fold.
Molecular clock hypothesis It suggests that molecular sequences change at the

same rate in the branches of an evolutionary tree.
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Molecular descriptors These are a result of a procedure that transforms the
information encoded in input objects into numerical values.

Motif A supersecondary structure in a protein that describes the connectivity
between secondary structural elements and has a particular pattern.

Multiple sequence alignment The alignment of more than two sequences and is
used to detect similarity between several homologs.

Native state of proteins The completely folded three-dimensional functional form
of proteins.

Needleman-Wunsch algorithm A dynamic programming algorithm to generate
global alignment of nucleotide/protein sequences.

Neighbor joining method Involves bottom-up clustering and creates a phyloge-
netic tree whose branches reflect the degrees of difference among the objects.

Next-generation sequencing It refers to non-Sanger-based high-throughput DNA
sequencing technologies where millions and billions of DNA strands can be
sequenced in parallel.

Nuclear magnetic resonance NMR is a method to determine the structure of
macromolecule at the atomic resolution in solution. It is based on the magnetiza-
tion of the nuclei, which aligns it in the magnetic field. The perturbations using
radio-frequency pulse are recorded.

NOESY A method to detect the correlation between two nuclei, which are not
bonded but are closely placed in space.

Non-synonymous changes Codon changes which are accompanied by changes in
the amino acid, leading to alteration in the sequence of the polypeptide.

Operational taxonomic unit Species distinction in microbiology represents a
species or group of species that are operationally different.

ORFans Open reading frames with no homologs in other organisms.
Pairwise sequence alignment An alignment between two sequences.
PAM scoring matrices Developed using closely related protein sequences to

calculate mutation rates. These matrices are widely used to infer evolutionary
relationships.

Pharmacogenetics The study of the effect of genetic factors (or variations) that are
associated with differential drug responses among individuals in a population.

Pharmacophore A pharmacophore is an abstract description of molecular features
which are necessary for molecular recognition of a ligand by a biological
macromolecule.

Phylogenetic tree A phylogenetic tree or evolutionary tree is a branching diagram
or “tree” showing the inferred evolutionary relationships among various
biological species or other entities—their phylogeny—based upon similarities
and differences in their physical or genetic characteristics.

Physicochemical scoring metric It helps to identify native/native-like structures
via an integration of physicochemical features.

Polymorphism A heritable variation which occurs at a frequency of >1% in the
population and may act as the substrate for adaptation/maladaptation.
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Population bottleneck An event that leads to a drastic reduction in the size of the
population due to any sudden environmental changes during natural calamity or
epidemic, etc. is referred to as a population bottleneck. The effects last for at least
one generation. It results in overall reduced variability or heterozygosity due to
loss of alleles from the gene pool.

Positive selection When the number of non-synonymous changes exceeds that of
synonymous, the coding sequence is said to be under positive selection. It is
usually seen in a genomic region which is not essential for the organism and is
likely to be evolving.

Primary structure of protein It is the linear sequence of amino acids linked by
peptide bonds.

Proband The individual through whom a family with a genetic disorder is
ascertained [Source: NIH-National Cancer Institute].

Probes Probe is a single-stranded 25bp oligonucleotide sequence that is comple-
mentary to the target DNA. There are two probes for each SNP to be genotyped.
They differ only at the site of the SNP, with one probe complementary to the
wild-type allele and the second probe to the mutant allele.

Propeller twist In a base pair in nucleic acid structure, the rotation of one base with
respect to the other in the same base pair is called propeller twist.

Protein Protein is a biopolymer made up of repeating units of amino acids.
Protein Data Bank PDB is a structural repository of large biological molecules

solved experimentally.
Protein folding problem The quest to understand the mechanism by which a

protein spontaneously adapts its native structure from its primary sequence,
within the biologically relevant timescale.

ProTSAV Protein tertiary structure analysis and validation (ProTSAV) is a meta-
server approach for evaluating the quality of a protein.

PSI-BLAST Position-Specific Iterative Basic Local Alignment Search Tool is used
to generate 1D sequence profiles between the target and template. It derives a
position-specific scoring matrix or profile from the multiple sequence alignment
of sequences detected above a given score threshold.

Position-specific scoring matrix PSSM is a commonly used representation of
motifs in biological sequences. It is derived from a set of aligned sequences that
are considered as functionally related. It has 1 row for each symbol of the
alphabet, 4 rows for nucleotides in nucleic acid sequences, or 20 rows for
amino acids in protein sequences and 1 column for each position in the alignment.

Purifying selection When the number of non-synonymous changes is less than that
of synonymous changes, the region of the genome is said to be under purifying
selection. This indicates that the sequence is vital for the organism and any
changes in the protein are deleterious; hence such changes are purged out
(or “selected against”) from the population.

Purines A heterocyclic aromatic organic compound consisting of a pyrimidine ring
fused to an imidazole ring.
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Pyrimidines An aromatic heterocyclic organic compound having single ring with
nitrogen.

Qualitative Model Energy Analysis QMEAN is a composite scoring function
describing the major geometrical aspects of protein structures.

Quality assessment It is evaluation of the quality of predicted protein model for
distinguishing correctly modeled structures from others.

Quantitative estimate of drug-likeliness QED is a quantitative metric for
assessing drug likeness.

Quantitative structure-activity relationship Quantitative structure-activity rela-
tionship is an analytical application that can be used to interpret the quantitative
relationship between the biological activities of a particular molecule and its
structure. It derives a correlation between calculated properties of molecules
and their experimentally determined biological activity.

Quantitative trait loci They are the portion of DNA which contains genetic
variations that can be associated with quantitative phenotype such as blood
pressure, height, and weight.

Quaternary structure of protein It is the arrangement of protein subunits in a
multi-subunit complex.

Recombination Recombination is the exchange of genetic information between
two DNA molecules by the process of crossover. It results in new allelic
arrangements and is the raw materials for genetic diversity.

Reference genome (human) The genome initially sequenced by HGP. It is taken
as a reference for the purpose of comparison in different genomic studies.

Regular secondary structure Secondary structures that have a regular hydrogen
bonding pattern.

Restriction fragment length polymorphism RFLP refer to the differences among
individuals of the same species in the length of the DNA fragments obtained
when it is cut using specific restriction enzymes.

Ribonucleic acid RNA is a biopolymer made up of repeating units of nucleotides
containing a sugar moiety (ribose), nitrogenous bases (purines, adenine, guanine;
pyrimidines, uracil, cytosine), and a phosphate group.

Roll A base pair geometry shows the rotation around the slide axis.
Root mean square deviation RMSD of atomic positions is the measure of the

average distance between the atoms of superimposed proteins.
Sanger sequencing Sanger sequencing is a method of DNA sequencing based on

the selective incorporation of chain-terminating dideoxynucleotides by DNA
polymerase during in vitro DNA replication.

Scanning electron microscopy SEM is a form of electron microscopy in which
specimen is scanned with beams of electron to get the image.

Secondary structure of protein Secondary structure is the local substructure of
proteins formed by a different pattern of backbone hydrogen bond interaction.

Sensitivity Sensitivity measures the proportion of positives that are correctly
identified (see True positive rate).
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Sequence alignment It involves arranging two or more sequences into rows, with
characters aligned in successive columns. It is used on DNA, RNA, or protein
sequences to identify regions of similarity/dissimilarity, which may be a conse-
quence of functional and/or structural constraints. A good alignment shows
evolutionary relationship between sequences.

Sequence identity (percent identity) The number of identical bases or residues
(amino acids) in an alignment. Gaps in the aligned columns are not scored.

Sequence similarity (percent similarity) Similar residues/amino acids at
corresponding positions (column of an alignment). In nucleotide sequences,
sequence identity and sequence similarity mean the same. Gaps in the aligned
columns are not scored. Often confused with homology.

Side A base pair geometry shows displacement along an axis in the plane of the
base pair directed from one strand to the other.

Similarity score Sum of the number of identical matches and conservative
substitutions divided by the total number of aligned sequence characters in an
alignment. Gaps not considered.

Simple sequence repeats See Microsatellites.
Single nucleotide polymorphism A single nucleotide polymorphism, or SNP, is a

variation at a single position in a DNA sequence of an individual, for example,
nucleotide AAGCCTA can be mutated to AAGCGTA.

Smith-Waterman algorithm A dynamic programming approach to generate local
alignments. All negative scores are changed to zero to assist in identifying local
alignments.

Specificity Specificity measures the proportion of negatives that are correctly
identified (see True negative rate).

Stop gain A mutation that converts a codon to a stop codon, resulting in premature
termination of peptide. This leads to the production of a truncated protein product
and is also known as nonsense mutation.

Structural bioinformatics A subdiscipline of bioinformatics that deals with struc-
tural data – representation, storage, retrieval, analysis, and visualization. Broadly
divided into two areas – the development of methods to manipulate biological
information to support structural biology and application of these methods to
solve problems and elucidate new biological knowledge.

Structural biology A discipline of biology that tries to understand the molecular
structure of biological macromolecules – proteins and nucleic acids. Addresses
how they acquire a particular structure responsible for a particular function and
how alterations in the structures can affect the function.

Structure Analysis and Verification Server SAVES unifies six quality assess-
ment tools for checking and validating protein structures.

Substitution Matrices Used for scoring purpose such as BLOSUM and PAM
matrices.

Supervised learning It is a type of machine learning based on labeled
training data.

Glossary 401



Synonymous changes Changes which alter the codon but the amino acid still
remain the same. These mostly occur at the Wobble positions in a codon.

Target It is the molecule of interest under study.
TEM Transmission electron microscopy is a form of electron microscopy that uses

electron transmission through ultrathin section of specimen to image the
molecule.

Template modeling score TM score is a measure of similarity between two
conformations of the same protein.

Tertiary structure of protein It is the three-dimensional structure of a protein.
Testing set A dataset used to evaluate the predictive ability of the classifiers.
The US Patent and Trademark Office (USPTO) It is the federal agency for

granting patents and registering trademarks.
Threading A fold recognition method to model proteins that have same fold as the

protein of known structure but do not have significant sequence similarity.
Tilt A base pair geometry shows rotation around the shift axis.
Torsion angle It is the dihedral angle between two planes. In proteins, φ and ψ

angle define the rotation of the polypeptide chain.
Training set A dataset used to find the predictive relationships and train the

classifiers.
True negative rate (specificity) It is the percentage of negative predictions.
True positive rate (recall, sensitivity) It is the percentage of positive predictions.
True positives (TPs) The true positives are the proportion of all positives that yield

positive test outcomes.
Unsupervised learning It is a type of machine learning which draws

interpretations from unlabeled training data.
Virtual screening A computational technique used in drug discovery to search

libraries of small molecules in order to identify those which are most likely to
bind to a drug target (a protein receptor or enzyme).

World Intellectual Property Organization WIPO is the global forum for intellec-
tual property services, policy, information, and cooperation.

X-rays A form of electromagnetic radiation of high energy and very short wave-
length, which is able to pass through many materials opaque to light. Wavelength
ranges from 0.01 to 10 nanometers.
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