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Abstract The most sensitive part of any crypto graphical system is ensuring the
security of key exchange. Classical crypto graphical algorithms make use of one-
way complex mathematical functions, to encode the key. On the other hand, Quantum
crypto graphical systems make use of Q-bits or photons to encode the key. These
methods are useful to secure the key but they come with a lot of trade-offs. Classical
one is complex and requires a lot of mathematical calculations and is easy to use
as it does not involve much hardware but with quantum computing on the rise, it
is a piece of cake for an eavesdropper to break the key and hamper the security.
Quantum Cryptography ensures that safety by not allowing the eavesdropper to
access the data without hampering the key. However the hardware requirements
make it inaccessible. In this paper a novel algorithm of key exchange that involves
the best of both quantum and classical worlds has been proposed. It is called Bi-
Symmetric Key Exchange. Simulation result and subsequent performance analysis
show the efficiency of this algorithm over existing key exchange algorithms with
respect to average computational time for key generation.
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1 Introduction

Classical cryptology is the science of rendering information unintelligible to un-
intended parties. Various methods are used to encrypt and decrypt information. Clas-
sical cryptology relies on a key, which may be a mathematical function, alphanumeric
string or even a matrix which is pre-decided and recorded either on paper or in dig-
ital format. Quantum physics has introduced us to qubits, or quantum bits. They
lose their state when any attempt to measure their state is made. Their state can be
read only once, irrespective of whether intended data can be read or not. This has
sparked interest in using this counter-intuitive probabilistic nature to transmit data
securely. Existing cryptographic protocols are either strictly classical or purely based
upon quantum physics [1, 2]. In this paper we have proposed a new algorithm which
makes use of best of both the worlds to provide a better cryptographic key exchange
protocol and is called Bi-Symmetric Key Exchange.

The organization of the paper is as follows. After the introduction in Sect. 1, brief
overview of existing cryptographic key exchange protocols has been given in Sect. 2.
Section 3 holds description, algorithm, simulation results and performance analysis
of Bi-Symmetric Key Exchange. Section 4 concludes the paper with some highlights
on future works in this area.

2 Overview of Existing Cryptographic Key Exchange
Protocols

2.1 BB84 Protocol

In 1984 Charles Bennet and Gilles Brassard developed the most famous quantum
key distribution protocol known as BB84 [3, 4]. The system makes use of polarized
photons to transmit information. Information is transmitted through fiber-optic cables
or free space. According to the design, none of these channels need to be secure.
Photons follow Heisenberg’s Uncertainty Principle [5] and thus the state of a photon
cannot be determined without affecting its state. If an eavesdropper tries to intercept
the data transmission, he/she cannot do it without changing the state of the transmitted
photons. As a result, presence of an eavesdropper increases error percentage in the
data stream. BB84 protocol encodes the information in non-orthogonal states. Table 1
shows the encoding scheme of BB84.

Table 1 BB84 encoding
scheme

Basis

1
+ 0 —
N
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In this protocol, Sender decides upon a basis, where he denotes two of four
polarization states of a photon by binary zero and the other two polarization states
by binary one, as shown in Table 1. Sender then sends the encoded string to the
Receiver over public channel. Receiver having no idea about the basis that Sender
has encoded in chooses a convention of his own. Thus, he may detect the photon
correctly or incorrectly. In other words, there is a 50% chance that Receiver decodes
the information sent by Sender correctly and a 50% chance that he interprets it
erroneously. Nevertheless, Receiver continues to interpret the string using his own
basis. If an eavesdropper tries to understand the states of the photons, he would have
to detect their state, thus changing their original state. This would result in 50%
drop in integrity of the transmitted information. Now when Receiver would try to
understand the data sent to him, he would have only 50% chance to interpret the data.

Now, Receiver tells Sender about the basis used by him/her over the public chan-
nel. If his basis is compatible with the photon generated by Sender, then Receiver
responds with “MATCH?”, else replies “DISCARD”. The photons for which both of
them have used the same basis is converted to its equivalent binary O or 1, as shown
in Table 1.

Then, Receiver calculates his match percentage. If the match percentage is above
50%, the generated key is used for encrypting data for further communication. On
the other hand, if match percentage is below 50%, it implies the presence of an
Eavesdropper in the channel. Sender and Receiver discard the present key and proceed
to generate a new key until they have a better match percentage. Figure 1 shows the
workflow diagram of BB84.

2.2 Diffie-Hellman-Merkle Protocol

Diffie-Hellman-Merkle key exchange (DHM) [6, 7, 8] is one of the first public-
key protocols as designed by Ralph Merkle and named after Whitfield Diffie and
Martin Hellman. It is a method of securely exchanging cryptographic symmetric
keys over a public channel. Both Sender and Receiver share the same key which is
used to encrypt data for future transmissions. This algorithm is based upon discrete
logarithm problem solving, which takes way too long to be calculated by the fastest
classical computing system [9, 10, 11].

In DHM protocol, Sender and Receiver decide beforehand the multiplicative group
of integers modulo ¢, and d, which is a primitive root modulo c¢. According to the
design, c is a prime number. Values of ¢ and d are chosen such that the shared key
lies between 1 and ¢ — 1. Now, Sender chooses a secret number, say a. Receiver too
chooses a secret number, say b.

Sender sends to Receiver

J =dmod ¢ (1)
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Alice and Bob decide upon the encoding scheme

Alice generates the random key and encodes the photons using the sch

Alice then sends the polarized photons to Bob

Bob chooses any random basis to detect the photons
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Fig. 1 BB84 flowchart
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Start

Private data
a, b, cand d
are chosen

Alice sends Bob Bob sends Alice Bob calculates

J=d%mod ¢ K=d’mod c S =Jmod ¢

Alice calculates

S=Kmod ¢

Fig. 2 Diffie-Hellman-Merkle protocol flowchart

K%mod ¢ = d®mod ¢ = d®*mod ¢ = K’mod ¢ (®)]

This key ‘S’ can now be used sending encrypted data over the public channel.
The workflow diagram of Diffie-Hellman-Merkle protocol is shown in Fig. 2.

3 Bi-symmetric Key Exchange: Proposed Cryptographic
Key Exchange Algorithm

Bi-symmetric Key Exchange protocol improves upon BB84 and Diffie-Hellman-
Merkle by using some of their key features along with its own. In this section we have
proposed our algorithm for key distribution using concepts from both the protocols.
Instead of going in with quantum bits or photons we rely upon classical bits. Tables 2,
3 and 4 demonstrate the algorithm of this protocol.

3.1 Description

The system starts with the creation of a universal set U, which is a set of symbols
to be used to encode the private key by generating random strings. For the sake
of explanation, we have considered a universal set U, consisting of lowercase and
uppercase alphabets and numbers as given in Eq. (6).
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Table 2 Algorithm for main function

Steps Actions

Step 1. | First define the universal set U, private sets Al, B1, A2, B2 and the length L of the
string which is to be generated for key transfer

Step 2. | Ask the user to choose his/her role as a Sender or Receiver

Step 3. | If user chooses Sender

Step 4. | Generate the 1st string using Generator() and pass L as parameter

Step 5. | Ask the Sender to send this string to Receiver over public channel

Step 6. | Enter the string sent by the Receiver

Step 7. | Iterate over the characters in the received string. Pass each character along with the
sets corresponding to generation of 1st key. If Set_Check() returns ‘1°, print ‘0’ or ‘1’
depending on set with which the function was called. If Set_Check() was called with
the set corresponding to ‘0’, print ‘0’ and vice versa. This string of ‘0’ and ‘1’ is the
st key

Step 8. | Generate the 2nd string using Generator() and pass L as parameter

Step 9. | Enter the string sent by the Receiver

Step 10. | Iterate over the characters in the received string. If the character in the generated and
received string belong to the same set (the sets corresponding to generation of 2nd
key), store ‘M’ in an array. Else, store ‘D’ in the array

Step 11. | Send this array to Receiver

Step 12. | For the characters lying in the same set, print the number corresponding to that set to
generate the 2nd key

Step 13. | Else if the user chooses Receiver

Step 14. | Generate the 1st string using Generator() and pass L as parameter

Step 15. | Enter the string sent by Sender

Step 16. | Iterate over the characters in the received string. If the character in the generated and
received string belong to the same set (the sets corresponding to generation of 1st
key), store ‘M’ in an array. Else, store ‘D’ in the array

Step 17. | Send this array to the Sender

Step 18. | For the characters lying in the same set, print the number corresponding to that set to
generate the 1st key

Step 19. | Generate the 2nd string using Generator() and pass L as parameter

Step 20. | Enter the string sent by Sender

Step 21. | Iterate over the characters in the received string. Pass each character along with the

sets corresponding to generation of 2nd key. If Set_Check() returns ‘1°, print ‘0’ or ‘1’
depending on set with which the function was called. If Set_Check() was called with
the set corresponding to ‘0, print ‘0’ and vice versa. This string of ‘0’ and ‘1’ is the
2nd key

Step 22.

Append both the keys to generate the final key
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Table 3 Algorithm for generator function

Steps Actions

Step 1. | Take length L as an argument

Step 2. | Apply the correct seeding for random generator function

Step 3. | Select a random character from the universal set of characters and store it in an array

Step 4. | Repeat the previous step until the length of array created is not equal to L

Table 4 Algorithm for Set_Check function
Steps Actions

Step 1. | Accept a character and a character array as parameters

Step 2. | If the character exists in the character array, return ‘1’

Step 3. | Return ‘0’ as a default case

U = {ABCDEFGHIJKLMNOPQRSTU V WXYZ abcdefghijklmnopqrstuvwxyz 0123456789}
(6)

Before the sender and receiver start the exchange of keys, they decide upon four
private sets which are subsets of the universal set U. These four sets, by design,
would be disjoint in nature and their union would contain fewer elements than the
universal set. Let us name these sets as A, B, A, and B,.

(A1, A2, By, B} C U @)
Al NB =¢ 3
AANB =¢ &)

The size and symmetry of the above four sets would be limited only by the above
stated requirements and the users’ needs. These four sets would be used in pairs of
two, the first pair, A| and B; will be used first to generate the first private key (Key
1) and the other pair, A, and B, will be used to generate the second private key (Key
2). So, at any given instant only one of the two pairs will be in use as the private set
for generation of the key (be it Key 1 or Key 2).

These sets are similar to the polarization conventions used in the BB84 protocol.
In BB84 protocol, two out of the four photon states signify binary zero and the other
two states represent binary one (as shown in Table 1). Similarly, in our system, the
sender and the receiver will decide upon which of the above two sets (i.e. A; and B)
would denote to binary zero, making the other denote to binary one. This is done for
generating the first key, similarly for the second key, one of the two sets (i.e. A, and
B,) would denote to binary zero, making the other denote to binary one.

Let us assume that in our system set A; and A, represent binary 0, and set B
and B, represent binary 1. All of this is done privately and is user dependent. Once
Sender and Receiver have decided on the private sets, they can start the exchange of
keys. Instead of transmitting any photons over free space, both of them will generate
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a string of X characters on their systems. This string of X characters will be generated
over the Universal Set U, where the characters can be repeated. Let Sender be the
sender and Receiver the receiver. Sender then will transmit her string to Receiver. Let
i be the position of the ith element in both Sender’s and Receiver’s string. Receiver
upon receiving the string, checks if the ith character in his string belongs to the same
set containing Sender’s ith character. Since they are generating the first key (Key 1)
so Receiver will be checking the first pair of sets, A; and B;. If both the ith elements
belong to the same private set (either A; or B;) then Receiver prints ‘M’ which
stands for “MATCH”. If both the characters don’t belong to the same set or are not
lying in the private set A or By, he prints ‘D’ which stands for “DISCARD”. In this
way Receiver goes through all the characters of Sender’s string and generates his
own string of X characters containing ‘M’ and ‘D’ which is known as “MATCH-
DISCARD?” string. This string is sent over to Sender. Now both Sender and Receiver
have their own string of X characters and the “MATCH-DISCARD” string which is
also of X characters. They then determine the characters in their string which are at
the same position as that of ‘M’ in the “MATCH-DISCARD” string. If their character
belongs to Ay, they record it as binary 0, else they record it as binary 1. This string
of 0’s and 1’s forms the first key (Key 1).

Now Sender and Receiver interchange their roles. Sender becomes the receiver
and Receiver becomes the sender. They repeat the above process with sets A, and
B, as their private sets. In this way they end up generating the second key (Key 2).
The final private key is produced by applying any complex one-way mathematical
function between Key 1 and Key 2 (over here we are appending both the keys).

Similarities with BB84 protocol. Bi-symmetric key exchange protocol is inspired
from two aspects of BB84 protocol. First the basis and second the Match-Discard
verification process. BB84 used four non-orthogonal polarization states of a photon
as the smallest package of information and were used to transmit information from
Sender to Receiver. Two of these states were mapped to binary 0 and the other two
to binary 1, forming the basis. Our system uses a set of 62 characters comprising of
lower case alphabets, upper case alphabets and numbers. Each of these 62 characters
is the smallest package of information, and a combination of these characters is used
to generate strings and private sets. The private sets Al, B1, A2 and B2 function
in a way similar to basis in BB84 protocol. The strings are used to exchange data
among the Sender and Receiver. This exchanged data is verified using the private
sets through a process similar to the Match-Discard verification process of BB84
protocol.

Similarities with Diffie-Hellman-Merkle protocol. In contrast to BB84 proto-
col, where data transmission is directed from Sender to Receiver, Diffie-Hellman-
Merkel protocol allows exchange of data among Sender and Receiver over a public
channel to generate a symmetric key. Bi-symmetric key exchange protocol is inspired
from this exchange of data among Sender and Receiver, as it allows bi-directional
transfer of data to generate two symmetric keys, which are then used to generate the
final key.
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Table 5 String size and average key size (Key 1 or Key 2) comparison for a private set of 15
elements

Length of 100|200 300 400 |500 |600 |[700 |800 |900 1000
string used

Average 25 36 53 72 92 117 128 132 155 185
length of key

generated

3.2 Bi-symmetric Key Exchange Flowchart

Figure 3 shows the workflow of Bi-Symmetric key exchange algorithm.

3.3 Algorithm of Bi-symmetric Key Exchange Protocol

See Tables 2, 3 and 4.

3.4 Performance Analysis

Figure 4 shows the plot of average computational time for key generation. It indicates
that computational time required to generate a key from a string of different lengths,
based on pre-specified private sets is more or less constant, with a difference of about
500 ps. In Table 2, we get an idea of the size of generated keys for different lengths of
strings used for key generation. Looking at Table 2 and Fig. 1, we can conclude that
generation of a key for practical use takes a time of 0.5—1 ms only. This is in contrast
with other algorithms where time taken to generate a key rises exponentially with
increase in size of keys. This low variance in the time taken for generation of larger
keys and non-exponential nature of increase in the time required to generate larger
keys gives the user flexibility to generate keys of any length, based on his/her security
requirements. They wouldn’t have to think twice before increasing the size of their
key as the increase in computation time is considerably less when compared to other
protocols. The overall time required to generate keys of 150—190 characters is around
amillisecond. As a result, Sender and Receiver have the flexibility to generate a new
key in real time. This would eliminate the need to wait too long or pause exchange
of information to secure the communication with a new key (Table 5).
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Assign size and elements of U, Al,
B1, A2, B2 and the size of string to
be used for key generation.

Enter : 1 for Sender or 2 for Receiver

Choice

is1?

Receive the 1% character Send generated character string to
string from Sender Receiver

Send the 1% generated code to Receive the 1% code from Receiver
Sender

Store the key as Key 1 Store the key as Key 1

Send 2™ generated character Receive the 2™ character string
string to Sender from Receiver

Receive the 2" code from Sender Send the 2™ generated code to
Receiver

Store the key as Key 2 Store the key as Key 2

Pass the Keys through a complex one-way mathematical
function to generate final key

(Here we have appended both the keys together)

Fig. 3 Bi-symmetric key exchange flowchart
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Average CPU Time for key generation with private set of size 12

————— Average CPU Time for key generation with private set of size 15

1200

1000

800

600

400

200

Average CPU Time in micro-seconds

100 200 300 400 500 600 700 800 900 1000
Size of string used for Key generation

Fig. 4 The plot of average computational time required to generate key on the user’s system vs the
length of string used to generate the key by the user

4 Conclusion

BB&4, in spite of being a robust quantum key exchange protocol has a few major
flaws which make it impractical for current use. The sender needs to have access to
a quantum laser setup for generating the photons and the receiver needs to detect
their polarization, both of which add to hardware cost. Moreover, the transmission
of these photons takes place through optical fibers or free space [12]. Whereas Bi-
symmetric Key exchange protocol improves upon these flaws by eliminating the
need of any dedicated hardware setup for generation and transmission of keys. As
a result, this protocol can be used to secure transmissions between mobile and low
powered devices too. The time required for generation of larger keys doesn’t increase
exponentially, which gives the user the freedom to generate key as per his security
requirements. Additionally, the user can choose any number system for implemen-
tation of this protocol for improved encryption. Here we made use of binary system
where the key generated consists of both 0 and 1. Since both the Universal Set U
and the private sets are user defined, he/she can choose any number system like
quaternary, octal, or decimal etc. This makes our system flexible and less prone to
attacks, the required changes for which would be implemented by us based on the
user’s demands. To sum up, Bi-Symmetric Key Exchange is a capable protocol which
takes in better features of existing cryptographic algorithms and produces a powerful
yet simple way of securing today’s key exchange.
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