Data Mining in High-Performance )
Computing: A Survey of Related er
Algorithms

Pradip Kumar Majumder and Mohuya Chakraborty

Abstract Present days parallel, distributed or cloud computing technologies have
been able to regulate large data sets efficiently. An important part of information tech-
nology is extensive data processing. This is because of availability and accelerated
surge of data. Data mining is the process of examining large preexisting databases or
raw data to generate new information for further use. Data mining algorithms must be
efficient and effective in order to produce some meaningful output. The applications
for these are limitless, from predicting a specific disease to very complex applica-
tions. In this research paper, we have compared most popular data mining algorithms
with respect to conceptual architectures and advantages and disadvantages of them.
Finally, we have proposed a new efficient data mining algorithm named as sifted
K-means with independent K-value (SKIK) algorithm.
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1 Introduction

Cloud computing is a new technology containing pool of resources with large number
of computers. The computation task is distributed to this pool and also provides us
with unlimited storage and computing power which will benefit us to mine large
amount of data.

Tightly coupled systems including shared memory systems (SMS), distributed
memory machines (DMM), or clusters of SMS workstations are connected with
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a fast network in a parallel data mining environment. Loosely coupled processing
nodes/computers are connected by the high-speed network in a distributed computing
environment. Each node contributes to the execution or distribution/replication of
data. It is generally called as a cluster of nodes. Usually, a cluster framework is used
to set up a cluster.

The HPC clusters exploit parallel computing to exert more computation power for
the resolution of a problem. HPC clusters have a large number of computers called
“nodes,” and mostly these nodes would be configured identically. Externally, the
cluster looks like one system. Client programs that run on a node are called jobs, and
they are constantly monitored through a queuing technique for proper use of every
accessible resource. HPC jobs include replication of numerical models or study of
information from logical instrumentation which allow scientists to construct new
science at the use of high-performance computing [1].

Data mining is the process of examining large preexisting databases or raw data to
generate new information for further use. Data mining algorithms must be efficient
and effective in order to produce some meaningful output. Among the numerous
available data mining algorithms, the popular ones are Apriori, DIC, GSP, SPADE,
SPRINT, and K-means algorithms. In earlier days, due to limitations in computing
power, data mining process was slower. Nowadays, the data mining process has speed
up many folds due to the presence of high-performance parallel and distributed com-
puting environments. However, the data available today are very large and growing in
an exponential rate, which need more effective and accurate data mining algorithm to
be deployed. K-means algorithm, despite being one of the most effective algorithms
to be used in a parallel computing environment, has some major limitations, and we
have worked on proposed SKIK algorithm to overcome one such limitation.

The organization of the paper is as follows: Sect. 1 holds the introduction, and
Sect. 2 contains brief discussion of data mining concepts used in HPC environment
along with their pros and cons. Section 3 describes the proposed sifted K-means
with independent K-value (SKIK) algorithm created based on the advantages and
disadvantage of existing algorithms, and Sect. 4 shows the complexity measurement
of SKIK algorithm. Section 5 highlights conclusion to this paper with few focus
points on imminent works.

2 Data Mining Concepts and Related Algorithms

Different data mining concepts including types of machine, parallelisms, load bal-
ance, database layouts, and candidates are discussed in detail in Sect. 2.1. Per-
formance analyses of some of the most popular algorithms vis-a-vis concepts are
provided in Table 1. In Sect. 2.2, various related and most popular algorithms are
explained briefly. A comparative analysis of these algorithms highlighting their
advantages and disadvantages are pointed out in Sect. 2.3.
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Table 1 Comparisons among common concepts used with data mining algorithms [2]

Algorithm | Base Type of | Parallelism| Load DB layout | Concepts | DB type
algorithm | machine | type balance
type

CD Apriori DMM Data Static Horizontal | Replicated | Partitioned
PDM Apriori DMM Data Static Horizontal | Replicated | Partitioned
FDM Apriori DMM Data Static Horizontal | Replicated | Partitioned
IDD Apriori DMM Task Static Horizontal | Partitioned| Partitioned
HD Apriori DMM Hybrid Hybrid Horizontal | Hybrid Partitioned
CCPD Apriori SMS Data Static Horizontal | Shared Partitioned
PCCD Apriori SMS Task Task Horizontal | Partitioned| Shared
HPA Apriori DMM Task Static Horizontal | Partitioned| Partially

replicated
APM DIC SMS Task Static Horizontal | Shared Partitioned
HPSPM | GSP DMM Task Static Horizontal | Partitioned| Partially

replicated
SPADE SPADE SMS Task Dynamic | Vertical Partitioned| Shared
D-MSDD | MSDD DMM Task Static Horizontal | Partitioned| Replicated
SPRINT |SPRINT |DMM Data Static Vertical Replicated | Partitioned
PDT C4.5 DMM Data Static Horizontal | Replicated | Partitioned
MWK SPRINT | SMS Data Dynamic | Vertical Shared Shared
SUBTREE| SPRINT | SMS Hybrid Dynamic | Vertical Partitioned | Partitioned
HTF SPRINT | DMM Hybrid Dynamic | Vertical Partitioned | Partitioned
P-Cluster | K-means | DMM Data Static Horizontal | Replicated | Partitioned

2.1 Concepts

Type of machine used. The main two types of machines are distributed memory
machines (DMM) and shared memory systems (SMS). In DMM, the effort is com-
munication optimization and hence synchronization is implicit in message passing.
For SMS, synchronization occurs via locks and barriers, and the aim is to minimize
these points. Data decomposition is very important for DMM, but not for SMS. SMS
typically use serial I/O, while DMM use parallel I/O [2].

Parallelism type. Task and data parallelism are two major parallelisms used. In
data parallelism, the database is partitioned among P processors. Each processor
performs evaluating candidate patterns/models on its local part of the database. In
task parallelism, the processors perform different computations independently, but
have/need access to the entire database. SMS can connect to whole data, but for
DMM can do this through careful reproduction or specific connection to the local
data. It is also possible for a hybrid parallelism having properties of both task and
data parallelisms.
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Load balance type. Two main load balancing types are static and dynamic load
balancing. In static load balancing, work is partitioned among the processors using
heuristic cost function, and there is no subsequent correction of load imbalances
resulting from the dynamic nature of mining algorithms. Dynamic load balancing
distributes work from heavily loaded processors to lightly loaded ones. Dynamic load
balancing is important in multi-user environments and in heterogeneous platforms,
which have different processor and network speeds.

Database layout type. Usually, the recommended database for data mining is
a relational table having R rows, called records, and C columns, called attributes.
Horizontal database design is used in numerous data mining algorithms. Here, they
collect transaction id (tid) as a unit including attribute values for that transaction.
Other procedures use a vertical database design. Here, they collect a list of all tids
(called tidlist) containing the item with each attribute and the related attribute value.

Candidate concepts. Dissimilar mining procedures use either shared or replicated
or partitioned candidate concept generation and evaluation. All processors check out
a single copy of the candidate set in shared concept. The candidate concepts are
copied on each system, and checked locally, before overall outcomes are achieved by
fusing them in replicated concept. Each processor creates and examines a dislocated
candidate set in the partitioned concept.

Database type. The database itself can be shared (in SMS or shared-disk architec-
tures), partitioned (using round robin, hash, or range scheduling) among the available
nodes (in DMM) or partially or totally replicated.

Table 1 shows a comparison among the common concepts used with most popular
data mining algorithms.

2.2 Most Popular Algorithms

Apriori Algorithm. This algorithm is used for mining common itemsets in large
data sets. The point of view is “bottom up.” We call it candidate generation, where
frequent subsets are available one item at a time, and groups of candidates are checked
against the data. It is aimed to operate on transaction database.

Frequent Itemsets: All the sets holding the item with the least support (designated
by D; for ith itemset).

Apriori Property: All subgroups of frequent itemset have to be frequent.

Join Operation: A set of candidate k-itemsets are generated by joining Dy_; with
itself to find Dy

Prune Step: Any sparse (k — 1)-itemset cannot be a subset of a frequent k-itemset.

Cy: Candidate itemset of size k
Dy: frequent itemset of size k
D; = {frequent items};

STEP 1: Have the support S of each 1-itemset by examining the given database,
correlate S with supmin, and prepare a support of 1-itemsets, D,
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STEP 2: Use Dx_; and join Dy_; to create a set of candidate k-itemsets. And use
Apriori property to prune the infrequent k-itemsets from this set.

STEP 3: Examine the given database to find the support S of each candidate k-itemset
in the find set, correlate S with supp,, and prepare a set of frequent k-itemsets Dy
STEP 4: Is the candidate set=Null, if YES go to STEP 5 else go to STEP 2

STEP 5: Produce all nonempty subsets of 1 for every common itemset 1,

STEP 6: If confidence C of the rule “s=> (1 — s)” (=support of 1/support S of s)’
min_conf, output the rule “s=> (1 — s)”, for every nonempty subset s of 1 [3].

Dynamic Itemset Counting Algorithm (DIC). It is an alternative to Apriori
algorithm. As the transactions are read, the itemsets are dynamically inserted and
removed. Assumptions are made that all subgroups of frequent itemset have to be
frequent. After every T transactions, algorithm stops to add more itemsets. Iltemsets
are tagged in four different ways as they are counted:

Solid box:[ _ confirmed frequent itemset—an itemset we have completed counting
and exceeds the support threshold sup,,;,

Solid circle: O confirmed infrequent itemset—we have completed counting and
it is below sup,yi.

Dashed box: i} imagined frequent itemset—an itemset being counted that sur-
passes SUpmin

Dashed circle: {} imagined uncommon itemset—an itemset being counted that
is below sup,,in

STEP 1: Tag the empty itemset with a solid square. Tag the 1-itemsets with dashed
circles. Discard all other itemsets untagged.
STEP 2: While any dashed itemsets remain.

1. Read M transactions (if at the end of the transaction file, continue from the
beginning). For each transaction, step up the corresponding counters for the
itemsets that appear in the transaction and are tagged with dashes.

2. If a dashed circle’s count surpasses sup,,,, make it a dashed square. Insert a
new counter for it and make it a dashed circle if any next superset of it has all
subsets as solid or dashed squares.

3. Ifadashed itemset has already been counted through all the transactions, make
it solid and stop counting it [4].

Generalized Sequential Pattern Algorithm (GSP). A sequence database is
formed of ordered elements or events. In GSP algorithm, horizontal data format
is used and the candidates are generated and pruned from frequent sequences using
Apriori algorithm.

STEP 1: Each item in database is a candidate of magnitude 1 at the beginning.
STEP 2: for each level (i.e., order of magnitude k) do

1. Examine database to gather support count for every candidate order.
2. Generate candidate magnitude (k+ 1) orders from magnitude k frequent orders
using Apriori.
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STEP 3: Do it over till no common order or no candidate can be found [5].

Sequential PAttern Discovery using Equivalence classes (SPADE). It is an
algorithm to frequent sequence mining using vertical ID list database format, where
each sequence is related with a list of objects in which it appears. Then, frequent
sequences can be found surely using intersections on ID lists. The procedure lowers
the number of database scans and hence also lowers the execution time.

STEP 1: Sequences having singular item, in a single database scan, are measured as
the number of 1-sequences.

STEP 2: Convert the vertical depiction into horizontal depiction in memory and
measure the number of sequences for each pair of items using a two-dimensional
matrix for 2-sequences calculation. Thus, this step can also be performed in only one
scan.

STEP 3: Following n-sequences can then be formed by joining (n — 1)-sequences
using their ID lists. The size of the ID lists is the count of sequences in which an
item occurs. If this number is higher than minsup, the sequence is a frequent one.
STEP 4: If no frequent sequences available, the algorithm stops.

The algorithm can use a breadth-first or a depth-first search procedure to discover
new sequences [6].

Scalable PaRallelizable INduction of decision Trees (SPRINT) Algorithm.
This algorithm builds a model of the classifying characteristics based upon the other
attributes. Classifications provided are called a training set of records having several
attributes. Attributes are either continuous or categorical.

SPRINT algorithm frees all of memory restrictions in contrast with SLIQ algo-
rithm. This is also fast and scalable and can be easily parallelized.

Original SPRINT algorithm has the following steps:
Division(Data D)
if (every point in D are of same class) then
Return;
for every attribute A do
calculate splits on attribute A;
Use best split found to divide D into D; and D»;
Division(D));
Division(D,);

Original Call: Division(Training Dataset)
Prune step is done using SLIQ algorithm [7].

K-means Clustering Algorithm. K-means is an unsupervised learning algorithm
classifies a given data set through a certain number of clusters (assume k clusters)
fixed a priori. Different cluster positions will cause different outcomes. So we must
define k centers, one per cluster which should be placed in a clever manner. So,
placing them as far as possible from each other seems a better choice. This algorithm
tries to minimize “squared error function” given by:
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10=>" > (Iwi —x;10)°

i=1—Sj=1-Si
where
“llw; — x;II” is the Euclidean distance between w; and x;.
“s;” is the number of data points in ith cluster.
“s” is the number of cluster centers

Let W={wy, wy, ..., w, } be the set of data points and X = {xy, X, ..., Xs} be the
set of centers.

STEP 1: Randomly select “s” cluster centers.

STEP 2: Calculate the distance between each data point and cluster centers.

STEP 3: Assign the data point to the cluster center whose distance from the cluster
center is minimum of all the cluster centers.

STEP 4: Recalculate the new cluster center using:

xi=(1/s) > W

j=1-Si

g 9

where “s;” means the data points number in ith cluster.

STEP 5: Recalculate the distance between each data point and new obtained cluster
centers.

STEP 6: If no data point was reassigned, then stop, otherwise repeat from STEP 3
8, 9].

2.3 Advantages and Disadvantages of the Algorithms

Table 2 shows a comparative study about pros and cons of the above-mentioned
algorithms.

3 Proposed SKIK Algorithm

K-means algorithm generates K clusters of the known data set, where every cluster
can be expressed by a centroid which is a concise expression of all the objects present
in a cluster. The main flaws of K-means algorithm are: (i) it is difficult to anticipate
the number of clusters (value of K) and (ii) initial centroids have a big effect on the
concluding outcome. Here, we are introducing a new algorithm sifted K-means with
independent K-value (SKIK) algorithm to overcome these issues.

In data mining, we work on very large data set. We have proposed to sort these
data based on any attribute as per user requirement. We would use parallel heap sort
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Table 2 Advantages and disadvantages of popular algorithms

Algorithm Advantages Disadvantages
Apriori [10] 1. It is easy to apply and easy to figure out 1. Sometimes, a large number of candidate rules
2. It can be used on large itemsets are required which can be costly to compute
2. It goes through entire DB, hence calculating
support is costly
DIC[11] 1. If the data are similar throughout the file and | 1. It is very delicate to dissimilar data
the interval is fairly small, it normally makes | 2. If the date are very associated, DIC counts
on the order of two passes most of the DB and itemset is realized to be
2. It can add and delete itemsets on the fly and actually large
thus extended to parallel and incremental 3. It has performance issues as to how to
versions increment the relevant counters for a specific
transaction
GSP [12, 13] 1. We can enter bounds on the time separation | 1. Repeated DB scanning to compute the

between adjoining items in an arrangement

2. The items present in the pattern element can
stretch a transaction set within a time frame
specified by user

3. Detection of frequent patterns in various
levels as needed by user is possible.
Detecting generalized sequential patterns is
also possible

support of candidate patterns is costly for a
large database

2. It may create patterns that do not exist in the
DB as it generates candidates by linking
smaller patterns without accessing the DB

3. All frequent sequences of length k is kept in
memory to create patterns of length k+1 as it
is BFS pattern mining algorithm. It consumes
a good memory

SPADE [14, 15]

1. It uses vertical DB layout

2. The search space is expressed as lattice
formation and breaks up original lattice into
sub-lattices to process using either BFS or
DFS

3. Efficient support counting method based on
the idlist structure is used and is nearly twice
faster than GSP algorithm. It shows linear
scalability w.r.t. the number of sequences

1. A huge set of candidates generated, specially
2-item candidate sequence

2. Multiple scans of database in mining.
magnitude of every candidate increases by
one at every database scan

3. Inefficient for mining long sequential
patterns. A long pattern causes an
exponential number of short candidates

SPRINT [16, 17]

1. It removes memory constraints that limit
existing decision tree algorithms

2. It consciously averts the need for any
centralized, memory resident data structure

3. It allows analysis of nearly any sized data
set, and it is fast

4. It is easily parallelized which needs few
inclusions to serial algorithm

1. High workload in precisely locating the
optimal splitting point

2. The main time expense is used to sort all
records of the attribute table in the entire
process

K-means [18]

1. Easy to deploy with a massive number of
variables, and it is faster than hierarchical
clustering (if K is small)

2. K-means can produce tighter clusters than
hierarchical clustering

3. An instance can change cluster when the
centroids are recalculated

1. Difficult to predict the number of clusters
(K-value)

2. Initial seeds have a strong impact on the final
results

3. Rescaling the data sets (normalization or
standardization) will completely change
results
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[19] to sort as it uses a parallel approach across the cluster utilizing the available
architecture.
Steps to find initial centroids:

1. From n objects, determine a point by arithmetic mean. This is the first initial
centroid.

2. From n objects, decide next centroids so that the Euclidean distance of that object
is highest from other decided original centroids. Keep a count of the centroids.

3. Repeat Step 2 until n <3 [20].

We will get initial centroids from here and can use them in the proposed algorithm
to calculate “optimal” centroids and K-value.

Determination of K:

The K-means algorithm creates compact clusters to minimize the sum of squared
distances from all points to their cluster centers. We can thus use the distances of
the points from their cluster center to measure if the clusters are compact. Thus, we
adopt the inner-cluster distance, which is usually the distance between a point and
its cluster center. We will take the median of all of these distances, described as

Dye = (1/N) D~ > llw—cil’

i=l—-k weSi

where N is the count of components in the data set, k is the count of original clusters
equal to the number of originally determined centroids, and c; is the center of cluster
Si.

We can also measure the between-cluster distance. We take the minimum of the
distance between cluster centers, defined as

Dbc:min(Hci—chz),wherei: 1,2,...,.k—landj=1i+1,..., k.

Now genuineness, G = Dy,./Dy..

‘We need to decrease the inner-cluster distance, and this measure is in the numer-
ator. So we need to decrease the genuineness measure. The between-cluster distance
measure needs to be increased. Being in the denominator, we need to decrease the
genuineness measure. Hence, clustering with a “lowest value” for the genuineness
measure will provide us the “optimal value” of K for the K-means procedure [21].

We can also evaluate the “optimal” K using both inner-cluster and between-cluster
scatter using the method proposed by Kim and Park [22].

Steps of SKIK:

Start.

Load the data set.

Sort the data using parallel heap sort.

Find initial centroids using previously mentioned procedure.
Determine K (number of clusters) from the centroids.

Calculate the distance between each data point and cluster centers.

A e e
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7. Assign the data point to the cluster center whose distance from the cluster center
is minimum of all the cluster centers.
8. Recalculate the new cluster center using:

xi=(1/s) > W

j=1-Si

where “s;”” means the data points number in ith cluster.

9. Recalculate the distance between each data point and new obtained cluster

centers.
10. If no data point was reassigned, then stop, otherwise repeat from Step 7.

4 Complexity Measurement of SKIK

Sorting may imply initial workload, but once done it will decrease computation time
in many folds.
Time complexity of sorting at Step 3 with n data elements [19]

O(nlogn).
For the Step 4 to find initial centroids, time complexity for segregating the n data
items into k parts and deciding the mean of each part is O(n). Thus, the total time

complexity for discovering the initial centroids of a data set containing n elements
and m attributes (where m is way less than n) is

O(nlogn).
Step 5 is again a partitioning procedure having complexity [22]
O(nlogn).
Steps 610 are same as the original K-means algorithm and hence take time
O(nKR).
where n is the number of data points, K is the number of clusters, and R is the number
of iterations. The algorithm converges in very less number of iterations as the initial

centroids are calculated in a clever method in harmony with the data dispersion.
So, the general complexity of SKIK is the maximum of
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{O(nlogn) + O(nlogn) + O(nlogn) + O(nKR)}
i.e., O(nlogn + nKR)
i.e., O(n(logn + KR)

5 Conclusion

This paper has provided a detailed comparison among six most popular data mining
algorithms which have significant contribution in high-performance cluster com-
putation and artificial intelligence. The algorithms are Apriori, DIC, GSP, SPADE,
SPRINT, and K-means. The paper presents short algorithmic steps about the main
algorithms, explanation of their features, and respective advantages and disadvan-
tages. Several variations of the algorithms exist, and they have been proved to be
suitable based on certain scenarios. In the present days, research has been progress-
ing with the most effective data mining algorithms, applicable with parallel and
high-performance cloud computing, like SPRINT and K-means. We have proposed
SKIK algorithm to improve K-means algorithm to be used with large data set and
HPC architecture. We have shown the measurement of complexity of SKIK as well.
In-depth research work needs to be conducted for extending the capabilities and
complete performance analysis of the SKIK algorithm with respect to other avail-
able variations of K-means algorithm.
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