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Abstract The notion of Hadamard modulo prime (HMP) matrix inherits in basics
that of classical real Hadamard matrix. Namely, by definition, HMP modulo odd
prime p matrixH of size n, is a n × n non-singular overZp matrix of±1’s satisfying
the equality:HHT = n(modp) Iwhere I is the identitymatrix of same size. TheHMP
matrices have an attractive application in the modern cryptography due to the fact of
their efficient employment in constructing of some all-or-nothing transform schemes.
The present paper surveys some recent results on this kind of matrices by revealing
their connections with coding theory, combinatorics, and elementary number theory.

1 Introduction

The HMP matrices can be considered in the broader context of modular Hadamard
matrices introduced by Marrero and Butson [1] in 1973. Notice as well that the
concept of modular Hadamard matrices has recently resurfaced in the engineering
literature during the course of investigation of jacket transforms [2].

In this paper, the focus of attention is on the prime modular matrices motivated by
their important application in cryptography: the so-called all-or-nothing transform
(AONT).

Usually, an AONT scheme is a public (non-confidential, keyless) preprocessing
step when encrypting data with some block cipher encryption. Its essence consists
of providing a certain amount of additional security over and above the block cipher
encryption since to determine any one of the message blocks embedded by that
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transform into a single large block, the potential adversary has to break (somehow)
all corresponding blocks of the cryptogram [3].

In [4] it is shown (among other things) how to construct an efficient AONT scheme
of linear type by exploiting in appropriate way conventional real Hadamard matrix.
Later on, the authors of [5] have proposed an extension of that construction employing
instead of conventional matrix such a matrix of HMP type which enables the size
not restricted to 2 or multiples of 4.

Recently, some newly obtained classification and (non-)existence results onmatri-
ces of the latter kind have been presented in [6] and [7]. On the other hand, the
mathematical concept of AONT scheme has evolved as well (see, the newest articles
[8, 9] devoted to that topic).

The outline of the present survey is as follows. In the next section, the necessary
definitions and preliminary facts are recalled. In Sect. 3, some general results on
HMP matrices, and in the subsequent section some results on HMP matrices whose
size is relatively small with respect to their modulo, are exposed. In Sect. 5, the results
concerning HMP matrices derived by the finite projective planes are exhibited. In
Sect. 6, after a brief reminder of the basic concept and construction of AONT scheme
presented in [4], it is indicated howmatrices of the considered kind can be employed
in such a scheme. Finally, some conclusions and directions for future research are
drawn.

2 Preliminaries

Definition 1 ([5, 7]) A HMP modulo odd prime p matrix H of size n is a n × n
non-singular over Zp matrix of ±1’s such that

HHT = n(mod p) I, (1)

where I is the identity matrix of size n.

As usual, HT denotes the transpose matrix of a given matrix H. Also, further on
H M P(n, p) stands for the set of HMP modulo p matrices of size n.

It is necessary to set out two simple but essential remarks.

Remark 1 Although some authors do not impose invertibility on the (modular)matri-
ces considered [6], I prefer to dobecause of the aforesaid application of corresponding
linear transforms. A necessary and sufficient condition for that is the matrix size n
not to be a multiple of the chosen modulo p. So, further on it is always assumed that
p �= n.

Remark 2 Apparently, each conventional Hadamard matrix is a HMP modulo arbi-
trary prime p > 2 matrix, provided p does not divide the matrix size.
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Example 1 The simplest non-trivial HMP matrix is obtained for n = 7, p = 3, e.g.,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
1 − 1 1 1 1 −
1 1 − 1 1 1 −
1 1 1 − 1 1 −
1 1 1 1 − 1 −
1 1 1 1 1 − −
1 − − − − − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where—has been written instead of −1.

It is easy to see that by permuting the rows/columns or multiplying a row/column
with −1 of a HMP matrix one gets again HMP matrix. This motivates the following
definition relevant in the context of Hadamard matrices (see, e.g., [10, Ch. 14]).

Definition 2 The matrix A of ±1s is called equivalent to the matrix B if the former
is obtained from the latter by the following transformations:

• permuting the set of rows/columns of B;
• multiplying each row/column from a certain subset of rows/columns inBwith−1.

Remark 3 W.l.o.g. when performing these equivalence transformations one can
apply at the beginning all permutations and then all transformations of the second
kind (for details consult [7]).

3 Some Constructions of HMP Matrices

The results exposed in this section are from [5, 6].
First, a construction of HMP matrices which extends Example 1 is described.

Construction 1 Let En where n = pk + 4, k ≥ 0, be a square matrix of size n
consisting of ±1’s with the following description: its first row and column consist
entirely of 1’s; its last row and column consist of −1’s with exception of the corner
entries, and all other entries besides those on the main diagonal are equal to 1.
Notice that E4 is the Sylvester-type Hadamard matrix of size 4.

The proof that En is a HMP modulo prime p matrix is straightforward [5]. By
multiplying the last row and column with −1 and then swapping the first and last
column, one deduces that the matrix En is equivalent to the “diagonal” matrix Dn =
J − 2I where J and I are the all-ones matrix and the identity matrix, respectively,
both of size n.

Analogously to the case of conventional Hadamard matrices, the Kronecker prod-
uct of twoHMPmodulo the same primematrices of sizes n andm is a HMPmatrix of
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size nm. This property allows starting from the matrixG1 = Eq , q = p + 4, to con-
struct an infinite sequence of odd size HMP matrices defined recursively by: Gt =
G1 ⊗ Gt−1, t ≥ 2. Clearly, for the size of Gt it holds: qt (mod p) = 4t (mod p),
and of course, the set {4t (mod p)| t ≥ 1} is a subset of the set Q Rp of quadratic
residues modulo p. Some sufficient conditions for the prime p such that these two
sets coincide (i.e., the order of 4 in the group Z∗

p to be equal to |Q Rp| = (p − 1)/2),
are presented in [5] as follows:

Proposition 1 Let p′ be a prime number.

• if p = 2p′ + 1 is also a prime number then ordp(4) = (p − 1)/2;
• if p = 4p′ + 1 is also a prime number then ordp(4) = (p − 1)/2.

The proof of Proposition 1 is based on facts which can be found, e.g., in [11, p. 123,
p. 197].

Remark 4 Anoddprime p is called aSophieGermain prime if 2p + 1 is also a prime.
Thefirst fewS.Germain primes are: 3, 5, 11, 23, 29, 41, 53, 83, 113, 131, . . .. If both
p and 4p + 1 are primes, p is called sometimes a Stern prime. The first few such
primes are: 3, 7, 13, 37, . . ..

The next necessary condition for the existence of HMP matrix of odd size is
well-known.

Proposition 2 [5] If the size n of HMP modulo p matrix is odd, then n(mod p) ∈
Q Rp.

Consider the case p = 3. Then the above proposition implies that for odd n the
set H M P(n, 3) can be non-empty only if n (mod 6) = 1. In fact, Construction 1
provides for any such n the matrix En ∈ H M P(n, 3) when k is odd. The even size
case is split into two subcases: for n (mod 6) = 4 the same construction provides
HMP matrix whenever k is even; while for n (mod 6) = 2, n > 2, a matrix of this
kind can be constructed by the Kronecker product of Hadamard matrix of size 2 and
En/2. Results of similar type about 5−modular Hadamard matrices are presented in
[6], where it is shown that such matrices do exist if and only if the size n satisfies
constraints: n (mod 10) �= 3, 7 or n �= 6, 11.

Remark 5 Proposition 2 can be generalized for the m−modular Hadamard matrices
of odd size n whenever n and m are co-primes (see, [6, Lemma 2.2] or earlier [1, Th
2.2]).

4 HMP Matrices of Small Size with Respect to Their
Modulo

For basic definitions and facts from coding theory, the reader is referred to [12]. The
classification and (non-)existence results about HMPmatrices of the type considered
in this section and obtained in [7] are based on the following two lesser-known facts:
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(Hereinafter, dist (x, y) denotes the (Hamming) distance between the two vectors

x and y of ±1s while wt (x)
�= dist (x, 1), where 1 is the all-ones vector, is called

weight of x.)

• observation for parity: For the (real) inner product of any two length n vectors x
and y of ±1s, it holds: (x, y) = n − 2dist (x, y), so (x, y) ≡ n (mod 2);

• intersection lemma: For any two vectors x and y of±1swith same length, it holds:
dist (x, y) = wt (x) + wt (y) − 2wt (x ∗ y), where x ∗ y is the vector having −1s
only where both x and y do.

The first proposition to pay attention is the following.

Proposition 3 Let H ∈ H M P(n, p), where n ≤ p + 1. Then H is a conventional
Hadamard matrix.

Corollary 1 If p ≡ 1(mod 4), then the set H M P(p + 1, p) is the empty one.

Proof When p ≡ 1 (mod 4) the existence of conventional Hadamard matrix of size
n = p + 1 contradicts the well-known fact that n must be 1, 2, or n ≡ 0(mod 4)
(see, e.g., [13, Sect. 2.2]). �

Example 2 In particular, the above corollary implies that there does not exist
H M P(6, 5) matrix. The interested reader is referred to [6] for another proof of
this particular case.

The next proposition considers HMP matrices of even sizes less than twice the
modulo.

Proposition 4 Let H ∈ H M P(n, p), where n is an even number such that n < 2p.
Then H is a conventional Hadamard matrix.

The proof of Proposition 4 given in [7] is based on the observation for parity.
Correspondingly, it holds:

Corollary 2 If 2 < n < 2p and n ≡ 2(mod 4), then H M P(n, p) is the empty set.

Next, an assertion with respect to odd size HMP matrices extending a bit the
region where that size varies is given by the following.

Proposition 5 Let H ∈ H M P(n, p), where n is an odd number such that n < 3p,
and let ω = (n − p)/2. Then the matrix H is equivalent to a matrix M having the
following properties:

(i) the first row of M is the all-ones vector 1 (i.e., M is a normalized matrix);
(ii) all remaining rows are of weight ω;
(iii) for arbitrary two distinct rows r′ and r′′ of M, it holds: dist (r′, r′′) = ω.

In addition, n − p ≡ 0 (mod 4) and wt (r′ ∗ r′′) = ω/2.

The proof of Proposition 5 given in [7] makes use of both the observation for parity
and the intersection lemma. An immediate consequence is the following.
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Corollary 3 The set H M P(p + 2l, p), where l ≡ 1(mod 2) and 1 ≤ l < p, is the
empty one for arbitrary prime p.

In particular,

Corollary 4 If p ≡ 1(mod 4) then H M P(2p + 1, p) = ∅; If p ≡ 3(mod 4), then
H M P(2p − 1, p) = ∅.

Example 3 The set H M P(11, 5) is the empty one (see, also [6] about that case).

Remark 6 The first claim of Corollary 4 cannot be inferred by Proposition 2 because
1 is always quadratic residue, while the second could be as well derived by that
proposition since −1 is a quadratic non-residue modulo p ≡ 3 (mod 4).

Remark 7 Properties (iii)–(ii) from Proposition 5 mean that the binary code behind
the rows (excepting the first one) of the matrix M is an equidistant constant weight
code. Note, as well, that a theorem on the equivalence of a conventional Hadamard
matrix of any admissible size and a certain constant weight binary code was proved
in [14].

Proposition 3 shows the non-existence of matrices in H M P(n, p) apart from the
conventional oneswhen n ≤ p + 1. And, putting l = 1 in Corollary 3, it is concluded
that H M P(p + 2, p) is empty for each p. Further, the case of even size p + 3 (except
the trivial p = 3) is managed by Proposition 4. So, the simplest case when a HMP
matrix distinct from conventional onemay exist is that of size p + 4. Observe that the
matrixDp+4, equivalent to the matrixEp+4 given by Construction 1, is an instance of
p + 4 size matrix. Finally, the following theorem completely characterizes all HMP
matrices of this size.

Theorem 1 ([7]) Let n = p + 4 where p is an odd prime. Then
(i) Every H ∈ H M P(n, p) is equivalent to the matrix Dn;
(ii) The cardinality of H M P(n, p) equals to 22n−1 n!

For the proof of this theorem, based on Proposition 5 and Remark 3, the interested
reader is referred to [7].

Remark 8 A careful analysis of the proofs of Propositions 4, 5, and Theorem 1
shows that their assertions remain valid if instead of prime p it is put an arbitrary
odd modulo m, while Proposition 3 is true for any invertible modular matrix.

5 HMP Matrices Derived by Finite Projective Planes

For basic definitions and facts about the finite projective planes, the reader is referred
to [13, Sect. 1.2] or [15, Sect. 13.3.2]. Herein, for his/her convenience, recall the
following:
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Theorem 2 Let (P,L) be a finite projective plane with P and L being the sets of
its points and lines, respectively. Then there exists a constant s, called order of the
plane, such that:

• Every line contains exactly s + 1 points;
• Every point lies on exactly s + 1 lines;
• |P| = |L| = v = s2 + s + 1.

Let P1, P2, . . . , Pv; l1, l2, . . . , lv be lists of the points and lines (arranged in some
way) in the finite projective plane (P,L) of order s.

Definition 3 A binary v × v matrix I = (bkm) with entry bkm = 1 if and only if the
point Pm ∈ lk is called incidence matrix of the finite projective plane (P,L).

The matrix obtained from I by replacing 1 with −1 and 0 with 1 will be referred as
(−1, 1)−image of the matrix I.

Proposition 6 The (−1, 1)-image of incidence matrix of a finite projective plane of
order s > 3 is a H M P matrix modulo any prime factor of s2 − 3s + 1.

The proof follows by Theorem 2 and the definition of finite projective plane which
together imply that the rows of incidence matrix constitute an equidistant constant
weight code with parameters: length v, weight s + 1, and distance 2s.

It is necessary to remind some background from elementary number theory in
order to set out further results on HMP matrices considered in this section.
A particular case of the well-known law of quadratic reciprocity (see, e.g., Sect. 6 in
[16]) is the following fact.

Lemma 1 The number 5 is a quadratic residue modulo odd prime p if and only if
p ≡ ±1 (mod 10).

Recall also that the famous Dirichlet’s theorem on primes in arithmetic progressions
(see, e.g., [17, p. 16, Th. 15]) states that a progression a + dt, t = 0, 1, . . . with two
positive co-prime integers a and d contains infinitely many primes.

Lemma 2 ([7]) Let T (x) = x2 − 3x + 1.
(i) If p is a prime factor of T (s) for some integer s > 3, then p is either equal to

5 or p ≡ ±1 (mod 10);
(ii) For any prime p either equal to 5 or p ≡ ±1 (mod 10), there exist infinite

many primes q’s such that p divides T (q).

The proof of claim (i) is based on some elementary number-theoretic considerations
and Lemma 1 while that of (ii) relies, in addition, on the Dirichlet prime number
theorem.

The main result of this section is the following theorem.

Theorem 3 ([7]) For p = 5 or any prime p of the form p ≡ ±1 (mod 10),
there exist infinite class of H M P modulo p matrices each one of them being the
(−1, 1)−image of incidence matrix of some finite projective plane of prime order.
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Table 1 HMP matrices derived by finite projective planes of prime orders ≤31

Order 5 7 11 13 17 19 23 29 31

Size 31 57 133 183 307 381 553 871 993

Modulo 11 29 89 131 239 5, 61 461 5, 151 11, 79

The proof is carried out taking into consideration Proposition 6, Lemma 2, and the
existence of finite projective plane of order arbitrary prime power (see, e.g., [15,
Sect. 13.3.2] for a construction).

For the prime numbers in the interval [5, 31]considered as orders of finite pro-
jective planes, Table 1 presents the corresponding sizes of HMP matrices with all
possible modulus.

6 Application of HMP Matrices in Some AONT Schemes

Hereinafter, it is given a brief reminder of the description of all-or-nothing transform
(AONT) scheme presented in [4].

Let X be afinite set, called alphabet. Letn be apositive integer, and suppose thatφ :
Xn → Xn , i.e., φ maps an input n−tuple, say x = (x1, . . . , xn) to an output n−tuple,
say y = (y1, . . . , yn), where xi , yi ∈ X for 1 ≤ i ≤ n. Informally, the mapping φ is
an all-or-nothing transform provided that the following properties are satisfied:

• φ is a bijection;
• If the values of any n − 1 of the output variables y1, . . . , yn are fixed, then the
value of each one input variable xi , (1 ≤ i ≤ n) is completely undetermined.

The mapping φ is referred as to a (n, v)−AONT, where v = |X |.
In [4], D.R. Stinson has given an easy method of constructing unconditionally

secure linear AONT by the following theorem.

Theorem 4 ([4], 2001) Suppose that q is a prime power, and M is an invertible
square matrix of size n with entries from the field Fq , such that no entry of M is
equal to 0. Then the mapping φ : Fn

q → F
n
q defined by φ(x) = xM−1 is a linear

(n, q)−AONT.

As an illustration of his method, Stinson has presented example of a linear (n, p)−
AONT, for n ≡ 0 mod 4 and p odd prime, where in place of the matrix M is taken
a conventional Hadamard matrix of size n with entries reduced to modulo p.
The contribution of [5] to the topic of interest can be expressed by the following:

Claim 1 ([5]) The existence of HMP matrices (and corresponding constructions
present so far) with sizes �≡ 0 mod 4 affords the scope of the aforesaid AONTs to be
extended, e.g., for odd sizes. Also, note that such an AONT scheme is highly efficient
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requiring only additions, subtractions and (eventually) multiplication by constant
modulo prime and even can provide opportunity to apply fast transform if such an
algorithm is available.

7 Conclusion

As it is pointed out in [6], dealing with several exceptional cases of relatively small
size and presenting infinite constructions of HMPmatrices initialized in the surveyed
works might be non-trivial in principal. An example in this direction is the infinite
class of odd size HMPmatrices derivable from finite projective planes and presented
in [7].

The HMP matrices inherit the useful properties of the classical Hadamard matri-
ces. However, an advantage in applications might be the existence among them
of such species whose sizes are not restricted to multiples of 4. For instance, the
employment of HMP matrix instead of conventional Hadamard in implementation
of AONT scheme can extend essentially the scope of that cryptographic application
while keeping its efficiency.
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