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Abstract Electroencephalography (EEG) can be used to study various brain activ-
ities related to human responses and disorders. EEG signal is prone to noises which
are caused due to eye movements, power-line interference, muscle movements, etc.
Therefore, to obtain refinedEEG signals for further processing, it should be denoised.
There are several methods by which EEG signals can be denoised, among which
we have used Independent Component Analysis (ICA), Principal Component Anal-
ysis (PCA)-based Equivariant Adaptive Separation by Independence (EASI), and
Wavelet-based unsupervised denoising methods. The performance of these methods
is compared using Signal-to-Noise Ratio (SNR) and Percentage Root-mean-square
Difference (PRD).

Keywords EEG · Denoising · ICA · PCA-based EASI · Wavelet

A. Bhatnagar · K. Gupta (B) · U. Pandharkar · R. Manthalkar · N. Jadhav
Shri Guru Gobind Singhji Institute of Engineering and Technology, Vishnupuri,
Nanded, Maharashtra, India
e-mail: guptakrushna@sggs.ac.in

A. Bhatnagar
e-mail: bhatnagarankita@sggs.ac.in

U. Pandharkar
e-mail: pandharkarutkarsh@sggs.ac.in

R. Manthalkar
e-mail: rrmanthalkar@sggs.ac.in

N. Jadhav
e-mail: jadhavnarendra@sggs.ac.in

© Springer Nature Singapore Pte Ltd. 2019
B. Iyer et al. (eds.), Computing, Communication and Signal Processing,
Advances in Intelligent Systems and Computing 810,
https://doi.org/10.1007/978-981-13-1513-8_76

749

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1513-8_76&domain=pdf


750 A. Bhatnagar et al.

1 Introduction

EEG is a noninvasive technique of recording brain’s spontaneous electrical activities
generatedbyneurons.Thequality of recordedEEGsignals depends onvarious factors
such as external noises like power-line interference and artifacts (musclemovements,
eye movements, etc.). For analysis and processing of EEG signals, it is necessary to
eliminate such noises to obtain more accurate and appropriate results. The corrupted
EEG signal is, hence, preprocessed using denoising techniques which increases the
reliability of EEG data. For removal of artifacts various denoising techniques can be
used, among which ICA, PCA-based EASI, and wavelet denoising are prominently
selected for this study.

Cardoso and Laheld [1] have given the algorithm for blind source separation
known as EASI. The components obtained after PCA are used for extraction of
sources using EASI algorithm. An unsupervised algorithm for artifactual compo-
nent identification is proposed by Mahajan and Morshed [2], which is used here
for components obtained after ICA and EASI. Hazra and Guhathakurta [3] mea-
sured the performance of different denoising algorithms and is measured using SNR
and Mean Square Error (MSE). EEG signal artifacts (ocular) are normally in low-
frequency region, hence, denoising is applied on low-frequency Senthil Kumar et al.
[4] implemented a method to remove ocular artifacts from EEG data using wavelet
transform without an EOG reference channel. Most studies have done analysis on
different techniques for denoising EEG signal but not many have compared ICA,
PCA-based EASI method, and Wavelet denoising.

2 Materials and Methods

In this work, the EEG data taken into consideration has been acquired by Jadhav
et al. [5] using wireless EMOTIV EPOC+with 14 electrodes (placed according to
standard 10–20 system) and sampling frequency of 128 Hz. The protocol shown to
subjects has a part of meditation initially followed by slides of pictures depicting
four types of emotion. The experimental protocol is given in Fig. 1. Images (I1, I2,
I3, and I4) depicting emotions happy, sad, angry, and relax are shown with blank
spaces in between.

Fig. 1 Protocol
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2.1 Independent Component Analysis (ICA)

EEG signals follow all the assumptions of ICAmodel and use of ICAmodel on EEG
has been validated [6]. If we have n different observed signals, namely x1, x2, x3,
… xn and some random variables as s1, s2, s3, … sn. These observed signals can be
expressed in linear combination as [7]

xi � ai1s1 + ai2s2 + ai3s3 . . . ainsn (1)

For i�1, 2, 3 … n where, aij are real constants, where j�1, 2, 3… n.
ICA technique is used to estimate the randomcomponents s1, s2, s3, s4,…, sn which

are also known as the independent components (ICs). In vector-matrix notation, this
mixing model can be expressed as

x � As (2)

To estimate sources, a separationmatrixW should be found. Based on experimen-
tal results on statistical and computational load analysis of various ICA algorithms,
fixed-point Fast-ICA algorithm using tanh nonlinearity with symmetrical orthogo-
nalization is chosen for finding ICs [7].

Fast-ICA implementation for finding Independent Components.
Preprocessing. For better conditioning and making IC estimation simpler, prepro-
cessing is done by centering and whitening [7] on the acquired EEG data x.

Centering—Zero-mean data x̄ is computed as follows:

x̄ � x − Ex (3)

Whitening—Eigen Value Decomposition (EVD) of covariance matrix of x̄ is used
to compute whitened data z

z � ED− 1
2 ETx̄ (4)

where E is orthogonal matrix of eigenvectors, D is diagonal matrix of its eigenvalues.
Fast-ICA algorithm. Algorithm of fixed-point fast-ICA for several units using sym-
metrical orthogonalization is given by Hyvärinen and Oja [8] using which separation
matrix W such that s̃ �Wz is computed. Here, s̃ is the matrix of estimated sources
or independent components. W is updated using the following equation:

wi ← E{zg(wT
i z)} − E{g′

(wT
i z)}wi (5)

where, g(y)� tanh(y),W� (w1, w2, w3 …,wm)T andm is the number of independent
components to be estimated.
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Fig. 2 Cumulative contribution plot

Artifactual component identification and elimination. After finding ICs using
fast-ICA, for identification and elimination of artifactual components, kurtosis prop-
erty of ICs and DWT is used as given in Sect. 2.3.

2.2 Principal Component Analysis Based EASI

In PCA algorithm, data dimension is reduced by getting component with maxi-
mum weight without losing more information. From principal components, i.e.,
compressed data, the individual components found using (EASI).

PCA algorithm. The N-channel EEG signal XMxN is centered to X̄. By applying
rotated orthogonal coordinate system, the data is uncorrelated. CorrelationmatrixRxx

is obtained. The eigenvalues and eigenvectors are found. Eigenvalues are arranged
such that λ1 >λ2 >… λN and accordingly eigenvectors are arranged c1, c2 …, cN.
Where, λ� [ λ1, λ2, …, λN] and C� [c1, c2, …, cN]. Equation 6 is used to obtain
the matrix of principal components [7, 9]

Y � CTX̄ (6)

where Y� [y1, y2 … yN]T. To select the number of principal components, the contri-
bution rate of each component is to be considered using eigenvalues. The contribution
rate of each component is found by λi

∑N
k�1 λi

.

The cumulative contribution rates are plotted in Fig. 2 and eliminated according
to its weight. Components of cumulative contribution rate below 99.604 are selected
to avoid unwanted data loss. Hence, 12 components among 14 are selected [9].
EASI algorithm. For Blind Source Separation (BSS), EASI is used. EASI algorithm
is based on serial updation where transformation on data as well as parameter is
equivalent. Assuming source signal to be s and x is matrix of selected principal
components, then x can be given as x = As, where, A is the mixing matrix.

To estimate these sources, we find a separating matrix W such that

Y � Wx (7)
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Here, y is very close to s. Ideally, y� s for obtaining accurate sources which
implies A�W−1. The separating matrix for EASI algorithm is updated as follows
[9, 10]:

W(k + 1) � W(k) − μ
[
Y(k) · YT(k) − I + g(Y(k)) · YT(k) + g

(
YT(k)

) · Y(k)]W(k)
(8)

where μ is learning rate, I is identity matrix, W� [W1, W2, … Wn]T is separation
matrix and g(Y)� [g(y1), g(y2) …, g(yn)]T, g(.) is considered as any nonlinear func-
tion. The estimation of sources is given by Y�WX. If source is super-Gaussian,
then nonlinear function tanγh (γ >1) is used [9]. Main interference in this experiment
is EOG which is super-Gaussian in nature. Hence, nonlinear function used is tan10
h.
Artifactual component identification and elimination. Noise containing compo-
nents are selected by kurtosis values of each component. Further, the thresholding is
done using DWT (Discrete Wavelet Transform) instead of direct source elimination
to avoid the data loss as given in Sect. 2.3.

2.3 Artifact Elimination for ICA and PCA-Based EASI

Kurtosis and confidence interval. Data having high kurtosis depict high tailed
nature similar to ocular noise [2].

Procedure for finding artifactual components.

(a) Compute kurtosis for each component

kurtosis �
n∑

i�1

((
yi − ȳ

)
/n

s 4

)

(9)

where n is number of samples, s is standard deviation of n sample data y, and ȳ is
mean of samples.

(b) Find upper bound of 95% Confidence Interval (CI) [2]

CI � ȳ +
s√
N
t (10)

where N is number of components, t is the t-value for specific percentage of confi-
dence interval. By calculating CI, threshold value is set, above which the signals are
considered to be artifactual.

Further, the artifactual components detected are thresholded using DWT.
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Discrete Wavelet Transform (DWT). For denoising of signal, n level DWT is
applied on signal. Levels are number of times that DWT is applied on approximate
coefficient of previous level. Here, four-level mother wavelets with db4 kernel are
applied on signal. Thresholding of DWT coefficient is done using hard thresholding.
For thresholding, threshold value is defined using universal threshold technique [4].
Universal Threshold. It is a good approach for statistical smoothness whose asymp-
totic behavior is better the MSE [4]. If N is number of coefficient in series and X is
series of wavelet coefficients, it is formulated as

th � σ
√
2logN (11)

σ2 � median(X)

0.6745
(12)

After thresholding of coefficients, reconstruction of signal is carried out by apply-
ing inverse DWT on modified wavelet coefficients. That reconstructed signal is
thresholded signal using DWT.

Reconstruction of ICA and PCA.

For ICA. After artifact selection using kurtosis and thresholding data using DWT,
the obtained result is multiplied to inverse of separation matrix to obtain denoised
signal. The equation is given by [8]

xd � W−1st (13)

where xd is the denoised signal, st is artifact free source signal, andW is the separation
matrix of ICA.
For PCA. As noise-free components are obtained, further reconstructed principal
components can be obtained by multiplying inverse of separation matrix inverse
with thresholded component matrix.

Yre � W−1Y (14)

where Yre is reconstructed components, W is the separation matrix of EASI, and Y
is the source after artifact removal.

Further reconstruction of noise-free signal can be obtained from reconstructed
principal component matrix by multiplying it with weight matrix of principal com-
ponents [9].

Xre � C−1Yre (15)

where Xre is denoised signal, C is the PCA weight matrix.
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2.4 Wavelet Denoising

Identification of Noise Region (Method 1). To identify the spike region, Stationary
Wavelet Transform is used. SWTprovides translational invariancewhich is important
to identify random noise. As EEG data samples at 128 samples per sec (27), sixth (j−
1) level SWT is applied which gives detailed and approximate coefficient. The noise
region is identified using the following method which automatically marks spikes in
EEG data.

If detailed coefficient of sixth level exceeds 40% of maximum value of detailed
coefficient present, then mark that as spike. Similarly, the whole spikes region is
marked.
Thresholding Technique for method 1. In order to remove spikes from EEG data,
thresholding is applied on it. This only removes ocular noise from data. Threshold
is defined as

Th � N ∗ x′ − σ

x′ + σ
(16)

where N is a positive integer, ranging from 100 to 150, x′—Mean of all samples,
σ—Standard deviation of all samples.

From that spike, EEG data is separated and ocular noise data is removed using
above threshold. The thresholding function that is used is as follows [4, 11]:

Dj � (−0.7) ∗ Dj when Dj ≥ Th (17)

Dj � Dj when Dj < Th (18)

Regeneration of ocular noise-free EEG data. After thresholding of noise region in
EEG data, it is necessary to regenerate noise-free EEG data. To regenerate this,
inverse of stationary wavelet transform is applied on approximate and new series of
detailed coefficient. By applying ISWT, ocular noise-free EEG data is obtained.

Method2.After the applying abovemethod, only spike region is eliminated.Now, the
non-spiked noise must be removed for analysis further using DWT and thresholding
method. Further, decomposition of four levels is calculated.
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Thresholding Techniques for method 2. Threshold selection for the denoising is one
of the important tasks [3, 12, 13].

Soft Thresholding. In soft thresholding, if coefficient value exceeds the threshold,
then coefficient is modified or otherwise kept as it is.

Y(n) � sgn(X′(n)) ∗ i
(∣
∣X′(n) − T

∣
∣
)

when X′(n) ≥ Th (19)

Y(n) � X′(n) when X′(n) < Th (20)

Stein Unbiased Risk Estimator. In statistics, Stein’s unbiased risk estimate (SURE)
is an unbiased estimator of the mean-squared error of a nearly arbitrary, nonlinear
biased estimator.

R̂ � nσ2 +
∣
∣
∣
∣X − μ̂

∣
∣
∣
∣2 + 2σ2

n∑

i�1

δ μ̂

δXi
(X) (21)

where σ is standard deviation and μ̂ is mean of wavelet coefficient X of each level.
In regaining of signal, Inverse Wavelet Transform of modified wavelet coefficient

is used. Applying IDWT on wavelet coefficient, results in denoised EEG signal. The
signal obtained at output is not only an ocular free but also other noise free.

2.5 Performance Parameters

The performances of the denoising methods are checked by SNR and PRD [14].

SNR � 10 log

{∑N
i�1 x

2
i

∑N
i�1 e

2
i

}

(22)

PRD � 100

√
√
√
√

{∑N
i�1 e

2
i

∑N
i�1 x

2
i

}

(23)

where N is number of samples in signal x, e is the error (difference between original
and denoised signal), and x is the original signa
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Table 1 Kurtosis value of independent components by ICA
IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13 IC14

4.35 3.29 4.20 5.08 17.67 19.73 4.41 22.62 22.21 7.61 24.91 23.58 5.67 15.94

Table 2 Kurtosis of separated sources by PCA
S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12

11.14 12.77 13.70 10.77 15.45 15.85 4.42 12.24 9.84 6.81 10.04 21.45

Fig. 3 Denoised signal by all methods

3 Results

The value of 95%CI over mean is 17.9118. Therefore, independent components IC6,
IC8, IC9, IC11, and IC12 are selected as artifactual components.

The value of 95% CI over mean is 14.8248. Therefore, sources S-5, S-6, and S-12
are selected as artifactual components (Tables 1 and 2).

The average SNR values and PRD for ICA, PCA-based EASI, and wavelet
denoising are 15.8844±4.6606, 55.9983±16.2655, 53.4595±14.1662, and
24.2067±8.5159, 1.6965±0.9650, 8.9043±4.6342, respectively.

Denoised signals by all themethods are given in Fig. 3which shows elimination of
noise. By Fig. 3 it can be observed that ocular noise elimination is more than others.
Wavelet method 1 eliminates ocular noise and method 2 gives high-frequency noise-
free data.
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4 Conclusion

PCA-basedEASI gives a better result than ICA andwavelet denoisingwhen SNRand
PRD are considered. But PCA-based EASI has a problem with convergence which
does not give well-separated sources and can lead to data loss. Experimentally, to
obtain well-separated sources, ICA is better method and it gives reliable output. As
in wavelet denoising, the noise is removed only from selected segments, and it has
better performance in all aspects.
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