
Multi-Objective Optimization
and Cluster-Wise Regression Analysis
to Establish Input–Output Relationships
of a Process

Amit Kumar Das, Debasish Das and Dilip Kumar Pratihar

1 Introduction

We, human beings, have a natural tendency to know input–output relationships of
a process. Goldberg (2002) claimed that a genetic algorithm (GA) is competent
for yielding innovative solutions in a single-objective optimization (SOO) problem
domain. An SOO is generally used for finding out a single optimal solution out
of several possibilities. However, a multi-objective optimization (MOO) problem
involves at least two conflicting objective functions and a Pareto-optimal front of
solutions can be obtained for the same. This present chapter deals with an application
of MOO.

For the last few decades, MOO had been applied for solving various research and
industrial problems (Ahmadi et al. 2015, 2016; Aghbashlo et al. 2016; Jarraya et al.
2015; Khoshbin et al. 2016; Marinaki et al. 2015; Ahmadi and Mehrpooya 2015;
Sadatsakkak et al. 2015). Making large data intelligent transportation system (Wang
et al. 2016), fabrication and optimization of 3D structures in bone tissue engineering
area (Asadi-Eydivand et al. 2016), portfolio optimization with functional constraints
(Lwin et al. 2014), optimization of building design (Brownlee and Wright 2015),
disaster relief operations (Zheng et al. 2015), etc. are some of the worth-mentioning
examples, where MOO has been utilized successfully in the recent times. By using
a multi-objective evolutionary algorithm (MOEA), a Pareto-front of solutions is
obtained. These solutions are not generated randomly (Askar and Tiwari 2009) and
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they must satisfy mathematically Karush–Kuhn–Tucker (KKT) conditions (Mietti-
nen et al. 1999). It is argued (Deb and Srinivasan 2008) that there is a high chance of
finding some commonalities among these high-performing solutions of the Pareto-
front. Nevertheless, it is also debated that this commonality may exist for either the
whole Pareto-front or different subsets of the same. However, if the said commonal-
ities are embedded in those optimal or near-optimal solution sets, then it is expected
to obtain the design principles for that process after some numerical analysis of the
solutions.

The said fact can have an immense effect in designing a product or process. If a
designer does have this type of information a priori, then it will help him to do his
job more efficiently. For example, let us take the case of metal cutting operation with
the inputs, such as cutting speed, feed, and depth of cut, and take two conflicting
outputs as minimizing the machining time and minimizing the surface roughness of
the machined product. By using theMOEA, if it is found that one or more parameters
are varying in a particular fashion within the Pareto-front or the objective functions
are changing with the inputs in a certain manner, then this information can provide
an extra advantage to the process designer to set the same in a more efficient way.
Similar things are applicable to other processes as well.

This fact of obtaining various design principles has another significance for the
manufacturing industries. Reduction of cost without compromising the safety and
quality of the products has always been the primary concern of any industry. The
scope of cost minimization through proper inventory and manpower management
would be possible, if the facts discussed above are available. Moreover, similar prior
information may assist the process designer to establish and stabilize the process of
interest with ease.

To use an MOEA, input–output relationships are required to define the objective
functions. In many instances, these equations are not obtained from the literature
and we have to derive these using the statistical tools on the experimental data. Now,
generation of a wide range of experimental data requires not only proper facilities,
but also a sequence of several tedious steps, and it demands time, cost, and effort.
Moreover, noticeable variations in output data of any experiments are likely to be
observed for a given set of input parameters. This results in fuzziness and inaccuracy
in the experimental dataset, as shown by Gil and Gil (1992). The inaccuracy of
the data can be minimized through multiple repetitions of the experiments, thereby
providing the upper and lower limits of variation in the developed dataset, for a given
set of input parameters. However, it again becomes difficult due to time and resource
constraints in most of the cases. Gil (1987) also argued that experimental data may
suffer from the loss of information about the state or parameter space owing to the
fuzziness in it. Therefore, the generated Pareto-optimal solutions using an MOEA
may also be affected by the fuzziness and inaccuracy of the experimental data, and
we may end up with largely inaccurate design principles for the analyzed process.
Due to this issue, it is desirable to tackle inherent fuzziness of the experimental data
to establish input–output relationships of the process more accurately.
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2 Literature Survey

Evolutionary multi-objective optimization has been used to establish input–output
relationships by several researchers. The existence of the resemblance among the
Pareto-optimal front of solutions was highlighted by Deb (2003). He also suggested
that these commonalities could be revealed through regression and manual plotting.
Obayashi and Sasaki (2003) used the self-organizing map to view the higher dimen-
sional objective space and design variable space on a lower dimensional map. They
also used a clustering technique to make the clusters of decision parameters, which
showed the role of the variables in improving the design and trade-offs. Taboada and
Coit (2006) suggested applying k-means clustering technique on the Pareto-optimal
solutions for ease of further analysis. Deb and Srinivasan (2008) used Benson’s
method to obtain a modified Pareto-front from the initial one and after that, they
used statistical regression analysis to get different design principles. This method
had also been adopted and implemented by various researchers in their works (Deb
et al. 2009; Deb and Jain 2003; Deb and Sindhya 2008). An analytical approach
was suggested by Askar and Tiwari (2011) to get a Pareto-front for multi-objective
optimization problem, and the obtained Pareto-optimal solutions were analyzed to
derive several innovative commonality principles. Deb et al. (2014) proposed the
method of automated innovization to decode several important relationships through
the extensive use of an evolutionary algorithm. They used the word, innovization,
which means the act of obtaining innovative solutions through optimization. In this
case, they had not used regression tools to decipher the said principles. Later, a
concept of higher level innovization was introduced by Bandaru et al. (2011) and
Bandaru et al. (2015) in a generalized form. Also, a simulation-based innovization
procedure was developed by Dudas et al. (2011). In this approach, they tried to eval-
uate the effect of variables on the performance of the process and they showed a
method of getting in-depth knowledge about a process after these analyses.

Among all these stated approaches, no one adopted any method to model the
inherent fuzziness of the Pareto-optimal solutions. As already discussed, if this work
is not done, then there will be a high chance that we shall obtain imprecise design
principle for the process of interest. Therefore, a method has been developed here
to obtain different input–output relationships after modeling the fuzziness in the
Pareto-optimal dataset. This method has been applied for an electron beam welding
process on SS304 plates, and the obtained results clearly show the significance of
this developed approach. The rest of the text has been arranged as follows:

The developed method has been described in Sect. 3, whereas Sect. 4 deals with
the experimental data collection procedure. The results and discussion are provided
in Sect. 5, and some concluding remarks are made in Sect. 6.
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3 Developed Approach

In the proposed approach, an attempt has been made to establish the input–output
relationships of a process through the extensive use of a multi-objective evolutionary
algorithm (MOEA). The approach has been explained in the following steps:

Step 1: Develop initial Pareto-optimal front

In this step, an initial Pareto-front is obtainedusing anMOEA,where the input–output
relationships are used to determine the fitness values of the objective functions. The
obtained Pareto-front is subjected to some inherent fuzziness in it, which is going to
be removed in further steps.

Several strategies for the MOEA are available in the literature, such as niched
Pareto genetic algorithm (NPGA) (Horn et al. 1994), strength Pareto evolution-
ary algorithm (SPEA) (Zitzler and Thiele 1998), Pareto-archived evolution strat-
egy (PAES) (Knowles and Corne 1999), non-dominated sorting genetic algorithm-
II (NSGA-II) (Deb et al. 2002), multi-objective algorithm based on decomposi-
tion (MOEA/D) (Zhang and Li 2007), multiple populations for multiple objectives
(MPMO) (Zhan et al. 2013), and others. In our study, NSGA-II has been used as the
MOEA and its working principle is described in Fig. 1.

Step 2: Train a neuro-fuzzy system

Using the initial Pareto-front of solutions, a neuro-fuzzy system (NFS) is trained. In
NFS, a fuzzy logic controller (FLC) is expressed as the form of a neural network.
During the training, an evolutionary optimization technique is used to tune the NFS.
The initial Pareto-optimal solutions are clustered using a clustering algorithm, and the
number of rules of the NFS is kept as the same with that of a total number of clusters
obtained. The data obtained through experiments are subjected to inaccuracy and
fuzziness. This may be due to various reasons, such as experimental inaccuracy, error
due to the unskilled operator, instrumental inaccuracy, and others. To take care of this
inherent fuzziness, NFS is an efficient tool (Mitra and Pal 1996), which works based
on the principles of fuzzy sets. In NFS, the advantages of both fuzzy logic controller
and neural network are clubbed together to design and remove the uncertainty and
imprecision of a set of data. The NFS has been used successfully to solve a variety
of problems related to several fields of research (Takagi and Hayashi 1991; Takagi
et al. 1992; Keller et al. 1992; Berenji and Khedkar 1992; Jang 1993; Ishibuchi
et al. 1994). Here, an NFS with Mamdani approach (Mamdani and Assilian 1975)
is used to model fuzziness in the initial Pareto-optimal solutions. The said NFS has
mainly five layers, namely, input layer, fuzzification layer, And operation layer, fuzzy
inference layer, and defuzzification layer. Gaussian type of membership functions,
which has been used in input and output layers of the NFS, can be expressed using
Eq. (1):

μGaussian � e
−

[
(x−m)2

2σ2

]
, (1)
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  Begin 

Generate initial population of size N (Gen =1) 

Evaluate fitness values of the objectives functions 

           Non-dominated sorting based on rankings and crowding distances 

       Using selection, crossover and mutation operators to get offspring population of size N

                         Combine population of parent and offspring 

Choose population size of N based on rankings and crowding distances comparison 

If Gen 
reaches 
maxGen 

 Stop 

No

Yes 

Fig. 1 Flowchart of NSGA-II algorithm

where σ and m are the standard deviation and mean of the Gaussian distribution,
respectively. During the training, the NFS is evolved with the help of a genetic
algorithm, where the Gaussian parameters (σ andm) are used as the design variables
and the objective is to minimize the root-mean-square error (RMSE) value (here,
error is the amount of deviation in prediction).

Step 3: Obtain a modified Pareto-front

In this step, the trained NFS is used in another MOEA to evaluate the fitness values
of the objective functions. As NFS is a strong tool to take care the fuzziness of the
used data, there is every possibility to get a better quality of Pareto-front compared
to that of the initial one. In this way, the imprecision of the initial Pareto-optimal
solutions is removed using the NFS and a modified and better Pareto-front in terms
of both the objective functions’ values is obtained.
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Step 4: Clustering of the obtained modified Pareto-front

The modified Pareto-optimal dataset, obtained in Step 3, is clustered using a clus-
tering algorithm. The purpose of carrying out this operation is to find that whether
the design principles of the process are varying for the different clusters, or they are
kept the same for the whole set of Pareto-front.

There are several techniques of clustering available in the literature. However, we
have considered three popular clustering algorithms like fuzzy C-means clustering
(FCM) (Bezdek 1973), entropy-based fuzzy clustering (EFC) (Yao et al. 2000), and
density-based spatial clustering applicationwith noise (DBSCAN) (Ester et al. 1996),
in our study. In case of FCM, a data point may belong to several predefined numbers
of clusters with different membership values. It is an iterative method, where the
cluster centers and the membership values of the cluster members are going to be
updated with the iterations. In every step of the algorithm, the focus is to reduce the
dissimilarity measurement (which is evaluated in terms of Euclidean distance) of
the cluster members. The members of the same cluster are likely to have the higher
values of similarity, whereas the data points belonging to different clusters should
be dissimilar in nature. The EFC algorithm works based on the entropy measures of
the data points, which are calculated depending on the values of the distances (say
Euclidean distances) among them. A data point is declared as a cluster center, if it is
found with the minimum entropy value. The other points, which have the similarity
measures with the cluster center greater than a user-defined value, will be put into
the cluster. In case of DBSCAN, two user-specified parameters are used, such as
neighborhood radius and minimum number of neighborhood points. The philosophy
of this algorithm is that the density of the members lying within a cluster is higher
than that of the outsider points. The details of these algorithms can be found out in
(Pratihar 2007).

Step 5: Analysis of the modified Pareto-front

The obtained modified Pareto-optimal solutions are statistically analyzed cluster-
wise to get several input–output relationships for the problem. Moreover, any rela-
tionship, which is common to all the clusters, has to be checked. The developed
approach has been described through a flowchart, as shown in Fig. 2. Generally,
the outputs of a natural process vary nonlinearly with the input parameters. Keep-
ing this idea in mind, a nonlinear regression tool (using MINITAB 16.0 software
(http://www.minitab.com)) has been used to determine various input–output rela-
tionships in power form.

4 Experimental Data Collection

To explain the proposed approach in more details, an engineering problem, namely,
electron beam welding (EBW), has been selected and the developed approach has
been implemented for the said process. The details of the experimental procedure,
along with the setup information, have been provided in this section.
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Step 1: Develop initial Pareto-optimal front

Step 2: Train a Neuro-Fuzzy System

Step 3: Obtain a modified Pareto-front

Step 4: Clustering of the obtained modified Pareto-front 

Step 5: Analysis of the modified Pareto-front 

Fig. 2 Flowchart of the developed approach

4.1 Experimental Setup and Procedure

Bead-on-plate welding was carried out on EBW facility, developed by Bhabha
Atomic Research Centre (BARC), Mumbai, at IIT Kharagpur (refer to Fig. 3). The
machine has amaximum power rating of 12 kW. The beamwas kept stationary, while
the table containing the workpiece, fixture, and other arrangements traveled in the
horizontal plane at a predefined welding speed. A vacuum was provided in the work
chamber and gun chamber with the help of vacuum pumps before the initiation of
the welding process. The stream of highly accelerated electrons was made incident
on 20-mm-thick AISI 304 stainless steel workpiece in the vacuum environment. The
chemical composition of the used material can be found out in (Das et al. 2016). The
EBW experiments had been carried out following a multilevel full-factorial design.
This study aims to investigate the effects of beam power and welding speed on the
depth of penetration and bead width of the weld.

4.2 Data Collection

Two input parameters, namely, beam power (P in W) and welding speed (S in
mm/min), were considered in this study. Considering four levels of the input param-
eters, the experiments had been carried out according to the multilevel full-factorial
design with 24 = 16 combinations of design variables. For each combination of input
variables, welding was carried out three times in order to ensure repeatability.

These samples were sectioned, polished, etched, and observed under the micro-
scope in order to obtain the desired measurements. The average values of the bead
width (BW in mm) and depth of penetration (DP in mm) were calculated and used
in this study. The details of the experimental data used for developing the model and
testing the same are shown in Appendices 1 and 2, respectively.
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Fig. 3 Electron beam welding (EBW) setup, IIT Kharagpur, India

5 Results and Discussion

As like other natural processes, electron beam welding process has also nonlinear
input–output relationships (Jha et al. 2014). These relationships were obtained from
the experimental data using a nonlinear regression tool. After this, the developed
approach was used to get the relationships among the responses and design variables,
and other important information regarding the said process.

5.1 Obtaining Nonlinear Input–Output Relationships
from the Experimental Data

Using the statistical software Minitab 16.0, a nonlinear regression analysis had been
carried out to obtain the input–output relationships from the experimental data (refer
to Appendix 1) collected within the upper and lower limits of the input variables, as
provided in Table 1.

The following expression was obtained for depth of penetration:

Table 1 Input variables and their ranges

Sl. no Input variables Symbols Minimum value Maximum value

1 Beam power (W) P 3200 5600

2 Welding speed
(mm/min)

S 900 1800
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DP � −2.31965 + 0.00443709 × P − 0.00486308 × S − 2.08008E − 07 × P2

+ 2.67361E − 06 × S2 − 1.16208E − 06 × P × S. (2)

The model was found to be capable of predicting accurate results because of a high
value of regression coefficient of 0.97. A confidence level of 95% was considered.
The other response, BW was also expressed in terms of the input parameters as
follows:

BW � 18.0029 − 0.00554238 × P + 0.000857167 × S + 6.32813E − 07 × P2

− 5.69444E − 07 × S2 − 2.61667E − 07 × P × S. (3)

The regression coefficient for this case was found to be 0.8.

5.2 Formulation of the Optimization Problem

The objective was to maximize the depth of penetration (DP), while keeping the bead
width (BW) at a lower value. These said goals are contradictory to each other, as
with the increase of DP, and output parameter BW increases. Therefore, this is an
ideal problem for MOO and it can be expressed as follows:

Minimize 1/DP

Minimize BW
subject to

3200 ≤ P ≤ 5600

900 ≤ S ≤ 1800

(4)

5.3 Obtaining Initial Pareto-Front

Using NSGA-II, an initial Pareto-front was obtained (refer to Fig. 4). In this case,
Eqs. (2) and (3) were used to evaluate the numerical values for the outputs DP and
BW, respectively. The user-defined parameters for the NSGA-II, such as probability
of crossover (pc), probability of mutation (pm), population size (N), and maximum
number of generations (Gmax ), were selected through a detailed parametric study.
This study had been carried out by varying parameters one at a time and keeping the
others fixed.The sequence for varying the parameterswas taken as follows: pc, pm, N
and Gmax , as suggested in Pratihar (2007). The best parameters were chosen based
on the maximum spread of the Pareto-front. The details of this parametric study have
been provided in Table 2, where the selected parameters are written in bold.
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Table 2 Results of the parametric study to select NSGA-II parameters

Exp no. Fixed GA parameters’
values

Varying GA parameter
value

Spread of
Pareto-optimal data set
(X- and Y-coordinates
represent 1/MRR and
SR values,
respectively)

Is the
parameter
selected?

1 pm = 0.06, N = 300
and Gmax �1000

pc �0.6 (0.125994, 5.80199) to
(0.247707, 3.41509)

No

2 pc �0.7 (0.125994, 5.80199) to
(0.247708, 3.41509)

No

3 pc �0.8 (0.125994, 5.80199) to
(0.247716, 3.41509)

Yes

4 pc �0.9 (0.125994, 5.80199) to
(0.247704, 3.41509)

No

5 pc �1.0 (0.125994, 5.80199) to
(0.247707, 3.41509)

No

6 pc = 0.8, N �300 and
Gmax �1000

pm �0.02 (0.125994, 5.80199) to
(0.247703, 3.41509)

No

7 pm �0.04 (0.125994, 5.80199) to
(0.247715, 3.41509)

No

8 pm �0.06 (0.125994, 5.80199) to
(0.247716, 3.41509)

Yes

9 pm �0.08 (0.125994, 5.80199) to
(0.247711, 3.41509)

No

10 pm �0.1 (0.125994, 5.80199) to
(0.247708, 3.41509)

No

11 pc �0.8, pm �0.06
and Gmax �1000

N �100 (0.125994, 5.80199) to
(0.247701, 3.41509)

No

12 N �200 (0.125994, 5.80199) to
(0.2477, 3.41509)

No

13 N �300 (0.125994, 5.80199) to
(0.247716, 3.41509)

Yes

14 N �400 (0.125994, 5.80199) to
(0.247709, 3.41509)

No

15 N �500 (0.125994, 5.80199) to
(0.247708, 3.41509)

No

16 pc �0.8, pm �0.06
and N �300

Gmax �1000 (0.125994, 5.80199) to
(0.247716, 3.41509)

Yes

17 Gmax �2000 (0.125994, 5.80199) to
(0.247708, 3.41509)

No

18 Gmax �3000 (0.125994, 5.80199) to
(0.247705, 3.41509)

No

19 Gmax �4000 (0.125994, 5.80199) to
(0.247709, 3.41509)

No

20 Gmax �5000 (0.125994, 5.80199) to
(0.247709, 3.41509)

No
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Fig. 4 Obtained initial
Pareto-front of solutions

In NSGA-II, different genetic operators, such as tournament selection, arithmetic
crossover, and Gaussianmutation, were used. Now, the initial Pareto-front of optimal
solutions was obtained utilizing the selected parameters, as shown in Fig. 4.

5.4 Training of an NFS

Using the initial Pareto-front dataset, a neuro-fuzzy system (NFS) had been trained.
The training dataset had been clustered using a clustering technique, namely, fuzzyC-
means clustering and in this case, the level of cluster fuzziness was considered as 2.0.
To obtain the best results, the said data set was clustered into 16 different clusters.
Therefore, the total number of rules for the NFS became equal to the number of
clusters made. The structure of the developed NFS has been shown in Fig. 5.

In the used NFS, a supervised learning with a batch mode of training method
had been applied. In the input and output layers, the Gaussian type of membership
functions had been used. So, the total number of unknown parameters of this model
was found to be equal to (16 × 4 × 2 =) 128 (as there are two inputs and two outputs
each in the model, and each Gaussian function has two unknown parameters, that is,
σ and m). For the training purpose, 300 input data points of the initial Pareto-front
had been used and a root-mean-square error (RMSE) was calculated each time. Here,
the error is nothing but the deviation in prediction. This NFS was evolved using a
genetic algorithm, where the objective was set to minimize the RMSE value and
the design variables were those 128 numbers of unknown parameters of the model.
Different genetic operators, such as roulette wheel selection, linear crossover, and
random mutation, had been utilized in the GA, and to obtain the best results, the
selected GA parameters were as follows: crossover probability (pc � 0.9),mutation
probability (pm � 0.1), and population size (N � 60).



310 A. K. Das et al.

Input Input Membership Function Rule
Output Membership 

Function Output 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Fig. 5 Structure of the neuro-fuzzy system

5.5 Obtaining Modified Pareto-Front

In this step, the trained NFS had been used in an NSGA-II for determining the
fitness values of the objectives. It is important to note that Eqs. (2) and (3) were
used previously in the NSGA-II for obtaining the initial Pareto-front of solutions.
The parameters for this NSGA-II were kept the same as in that of the previous case
described in Sect. 5.3. We could get a modified Pareto-front, as shown in Fig. 6, and
the quality of this Pareto-front had been improved in terms of the objective function
values compared to that of the initial one.

5.6 Clustering of the Modified Pareto-Front Data Set

The obtained modified Pareto-optimal solutions were clustered using three different
algorithms, namely, fuzzy C-means clustering (FCM), entropy-based fuzzy cluster-
ing (EFC), and density-based spatial clustering application with noise (DBSCAN).
By using FCM algorithm with the level of cluster fuzziness kept equal to 1.25, two
clusters were obtained, as shown in Fig. 7.
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Fig. 6 Initial and modified
Pareto-front of solutions

Fig. 7 Clustering of the
modified Pareto-front using
FCM

In case of EFC, two distinct clusters (refer to Fig. 8) were obtained with the user-
defined parameters like the constant of similarity (α � 0.12) and threshold value of
similarity (β � 0.9).

In another case, where the clustering was done using DBSCAN algorithm, three
distinct clusters were obtained, as shown in Fig. 9. In this algorithm, a point was
considered to form a cluster, when a minimum of three other points were found to
be present in a neighborhood radius of 0.032.

For the different clusters obtained using the said three clustering algorithms, the
respective ranges of variation for the two outputs, such as DP and BW, are given in
Table 3.
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Fig. 8 Clustering of the
modified Pareto-front using
EFC

Fig. 9 Clustering of the
modified Pareto-front using
DBSCAN

The clustered solutions were analyzed using nonlinear regression analysis. For
this purpose, a Gauss–Newton approach was used with 95% confidence level for
all intervals and the convergence tolerance was assumed to be equal to 0.00001. In
Table 4, cluster-wise obtained different input–output relationships are provided.

The two extreme points on the modified Pareto-front correspond to the maxi-
mum and minimum values of the two outputs of the EBW process. One of these
points shows the highest values of DP and BWwith the input parameters as follows:
P � 5600W, S � 900mm/min. On the other hand, the other point provides the
information regarding the lowest values of the outputs with an input variables setting
as P � 4750.98W, S � 1800mm/min. It is observed (refer to Fig. 10) that for
increasing the depth of penetration (DP), beam power (P) has to be increased and
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Table 3 Ranges of DP and BW in different clusters

Cluster algorithm Cluster number Output parameters

DP (mm) BW (mm)

Minimum Maximum Minimum Maximum

FCM 1 7.4441 7.8581 4.6191 5.7872

2 4.0632 7.4252 3.4281 4.6039

EFC 1 7.6593 7.8581 5.0077 5.7872

2 4.0632 7.6535 3.4281 4.9897

DBSCAN 1 7.8502 7.8581 5.7519 5.7872

2 7.5697 7.8472 4.7989 5.7124

3 4.0632 7.5481 3.4281 4.7629

Table 4 Relationships among decision variables and responses for EBW problem

Clustering algorithm Cluster number Relationships among design variables and objectives

FCM 1 DP � P0.443585 × S−0.257345

1 BW � P1.13416 × S−1.17341

2 DP � P0.790491 × S−0.713536

2 BW � P0.40339 × S−0.290404

EFC 1 DP � P0.351876 × S−0.14233

1 BW � P0.848204 × S−0.814444

2 DP � P0.880063 × S−0.818614

2 BW � P0.450339 × S−0.345143

DBSCAN 1 DP � P0.228065 × S0.013738

1 BW � P0.228118 × S−0.0315064

2 DP � P0.454036 × S−0.26975

2 BW � P1.23061 × S−1.29156

3 DP � P0.835263 × S−0.765954

3 BW � P0.422925 × S−0.313142

welding speed (S) should be at its lower value. In other situation,where a user requires
a lower value of bead width (BW), the input parameter, P, has to be decreased and S
is needed to be increased. Moreover, both DP and BW are found to be proportional to
the heat input, which is a unified effect of beam power and welding speed on the weld
geometries. This trend is in accordance with the literature (Das et al. 2017; Kar et al.
2015). Therefore, a user may be recommended to choose input parameters setting
to avail the high depth of penetration (7.01 mm) and low bead width (4.36 mm) as
follows: P � 5548.8W, S � 1096.46mm/min.

The obtained input–output relationships were used on some test data (refer to
Appendix 2), and an average absolute percentage error (AAPE) was calculated
for each of the cases of clustering techniques. These were compared to the results
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Fig. 10 Variations of DP and BW with the inputs, P and S, in the modified Pareto-front

Table 5 Comparison of results using the relationships obtained from developed approach and
experimental data

Output AAPE in case of
FCM (%)

AAPE in case of
EFC (%)

AAPE in case of
DBSCAN (%)

AAPE in case of
Eqs. from
experimental data
(%)

DP 2.9822 3.2329 2.9903 3.7288

BW 5.4764 5.4009 5.6698 6.3340

obtained using Eqs. (2) and (3). The comparison (refer to Table 5) clearly indicates
the fact that the relationships derived by the developed approach could predict more
accurately compared to the regression equations did. In addition, FCM algorithm
could perform a slightly better compared to the other two algorithms of clustering.

Another interesting fact to observe here is that the range for the input variable
power (P) had been squeezed from (3200, 5600 W) to (4750.98, 5600 W) in the
modified Pareto-optimal dataset. This fact denotes that the effective range of the
input parameter P for this process has been shortened and it is advisable to operate
only in this squeezed range to get the best results. This information will surely help
the designers to design and establish the process efficiently.

6 Conclusion

An approach was developed to obtain different input–output relationships of the
EBW process by the extensive use of a multi-objective optimization technique and
a neuro-fuzzy system. It is quite different from the approaches available, because it
adopts a method to model the inherent fuzziness in the experimental data and at the
end, it could generate more accurate input–output relationships for a process. The
approach was applied for an EBW process, and the results obtained were superior
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to that of the other methods in terms of precision and accuracy. This happens due
to the fact that in the developed approach, an NFS, which is capable of handling
uncertainty and inaccuracy of the data, is used and the imprecision in the data is
removed to come up with the more accurate relationships.

The solutions of the modified Pareto-front were clustered and analyzed to obtain
input–output relationships cluster-wise. A comparison has also been made among
the relationships obtained in different cases of clustering algorithms based on the
results of the test cases. Another interesting fact has been found out that for an input
parameter, the effective range to get the best results has been squeezed. This prior
informationmay increase the opportunities to reduce the operating cost andmake the
process more stable.Moreover, some physical aspects of the process are derived after
analyzing the modified Pareto-optimal dataset, and the conclusions are seen to be
inline with those made by other researchers for the process. Therefore, the developed
approach can be applied to any process for obtaining input–output relationships and
other important facts of the same.

Appendices

Appendix 1 collected experimental data

Sl. no. Power (W) Speed (mm/min) Depth of
penetration (mm)

Bead width (mm)

1 3200 1800 2.73 4.82

2 3200 1500 3.27 5.36

3 4000 1800 3.43 4.46

4 3200 1200 4 3.4

5 4000 1500 4.13 4.4

6 4800 1800 3.41 5.54

7 5600 1800 4.55 3.4

8 4800 1500 4.5 3.5

9 4000 1200 4.6 4.7

10 3200 900 3.9 6.92

11 5600 1500 4.8 5.1

12 4800 1200 5.29 5.31

13 4000 900 5.69 4.99

14 5600 1200 5.8 5.5

15 4800 900 7.15 5

16 5600 900 8.2 5.6
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Appendix 2 Experimental data collected for testing the performance of the developed approach

Sl. no. Power (W) Speed (mm/min) Depth of
penetration (mm)

Bead width (mm)

1 4800 1650 4.37 3.38

2 4800 1325 5.03 3.87

3 5200 1650 4.39 3.86

4 5200 1325 5.27 4.51

5 5600 1000 7.91 5.28
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