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Foreword

Multi-objective optimization problems have two or more (usually conflicting)
objectives that we aim to solve simultaneously. The solution to these problems
involves finding a set of solutions (rather than only one) representing the best
possible trade-offs among the objectives, such that no objective can be improved
without worsening another. In spite of the existence of a number of mathematical
programming techniques that have been explicitly designed to solve multi-objective
optimization problems, such techniques have several limitations, which has moti-
vated the use of evolutionary algorithms, giving rise to an area known as evolu-
tionary multi-objective optimization.

The first evolutionary multi-objective algorithm was published in 1985, but it
was until the late 1990s that this research area started to gain popularity. Over the
last 20 years, this discipline has given rise to a wide variety of algorithms,
methodologies and applications that span practically all areas of knowledge.

This book brings together a very interesting collection of applications of
multi-objective evolutionary algorithms and hybrid approaches in a variety of
disciplines, including bioinformatics, networking, image processing, medicine and
finance. This book should be of interest to researchers and students with or without
experience in evolutionary multi-objective optimization, who will certainly benefit
from the novel applications and concepts discussed in this volume.

Mexico City, México
April 2018

Carlos A. Coello Coello
CINVESTAV-IPN
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Editorial Preface

In our day-to-day real life, we have to take decisions on the basis of various
associated factors. Arriving at a decision becomes even more challenging if one has
to deal with factors apparently contradictory to one another. In such a situation,
addressing one factor falls short of being meaningful without addressing the other
factors even though conflicting. The issue of multi-/many-objective framework
typically deals with an environment where we have to consider simultaneous
optimization of more than one factor/objective to arrive at a comprehensive
conclusion/inference. In such cases, we try to achieve a collection of solutions,
typically referred to as Pareto front, where a typical solution element in the front
does neither dominate nor is dominated by another.

This edited book volume entitled Multi-Objective Optimization: Evolutionary to
Hybrid Framework is a collection of fourteen chapters contributed by leading
researchers in the field. The chapters were initially peer-reviewed by the Editorial
Review Board members spanning over many countries across the globe. In that
sense, the present endeavour is a resultant of contributions from serious researchers
in the relevant field and subsequently duly peer-reviewed by pioneer scientists.
A brief description of each of the chapters is as follows:

Chapter “Non-dominated Sorting Based Multi/Many-Objective Optimization:
Two Decades of Research and Application” gives an exhaustive analysis and
picture of non-dominated sorting-based multi-/many-objective optimization algo-
rithms proposed in the last two decades of research and application. Authors have
mentioned that for more than two decades, non-dominated sorting has been a
cornerstone in most successful multi-/many-objective optimization algorithms. In
this chapter, they have discussed the effect of non-dominated sorting in multi- and
many-objective scenarios. Thereafter, they have presented some of the most widely
used optimization algorithms involving non-dominated sorting, where they have
discussed their extent and ubiquity across many scientific disciplines. Finally, they
have gone over some of the state-of-the-art combinations of non-dominated sorting
with other optimization techniques.
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Chapter “Mean-Entropy Model of Uncertain Portfolio Selection Problem” deals
with the portfolio selection problem, which is a single-period invest model where
an investor has to select and distribute available capital among various securities to
achieve the target investment. Authors have proposed in this study a bi-objective
portfolio selection model, which maximizes the average return and minimizes
the investment risk of the securities. In the proposed model, the average return and
the risk are represented, respectively, by the mean and entropy of the uncertain
securities. The expected value and the triangular entropy of the uncertain securities
are determined to represent the mean and entropy, respectively. The proposed
model is solved with two different classical multi-objective solution techniques:
(i) weighted sum method and (ii) weighted metric method. Both the techniques
generate a single compromise solution. To generate a set of non-dominated solu-
tions, for the problem, two different multi-objective genetic algorithms (MOGAs)—
(i) non-dominated sorting genetic algorithm II (NSGA-II) and (ii) multi-objective
evolutionary algorithm based on decomposition (MOEA/D)—are used. Finally, the
performances of the MOGAs are analysed and compared based on different per-
formance metrics.

In Chapter “Incorporating Gene Ontology Information in Gene Expression Data
Clustering Using Multiobjective Evolutionary Optimization: Application in Yeast
Cell Cycle Data”, authors have described how microarray technology has made it
possible to simultaneously monitor the expression levels of a large number of genes
over different experimental conditions or time points. In this chapter, authors have
presented an approach for combining experimental gene expression information
and biological information in the form of gene ontology (GO) knowledge through
multi-objective clustering. The method combines the expression-based and
GO-based gene dissimilarities. Moreover, the method simultaneously optimizes two
objective functions—one from gene expression point of view and another from GO
point of view. Authors have demonstrated the performance of the proposed tech-
nique on real-life gene expression dataset of yeast cell cycle. They have also studied
here the biological relevance of the produced clusters to demonstrate the effec-
tiveness of the proposed technique.

In Chapter “Interval-Valued Goal Programming Method to Solve Patrol
Manpower Planning Problem for Road Traffic Management Using Genetic
Algorithm”, an interval-valued goal programming (IVGP) method is proposed for
modelling and solving patrolmen deployment problem in traffic control system in
an inexact environment. Here, the objective functions are to be optimized and
represented as goals by assigning target intervals for the achievement of objective
values and incorporating interval coefficients to objective parameter sets to reach
satisfactory solution in decision horizon. Authors have also defined a performance
measuring function to represent different kinds of objectives that are inherently
fractional in form in decision premises by transforming it into linear equivalent to
avoid computational difficulty with fractional objectives in course of searching
solution to the problem. After that they have converted interval arithmetic rules,
interval-valued goals into goals as in conventional GP to formulate standard model
of the problem. Authors have designed the executable model by an extended GP
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methodology for solving the traffic control problem. They have demonstrated the
proposed approach via a case example of the metropolitan city, Kolkata, West
Bengal, in India.

In Chapter “Multi-objective Optimization to Improve Robustness in Networks”,
authors have proposed a new approach to address the budget-constrained
multi-objective optimization problem of determining the set of new edges (of
given size) that maximally improve multiple robustness measures. Authors have
presented the experimental results to show that adding the edges suggested by their
approach significantly improves network robustness, compared to the existing
algorithms. The networks which they have presented can maintain high robustness
during random or targeted node attacks.

Chapter “On Joint Maximization in Energy and Spectral Efficiency in
Cooperative Cognitive Radio Networks” addresses a joint spectral efficiency
(SE)–energy efficiency (EE) optimization problem in a single secondary user (SU)
and primary user (PU) network under the constraints of sensing reliability, coop-
erative SE for primary network and transmission power constraints. Differential
evolution (DE) is explored by the authors to handle this nonlinear optimization
problem and to find the optimal set of values for the sensing duration, cooperation
and transmission power of SU. The trade-off between EE–SE is shown through the
simulation.

In Chapter “Multi-Objective Optimization Approaches in Biological Learning
System on Microarray Data”, authors have provided a comprehensive review of
various multi-objective optimization techniques used in biological learning systems
dealing with the microarray or RNA sequence data. In this regard, the task of
designing a multi-class cancer classification system employing a multi-objective
optimization technique is addressed first. Next, they have discussed how a gene
regulatory network can be built from the perspective of multi-objective optimiza-
tion problem. The next application deals with fuzzy clustering of categorical
attributes using a multi-objective genetic algorithm. After this, how microarray data
can be automatically clustered using a multi-objective differential evolution is
addressed. Then, the applicability of multi-objective particle swarm optimization
techniques in identifying the gene markers is explored. The next application con-
centrates on feature selection for microarray data using a multi-objective binary
particle swarm optimization technique. Thereafter, a multi-objective optimization
approach is addressed for producing differentially coexpressed module during the
progression of the HIV disease. In addition, they have represented a comparative
study based on the literature along with highlighting the advantages and limitations
of the methods. Finally, they have depicted a new direction to bio-inspired learning
system related to multi-objective optimization.

The main goal of the Chapter “Application of Multi-Objective Optimization
Techniques in Biomedical Image Segmentation—A Study” is to give a compre-
hensive study of multi-objective optimization techniques in biomedical image
analysis problem. This study mainly focusses on the multi-objective optimization
techniques that can be used to analyse digital images, especially biomedical images.
Here, some of the problems and challenges related to images are diagnosed and
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analysed with multiple objectives. It is a comprehensive study that consolidates
some of the recent works along with future directions.

In Chapter “Feature Selection Using Multi-Objective Optimization Technique
for Supervised Cancer Classification”, a new multi-objective blended particle
swarm optimization (MOBPSO) technique is proposed for the selection of signif-
icant and informative genes from the cancer datasets. To overcome local trapping,
authors have integrated here a blended Laplacian operator. The concept is also
implemented for differential evolution, artificial bee colony, genetic algorithm and
subsequently multi-objective blended differential evolution (MOBDE),
multi-objective blended artificial bee colony (MOBABC) and multi-objective
blended genetic algorithm (MOBGA) to extract the relevant genes from the cancer
datasets. The proposed methodology utilizes two objective functions to sort out the
genes which are differentially expressed from class to class as well as provides good
results for the classification of disease.

In Chapter “Extended Non-dominated Sorting Genetic Algorithm (ENSGA-II)
for Multi-Objective Optimization Problem in Interval Environment”, authors have
proposed an efficient algorithm for solving a multi-objective optimization problem
with interval objectives. For this purpose, they have developed an extended version
of existing NSGA-II algorithm (ENSGA-II) for fixed objectives in an interval
environment with the help of interval ranking and interval metric. In this connec-
tion, they have proposed non-dominated sorting based on interval ranking,
interval-valued crowding distance and crowded tournament selection of solutions
with respect to the values of interval objectives.

In Chapter “A Comparative Study on Different Versions of Multi-Objective
Genetic Algorithm for Simultaneous Gene Selection and Sample Categorization”,
authors have studied different versions of multi-objective genetic algorithm for
simultaneous gene selection and sample categorization. Here, authors have selected
optimal gene subset, and sample clustering is performed simultaneously using
multi-objective genetic algorithm (MOGA). They have employed different versions
of MOGA to choose the optimal gene subset, where the natural number of optimal
clusters of samples is automatically obtained at the end of the process. The pro-
posed methods use nonlinear hybrid uniform cellular automata for generating initial
population, tournament selection strategy, two-point crossover operation and a
suitable jumping gene mutation mechanism to maintain diversity in the population.
They have used mutual correlation coefficient, and internal and external cluster
validation indices as objective functions to find out the non-dominated solutions.

In Chapter “A Survey on the Application of Multi-Objective Optimization
Methods in Image Segmentation”, authors have provided a comprehensive survey
on multi-objective optimization (MOO), which encompasses image segmentation
problems. Here, the segmentation models are categorized by the problem formu-
lation with relevant optimization scheme. The survey they have done also provides
the latest direction and challenges of MOO in image segmentation procedure.

In Chapter “Bi-objective Genetic Algorithm with Rough Set Theory for
Important Gene Selection in Disease Diagnosis”, a bi-objective genetic algorithm
with rough set theory has been proposed for important gene selection in disease
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diagnosis. Here, two criteria are combined, and a novel bi-objective genetic algo-
rithm is proposed for gene selection, which effectively reduces the dimensionality
of the huge volume of gene dataset without sacrificing any meaningful information.
The proposed method uses nonlinear uniform hybrid cellular automata for gener-
ating initial population and a unique jumping gene mechanism for mutation to
maintain diversity in the population. It explores rough set theory and Kullback–
Leibler divergence method to define two objective functions, which are conflicting
in nature and are used to approximate a set of Pareto optimal solutions.

Chapter “Multi-Objective Optimization and Cluster-wise Regression Analysis to
Establish Input-Output Relationships of a Process” deals with an approach which is
used to establish input–output relationships of a process utilizing the concepts of
multi-objective optimization and cluster-wise regression analysis. At first, an initial
Pareto front is obtained for a given process using a multi-objective optimization
technique. Then, these Pareto optimal solutions are applied to train a neuro-fuzzy
system (NFS). The training of the NFS is implemented using a meta-heuristic
optimization algorithm. Now, for generating a modified Pareto front, the trained
NFS is used in MOEA for evaluating the objective function values. In this way, a
new set of trade-off solutions is formed. These modified Pareto optimal solutions
are then clustered using a clustering algorithm. Cluster-wise regression analysis is
then carried out to determine input–output relationships of the process. These
relationships are found to be superior in terms of precision to those of the equations
obtained using conventional statistical regression analysis of the experimental data.

Contributions available in the fourteen chapters, after being meticulously
reviewed, reflect some of the latest sharing of some serious researches of the
concerned field. The editors want to avail this opportunity to express their sincere
gratitude to all the contributors for their efforts in this regard without which this
edited volume could have never come to a reality. The editors sincerely feel that the
success of such an effort in the form of edited volume can be academically
meaningful only when it is capable of drawing significant contributions from good
researchers in the relevant field.

The editors also thank the reviewers who are leading researchers in the domain
for spending their time from their busy schedules to give valuable suggestions to
improve the quality of the contributed articles. Last but not least, the editors are
inclined to express their sincere thanks to Springer Nature, Singapore, for being the
publishing partner. But for their acceptance to publish this volume would never
have been possible in the present standard.

Enjoy reading it.

Kalyani, India Jyotsna K. Mandal
Silchar, India Somnath Mukhopadhyay
Bolpur, Santiniketan, India Paramartha Dutta
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Non-dominated Sorting Based
Multi/Many-Objective Optimization:
Two Decades of Research
and Application

Haitham Seada and Kalyanmoy Deb

1 Introduction

The date Vector Evaluated Genetic Algorithms (VEGA) (Schaffer 1985) was pro-
posed is the birthdate of Evolutionary Multi-objective Optimization (EMO), despite
a few earlier suggestions on the importance of handling multiple objectives within
an evolutionary algorithm. Since then, the classical trend of combining all objectives
into one fitness function started to fade. The history of this relatively new field can
be viewed from several different perspectives. Here, we are more concerned about
the role non-dominated sorting played throughout this history. The concept of non-
domination is related to the concept of “Pareto Optimality” first proposed by the
Italian economist “Vilfredo Pareto”, hence the naming. “Pareto Optimality” is sim-
ply a state of resource allocation among multiple criteria, where it is impossible to
reallocate resources so as to make one criterion better without degrading one or more
other criteria. In this context, a non-dominated solution is a solution that is not pos-
sible to be outperformed in all criteria simultaneously. Unlike “Pareto Optimality”,
“Non-domination” can be relative to a set of supplied solutions. A set of solutions
are non-dominated with respect to each other if none of them outperforms any of the
others in all criteria simultaneously, even if none of them is actually Pareto optimal.
Figure1 shows how the two terms are related yet slightly different.
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2 H. Seada and K. Deb

Fig. 1 Pareto optimality and non-domination

Everyone uses these principles in her/his daily life. If you are buying a new car,
you will ideally be willing to get the cheapest yet most comfortable and luxurious
car! This is called the ideal solution. In such a situation, the ideal solution does
not exist, because your objectives are conflicting. This situation is a multi-objective
optimization problem. Let us assume—for the sake of the argument—that the ideal
solution exists! This means that your objectives are aligned and combining them
into one or even optimizing just one of them is sufficient, which in turn means
that your problem should have been formulated as a single-objective optimization
problem in the first place, which is not the case in our car example. Figure1 explains
Pareto optimality and non-domination in the context of our car example. Notice that
we are trying to minimize cost (x-axis) and maximize comfort (y-axis), thus for a
car x to dominate a car y, the price of x must be lower and it needs to be more
comfortable.1 Consequently, any solution in the top left corner of another dominates
it. This explains why the red line represents the “Pareto front”, because any point
(or, car) on this line can never be dominated, as it lies on the top left border of the
entire search space. So, cars A, B, C,D, and E are Pareto optimal. On the other hand,
notice that X is dominated by B,C, andD, while Y is dominated byC andD, yet they

1For simplicity, we only consider strong domination. However, according to the definition, domi-
nation can be weak as well. In our example, weak domination is when two cars have exactly the
same price but one of them is more comfortable than the other. The more comfortable car is said to
weakly dominate the other.
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are both non-dominated with respect to each other.2 Solutions A, X, Y, and E are all
non-dominated to each other. With the knowledge of Pareto optimal solutions, we
observe that solutions A, and E are Pareto optimal, but solutions are X and Y are not.

In a minimization context, a vector X = (x1, x2 . . . xm) is said to be non-
dominated with respect to Y = (y1, y2 . . . ym) ⇐⇒ xi ≤ yi ∀ i and xi < yi ,
for at least one i . In this case, Y is said to be dominated-by or inferior-to X .

Although VEGA did not use non-dominated sorting, it used the non-domination
principle to identify dominated solutions and penalize them. After VEGA,many suc-
cessful evolutionary multi-objective optimization (EMO) algorithms were proposed.
MOGA (Fonseca et al. 1993), NPGA (Horn et al. 1994), and NSGA (Srinivas and
Deb 1994) are some of most notable initial studies in this filed. In these algorithms,
researchers studied several potential approaches to handle more than one objective—
mainly two objectives—through achieving a careful balance between convergence
and diversity preservation. For achieving convergence to Pareto optimal solutions,
these algorithms continued to further incorporate the concept of non-domination (Deb
2001). MOGA was the first algorithm to introduce the idea of grouping solutions
into different layers based on their non-dominated ranking. A true Pareto optimal
solution will never be dominated, and consequently it will always be ranked 1. In
terms of diversity preservation, this family of algorithms continued to use several
diversity preservation methods studied in the context of single-objective evolution-
ary computation methods (Goldberg and Richardson 1987; DeJong 1975; Deb and
Goldberg 1989).

A second wave of algorithms followed. These algorithms incorporated
elite-preservation concept which ensures the survival of non-dominated and well-
diversified solutions from one generation to the next. Some of the most prominent
studies of this wave are NSGA-II (Deb et al. 2002), SPEA (Zitzler and Thiele 1999),
SPEA2 (Zitzler et al. 2001), and PAES (Knowles and Corne 1999), among others
(Deb 2001; Coello et al. 2002; Goh and Tan 2009; Tan et al. 2006; Knowles et al.
2007).

Out of all these algorithms, NSGA-II has been the most widely used in the field
(Jeyadevi et al. 2011; Dhanalakshmi et al. 2011; Fallah-Mehdipour et al. 2012;
Bolaños et al. 2015; Arora et al. 2016). As showin in Fig. 2, in NSGA-II, elitism
is ensured by merging both parents and their offspring into one double-sized com-
bined population, sorting them, and then keeping the better half of the combined
population. For diversity preservation, the authors of NSGA-II proposed an efficient
approach where each member is assigned a crowding distance value. This value
is simply an approximation of the perimeter of the cuboid whose edges are those
pairs of solutions surrounding the designated solution in each dimension as shown
in Fig. 3. The larger the crowding distance value, the more important the solution is.

2Unlike the car example, throughout the rest of this chapter, we assume a minimization context
unless otherwise stated.
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Fig. 2 NSGA-II algorithm (taken from (Deb et al. 2002))

Fig. 3 Crowding distance in
NSGA-II (taken from (Deb
et al. 2002))

This is because such an individual3 is considered the only representative of a less
crowded portion of the objective space. By continuously emphasizing lower ranks
than larger crowding distance values (in this specific order), NSGA-II achieves high
levels of both convergence and diversity eventually. The whole NSGA-II procedure
is shown in Fig. 2. On the other hand, SPEA and SPEA2maintain an external archive
of outstanding solutions (in terms of both convergence and diversity) and use these
archived solutions in the creation of new populations. Another approach was adopted
by PAES which performs a competition between a parent and its child to enforce
elite preservation.

All the aforementioned algorithms suffer—in general—their inability to scale
up to more than two objectives.4 And although most of them are applicable—
in theory—to any number of objectives, their performance obviously degrades
significantly (Khare et al. 2003). Only recently, researchers were able to devise new

3 The terms “solution”, “individual” and “points” are used interchangeably throughout this chapter.
4It is worth noting that some of the later ones were shown to solve up to three objectives as well.
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scalable algorithms that can solve problems involvingmany objectives (Deb and Jain
2014; Jain and Deb 2014; Asafuddoula et al. 2015; Zhang et al. 2015; Li et al. 2015;
Garza-Fabre et al. 2009; Adra and Fleming 2011; Khare et al. 2003; Ishibuchi et al.
2008; Hadka and Reed 2013; Singh et al. 2011; Aguirre and Tanaka 2009; Sato et al.
2010; Zou et al. 2008; Wickramasinghe and Li 2009; Purshouse and Fleming 2007;
Köppen and Yoshida 2007; Zhang and Li 2007; Sindhya et al. 2013). Later, we will
discuss some of the most prominent-based many-objective optimization algorithms.

Multi-objective This term usually refers to scenarios involving two or three objec-
tives at most.

Many-objective This recently coined term refers to problems having more than
three objectives, and possibly up to 20 objectives and in rare con-
ditions even more.

Today, the field is more active than ever. Hundreds of researchers from a wide
range of scientific disciplines have joined the field since its advent 30 years ago
(Schaffer 1985). And it is easy to tell how far the field has gone.

The rest of this chapter is organized as follows. Section2 shows the differences in
effect and behavior of non-dominated sorting across different objective dimensions.
Some of the most recent successful-based EMO algorithms are discussed in Sect. 3.
Section4 is dedicated to dive into the details of one of the state-of-the-art algo-
rithms that combine non-dominated sorting with both point-to-point local search
and a recently proposed theoretical convergence metric. Sections3 and 4 capture
briefly some of the results included in the original respective studies. Finally, Sect. 5
concludes our discussion.

2 Across Different Scenarios

Although the definition of non-dominated sorting is the same across all dimensions,
its effect can be very different from one to the other. In this section, we will dis-
cuss these differences and explain the reasons behind them across the three main
dimensional categories, namely, multi-objective, many-objective, and even single-
objective.

2.1 Multi/Many-Objective Optimization

Visualization is an important tool in optimization. A visual inspection of your
results can help identify gaps, missing extremes, and more importantly, any unex-
pected behavior of the algorithmunder investigation. Inmulti-objective optimization,
visualization is possible. In bi-objective problems, the entire objective space can be
plotted in a two-dimensional plot where the Pareto front is represented by a line,
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(a) Non-domination in 2 objectives (b) Non-domination in 3 objectives

Fig. 4 Non-domination in multi-objective optimization

Fig. 5 Number of
non-dominated solutions is
directly proportional to the
number of objectives

see Fig. 4. In cases involving three objectives, the objective space can be plotted in
a three-dimensional plot, and the Pareto front will be a surface, see Fig. 4a. Obvi-
ously, beyond three objectives, visualization becomes a problem. Researchers have
proposed numerous techniques to mitigate this problem.

Another problem arises from the fact that virtually all non-domination-based
algorithms use non-dominated sorting (or at least the non-domination principle itself)
as their main convergence pressure utility. This is not a problem in multi objective
optimization per se; however, as the number of objectives increase, the selection
pressure starts to fade! Figure5 shows how the number of non-dominated solutions
in a randomly generated population of 500 solutions increases at higher dimensions.
For example, the figure shows that at 20 objectives, almost all solutions will be
non-dominated with respect to each!
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2.2 Single-objective Optimization

It is worth noting that researchers have utilized non-dominated sorting in single-
objective optimization problems as well (Murugan et al. 2009; Deb and Tiwari 2008;
Seada and Deb 2016; Sharma et al. 2008). These efforts can be roughly classified
into two different approaches. The first approach is to add artificial objectives to an
originally single-objective optimization problem.For example, some studies add con-
straint(s) violation minimization as an additional objective (Murugan et al. 2009).
This optimization problem now becomes technically a multi-objective optimiza-
tion problem, with a domination relationship among its solutions. Other researchers
realized that even if non-dominated sorting is applied to a problem in its single-
objective status, it degenerates to an ordinal comparison operator, which is an essen-
tial operation for progressing toward the optimum solution for a single-objective opti-
mization problem. Consequently, the second approach appeared where researchers
apply multi-objective optimization algorithms—involving non-dominated sorting—
directly to single-objective optimization problems (Sharma et al. 2008; Deb and
Tiwari 2008; Seada and Deb 2016).

3 Recent Non-dominated Sorting Based Algorithms

As mentioned in Sect. 2, researchers continue to employ non-dominated sorting in
their algorithm even in the era of many objectives. One of the most notable efforts
in this regard is NSGA-III, proposed by Deb and Jain in 2014 (Deb and Jain 2014;
Jain and Deb 2014). They built on top of NSGA-II to create an algorithm capable
of handling many objectives. The original study investigated a wide range of dimen-
sionalities (3 to 15 objectives). Aside from those parameters required by standard
evolutionary operations (e.g., population size, crossover probability, etc.), NSGA-III
does not need any parameters, and thus dubbed “parameterless”. It uses the same
general framework of NSGA-II, but with a modified diversity-preserving operator
that is based on a decomposition concept similar to that of MOEA/D (Zhang and
Li 2007). Since many of the current lines of research in EMO uses NSGA-III or its
extensions, we devote the next section to discuss its general philosophy and some of
its details. For detailed explanations and extensive simulation results, the reader is
advised to consult (Deb and Jain 2014; Jain and Deb 2014).

3.1 NSGA-III and Its Variants

NSGA-III starts with generating N random solutions (initial population) and a set
of H prespecified M-dimensional reference points5 that are evenly distributed on

5Although the original study used the notion of a “reference point”, here we will mostly use the
notion of a reference direction, which is the vector connecting the ideal point to the “reference
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(a) Reference points(directions) in NSGA-III (b) Association in NSGA-III

Fig. 6 NSGA-III operation

a unit hyperplane having a normal vector of ones covering the entire RM+ region.
The way the hyperplane is placed ensures that it intersects each objective axis at
1 (see Fig. 6a (Deb and Jain 2014)). H = (M+p−1

p

)
reference points ((p + 1) along

each boundary) are placed in the hyperplane using Das and Dennis’s method (Das
and Dennis 1998) N and H are chosen to be equal (or as close as possible). The
justification behind this is that eventually one solution is expected to be found for
each reference direction.

At generation t , recombination and mutation operators are applied to Pt (parent
population) to generate Qt (offspring population). Since the algorithm targets only
one population member per reference direction, there should be no competition
among reference directions. To avoid this inter-direction competition,NSGA-III does
not have selection among feasible solutions. Pt and Qt are then combined Rt = Pt ∪
Qt , and the whole combined population is sorted into several non-domination levels,
and in the same way it is done in NSGA-II. Starting at the first front (non-domination
level), solutions are included in Pt+1 (the next parent population) one front at a time.
Typically, the algorithmwill reach a front that hasmore individuals than the remaining
slots in the next parent population, i.e., a front that cannot be fully accommodated in
Pt+1. Let us denote this last front as FL . In such a case, a niche-preserving operator
is used to select the subset of FL that will be included in Pt+1. The niche-preserving
operator works as follows. Each member of Pt+1 (the new parent population that is
partially full so far) and FL (the last un-accommodated front) is normalized using
extreme values of the current population (representing spread). After normalization,
all objective vectors and reference directions should have commensurate values.
Thereafter, each member of Pt+1 and FL is associated with its closest reference
direction (in terms of perpendicular distance). Finally, in order to completely fill
Pt+1, NSGA-III uses a careful niching strategy where it chooses those FL members
that represent the most sparse regions (reference directions) in Pt+1. The goal of

point”. We found this notion more conceivable and avoids the confusion that may arise between the
two terms “point” (an actual solution) and “reference point” (a hypothetical point in the objective
space).
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niching is to select a population member for as many supplied reference directions
as possible. Niching prefers solutions attached to under-represented/un-represented
reference directions. Because NSGA-III maintains a constant preference of non-
dominated solutions along with the aforementioned niching strategy, the algorithm
is expected to reach a Pareto optimal solution in the close vicinity of each supplied
reference direction (provided that genetic variation operators can produce respective
solutions), hence, an well-distributed sample representing the true Pareto optimal
front (see Fig. 6b (Deb and Jain 2014)).

ALGORITHM 1 Generation t of NSGA-III procedure
Input: H structured reference directions Zs or supplied aspiration points Za , parent population Pt
Output: Pt+1
1: St = ∅, i = 1
2: Qt = Recombination+Mutation(Pt )
3: Rt = Pt ∪ Qt
4: (F1, F2, . . .) = Non-dominated-sort(Rt )
5: repeat
6: St = St ∪ Fi and i = i + 1
7: until |St | ≥ N
8: Last front to be included: Fl = Fi
9: if |St | = N then
10: Pt+1 = St , break
11: else
12: Pt+1 = ∪l−1

j=1Fj
13: Points to be chosen from Fl : K = N − |Pt+1|
14: Normalize objectives and create reference set Zr : Normalize(fn, St , Zr , Zs , Za)
15: Associate each member s of St with a reference point: [π(s), d(s)] =Associate(St , Zr)

% π(s): closest reference point, d: distance between s and π(s)
16: Compute niche count of reference point j ∈ Zr : ρ j = ∑

s∈St /Fl ((π(s) = j) ? 1 : 0)
17: Choose K members one at a time from Fl to construct Pt+1:

Niching(K , ρ j , π, d, Zr , Fl , Pt+1)
18: end if

The original NSGA-III study (Deb and Jain 2014) showed very promising results
in the many-objective realm. It is worth emphasizing that NSGA-III and its exten-
sion (Jain and Deb 2014) (for constraints handling) do not need any additional hard-
coded parameters to achieve good performance.6,7 That study has also introduced a
computationally fast approach by which reference directions are adaptively updated
on the fly based on the association status of each of them over a number of genera-
tions. The algorithm is outlined in Algorithm 1.

Instead of solving the reducing selection pressure problem at higher dimensions,
NSGA-III views it as an advantage! According to the authors, in higher dimensions

6Other than the standard evolutionary parameters, e.g., population size, number of Solution evalu-
ations(SEs)/generations, recombination/mutation probability, etc.
7One of the most important resources in optimization is the number of function evaluations (FEs)
consumed to reach a solution. In a multi-objective optimization scenario, we use the term solution
evaluation (SE) instead, as evaluating a single solution involves evaluating more than one function.
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(a) NSGA-II on scaled DTLZ1 (b) NSGA-III on scaled DTLZ1

(c) NSGA-II on scaled DTLZ2 (d) NSGA-III on scaled DTLZ2

Fig. 7 Performance of NSGA-II and NSGA-III on scaled unconstrained three-objective DTLZ
problems

the search space becomes too complex and the algorithm needs to slow down con-
vergence to get enough opportunity to explore the whole search space. Otherwise,
the algorithmmight be trapped in a local Pareto front, or miss parts of the true Pareto
front.

Figure7 shows how NSGA-III achieves significantly better results than NSGA-II
in three-objective scaled DTLZ1 and DTLZ2 problems (Deb et al. 2005). Obviously,
NSGA-II fails to a well distribution completely.

NSGA-III is now being extensively used in a diverse set of fields including soft-
ware engineering (Mkaouer et al. 2014, 2015), quality control (Tavana et al. 2016),
renewable energy (Yuan et al. 2015), and feature selection (Zhu et al. 2017), among
others. It was also extended to create new algorithms with specific desired features.
One such extension is U-NSGA-III which is a parameterless extension of NSGA-III
that improves on its ability to handle single-objective optimization problems, while
maintaining the same outstanding performance in higher dimensions. θ -NSGA-III
is another parameterized extension that is intended to solve the reducing selection
pressure problem and maintain a better balance between convergence and diversity.
Other extensions can also be found in literature (Ibrahim et al. 2016; Yuan et al.
2016a).
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3.2 Other Successful Algorithms

So far, we have focused on non-domination-based EMO algorithms; however, there
have been other successful attempts that are did not depend on non-domination.
We devote this section to discuss some of these efforts. The most important effort
in this line is Zhang and Li’s MOEA/D (Zhang and Li 2007), which is consid-
ered one of the first multi/many-objective optimization algorithms. They proposed a
decomposition-based method, guided by a set of predefined evenly distributed set of
reference directions in the objective space. The original multi-objective optimization
problem is decomposed into a set of single-objective optimization subproblems, one
problem for each reference direction. Each subproblem utilizes information from
its neighboring subproblems only. The authors proposed several approaches for for-
mulating these subproblems. The most successful approach is the penalty-based
boundary intersection (PBI) approach shown in Fig. 8 (notice that the original study
was proposed in a maximization context). In this approach, for a given point x ,
objective vector F(x), reference point z∗, and reference direction λ, the weighted
sum of the two distances d1 and d2—in the objective space—is minimized. d1 rep-
resents the Euclidean distance between z∗ and the projection of F(x) on λ, while d2
represents the Euclidean distance between F(x) and its projection on λ. Other formu-
lation approaches including simple weighted sum, Tchebycheff, and non-penalized
boundary intersection (BI) have also been discussed.

Although their original study showed better results compared to NSGA-II and
other algorithms up to 4 objectives, their algorithms have been used successfully
elsewhere up to 10 objectives (Deb and Jain 2014).

Researchers extended MOEA/D in many ways as well. Wang et al. proposed a
modification of its replacement strategy (Global replacement) (Wang et al. 2014).
The original version of MOEA/D simply assumes that a solution coming out of a
specific subproblem can only replace another solution in the vicinity of this subprob-

Fig. 8 MOEA/D PBI (taken
from (Zhang and Li 2007))
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lem. Their approach on the other hand looks for the subproblem at which the new
solution fits best and performs replacement in the vicinity of this subproblem instead
of the original one, hence the name “Global replacement”. They showed how this
simple modification performs better on a set of test problems. Another recent study
by Yuan et al. (2016b) proposed a steady-state modified version of MOEA/D that
achieves better balance. In their study, they use a slightly relaxed mating restriction
(controlled by a probability parameter δ). Their approach—MOEA/D-DU—utilizes
the perpendicular distances between solutions and directions (d2) for enhanced diver-
sity. Another interesting extension is the one proposed by Li et al. (2014) where they
used a stable matching selection model (Gale and Shapley 1962) to coordinate the
selection process in MOEA/D.

Some researchers tried to get the best of both worlds by combining both non-
dominated sorting used in NSGA-II and NSGA-III with the notion of sub-regions
and mating selection from MOEA/D (Li et al. 2015).

4 State-of-the-Art Combinations

In this section, we will dive into the details of one of the most recent algorith-
mic developments of non-domination-based EMO algorithms, namely B-NSGA-III.
B-NSGA-III is particularly interesting because it is a combination of EMO, point-to-
point local search, and the recently proposed Karush Kuhn Tucker proximity mea-
sure. It shows the ability of carefully designed hybrid algorithms to handle complex
problems with a significantly reduced number of solution evaluations.

B-NSGA-III retains the general outline of U-NSGA-III (Seada and Deb 2016)
which in turn retains most of the features of NSGA-III. Starting with a randomly gen-
erated initial population, B-NSGA-III generates an equal number of offspring indi-
viduals (solutions/points) using niche-based tournament selection, simulated binary
crossover, and polynomial mutation (Deb and Agrawal 1995). The two populations
are then combined and the ideal point is updated. The combined population goes
through non-dominated sorting (Deb et al. 2002), and the next population is formed
by collecting individuals front by front starting at the first front. Since population
size is fixed, the algorithm will typically reach a situation where the number of indi-
viduals needed to complete the next population is less than the number of individuals
available in the front currently being considered. B-NSGA-III collects only as many
individuals as it needs using a niching procedure. This niching procedure normalizes
the objectives of all fronts considered. Then, using a fixed set of evenly distributed
reference directions (in the normalized objective space), preference is given to those
solutions representing the least represented reference directions in the objective space
so far. Interested readers are encouraged to consult (Seada and Deb 2016) for more
details.

NSGA-II, NSGA-III, and U-NSGA-III maintain a constant preference of conver-
gence over diversity. A solution in front n + 1 will never be considered for inclusion
in the next population unless all solutions in front n are already included. This
convergence-always-first scheme has been recently criticized by several researchers
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(Zhang and Li 2007; Li et al. 2010). B-NSGA-III breaks this constant emphasis on
convergence, for every α generations. The algorithm changes its survival selection
strategy, by favoring solutions solely representing some reference directions over
other—possibly dominating—redundant solution. A redundant solution is a solution
that is not the best representative of its niche, i.e., there exists another solution—in
the same front—that is closer to the reference direction representing their niche.

Another difference between U-NSGA-III and B-NSGA-III is that U-NSGA-III
treats all individuals/regions of the search space equally at all generations. And
although it might seem better from a generic point of view, B-NSGA-III claims the
opposite. Being fair the way U-NSGA-III is can lead to wasting SEs on easy sections
of the Pareto front. Those wasted SEs could have been put into better use, if they
were directed toward reaching more difficult sections of the front. Obviously, in
order to achieve the maximum possible utilization of SEs, a truly dynamic algorithm
that gives more attention to more difficult sections/points of the front is needed.
However, designing such an algorithm needs an Oracle that knows deterministically
the difficulty of attaining each point on the front relative to others. Unfortunately, for
an arbitrary optimization problem, perfecting such an Oracle is a far-fetched dream
so far, despite some studies (Liu et al. 2014). However, recent studies show some
clues that can drive creating a nondeterministic version of the targeted Oracle. We
summarize these clues in the following points:

1. Researchers have repeatedly shown that the important role normalization plays
especially in achieving better coverage of the Pareto front. Usually, the extreme
points of the current population dictate normalization parameters. During evo-
lution, as new extreme points appear all previously normalized objective values
become outdated, and normalization is repeated, and hence, the importance of
extreme points in optimization. And as pointed in Talukder et al. (2017), the
earlier we reach extreme points, the better normalization we have and the better
coverage we attain.

2. Reaching some parts of the Pareto front may require more effort than others.
Several tests as well as real-world problems exhibit such behavior (Zitzler et al.
2000; Deb et al. 2005). Usually, such difficult regions appear as gaps in the
first front. In reference direction-based optimization algorithms (like MOEA/D,
NSGA-III and U-NSGA-III), gaps can be identified by looking for reference
directions having no associations so far.

3. In multi-objective optimization, all non-dominated solutions are considered
equally good, thus deserving equal attention. This is not ideal though. Being
non-dominated with respect to each other does not mean that two solutions are
equally converged. The recently published approximate KKTPM now enables us
to efficiently differentiate non-dominated solutions based on their proximity from
local optima.

These clues are realized in B-NSGA-III through several phases. In α generations,
the algorithm switches back and forth among three different phases. Each phase uses
one some LS operator to fulfill its goal. The following subsection discusses these
phases in greater detail.
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4.1 Alternating Phases

One naive approach is to use sequential phases. Given their relative importance, the
first phase may seek extreme points. Once found, the algorithmmoves to subsequent
phases and never looks back. But, as shown in Talukder et al. (2017), reaching true
extreme points is not a trivial task. Even using LS, several optimizations might be
needed to attain one extreme point. And since we can never safely assume that we
have reached the true extreme points, this sequential design is not recommended.
The same argument is valid for covering gaps. In an earlier generation, although
your solutions may not provide the desired spread, it might be the case that there
are no gaps within the small region they cover. As generations proceed and solutions
expand, gaps may appear. This is a frequent pattern that is likely to repeat through an
optimization run. Again, the sequential pattern is prone to failure, as we can never
know if more gaps will appear in the future.

Another more involved yet simple approach is to move from one phase to the next
after a fixed number of generations (or SEs). Once the algorithm reaches the final
phase, it goes back to the first cyclically. This cyclic approach is more appealing,
but how many generations (or SEs) to wait before switching from one phase to the
next? Obviously, it is never easy to tell. In addition, using this rigid design obligates
the algorithm to spend resources (SEs) in possibly unnecessary phases, just because
it is their turn in the alternation cycle.

B-NSGA-III alternates among three phases dynamically and adaptively. Figure9
shows the three phases in action.DuringPhase-1, the algorithm seeks extreme points.
Phase-2 is where an attempt is made to cover gaps found in the non-dominated front.
Finally, during Phase-3, the focus is shifted toward helping poorly converged non-
dominated solutions. In order to avoid the shortcomings of the two aforementioned

Fig. 9 Phase-1, Phase-2, and Phase-3 in action
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Fig. 10 Alternation of
phases

approaches, B-NSGA-III watches for specific incidents that trigger transitions from
one phase to another. Those transitions are completely unrestricted, i.e., B-NSGA-III
can move from any phase to the other if the appropriate trigger is observed. Figure10
shows all possible transitions along with their triggers.

In the first α generation, the algorithm puts itself in Phase-1. Algorithm 2 shows
the details of this phase. For an M objectives problem, Phase-1 uses an extreme-LS
operator (discussed later) to search for its M extreme points. If all extreme points
remain unchanged from one α generation to the next, B-NSGA-III assumes tem-
porarily that these settled points are the true extreme points, and moves to Phase-2.
While being in phases 2 or 3, finding a better extreme point through evolution indi-
cates that those extreme points previously settled are not the true ones. Consequently,
B-NSGA-III returns to Phase-1 in search for better extreme points again.

Asmentioned earlier, B-NSGA-III gives a chance to possibly dominated solutions
that solely represent their niche, every α generations. This is shown in Algorithm
3, line 3 and expanded in Algorithm 4. The points surrounding each non-empty
reference direction are collected from the merged population (parents and offspring)
(line 2), and the best ranked point is selected to represent this direction/niche (line
4). If more than one point share the same rank, the point closest to the direction
is selected (line 5). Obviously, as opposed to U-NSGA-III points in B-NSGA-III
compete only with their niche peers, which means that an inferiorly ranked point
from one niche can be included because it is the best representative of its niche,
while a superior point from another niche is left out because a better representative
if its niche exists.

Once in Phase-2, B-NSGA-III looks for reference directions having no
associations in the first front (empty directions). These directions represent gaps
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ALGORITHM 2 Phase 1
Input: parent population (P), offspring (O) population size (N ), reference directions (D), ideal

point (I ), intercepts (T ), maximum number of function evaluations (FeMax), maximum num-
ber of local search operations per iteration β, augmentation factor ε

Output: None
1: All ← P ∪ O
2: E ← get ExtremePoints(All)
3: for i = 1 to M do
4: Ei ← localSearchBWS(Ei , I, T, FeMax, ε),

i = 1, . . . , M
5: O(randomIndex) ← Ei ,

1 ≤ randomIndex ≤ |O|
6: i ← i + 1
7: end for

ALGORITHM 3 Phases 2 and 3
Input: parents (P), offspring (O), number of objectives (M), population size (N ), reference direc-

tions (D), ideal point (I ), intercepts (T ), maximum number of function evaluations (FeMax),
maximum number of local search operations per iteration β, last point used to cover direction d
(prevd ) for all d in D

Output: New Population (P̂)

1: F ← nonDominatedSorting(All)
2: All ← P ∨ O
3: P̂ ← get BestWithinNiche(d, O) ∀d ∈ D
4: if stagnant (E) then
5: Dempty ← {d ∈ D | (�x)[x ∈ F1 ∧ x ∈ dsurroundings ]}
6: skktpm ← calculateK KT PM(s) ∀s ∈ P̂
7: for i = 1 to β do
8: if Dempty �= φ then � Phase-2
9: d ← randomPick(Dempty)

10: s ← {x ∈ F1 |
(�y)[y ∈ F1∧ ⊥d (y) <⊥d (x)]}

11: if prevd = null or ⊥d (s) <⊥d (prevd ) then
12: prevd ← s
13: else
14: s ← null
15: Dempty ← Dempty \ {d}
16: end if
17: else � Phase-3
18: s ← {x ∈ P̂ |

(�y)[y ∈ P̂ ∧ ykktpm > xkktpm ]}
19: end if
20: if s �= null then
21: ŝ ← localSearchASF (s, I, T, FeMax)
22: P̂ ← P̂ ∨ {ŝ}
23: β ← β + 1
24: end if
25: end for
26: end if
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in the non-dominated front (Algorithm 3, line 5). If several such directions exist, one
is picked randomly (line 9) and the closest first front point to this direction is saved
(line 10) to be used later as a starting point in local search. Notice that lines 11–16
ensure that B-NSGA-III will not retry to cover a gap until a closer starting point than
the one previously used is found. If no empty directions exist, B-NSGA-III moves
to Phase-3, looking for the least converged point among those selected so far. This
point should have the highest KKTPM among all (line 18). An ASF-LS operator
(discussed later) is employed in both cases (line 21), either to cover a gap (Phase-2)
or to bring a poorly converged point closer to the front (Phase-3). In order to keep
SEs as low as possible, a maximum of β LS operations are allowed, even if the
number of gaps is more than β. Notice the ability of the algorithm to move directly
from Phase-1 to Phase-3 if no gaps are found.

ALGORITHM 4 getBestWithinNiche(...)
Input: merged parents and offspring (All), reference directions (D)

Output: selected Individuals (one from each niche) (P̂)

1: P̂ ← φ

2: S ← get Surroundings(d, All)
3: for all d ∈ D do
4: Xd ← {x ∈ S | (�y)[y ∈ S ∧ yrank < xrank ]}
5: xd ← {x ∈ Xd | (�y)[y ∈ S ∧ ⊥d (y) <⊥d (x)]}
6: P̂ ← P̂ ∪ {xd }
7: end for

ALGORITHM 5 fillUpPop(...)

Input: merged parents and offspring (All), population size (N ), partially full new population (P̂)

Output: completely full new population (P̂)

1: All ← All \ P̂
2: while |P̂| < N do
3: Z ← {x ∈ All | (�y)[y ∈ All ∧ yrank < xrank ]}
4: z ← pickRandom(Z)

5: All ← All \ {z}
6: P̂ ← P̂ ∨ {z}
7: end while

It is worth noting that phases 2 and 3 may run simultaneously. If the number of
empty directions (gaps) is less than β, B-NSGA-III moves to Phase-3 and uses the
remaining budget to help poorly converged solutions. Obviously, Phase-1 has the
highest priority followed by Phase-2 then Phase-3. The following two subsections
discuss both Extreme-LS and ASF-LS operators in detail.

Finally, since all the three phases are not guaranteed to completely fill the next pop-
ulation, a final pass ismade tofill up the next population using points thatB-NSGA-III
has discarded so far. Algorithm 5 shows that the best ranked points—out of those
not included yet in the next population—are given higher priority.
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4.2 Two Local Search Operators

Asmentioned earlier, B-NSGA-III uses two different local search operators. In each,
all the objectives are combined into some aggregate function (scalarization). Any
single-objective optimizer can be used to minimize these aggregate functions. Here,
we chose to useMatlab’s® fmincon() optimization routine, a point-to-point deter-
ministic optimizer. Point-to-point optimizers use less function evaluations compared
to set-based methods (e.g., evolutionary algorithms). But they are also less guar-
anteed to reach global optima. Yet, in an alternating multi-phased algorithm like
B-NSGA-III the embedded single-objective optimizer is not expected to reach the
global optimum in one shot. That is why fmincon() fits our criteria for an embed-
ded single-objective optimizer. Earlier, we discussed the role of our twoLS operators.
Next, we discuss their formulations and how they fit into their designated roles.

4.2.1 Extreme-LS

Phase-1 uses Extreme-LS to find extreme points. This operator is formulated simply
as a biased weighted sum (BWS) aggregate function of all objectives (Eq. 1). f̃k(x)
represents the normalized value of objective k. When seeking the i th extreme point,
the term Biased refers to the significantly smaller weight (we call it augmentation
factor) multiplied by the i th objective, compared to the weights of all other objec-
tives. Although weighted sum aggregate functions are straightforward and easy to
implement, they (including ours) can only reach points lying on convex sections of
the Pareto front. While this makes them less plausible as a generic formulation, they
perfectly serve their purpose in B-NSGA-III, since extreme points by definition can
never lie in a non-convex section of the Pareto front. Unlike (Seada et al. 2017),
the operator we are proposing here is normalized based on the number of objectives.
This allows using the same augmentation factor for different dimensions. It is impor-
tant to note that adding the ith objective term to the formula helps avoiding weakly
dominated points.

Minimize
x

BWSi(x) = ε f̃i (x) +
M∑

j=1, j �=i

w j f̃ j (x)

M − 1
, (1)

where ε is set as one percent of minMj=1, j �=i w j .

4.2.2 Achievement Scalarization Function LS (ASF-LS)

As mentioned earlier, a generic LS operator that is required to get an arbitrary Pareto
point cannot rely on BWS. That is why we use ASF to formulate our second LS oper-
ator, ASF-LS. The formulation in Eq.2 shows that ASF-LS targets the intersection
between the provided direction and the Pareto front. Since B-NSGA-III is a reference
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direction-based algorithm, ASF-LS can follow these already existing directions. And
because of its ability to reach points lying on both convex and non-convex sections
of the Pareto front, this is the operator employed in both Phase-2 and Phase-3 of
B-NSGA-III. It is worth noting that according to our earlier experiments, ASF-LS
does not perform as well if used to find extreme points. This can be attributed to
the steep gradient of the aggregate ASF function (at these points) on one side of the
global optimum, which usually misleads the single-objective optimizer. Hence, we
need both operators in B-NSGA-III, each playing its designated role.

Minimize
x

ASF(x, zr ,w) = M
max
i=1

(
f̃i (x) − ui

wi

)
,

subject to g j (x) ≤ 0, j = 1, 2, . . . , J.

(2)

(a) MOEA/D Median front (b) U-NSGA-III Median front

(c) B-NSGA-III Median front

Fig. 11 Median final fronts of MOEA/D, U-NSGA-III and B-NSGA-III on DTLZ7 (3 objectives)
(Copied from (Seada et al. 2018))
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(a) Reference PCP (True PF) (b) MOEA/D

(c) U-NSGA-III (d) B-NSGA-III

Fig. 12 PCPs of MOEA/D, U-NSGA-III, and B-NSGA-III on DTLZ4 (10 objectives) (Copied
from (Seada et al. 2018))

4.3 B-NSGA-III Results

The authors of B-NSGA-III compared its performance to both U-NSGA-IIIand
MOEA/D. Interested readers can consult the original study for an extensive set
of simulations and results (Seada et al. 2018). Here, we will only show a sample
of these results in both 3 and 10 objectives. All the following plots represent the
median performance of their corresponding algorithms.

Figure11 shows the performance of the three algorithms in three-objectiveDTLZ7
test problem (Deb et al. 2005). The true Pareto front of this problem is divided into
four separated islands. Most algorithms fail to attain all islands and even if they did,
they struggle to maintain a good distribution of solutions. Obviously, both MOEA/D
and mine fail to cover the entire Pareto front. U-NSGA-III completely misses two of
the four islands.MOEA/Dwas able to get some solutions at each island; however, the
distribution is much worse than that of U-NSGA-III. On the other hand, B-NSGA-III
is able to achieve a much better distribution of solutions all over the four islands.
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Our second set of selected results shows the performance of the three algorithmson
a 10-objective DTLZ4 problem (Deb et al. 2005). DTLZ4 is a variable density prob-
lem,where solutions aremore dense toward one corner of the Pareto front. The results
are shown in the form of parallel coordinate plots (PCPs). Obviously, B-NSGA-III
median result (Fig. 12d) is the closest to the ideal performance (Fig. 12a).

5 Conclusions

In this chapter, we have discussed the role of non-dominated sorting in the EMO
field over the last four decades. Non-dominated sorting has been one of the most
useful utilities in this field since day one. The most widely used algorithms both
in research and practice are non-domination dependent. Even in higher dimensions,
non-dominated sorting still plays a significant role and researchers continue to devise
new approaches that combine non-domination based sorting with decomposition,
local search, and theoretical metrics.

Non-dominated sorting provides a more global picture of the best solutions in a
population. Hence, an emphasis of non-dominated-based sorted points constitutes a
more accurate search. The flip side is the computational requirement and the popula-
tion issue, which may be prohibitive for it to be efficient for a distributed and parallel
computing platform. Nevertheless, more than 25 years of research and application
with non-dominated sorting based EMO methods have provided a solid foundation
of its importance in evolutionary multi/many-objective optimization.
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Mean-Entropy Model of Uncertain
Portfolio Selection Problem

Saibal Majumder, Samarjit Kar and Tandra Pal

1 Introduction

Investment is an important factor in many institutional sectors of the economy and is
essentially a profit-making avenue. Making decision about where to invest in order
to curtail the associated risk, involves intricate mathematics. In this chapter, we
investigate a portfolio selection problem, which maximizes the return and minimizes
the associated risk of the investor. The portfolio selection problem is a branch of
economic and financial modelling which deals with selecting optimal portfolio. The
pioneering work of optimal portfolio selection problem was first done by Markowitz
(1952) which is regarded as the basis of financial theory. The author considered the
trade-off relationship between investment return and risk, and eventually introduced
the mean-variance (MV) model which has a vital role in the modern portfolio theory.
Markowitz developed a bi-criteria optimization problem to maximize the expected
return at a predetermined portfolio risk or to minimize the risk for a predetermined
expected return. Markowitz’s MV portfolio model is conflicting in nature. There
does not exist any decision point (optimal solution) at which both the objectives
attain their extremum values. Therefore, the better compromise solutions for both
the objectives are taken into consideration.
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An inherent assumption of the seminal work of Markowitz is that the future
security returns are influenced by their past performances. In otherwords, the security
returns are considered as probabilistic in nature and represented as random variables.
The characteristics (expected value, variance, entropy, etc.) of these randomvariables
are determined by the samples of historical data. These situations become valid if
there is an availability of abundant historical data in a financial market. However,
in real-world scenarios, there are many parameters in the security markets, such as
company performance, political factors, and market forces of supply and demand,
which are associated with non-statistical uncertainty and cannot be determined using
probability theory due to the lack of historical data. Moreover, quite often we come
across some situations in the financial market, where new securities may occur. In
such cases, the investors may find it difficult to gather enough samples due to the
lack of historical data about the security returns. Under such circumstances, many
researchers suggest estimation for security returns by inviting domain experts and
represent those estimations using fuzzy set theory. Essentially, portfolio optimization
under fuzziness depends on the possibility distribution, which can be determined by
the predicted value associated with the returns of the securities, estimated by the
experts.

Considering the fuzzy portfolio optimization, a thorough investigation reveals that
paradoxes may appear if the subjective estimation of an investment security return is
expressed as fuzzy variable. As an example, let us consider a security return which
is represented as a triangular fuzzy number ζ � (0.7, 1.4, 1.9), and is characterized
by a membership function. Therefore, based on the possibility measure (Liu 2002)
of a fuzzy number, the occurrence of the event that the return is exactly 1.4 will
certainly possess a belief degree 1. However, it is not acceptable as the belief degree
of exactly 1.4 is almost 0. Moreover, according to possibility measure, the events,
exactly 1.4 and not exactly 1.4, have the same belief. These facts essentially infer a
paradoxical conclusion that the occurrence of the two events is equally likely. In order
to deal with such improbable situations, Liu (2007) proposed uncertainty theory to
effectively deal with subjective imprecise quantity by estimating beliefs of experts,
and further developed it in Liu (2010, 2012). Nowadays, applications of uncertainty
theory can be well observed in different research domains such as finance (Chen
and Gao 2013; Guo and Gao 2017), economics (Yang and Gao 2016, 2017) and
management (Gao and Yao 2015; Gao et al. 2017).

In the context of the studies related to portfolio selection problem, under uncer-
tainty theory (Liu 2007) framework (cf. Sect. 2), we have observed that apart from
the study of Kar et al. (2017), an uncertain portfolio problem is optimized either by
maximizing the return at a particular preset value of risk or minimizing the risk at
a predetermined value of expected return. Considering the framework of return-risk
trade-off of the investors’ portfolio selection, in this study, we have proposed a bi-
objective mean-entropy portfolio selection problem under the framework of uncer-
tainty theory. Here, the mean and the entropy respectively represent the expected
return and the associated risk of the uncertain securities of the investors, which
are determined by the expected value and the triangular entropy, respectively. The
uncertain securities are also represented as uncertain variables. The proposed model
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is solved by two classical multi-objective solution techniques as well as by two
multi-objective genetic algorithms (MOGAs). We have also proposed two theorems
to verify the Pareto optimality of the compromise solution, generated by the pro-
posed model, using the two classical multi-objective solution techniques. A dataset
of 20 uncertain security returns, determined from expert’s opinion, are used as input
data of the proposed model. Finally, the performances of the MOGAs for solving the
proposed model are also studied.

The rest of the chapter is organized as follows. The survey of the related literature
of our study is presented in Sect. 2. The preliminaries, required for the study, are
provided in Sect. 3. In Sect. 4, the concept of the uncertain multi-objective program-
ming (Liu 2007) is discussed. Two multi-objective genetic algorithms: NSGA-II
(Deb et al. 2002) and MOEA/D (Zhang and Li 2007), used to solve the portfolio
selection model, are presented in Sect. 5. In Sect. 6, different performance metrics of
the MOGAs are defined. The proposed bi-objective portfolio selection model, under
the framework of the uncertainty theory, is formulation in Sect. 7. The results of the
proposed model and their discussions are provided in Sect. 8. Finally, the chapter is
concluded in Sect. 9.

2 Literature Study

In this section, we present a brief overview of different variants of portfolio opti-
mization problem which are proposed in previous studies. The survey, by no means,
encompasses all the related researches in the literature.However, some studies having
significant contributions to portfolio selection problem are reviewed.

In 1952, Markowitz presented a precise mathematical model while representing
the famous mean-variance (MV) portfolio selection problem. Further, the author
observed that the returns of different securities of a portfolio follow stochastic distri-
butions and therefore suggested that the securities of a portfolio can be considered as
random variables. In addition, the author also represented the associated risk of the
investors by determining the variance of the random variables. Later, motivated from
the noteworthy research of Markowitz, many researchers put forward several mod-
ifications of the mean-variance portfolio model. The single index model or market
model is one such modification which does not consider the covariance between the
security returns (Sharpe 1964; Lintner 1965). Thereafter, several studies have been
conducted in portfolio theory. Among those, Fishburn (1977) formulated the mean-
risk portfolio selection model in which risk is measured by a probability-weighted
function of deviation below a specific target return. Later, Konno and Yamazaki
(1991) and Feinstein and Thapa (1993) demonstrated the mean-absolute deviation
(MAD) portfolio optimization models. In their study, the authors modelled the asso-
ciated risk as absolute deviation and minimized it for a given expected return. Lai
(1991) defined the mean-variance-skewness model and solved it with goal program-
ming method. The same model was also addressed by Konno and Suzuki (1995) and
eventually solved it as a single objective optimization problem. Following the contri-
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bution of Konno andYamazaki (1991), Simaan (1997) compared the risks ofMV and
MAD portfolio models for a given expected return. Afterwards, Jorion (1996) for-
mulated the mean-value at risk (m-VaR) model. Besides, Konno and Wijayanayake
(1999) formulated a convex maximization problem for MADmodel with transaction
cost. Rockafellar and Uryaser (2000) defined the mean-conditional value at risk (m-
CVaR) model of portfolio selection problem. Oh et al. (2006) introduced a new risk
measuring index, portfolio beta βp which effectively measures the portfolio volatil-
ity relative to capital market. Furthermore, Soleimani et al. (2009) extended the
Markowitz’s MV portfolio model considering market capitalization as a constraint.

Since the development of fuzzy set theory (Zadeh 1965), many scholars and
researchers have developed different fuzzy optimization models for fuzzy portfolio
selection problem. Among them, Watada (1997) first extended the mean-variance
portfolio selection problem in fuzzy decision principle, where the goals for expected
return and the associated risk are represented by membership functions. Since then,
many scholars have studied fuzzy portfolio selection problem. For examples, Tanaka
and Gao (1999) used fuzzy probability and possibility distributions to optimized
mean and variance of a portfolio. Arenas-Parra et al. (2001) proposed an optimal
portfolio selection problem for a private investor by considering return, risk and
liquidity, and eventually solved the problem by fuzzy goal programming. Carlsson
et al. (2002) used the new definitions of the mean and the variance of fuzzy numbers
(Carlsson and Fullér 2001), and determined the optimal portfolio for the investors by
maximizing the utility score. León et al. (2002) proposed an algorithm which used
fuzzy linear programming technique under the framework of return-risk trade-off to
manage invertors’ portfolio. Zhang and Nie (2004) proposed a fuzzy portfolio selec-
tion problem by assuming admissible errors of the expected return and associated
risk. Subsequently, Huang (2008a) proposed two different fuzzy mean-semivariance
models of portfolio selection and eventually solved those models with fuzzy simula-
tion based genetic algorithm. Thereafter, Huang (2008b) proposed a mean-entropy
fuzzy portfolio selection problem, where mean and entropy respectively represent
the return and risk for the securities. Afterwards, Huang (2008c) defined a risk curve
as a new alternative to represent the risk, and formulated a mean-risk curve fuzzy
portfolio model. Qin et al. (2009) proposed the cross entropy minimization model
for fuzzy portfolio selection problem. Li et al. (2010) introduced a mean-variance-
skewness fuzzy portfolio selection model, which respectively models the return, the
risk and the asymmetric behaviour of the fuzzy portfolio returns. Later, Qin et al.
(2011), and Vercher and Bermúdez (2015) represented the associated risk of the
fuzzy returns of the portfolio selection problem respectively by absolute deviation
and semiabsolute deviation. However, some recent studies (Liu 2012; Huang 2012b;
Chen et al. 2016) reveal paradoxical results using fuzzy set theory, making the use
of fuzzy set theory incongruous in the context of portfolio selection problem. Hence,
many researchers have considered uncertainty theory (Liu 2007) as a substitute of
fuzzy set theory.

Huang (2010) first proposed a portfolio selection problem under the Liu’s uncer-
tainty theory framework. Since then, many researchers and scholars have signifi-
cantly contributed to improve different variants of the problem. As for example,
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Huang (2011) proposed a risk curve and presented a mean-risk portfolio selection
model by considering the experts subjective estimation for security returns as uncer-
tain variables. Huang (2012a) defined the mean-variance and the mean-semivariance
models, for which the experts’ estimation of security returns is considered as uncer-
tain variables. Subsequently, Huang (2012b) defined a risk index and introduced a
safe criterion for judging the investor’s portfolio for uncertain portfolio selection.
Motivated from the work of Huang (2012b), Bhattacharyya et al. (2012) presented
the mean-variance-skewness uncertain portfolio model and solved it by fuzzy goal
programming technique. Further, the study of Li and Qin (2014) put forward a mean-
semiabsolute portfolio selection model by considering the expected returns of the
securities as intervals and represented them as uncertain variables. Later, Zhang et al.
(2015) presented expected-variance-chance and chance-expected-variancemodels of
uncertain portfolio selection problem which are solved by a genetic algorithm. Of
late, by considering the risk-return trade-off relationship of the portfolio selection
problem, Qin et al. (2016) proposed the mean-semiabsolute deviation model for
uncertain investment returns. Besides, Huang and Di (2016) considered the return
and risk associated with background assets to develop an uncertain portfolio selec-
tion problem. Afterwards, Kar et al. (2017) proposed a mean-variance-cross entropy
uncertain portfolio selection problem and applied the model on a Shenzhen Stock
Exchange data set and solved the models with MOGAs. Zhai and Bai (2017) con-
sidered the background risk and the asset liquidity and thereby developed a mean-
risk model along with background risk, transaction costs and liquidity for uncertain
portfolio selection problem. Recently, Li et al. (2018) introduced an uncertain multi-
period portfolio selection problem, which maximizes the final wealth and minimizes
the investment risk, and generates a compromise solution of the problem using a
genetic algorithm.

3 Preliminaries

In this section, some preliminary concepts of uncertainty theory (Liu 2007) are
introduced, which are required to formulate the proposed model.

Definition 2.1 (Liu 2007) Let � be a nonempty set and L be a σ-algebra over. Each
element � ∈ L is called an event. For each event �, it is necessary to assign a
number M{�}, which determines the chance of occurrence of each event �. In
order to defineM{·} axiomatically, Liu (2007) proposed the following four axioms.

Axiom 1 (Normality) M{�} � 1.

Axiom 2 (Self -Duality) For any event �,M{�} +M{�c} � 1.

Axiom 3 (Subadditivity)M
{∑∞

i�1 �i
} ≤ ∑∞

i�1 M{�i}, for all countable sequence
of events �1, �2,�3, . . ..

Subsequently, Liu (2010) presented the product measure axiom which is stated
as below.
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Fig. 1 Linear uncertainty distribution of L(6, 14)

Axiom 4 (Product) Let (�i,Li,Mi ) be the uncertain space for i � 1, 2, . . . .,
then the product uncertain measure M becomes an uncertain measure such that
M

{∏∞
i�1 �i

} � ∧i�1
∞ Mi{�i}, where �i is the respective arbitrarily chosen event

from Li for all i � 1, 2, . . . .

Definition 2.2 (Liu 2007) An uncertain variable ζ defined in (1) is a measurable
function from � to [0, 1], and is characterized by an uncertainty distribution �.

�(x) � M{ζ ≤ x},∀x ∈ � (1)

Example 2.1 Let ζ be an uncertain variable. Then, ζ is said to be a linear uncertain
variable (LUV) if

�(x) �

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ≤ a
x−a
b−a , if a < x ≤ b

1, if x > b.

An LUV is denoted as L(a, b), where a, b ∈ � and a < b. The uncertainty
distribution of an LUV is shown in Fig. 1.

Example 2.2 Let ζ be an uncertain variable. Then, ζ is said to be a normal uncertain
variable (NUV) if

�(x) �
{
1 + exp

(
π(μ − x)√

3σ

)}−1

.
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Fig. 2 Normal uncertainty distribution of N (8, 3)

An NUV is denoted as N (μ, σ ), where μ, σ ∈ � and σ > 0. The uncertainty
distribution of an NUV is displayed in Fig. 2.

Definition 2.3 (Liu 2010) Let�(x) be a regular uncertainty distribution of an uncer-
tain variable ζ. Then, the inverse uncertainty distribution of ζ is an inverse function
denoted by �−1(α), where α ∈ [0, 1].

Theorem 2.1 (Liu 2010) Let �1,�2, . . . , �n be respectively the regular uncer-
tainty distributions of the independent uncertain variables ζ1, ζ2, . . . , ζn. If the func-
tion f (ζ1, ζ2, . . . , ζn) is strictly increasing with respect to ζ1, ζ2, . . . , ζm and strictly
decreasing with respect to ζm+1, ζm+2, . . . , ζn, then the inverse uncertainty distribu-
tion of an uncertain variable ξ is

�−1(α) � f
(
�−1

1 (α),�−1
2 (α), . . . , �−1

m (α),�−1
m+1(1 − α), . . . , �−1

n (1 − α)
)
, (2)

where ξ � f (ζ1, ζ2, . . . , ζn).

Definition 2.4 (Liu 2007) Let ζ be an uncertain variable. Then, the expected value
of ζ is

E(ζ ) � +∞∫
0
M{ζ ≥ r}dr − 0∫

−∞
M{ζ ≤ r}dr, (3)

with at least one finite integral.

Remark 2.1 If ζ is an LUV and ζ � L(a, b), then the corresponding expected value,
E[ζ ] � (a+b)

4 . Whereas, if ζ is an NUV such that ζ � N (μ, σ ), then E[ζ ] � μ.
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Theorem 2.2 (Liu 2010) Let � be the regular uncertainty distribution of an uncer-
tain variable ζ having a finite expected value E[ζ ]. Then

E[ζ ] � 1∫
0
�−1(r)dr, r ∈ [0, 1] (4)

Theorem 2.3 (Liu 2010) Let ζ1 and ζ2 be the two independent uncertain variables
having finite expected values. Then, for any a, b ∈ �

E[aζ1 + bζ2] � aE[ζ1] + bE[ζ2]. (5)

Definition 2.5 (Tang and Gao 2012) Let� be the regular uncertainty distribution of
an uncertain variable ζ. Then, the triangular entropy T (ζ ) of ζ is

T (ζ ) � +∞∫
−∞

F(�(x))dx, (5)

where F(u) �
⎧
⎨

⎩

u ; if 0 ≤ u ≤ 1
2

1 − u ; if 1
2 < u ≤ 1.

Example 2.3 (Tang and Gao 2012) The triangular entropy of a LUV, ζ � L(a, b),
is represented as

T (ζ ) �
(b−a)

2∫
a

x − a

b − a
dx +

b∫
(b−a)

2

(
1 − x − a

b − a

)
dx � b − a

4
. (7)

Example 2.4 (Tang and Gao 2012) The triangular entropy of a NUV, ζ � N (a, b),
is expressed as

T (ζ ) � e∫
−∞

(
1 + exp

(
π(e − x)√

3σ

))−1
dx +

+∞∫
e

(

1 −
(
1 + exp

(
π(e − x)√

3σ

))−1
)

dx � 2
√
3ln2

π
σ.

(8)

Theorem 2.4 (Tang and Gao 2012) Let �−1 be the inverse uncertainty distribution
of an uncertain variable ζ. Then

T (ζ ) � 1∫
1
2

�−1(r)dr −
1
2∫
0
�−1(r)dr. (9)

Theorem 2.5 (Ning et al. 2014) Let �1 and �2 be respectively the regular uncer-
tainty distributions of the two independent uncertain variables ζ1 and ζ2. Then, for
any a, b ∈ �

T [aζ1 + bζ2] � aT [ζ1] + bT [ζ2]. (10)
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4 Uncertain Multi-Objective Programming

Many real-world optimization problems presume a vector of conflicting objectives.
These objectives are to be optimized simultaneously. To optimize such a vector of
objectives, multi-objective programming techniques are widely applied in various
application domains. However, the real-life multi-objective problems, where most
of the associated input parameters are not precisely defined, necessarily require
the support of different uncertainty theories, e.g. fuzzy sets (Zadeh 1965), rough
sets (Pawlak 1982), uncertainty theory (Liu 2007), etc. Under the framework of
uncertainty theory, Liu and Chen (2015) first modelled the uncertain multi-objective
programming, presented in (11).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minimize
x

E
[
f1(x, ζ )

]
,E

[
f2(x, ζ )

]
, . . . ,E

[
fr(x, ζ )

]

subject to

M{gl(x, ζ ) ≤ 0} ≥ αl

l � 1, 2, . . . , p,

(11)

where ζ is an uncertain vector, x is a decision vector, fi(x, ζ )s are the uncertain
objective functions for i � 1, 2, . . . , r, E[·] determines the expected value of each
uncertain objective function fi(x, ζ ), gl(x, ζ )s are the uncertain constraints and αls
are the confidence levels for l � 1, 2, . . . , p.Due to the existence of trade-off among
the conflicting objectives, multiple solutions are generated by simultaneously min-
imizing all the objectives. Therefore, improving an objective becomes impossible
without deteriorating at least one of the remaining objectives.

Similarly, we can design an uncertain multi-objective model by minimizing the
triangular entropy T [·] of each uncertain objective function fi(x, ζ ) as given below
in (12).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minimize
x

T
[
f1(x, ζ )

]
,T

[
f2(x, ζ )

]
, . . . , T

[
fr(x, ζ )

]

subject to

M{gl(x, ζ ) ≤ 0} ≥ αl

l � 1, 2, . . . , p.

(12)

Combining the models, presented in (11) and (12), we formulate below another
multi-objective model in (13).
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
x

⎧
⎨

⎩

E
[
f1(x, ζ )

]
,E

[
f2(x, ζ )

]
, . . . ,E

[
fu(x, ζ )

]

T
[
fu+1(x, ζ )

]
, . . . , T

[
fr(x, ζ )

]

subject to

M{gl(x, ζ ) ≤ 0} ≥ αl

l � 1, 2, . . . , p.

(13)

Remark In our study, we have proposed an uncertain bi-objective portfolio selection
problem, where the first objective determines the expected return and the second
objective determines the risk of the uncertain security returns. Here, the expected
return and the risk are respectively determined by expected values and the trian-
gular entropy of the uncertain securities. Accordingly, we formulate model (13) by
combining models (11) and (12). It is to be noted that model (13) is an uncertain
multi-objective optimization problem for r uncertain objective functions, where u
objectives optimize the expected values and r − u uncertain objectives optimize the
triangular entropy. However, in the context of the uncertain portfolio selection, the
proposed model (cf. model (20)) is formulated by considering r � 2, among which
the first objective maximizes the expected value and the second objective minimizes
the triangular entropy. Moreover, the constraint functions of the proposed problem
are considered deterministic.

Definition 4.1 (Liu and Chen 2015) A feasible solution x∗ is considered as Pareto
optimal to the uncertain multi-objective problem, defined in (11), if there does not
exist any feasible solution x such that

(i) E
[
fi(x, ζ )

] ≤ E
[
fi(x∗, ζ )

]
,∀i ∈ {1, 2, . . . , r}

(ii) E
[
fq(x, ζ )

]
< E

[
fq(x∗, ζ )

]
for at least one index q � 1, 2, . . . , r.

Similarly, the Pareto optimal solution x∗ for uncertain multi-objective program-
ming, presented in (12), is defined below.

Definition 4.2 A feasible solution x∗ is considered as Pareto optimal to the uncertain
multi-objective problem, presented in (12), if there does not exist any feasible solution
x such that

(i) T
[
fi(x, ζ )

] ≤ T
[
fi(x∗, ζ )

]
,∀i ∈ {1, 2, . . . , r}

(ii) T
[
fq(x, ζ )

]
< T

[
fq(x∗, ζ )

]
for at least one index q � 1, 2, . . . , r.

The uncertain multi-objective problem in (13) can be converted to its equivalent
single objective problem subject to the same set of chance constraints by aggregating
all the fi(x, ζ ) with a real-valued preference function. The equivalent model is then
referred as a compromise model whose solution is usually known as compromise
solution. In order to formulate the compromise model, in subsections 4.1 and 4.2, we
discuss two classical multi-objective solution techniques: (i) weighted sum method,
and (ii)weightedmetricmethod, respectively.Two related theorems are also proposed
to prove that the solution of the compromisedmodels (cf. model (14) andmodel (15))
is also Pareto optimal to the corresponding multi-objective model (13).
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4.1 Weighted Sum Method

We apply weighted sum method (Zadeh 1963) on the model (13) to formulate its
compromise model as given below.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
x

⎛

⎝
ω1E

[
f1(x, ζ )

]
+ . . . + ωuE

[
fu(x, ζ )

]
+

ωu+1T
[
fu+1(x, ζ )

]
+ . . . + ωrT

[
fr(x, ζ )

]

⎞

⎠

subject to

M{gl(x, ζ ) ≤ 0} ≥ αl

l � 1, 2, . . . , p,

(14)

where
r∑

m�1
ωm � 1, ∀ωm ∈ [0, 1].

The following theorem proves the Pareto optimal conditions of the solution gen-
erated by the model (14).

Theorem 4.1.1 Let x∗ be an optimal solution of the uncertain model (14), then x∗
is Pareto optimal to the uncertain multi-objective model, presented in (13)

Proof Let us assume that x∗ is an optimal solution to (14) but is not Pareto optimal
to (13). So there exists a feasible solution x such that

x�Ex
∗ ⇒ E

[
ft(x, ζ )

] ≤ E
[
ft
(
x∗, ζ

)]∀t � {1, 2, . . . , u, u + 1, . . . , r} and
x�T x

∗ ⇒ T
[
fq(x, ζ )

] ≤ T
[
fq
(
x∗, ζ

)]∀q � {u + 1, u + 2, . . . , r}.

Considering the objective functions, for at least one index value n andm, we have

x ≺E x∗ ⇒ E
[
fn(x, ζ )

]
< E

[
fn
(
x∗, ζ

)]
and

x ≺T x∗ ⇒ T
[
fm(x, ζ )

]
< T

[
fm
(
x∗, ζ

)]
,

where n ∈ {1, 2, . . . , u} and m ∈ {u + 1, u + 2, . . . , r}.
Moreover,

ωlE
[
ft(x, ζ )

] ≤ ωtE
[
ft
(
x∗, ζ

)]
,∀t � {1, 2, . . . , u} and

ωqT
[
fq(x, ζ )

] ≤ ωqT
[
fq
(
x∗, ζ

)]
,∀q � {u + 1, u + 2, . . . , r},

and for at least one index value of each n and m

ωnE
[
fn(x, ζ )

]
< ωnE

[
fn
(
x∗, ζ

)]
and

ωmT
[
fm(x, ζ )

]
< ωmT

[
fm
(
x∗, ζ

)]
.

Therefore
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⎛

⎝
∑u

t�1 ωtE
[
fp(x, ζ )

]
+

∑r
q�u+1 ωqT

[
fq(x, ζ )

]

⎞

⎠ ≤
⎛

⎝
∑u

t�1 ωpE
[
fp(x∗, ζ )

]
+

∑r
q�u+1 ωqT

[
fq(x∗, ζ )

]

⎞

⎠

∀t � {1, 2, . . . , u} and ∀q � {u + 1, u + 2, . . . , r}.
Further, for at least one index value of n and m

⎛

⎝
ωnE

[
fn(x, ζ )

]
+

ωmT
[
fm(x, ζ )

]

⎞

⎠ <

⎛

⎝
ωnE

[
fn(x∗, ζ )

]
+

ωmT
[
fm(x∗, ζ )

]

⎞

⎠.

It implies, for model (14), x∗ is not the optimal solution, which contradicts with
our initial assumption that x∗ is an optimal solution of (14). Therefore, we conclude
that x∗ is the Pareto optimal solution of model (13).

4.2 Weighted Metric Method

An alternative approach to formulate the compromise model of (13) using weighted
metric method (Asgharpour 1998; Deb 2001) is discussed here. In weighted metric
method, the distance metric Ls, s ∈ {1, 2, . . . ,∞} is commonly associated with non-
negativeweights.We implement theweightedmetricmethodwithEuclidean distance
metric L2 to formulate the compromise model of (13), presented below in (15).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
x

√√√√√√√√√√√√√√√√√√√√√

ω1

((
E∗

1−E[f1(x,ζ )]
)

E∗
1

)2

+ . . .+

ωu

((
E∗

u−E[fu(x,ζ )]
)

E∗
u

)2

+

ωu+1

(
(T [fu+1(x,ζ )]−T ∗

r )
T ∗
u+1

)2
+ . . .+

ωr

(
(T [fr (x,ζ )]−T ∗

r )
T ∗
r

)2

subject to

M{gl(x, ζ ) ≤ 0} ≥ αl , l � 1, 2, . . . , p
r∑

m�1
ωm � 1,∀ωm ∈ [0, 1],

(15)

where, E∗
t (t ∈ {1, 2, . . . , u}) and T ∗

q (q ∈ {u + 1, u + 2, . . . , r}) are the optimal solu-
tions of tth and qth objective functions when solved individually as a single objective
problem.
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The Pareto optimality of the compromise solution generated by the model (15) is
proved in the following theorem.

Theorem 4.2.1 Let x∗ be an optimal solution of an uncertain programming model
(15,) then x∗ is Pareto optimal to the uncertain multi-objective programming model,
defined in (13).

Proof Let us assume that x∗ is an optimal solution of (15) but is not Pareto optimal
to (13). So there exists a feasible solution x such that

x�Ex
∗ ⇒ ωtE

[
ft(x, ζ )

] ≤ ωtE
[
ft
(
x∗, ζ

)]∀t � {1, 2, . . . , u} and
x�T x

∗ ⇒ ωqT
[
fq(x, ζ )

] ≤ T
[
fq
(
x∗, ζ

)]∀q � {u + 1, u + 2, . . . , r}.

For at least one index value of n(∈ {1, 2, . . . , u}) and m(∈ {u + 1, u + 2, . . . , r}),
we have

x ≺E x∗ ⇒ ωnE
[
fn(x, ζ )

]
< ωnE

[
fn
(
x∗, ζ

)]
and x ≺T x∗ ⇒ ωmT

[
fm(x, ζ )

]
< ωmT

[
fm
(
x∗, ζ

)]
.

E∗
t and T ∗

q are the optimized solutions of tth and qth objective functions respec-
tively when solved individually as a single objective problem. Therefore, we have
√√√√

ωt

( (
E∗
t − E

[
ft (x, ζ )

])

E∗
t

)2

≤
√√√√

ωt

(
E∗
t − (

E
[
ft (x∗, ζ )

])

E∗
t

)2

and

√√√√√ωq

⎛

⎝

(
T
[
fq(x, ζ )

] − T ∗
q

)

T ∗
q

⎞

⎠

2

≤

√√√√√ωq

⎛

⎝

(
T
[
fq(x∗, ζ )

] − T ∗
q

)

T ∗
q

⎞

⎠

2

∀t � {1, 2, . . . , u} and ∀q � {u + 1, u + 2, . . . , r}, respectively.
Also for at least one index value of n and m

√√√√
ωn

(
E∗
n − (

E
[
fn(x, ζ )

])

E∗
n

)2

<

√√√√
ωn

(
E∗
n − (

E
[
fn(x∗, ζ )

])

E∗
n

)2

and

√√√√
ωm

( (
T
[
fm(x, ζ )

] − T ∗
m

)

T ∗
m

)2

<

√√√√
ωm

( (
T
[
fm(x∗, ζ )

] − T ∗
m

)

T ∗
m

)2

.

Thus, x�Ex∗ and x�T x∗ together imply that, for model (15), x∗ is not the optimal
solution,which essentially contradictswith our initial assumption that x∗ is an optimal
solution of model (15). Hence, x∗ is the Pareto optimal solution of model (13).

5 Multi-Objective Genetic Algorithm

Multi-objective genetic algorithms (MOGAs) provide a set of nondominated solu-
tions of multi-objective optimization problem (MOP) in a single execution. MOGA
simultaneously searches different unexplored regions of convex, non-convex and
discontinuous solution spaces of different complex MOPs making it a potential can-
didate to explore a diverse set of solutions of MOPs. Furthermore, MOGAs do not
require any decision-maker to prioritize the objectives. All these characteristics effec-
tively make MOGAs suitable for solving MOPs. With generations, a MOGA aims
to converge towards Pareto optimality by generating better nondominated solutions.
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Fig. 3 Different nondominated fronts generated by MOGAs

Figure 3 depicts different nondominated fronts generated by a MOGA during exe-
cuting an optimization problem with two objectives. In this figure, the shaded region
represents the feasible objective space and the PF represents the Pareto front. The
front closest to the PF is the first front P1. Higher fronts from P2 to Pl depicted
in the figure are in the increasing order of their distance from the PF. Moreover, no
solutions in the first front P1 are dominated by any solution of other fronts. Similarly,
no solution in second front P2 is dominated by any solution of the fronts P3, P4 ,…,
Pl . However, a solution in P2 is dominated by at least one solution of P1. The front
Pl in Fig. 3 covers the spectrum of the PF much less compared to that of P1 , i.e., the
solutions of Pl are less diverse compared to those in P1. During the optimization of
MOP, the fronts approach towards PF with subsequent generation.

MOGA was first presented by Fonseca and Flaming (1993). Since then MOGA
has drawn colossal interest among researchers and has become awell-knownmethod-
ology for solving complex multi-objective optimization problems. Different variants
of MOGAs (Srinivas and Deb 1995; Knowles and Corne 1999; Zitzler et al. 2001;
Deb et al. 2002; Coello 2006; Zhang and Li 2007; Nebro et al. 2008; Nag et al. 2015,
etc.) exist in the literature.

In this article, we consider NSGA-II and MOEA/D, developed respectively by
Deb et al. (2002) and Zhang and Li (2007).

5.1 Nondominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II is an elitist model, which ensures retaining the fittest candidates in the
next population to enhance the convergence. The algorithm starts by initializing a
population P0 of N randomly generated solutions. In a particular generation t, the
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genetic operators, i.e., selection, crossover andmutation are appliedon the individuals
of parent population Pt to generate an offspring population Ct with an equal number
of candidate solutions. To ensure elitism, the parent and offspring population are
mingled to produce a population St of size 2N . In order to select N solutions from
St for next generation, NSGA-II performs following two steps.

(1) Frontify the individuals of St , by assigning a rank to each individual with non-
domination sorting. Based on their ranks, the solutions in St are frontified to
different nondominated fronts N1, N2, . . ., Nl . Each Nk , k ∈ {1, 2, . . . , l} repre-
sents a set of nondominated solutions of rank k. Solutions with the same rank
value are placed in a nondominated front. Solutions with lower nondomination
ranks are always preferred. In other words, if p and q are the two solutions in
St , and if prank < qrank , then p is superior to q. In order to build the next popu-
lation Pt+1, the solutions belonging to N1 are considered first. Here, if the size
of N1 is smaller than N , all the solutions of N1 are inserted in Pt+1. The remain-
ing solutions of Pt+1 are considered from subsequent nondominated fronts in
order of their ranking. In this way, the solutions of 2nd front, i.e., N2 are moved
next to Pt+1 followed by solutions of N3 and so on until all the solutions of a
nondominated front Nk cannot be fully inserted to Pt+1.

(2) If all the solutions of Nk cannot be accommodated in Pt+1, the solutions are then
sorted in descending order based on their corresponding values of crowding
distance (idistance) as proposed by Deb et al. (2002). Particularly, if p and q are
the two nondominated solutions belong toNk and p has better crowding distance
than q, i.e. if prank � qrank and pdistance > qdistance, then p is preferred over q
in Nk . Accordingly, the solutions with higher crowding distance are eventually
selected from Nk to fill the remaining slots of Pt+1.

In this way, as the formation of Pt+1 completes, the individuals of Pt+1 replaces Pt

for the next generation. This process continues until the termination condition (i.e.
maximum function evaluations or generations) is reached. The working principle of
NSGA-II is depicted in Fig. 4.

5.2 Multi-Objective Evolutionary Algorithm Based
on Decomposition (MOEA/D)

MOEA/D decomposes a multi-objective problem (MOP) into N finite scalar opti-
mization sub-problems and optimizes them simultaneously by generating a popula-
tion of solutions for each of them. Each sub-problem is optimized by using informa-
tion from its neighbourhood relationswith several sub-problems. The neighbourhood
relationship is defined by the distance between the aggregations of the coefficient
vectors of the corresponding sub-problems. The sub-problems are scalarized to a
single objective problem each having a weight vector λk , k ∈ {1, 2, 3, . . . ,N }which
are uniformly distributed. Since each solution is associated with λk , the population
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Fig. 4 Flowchart of NSGA-II

size becomes N . For each kth solution having weight vector λk , there exists a set of
T closest neighbours, λk1 , λk2 , . . . , λkT of λk . T closest neighbours of λk are deter-
mined by the Euclidian distances between λk and λkq , q ∈ [1,T ]. To keep track of
the T closest neighbours of λk(k � 1, 2, . . .N ), MOEA/D maintains a vector B(k)
of dimension T which contains the indices of the weight vectors, λk1 , λk2 , . . . , λkT .
In MOEA/D, it is worth mentioning that a weight vector λk and its T closest neigh-
bours correspond to a kth sub-problem along with its T sub-problems, respectively.
In order to preserve the nondominated solutions found during the search process, an
external population (EP) is maintained in MOEA/D.
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At each generation, MOEA/D randomly selects two parent solutions from two
different sub-problems among T closest neighbour of kth sub-problem and generate
offspring using genetic operators. Considering all the T neighbouring sub-problems,
if the newly generated solutions improve any of the kth sub-problem with respect to
any other existing solution p, then the offspring replaces p in the EP. This process con-
tinues at every subsequent generation of MOEA/D until the termination criteria are
reached. The value of T is very crucial to maintain the balance between exploration
and exploitation during the execution of MOEA/D. If T is very large, the randomly
selected parentsmay generate poor offspringwhich can reduce the exploitation of the
algorithm. On the other hand, if T is very small then the generated offspring may be
very similar to its parents which will ultimately degrade the exploitation capability
of the algorithm. Therefore, the value of T should be neither too large nor too small.

The diversity among these sub-problems of a MOP is introduced by properly
selecting the corresponding weight vector for the sub-problems and an appropriate
decomposition method. There are several approaches for decomposing a MOP, e.g.,
weighted sum (Miettinen 1999), Tchebycheff (Miettinen 1999), normal boundary
intersection (Das and Dennis 1998), normalized normal constraint (Messac et al.
2003), etc. Here, the individuals of a population are associated with different sub-
problems. Therefore, the diversity between the sub-problemswill eventually promote
the diversity in the entire population. The possibility of generating a uniformly dis-
tributed approximation of the Pareto front increases if the sub-problems are optimized
effectively. The flowchart of MOEA/D is displayed in Fig. 5.

The input parameters of MOEA/D are as follows.

(a) N—The number of sub-problems and uniformly distributed weight vectors to
be considered for MOEA/D.

(b) T—The size of the closest neighbours for each weight vector.
(c) CR—Crossover rate.
(d) F—Mutation rate.
(e) δ—Probability that neighbouring solutions of a sub-problem are considered for

mating.
(f) nr—Number of rejected solutions from the population when a better quality

offspring simultaneously improves quite a number of sub-problems.

The characteristics of MOEA/D are listed below.

(a) MOEA/D uses the decomposition techniques of mathematical programming in
multi-objective evolutionary computing.

(b) MOEA/D promotes diversity preservation easily by optimizing scalar sub-
problems of finite number with a uniformly distributed weight vectors for a
MOP.

(c) For a small population, MOEA/D can generate a small number of evenly dis-
tributed solutions.

(d) MOEA/Dmaintains a mating restriction by allowing two solutions to mate only
when the solutions belong to two different sub-problems.
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6 Performance Metrics

For the purpose of comparison between MOGAs, we have used following perfor-
mance metrics.

Hypervolume(HV ): Hypervolume (HV ), presented byZitzler andThiele (1999),
is the volume covered by the set of all nondominated solutionsND in the approximate
front. The volume is generally the region enclosed by all the elements of ND in the
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Fig. 6 HV for different optimized fronts S1 and S2 with respect to a reference solution R. a The
front S1 is closer to PF than S2 hence shall have higherHV value, b solutions of S2 is more diversely
spread than S1, hence shall have higher HV value

objective space with respect to a reference solution point R, where R is a vector of
worst objective function values in the entire objective space ofMOP.HV is calculated
as

HV � volume
(∪e∈NDhe

)
, (16)

where he is the hypercube for each e ∈ ND.Larger values ofHV are always desirable.
The HV metric ensures both the convergence and diversity. More the value of HV,

closer will be the approximate front to the Pareto front, generated by a MOGA.
As an example, let S1 and S2 be the two fronts generated by two different MOGAs

for the same problem as depicted in Fig. 4. In the figure, the Pareto front of the MOP
is represented by PF (red colour) in the corresponding objective space. In Fig. 6a,
S1 is more close to PF as well as more diverse compared to S2. As a result, the HV
for S1 is more than S2 with respect to reference solution R. If solutions of S1 are not
well diverse compared to S2 as depicted in Fig. 6b, a better HV for S2 is obtained
with respect to R, since in this case, S2 covers more spectrum of PF compared to S1.

Spread(�): Spread determines the diversity in a nondominated front which mea-
sures the magnitude of diversity between the solutions, generated from a simulation.
This metric was first proposed by Deb et al. (2002), which is capable to find the
distance between a pair of closest solutions in a nondominated front for bi-objective
problems. This metric is then extended to multi-objective problems by Zhou et al.
(2006), where the distance between a nondominated solution and its nearest neigh-
bour is measured. In the ideal situation, the value of spread is zero. It is expressed
as

� �
∑m

i�1 d(ei,ND) +
∑

X∈PF
∣∣d(X ,ND) − d̄

∣∣
∑m

i�1 d(ei,ND) + |PF| × d̄
∀ei ∈ PF (17)
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such that d(X ,ND) � min
Y ∈ ND,Y �� X

‖F(X ) − F(Y )‖2 and d̄ �
1

|PF|
∑

X∈PF
d(X ,ND), where F is the set of m objectives, ND is the set of non-

dominated solutions in the approximate front, PF is the set of known Pareto optimal
solutions for the problem and ei(i � 1, 2, . . . ,m) are the extreme solutions in PF.
Lower the value of �, more diverse will be the solutions. Hence, � determines the
diversity among the nondominated solutions.

GenerationalDistance(GD): Van Veldhuizen and Lamont (1998) proposed GD
which determines the distance in the objective space, between the elements of the
nondominated solution vectors and their corresponding nearest neighbour in the
Pareto front. The formulation of GD metric is presented in (18).

GD �

√√√√
√∑n

i�1 d
2
i

n
, (18)

where in the objective space, the total number of solutions in the approximate front

is denoted by n and di � min
j

∥∥F(xi) − PF
(
xj
)∥∥ is the distance between the solution

xi and the nearest member xj in the Pareto front. This metric determines the distance
of the approximate front from the Pareto front (PF). In other words, the GD metric
ensures the convergence of a MOGA by measuring how far the approximate front of
a MOGA is from the Pareto front. In ideal condition GD � 0.

Inverted Generational Distance(IGD): Presented by Van Veldhuizen and Lam-
ont (1998), IGDmeasures the distance of the Pareto front from an approximate front
and is represented as follows:

IGD �
∑|P|

i�1 d(ρi,ND)

|P| ∀ρi ∈ PF, (19)

where PF is the Pareto front, d(ρi,ND) is the Euclidian distance between ρi to its
closest neighbour inND andND is a set of nondominated solutions in the approximate
front.ρi represents a solution in PF. IGD assures both convergence and diversity. A
lower value of this metric can only be achieved if the solution set ND is close to PF
and nearly covers the spectrum of PF. Therefore, smaller value of IGD is always
preferred.

7 Proposed Uncertain Bi-Objective Portfolio Selection
Model

In this section, an uncertain bi-objective portfolio selection problem has been for-
mulated. Here, a financial market with n risky assets is considered. Let xi and
ζi(i � 1, 2, . . . , n) be respectively the investment proportion and the uncertain return
of the ith security. The uncertainty involved with each ζi is represented under the
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uncertainty theory framework (Liu 2007). The purpose of our model is to maximize
the expected return and to minimize the investment risk. In this context, the expected
value and the triangular entropy are used respectively to measure the return and the
risk of the uncertain securities. We formulate a bi-objective portfolio selection prob-
lem by considering mean and triangular entropy under return-risk framework, and
present the model in (20). An efficient portfolio1 for uncertain returns is indeed a
solution of the model (20). Essentially all efficient portfolios construct the efficient
frontiers of model (20). Different investors can select their efficient portfolio from
the efficient frontier generated by model (20).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maximize E[ζ1x1 + ζ2x2 + . . . + ζnxn]

minimize T [ζ1x1 + ζ2x2 + . . . + ζnxn]

subject to

x1 + x2 + . . . + xn � 1

xi ≥ 0, i � 1, 2, . . . , n.

(20)

Following the generalized models (14) and (15), the corresponding compromise
models (21) and (22) are formulated below with deterministic constraint set for the
proposed uncertain bi-objective portfolio selection problem.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minimize

(
−ω1E[ζ1x1 + ζ2x2 + . . . + ζnxn]+

ω2T [ζ1x1 + ζ2x2 + . . . + ζnxn]

)

subject to

x1 + x2 + . . . + xn � 1

xi ≥ 0, i � 1, 2, . . . , n,

(21)

where ω1 + ω2 � 1 and ω1, ω2 ∈ [0, 1].

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize

√√√√√√√√√

ω1

((
E∗−E[ζ1x1+ζ2x2+...+ζnxn]

)

E∗

)2

+

ω2

(
(T [ζ1x1+ζ2x2+...+ζnxn]−T ∗)

T ∗

)2

subject to

x1 + x2 + . . . + xn � 1

xi ≥ 0, i � 1, 2, . . . , n.

ω1 + ω2 � 1, ω1, ω2 ∈ [0, 1].

(22)

1A portfolio is said to be efficient if it is not possible to achieve a higher expected return without
increasing the value of triangular entropy or it is not possible to get a lower value of triangular
entropy without decreasing the expected return.
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Table 1 Twenty uncertain security returns (units per stock)

Security number Security returns Security number Security returns

1 L(0.8490, 1.1072) 11 N (0.8535, 0.2568)

2 L(0.8521, 1.0851) 12 N (1.0096, 0.3572)

3 L(0.8532, 1.3129) 13 N (1.0659, 0.3269)

4 L(0.7143, 1.6147) 14 N (0.9987, 0.4926)

5 L(0.7952, 1.3284) 15 N (1.1141, 0.6792)

6 L(0.6582, 1.2271) 16 N (1.1051, 0.6428)

7 L(0.6866, 1.4207) 17 N (0.9249, 0.5847)

8 L(0.8724, 1.4712) 18 N (1.0379, 0.4219)

9 L(0.7496, 1.1958) 19 N (1.0677, 0.2436)

10 L(0.7998, 1.3947) 20 N (1.1552, 0.6120)

In (22), E∗ and T ∗ are the optimized solutions of the first and the second objective
functions of the model (20) when solved individually.

8 Results and Discussion

In this section, we demonstrate the proposed portfolio selection problem, presented
in (20), with a numerical example on uncertain portfolio optimization problem. Pur-
posefully, we have considered a problem, where an investor plans to invest the funds
among twenty securities. Here, the future security returns are considered as uncertain
variables among which the return of ten securities is expressed as linear uncertain
variables and the remaining ten security returns are represented as normal uncertain
variables. All these investment returns are presented in Table 1. In the proposed
portfolio model (20), the mean return is determined by the expected value, and the
risk is defined by triangular entropy for the security returns. The expected value (E)

and the triangular entropy (T ) for all the investment returns (cf. Table 1) are dis-
played in Table 2. Accordingly, the expected security returns are calculated by Eq. (3)
whereas, the triangular entropy of linear and normal security returns are determined
using Eqs. (7) and (8) respectively.

The compromise models, (21) and (22) of model (20), which are formulated by
using respectively the weighted sum method and the weighted metric method, are
eventually solved by setting the weights of the objectives, i.e., ω1 and ω2, to 0.5
each for both the compromise models. These models are then solved by a standard
optimization package, Lingo 11.0. The generated compromise solutions of these
models are nondominated to each other and are listed in Table 3.

In order to determine the multiple nondominated solutions, we solve the model
(20) using twoMOGAs, i.e., NSGA-II (Deb et al. 2002) andMOEA/D (Zhang and Li
2007). For the purpose of comparison of the performances of theMOGAswith that of
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Table 2 Expected value (E) and triangular entropy (T ) of 20 uncertain investment returns

Security
number

Expected
value (E)

Triangular
entropy (T )

Security
number

Expected
value (E)

Triangular
entropy (T )

1 0.9781 0.0645 11 0.8535 0.1963

2 0.9686 0.0582 12 1.0096 0.2730

3 1.0831 0.1149 13 1.0659 0.2499

4 1.1645 0.2251 14 0.9987 0.3765

5 1.0438 0.1423 15 1.1141 0.5191

6 0.9426 0.1422 16 1.1051 0.4913

7 1.0537 0.1835 17 0.9249 0.4469

8 1.1718 0.1497 18 1.0379 0.3225

9 0.9727 0.1115 19 1.0677 0.1862

10 1.0973 0.1487 20 1.1552 0.4678

Table 3 Compromised solutions obtained from weighted sum and weighted metric methods

Objective Functions Weighted sum method Weighted metric method

maximize E
[
f (x, ζ )

]
1.1718 1.1269

minimizeT
[
f (x, ζ )

]
0.1497 0.1294

the optimization of model (20), the quality of the nondominated solutions generated
by NSGA-II and MOEA/D are analysed in terms of the performance metrics, hyper-
volume (HV ), spread (�), generational distance (GD), and inverted generational
distance (IGD). For most of the real-life problems, the set of optimal solutions in
the Pareto front (P) is usually unavailable. Likewise, for the proposed model in (20),
Pareto optimal solutions do not exist in the literature. So, we approximate the Pareto
front by generating a reference front by collecting all the best quality solutions from
every independent execution of NSGA-II and MOEA/D for 250 generations.

The parameter settings of NSGA-II and MOEA/D, used to optimize the proposed
portfolio model in (20), are listed below.

(a) NSGA-II
Size of the population�100, Crossover probability (pc) � 0.9, Mutation prob-
ability (pm) � 0.03, Maximum generation�250.

(b) MOEA/D
Size of the population�100, T � 35, δ � 0.97, nr � 2, Crossover Rate
(CR) � 0.9, Mutation rate (F) � 0.3, Mutation probability�0.03, Maximum
generation�250.

The nondominated solutions, generated by executing NSGA-II and MOEA/D on
the proposed model (20), are depicted respectively in Fig. 7a, b. Each nondominated
solution of the proposed uncertain portfolio model (20), shown in Fig. 7, determines
the return and risk of the uncertain portfolios. It is observed that the investor can
receive more expected return only if the investor is willing to withstand higher risk
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Fig. 7 Nondominated solutions of the model (20) after 250 generations for a NSGA-II and b
MOEA/D

for the uncertain securities. In other words, minimization of the risk results in a
progressive decrement of the expected returns. This fact implies a significant return-
risk trade-off of the proposed portfolio selection problem, where the return and the
risk of the uncertain securities are respectively represented by the expected value
and the triangular entropy.

Figure 7 shows the return and risk of the portfolio which essentially constructs the
nondominated front for the proposed uncertain portfolio model (20). It is observed
that the investor can receive more expected return only if the investor is willing to
withstand higher risk for the uncertain securities. In other words, minimization of
the risk results in a progressive decrement of the expected returns. This fact implies
a significant return-risk trade-off of the proposed portfolio selection problem, where
the return and the risk of the uncertain securities are respectively represented by the
expected value and the triangular entropy.

Due to stochastic characteristics of the MOGAs, every simulation of the results
with the above-mentioned parameter settings is executed for 100 times. For each
execution, different performance metrics, i.e.,HV, �, GD and IGD are evaluated
with respect to the optimized solutions obtained after 250 generations and the cor-
responding reference front. Here, jMetal 4.5 (Durillo and Nebro 2011) framework
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Table 4 Mean and sd of HV, �, GD and IGD after 100 runs of NSGA-II and MOEA/D

MOGAs HV � GD IGD

mean sd mean sd mean sd mean sd

NSGA-II 6.36e−01 4.03e−03 4.74e−01 3.50e−02 4.93e−04 5.30e−05 6.31e−04 3.05e−04

MOEA/D 6.39e−01 2.90e−03 6.34e−01 1.20e−02 3.69e−04 1.40e−04 1.79e−04 3.60e−05

Table 5 Median and IQR of HV, �, GD and IGD for 100 runs of NSGA-II and MOEA/D

MOGAs HV � GD IGD

median IQR median IQR median IQR median IQR

NSGA-II 6.36e−01 4.40e−03 4.73e−01 4.02e−02 4.87e−04 7.20e−05 5.87e−04 2.2e−04

MOEA/D 6.40e−01 3.20e−03 6.31e−01 3.40e−03 3.49e−04 2.90e−04 1.79e−04 2.90e−05

has been used for simulation of the MOGAs. For all 100 observations of each of the
performance metrics, we calculate two measures each, for central tendency (mean
and median) and variability (standard deviation (sd) and interquartile range (IQR)).
Table 4 reports the mean and sd and Table 5 summarizes the median and IQR of
HV,�, GD and IGD. In each of these tables, the better results are shown in bold.

In Table 4, MOEA/D becomes superior to NSGA-II in terms of the performance
measures, HV, GD and IGD for the mean. However, with respect to �, NSGA-II
generates a better mean than MOEA/D. In Table 5, better median is obtained for
MOEA/D compared to NSGA-II for HV, GD and IGD. Whereas for �, NSGA-II
becomes better than MOEA/D by generating a relatively smaller median. There-
fore, by studying the performance metrics in Tables 4 and 5 for both NSGA-II and
MOEA/D, it can be observed that during execution, MOEA/D simultaneously main-
tains better exploration and exploitation compared to NSGA-II for the proposed
model presented in (20). This fact can be well understood from the results of HV
and IGD reported in Tables 4 and 5. As it has been mentioned above that the per-
formance metrics, HV and IGD ensure convergence as well as diversity, the better
result of both these performance metrics for MOEA/D essentially infers that a better
balance between exploration and exploitation is maintained by MOEA/D compare
to NSGA-II while optimizing the proposed model.

In order to have graphical interpretation of median and IQR, boxplots of HV,

�, GD and IGD, for both the MOGAs, are depicted in Fig. 8a–d. The boxplots
show that corresponding to HV , � and IGD, the deviation around the median is less
for MOEA/D than NSGA-II. While with GD, the deviation around the median is
less for NSGA-II compared to MOEA/D. This suggests that after executing model
(20), the probabilistic fluctuations of MOEA/D are less compared to NSGA-II for
all the performance measures except GD, for which the probabilistic fluctuation of
NSGA-II is comparatively less.
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Fig. 8 Boxplots for a HV b � c GD and d IGD

9 Conclusion

In this article, a bi-objective uncertain portfolio selection model has been proposed
under the paradigm of uncertainty theory. The proposedmodel maximizes the invest-
ment return and the risk of the uncertain security returns is, respectively, maximized
and minimized by the proposed model. Here, the expected value and triangular
entropy of the uncertain returns are, respectively, considered to determine the return
and the risk. Twenty uncertain securities are considered for the proposed portfo-
lio selection model. These investment returns are considered as linear uncertain
variables and normal uncertain variables. It is worth mentioning that the proposed
portfolio selection model can also be considered for more or less securities. The
proposed model is solved by two compromise multi-objective solution techniques:
(i) weighted sum approach, and (ii) weighted metric method. Under the uncertainty
theory framework, except the contribution of Kar et al. (2017), there is no further
study ofmulti-objective portfolio selection problem,whereMOGAs are used as solu-
tion methodologies. Therefore, we have considered two different MOGAs, NSGA-II
and MOEA/D, for solving the proposed model. The quality of solutions obtained
from these MOGAs is analysed in terms of the performance metrics HV, �, GD
and IGD. Moreover, to analyse the performance metrics, we have considered two
summary statistics: (i) central tendency and (ii) variability. All these analyses show
that MOEA/D outperforms NSGA-II while solving our proposed portfolio selection
model.
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In future, a large number of securities can be used to study the performance of the
model. The proposedmodel can also be extended in fuzzy-random, uncertain-random
and other hybrid uncertain environments.
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Incorporating Gene Ontology
Information in Gene Expression Data
Clustering Using Multiobjective
Evolutionary Optimization: Application
in Yeast Cell Cycle Data

Anirban Mukhopadhyay

1 Introduction

The advancement in the area of microarray technology allows simultaneously study
of the expression levels of several genes across a number of experimental conditions
or time points (Alizadeh et al. 2000; Eisen et al. 1998; Bandyopadhyay et al. 2007;
Lockhart and Winzeler 2000). The gene expression levels are measured at different
time points during a biological experiment.Amicroarray gene expression data,which
consists of g number of genes and t number of time points, is usually organized in the
form of a 2D matrix E = [eij] of size g × t. Each element eij of the matrix represents
the expression level of the ith gene at the jth time point. Clustering (Jain and Dubes
1988; Maulik and Bandyopadhyay 2002), a popular microarray analysis technique,
is utilized to find the sets of genes having similar expression profiles. Clustering
algorithms aim to partition a set of n genes into K clusters depending on some
gene-to-gene distance metric.

Traditional clustering algorithms usually optimize a single cluster quality mea-
sure while performing clustering on a dataset. However, a single cluster quality
measure is seldom equally applicable to different data properties. In this regard,
several attempts have been made in optimizing more than one cluster quality mea-
sure simultaneously in order to obtain better robustness to different data properties
(Mukhopadhyay and Maulik, in press; Bandyopadhyay et al. 2007; Mukhopadhyay
et al., in press; Mukhopadhyay et al. 2015). These methods have used popular Mul-
tiobjective Optimization (MOO) (Deb 2001; Coello 2006; Mukhopadhyay et al.
2014a, b) tools as the underlying optimization strategy. Many of these multiobjec-
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tive clustering algorithms have been applied for clustering genes in microarray gene
expression data and have been shown to have improved performance compared to
the traditional single-objective clustering algorithms (Bandyopadhyay et al. 2007;
Maulik et al. 2009).

Validating clustering solutions for gene expression data is a challenging task.
The validation measures mainly try to find how good is the clustering from either
statistical point of view or biological point of view. In the later case, biological
knowledge like GeneOntology (GO) (Ashburner et al. 2000) information are utilized
for analyzing gene clusters. GO data have been used to find the functional enrichment
of a group of genes. In recent time, several researchers have attempted to include
the GO information directly for clustering to yield more biologically relevant gene
clusters.

Previously, a GO-driven clustering approach for gene expression data using
genetic algorithm-based optimization was proposed in (Mukhopadhyay et al. 2010).
However, as far as our knowledge goes, none of the previous attempts has used this
GO information under the framework of multiobjective clustering. This motivates
to make an attempt in incorporating the knowledge from GO into the distance (dis-
similarity) between genes. The aim is to balance the gene expression information
and GO information. Therefore, expression-based distance and GO-based distance
are merged to form a combined distance metric. A well-known genetic algorithm
for multiobjective optimization called Non-dominated Sorting Genetic Algorithm-
II (NSGA-II) (Deb et al. 2002) has been employed as the underlying optimization
framework. Two objective functions, one from gene expression point of view and
another from GO point of view, have been optimized simultaneously. The perfor-
mance of the proposed technique has been demonstrated for two real-life microarray
gene expression datasets, viz., Heidelberg cell lines and yeast cell cycle. The valida-
tion of the clusters obtained by various distance matrices has been conducted using
both GO (Ashburner et al. 2000)-based and KEGG pathway (Kanehisa and Goto
2000) based enrichment studies.

The rest of the chapter is organized as follows. In Sect. 2, the concept of gene
ontology and different semantic similaritymeasures are discussed. Section3 contains
a discussion on the basic ideas ofmultiobjective optimization. In Sect. 4, the proposed
multiobjective clustering algorithm is discussed in detail. Section5 describes the
dataset for experiments and the experimental results with illustrations. Finally, Sect. 6
concludes the chapter.

2 Gene Ontology and Similarity Measures

Gene Ontology (GO) (Ashburner et al. 2000) is a tool for associating a gene product
with some ontological terms from three vocabularies, viz., Biological Process (BP),
Molecular Function (MF), and Cellular Component (CC). Each of these BP, MF,
and CC terms is arranged in the form of a Directed Acyclic Graph (DAG) where the
nodes represent the GO terms and their relationships are represented through edges.
A GO term thus can have multiple offsprings as well as more than one parent.
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From the DAG structure of GO, the similarity between two gene products can be
computed based on the GO terms associated with them. In this work, three popular
metrics to compute GO-based similarity have been used. These are Resnik’s measure
(Resnik 1995), Lin’s measure (Lin 1998), and Weighted Jaccard measure (Pesquita
et al. 2007). These three measures are defined below (Mukhopadhyay et al. 2010).

2.1 Resnik’s Measure

The basis of computing the Resnik’s similarity metric is the Information Content
(IC) in the concerned GO terms. The IC of a GO term is calculated based on the how
many times the term is appearing in annotations. It is assumed that a term which is
used rarely has greater IC. The probability p(t) of observing a term t is computed as

p(t) = Frequency(t)

MaxFreq
, (1)

where Frequency(t) represents how many times the term t or any of its descendents
occur in the gene products annotated with the terms. MaxFreq represents the fre-
quency which is maximum among all GO terms. Based on this, the IC of a term t is
then defined as (Mukhopadhyay et al. 2010; Resnik 1995)

IC(t) = −log2p(t). (2)

The IC of a GO term can be calculated for all the three vocabularies, viz., BP, MF,
and CC.

Resnik’s similarity between two terms t and t′, denoted as Resnik(t, t′), is then
defined as the IC of the Minimum Subsumer (MS) or Lowest Common Ancestor
(LCA) of the t and t′ in the GO DAG (Mukhopadhyay et al. 2010; Resnik 1995).

Resnik(t, t′) = ICLCA(t, t
′) = max

τ∈CA(t,t′)
IC(τ ). (3)

Here, CA(t, t′) represents the set of all common ancestors (direct and indirect) of t
and t′.

Now, the similarity score of two genes (or their products) g and g′ is computed
as the largest of the pairwise similarities of the associated GO terms of the gene
products. Let us consider two genes g and g′ that are associated with GO terms
t1, . . . , tn and t′1, . . . , t′m, respectively. The Resnik’s functional similarity RSim(g, g′)
between the genes g and g′ is then defined as (Mukhopadhyay et al. 2010; Resnik
1995)

RSim(g, g′) = max
i=1,...,n, j=1,...,m

{Resnik(ti, t′j)}. (4)
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2.2 Lin’s Measure

Lin similarity measure is also based on IC of the terms. Unlike Resnik’s measure,
Lin’s measure considers how distant the terms are from their common ancestor. For
this purpose, Lin’s measure relates the IC of the LCA to the IC of the GO terms
which are being compared. The Lin’s similarity measure Lin(t, t′) between two GO
terms t and t′ is defined as (Mukhopadhyay et al. 2010; Lin 1998)

Lin(t, t′) = 2ICLCA(t, t′)
IC(t) + IC(t′)

. (5)

The similarity between two genes is computed as the largest pairwise similarity of
the associated GO terms of the genes. Therefore, if two genes g and g′ are annotated
with GO terms t1, . . . , tn and t′1, . . . , t′m, then as per Lin’s measure, the functional
similarity LSim(g, g′) between g and g′ is defined as (Mukhopadhyay et al. 2010;
Lin 1998)

LSim(g, g′) = max
i=1,...,n, j=1,...,m

{Lin(ti, t′j)}. (6)

2.3 Weighted Jaccard Measure

This measure employs a set theoretic concept for computing the similarity of two
genes or their products. Let us assume that gene g is annotated with n GO terms
of the set G = {t1, . . . , tn} and gene g′ is annotated with m GO terms of the set
G ′ = {t′1, . . . , t′m}. The Jaccard similarity measure Jaccard(g, g′) between g and g′
is calculated as (Mukhopadhyay et al. 2010; Pesquita et al. 2007)

Jaccard(g, g′) = |G ∩ G ′|
|G ∪ G ′| . (7)

If each term is weighted with its IC, then the Weighted Jaccard (WJ) measure of
similarity WJSim(g, g′) between g and g′ is computed as (Mukhopadhyay et al.
2010; Pesquita et al. 2007)

WJSim(g, g′) =
∑

τi∈G∩G ′ IC(τi)
∑

τj∈G∪G ′ IC(τj)
. (8)

To compute the distance D(g, g′) between genes g and g′, first the similarity
Sim(g, g′) between the genes is computed using any of the above methods and nor-
malized between 0 and 1. Thereafter, D(g, g′) is computed as 1 − Sim(g, g′).
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2.4 Combining Expression-Based and GO-Based Distances

In this work, for clustering genes, a combination of distance metrics obtained from
gene expression data and GO is exploited. This leads to extraction of more biologi-
cally relevant gene clusters.

In this approach, a convex combination of distance measures is performed. The
combined distance Dexp+GO(g, g′) between the genes g and g′ is computed as
(Mukhopadhyay et al. 2010)

Dexp+GO(g, g′) = w · Dexp(g, g
′) + (1 − w) · DGO(g, g′), (9)

where Dexp(g, g
′) denotes the distance computed from the expression data and

DGO(g, g′) is the distance calculated based on GO knowledge. The component dis-
tances, Dexp(g, g

′) and DGO(g, g′), are normalized to have values from 0 to 1. The
weight w, a value between 0 and 1, determines the importance of each component
on the combined measure. Here, w is set to 0.5 signifying equal importance to both
the component distance metrics.

In this work, the well-known Pearson correlation-based distance measure is uti-
lized to compute the distance between two genes based on their expression values.
For computing distance fromGO information, Resnik’s, Lin’s, andWeighted Jaccard
distance measures are considered at a time. This means correlation-based distance is
merged with one of Resnik’s, Lin’s, or Weighted Jaccard similarity based distances
using Eq. (9). The distance metric values are normalized between 0 and 1 before
combination.

3 Multiobjective Optimization and Clustering

In different real-life applications, there may be a requirement to optimize multiple
objectives simultaneously to solve a certain problem. In multiobjective optimization,
there is no notion of existence of a single solution that optimizes all the objectives
simultaneously. Therefore, it is not easy to compare one solutionwith another. Gener-
ally, these problems produce a set of competent solutions instead of a single solution
each of which is considered equally good when the relative importance of the objec-
tives is unknown. In this context, the best solution is often subjective and it depends
on the trade-off between the multiple conflicting objectives.

3.1 Formal Definitions

The multiobjective optimization can be formally stated as follows (Coello 1999):
Find the vector x∗ = [x∗

1, x
∗
2, . . . , x

∗
n]T of decision variables which will satisfy the m
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inequality constraints:
gi(x) ≥ 0, i = 1, 2, . . . ,m, (10)

the p equality constraints

hi(x) = 0, i = 1, 2, . . . , p, (11)

and optimizes the vector function

f (x) = [f1(x), f2(x), . . . , fk(x)]T . (12)

The constraints shown in Eqs. (10) and (11) define the feasible regionF that contains
all the admissible solutions. Any solution falling outside this region is treated as
inadmissible since it does not satisfy one or more constraints. The vector x∗ provides
an optimal solution in F satisfying these equality and inequality constraints. In the
context of multiobjective optimization, multiple solutions may be evolved as the
competent solutions. Hence, the difficulty lies in the definition of optimality, since
it is very unlikely to generate a single vector x∗ representing the optimum solution
with respect to all the objective functions.

The concept of Pareto-optimality is useful in the field of multiobjective optimiza-
tion. A formal definition of Pareto optimality from the viewpoint of a minimization
problem may be stated as follows: A decision vector x∗ is called Pareto-optimal if
and only if there is no x that dominates x∗, i.e., there is no x such that

∀i ∈ {1, 2, . . . , k}, fi(x) ≤ fi(x
∗)

and
∃i ∈ {1, 2, . . . , k}, fi(x) < fi(x

∗).

In other words, x∗ is called Pareto-optimal if there does not exist any feasible vector x
which causes a decrease in some objective function without a simultaneous increase
in at least another.

There exists a spectrum of approaches for multiobjective optimization problems
(Deb 2001; Coello 1999), e.g., aggregating, population-based non-Pareto and Pareto-
based techniques, etc. In aggregating techniques, the diverse objective functions
are generally integrated into one using weighting or goal-based techniques. Among
the population-based non-Pareto approaches, Vector Evaluated Genetic Algorithm
(VEGA) is a technique in which different subpopulations are used for various
objectives. Multiple-Objective GA (MOGA), Non-dominated Sorting GA (NSGA),
Niched Pareto GA (NPGA), etc. are the most popular state-of-the-art methods under
the Pareto-based non-elitist approaches (Deb 2001). On the other hand, NSGA-
II (Deb et al. 2000), SPEA (Zitzler and Thiele 1998), and SPEA2 (Zitzler et al.
2001) are the examples of some recently developed multiobjective elitist techniques
(Mukhopadhyay et al. 2014a, b).
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3.2 Multiobjective Clustering

A number of approaches have been reported in recent literature that employs multi-
objective optimization tool for data clustering (Mukhopadhyay andMaulik, in press;
Bandyopadhyay et al. 2007; Mukhopadhyay et al., in press; Maulik et al. 2009).
Some of them have also been used for clustering genes in microarray gene expres-
sion data (Bandyopadhyay et al. 2007; Maulik et al. 2009). These approaches mainly
involve searching for suitable cluster centers using multiobjective optimization and
optimizing some cluster validitymeasures simultaneously.Many of these approaches
have used NSGA-II as the underlying optimization technique. The validity measures
used for optimization have been computed based on some expression-based distance
measure such as correlation or Euclidean distance. However, as far as our knowledge
goes, no multiobjective clustering technique has incorporated the gene ontological
knowledge in clustering gene expression data. With this motivation, a multiobjective
clustering algorithm which utilizes both expression-based and GO-based knowledge
for clustering microarray gene expression data has been developed here. NSGA-II
has been used as the underlying optimization tool. The next section describes the
proposed technique in detail.

4 Incorporating GO Knowledge in Multiobjective
Clustering

In this section, the proposed multiobjective clustering technique which incorporates
GO information in gene clustering is described. The proposed method uses NSGA-
II as the underlying multiobjective optimization tool. The processes of chromo-
some representation, initialization of population, computation of fitness, selection,
crossover, mutation, and elitism have been discussed. Finally, how a single solution
is obtained from the Pareto-optimal front is stated.

4.1 Chromosome Representation and Initialization
of Population

The main goal is to yield a suitable set of cluster centers through multiobjective
optimization. Therefore, each chromosome of GA encodes K cluster centers, K
being the number of clusters. In Maulik et al. (2009), real-valued encoding of cluster
centers, each chromosome having a length of K × d , was used. Here, d denotes
the number of dimensions (time points) of the dataset. However, the cluster centers
(arithmetic mean of feature vectors of expression values representing genes) may
not represent actual genes. Therefore, if the complete pairwise gene-to-gene distance
matrix is there in hand, then it is better to encode cluster medoids (most centrally
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located point in a cluster) instead of cluster centers. Unlike cluster centers (means),
cluster medoids are actual points present in the dataset. Therefore, they represent
actual genes. Here, the length of each chromosome is equal to K . Each position of
the chromosome has a value selected randomly from the set {1, 2, . . . , n}, where n is
the number of points (genes). Hence, a chromosome is composed of the indices of the
points (genes) in the dataset. Each point index in a chromosome represents a cluster
medoid. A chromosome is valid if no point index is repeated in the chromosome. The
initial population is generated by randomly creating P such chromosomes, where P
is the user-defined population size. The value of P is kept unchanged over all the
generations.

4.2 Computation of Fitness Functions

As stated in Sect. 2.4, three distance matrices are considered: the distance matrix
computed based on Pearson correlation measure from gene expression values (Dexp),
the distance matrix calculated based on one of Resnik’s, Lin’s, or Weighted Jaccard
measures from GO information (DGO), and the combined distance metric matrix
(Dexp+GO) as defined in Eq. (9). The combined distance is used for updating a chro-
mosome, whereas the individual distance metrics are utilized for computing the
fitness values.

A chromosome is decoded by forming clusters considering the genes encoded
in it as the medoid genes and assigning other genes in the dataset to their closest
medoids. Thereafter, new medoids for each cluster are computed by choosing the
most centrally located point of the cluster and the chromosome is updated with the
indices of those medoids. The most centrally located point of a cluster is the point
from which the sum of the distances (dissimilarities) to the other points of the cluster
is minimum. Note that all these computations are performed using the combined
distance measure Dexp+GO.

Two similar fitness functions, calculated using two different distance measures
(Dexp and DGO), are optimized simultaneously. The two objective functions f1 and f2
are given as

f1 =
∑K

i=1

∑
x∈Ci

Dexp(x, αi)

n × minp,q=1,...,K, p �=q{Dexp(αp, αq)} , (13)

and

f2 =
∑K

j=1

∑
y∈Cj

DGO(y, βj)

n × minu,v=1,...,K, u �=v{DGO(βu, βv)} . (14)

Here, αi denotes the medoid gene of the cluster Ci. To find the genes x ∈ Ci (i.e.,
all genes whose nearest cluster medoid is αi), the distance Dexp is used. Similarly,
βj denotes the medoid gene of the cluster Cj, and to obtain the genes y ∈ Cj (i.e., all
genes whose nearest cluster medoid is βj), the distance DGO is used. K and n denote
the number of clusters and the number of genes in the dataset.
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Note that both the objective functions are basically crisp version of well-known
Xie–Beni (XB) validity index. The numerators represent the summed up dissimi-
larities of the genes from their respective cluster medoids. This is the global cluster
variance which needs to be minimized in order to obtain compact clusters. The
denominators are a function of the distance between the two closest cluster medoids,
which represent the minimum cluster separation. To obtain well-separated clusters,
the denominators are to be maximized. Therefore, overall both the objectives are to
be minimized simultaneously to obtain compact and well-separated clusters from the
viewpoint of both gene expression and gene ontology. The objectives f1 and f2 are
computed as above only if the chromosome is valid, i.e., it does not contain a cluster
medoid more than once. For invalid chromosomes, a large value is assigned to the
objective functions so that they get out of the competition in subsequent generations.

4.3 Genetic Operators

The selection operation is performed using the standard crowded binary tournament
selection as in NSGA-II. Subsequently, conventional uniform crossover controlled
by a crossover probability μc is done for yielding the new offspring solutions from
the parent chromosomes selected in the mating pool. The mutation operation is
conducted by substituting the element to be mutated by a randomly chosen different
gene indexes from the range {1, . . . , n} such that no element is duplicated in the
chromosome. Each position of a chromosome undergoes mutation with mutation
probability μm. Elitism is also incorporated as done in NSGA-II. For details of the
different genetic operators, the reader may consult the article in Deb et al. (2002).
The algorithm is executed for a fixed number of generations given as input. The near-
Pareto-optimal chromosomes of the last generation represent the different solutions
to the clustering problem.

4.4 Final Solution from the Non-dominated Front

The multiobjective clustering method generates a non-dominated set of clustering
solutions in the final generation. Therefore, it is necessary to obtain a single solution
from this non-dominated set. This is done as follows: First, each chromosome in
the non-dominated set is updated using the combined distance measure Dexp+GO as
discussed before. Thereafter, from each chromosome, two clusterings of the genes
are obtained: one based on Dexp and another based on DGO. Then, each Dexp based
clustering is compared with the corresponding DGO based clustering. The clustering
pair that matches best is chosen. The idea is to find that clustering balances both
expression-based andGO-based dissimilarities. Subsequently, from the chromosome
corresponding to the best matching clustering pair, the final clustering solution is
obtained based on Dexp+GO.
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5 Experimental Results and Discussion

In this section, first the yeast cell cycle dataset (Mukhopadhyay et al. 2010) used for
experiments is described. Subsequently, the experimental results are discussed.

5.1 Dataset and Preprocessing

Experiments are performed on yeast cell cycle dataset, and this dataset is avail-
able publicly at http://genome-www.stanford.edu/cellcycle/. The raw dataset has
expression values of 6,178 yeast open reading frames (ORFs) over 18 time points
(Fellenberg et al. 2001). The genes without having any GO terms under BP are omit-
ted and thus it produces 4,489 genes. Thereafter, all the genes having missing values
are discarded. Finally, this yields 3,354 genes and these are used for the clustering
purpose in subsequent phases. Here, normalization is performed over the dataset
such that each row has mean 0 and variance 1.

5.2 Experimental Setup

At first, four pairwise distance matrices are constructed based on different distance
metrics (Mukhopadhyay et al. 2010). These are expression-based correlation dis-
tance, Resnik’s GO-based distance, Lin’s GO-based distance, and Weighted Jaccard
GO-based distance, respectively. The dimension of each matrix is n × n. Here, n
denotes the number of genes. The gene expression values have been used for com-
puting the correlation-based distance. On the other hand, the other three distances
are measured using the R package csbl.go (Ovaska et al. 2008). This package asks
for the gene identifiers along with the GO terms associated with them as the input
and returns the pairwise distances for the metric (Resnik, Lin, andWeighted Jaccard)
under consideration as output.

The multiobjective clustering method has been executed for the following four
distance matrices (Mukhopadhyay et al. 2010):

1. Expression-based distance matrix (Dexp).
2. Combined expression-based and Resnik’s distance matrices (Dexp+Res).
3. Combined expression-based and Lin’s distance matrices (Dexp+Lin).
4. Combined expression-based and Weighted Jaccard distance matrices (Dexp+WJ ).

For each case, the algorithm is run to group the genes into 100 clusters for the
yeast cell cycle data. A number of generations, population size, crossover probability,
and mutation probability are set to 100, 50, 0.8, and 0.1, respectively. The values
of the parameters are chosen based on several experiments. For validation of the
clusters, functional enrichment of the clusters has been studied using GO and KEGG
pathways.

http://genome-www.stanford.edu/cellcycle/
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5.3 Study of GO Enrichment

The multiobjective technique yielded 100 gene clusters for each of the four runs
as mentioned above for the yeast cell cycle dataset. To investigate the functional
enrichment in the clusters, the hypergeometric test is applied to compute the degree of
functional enrichment (p-values) that measures the probability of finding the number
of genes involved in a given GO term within a cluster of genes. If most of the genes
in a cluster have the same biological function, then it is likely that this has not taken
place by chance and the p-value of the category will be very near to 0. The GOstats
package from R is used to conduct the hypergeometric test. The hypergeometric test
has been applied to the gene set of each cluster obtained by executing multiobjective
clustering algorithm on the four distance matrices (one expression-based and three
combined matrices).

For each cluster, themost significantGO term aswell as the corresponding p-value
is extracted. After that, the clusters are sorted in descending order of significance
(increasing order of the p-value of the most significant GO term) for each distance
metric. In Fig. 1, the p-values of the sorted list have been plotted for yeast cell cycle
dataset. The plots of −log(p-value) are shown for better readability. Higher value
of −log(p-value) implies lower value of p-value and hence, higher significance.
The plots for each of the four distance metrics have been shown. The figure clearly
shows that irrespective of the GO-based distance measure employed, the clusters
resulted using combined distance have smaller p-values (larger −log(p-values)) for
themost significantGO terms than that yielded using expression-based distance. This
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Fig. 1 The p-value plots of the most significant GO terms for all the clusters for each of the four
distance metrics for yeast cell cycle data. The clusters are arranged in increasing order of p-value
(decreasing order of −log(p-value))



66 A. Mukhopadhyay

indicates that the combined distance metrics produce more biologically relevant and
functionally enriched clusters than the case while only expression-based distance is
used. Therefore, it can be said that incorporation of GO information both in distance
metric and in the objective function of the multiobjective clustering method yields
more biologically enriched clusters.

Furthermore, it is evident from Fig. 1 that hereDexp+WJ based clustering produces
more significant clusters than bothDexp+Res andDexp+Lin based clusterings. It appears
that Dexp+Lin based clustering performs better than Dexp+Res based clustering. This
signifies the better performance of the Dexp+WJ based clustering for yeast cell cycle
data.

Also, the number of clusters that have the most significant p-value (associated
with the most significant GO term) less than a particular cut-off p-value is computed.
Figure2 shows the plots of the number of clusters against different cut-off p-values.
It is apparent that the curves for the combined distance metrics stay higher compared
to the curve corresponding to Dexp based clustering. This also demonstrates that the
combined distance metrics yield more number of biologically significant clusters.
Moreover, it is apparent that the curves corresponding to Dexp+WJ and Dexp+Lin are
situated in higher position than that for Dexp+Res.

For illustration, Table1 reports the most significant unique GO terms with their
p-values for the five most significant clusters yielded by all the four distance metrics.
Evidently, the p-values produced using the combined metrics are much smaller com-
pared to that forDexp. This also demonstrates the better performance of the combined
distance metrics.
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Fig. 2 The plots of number of clusters within certain cut-off p-values corresponding to the most
significant GO terms for each of the four distance metrics for yeast cell cycle data
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For further investigation, the cut-off p-value is set to 0.0001 to get the clusters for
which the p-value of the most significant GO term is smaller than 0.0001.A set of
19 unique clusters for Dexp, 85 unique clusters for Dexp+Res, 57 unique clusters for
Dexp+Lin, and 86 unique clusters for Dexp+WJ by this filtering. Thus, Dexp+WJ based
clustering produces the highest number of clusters with most significant p-values
less than the cut-off 0.0001.

In Fig. 3b, the four-way Venn diagram (for the four distance matrices) involving
the most significant GO terms of the clusters with p-values lower than 0.0001 is
depicted. The Venn diagram shows that for Dexp, 15 clusters are there for which the
most significant GO terms are not the most significant terms of any other cluster
obtained using other distance measures, whereas Dexp+Res, Dexp+Lin, and Dexp+WJ

have produced 48, 24, and 56 such clusters, respectively. Moreover, for each distance
metric, only one cluster has the same most significant GO terms. In Table2, this GO
term is reported for the common cluster along with the p-value for each distance
metric. This is evident from the table that the p-values associated with the combined
distance metrics are much smaller than that for Dexp.

Table3 reports, for each of the four distance metrics, the GO terms and associated
p-values for the 5 topmost clusters whose most significant GO terms do not share

Fig. 3 The four-way Venn diagram (corresponding to the four distance metrics) among the most
significant GO terms for yeast cell cycle data (for the clusters having p-values less than 0.0001)

Table 2 The most significant GO terms for the single common cluster along with the p-values for
each of the four distance metrics for yeast cell cycle data

GO term Expression Expression+Lin Expression+Resnik Expression+WJ

GO:0006412
(protein
biosynthesis)

3.64E−07 5.42E−54 1.47E−09 7.76E−46
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Fig. 4 Distribution of GO depth of the most significant GO terms (Number of clusters for different
values of GO depth) for Heidelberg yeast dataset for different distance metrics

the same of any other cluster obtained using other distance measures. The clusters
are sorted in increasing order of the p-values. From Table3, it can be noticed that
the p-value of the most significant GO term for the topmost cluster for Dexp+WJ is
much lower than that of the topmost clusters for theDexp,Dexp+Res, andDexp+Lin. This
indicates that the p-values for the combined dissimilarities are much less compared
to expression-based clustering only.

To further study the homogeneity of the clusters, the depth of the most significant
GO term for each cluster has been computed from the GO DAG (distance from the
root—Biological Process), and the distribution has been plotted in Fig. 4. Here, the
number of clusters for different values of GO depth of the most significant GO terms
is shown. As is apparent from the figure, the clustering methods with combined
dissimilarities produce more number of clusters whose most significant GO terms
have low depth (nearer to the root), whereas for the expression-based clustering,
the depths of the most significant GO terms are more uniformly distributed. This
indicates that the combined techniques produce clusters that are biologically very
homogeneous, but the price is that the biological process which is characteristic for
the cluster, is more general compared to expression-based clustering.

To establish that the clusters are indeed more homogeneous for the combined
dissimilarities, the GO compactness of the clusters has been computed. The GO
compactness of a cluster is defined as the average of the path lengths between each
pair of top five most significant GO terms of that cluster. Lower value of this implies
better compactness in terms of GO. The path length between two GO terms has been
defined as the sum of their distances from their lowest common ancestor (minimum
subsumer) in the GO DAG. Figure5 shows the distribution of the GO compactness,
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Fig. 5 Distribution of GO compactness (Number of clusters for different ranges of GO compact-
ness) for yeast cell cycle dataset for different distance metrics. GO compactness of a cluster is
defined as the average of the path lengths between each pair of top five most significant GO terms

i.e., the number of clusters yielded by the four distance metrics in different ranges
of GO compactness. It is evident from the figures that the clustering methods based
on combined distance metrics produce more number of clusters with low value of
average pairwise distance (high GO compactness), whereas for expression-based
clustering, this value is more or less uniformly distributed. This indicates that com-
bined clustering methods are able to provide more compact clusters in terms of GO,
i.e., they produce more biologically homogeneous clusters.

5.4 Study of KEGG Pathway Enrichment

As GO information has been incorporated in the proposed multiobjective clustering
of gene expression data, validation of clustering results using GO-based analysis
may be biased toward the combined distance measures. Therefore, in this section,
the GO-based analyses discussed in the previous section have been repeated for
KEGG pathways. Hence, the main goal of this study is to find whether the clusters
obtained by the different distance measures are enriched with KEGG pathways. The
software EXPANDER (Sharan et al. 2003; Shamir et al. 2005) has been utilized to
accomplish the KEGG pathway study.

The most important KEGG pathway with its p-value has been extracted for each
cluster. The clusters are arranged in decreasing order of significance (increasing order
of the p-value) for each distance metric. The p-values from the sorted list have been
shown in Fig. 6. The figure clearly shows that no matter which distance GO-based
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Fig. 6 The p-value plots of the most significant KEGG pathways for all the clusters for each of the
four distance metrics. The clusters are arranged in increasing order of p-value (decreasing order of
−log(p-value)) for yeast cell cycle data

distance metric is used, the clusters generated by the combined distance metrics
are more significant, i.e., they have much smaller p-value (larger −log(p-value))
for the most important KEGG pathways than that obtained using expression-based
distance. It is also noticeable that Dexp+WJ outperforms the other combined metrics.
These results conform to the findings byGO-based study. It indicates that the clusters
obtained using combined distance metrics contain genes which share many KEGG
pathways than the clusters obtained using expression-based distance metric. It can
be easily verified from Fig. 7, which shows the plotting of number of clusters having
most significant p-values within the cut-off p-values. It can also be noted that the
plots for the combined distance metrics are situated in the upper side, whereas the
same forDexp is mostly situated on the lower region. This suggests that the combined
distances yield a larger number of KEGG pathway enriched clusters.

The most significant KEGG pathways with their p-values for the most important
top five clusters obtained from the four distancemetrics have been reported in Table4
for illustration. It is clearly visible that p-values obtained for combined metrics
are always very lower than the p-values obtained for Dexp. This indicates that the
combined metrics produce a better result than Dexp based clustering.

Subsequently, the cut-off p-value is fixed at 0.001 to obtain the most significant
KEGG pathway enriched clusters with p-value less than 0.001. This resulted in the
following number of unique clusters for different distance metrics: for Dexp it is 15,
for Dexp+Res it is 24, for Dexp+Lin it is 30, and for Dexp+WJ , it is 31. Hence, Dexp+WJ

based clustering gives the maximum number of most significant KEGG pathway
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Fig. 7 The plots of number of clusters within certain cut-off p-values corresponding to the most
significant KEGG pathways for each of the four distance metrics for yeast cell cycle data

enriched clusters for which the p-value is less than 0.001. Moreover, as expected,
Dexp based clustering provided the minimum number of such clusters.

Figure8 shows the four-way Venn diagram (related to the four distance metrics)
involving the most important KEGG pathways of the clusters which have p-values
lower than 0.001. It comes out from the diagram that for Dexp, there are only three
such clusters. The most important KEGG pathways of these three clusters do not
match with that of any other cluster reported by other distance metrics. On the other
hand, Dexp+Res, Dexp+Lin, and Dexp+WJ , respectively, have yielded 5, 10, and 8 such
clusters. It is also noticeable that for every distance measure, only eight clusters are
present that have the same most important KEGG pathways. The KEGG pathways
for these clusters with their corresponding p-values for each distance metric have
been reported in Table5.

For each distance metric, the KEGG pathways and their p-values for the top five
clusters that do not share the most important KEGG pathways with any other cluster
given by other distance metrics have been reported in Table6 for illustration. The
clusters are arranged in increasing order of their p-values. It is clear that the p-values
obtained for the combined distance metrics are smaller than that obtained for Dexp.

The results obtained in both GO and KEGG pathway-based studies suggest that
the inclusion of the gene ontology knowledge in multiobjective clustering enhances
the clustering performance by producing biologically relevant clusters compared
to the clusters of genes produced by the expression dataset only. This improve-
ment is evident no matter which GO-based distance measure is chosen. Moreover,
the enrichment study also suggests that among the three GO-based dissimilarities,
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Fig. 8 The four-way Venn diagram (corresponding to the four distance metrics) among the most
significant KEGG pathways for yeast cell cycle data (for the clusters having p-values less than
0.001)

Table 5 The most significant KEGG pathways for eight common clusters along with the p-values
for each of the four distance metrics for yeast cell cycle data

Pathway term Expression Expression+Lin Expression+Resnik Expression+WJ

Ribosome 7.42E−32 4.97E−57 9.30E−53 1.872E−70

DNA replication 3.81E−11 4.60E−17 3.01E−14 2.417E−20

Proteasome 9.94E−08 8.71E−25 1.48E−13 8.94E−37

Citrate cycle
(TCA cycle)

2.53E−06 1.52E−16 7.24E−13 2.501E−19

Mismatch repair 1.40E−05 4.23E−07 2.38E−06 2.002E−08

N-Glycan
biosynthesis

1.89E−04 1.29E−15 1.39E−21 2.156E−33

Metabolic
pathways

5.62E−04 4.89E−31 3.97E−28 1.441E−21

RNA
degradation

5.67E−04 9.05E−09 1.40E−08 1.187E−18

Dexp+WJ based multiobjective clustering method gives better performance than the
other two combined distance measures, viz., Dexp+Res and Dexp+Lin.
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6 Conclusion

In this chapter, a multiobjective clustering technique has been presented that finds
the clusters of genes in a gene expression dataset by considering the GO information.
The gene-to-gene distance metrics based on expression values and GO knowledge
have been merged. Furthermore, two objective functions, one from expression point
of view and another from GO point of view, have been optimized simultaneously to
obtain the right balance between experimental and ontological information. Pearson
correlation-based distance has been employed for computing the distances between
the genes from experimental gene expression values. On the other hand, to compute
distances between genes from biological point of view, three GO-based semantic
similarity metrics, viz., Resnik’s, Lin’s, and Weighted Jaccard similarity measures,
have been utilized. Experimental results based on GO and KEGG pathway enrich-
ment analysis on time series gene expression data of yeast cell cycle have been
described. The results suggest that the combined metrics of expression-based and
GO-based distances yield improved clustering performance in comparison with only
expression-based clustering. Furthermore, weighted Jaccard similarity measure has
been found to outperform the other two GO-based semantic similarity metrics.

As a future scope of work, other GO-based semantic similarity measures can be
tested. Moreover, other kind of biological knowledge, such as pathway information,
can directly be incorporated in the clustering process as well. From the optimization
point of view, other multiobjective metaheuristic techniques can be utilized for the
clustering purpose. The author is working in these directions.
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Interval-Valued Goal Programming
Method to Solve Patrol Manpower
Planning Problem for Road Traffic
Management Using Genetic Algorithm

Bijay Baran Pal

1 Introduction

The significant improvement of socio-economic conditions along with growth of
population and Cultural Revolution across the countries, different types of motor
vehicles have increase enormously in major towns and cities in recent years. It is
worth mentioning here that metropolitan cities, or more popularly, metro cities have
been modernized extensively as the epicentres of different countries, and they have
become densely populated ones and vehicular traffic has increased a lot over the last
few years. As a consequence, traffic congestion owing to increase in traffic density
has become a regular feature on metro roadways.

It is to be noted, however, that congested traffic can cause considerable delay on
roads for motorists, and inconsiderate driving by violating traffic rules frequently
takes place on roadways of densely populated cities. Eventually, the occurrence of
accidents resulting in injuries and death cases has become common phenomenon in
most of the metro cities. To cope with such a situation, although automatic traffic
signal system and other technological devices have been introduced to control flow
of traffic, car crash and other untoward road incidents are found common phenomena
owing to inexact behaviour ofmotorists, like hurried driving for overtaking other ones
by overlooking overhead signals, mainly at junctions of approach roads. As such,
automatic traffic control system in isolation cannot be accounted for best possible
elimination of untoward road incidents on city roadways.

In context to the above, it may be mentioned that manual operations on traffic by
deploying traffic patrol personnel on roadways, particularly in road segment areas,
would give a comprehensive effect in the environment of controlling road traffic. As
a matter of fact, mathematical modelling for quantitative measuring of road safety is
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essentially needed and thereby taking managerial decision for deployment of patrol-
men in traffic management.

The mathematical theory of traffic flow was originated as early as 1921 when
Knight (1921) produced an analysis of traffic equilibrium in the context of predic-
tion of traffic patterns in transportation networks that are subject to congestion. A
comprehensive view of the anatomy of urban road traffic control was introduced by
Buchanan (1964) and widely circulated in the literature of traffic management.

The effective use of analytical process of operations research (OR) to solve traffic
management problems was first well discussed by Larson (1972). The primary aim
of using OR technique for physical control of traffic is to optimize various perfor-
mance criteria that are concerned with enforcement of traffic rules and regulations
to deterring traffic law violations and untoward road incidents. Here, it is worthy to
note that the traffic management problems involve a number of incommensurable
and conflicting objectives, because a number of performance measures are to be
considered there with regard to optimal control of traffic in metro roadways.

To cope with the above situation, GP approach (Ignizio 1976), an efficient tool for
solving problemswithmultiplicity of objectives in precise decision-making premises
to traffic management problems was initially studied by Lee et al. (1979). A study
on the approach was further extended by Taylor et al.(1985) to overcome the com-
putational difficulty occurs for hidden nonlinearity (Hannan 1977) in model goals
defined for measuring various performances against the deployment of patrol per-
sonnel to control vehicular traffic on city roadways. The extensive literature on road
traffic management has been well documented (Kerner 2009) in a previous study.
However, it is worth mentioning that the target levels of goals in GP method are
introduced by decision-maker (DM) in decision-making context. But, there are var-
ious uncertain factors which come into play the active roles to many managerial
problems, where significant computational difficulties arise in optimizing objectives
by assigning precise target levels to them in the choice set.

To avoid the above shortcoming, fuzzy goal programming (FGP) in GP config-
uration, a new version of fuzzy programming (FP) (Zimmermann 1978) in the area
fuzzy sets (Zadeh 1965) was studied (Pal and Moitra 2003) towards measuring goal-
oriented solution in imprecise environment. Then, application of FGP method to
different kinds of decision-making (MODM) problems has been discussed (Biswas
and Pal 2005; Pal et al. 2012; Slowinski 1986) previously. In fuzzy environment,
however, goals are viewed as fuzzy numbers with known membership functions in
contrast to known probability distributions of random numbers in stochastic pro-
gramming (SP) (Liu 2009). But, in case of some real-world problems, it may not be
possible to specify membership functions of fuzzily described goals appropriately or
accurate probability distributions of random numbers to establish analytical model
owing to lack of obtaining complete information in uncertain environment.

However, to model problems in some practical cases, data are found to be inexact
in nature, where a set of real numbers in a bounded interval (Jiang et al. 2008),
instead of fuzzy/random numbers, are involved with regard to setting parameter
values to problems. An interval is potentially an extension of conceptual frame of
real numbers and it is considered a real subset of the real line � (Moore et al. 2009).
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Fig. 1 Graphical
representation of closed
interval aL aU

In reality, the notion ‘about’ is usually used to set parameter values of a problem and
certain tolerance ranges are considered to take their possible values in an imprecise
environment, whereas in the situation of applying interval parameter sets, the notion
‘region’ is used to take possible parameter values bounded by certain lower and upper
limits, because not all subsets of numbers on the real line are interesting in inexact
environment.

More to say about interval parameters, it may be noted that interval can be
viewed degenerated fuzzy numbers by applying the notion of α- cuts in fuzzy sets
(Zimmermann 1991). Such an aspect to model optimization problems along with
numerical illustrations has been well documented (Tong 1994) in a previous study.

Mathematically, an interval is defined by an ordered pair as

A � [aL, aU] � {a : aL ≤ a ≤ aU; a ∈ �},

where aL and aU are lower and upper bounds, respectively, of interval A on the real
line �, and where L and U are used to indicate lower and upper, respectively.

The notion of a closed interval is depicted in Fig. 1.
Again, the width w[A] and midpoint m[A] of interval A can be defined as

w[A] � (aU − aL) and m[A] � 1
2 (a

L + aU), respectively.

Here, in particular, if aL � aU � a is considered, then A � [a, a] indicates a real
number a and it is said to degenerate interval [a, a]. In such a sense, 1 � [1, 1] is
accounted for representing an interval.

To solve problems with interval data, interval programming method, initially
introduced by Bitran (1980), has appeared as a prominent tool in the literature of
optimization methods. In interval programming, interval arithmetic rules (Moore
et al. 2009) are used for analysing problems with uncertain data. Historically, the
conceptual frame of interval programming could be traced in the third century BC,
when the famous mathematician Archimedes defined that the value of π (pi) prac-
tically lies in the range (223/71<π<22/7). In real practice, interval computation is
a numerical method of putting bounds on rounding errors to yield a reliable result
of an entity, whose value is conceptually put as a range of possibilities. The study
on interval analysis and crucial role of interval arithmetic for optimization has been
discussed extensively in a book prepared by Hansen (2003).

Now, in traffic control system, since road network is a very complicated sys-
tem and traffic phenomena are nonlinear in nature, it is nearly impossible to pre-
dict the characteristics of moving vehicles either exactly or imprecisely to design
model for quantifying performances against the deployment of patrolmen to con-
trol vehicular traffic. In case of such a real-world problem, interval data instead of
fuzzy/probabilistic one can reasonably be introduced there to model the problem.
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It is worth noting here that the potential use of such a method to different kinds of
practical problems along with diagrammatic representations of them has been well
discussed (Kulpa 2001) previously.

The IVGP method for solving MODM problems was first presented by Inuiguchi
and Kume (1991). The effectiveness of using IVGP approach to practical problems
has also been discussed (Ida 2003) in a previous study. Themethodologies concerned
with IVGP discussed in previous studies have been extensively surveyed by Olivera
and Antunes (2007). Again, IVGP method based on GA (Michalewicz 1996) to
patrolmen deployment problem has also been discussed by Pal et al. (2009) in a
previous study. But, the notion of using interval arithmetic to develop model goals
was not fully explored therein and potential incorporation of interval coefficients was
not considered in the formulated model. Furthermore, the study on modelling traffic
control problems with interval data is very thin in literature.

In this chapter, a priority-based IVGP formulation of patrol manpower alloca-
tion problem with interval parameter sets is considered for optimal allocation of
patrolmen to various road segment areas at different shifts of a time period on metro
roadways to deterring violation traffic rules and reduction of road incidents in traffic
management system. In the proposed approach, the objective parameters concerned
with utilization of resources as well as measuring performances of various traffic
control activities are considered intervals to make a proper solution for patrolmen
deployment in the inexact environment. Then, in model formulation, the functional
expressions of objectives, which measure the performances of various activities and
inherently fractional in nature, are transformed into their linear equivalents to over-
come computational burden occurs for nonlinearity in model goals. Then, from the
optimistic point of view, IVGP model of the problem under a pre-emptive priority
structure (Romero 2004) as in conventional GP approach is designed to minimize
regrets arising out of possible deviations from target values of model goals of the
problem. To execute the model, a GA approach (Michalewicz 1996) is adopted to
achieve target levels of defined goal on the basis of priorities introduced to them. The
sensitivity analysis is also made by rearranging priorities of model goals to present
howsolution changeswith changes of priorities, and thenEuclidean distance function
is applied to reach ideal point dependent decision regarding deployment of patrolmen
in traffic control horizon.

A case example of the metro-city Kolkata of West Bengal in India is examined to
present the effective use of the method. The successful implementation of the model
is also highlighted by comparing the resulting decision with minsum IVGP approach
studied by Inuiguchi and Kume (1991) previously.

This chapter is further arranged in the following order. Section 2 allocates devel-
opment of the framework of model, and various aspects of executing model by
applying GA along with the use of Euclidean distance function on sensitized solu-
tions for decision identification. Section 3 introduces the notational description of
variables and parameters associated with modelling of traffic control problem. In
Sect. 4, development of objective goals and constraints of the proposed problem as
well as evolutionary function associated with GA random search process are pre-
sented. Section 5 contains an illustrative case example, along with comparison of
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solutions of present IVGP approach and a goal-orientedmethod of the previous study
to present the effective use of the model. Finally, conclusions and future scope are
discussed in Sect. 6.

Now, formulation of general IVGP model is discussed in Sect. 2.

2 IVGP Formulation

In IVGP approach, model parameters of an optimization problem are considered
intervals, instead of considering their precise values as assumed in traditional opti-
mization methods, and thereby analysing the perspective of taking decision in uncer-
tain environment. Conceptually, IVGP can be viewed as an extension of conventional
GP with a bounded set of parameter values of objective goals in the form of intervals
to measure possible attainment of objective values in the ranges specified in decision
situation.

Now, chronological development of IVGP model through conventional GP for-
mulation is discussed as follows.

Let Fk(x), k � 1, 2, . . . , K be the objectives of DM that are to be optimized in
MODM situation, where x denotes a vector of decision variables.

Then, let tk be the target level introduced to kth objective in the sequel of repre-
senting objectives as standard goals in GP methodology.

Then, kth objective with target value tk , termed objective goal, appears as:

Fk(x) � tk, k � 1, 2, . . . , K (1)

In conventional GP approach, the rigid form goals in (1) are made flexible by
incorporating under- and over-deviational variables to each of them with regard to
achievement of their aspired goal levels to the extent possible, because achievements
of target levels of all goals rarely take place in practical cases due to limitations
on utilization of resources, which are scarce in nature in most of decision-making
contexts.

The flexible goals take the form (Ignizio 1976):

Fk(x) + d−
k − d+

k � tk, k � 1, 2, . . . , K (2)

where d−
k and d+

k (≥0) represent under- and over-deviational variables, respectively.
Now, since objectives are in general incommensurable and frequently conflict

each other to reach the best of their respective aspired levels, minimization of devi-
ational variables (that are unwanted) in executable objective function (called goal
achievement function) is taken into account according to the importance of achieving
target levels of goals in decision situation.

However, in an inexact environment, instead of introducing the coefficients pre-
cisely and target level exactly to kth objective, the vector of interval coefficients [cL

k ,
cU

k ] and target interval [tLk , tUk ] are incorporated to analyse the region for possible
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achievement of defined objective goal, where cL
k and cU

k represent the vector of
lower and upper limits of interval coefficient vectors, and t L

k and tU
k denote lower

and upper bounds of target interval, respectively, associated with kth objective Fk(x),
k � 1, 2, . . . , K .

Then, basic mathematical structure of the IVGP formulation described in this
chapter is presented as follows.

Find x so as to

satisfy [cLk , c
U
k ]X � [tLk , tUk ], k � 1, 2, . . . , K

subject to X ∈ S � {X|CX
⎛
⎜⎝

≤
≥
�

⎞
⎟⎠b,X ≥ 0;X ∈ Rn,b ∈ Rm}

xL ≤ x ≤ xU, (3)

where C is a real matrix and b is a constant vector, XL and XU indicate vectors of
lower and upper limits, respectively, associated with vector x. Also, it is considered
that the feasible region S( �� φ) is bounded.

The objectives in (3) are termed interval-valued goals and the associated intervals
define bounded regions within which goals possibly take their values with regard to
arriving at optimal solution in the decision-making horizon.

Now, basic arithmetic operations on intervals have been well documented (Moore
et al. 2009) previously. It is to be mentioned here that ‘interval arithmetic’ describes
a set of operations on intervals, whereas ‘classical arithmetic’ settles operations on
individual numbers.

The extended sum operationwhich is primarily concernedwith IVGP formulation
is presented as follows.

If {A j � [aL
j , aU

j ], j � 1, 2, . . . , n} be a set of n intervals and {x j (≥0), j �
1, 2, . . . , n} be a collection of decision variables, then the possible extended sum of
the intervals can be obtained as:

(
n
+

j�1
)A j x j � [

n∑
j�1

aL
j x j ,

n∑
j�1

aU
j x j ] (4)

Now, following interval arithmetic rules, the objective goals in (3) can be des-
ignated by planned interval goals in the process of designing the model, where the
values possibly taken by objective goals in their respective planned intervals are
called planned values of them. Then, performing interval arithmetic operation, the
defined planned interval goals can be converted into two deterministic goals that are
similar to the form of goal defined in (1) to make flexible goal as defined in (2).

Now, deterministic equivalents of planned interval goals are discussed in Sect. 2.1.
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2.1 Deterministic Flexible Goals

The interval, say Dk , occurs for the question of possible deviations in connection to
achievement of a value of kth objective goal in (3) within its specified range can be
determined as (Inuiguchi and Kume 1991):

Dk � [t L
k −

n∑
j�1

cU
k j x j , tU

k −
n∑

j�1

cL
k j x j ] (5)

Here, it can easily be followed that the exact upper and lower values of Dk cannot
be easily determined owing to inexactness of achieving the functional values of
objectives as well as incommensurability and conflict nature of goals for achieving
their values in decision situation. However, to cope with the situation of measuring
possible deviations, each of the defined planned interval goals (called interval-valued
goal) is converted into its equivalent to two flexible goals by incorporating individual
lower and upper bounds of target interval as lower and upper target levels, termed
the least and best planned values, respectively, and introducing both under- and over-
deviational variables as defined in (2).

The flexible goals corresponding to kth goal in (3) appear as (Olivera and Antunes
2007):

n∑
j�1

cUk j x j + d−
kL−d+

kL � tLk ,

n∑
j�1

cLk j x j + d−
kU − d+

kU � tUk ; k � 1, 2, . . . , K (6)

where (d−
kL, d−

kU), (d
+
kL, d+

kU) (≥0) denote the sets of under- and over-deviational vari-
ables, respectively, introduced to goal expression in (6), and where d−

kL · d+
kL � 0 and

d−
kU · d+

kU � 0, k � 1, 2, . . . , K .
Considering the goal expressions in (6), the expression of Dk in (5), which is

considered possible regret interval, can be determined in the following three possible
ways:

(i) If d−
kL � 0 and d−

kU � 0, then Dk � [d+
kU , d+

kL ], since tLk < tUk .

(ii) If d−
kL � 0 and d+

kU � 0, then Dk � [0, (d+
kL ∨ d−

kU )], where ‘∨ indicates max
operator.

(iii) If d+
kL � 0 and d+

kU � 0, then Dk � [d−
kL, d−

kU].

Here, it is to be noted that d−
kL · d+

kU � 0 always holds, because d−
kL > 0 and d+

kU >

0, i.e. simultaneous occurrence of
∑n

j�1 cUk j < tLk and
∑n

j�1 cLk j > tUk contradicts the
conditions that x ≥ 0 as well as cUk j > cLk j , tUk > tLk .

Therefore, (d−
kL + d+

kU) < max(d+
kL, d−

kU), i.e. (d
−
kL + d+

kU) < (d+
kL ∨ d−

kU) always
holds true, which is to be accounted for modelling a problem in inexact environment.

However, the above three possible cases lead to take the expression of Dk as

Dk � [d−
kL + d+

kU, d+
kL ∨ d−

kU] (7)
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In context to the above, it is to be followed that attainments of goal values within
their specified ranges indicate minimization of the deviational variables attached to
goal equations in (6) to the possible extent in decision environment.

Now, IVGP model is presented in Sect. 2.2.

2.2 IVGP Model

The main activity concerning traffic management is to implement an enforcement
program which applies selective enforcement pressure to critical road intersection
areas at the hours of greatest accidents or rule violation expectancy. Here, it is worthy
tomention that trafficmovement is inherently inexact in nature and human behaviour
is always unpredictable concerning violation of traffic rules in drivingmode, and that
increases with the decrease of traffic movement. In such a situation, modelling of the
problem in the framework of IVGP would be an effective one to express uncertain-
ties in making decision. The advantage of applying such a method is that interval
characteristics regarding attainment of objective values are preserved there during
execution of the model and interval data information are communicated directly to
the optimization process.

Now, to formulate IVGP model, the main concern is with designing of goal
achievement function (called regret function) (Inuiguchi and Kume 1991) for min-
imizing deviational variables attached to objective goals. Here, from the optimistic
point of view of DM, minimization of possible regrets is considered as a promising
one in the decision situation. In course of model formulation, however, since goals
are generally incommensurable and often conflict each other concerning achieve-
ments of goals, a priority-based IVGP model, which is similar to that of modelling
MODM problems in conventional GP (Romero 2004) is considered to arrive at opti-
mal decision.

In priority-based IVGP method, the achievements of model goals are considered
according to priorities assigned to them. Here, if some of the goals seem to be equally
important to assign priorities, they are included at same priority level and relative
numerical weights of importance are given there for sequential achievements of them
in decision-making context.

Now, the general priority-based IVGP model of a MODM problem can be pre-
sented as:

Find x so as to

Minimize Z � [
P1(d),P2(d), . . . ,Pr (d), . . . ,PR(d)

]
and satisfy the goal expressions in (6)
subject to

d−
r,k L + d+

r,k U − Vr ≤ 0, k ∈ Ir , r ∈ {1, 2, . . . ,R}, (8)

and the system constraints in (3),
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whereZ denotes a vector of achievement functionswhich is composed of R priorities,

and where Vr �
[
max
k∈Ir

(d−
r,kL + d+

r,kU )

]
.

In the above IVGP model, Pr(d) designates the regret function of vector d that
consists of under- and over-deviational variables attached to goals included at rth
priority level, and where Pr(d) is of the form:

Pr (d) � {
∑
k∈Ir

λr wr,k(d
−
r,kL + d+

r,kU ) + (1 − λr )Vr }, 0 < λr < 1 (9)

where Ir denotes the set of model goals included at rth priority level Pr , and where
Ir � {1, 2, . . . , K }; 0 < λr < 1 with

∑
r∈Ir

λr � 1, and wr,k(>0) with
∑

k∈Ir
wr,k �

1, k ∈ Ir , r � 1, 2, . . . , R, are numerical weights given to goals for their relative
achievements at priority level Pr , and d−

r,kL , d+
r,kU are actually renamed for d−

kL , d+
kU ,

respectively, to represent them at rth priority level.
Here, the priority factors have the relationship:
P1 >>> P2 >>>…>>> Pr >>>…>>> PR, which means that goal achievement

under the priority factor Pr is preferred most to the next priority factor Pr+1, r �1,
2,…, R–1; ‘>>>’ is used to indicate much greater than.

Now, in solution process, execution of problem step-by-step for achievement of
model goals according to priorities is summarized in the following algorithmic steps.

2.3 The IVGP Algorithm

In context to the above, however, it is worth mentioning that an optimal solution
for achievements of all goal values to their aspired levels exactly that corresponds
to ideal point (called utopia point), is a non-attainable case due to limitations on
the availability of system resources. Further, DM is often confused with that of
assigning proper priorities to goals due to the conflict in nature of them with regard
to attaining their aspired levels in a decision situation. To avoid such a difficulty,
Euclidean distance function (Yu 1973) can be effectively employed to determine
appropriate priority structure under which an ideal point oriented solution (nearest
to ideal solution point) as best one can be obtained in decision premises.

Now, determinationof the priority structure ofmodel goals properly byperforming
sensitivity analysis on alternative solutions that are obtained by rearranging the goal
priorities is discussed in the following section.

2.3.1 Priority Structure Determination

In the situation ofmodelling a problem, it ismentionable that assignments of priorities
tomodel goal equations for proper solution achievement, which is generally assigned
by DM with usual perception, may not always be a satisfactory one, because a
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confusion in most of the times is created there for assigning priorities according to
importance of meeting the target levels of model goals.

The IVGP Algorithm

Step 1. Convert the interval-valued goals into flexible goals (as given in (6))

Step 2. Construct the goal achievement function Z of the problem (as given in (8))

Step 3. Rename Z as (Z)r where r is used to represent the component of Z when goal
achievement at rth priority level Pr is considered (as defined in (9)), and where R is
the total priority levels

Step 4. Set r � 1

Step 5. Determine the value of achievement function (Z)r

Step 6. Let (Z∗)r be the optimal value achieved in Step 5

Step 7. Set r � r + 1

Step 8. If r ≤ R, go to Step 9; otherwise, go to Step 12

Step 9. Introduce the constraint
{∑k∈Ir−1

λr−1wr−1,k (d
−
r−1,kL + d+

r−1,kU ) + (1 − λr−1)Vr−1 ≤ (Z∗)r−1}
as system constraints set in (8)
Here, it may be noted that the additional constraint defined in Step 9 actually acts as
an insurance against any deterioration of the achieved values of goals at the higher
priority level Pr−1 for further evaluation of the problem for attainments of goals at
lower priority level Pr−2

Step 10. Return to Step 5

Step 11. Test the convergence:
If r > R, STOP; the optimality is reached

Step 12. Identify the solution x∗ � (x∗
1 , x∗

2 , . . . , x∗
n )

Note 1 The main merit of using such solution approach is that the achievements of goals
step-by-step according to assigned priorities and relative numerical weights can be
obtained in the process of executing the problem. Here, at the first step, minimization of
the regret function (Z )1 associated with goals at first priority level (P1) is considered.
When the value (Z∗)1 is reached, the execution to the next step is made to evaluate (Z )2
for possible achievements of goals at second priority level (P2). Here, in no situation
achievement of goals at P1 can be sacrificed for achievement of any goal at P2. The
execution process is continued with sequential selection of priorities until (Z )R is
evaluated with regard to taking final decision
Note 2 To employ the above-mentioned solution search process, it is worth noting that
since the solution space is bounded and decision variables are with their upper and lower
limits, a finite number of feasible solutions would have to be searched there to reach
optimality. Therefore, the algorithm always terminates after a finite number of iterative
steps and the method can be effectively used to obtain optimal solution

However, the process of selecting an appropriate priority structure to arrive at best
solution is discussed as follows.

Let Q be the total number of different priority structures raised in the planning
horizon. As such, a set of Q different solutions can be obtained in the decision
situation.
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Then, let {xq
j , j � 1, 2, . . . , n} be the solution set obtained under qth priority

structure, q � 1, 2, . . . , Q.

Here, it is to be followed that the maximum of jth decision xq
j , ∀q, would be an

ideal one to achieve optimal solution in the decision-making horizon.

Let x∗
j � Q

max
q�1

(xq
j ), j � 1, 2, . . . , n.

Then, the set {x∗
j ; j � 1, 2, . . . , n} constitutes ideal solution point.

Now, since the achievement of ideal solution is generally a nontrivial case in
real decision situation, the solution set that is closest to ideal solution set might be
considered best one and the associated priority structure would be the appropriate
one in the context of making decision. Again, to find the closeness of Q different
solution sets from the ideal one, the conventional Euclidean distance function can
be applied to identify appropriate priority structure to find optimal solution.

The Euclidean distance, Dq (say), between the ideal solution point and solution
point obtained under qth priority structure is defined as

D(q) �
⎡
⎣

n∑
j�1

(x∗
j − xq

j )
2

⎤
⎦

1/2

, q � 1, 2, . . . , Q (10)

Here, it is to be realized that the solution set which is closest to ideal set must
correspond to the minimum of all the distances defined in the evaluation process.

Let Ds � Q
min
q�1

{D(q)}, where min stands for minimum.

Then, sth priority structure would be the appropriate one to obtain solution of the
problem.

Now,GAcomputational process employed to the problem is presented in Sect. 2.4.

2.4 GA Computational Scheme for IVGP Model

In GA random solution search approach (Goldberg 1989; Deb 2009), new population
(i.e. new solution set) is generated through execution of problem by employing prob-
abilistically stipulated operators: selection, crossover and mutation. Here, real-value
coded chromosomes are adopted to perform GA computation towards searching
solution in random manner. The fitness of a chromosome is evaluated in the premise
of feasible solutions set towards optimizing objectives of the problem. In the present
IVGP model, since evaluation function Z is single-objective in nature with the char-
acteristic of linear program, instead of using multiobjective GA scheme (Deb 1999),
roulette-wheel selection (Goldberg 1989), arithmetic crossover (Hasan and Saleh
2011) and uniform mutation (Craenen et al. 2001) are addressed to find solution in
the domain of interest.

The GA computational scheme with main functions adopted in the environment
of making decision is described in algorithmic steps as follows.
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The GA Algorithm

Step 1. Representation and initialization
Let E denote the real-valued representation of a chromosome in a population as
E � {x1, x2, . . . , xn}. The population size is denoted by P , and P size
chromosomes are randomly initialized in the search domain

Step 2. Fitness function
The evaluation function to determine the fitness of a chromosome is of the form:

eval(Ev)r � (Zv)r �
{

K∑
k�1

w−
rkd−

rk

}

v

, v � 1, 2, . . . , P, (11)

where the function Z in (8) is actually renamed (Zv)r to measure fitness of vth
chromosome at a step when evaluation for goal achievement at rth priority level
(Pr ) is considered
The optimal value Z∗

k of kth objective for the fittest chromosome at a generation is
computed as:
Z∗

k � min{eval(Zv)r |v � 1, 2, . . . , P}, k � 1, 2, . . . , K (12)

Step 3. Selection
The simple roulette-wheel selection (Goldberg 1989) is applied to select parents in
a mating pool for production of offspring in the evolutionary system. The fitness
proportionate strategy is made here by using probability distribution rule to select
fitter chromosomes in new generation. Eventually, an individual with higher fitness
probability is copied to place in a mating pool

Step 4. Crossover
The probability of crossover is defined by Pc. The arithmetic crossover
(single-point crossover) (Michalewicz 1996) is implemented to explore promising
regions of search space, where resulting offspring always satisfies system
constraints set S( �� φ). Here, a chromosome is selected as a parent for a defined
random number r ∈ [0,1], if r < Pc is satisfied
For example, arithmetic crossover over the selected parents C1, C2 ∈ S is obtained
as
C1
1 � α1C1 + α2 C2, C2

1 � α2C1 + α1C2 in course of generating two offspring C1
1

and C2
1 ,(C

1
1 , C2

1 ∈ S), where α1, α2 ≥ 0, with α1 + α2 � 1

Step 5. Mutation
Mutation operation is accomplished on a population after conducting crossover
operation. It recasts position of one or more genes of a chromosome to gain extra
variability of fitness strength. Here, parameter Pm as probability of mutation is
defined in the genetic system. The uniform mutation (Craenen et al. 2001) is
conducted to exploit best solution that lies in the range specified for evaluation of
the problem. A chromosome is selected here for mutation when a defined random
number r < Pm is satisfied for r ∈ [0,1]

Step 6. Termination
The termination of genetic search process arises when fittest chromosome is found
at a certain generation in course of evaluating the problem

Henceforth, different perspectives of designing IVGP model of traffic manage-
ment problem are described sequentially in the chapter. The decision variables and
various interval parameter sets affiliated to the problem are now introduced in Sect. 3.
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3 Definitions of Variables and Parameters

(a) Decision variables

Two kinds of variables, independent variables and dependent variables which are
inherent to problem are defined below.

(i) Independent variables

pi j �Allocation of patrolmen to road segment area i, shift j at a time period under
consideration, i=1, 2, …, m; j = 1, 2, …, n.

(ii) Dependent variables

In the environment of physical control of traffic, it is to be noted that the key aim
of deploying patrol units on city roadways is to reduce rate of accident, i.e. accident
rate reduction by performing two kinds of operations, physical contact (PC) and site
contact (SC), which are in essence separately involvedwith the problem to smoothing
the flow of traffic. Here, it is to be observed that, although the primary aim of traffic
operation is to deter rule violations and accidents, the operationalmodes of PCandSC
are different in the sense that PC means physical contact with motorists to issuing
warnings, citations, etc., against errant driving, personal intervention to check up
valid driving license and related documents, investigations and legal actions against
accidents and crime committed on the roadways, and others. Further, it is reactive in
nature and has a greater impact onmotorist behaviour aswell asmaintenance of peace
and harmony on roadways. On the other hand, SC means constant vigilance to assist
motorist, provide directions to a variety of traffic flows to most effective routes as
well as to maintain order and control of pedestrian flow. As amatter of fact, both kind
operations provide the underlying basis for intersectional traffic control mechanism,
and they would have to be considered individually for quantitative measures for
reduction of untoward road incidents.

Now, a set of variables that are concerned with various performance measuring
criteria and which is defined in terms of pi j is presented below.

ARi j Accident rate reduction (AR) contributed to road segment area i, shift j at a time
period

PCi j Number of PCs attained by a patrolman in road segment area i, shift j at a time
period

SCi j Number of SCs made by a patrolman in road segment area i, shift j at a time period

Ci j Cost of deploying a patrolman to road segment area i, shift j at a time period

E B Estimated budget to meet expenditure incurred for deployment of patrolmen at a
time period
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(b) Definition of intervals

The intervals that are inherently associatedwith objectives of the problem are defined
as follows.

[ARL
i j , ARU

i j ] Target interval for AR at road segment area i in all shifts of a time period

[PCL
i j , PCU

i j ] Target interval of number of PCs required at road- segment area i, shift j at a
time period

[SCL
i j , SCU

i j ] Target interval of the number of SCs required at road segment area i, shift j at a
time period

Now, interval-valued goals and system constraints are discussed in Sect. 4.

4 Descriptions of Goals and Constraints

The different kinds of interval-valued goals, which measure performances against
deployment of patrol personnel, are presented in Sect. 4.1.

4.1 Performance Measure Goals

The primary concern for effective management of traffic is to optimize law enforce-
ment criteria against deployment of police patrol personnel, which is a macro-level
study concerning quantitative measures for maintenance of traffic rules and regula-
tions. It is to be noted here that various operational objectives are involved therein
concerning enforcement of traffic laws and thereby controlling traffic during a time
period under consideration. Again, in a patrolmen deployment decision situation, the
three main objectives concerned with optimization problem are: increases in AR, PC
and SC, which are typically represented by performance measure functions towards
patrolmen deployment policy making and thereby deterring traffic rule violations
and untoward road incidents.

Here, it is worth mentioning that total elimination of untoward road incidents is
almost impossible in actual practice and often uncertain in nature owing to inexact
nature of traffic environment, particularly in rush hours traffic. Therefore, it can
be recognized that the managerial policy of accelerating the reduction of accident
rate, instead of minimizing accident rate directly, by enhancing the number of PCs
and SCs with the increase in number of patrolmen could be effective one in traffic
management horizon.
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Fig. 2 Graphical
representation of
performance measure
function

ijb

ijf

ijp

In context to the above, a multiplicative inverse relationship in parametric func-
tional form can be established as a straightforward and logical one to define various
criteria with regard tomeasuring performances against the deployment of patrol units
in course of modelling the problem.

Now, the general mathematical expression to represent performance measure
function is described in the following section.

4.1.1 Description of Performance Measure Function

The performance measure function which defines the relationship between pi j and
each of ARi j , PCi j and SCi j for controlling traffic can be algebraically presented as

fi j � bi j − ci j

pi j
, i � 1, 2, . . . , m; j � 1, 2, . . . , n, (13)

where fi j (≥0) represents performance measure function, that is fitted against
pi j (≥0), ∀i, j; bi j and ci j denote values of parameters.

It is to be followed that pi j is always bounded with integer restrictions. Let it be
assumed that li j ≤ pi j ≤ Li j , where li j and Li j designate lower and upper bounds,
respectively.

The graphical representation of performance measure function is depicted in
Fig. 2.

Now, the mathematical expression of fi j can be analytically explained as follows.
The graph shows that the given function is a strictly convex function, and fi j

is infeasible when pi j � 0. Therefore, fi j � 0 is taken into account as and when
pi j � 0 to avoid any situation of undefined functional value. Here, the least value of
fi j is obtained for the lowest value of pi j (>0). Again, it is to be observed that when
pi j increases, fi j also increases monotonically at a reduced rate.

As a matter of consequence, the functional expression would be parabolic in form
and that becomes asymptotic after a certain limiting value of pi j , i.e. beyond the
specified upper bound Li j . It may be mentioned that induction of both the limits
on pi j depends on physical characteristics of the problem in decision environment.
Therefore, itmay be said that the defined functional relationship in (13) is both logical
and anticipatory to measure the performances of various criteria against deployment
of patrolmen to control traffic.
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However, to define the functional relationship, two-point parameter estimation
method (Rosenblueth 1981) can be used to estimate the values of parameters bi j

and ci j , where some observational numeric data can be used to establish a set of
simultaneous equations by following the relationship in (13) and thereby fitting the
parametric nonlinear curve represented by fi j . The effective use of the defined curve
can easily be followed from the subsequent presentation of criteria as performance
measure functions associated with the proposed traffic control problem.

Now, to avoid operational error with fractional function, the linearization tech-
nique (Kornbluth and Steuer 1981) is addressed here to take linear formof a fractional
function.

4.1.2 Linearization of Performance Measure Function

In course of formulating IVGP model, since the mathematical expression in (13)
represents an objective function of the problem in inexact environment, it would be
considered as an interval-valued goal by introducing interval coefficient sets [bL

i j , bU
i j ]

and [cLi j , cUi j ] and assigning target interval [T L
i j , T U

i j ].
Then, the goal expression in (13) appears as

([bL
i j , bU

i j ] − [cLi j , cUi j ]

pi j
) � [T L

i j , T U
i j ] (14)

Now, in the process of linearization of the fractional expression in (14), it may
apparently seem that the traditional subtraction rule in transformation technique can
be used. But, it is not an effective one, because subtraction is not the reverse of
addition for operations on intervals. Here, interval arithmetic rules for subtraction
(Jiang et al. 2008) can be used to determine the equivalent linear planned interval
goal of the fractional expression in (14). The linearization process is described below.

• Linear transformation of fractional interval-valued function

For simplicity, let it be considered ti j � 1/pi j . Then, it is to be followed that
[cLi j , cUi j ]ti j �� [bL

i j − T U
i j , bU

i j − T L
i j ], because [bL

i j , bU
i j ] − [bL

i j − T U
i j , bU

i j − T L
i j ] �

[bL
i j − bU

i j + T L
i j , bU

i j − bL
i j + T U

i j ] �� [T L
i j , T U

i j ].
Here, the real perspective is such that the necessary condition for the existence

of solution would be w[B] ≥ w[T ]ti j , since w[B] − w[C]ti j � w[T ] with ti j ≥ 0,
where B, C and T are used to represent the successive intervals.

With regard to the above condition, the simultaneous linear equations are obtained
as

bL
i j − cUi j ti j � T L

i j and bU
i j − cLi j ti j � T U

i j (15)

Then, the planned interval goal to represent the solution space is obtained as
[cLi j , cUi j ] ti j � [bU

i j − T U
i j , bL

i j − T L
i j ]. As such, the specified target interval of the

defined goal in (14) is satisfied.
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Now, the equations in (15) in terms of pi j and in linear form are successively
derived as

(bL
i j − T L

i j )pi j � CU
i j and (b

U
i j − T U

i j )pi j � CL
i j (16)

Following the equations in (16), the equivalent linear planned interval goal of the
expressions in (14) is obtained as

[(bU
i j − T U

i j )pi j , (bL
i j − T L

i j )pi j ] � [cLi j , cUi j ] (17)

The effective use of the expression in (17) in interval form to represent perfor-
mance measure goals in traffic control system is discussed as follows.

(a) AR goals

In the horizon of deterring traffic accidents, it may bementioned that total elimination
of accidents on roadways is almost impossible owing to inexactness of different
human factors that actively play roles at turning points of flow of traffic, particularly
in a congested traffic situation. Therefore, the notion of accelerating AR, that is,
decrease in accident rate to the extent possible would be the main concern in traffic
management system.

Following the expression in (17), the algebraic structure of AR function takes the
form:

ARi j � Ri j − ri j

pi j
, i � 1, 2, . . . , m; j � 1, 2, . . . , n (18)

where Ri j and ri j (Ri j > ri j ) denote estimated parameters in precise sense.
Now, it is to be followed that the accurate functional relationship of accident

rate reduction versus patrolmen deployment cannot be represented by well-behaved
function owing to inexactness of measuring the characteristics of visual traffic, like
traffic volume, accident frequency, etc., and a change of prediction can be real-
ized over time. To overcome the difficulty, the interval parameter sets [RL

i j , RU
i j ] and

[rLi j , rUi j ] need be taken into account here, and conventional function approximation
method with the use of data fitting technique can be used to determine performance
measure function, which represents a close relationship between ARi j and pi j . In
the approximation process, certain pairwise data sets each consisting of accident rate
(Accident rate is quoted in terms of periodic traffic volumes with the numbers of
accidents) and patrol unit allocation obtained by going through certain predictable
mechanism/long-term actual data recorded through day-to-day observations within
existing structure are fitted there to estimate the parameter values of intervals numer-
ically and thereby obtaining approximate function to represent the system. In actual
practice, the approximated function assures smoothness of the corresponding curve
to fit data in the sense that the curve passes as closely as possible to data points
arising out of the reduction of accident rate in decision horizon.
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Fig. 3 An exemplar of patrol personnel on duty on a city road

The above observations show that the use of the notion of increasing reduction of
accident rates in road segment areas by deploying patrol units adequately is analyti-
cally more effective in the context of deterring untoward road incidents.

Then, following the expression in (14), accident rate reduction goal with interval
data can be presented as

[RL
i j , RU

i j ] − [rLi j , rUi j ]

pi j
� [ARL

i j , ARU
i j ], i � 1, 2, . . . , m; j � 1, 2, . . . , n (19)

where RU
i j > rUi j and RL

i j > rLi j are estimated parameters.
It is to be noted that the increase in number of patrolmen over a certain limit

could not provide any extra effect to determine AR, because there is a limitation on
vehicular capacity of each of the approach roads to a road segment area in city road
network.

An instant of Patrol personnel on duty is depicted in Fig. 3.
Following the expression in (17), the linear planned interval goal corresponding

to the interval goal expression in (19) can be obtained as

[(RU
i j − ARU

i j )pi j , (R
L
i j − ARL

i j )pi j ] � [rLi j , rUi j ], i � 1, 2, . . . , m; j � 1, 2, . . . , n
(20)

Now, different planned interval goals associatedwithAR are discussed as follows.

(i) Segmentwise AR goal

The AR at ith road segment area in all the shifts at a time period appears as
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Fig. 4 A sample of physical contact in a road segment area on a city road

⎡
⎣

n∑
j�1

{(RU
i j − ARU

i j )pi j },
n∑

j�1

{(RL
i j − ARL

i j )pi j }
⎤
⎦ �

n∑
j�1

[r L
i j , rU

i j ], i � 1, 2, . . . , m

(21)

(ii) Shiftwise AR goal

Similar to the expression in (21), AR of all the road segment areas during jth shift
takes the form:
[

m∑
i�1

{(RU
i j − ARU

i j )pi j },
m∑

i�1

{(RL
i j − ARL

i j )pi j }
]

�
m∑

i�1

[rLi j , rUi j ], j � 1, 2, . . . , n

(22)

Similarly, other goal equations can be mathematically presented as follows.

(b) PC goals

It is themost important part ofmeasuring performances against deployment of patrol-
men to deterring violations of traffic rules and accidents.

A sample of physical contact is displayed in Fig. 4.
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Here, in an analogous to the expression in (19), the expression of PCi j can be
defined as

[PL
i j , PU

i j ] − [qL
i j , qU

i j ]

pi j
� [PCL

i j , PCU
i j ], i � 1, 2, . . . , m; j � 1, 2, . . . , n (23)

where PU
i j > qU

i j and PL
i j > qL

i j are associated parameters.
Then, goal equations can be described as follows.

(i) Segmentwise PC goal

The frequency of conducting the number of PCs actually depends on traffic density
at a road segment area.

Therefore, segmentwise PC goal equation takes the form:
⎡
⎣

n∑
j�1

{(PU
i j − PCU

i j )pi j },
n∑

j�1

{(PL
i j − PCL

i j )pi j }
⎤
⎦ �

n∑
j�1

[qL
i j , qU

i j ], i � 1, 2, . . . , m

(24)

(ii) Shiftwise PC goal

In an analogous to the expression in (22), shiftwise PCgoal equation can be expressed
as
[

m∑
i�1

{(PU
i j − PCU

i j )pi j },
m∑

i�1

{(PL
i j − PCL

i j )pi j }
]

�
m∑

i�1

[qL
i j , qU

i j ], j � 1, 2, . . . , n

(25)

(c) SC goals

Similar to performing PC operation, SC operation is necessarily an integral part
of controlling traffic, which is mostly concerned with controlling vehicle speed,
diverging vehicles to different link roads to avoid traffic congestion and preventing
violations of general traffic rules by both motorists and pedestrians when crossover
takes place at a road segment area.

An example of sight-contact is depicted in Fig. 5.
In an analogous to PC goal expression in (23), the SC goal expression can be

defined as

[SL
i j , SU

i j ] − [sLi j , sUi j ]

pi j
� [SCL

i j , SCU
i j ], i � 1, 2, . . . , m; j � 1, 2, . . . , n (26)

where SU
i j > sUi j and SL

i j > sLi j designate associated parameters.
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Fig. 5 An example of sight-contact at a road segment on a city roadway

The goal equations associated with SC are discussed as follows.

(i) Segmentwise SC goal

To provide congenial traffic environment to road users, similar to the expression in
(24), segmentwise SC goal appears as
⎡
⎣

n∑
j�1

{(SU
i j − SCU

i j )pi j },
n∑

j�1

{(SL
i j − SCL

i j )pi j }
⎤
⎦ �

n∑
j�1

[sLi j , sUi j ], i � 1, 2, . . . , m

(27)

(ii) Shiftwise SC goal

Similar to the shiftwise PC goal presented in (25), here the goal equation appears as
[

m∑
i�1

{(SU
i j − SCU

i j )pi j },
m∑

i�1

{(SL
i j − SC L

i j )pi j }
]

�
m∑

i�1

[sLi j , sUi j ], j � 1, 2, . . . , n

(28)

Now, systemconstraints set associatedwith proposedmodel is defined in Sect. 4.2.



100 B. B. Pal

4.2 System Constraints

(a) Budget utilization constraint

An estimated budget would always be provided to meet day-to-day incurring cost
for deployment of patrol units in different time periods. It may be mentioned here
that cash expenditure is mainly involved with fuel charges and miscellaneous ones
for the use of patrol vehicles for frequent vigilance to nearby areas of road segments
to keep harmony on roadways. However, different cost factors Ci j per patrol unit at
different time period may arise and that depend upon accident frequency and traffic
load at various road segment areas. Since allocation of budget is always restricted in
nature, budget utilization constraint takes the form:

m∑
i�1

n∑
j�1

Ci j pi j ≤ E B (29)

(b) Patrolmen deployment constraint

As discussed previously, it may further be mentioned that certain limitations on
deployment of patrolmen are considered for any road segment area during any shift
of the time period, and that depend on traffic load on roadways.

The associated constraint is of the form:

li j ≤ pi j ≤ Li j , (30)

where li j and Li j are lower and upper limits, respectively.
Now, construction of flexible goal equations associated with the linear planned

interval goals defined above and thereby designing IVGPmodel is illustrated through
an example presented in Sect. 5.

5 An Illustrative Example

The traffic management problem of Traffic Police department of metro-city Kolkata
in India is selected. It may be noted that Kolkata is a densely populated city with
population density is approximately 24,500 per square kilometre. The total road
network is nearly 1850 kmwith a large number of road segments, and vehicle density
is about 814.80 per kilometre. It may be mentioned here that ever more increase in
number ofmotor vehicleswithout a scope of increase in road surface area has become
huge every day’s challenge to the road traffic control department of city Kolkata.

However, the main activity concerning management of traffic is to implement an
enforcement program which applies selective enforcement pressure to critical road
intersection areas at highest accident hours or rule violation expectancy. It may be
pointed out that trafficmovement is inherently inexact in nature and human behaviour
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is always unpredictable concerning violation of traffic rules in drivingmode, and that
increases with the decrease in traffic movement. In such a situation, modelling of the
problem in the framework of IVGP would be an effective one to express uncertainty
in making patrol units deployment decision.

The data of the proposed model were collected from the Annual Review Bulletin
(Annual Review Bulletin 2012–2016), Traffic Police Department of Kolkata, India.
The relevant information documented in the Bulletins of proceeding some years were
also collected for numerical estimation ofmodel parameters of the problem.Here, the
yearly overall performance is estimated by considering day-to-day performance. The
records show that most accident-prone road segment areas are: BT road, AJC road,
Strand road and EM Bypass. The road segment areas are successively numbered:
1, 2, 3 and 4. Again, most of the road accident cases take place during the time
interval 6.00 am–10.00 pm. Generally, the four shifts: 6.00 am–10.00 am, 10.00
am–2.00 pm, 2.00 pm–6.00 pm and 6.00 pm–10.00 pm can be sequentially arranged
to deploy patrolmen to road segment areas according to traffic density and accident
frequency. The shifts are sequentially numbered as 1, 2, 3 and 4, respectively.

The geographical representation of selected road segment areas of Kolkata is
shown in Fig. 6.

Then, in course of formulating model goals, conventional two-point parameter
estimation method (Rosenblueth 1981) is used andMicrosoft EXCEL2007-Window
is employed to estimate numerically the interval parameter sets associated with the
defined performance measure goals. The estimated values of the limits on intervals
are presented in Table 1.

Now, using the data presented in Table 1, the interval-valued goals can easily be
built by following the equations in (21), (22), (24), (25), (27) and (28).

Then, following the goal equations defined in (6), executable goal equations are
structured and presented in Sect. 5.1.

In the context of constructing goal equations, it is worthy to present here that
when segmentwise AR goal for the BT road (for i � 1) during all the four shifts
( j � 1, 2, . . . , 4) of the time period is considered, then interval-valued goal can be
algebraically presented in the form:

⎡
⎣

4∑
j�1

{(RU
i j − ARU

i j )pi j },
4∑

j�1

{(RL
i j − ARL

i j )pi j }
⎤
⎦ �

4∑
j�1

[r L
i j , rU

i j ], for i � 1

Here, two successive goal equations corresponding to the upper and lower values
of planned interval can be obtained by associating the lower and upper bounds,
respectively, of the defined target interval.

The goal equations appear as

(RL
11 − ARL

11)p11 + (RL
12 − ARL

12)p12 + (RL
13 − ARL

13)p13 + (RL
14 − ARL

14)p14 �
4∑

j�1

r L
1 j

and
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Fig. 6 Geographical representation of the selected road segment areas.Note The green line, yellow
line, red line and blue line indicate BT road, Stand road, AJC road and EM Bypass, respectively,
of the road network in Kolkata

(RU
11 − ARU

11)p11 + (RU
12 − ARU

12)p12 + (RU
13 − ARU

13)p13 + (RU
14 − ARU

14)p14 �
4∑

j�1

rU
1 j

Then, using the data in Table 1, the first two goal equations presented under ‘(i)
Segment-wise AR goals’ in Sect. 5.1 can be obtained.

In a sameway, the other goal equations associatedwith their linear interval-valued
goals can easily be constructed.

5.1 Construction of Model Goals

The three kinds of model goal equations that are concerned with AR, PC and SC
for measuring performances against deployment of patrol units can be obtained as
follows.
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(a) AR goals

(i) Segmentwise AR goals

0.10p11 + 0.16p12 + 0.16p13 + 0.16p14 + d−
1L − d+

1L � 1.70,

0.08p11 + 0.13p12 + 0.12p13 + 0.14p14 + d−
1U − d+

1U � 2.06;

0.13p21 + 0.20p22 + 0.12p23 + 0.49p24 + d−
2L − d+

2L � 2.02,

0.13p21 + 0.19p22 + 0.10p23 + 0.38p24 + d−
2U − d+

2U � 2.29;

0.51p31 + 0.11p32 + 0.58p33 + 0.13p34 + d−
3L − d+

3L � 1.93,

0.42p31 + 0.09p32 + 0.50p33 + 0.11p34 + d−
3U − d+

3U � 2.29;

0.09p41 + 0.26p42 + 0.10p43 + 0.58p44 + d−
4L − d+

4L � 1.67,

0.07p41 + 0.22p42 + 0.08p43 + 0.46p44 + d−
4U − d+

4U � 2.08 (31)

(ii) Shiftwise AR goals

0.10p11 + 0.13p21 + 0.51p31 + 0.09p41 + d−
5L − d+

5L � 1.76,

0.08p11 + 0.13p21 + 0.42p31 + 0.07p41 + d−
5U − d+

5U � 2.10;

0.16p12 + 0.21p22 + 0.11p32 + 0.26p42 + d−
6L − d+

6L � 1.87,

0.13p12 + 0.19p22 + 0.09p32 + 0.22p42 + d−
6U − d+

6U � 2.17;

0.16p13 + 0.12p23 + 0.56p33 + 0.10p43 + d−
7L − d+

7L � 1.77,

0.12p13 + 0.10p23 + 0.50p33 + 0.08p43 + d−
7U − d+

7U � 2.11;

0.16p14 + 0.49p24 + 0.13p34 + 0.58p44 + d−
8L − d+

8L � 1.92,

0.14p14 + 0.38p24 + 0.11p34 + 0.46p44 + d−
8U − d+

8U � 2.34 (32)

(b) PC goals

(i) Segmentwise PC goals

22p11 + 33p12 + 43p13 + 31p14 + d−
9L − d+

9L � 395,

19p11 + 29p12 + 41p13 + 29p14 + d−
9U − d+

9U � 442;

19p21 + 34p22 + 23p23 + 110p24 + d−
10L − d+

10L � 372,

16p21 + 28p22 + 21p23 + 105p24 + d−
10U − d+

10U � 425;

113p31 + 19p32 + 114p33 + 125p34 + d−
11L − d+

11L � 446,

105p31 + 17p32 + 107p33 + 124p34 + d−
11U − d+

11U � 479;

18p41 + 49p42 + 22p43 + 81p44 + d−
12L − d+

12L � 331,

15p41 + 43p42 + 19p43 + 69p44 + d−
12U − d+

12U � 381 (33)
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(ii) Shiftwise PC goals

22p11 + 19p21 + 133p31 + 18p41 + d−
13L − d+

13L � 331,

19p11 + 16p21 + 105p31 + 15p41 + d−
13U − d+

13U � 408;

33p12 + 34p22 + 19p32 + 49p42 + d−
14L − d+

14L � 350,

29p12 + 28p22 + 17p32 + 43p42 + d−
14U − d+

14U � 401;

43p13 + 23p23 + 114p33 + 22p43 + d−
15L − d+

15L � 436,

41p13 + 21p23 + 107p33 + 19p43 + d−
15U − d+

15U � 471;

31p14 + 110p24 + 125p34 + 81p44 + d−
16L − d+

16L � 398,

24p14 + 105p24 + 124p34 + 69p44 + d−
16U − d+

16U � 440 (34)

(c) SC Goals

(i) Segmentwise SC goals

35p11 + 74p12 + 51p13 + 51p14 + d−
17L − d+

17L � 686,

33p11 + 64p12 + 45p13 + 46p14 + d−
17U − d+

17U � 760;

35p21 + 69p22 + 39p23 + 205p24 + d−
18L − d+

18L � 706,

33p21 + 61p22 + 33p23 + 189p24 + d−
18U − d+

18U � 784;

170p31 + 38p32 + 127p33 + 37p34 + d−
19L − d+

19L � 626,

155p31 + 38p32 + 117p33 + 35p34 + d−
19U − d+

19U � 674;

33p41 + 90p42 + 23p43 + 175p44 + d−
20L − d+

20L � 579,

29p41 + 86p42 + 19p43 + 163p44 + d−
20U − d+

20U � 636 (35)

(ii) Shiftwise SC goals

35p11 + 35p21 + 170p31 + 33p41 + d−
21L − d+

21L � 632,

33p11 + 33p21 + 155p31 + 29p41 + d−
21U − d+

21U � 684;

74p12 + 69p22 + 38p32 + 90p42 + d−
22L − d+

22L � 731,

64p12 + 61p22 + 38p32 + 86p42 + d−
22U − d+

22U � 805;

51p13 + 39p23 + 127p33 + 23p43 + d−
23L − d+

23L � 518,

45p13 + 33p23 + 117p33 + 19p43 + d−
23U − d+

23U � 592;

51p14 + 205p24 + 37p34 + 175p44 + d−
24L − d+

24L � 712,

46p14 + 189p24 + 35p34 + 163p44 + d−
24U − d+

24U � 773 (36)

Now, two kinds of model constraints are discussed in Sect. 5.2.
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5.2 Description of Constraints

(a) Budget utilization

In the environment of utilization of budget, it may be mentioned that the cash expen-
diture associated with deployment per patrol unit per road segment area is approxi-
mately the same in all the shifts of the time period.

The data associated with utilization of budget are (C1 j , C2 j , C3 j , C4 j )�Rs. (220,
245, 200, 200), ( j � 1, 2, 3, 4), and the allocated budget�Rs. 13500.

The constraint appears as

220
4∑

j�1

p1 j + 245
4∑

j�1

p2 j + 200
4∑

j�1

p3 j + 200
4∑

j�1

p4 j ≤ 13500 (37)

(b) Variable limitation

In the context of smoothing traffic operation, it may be mentioned that there is no
extra effect when more than five patrolmen are deployed to a road segment area
during any shift of a time period.

Therefore, the limiting values of pi j are considered

1 ≤ pi j ≤ 5; i, j � 1, 2, 3, 4 (38)

Now, the executable IVGP model of the problem can be obtained by following
the expression in (8).

In model execution, four priority factors P1, P2, P3 and P4 are accounted for
incorporation to model goals concerning achievements of target levels. Again, three
priority structureswith changes in goal priorities aremade to execute themodel under
three Runs. Then, sensitivity analysis is conducted to obtain changes in solutions in
the premises of best solution identification.

The executable IVGP model under vth priority (v �1, 2, 3) structure is presented
below.

Determine {pi j ; i, j � 1, 2, 3, 4} so as to
Minimize Zv

and satisfy goal Eqs. (31)–(36),
subject to system constraints (37) and (38),
with

d−
r,kL + d+

r,kU ≤ Vr , r ∈ {1, 2, 3, 4}; k ∈ {1, 2, . . . , 24} (39)

The achievement functions Zv, (v � 1, 2, 3), defined for the Runs are presented
in Table 2.

Now, for simplicity and without loss of generality, λr � 0.5 is taken into account
and equal weight distribution is induced to model goals at each of the four priority
factors under the three Runs in course of executing the problem in (39).
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Table 2 Descriptions of achievement functions under three Runs

Run Priority achievement function (Zv)

1 Z1 �⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P1

(
λ1

6∑
k�1

w1,k (d
−
1,kL + d+

1,k U) + (1 − λ1)V1

)
, P2

(
λ2

12∑
k�7

w2,k (d
−
2,kL + d+

2,kU) + (1 − λ2)V2

)
,

P3

(
λ3

18∑
k�13

w3,k (d
−
3,kL + d+

3,k U) + (1 − λ3)V3

)
, P4

(
λ4

24∑
k�19

w4,k (d
−
4,kL + d+

4,kU) + (1 − λ4)V4

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

2 Z2 �⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P1

(
λ1

24∑
k�19

w1,k (d
−
1,kL + d+

1,kU) + (1 − λ1)V1

)
, P2

(
λ2

6∑
k�1

w2,k (d
−
2,kL + d+

2,kU) + (1 − λ2)V2

)
,

P3

(
λ3

12∑
k�7

w3,k (d
−
3,k L + d+

3,kU) + (1 − λ3)V3

)
, P4

(
λ4

18∑
k�13

w4,k (d
−
4,kL + d+

4,kU) + (1 − λ4)V4

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

3 Z3 �⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P1

(
λ1

12∑
k�7

w1,k (d
−
1,kL + d+

1,kU) + (1 − λ1)V1

)
, P2

(
λ2

6∑
k�1

w2,k (d
−
2,kL + d+

2,k U) + (1 − λ2)V2

)
,

P3

(
λ3

18∑
k�13

w3,k (d
−
3,kL + d+

3,kU) + (1 − λ3)V3

)
, P4

(
λ4

24∑
k�19

w4,k (d
−
4,kL + d+

4,kU) + (1 − λ4)V4

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

The GA program is adopted in Language C++. The model (variable size 190,
constraint size 200) is carried out in Pentium IV CPU with 2.66 GHz clock pulse
and 2 GB RAM. The generation numbers�300 are initially considered. The genetic
parameter values:pc=0.8,pm �0.08, and theP size�100 alongwith the chromosome
length�150 are taken into account to conduct the experiments under three Runs.

The decisions obtained under the Runs are displayed in Table 3.
Now, following the procedure and using the results in Table 3, the ideal solution

point is obtained as (5, 5, 4, 3, 5, 5, 5, 1, 2, 5, 1, 1, 5, 1, 5, 2).
Here, it is worthy to note that since the executable goal equations and system

constraints are linear in nature, the notion Euclidean distance might be used to find
distances of different solution achievements from the ideal one.

However,Euclidean distances of the solutions obtained under the successive Runs
from the ideal solution are obtained as D(1) � 4.2452, D(2) � 3.464, D(3) � 4.123.

The results indicate that the minimum distance corresponds to D(2). As such,
the priority structure under Run 2 would be the proper one to reach the ideal point
dependent solution.

The resulting solution is obtained at generation number�200 in the genetic search
process.

The resultant patrolmen deployment decision is presented in Table 4.
The patrolmen allocation is diagrammatically depicted in Fig. 7.
Now, the solution achievement under the proposed IVGP method is discussed as

follows:
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Table 4 Resultant patrolmen deployment decision under the proposed method

Road segment
area

Shiftwise deployment

6 am to 10 am 10 am to 2 pm 2 pm to 6 pm 6 pm to 10 pm

BT road 5 4 4 3

AJC road 5 4 5 1

Stand road 1 5 1 1

EM Bypass 5 1 2 2

Fig. 7 Diagrammatic
representation of patrolmen
allocation under IVGP
method

BT Road AJC Road Strand Road EM By-pass
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4 4 
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Patrolmen allocation under the proposed 
method

6 hrs to 10 hrs 10 hrs to 14 hrs 14 hrs to 18 hrs 18 hrs to 22 hrs

• The optimal decision for deploying patrol personnel to all road segment areas
during all shifts of the time period is 60.

• The success rate of AR during the time period is found to be 94.68%, i.e. under-
achievement from the estimated upper bound of target interval is only 5.32%.

• The achievements of goal values associated with the PC and SC functions against
the present patrolmen deployment strategy are also found to be achieved nearly
the upper bounds of their target intervals.

• It is to noted there that the utilization of the estimated budget during the time period
for regular expenditure�Rs. 10,750, i.e. underutilization of the total allocated
budget is 25.96%.

The results indicate that the proposed method is pragmatic one for obtaining
patrolmen deployment strategy in city road traffic control system.

Now, to illustrate that the method presented here is more effective, the model
solution is compared with solution obtained by employing conventional minsum
IVGP approach and presented in Sect. 5.3.
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Table 5 Patrolmen deployment decision under minsum IVGP method

Road segment
area

Shift-wise deployment

6 am to 10 am 10 am to 2 pm 2 pm to 6 pm 6 pm to 10 pm

BT road 5 4 4 3

AJC road 1 5 4 1

Stand road 2 3 1 1

EM Bypass 3 1 5 2

5.3 Performance Comparison

• Using minsum IVGP method

If no priority structure model goals are taken into account for achieving target values
of goals, i.e. if achievements of target levels of goals are considered on the basis
of their numerical weights of importance only, then the model in (8) is reasonably
transformed into the conventional minsum IVGP model studied by Inuiguchi and
Kume (1991) previously.

The executable minsum IVGP model appears as

Determine {pi j ; i, j � 1, 2, 3, 4} so as to

Minimize Z ′ � {λ
24∑

k�1

wk(d
−
kL + d+

kU ) + (1 − λ)V }, 0 < λ < 1

and satisfy goal Eqs. (31)–(36),
subject to system constraints (37) and (38),
with

d−
kL + d+

kU ≤ V, k � 1, 2, . . . , 24 (40)

where V � [
24

Max
k�1

(d−
kL + d+

kU)], and where wk(>0), ∀k, with
24∑

k�1
wk � 1.

The resulting solution of the model in (40) obtained by taking λ�0.5 and intro-
ducing equal weight (wk � 1

24 , k � 1, 2, . . . , 24) to the model goals in the same
premises of making decision is presented in Table 5.

The diagrammatic representations of patrolmen allocation under minsum IVGP
method are depicted in Fig. 8.

It is to be noted that the achievement of AR is 91.56% (i.e. underachievement of
the success rate of AR is 8.44%), which is lower than the solution achievement made
for the use of the proposed method.

Again, it may be mentioned that although the goal achievements concerned with
PC and SC operations on traffic are found to be within the ranges of their respective



Interval-Valued Goal Programming Method to Solve Patrol … 111

Fig. 8 Graphical
representation of patrolmen
allocation under minsum
IVGP method
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target intervals, the achieved values are lower than that obtained under the proposed
method. Further, underutilization of allocated budget is found to be 32.48%, i.e.
utilization of budget is lower than that incurred in the case of using priority-based
IVGP approach.
Remark: The above discussion and solution comparison show that the proposed
method is more effective than the conventional one concerning the deployment of
patrol manpower properly to control metro-traffic manually in traffic management
system.

6 Conclusions and Future Scope

The main merit of employing the method presented here is that interval character-
istics regarding attainment of objective values are preserved there in all possible
instances of executing the model and interval data is communicated directly to the
optimization problemwithout involving any distributional information unlike SP and
FP methods. Further, since the deployment of patrolmen is based upon subjective
judgments of accident frequency and traffic density statistics, priority-based IVGP
method is more advantageous, because DM can effectively generate an alternative
deployment decision with a change of priority structure as and when the situation
arises in a decision situation.

However, in some practical decision environments, imprecision on the bounds of
intervals, i.e. fuzziness of bounded intervals would have to be considered to explore
search space for achievement of possible solution in inexact environment. Such an
interval representation is called fuzzy interval (Dubois and Prade 2000), and it would
have to be viewed as the extension of conceptual frame of conventional interval. It
can be conceived that fuzzy interval convey more information than a usual crisp
interval, when the source of information is human being and hence subjective one.
The constructive solution procedure for solving such problems in the area ofMODM
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is yet to circulate widely in literature. It is probably one of the future studies in
decision-making arena.

Again, hybridizationof fuzzy interval andGPalongwith implementationof hybrid
evolutionary optimization techniques (Grosan and Abraham 2007) towards promot-
ing traffic control performances and also improving quality of solutions to other
MODM problems is an interesting alley of investigation in the avenue of optimiza-
tion.

Finally, it may be mentioned that micro-level study (Shi et al. 2008) pertaining
to qualitative measures for road infrastructural development in contrast to patrolmen
deployment strategy is also a sensitive issue in road traffic management system.
Therefore, a joint venture for simultaneous optimization of both the aspects, traffic
organization and patrolmen deployment, might be considered in future to satisfy the
needs of traffic demand in urban society and also to control traffic flow on day-to-day
basis for healthy road environment in the current inexactness of MODM world.
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Multi-objective Optimization to Improve
Robustness in Networks

R. Chulaka Gunasekara, Chilukuri K. Mohan and Kishan Mehrotra

1 Introduction

There exists no unique definition for network robustness. Multiple robustness
measures have been introduced to evaluate the capability of a network to withstand
failures or attacks. All such measures aim to capture features such as
(1) connectivity—robust networks are expected to remain connected even when a set
of nodes or edges fail during targeted or natural node/edge failures, (2) distance—
distances between the nodes of robust networks should remain minimally affected
during node/edge failures, and (3) network properties—the network properties such
as degree distribution and distance distribution should change very little when
nodes/edges fail. In this section, we discuss three categories of network robustness
measures that have been proposed and are widely used in the literature.

1.1 Robustness Measures Based on the Eigenvalues
of the Adjacency Matrix

Let A be the adjacency matrix of the network G = (V, E) with n nodes, and let
λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn be the set of eigenvalues of A.

1. Spectral radius (SR): The largest or the principal eigenvalue, λ1, is called the
spectral radius. This has been used as ameasure of quantifying network robustness
inmultiple studies (Chan andAkoglu 2016;Le et al. 2015;Tong et al. 2012, 2010).
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SR is inversely proportional to the epidemic threshold of a network (Chakrabarti
et al. 2008).

2. Spectral gap (SG): The difference between the largest and the second largest
eigenvalues, (λ1 − λ2), is called the spectral gap. This has also been used to mea-
sure the robustness of the graph against attacks (Chan andAkoglu 2016;Malliaros
et al. 2012; Yazdani et al. 2011). Spectral gap is related to the expansion properties
of the graph; networks with good expansion properties provide excellent com-
munication platforms due to the absence of bottlenecks (Watanabe and Masuda
2010).

3. Natural connectivity (NC): Natural connectivity characterizes the redundancy of
alternative paths in the network by quantifying the weighted number of closed
walks of all lengths (Chan et al. 2014). This is an important measure because
redundancy of routes between the nodes ensures that communication between
nodes remains possible during an attack to the network. Denoted by λ̄, natural
connectivity is defined as follows:

λ̄ = ln

⎛
⎝1

n

n∑
j=1

eλ j

⎞
⎠ (1)

and is widely used as a measure of robustness in complex networks (Chan and
Akoglu 2016; Jun et al. 2010; Chan et al. 2014). A network created by optimizing
the natural connectivity is found to exhibit a roughly “eggplant-like” topology,
where there is a cluster of high-degree nodes at the head and other low-degree
nodes are scattered across the body of the “eggplant” (Peng and Wu 2016).

1.2 Measures Based on the Eigenvalues of the Laplacian
Matrix

The topology of a network G with n nodes can also be represented by the n × n
Laplacian matrix L = D − A, where D = diag(du) and du is the degree of node
u. Let the set of eigenvalues ofL be μ1 = 0 ≤ μ2 ≤ μ3 ≤ · · · ≤ μn . These eigen-
values are used to define the following measures:

1. Algebraic connectivity (AC): The second smallest eigenvalue of the Laplacian
matrix, (μ2) is also known as algebraic connectivity. The algebraic connectivity is
0 if the network is disconnected and 0 < μ2 ≤ n when the network is connected
(Fiedler 1973). The larger the AC, the more difficult it is to cut a graph into
disconnected components (Alenazi and Sterbenz 2015); hence, this has been
used by many studies to determine the robustness of networks (Jamakovic and
Mieghem 2008; Sydney et al. 2013; Chan and Akoglu 2016).

2. Normalized effective resistance (nER): Introduced in (Ellens 2011), nER is
defined as
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nER = n − 1(
n

∑n

i=2

1

μi

) . (2)

The usefulness of this measure can be seen when the network is viewed as an
electrical circuit with an edge representing a resistor with electrical conductance
equal to the edge weight. The effective resistance (Rvu) between a pair of nodes
u and v is small when there are many paths between nodes u and v with high
conductance edges, and Ruv is large when there are few paths, with lower con-
ductance, between nodes u and v (Ghosh et al. 2008). Effective resistance is equal
to the sum of the (inverse) nonzero Laplacian eigenvalues and has been used in
multiple studies to define network robustness (Chan and Akoglu 2016; Ellens
2011). “Network criticality” is a similar robustness metric defined to capture the
effect of environmental changes such as traffic variation and topology changes in
networks (Bigdeli et al. 2009; Tizghadam and Leon-Garcia 2010).

1.3 Measures Based on Other Properties

In this section, we introduce the other measures that are defined to identify the
network robustness.

1. Harmonic diameter (HD): This robustness measure is defined as follows:

HD(G) = n(n − 1)(∑
u �=v∈V

1

d(u, v)

) , (3)

where n is the number of nodes in the network and d(u, v) is the shortest distance
between the nodes u and v (Marchiori and Latora 2000). HD has been used to
evaluate network robustness inmultiple studies (Boldi and Rosa 2013; Boldi et al.
2011). This measure is analogous to the average distance between all the nodes,
but better because this can also be applied to disconnected networks. For ease of
comparison with other measures, we use the reciprocal of the harmonic diameter
(rHD) in this study, which increases with robustness.

2. Size of the largest connected component (LCC): This measure identifies the size
of the largest component during all possible malicious attacks. LCC is defined as
follows:

R = 1

n + 1

n∑
Q=0

s(Q), (4)

where n is the number of nodes in the network and s(Q) is the fraction of nodes
in the largest connected cluster after attacking Q nodes. LCC was proposed in
(Herrmann et al. 2011) and is widely used (Schneider et al. 2011; Tanizawa et al.
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2012; Wu and Holme 2011; Zeng and Liu 2012) as a robustness measure in
networks. The normalization factor 1

n+1 ensures that the robustness of networks
with different sizes can be compared. The attacks often consist of a certain fraction
of node attacks, and after the attack, the measure identifies the number of nodes
in the largest connected component. It has been found that the robust networks
that optimize this measure form a unique “onion-like” structure consisting of a
core of highly connected nodes hierarchically surrounded by rings of nodes with
decreasing degree (Herrmann et al. 2011).

3. Clustering coefficient (CC): The abundance of triangles in the network is identified
by the clustering coefficient (Watts and Strogatz 1998). The clustering coefficient
of a network is calculated based on the local clustering coefficient of each node.
The clustering coefficient of the node u is defined as

CCu = λG(u)

τG(u)
, (5)

where λG(u) is the number of triangles connected to node u and τG(u) is the
number of triples centered around node u. A triple centered around node u is a
set of two edges connected to node u. The overall clustering coefficient of the
network is calculated as the average CCu . A high clustering coefficient indicates
high robustness, because the number of alternative paths grows with the number
of triangles (Ellens and Kooij 2013).

In addition to the aforementioned methods, more robustness measures have also
been proposed in literature, e.g., vertex/edge connectivity, network diameter, average
distance between the nodes, vertex/edge betweenness, and number of spanning trees.
These measures are excluded in this study due to poor performance in some trivial
networks or high computational cost needed for real-world large networks (Ellens
and Kooij 2013).

In the following section, we discuss some of the properties of the aforementioned
network robustness measures.

2 Properties of Network Robustness Measures

In this section, the aforementioned robustness measures are compared using the
following approaches:

1. Robustness values of a few elementary networks are calculated and compared.
2. The similarities and dissimilarities of the robustnessmeasures are compared using

the correlation of these measures for a set of generated networks that follow the
power law degree distribution.
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2.1 Robustness of Elementary Networks

Six elementary networks that we considered are shown in Fig. 1. The networks are
ordered by increasing robustness intuitively, i.e., we believe that the network Fig. 1a is
the least robust, the network Fig. 1b is more robust than network Fig. 1a, the network
Fig. 1c is more robust than Fig. 1b, etc., and the network Fig. 1f is the most robust.

Table1 shows the robustness values obtained by each robustness measure dis-
cussed in Sect. 1 for each of the six elementary networks. The summary of the results
is as follows:

1. NC and nER order the networks in the expected order.
2. rHD and AC also order the networks correctly, but fail to distinguish between

some of the elementary networks.
3. CC gives a value of 0 to all networks with no triangles and evaluates the empty

network to be as robust as the grid network.
4. LCC, SR, and SG order the networks differently than our intuition.
5. LCC gives the same robustness value to both the ring and grid networks, defying

intuition. In addition, the star network gets a lowLCCvalue than the path network.
6. SR and SG identify the networks which enable fast communication as robust

networks; thus, the star network gets a high robustness value.
7. All the six robustness measures identify the empty network as the least robust

network and the fully connected network as the most robust.

(a) Empty Network (b) Path Network (c) Star Network

(d) Ring Network (e) Grid Network (f) Fully connected
Network

Fig. 1 Six elementary networks considered for robustness calculation; the networks are arranged
in the increasing order of robustness assessed intuitively



120 R. C. Gunasekara et al.

Table 1 Robustness values of the elementary networks

Network rHD LCC CC SR SG NC AC nER

Empty 0 0 0 0 0 0 0 0

Path 0.58 0.33 0 1.80 0.55 0.71 0.27 0.14

Star 0.66 0.17 0 2.24 2.24 0.81 1.0 0.20

Ring 0.66 0.37 0 2.0 1.0 0.83 1.0 0.28

Grid 0.70 0.37 0 2.41 1.41 1.01 1.0 0.35

Full 1.00 0.50 1.0 5.0 6.0 3.22 6.0 1.0

2.2 Correlation of Robustness Measures

In this section, we study similarities in the overall behavior of the robustness mea-
sures that were discussed in Sect. 1, using Pearson’s correlation coefficient. A high
correlation between two measures suggests that a network that shows high robust-
ness in terms of one measure would also show high robustness in terms of the other
measures as well.

To evaluate the correlations among the robustness measures, 100 scale-free net-
works were generated with number of nodes in range (500–5000) and with power
law parameters in range (2.0–3.0). For each of the generated networks, the robustness
values were calculated. Then, the Pearson product–moment correlation coefficient
was calculated between the robustness measures. The correlation coefficients are
shown in Table2 and the associated scatter plots in Fig. 2.1

According to the results, some of the robustness measures are highly correlated
with each other. Some of these highly correlated pairs include (CC, NC), (SG, NC),
and (SG, CC) (p < 0.001). Also, the three robustness measures that are calculated

Table 2 Correlations of the robustness measures

rHD LCC CC SR SG NC AC nER

rHD 1

LCC −0.41 1

CC 0.90 −0.61 1

SR 0.88 −0.65 0.88 1

SG 0.89 −0.58 0.98 0.87 1

NC 0.90 −0.62 0.99 0.89 0.98 1

AC 0.86 −0.34 0.75 0.86 0.78 0.76 1

nER 0.37 0.32 0.02 0.28 0.09 0.04 0.69 1

1Similar results were obtained when the experiments were carried out for 100 generated scale-free
networks by: (1) fixing the number of nodes and changing power law parameter in the aforemen-
tioned range, and (2) changing the number of nodes in the aforementioned range and fixing the
power law parameter.



Multi-objective Optimization to Improve Robustness in Networks 121

(a) CC vs NC (b) SG vs NC

(c) SG vs CC (d) CC vs nER

(e) NC vs nER (f) SG vs nER

Fig. 2 Scatter plots between the robustness measures

using the eigenvalues of the adjacency matrix (spectral radius, spectral gap, and
natural connectivity) are highly correlated.

Some robustness measures are highly uncorrelated. For example, the pairs (CC,
nER), (NC, nER), and (SG, nER) show this behavior. The scatter plots of some of
the robustness measure pairs are shown in Fig. 2d–f.

Interestingly, LCC negatively correlates with most other robustness measures
(except for nER). The negative correlation suggests that when the robustness of the
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network is increased in terms of LCC, the robustness in terms of other measures will
not increase. The observed negative correlation can be explained as follows. Consider
improving the LCC measure. As LCC is focused on keeping most of the nodes in
a single connected component during node attacks made in the order of degree
centrality, new edges (that get added when optimizing LCC) connect nodes with low
degree and in different communities in the network. However, such edge addition
decreases CC (and other measures), because although the number of edges increases,
the number of triangles in the network remains almost unchanged. The number
of triangles is less likely to increase, because (1) the number of edges connecting
different communities is small, and (2) the nodes to which the edges are added have
low degrees.

3 Multi-objective Definition of Robustness

Multiple studies have focused on improving the robustness of a network by optimiz-
ing a single robustness measure (Wang and Mieghem 2008; Watanabe and Masuda
2010; Ghosh et al. 2008; Sydney et al. 2013; Chan et al. 2014; Tong et al. 2012;
Chan and Akoglu 2016). But the low correlation among some of the robustness mea-
sures (shown in Sect. 2.2) suggests that when a single measure is optimized, it does
not guarantee the improvement of robustness in terms of other measures. We argue
that edges should be added to a network in a manner such that multiple robustness
measures improve. In this section, we propose a methodology to improve multiple
robustness measures when new edges are added to the network.

We select three uncorrelated robustness measures (largest connected component
(LCC), spectral gap (SG), and normalized effective resistance (nER)), one each
from the three categories of robustness measures discussed in Sect. 1. Our goal is to
improve all three of these measures in the network by edge addition. We formulate
the problem as a multi-objective maximization problem: Find the set of k edges that
increase all three robustness measures the most.

Many methods exist to solve multi-objective optimization problems. The most
widely used evolutionary algorithm for multi-objective optimization is the non-
dominated sorting genetic algorithm-II (NSGA-II) (Deb et al. 2000), which is an
improved version of NSGA (Srinivas and Deb 1994). We use NSGA-II as the multi-
objective optimization algorithm in this study, since it has been shown to exhibit
superior performance in multiple applications.

We represent the network as a bit string, in which each possible edge that can be
added to the network is assigned an index. The number of bits in the bit string is
equal to the number of possible edges (m) that can be added to the network. Initially,
before any extra edge is added to the network, the bit string consists of all 0s. When
a certain edge is selected to be added to the network, the bit value corresponding to
the index of the selected edge will be changed to 1.

The key steps of the NSGA-II algorithm to identify the k edges to add to the
network are as follows:
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1. Initial population—In each individual (bit string) in the initial population, k ran-
dom bits are assigned the value of 1 to represent that they are selected to be added
to the network, and the remaining (m − k) bits are assigned 0, where m is the
total number of edges that can be added to the network.

2. Fitness—To calculate the fitness value of each individual, we first add the selected
set of k edges to the initial network. Then, the three robustness measures (LCC,
SG, and nER) are calculated for the amended network.

3. Crossover—One-point crossover is applied to a fraction Pc of selected individuals
to generate offspring.2

4. Mutation—Mutation is performed with probability Pm by inverting two bits of
different values.

5. Repair—Let the number of bits assigned the value of 1 after crossover and muta-
tion be nb.

i If nb > k : (nb − k), bits with value 1 are randomly selected and assigned the
value 0.

ii If nb < k : (k − nb), bits with value 0 are randomly selected and assigned the
value 1.

The number of solutions obtained depends on the network on which the optimiza-
tion is performed and the objectives selected.

3.1 Fast Calculation of Robustness Measures

The computation of the LCC, SG, and nER is costly for large networks; we use
approximation techniques and the results of matrix perturbation theory for fast cal-
culation of these robustness measures.

1. Size of the largest connected component (LCC)
Computing LCC requires calculation of the fraction of nodes in the largest con-
nected cluster after attacking nodes in the order of degree centrality. In many
real networks, the degree distribution follows the power law. Hence, the attacks
made on the high-degree nodes have the biggest impact on the network. We
approximate LCC by attacking only the top l%(� n) nodes with the highest
degree centrality. For 100 generated scale-free networks with number of nodes in
range [500, 5000] and scale-free parameter in range [2.0, 3.0], the LCCcalculated
by removing all n nodes in the network has a correlation of 0.87 (p < 0.0001)
with the LCC approximated by removing only the top 20% degree centrality
nodes. This approximation reduces the running time of LCC by 79.9% on aver-
age. Hence, in our experiments we approximate the LCC by attacking the top
20% nodes in the network in the order of degree centrality.

2We have experimented with other crossover operators such as two-point crossover, and the results
were similar compared to the one-point crossover. Hence, the results with one-point crossover are
reported here.
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2. Spectral gap (SG)
For a perturbation �A in the adjacency matrix A of the original network G, the
new eigenvalues and eigenvectors of the new network G ′ can be approximated
(Stewart and Sun 1990; Chan and Akoglu 2016). The update to the i th eigenvalue
can be written as�λi ≈ xi T�Axi , and the approximated change in the i th eigen-

vector is�xi ≈
n∑

j=1, j �=i

(
xTj �Axi

λi − λ j
x j

)
. Thus, the change in SG when a new edge

(u, v) is added can be approximated by

xT1 �Ax1 − xT2 �Ax2 = 2(x1ux1v − x2ux2v),

where x1 and x2 are the eigenvectors corresponding to two largest eigenvalues λ1

and λ2, and xi j denotes the j th element of the i th eigenvector. Since we avoid
calculating all the eigenvalues of a large adjacency matrix, the running time is
substantially reduced.

3. Normalized effective resistance (nER)
Effective resistance is equal to the sum of reciprocals of the nonzero Lapla-
cian eigenvalues and can be approximated by the first l − 1 nonzero eigenvalues
instead of all n − 1 of them (Ellens 2011). According to matrix perturbation
theory, when an edge (u, v) is added to a network, the change in its Laplacian
eigenvalue μt can be written as �μt = vT

t �L vt = (vtu − vtv)
2, where μt is the

t th eigenvalue of the Laplacian matrixL , vt is the corresponding eigenvector of
μt and vt i corresponds to the i th element of the t th eigenvector. Using this eigen-
value approximation and matrix perturbation theory, the change in nER when an
edge (u, v) is added can be written as

�nER ≈ l − 1

n( 1
μ2+�μ2

+ 1
μ3+�μ3

+ · · · + 1
μl+�μl

)
− nER

�nER ≈ l − 1

n

(
l∑

i=2

1

μi + (viu − viv)

)−1

.

4 Selecting Solutions from Multi-objective Optimization

Multi-objective optimization identifies multiple sets of solutions which fall on the
Pareto front. One issue with regard to O-objective optimization is that we obtain a
large number of solutions when the value of O is high and the objectives are uncor-
related (Garza-Fabre et al. 2009; Farina and Amato 2002; Bentley and Wakefield
1998). But the decision-makers who use multi-objective optimization in their appli-
cations usually require one or two solutions to be used in their applications. Multiple
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methods have been proposed in literature to prune the Pareto optimal set of solutions.
This section discusses some of the proposed methods.

The methods proposed to select solutions from the Pareto optimal set can be
divided into three categories.

4.1 Ranking Methods

In ranking methods, after executing the multi-objective optimization algorithm, the
set of Pareto optimal solutions obtained are ranked according to a user-specified
criterion. Once the ranking is done, the decision-maker can pick the solutions that
are best ranked for the desired applications. Some of the proposed ranking methods
include the following:

1. Weighted sum approach (WS):
This is the most widely used approach for pruning solutions from the Pareto
optimal set. For an O-objective optimization problem, the weighted sum rank of
the Pareto optimal solution Xi is given by

WS(Xi ) =
O∑
j=1

w j O j (Xi ), (6)

where w j is the weight assigned to the objective Oj . The weight assignment to
the objectives is domain-dependent, and the decision-maker should determine
the appropriate weight assignment to the objectives. The result of the ranking
depends on theweight assignment.Hence, in applicationswhere the properweight
assignment is unknown, the results of theweighted sumapproach are questionable
(Garza-Fabre et al. 2009).

2. Average ranking (AR):
This method uses the average of the ranking positions of a solution Xi given by
all the objective functions and is calculated as follows:

AR(Xi ) =
∑O

j=1
R j (Xi )

O
, (7)

where R j (Xi ) is the rank given to the solution Xi by the objective Oj .
3. Maximum rank (MR):

This approach does not assign a rank to each of the solutions in Pareto set. The
main steps of the MR are as follows:

i. Solutions in the Pareto set are ranked separately for each objective.
ii. The best ranked k points from each objective are extracted.
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As this approach selects the best solutions for each objective independently, this
tends to extract solutions from extreme points in the Pareto surface (Wismans
et al. 2014).

4.2 Pruning Methods

The pruning methods proposed in the literature can be divided into two categories.

1. Clustering:
The clustering method assumes that the output of the pruning process should be
the distinct solutions in the objective space. The number of clusters can either be
determined by the decision-maker or can be optimized according to the Pareto set
of solutions. From each cluster, one representative solution is chosen, usually the
solution nearest to the center of the cluster. The number of clusters is optimized
using the average silhouette width (Rousseeuw 1987). For a solution Xi , this
approach calculates the average distance a(Xi ) to all other points in its cluster
and the average distance b(Xi ) to all other points in the nearest neighbor cluster.

Silhouette(Xi ) = b(Xi ) − a(Xi )

max[a(Xi ), b(Xi )] (8)

A silhouette value close to 1 indicates that the solution was assigned to an appro-
priate cluster. If the silhouette value is close to 0, it means that the solution could
be assigned to another cluster; and if it is close to −1, the solution is considered
to be misclassified. The overall silhouette width is the average of the silhouette
values of all solutions. The largest silhouette width indicates the best clustering,
and therefore, the number of clusters associated with this best clustering is taken
as the optimal number of clusters. The following are two approaches used to
select the representative points from each cluster:

a. Cluster centers (CC):
In this method, after the clustering algorithm is executed, the centroids of the
clusters are chosen as the representative points from each cluster. In (Chaud-
hari et al. 2010), k-means (Hartigan and Wong 1979) is used as the clustering
algorithm, and the cluster centroids are picked as the representative points.

b. Points closest to the ideal point (IP):
The main steps of this approach are as follows (Cheikh et al. 2010):
i. For each cluster, the ideal point is identified. The ideal point of a subset of

points is the virtual point that has a minimal evaluation for each objective.
ii. Then, for each point in each cluster, the distance to the ideal point of the

cluster is calculated.
iii. From each cluster, the point with the smallest distance to the ideal point

is selected.
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However, clustering methods do not necessarily guarantee an even spread of
solutions, as they are sensitive to the presence of outliers. Also, in cases where
the Pareto optimal set does not form any clusters, identifying solutions based on
clustering is not ideal.

2. Angle-based pruning:
In this method, the geometric angle between each pair of solutions is calculated,
for each objective. A threshold angle is defined for each objective, in order to
identify the subset of desirable solutions. The idea is to remove the solutions that
only improve some objectives marginally while significantly worsening other
objectives (Sudeng and Wattanapongsakorn 2015). For a pair of non-dominating
solutions, the geometric angle (denoted by θn) is defined as follows, where n is the
nth objective, N is the number of objective functions and � fm is the difference
between the mth objective values of the two non-dominating solutions.

θn = tan−1

[√∑N
m=1,m �=n

(
� fm

)2
� fn

]
(9)

A threshold angle (δ) is defined as the reference angle which is compared to the
calculated geometric angle between the pair of solutions. For any pair of solutions
(i, j), if θn is smaller than the threshold angle, the solution j will be discarded,
and the algorithm will keep only solution i . This method may identify the knee
points (Bechikh et al. 2011) in the Pareto set.

4.3 Subset Optimality

Each point in the Pareto optimal set is non-dominated by any other point in the
same Pareto optimal set with regard to theO objectives on which the multi-objective
optimization algorithm is run. But, when a subset of the O objectives is considered,
someof the points in the Pareto optimal setmay dominate other points. Somemethods
have been proposed to use a subset of O (subset optimality) to reduce the number of
solutions in the Pareto optimal set. Some such methods include:

1. Favor relation (FR):
A solution Xi is favored over the solution X j if and only if Xi is better than X j

on more objectives (Drechsler et al. 2001; Corne and Knowles 2007). Depending
on the favor relation between the solutions of the Pareto set, the following steps
are followed to create a directed network and prune the Pareto set:

i. If Xi favored over X j , an edge from the node Xi to X j is created.
ii. The favor relation may not be transitive; thus, the network may have cycles.

Collapse all the nodes in each cycle to a single pseudo-node; each node inside
a pseudo-node is not better than another in the same cycle.

iii. The nodes with in_degree = 0 are pruned.
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As cycle identification is computationally expensive, there are computational
limitations in applying this algorithm to Pareto sets that create large directed
networks.

2. K-optimality (KO):
The concept of k-optimalitywas introduced in (Pierro 2006) andwas used to prune
solutions from the Pareto optimal solutions. A point Xi in a set of non-dominated
O objective points is efficient with order k, where 1 < k < O , if and only if Xi

is non-dominated in every k objective subset of the O objectives. The points that
show the highest order k-optimality are selected from the Pareto optimal set.

One issue with the all aforementioned methods for pruning Pareto optimal solu-
tions is that these algorithms need to be run after O objective optimization is com-
pleted. Hence, the decision-makers have to incurmore computational cost in addition
to the computational cost of O objective optimization algorithm. In the following
subsection, we propose an algorithm which not only reduces the number of solutions
in the Pareto set but also reduces the computational cost compared to previously
proposed algorithms.

5 Leave-k-out Approach for Multi-objective Optimization

The leave-k-out approach for an O objective optimization problem is described
below:

i. Select (O − k) objectives from the set of objectives and run the multi-objective
optimization algorithm.

ii. Obtain thePareto set, and evaluate each solution in thePareto set on the objectives
that were left out.

iii. Select the solutions in the Pareto set which are non-dominated on the evaluation
of the objectives which were left out.

Compared to the other approaches proposed, the Leave-k-out approach has the
following advantages:

1. A high percentage of solutions obtained constitute a subset of the Pareto surface
obtained by O objective optimization.

2. The running time of the optimization reduces, as (O − k) objective optimiza-
tion requires less computational effort than the original O objective optimization
problem.

3. This method does not require any additional processing (such as ranking and
clustering) after the Pareto set identification, unlike the other approaches.
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6 Experimental Results

We use four commonly used real-world network datasets in our experiments. A brief
description of the datasets is provided in Table3.

6.1 Improving Robustness by Edge Addition

As discussed before, the Pareto set usually contains a large number of solutions. For
example, in identifying 10 new edges to add to the EuroRoad network tomaximize all
three objectives, the Pareto surface contained 91 solutions, i.e., 91 sets of 10 edges.
In order to choose a single solution, we use the leave-k-out approach discussed in
Sect. 5.

For each case of optimization, we provide four solutions. The first value corre-
sponds to the average of all solutions in the Pareto surface. The other three values
correspond to the solutions obtained by the leave-k-out approach for k = 1 (leave-
one-out approach), as described below:

1. Oave—It represents the average value obtained by all the solutions in the Pareto
front of the three objective optimizations.

2. (O − 1)nER—In this case, we first perform the optimization on SG and LCC.
Then from the non-dominated solutions obtained, the solution that maximizes
nER is selected.

3. (O − 1)LCC—The initial optimization is performed on SG and nER. Then
from the non-dominated solutions obtained, the solution that maximizes LCC
is selected.

Table 3 Statistics and description of the networks used

Network Nodes Edges Description

EuroRoada 1174 1417 International road network in Europe. The nodes
represent cities, and an edge indicates cities
connected by a road

US airportsb 1574 28236 The network of flights between the US airports in
2010. Each edge represents a connection from one
airport to another

OpenFlightsc 2939 30501 The network of flights between airports in the
world. An edge represents a flight from one airport
to another

US power gridd 4941 6594 The power grid of the Western States of the US. A
node denotes either a generator or a power station,
and an edge represents a power line

aSource http://konect.uni-koblenz.de/networks/subelj_euroroad
bSource http://konect.uni-koblenz.de/networks/opsahl-usairport
cSource http://konect.uni-koblenz.de/networks/opsahl-openflightsd
dSource http://konect.uni-koblenz.de/networks/opsahl-powergrid

http://konect.uni-koblenz.de/networks/subelj_euroroad
http://konect.uni-koblenz.de/networks/opsahl-usairport
http://konect.uni-koblenz.de/networks/opsahl-openflightsd
http://konect.uni-koblenz.de/networks/opsahl-powergrid
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4. (O − 1)SG—First, the optimization on LCC and nER is performed. Then from
the non-dominated solutions obtained, the solution that maximizes SG is selected.

We use the solutions obtained by multiple other edge addition methods to com-
pare the results. First, we consider single objective optimization to improve network
robustness. We obtain sets of edges that optimize SG, LCC, and nER, respectively.

Then, we consider the following heuristic approaches to add edges to the network,
which would also improve network robustness:

i. Rich—Rich: The edges are added among the nodes with high degree.
ii. Poor—Poor : The edges are added among the nodes with lowest degree.
iii. Rich—Poor : The edges are added between the nodes with high degree and

nodes with low degree.
iv. Random: In this case, we add edges randomly to the network.

We present the results in Figs. 3 and 4. In Fig. 3, the robustness improvement
obtained by the proposed multi-objective approach is compared with the robustness
improvement obtained by optimizing single robustness measures. In Fig. 4, we com-
pare the robustness improvement by the multi-objective approach with the heuristic
edge addition methods. In the figures, the Y axis corresponds to the robustness mea-
sure achieved by the network, upon edge addition. Higher values along the Y axis
corresponds to more robust networks. The X axis represents the number of new
edges added to the network, as a percentage of the quantity of existing edges in the
network.

In Fig. 3a, we show how the robustness value of SG changes with the use of
different edge addition algorithms. As expected, the solution obtained by optimizing
SG gives the best improvement in SG compared to the other algorithms. Poorer
results for SG were obtained by the solutions that were optimized for LCC and nER.
A similar pattern is seen in Fig. 3b, c as well. In Fig. 3b where we plot the value
of LCC with edge addition, the best performance is obtained by optimizing LCC,
whereas the solutions that were obtained by optimizing SG and nER perform poorly.
In Fig. 3c where we plot the value of nER with edge addition, the best performance
is obtained by optimizing nER, the solutions that were obtained by optimizing SG
and LCC do not perform well.

The solutions obtained by multi-objective optimization do not perform the best
with respect to all criteria, but perform “well” in all the cases. For example, the
solution obtained by (O − 1)nER performs 3rd best in optimizing SG and LCC and
performs 4th best in optimizing ER among all the methods that we considered. The
network created by adding a set of new edges to optimize a single objective robustness
measure (such as SG),will performwell onlywith respect to the optimized robustness
measure. For example, the network created by optimizing SG performs the best when
the value of SG is considered (Fig. 3a), but performs really poorly when the other
two robustness measures are considered (Fig. 3b, c).

The solutions obtained by Leave-k-out approach perform slightly better than the
average of solutions of O objective optimization in each case. This is because in
O objective optimization, when an extra objective is added to the optimization, we
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Fig. 3 Robustness
improvement in OpenFlights
network—comparison
between multi-objective
approach and single
objective approaches

(a) Value of SG after edges added

(b) Value of LCC after edges added

(c) Value of nER after edges added
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Fig. 4 Robustness
improvement in OpenFlights
network—comparison
between multi-objective
approach and heuristic
approaches

(a) Value of SG after edges added

(b) Value of LCC after edges added

(c) Value of nER after edges added
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Table 4 Average robustness ranks of edge addition methods; smaller values represent greater
robustness

Method of edge
addition

Average rank

EuroRoad OpenFlights US airports US power grid

SG 5.3 6.1 6.2 6.1

LCC 5.9 5.1 4.7 5.2

nER 5.6 5.3 5.5 5.2

(O − 1)nER 3.3 3.4 3.5 3.7

(O − 1)LCC 3.3 3.3 3.5 3.1

(O − 1)SG 3.4 3.4 3.3 3.3

Oave 5.1 5.3 5.5 5.1

Rich–Rich 7.9 7.9 8.0 7.6

Poor–Poor 7.7 8.3 7.5 9.3

Rich–Poor 8.9 8.9 9.3 8.7

Random 9.4 8.9 8.9 8.5

get solutions that perform poorly with regard to the objective of our interest. For
example, in 3 objective optimization, some solutions are in the corners of the Pareto
surface, perform as well in two objectives, but poorly in the other. These solutions
affect the average performance that we considered in the comparison. In the case of
leave-one-out approach, although all three robustness measures are considered, we
consider them in two steps. For example, in the case of (O − 1)nER , some solutions
perform quite well in LCC, but not as well in SG (these solutions lie on one side
of the Pareto front). Those solutions are unlikely to be picked by the second step,
when we pick the solutions that perform best in nER, because of the low correlation
between LCC and nER. Hence, a solution that performs well in SG is picked by the
leave-one-out approach. A similar pattern is seen in Fig. 3b, c as well.

As shown in Fig. 4, when heuristic edge addition methods are considered, adding
edges among the nodeswith high degrees results inmuch better performance in terms
of SG. In fact, Rich–Rich performs 2nd best among all the edge addition methods
explored here when SG is considered. Rich–Rich edge addition performs poorly
when LCC and nER are considered.

In Table4, we show the average rank of each edge addition method. The val-
ues in Table4 are the ranks of all 15 cases (three robustness measures of interest
and 5 percentages of edge addition) for each network. The edge addition methods
corresponding to low ranks perform well on all 3 robustness measures of interest.
According to the results, adding edges based on the leave-one-out approach yields
the best overall robustness in all networks considered in the study.
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6.2 Network Robustness After Node Attacks

In this section, we investigate how the networks (with robustness improved by edge
addition) performedduring aphase ofmultiple node attacks. In this study,we consider
two types of node attacks. In targeted node attacks, the nodes with the high degrees
(and their corresponding edges) get removed from the network, and in random node
attacks, a set of nodes selected randomly from the network (and their incident edges)
get removed from the network.

After edge addition (to improve the robustness of the network) we attack a set of
selected nodes in the network. After the attack, we recalculate the network robustness
values. In Table5, we show the robustness values of the OpenFlights network during
targeted node attacks and in Table6, we show the robustness values of the same
network during random node failures. In the column corresponding to 0% node
attacks, we show the robustness value after 3.3% edges have been added to the
network; each subsequent column refers to robustness values calculated after the
percentage of nodes are attacked in the network, as indicated by the column heading.

Prior to any node attacks, the highest value of SG is given by the network to
which the edges are added by optimizing SG. In the case of targeted attacks (Table5),
as the number of attacked nodes increases, the highest SG values are obtained by
the networks to which the edges were added by the (O − 1)nER approach. For the
network to which the edges were added by optimizing SG, the SG value reduces
sharply as the number of nodes attacked increases. As expected, this sharp decrease
is seen in the network to which the edges were added by Rich–Rich approach. In
the cases of LCC and nER, for all node attack levels, the highest robustness values
are shown by the networks to which the edges were added to optimize LCC and
nER, respectively. But, even in those two cases, the networks to which the edges
were added by the leave-one-out approach show high robustness values even when
subjected to targeted node attacks.

Table6 shows the results for the case of random node attacks. In this case, the
network created by adding edges to improve SG shows the best SG values during
random node attacks. However, the robustness of this network is poor when LCC and
nER are considered. A similar behavior is shown by the networks created by adding
edges to improve LCC and nER. The networks created by adding edges using leave-
one-out approach showhigh overall robustnesswhen all threemeasures of robustness
are considered. Hence, we conclude that the networks created by adding edges using
leave-one-out approach retain the high overall robustness during a phase of multiple
random node attacks as well.

7 Conclusion

When edges are added to a network, the properties of the network change. The amount
of change depends on the importance of the set of edges added to the network. In



Multi-objective Optimization to Improve Robustness in Networks 135
Ta

bl
e
5

R
ob
us
tn
es
s
va
lu
es

du
ri
ng

ta
rg
et
ed

no
de

at
ta
ck
s—

O
pe
nF

lig
ht
s
ne
tw
or
k

R
ob
us
tn
es
s
va
lu
e

E
dg
e
ad
di
tio

n
m
et
ho

d
Pe

rc
en
ta
ge

no
de
s
at
ta
ck
ed

0%
2%

5%
7.
5%

10
%

15
%

SG
SG

36
.2
92

27
.6
86

14
.9
66

12
.6
32

8.
57
5

4.
47

7

L
C
C

21
.9
84

14
.8
11

9.
48
8

7.
14
1

6.
31
4

3.
52

6

E
R

20
.9
76

14
.1
32

9.
01
8

6.
61
4

6.
00
2

3.
34

9

(O
−

1)
n
E
R

30
.3
91

24
.2
89

12
.8
65

11
.4
78

9.
46
6

5.
42

5

(O
−

1)
L
C
C

28
.0
87

17
.3
00

11
.0
35

8.
18
9

7.
36
5

4.
22

3

(O
−

1)
S
G

27
.8
83

17
.2
00

10
.9
52

8.
23
8

7.
31
7

4.
62

5

R
ic
h–

R
ic
h

31
.3
67

23
.9
34

12
.7
57

10
.5
18

7.
28
0

3.
72

7

Po
or
–P

oo
r

20
.6
30

13
.8
93

8.
90
5

6.
73
7

5.
91
5

3.
28

0

R
ic
h–

Po
or

22
.7
36

15
.3
39

9.
62
7

7.
25
4

6.
40
3

3.
53

1

L
C
C

SG
0.
09
5

0.
08
7

0.
07
5

0.
07
2

0.
06
6

0.
05

1

L
C
C

0.
21
9

0.
20
9

0.
20
0

0.
18
9

0.
16
9

0.
14

8

E
R

0.
14
6

0.
13
2

0.
11
2

0.
10
7

0.
09
4

0.
06

4

(O
−

1)
n
E
R

0.
16
8

0.
16
8

0.
15
9

0.
15
1

0.
13
4

0.
11

5

(O
−

1)
L
C
C

0.
16
1

0.
15
2

0.
13
7

0.
12
7

0.
12
1

0.
09

4

(O
−

1)
S
G

0.
16
7

0.
16
5

0.
15
3

0.
14
3

0.
13
2

0.
09

9

R
ic
h–

R
ic
h

0.
09
2

0.
08
5

0.
07
3

0.
07
1

0.
06
3

0.
04

9

Po
or
–P

oo
r

0.
15
4

0.
14
7

0.
13
9

0.
13
6

0.
12
0

0.
09

6

R
ic
h–

Po
or

0.
09
3

0.
08
6

0.
07
6

0.
07
5

0.
06
4

0.
04

8

E
R

SG
0.
00
08

0.
00
07

0.
00
04

0.
00
04

0.
00
01

7.
68
E
-0
5

L
C
C

0.
00
08

0.
00
08

0.
00
05

0.
00
05

0.
00
03

0.
00

02

E
R

0.
00
16

0.
00
14

0.
00
11

0.
00
10

0.
00
06

0.
00

04

(O
−

1)
n
E
R

0.
00
12

0.
00
11

0.
00
08

0.
00
07

0.
00
05

0.
00

04

(O
−

1)
L
C
C

0.
00
13

0.
00
13

0.
00
08

0.
00
08

0.
00
04

0.
00

03

(O
−

1)
S
G

0.
00
13

0.
00
12

0.
00
07

0.
00
07

0.
00
04

0.
00

03

R
ic
h–

R
ic
h

0.
00
06

0.
00
05

0.
00
03

0.
00
03

2.
30
E
-0
5

5.
78
E
-0
6

Po
or
–P

oo
r

0.
00
08

0.
00
08

0.
00
04

0.
00
01

4.
01
E
-0
6

2.
27
E
-0
7

R
ic
h–

Po
or

0.
00
06

0.
00
06

0.
00
03

0.
00
03

3.
68
E
-0
5

5.
56
E
-0
6



136 R. C. Gunasekara et al.
Ta

bl
e
6

R
ob
us
tn
es
s
va
lu
es

du
ri
ng

ra
nd
om

no
de

at
ta
ck
s—

O
pe
nF

lig
ht
s
ne
tw
or
k

R
ob
us
tn
es
s
va
lu
e

E
dg
e
ad
di
tio

n
m
et
ho

d
Pe

rc
en
ta
ge

no
de
s
at
ta
ck
ed

0%
2%

5%
7.
5%

10
%

15
%

SG
SG

36
.2
92

31
.0
46

28
.2
40

27
.9
38

27
.0
21

25
.5
91

L
C
C

21
.9
84

20
.3
40

20
.1
31

19
.5
41

17
.3
56

16
.9
31

E
R

20
.9
76

19
.3
33

19
.0
77

18
.6
83

16
.7
77

16
.2
06

(O
−

1)
n
E
R

30
.3
91

27
.1
24

25
.9
85

24
.4
82

24
.0
72

23
.2
76

(O
−

1)
L
C
C

28
.0
87

25
.4
07

24
.3
07

23
.9
71

23
.6
19

21
.9
21

(O
−

1)
S
G

27
.8
83

24
.9
31

24
.5
21

23
.8
97

23
.1
76

21
.7
82

R
ic
h–

R
ic
h

31
.3
67

26
.2
18

24
.1
08

23
.3
61

22
.5
91

21
.6
79

Po
or
–P

oo
r

20
.6
30

19
.2
32

19
.2
15

17
.9
94

16
.4
18

16
.3
50

R
ic
h–

Po
or

22
.7
36

21
.7
95

21
.5
16

20
.3
16

19
.5
77

18
.8
75

L
C
C

SG
0.
09
5

0.
08
8

0.
08
7

0.
07
9

0.
07
8

0.
07

6

L
C
C

0.
21
9

0.
15
5

0.
13
6

0.
13
1

0.
12
9

0.
12

5

E
R

0.
14
6

0.
09
8

0.
09
5

0.
09
5

0.
09
4

0.
09

2

(O
−

1)
n
E
R

0.
16
8

0.
10
4

0.
10
2

0.
10
2

0.
10
2

0.
09

6

(O
−

1)
L
C
C

0.
16
1

0.
09
9

0.
09
6

0.
09
5

0.
09
8

0.
09

3

(O
−

1)
S
G

0.
16
7

0.
11
4

0.
10
4

0.
10
5

0.
10
3

0.
10

0

R
ic
h–

R
ic
h

0.
09
2

0.
09
0

0.
08
7

0.
08
9

0.
08
6

0.
08

1

Po
or
–P

oo
r

0.
15
4

0.
11
5

0.
11
1

0.
10
9

0.
11
6

0.
10

9

R
ic
h–

Po
or

0.
09
3

0.
08
9

0.
08
9

0.
08
8

0.
08
3

0.
08

1

E
R

SG
0.
00
08

0.
00
07

0.
00
06

0.
00
06

0.
00
06

0.
00

06

L
C
C

0.
00
08

0.
00
06

0.
00
06

0.
00
06

0.
00
06

0.
00

05

E
R

0.
00
16

0.
00
11

0.
00
11

0.
00
11

0.
00
10

0.
00

10

(O
−

1)
n
E
R

0.
00
12

0.
00
09

0.
00
09

0.
00
08

0.
00
08

0.
00

07

(O
−

1)
L
C
C

0.
00
13

0.
00
10

0.
00
09

0.
00
09

0.
00
08

0.
00

08

(O
−

1)
S
G

0.
00
13

0.
00
09

0.
00
09

0.
00
09

0.
00
08

0.
00

08

R
ic
h–

R
ic
h

0.
00
06

0.
00
05

0.
00
05

0.
00
05

0.
00
04

0.
00

04

Po
or
–P

oo
r

0.
00
08

0.
00
06

0.
00
06

0.
00
05

0.
00
05

0.
00

05

R
ic
h–

Po
or

0.
00
06

0.
00
05

0.
00
04

0.
00
04

0.
00
04

0.
00

04



Multi-objective Optimization to Improve Robustness in Networks 137

this chapter, we addressed the following problem: Given a network and a budget,
how should a set of “key” edges be selected to be added to the network in order
to maximally improve the overall robustness of the network? Toward this goal, first,
we discuss the network robustness measures that have been proposed and widely
used. We analyze the properties of these robustness measures and identify their
similarities and dissimilarities using correlation analysis. Then, we use the leave-
k-out approach to optimize multiple robustness measures of interest to improve the
overall robustness of a network. Experimental evidence shows the improvement in
multiple robustness measures when the new edges are added using our approach.
The key edge identification and addition approach proposed in this study improve
themultiple robustnessmeasures of interest simultaneously, and this canbe extremely
important in real-world applications. For example, when funds need to be allocated
to add new roads to a road network, the objectives of interest would include reducing
the distance between cities, keeping the cities connected even if some central cities
become inaccessible, etc. For such an application, one can select the objectives
accordingly and use the edge addition approach proposed by this study in order to
improve the overall robustness of the underlying system.
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On Joint Maximization in Energy
and Spectral Efficiency in Cooperative
Cognitive Radio Networks

Santi P. Maity and Anal Paul

1 Introduction

The exponential growth in the use of wireless devices to support a large number
of users with the data-intensive applications put a high demand on radio frequency
spectrum availability and its efficient utilization too. The present wireless commu-
nication services operate in static mode, and hence, any emerging or emergency
service always faces the spectrum allocation problem. While exploring a new band
of spectrum (for example, mmwave) is challenging to the telecommunication service
provider, often leasing the licensed spectrum for opportunistic use is cost-effective.
Furthermore, the statics of different bands of spectrum utilization shows an inter-
esting picture. The substantial studies made by FCC and OFCOM report that spec-
trum is underutilized as the majority of the spectrum allocated to the licensed users,
called as primary users (PU), are observed to be ideal over a longer duration of time
(Federal Communications Commission 2002; OFCOM 2007). To address this spec-
trum scarcity and underutilization issues, the concept of cognitive radio (CR) appears
as an opportunistic access of the unused radio spectrum by the unlicensed users,
named as secondary users (SU), by means of cognition of radio environment and
reconfigurability in its data transmission (Fette 2009). SU must be obliged to protect
the interest of the PUs bymaintaining the interference limit (Fette 2009; Hassan et al.
2017).

The first and the foremost issue in design of CR system is the fast and reliable
spectrum sensing (SS), a method of determining whether PUs are transmitting data
over the licensed band at some time instant. Knowledge of SS available to SUs
protects PU from the harmful interference and identifies the unused spectrum for
the secondary data transmission (Ostovar and Chang 2017). Reliable SS technique
offers the scope of using the idle part of the spectrum and enhances the spectrum
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efficiency (SE), a measure of data transmission rate over a given spectrum. Several
SS techniques, for example, energy detection (Yang et al. 2016), cyclostationary
feature detection (Yang et al. 2015), eigenvalue-based detection (Yang et al. 2017),
generalized likelihood ratio test (Sedighi et al. 2013), matched filter based (Zhang
et al. 2015), etc. are reported in the literature to improve the SE performance (Cicho
et al. 2016; Akyildiz et al. 2011; Yucek and Arslan 2009). The relative pros and cons
of those techniques are also investigated and reported in (Akyildiz et al. 2011; Yucek
and Arslan 2009). Among the different SS techniques, energy detection scheme is
widely used due to its low computational complexity, low power consumption, very
less sensing time, and generic implementation (Paul and Maity 2016; Cicho et al.
2016). Performance of SS is typically measured by the probability of PU detection
(Pd ) and the probability of false alarm (Pf a). Themeasure Pd indicates the probability
of correct detection of PU transmission when it actually transmits over a frequency
band. The other measure Pf a represents the probability of false detection of PU
transmission when it is not actually active over the channel (Paul and Maity 2016).

Recently, the cooperative spectrum sharing technique in CR network (CRN) is
studied and reported a lot (Chatterjee et al. 2015, 2016a, b). In the cooperative CRN
(CCRN), a PU can involve SUs as the cooperative relays for its own transmission.
It is known as PU cooperation (Chatterjee et al. 2016a). In return, the SUs achieve
an opportunistic access of the wireless channel for their own transmissions. Thus,
throughput improvement is possible by power saving operation of SU for its own
as well as in PU cooperation data transmission leading to an increase in energy
efficiency (EE). However, SUs are mostly operated by the limited battery sources,
and hence, maximization in EE is highly demanding for enhancing the network
lifetime. Different parameters, for example, the optimal values of transmission and
cooperation power, the number of relays involved, and sensing and transmission
slots on frame-based system design, have varied impact on EE. It is observed that
majority of the power (stored energy) is consumed at SUs due to the PU cooperation
and the secondary transmission rather than its use on data processing, for example,
SS (Chatterjee et al. 2016a). It indicates that the enhancement in SE is obtained at
the cost of high energy consumption due to participation of several SU nodes in the
system and this significantly reduces the EE. Therefore, improvement in EE along
with SE becomes a major concern in CCRN (Chatterjee et al. 2015, 2016a; Ren et al.
2016; Awin et al. 2016).

The authors in (Chatterjee et al. 2015, 2016a) study the PU cooperation which
is based on SS decision. The proposed approach ensures that SU acts as amplify-
and-forward (AF) relay in PU transmissions and as a reward, SUs are allowed to
access the spectrum when PU is found to be idle (Chatterjee et al. 2015, 2016a). The
authors in (Hu et al. 2016) separately optimized the SE and EE via joint optimization
of sensing duration and final decision threshold in SS. Based on the solutions of the
two cases, the general problem of SE–EE trade-off is solved. Bicen et al. (2015) pro-
posed an analytical framework to study the communication and distributed sensing
efficiency impacts of common control interface (CCI) utilization for spectrum hand-
off in CRN. The developed framework evaluates the achievable delay, spectrum, and
energy efficiency in CRN with and without CCI.



On Joint Maximization in Energy and Spectral Efficiency … 143

1.1 Machine Learning in CR

The discussion on the previous section highlights that CR works on the basis of two
principles: cognition and reconfigurability. This makes CR brain empowered intelli-
gent communication which learns its radio environment before transmission to start
and then adaptively adjust its resources, for example, bandwidth, transmission power,
signaling, data rate, etc. Much in success on CR system design lies on efficient use of
cognitive logic tools such as machine learning (ML). Many different ML algorithms
that involve tools like neural networks (Jiang et al. 2017), hidden Markov models
(Choi and Hossain 2013), and genetical algorithms (Jiao and Joe 2016; Lang et al.
2016; Celik and Kamal 2016) are studied in CR to meet the high quality of services
(QoS) (Clancy et al. 2007). The recent literature on CRs report the scope and contri-
butions on both supervised and unsupervised learning techniques to resolve various
optimization problems. The authors in (Jiang et al. 2017; Zhang et al. 2017) pro-
posed supervised learning techniques based on neural networks and support vector
machines (SVMs) to find the optimal spectrum handover solutions in CRNs. A mod-
ification in particle swarm optimization, called as fast convergence particle swarm
optimization (FC-PSO), is explored to address the sensing-throughput trade-off in
various signal-to-noise ratio (SNR) conditions under the constraint of PU protection
(Rashid et al. 2015). The formulated optimization problem reduces Pf a and conse-
quently enhances the spectrum usability of SUs. The genetic algorithms (GAs), a
kind of stochastic search algorithm, work on the mechanics of natural gene selection
procedure. It works on the concept of “survival of the fittest” with a random exchange
of information, but in a more structured way (Lang et al. 2016). GA is also explored
to resolve the spectrum allocation problem inCRNs (Huang et al. 2016;Morabit et al.
2015). The authors in (Hojjati et al. 2016) used GA to develop an energy-efficient
cooperative SS technique. The authors in (Wen et al. 2012) discussed a spectrum
allocation problem based on GA for CR and proposed a Max-Overall-Performance
algorithm, which offers the best result in spectrum allocation with a target of max-
imizing systems’ overall performance. The main advantage of GA over other soft
computing techniques is its capability of handlingmulti-objective functions (Morabit
et al. 2015).

Differential evolution (DE), another powerful stochastic searching optimization
algorithm, finds extensive use in recent works on CR research (Ye et al. 2013; Maity
et al. 2016; Paul and Maity 2016; Zhang and Zhao 2016; Ng 2015). The key differ-
ence in working principles of DE from GA or PSO is its mechanism for generating
the new solutions (Das and Suganthan 2011). The solutions in DE evolve through
the iterative cycles of three essential DE operators: mutation, crossover, and selec-
tion. The authors in (Ye et al. 2013) applied DE algorithm for power allocation to
a subcarrier for maximizing the secondary transmission rate under the constraint
of PU interference limit. The unsupervised learning algorithms such as clustering
techniques are also investigated in CR to improve the SE and EE. In (Maity et al.
2016), the authors applied fuzzy C-means (FCM) clustering technique along with
DE algorithm to improve the probability of PU detection and significant reduction
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on energy consumption at fusion center (FC) in CSS. However, performance of FCM
deteriorates when the data structure of input patterns is nonspherical. This problem
is solved by the kernel-fuzzy c-means (KFCM) technique (Paul and Maity 2016).
KFCMmaps nonlinear input space into the high-dimensional space. This projection
helps to apply a linear classifier for partitioning the data in respective clusters. The
DE algorithm is also applied with the KFCM clustering strategy to improve the sys-
tem performance (Paul and Maity 2016) over the FCM-based DE technique (Maity
et al. 2016).

1.2 Scope and Contributions

The literature review on CR research is rich with optimization problems solved using
classical techniques (Hu et al. 2016; Bicen et al. 2015; Cicho et al. 2016; Chatterjee
et al. 2015, 2016a) as well as using variousML techniques (Ye et al. 2013; Zhang and
Zhao 2016; Ng 2015; Huang et al. 2016;Morabit et al. 2015). It is often observed that
the traditional optimization techniques require high computational cost and imple-
mentation of those algorithms is much complex. In general, all classical approaches
are found to be efficient for solving linear problems andprovide regular solutions. The
main difficulties occur for the nonlinear problems where the solutions are not always
regular (Gao et al. 2014). Nonlinear optimization problems with several constraints
often suffer from the local optima issue. Though some techniques try to obtain the
feasible solutions using the penalty functions (Duan et al. 2012; Kaur et al. 2017),
the performance is not adequate due to the complex selection of the penalty param-
eters. In all such cases, it is found that ML techniques often offer low-cost, tractable
yet efficient solutions. Among the diverse ML techniques, DE algorithm is found to
be very efficient to obtain a global solution in several optimization problems (Das
and Suganthan 2011) where the objective function and constraints are nonlinear in
nature. DE is also extensively explored in recent CR research (Maity et al. 2016; Paul
and Maity 2016; Ye et al. 2013). The high convergence characteristics of DE along
with a powerful searching technique and the presence of only few control parameters
make it easy to implement (Das and Suganthan 2011).

Cooperative CRN system model is considered here in a sensing—cooperation—
transmission framework. Based on the sensing result, SU either cooperates in PU
data transmission or transmits its own data. The work jointly maximizes the SE and
EE in an integrated platform using DE algorithm under the constraints of sensing
duration, probability of PU detection, PU cooperation rate, and limited SU power
budget. The objective is to find the optimal SS time along with the maximum power
allocation for PU cooperation and SU data transmission which maximize the SE and
EE. It is worth mentioning that DE algorithm is applied for obtaining a global solu-
tion as the constraints and objective function in the present problem are nonlinear.
The combined issues of SS, PU cooperation, and opportunistic secondary data trans-
missions in a single time frame form a nontrivial optimization problem. For this kind
of conflicting optimization problem, there needs a set of Pareto-optimal solutions
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for overall performance improvement of the system. Efficient heuristic approach of
DE finds the globally optimized solution from the set of solutions. A large set of
simulation results validates the effectiveness of the proposed technique.

One may also suggest to use other evolutionary algorithms (EAs) like genetic
algorithms (GAs), ant colony optimization (ACO), evolutionary programming (EP),
cultural algorithm (CA), genetic programming (GP), multi-objective particle swarm
optimization (PSO), etc. for such random search. However, in the proposed work, the
calculated energy values are in the form of real numbers. DE offers the better system
stability and reliability over GAs when initial population set contains real numbers.
As a result, the ideas of mutation and crossover are substantially different in DE
over the other existing algorithms. In various real-time applications, EAs encounter
various flaws arising out from optimization in noisy fitness functions, deviation in
the environmental parameters due to the dynamical adoption, approximation errors
in fitness function, aberration of the global optimal point after termination of the
searching process, etc. It is worth mentioning that DE effectively overcomes the
above problems due to its inherent nature of iterative and adaptive global searching
technique. Hence, DE provides an enhanced performance in respect of inevitability,
convergence speed, accuracy, and robustness irrespective of nature of the problem
to be solved.

The rest of the chapter is structured as follows: Section2 presents the proposed
system model and Sect. 3 describes the problem formulation and its solution using
the DE algorithm. Numerical results for the proposed solution are then demonstrated
in Sect. 4 to highlight the spectrum and energy-efficient system design and finally
Sect. 5 concludes the paper.

2 System Model

The typical system model is depicted in Fig. 1 and consists of SU and PU networks.
Primary network contains a PU transmitter (PUT ) and a PU receiver (PUR), while
the secondary network consists of a SU transmitter (SUT ) and a SU receiver (SUR). It
is assumed that PUR is located far apart from PUT and there is no direct reliable path
for data transmission over PUT -PUR link. Hence, SUT cooperates with PUT for
primary data transmission and as a reward SUobtains a data transmission opportunity
of its own. Figure2 represents the typical time frame structure which is divided in
two different time slots. During the first time slot (τs), SUT node senses the particular
channel of PU data transmission to detect the spectrum occupancy or free availability
of PU. In the second time slot (T − τs), depending on the sensing decision, SUT

either participates in the relaying process of PU data transmission in cooperation or
it transmits own data to SUR .
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Fig. 1 Typical system model

Fig. 2 Typical time frame
model

2.1 Signal Model

It is considered that PUT -PUR link, SUT -SUR transmission links, SUT -PUR coop-
eration link, and the link between PUT -SUT follow quasi-static Rayleigh fading.
Let the spatial distance between PUT -PUR is represented by dp, and h p indicates
the fading coefficient of the corresponding channel, then h p ∼ CN (0, d−α

p ), where
α is the path loss exponent. The distances and fading coefficients of the respective
nodes are given in Table 1.

The received signal at SUT from PUT during τs is expressed as

Yps(n) = Ψ hi xp(n) + υi (n), ∀n = 1, 2, . . . ., N (1)

Table 1 Rayleigh channel fading coefficients and distances

Wireless link Fading coefficients Distance

PUT -PUR h p dp
SUT -SUR hk dk
SUT -PUT hi di
SUT -PUR h j d j
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In Eq. 1, xp(n) denotes the PU transmitted signal which is modeled as circularly
symmetric complexGaussian (CSCG) randomsequencewith zeromean and variance
E[|xp(n)|2] = Pp. Here, Pp represents PU transmission power. The υi represents
the noise at SUT , where υi follows CSCG along with zero mean and the variance
is Pns . Let the binary PU indicator is symbolized by Ψ , where Ψ = 1, or Ψ = 0,
which indicates that PU is either active or ideal over a particular frequency band,
respectively. The total number of PUsamples is denoted by N and N = τs ∗ fs , where
fs is the sampling frequency. It is considered that an energy detector is embedded in
SUT and SUT performs local SS during the sensing process. The test statistics (TYps )

of PU samples is denoted by

TYps = 1

N

N∑

n=1

|Yps(n)|2

The detection probability and the false alarm probability of the PU at SUT are
mathematically formulated as (Chatterjee et al. 2016a)

Pd = Q

{( ε

Pns
− γP − 1

) √
τs fs

γp + 1

}
(2)

Pf a = Q

{( ε

Pns
− 1

)√
fsτs

}
(3)

The Q-function of Eqs. 2 and 3 is expressed as

Q(x) = 1√
2π

∞∫

x

(
e− t2

2

)
dt

The symbol ε represents the detection threshold for energy detection and γ indicates
average SNR at SUT .

γ = di
−αPp

Pns
(4)

If SS decision indicates that PU is active, then SUT cooperates in PU transmission.
The PU cooperation time duration is divided into two equal sub-slots. At the first
sub-slot, PUT signal is received at SUT (as no effective data transmission occurs at
PUT to PUR over the direct link). During the second sub-interval, SUT amplifies the
received signal with an amplification power gain ωc and forward the same to PUR .
The received signal at PUR from SUT is represented as

Yipr = √
ωcYpsh j + υp1 (5)
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The noise at PUR is υp1 during cooperation and follows CSCG random variable
along with zero mean and the variance is Pnp. The symbol “R1p” represents the PU
cooperation SE if PU is correctly detected and R2p denotes the SE when missed
detection is occurred. In case of R2p, SUT starts data transmission which causes a
harmful interference at PUR . Since R1p >> R2p, ∴ RP ≈ R1p. So, RP is expressed
as follows (Chatterjee et al. 2016a):

RP = P(H1)Pd
(T − τs

2T

)
log2

(
1 + Pc|h j |2|hi |2Pp

Pnp

)
(6)

The parameters P(H1) = P(Ψ = 1) and P(H0) = P(Ψ = 0) denote the stationary
probabilities of PUs presence and absence, respectively. If PU is found to be idle,
SUT starts transmission of its data to the SUR . The signal received at SUR from SUT

is represented as

Yisr = hkxk + υp2 (7)

The signal transmitted by SUT is denoted by the symbol xk and it is assumed to
be CSCG random process with zero mean and the variance E[|xk(n)|2] = PT . The
PT is the transmission power of SUT . The symbol υp2 represents the additive noise
at SUR and is considered as CSCG random variable (υp2 ∼ CN (0, Pns)). The SUT

transmits in two cases, in the first case when PU is found to be idle and is correctly
detected (i.e., no false alarm) and in the second case when PU is active the missed
detection is occurred. However, missed detection creates the unwanted interference
at SUR due to PU data transmission. In such situation, SU’s transmitted data packet
is assumed to be lost. So, SE between SUT and SUR is obtained as

ηSE =
{
P(H0)(1 − Pf )

(T − τs

2T

)}
log2

(
1 + |hk |2PT

Pns

)
(8)

The average power consumption of SUT during PU cooperation and SU transmission
is denoted by Pav . Now Pav can be expressed as

Pav =
{
P(H0)(1 − Pf ) + P(H1)(1 − Pd)

}(T − τs

T

)
PT +

(T − τs

2T

)
Pc (9)

Pc denote the power consumption at SUT for PU cooperation, and is derived as

Pc = (P(H0)Pf a Pns + P(H1)Pd(d
−α
i Pp + Pns))ωc (10)

The EE of the secondary network is expressed as (Chatterjee et al. 2016b)

ηEE = ηSE

Pav

(11)
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3 Problem Formulation and Proposed Solution

The EE–SE trade-off in CRN is illustrated in this section. The objective of the present
work is to obtain the minimal sensing time (τs), required cooperation power (Pc), and
the transmission power (PT ) at SUT to study the trade-off. The objective function
is formed by maintaining the constraints of SS duration, PU cooperation rate (Rth),
certain threshold of Pd , and a predefined power budget Pmax for SUT . Hence, the
optimization problem is formulated as

max
τs ,Pc,PT

(
ηSE + ηEE

)

while satisfying the constraints,
C1: Sensing time duration, 0 ≤ τs ≤ T

C2: PU detection probability threshold, Pd = Pd
C3: PU cooperation rate, P(H1)Pd

(
T−τs
2T

)
log2

(
1 + Pc|h j |2|hi |2Pp

Pnp

)
≥ Rth

C4: Power constraint, Pc + PT ≤ Pmax

(12)

Considering Eqs. 8, 9, and 11, the objective function (12) is rewritten as

⇒ max
τs ,Pc,PT

{{
P(H0)(1 − Pf )

(T − τs

2T

)
log2

(
1 + |hk |2PT

Pns

)}
+ ηSE

Pav

}

⇒ max
τs ,Pc,PT

[
P(H0)(1 − Pf )

(T − τs

2T

)
log2

(
1 + |hk |2PT

Pns

)

+
P(H0)(1 − Pf )

(
T−τs
2T

)
log2

(
1 + |hk |2PT

Pns

)

{
P(H0)(1 − Pf ) + P(H1)(1 − Pd)

}(
T−τs
T

)
PT +

(
T−τs
2T

)
Pc

]
(13)

Using Eq. 2 in the constraint C2, the required τs can be obtained as

Pd = Pd ≡ Q

{( ε

Pns
− γP − 1

) √
τs fs

γp + 1

}

⇒
{( ε

Pns
− γP − 1

) √
τs fs

γp + 1

}
= Q−1(Pd)

⇒
√

τs fs
γp + 1

=
{
Q−1(Pd)

( Pns
ε − Pns(γp + 1)

)}

⇒ τs = (γP + 1)2

fs

{
Q−1(Pd)

( Pns
ε − Pns(γp + 1)

)}2

(14)
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Simplifying the constraint C3, Pc value is expressed as

P(H1)Pd
(
T − τs

)
log2

(
1 + Pc|h j |2|hi |2Pp

Pnp

)
≥ 2T Rth

⇒ log2
(
1 + Pc|h j |2|hi |2Pp

Pnp

)
≥ 2T Rth

P(H1)Pd(T − τs)

⇒
( Pc|h j |2|hi |2Pp

Pnp

)
≥

{
e

2T Rth
P(H1)Pd (T−τs ) − 1

}

⇒ Pc ≥ Pnp
|h j |2|hi |2Pp

{
e

2T Rth
P(H1)Pd (T−τs ) − 1

}
(15)

Due to the several constraints and nonlinear nature, the optimization problem pro-
vides an infinite number of nontrivial Pareto-optimal solutions.Hence, the conflicting
inequality constraints must be evaluated simultaneously to find the global optimal
solution. This problem is solved using the DE algorithm, as DE is widely accepted to
solve the several nonlinear and complex optimization problems (Das and Suganthan
2011). A brief introduction about the working principle of DE algorithm is given
below.

A set� of optimization parameters (τs, Pc, PT ) is called an individual inDE, and it
is represented by�-dimensional parameter vector. The population set consists of N P
parameter vectors (zGi , i = 1, 2, . . . , N P), G indicates the number of generation.
N P represents the maximum number of members in the population set, and it cannot
be changed throughout the evolution process. The initial population (IP) is randomly
selected from the search space with a uniform distribution. Generally, each decision
parameter in every vector of IP is assigned with a random value from the selected
boundary constraints:

z0i, j = p j + rand j . (q j − p j )

where rand j ∼ U (0, 1) denotes the uniformdistribution between (0, 1) and it creates
a new value for each of the decision parameters. The symbols p j and q j indicate the
lower and the upper boundary values for the j th decision parameter, respectively.
The large number of population explores all aspects of the search space for low-
dimensional problems. However, due to the time constraints, the population size
must be restricted. After several experimental analyses, it is found that for Np∗ =
50 the optimization function obtains the optimal solution for the present problem.
Typically, DE has three control operators: mutation, crossover, and selection. The
main idea behindDE is to generate the trial vectors.Mutation and crossover operators
are simultaneously applied to obtain the trial vectors, and finally selection operator
determines the appropriate vectors for the next generation.
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A. Mutation

For each target vector zGi , a mutant vector vG+1
i is created as follows:

vG+1
i = zGr1 + F ∗ |zGr2 − zGr3|, r1 
= r2 
= r3 
= i (16)

with randomly chosen indices r1, r2, r3 ∈ 1, 2, . . . , N P . F is a real number to control
the amplification of the difference vector |zGr2 − zGr3|, where F ∈ [0, 2]. The prema-
ture convergence takes place due to the small values of F, while the very high values
of F delay the overall searching process. The F-value is widely varied along with the
patterns of Np∗ in different application problems (Gao et al. 2014). According to the
(Gao et al. 2014), the F-value is fixed at 0.5 in the proposed work while Np∗ > 10.

B. Crossover

The target vector is now mixed with the mutated vector and the following process is
used to produce the trial vector uG+1

i :

uG+1
i j =

{
vG
i j , rand( j) ≤ Cross, or, j = rand{n(i)}
zGi j , rand( j) > Cross, or, j 
= rand{n(i)} (17)

where j = 1, 2, . . . ,�, rand( j) ∈ [0, 1] is the j th generation of an uniform random
number generator. Here,Cross ∈ [0, 1] denotes the crossover probability constant and
it is selected by the user. The parameter rand{n(i)} ∈ 1, 2, . . . ,� selects the random
index, and it ensures that uG+1

i will get at least one element from vG+1
i ; otherwise, no

new parent vector would be produced for the next. The selection of an efficient Cross

value is totally based on the nature of the problem. It is observed thatCross ∈ [0.9, 1]
is appropriate for the non-separable objective functions, while Cross ∈ [0, 0.2] is
effective for the separable functions (Gao et al. 2014). In this case, Cross is fixed at
0.9.

C. Selection

DE adapts a greedy selection strategy. If the trial vector uG+1
i produces a better

fitness function value than zGi , then u
G+1
i is set to zG+1

i ; otherwise, the old vector zGi
is continued. The selection technique works as follows:

zG+1
i =

⎧
⎨

⎩
uG+1
i , f

(
uG+1
i

)
> f (zGi )

z ji , f
(
uG+1
i

)
≤ f (zGi )

(18)

The sequential steps of DE algorithm are given in Algorithm 1.
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Input : A population of N P∗ individuals zGi , i = 1, 2, ..., N P , are determined to satisfy the constraints in (12)

Output: Optimal z∗Gi is obtained at the final stage.
The sequential steps of DE algorithm are as follows:

begin
repeat

Step I: Mutation: Initiate a mutated vector −→v G
i in respect to the target vector −→z G

i for every i .
for i = 1 to N P∗ do

vG+1
i = zGr1 + F ∗ |zGr2 − zGr3|, r1 
= r2 
= r3 
= i

where r1, r2, and r3 are randomly selected vectors. Scaling factor: F = 0.5, F ∈ [0, 1]
end

Step II: Crossover: Every target vector −→z G
i , generates a trial vector uG+1

i , i f f randomly generated
number between [0, 1] < Cross .
for i = 1 to N P∗ do

uG+1
i j =

{
vGi j , rand( j) ≤ Cross , or, j = rand{n(i)}
zGi j , rand( j) > Cross , or, j 
= rand{n(i)} (19)

end
Step III: Selection: Estimate the trial vector.
for i = 1 to N P∗ do

zG+1
i =

⎧
⎨

⎩
uG+1
i , f

(
uG+1
i

)
> f (zGi )

z ji , f
(
uG+1
i

)
≤ f (zGi )

(20)

end
Increment the count C=C+1

until maximum iteration count is reached;
end

Algorithm 1: DE algorithm

4 Numerical Results

This section demonstrates simulation results for the performance analysis of the pro-
posed work. Monte Carlo simulations for 10,000 times are performed to consider
the variability of the wireless channel. The numerical values of required param-
eters for simulation are considered as follows: T = 100ms, fs = 10KHz, N =
500, P(H0) = 0.7, P(H1) = 0.3, Pp = −10, Pnp = −20, Pmax = 0dBW, ε = 1J,
di = 1, dk = 1.25, d j = 2m, α = 3, Pd = 0.9, Pf = 0.15, and Rth = 0.5bps/Hz.
The obtained EE and SE outcomes are normalized with respect to its maximum EE
and SE values, respectively. Maximum EE occurs at τs = 44.54ms but SE value is
significantly low at that time. On the other hand, the maximum SE value is obtained
at τs = 1ms and as same time EE obtains a minimum value.

Figure3 illustrates the EE–SE trade-off for the sensing duration τs . It is noted from
the figure that the maximization of EE and SE cannot be obtained at the same time. It
occurs due to the conflicting nature of EE and SE functions under the constraints. It
is observed that EE is increased and SE is decreased with the increment in τs values.
Equation 8 validates such outcomes of SE function. The incremental values of τs
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Fig. 3 Normalized EE and SE versus sensing duration

Fig. 4 Normalized EE and SE versus total power budget Pmax

significantly reduce the value of Pav . Hence, EE value is increased. From Fig. 3, it
is observed that the sum maximization of both EE and SE is found in τs = 10.92ms
when EE and SE values are 0.4789bits/J and 0.6406bit/s/Hz, respectively.

Now the graphical results in Fig. 4 represent the variation in the maximum power
budget Pmax on its consequent effect in EE and SE performance. From Fig. 4, it is
clearly observed that increase in Pmax values increases the EE and SE values. The
high value of Pmax signifies that system can allocate more power in SU transmission
and PU cooperation. This scenario significantly improves the EE and SE values at
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Fig. 5 Normalized EE and SE versus PU cooperation rate (Rth)

the same time. It is noted that EE and SE values are improved by ≈39.14% and
≈46.42%, respectively, when Pmax value is increased from 0.7w to 0.9w.

Figure5 shows the optimal EE and SE of SU network against the PU cooperation
rate (Rth). The EE and SE values are decreased with the increase in Rth values.
It takes place due to the requirement of more power for PU cooperation. With an
increment in Pc value, the PT value is decreased. From Eq. 8, it is observed that ηSE

Fig. 6 Maximization of normalized ηEE and ηSE (while ηEE and ηSE values are under a predefined
constraint) versus sensing duration
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depends on PT value. Therefore, reduction in SE values is justifiable in this case.
Similarly, higher values of Pc increase the Pav values (Eq. 9), which decrease the
ηEE values. It is noted that EE and SE both are reduced by ≈34.17% and ≈63.14%,
respectively, when Rth value is increased from 0.4bps/Hz to 0.6bps/Hz.

The Pareto relationship between ηEE and ηSE is shown in Fig. 6, where ηEE and
ηSE are set as ηEE ≥ 0.15 and ηSE ≥ 0.375. It is noted that with the initial increment
in τs , ηSE decreases while ηEE increases. However, with the further increment in τs ,
it is observed that no further increment in ηEE and decrement in ηSE are possible.
Moreover, the characteristics of both EE and SE remain unchanged along with τs
after a certain values of ηSE = 0.3782 and ηEE = 0.3779. The constraint ηSE ≥
0.375 does not allow any further decrement in ηSE , and this also restricts the further
increment in ηEE value. The value of ηEE does not change since both ηSE and Pav

in Eq. 11 are constant.

5 Conclusions

The proposedworkmakes a study on the EE and SE trade-off in cooperative cognitive
radio network. The framework is developed to maximize the EE and SE under the
constraints of sensing duration, PU detection threshold, PU cooperation rate, and SU
power budget. The proposed nonlinear objective function along with the constraints
is evaluated through the DE algorithm to obtain the global optimal value. EE–SE
trade-off is obtained where EE and SE values are 0.4789bits/J and 0.6406bit/s/Hz,
respectively. It is observed that EE and SE both are increased by ≈39.14% and
≈46.42%, respectively, when Pmax value is increased from 0.7w to 0.9w. It is also
found that increase in Rth value reduces the EE and SE by ≈34.17% and ≈ 63.14%,
respectively, and it is justified. The following point may be a limitation for the present
work. Since the present system model involves single user sensing, the high-value
target detection (for example, Pd ≈ 0.95 and Pf ≈ 0.05) may not be met at deep
fading channel or sensing duration to be large enough failing tomeet high cooperation
SE (for PU network) and high value of SE and EE maximization for the secondary
network.

However, the proposed system model may be extended as follows:

• Theobjective functionEE–SEmaximization canbemodeled as (optimal)weighted
combination or a parametric form where the optimal weight or parameter can also
be calculated.

• The present system model can be extended in multiple SU systems to find its
optimal number to meet the detection reliability in the presence of malicious
operation that is SS.
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Multi-Objective Optimization
Approaches in Biological Learning
System on Microarray Data

Saurav Mallik, Tapas Bhadra, Soumita Seth, Sanghamitra Bandyopadhyay
and Jianjiao Chen

1 Introduction

In the data mining field, microarray data analysis is one of the most challenging
tasks due to the curse of dimensionality problem. Microarray (Bandyopadhyay et al.
2014) is a technique in which a supporting material (made of either a glass slide
or bead) is utilized onto which thousands of molecules or their fragments like frag-
ments of DNA or proteins are conjoined in a regular manner for the genetic study
or biochemical experiment. The main goal of microarray data analysis consists of
discovering genes that share the same type of expression patterns across a subset of
conditions. Notably, the extracted information is sub-matrices of the microarray data
that satisfy an integrity constraint. Cancer investigation in microarray data plays a
major role in cancer analysis and its treatment (Bandyopadhyay et al. 2014, 2016;
Mallik et al. 2016; Maulik et al. 2015). The complex gene expression patterns of
cancer form cancer microarray data. DNA microarray technologies help to observe
the functionalities of the thousands of genes together which can be applied as one
of the most robust tools to realize the regulatory schemes of gene expression in
cells (Spieth et al. 2005). These techniques also assist researchers to study cells
under various conditions, for example, different environmental influences, medical
treatment, etc. Microarray experiments generally produce time series of measured
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values to specify the activation level of every experienced gene in a genome. To
analyze DNA microarray data, first it is required to produce new biological assump-
tions by a preprocessing phase including checking data distribution, normalization,
and gene filtering, discretization. More than one objective function is set to obtain
optimal solutions in multi-objective optimization. In such optimization technique,
basically single-objective function with a bargain among different objectives is opti-
mized. In mathematics or computer science, an optimization problem is nothing
but finding the best solution from all feasible solutions. Thus, to get this optimal
solution, we need to do maximization or minimization of each objective function.
However, in those clustering algorithms, a single-objective function is not much
efficient for the categorical data. To overcome this limitation, we utilize multiple
objective functions (Mukhopadhyay et al. 2007) that should be optimized simultane-
ously. The concept of Pareto-optimal (Mukhopadhyay et al. 2007) has a good effect
on multi-objective optimization. In the viewpoint of the minimization problem, a
decision vector might be defined as Pareto-optimal, if and only if there exists no
such vector which dominates it or no such feasible solution that might create reduc-
tion on the basis of any benchmark without a concurrent increase of at least one. In
addition, multi-objective optimization is carried out by particle swarm optimization
(Mandal and Mukhopadhyay 2014). In this chapter, we discuss several multi-
objective optimization methods that are applied in general on microarray data. Some
of them are based on integrated learning which may use in cancer classification, gene
regularity network, a differential evolution that is basically multi-objective evolution
based. Some of them are based on amulti-objective genetic algorithmwhich has been
used for HIV detection (Aqil et al. 2014, 2015), gene selection (Mallik and Maulik
2015;Mandal andMukhopadhyay 2014), etc. A popular genetic algorithm for multi-
objective optimization is NSGA-II (non-dominated sorting genetic Algorithm-II)
(Deb et al. 2002). Furthermore, some approaches are based on multi-objective parti-
cle swarm optimization (MPSO) which is a heuristic, multi-agent, optimization, and
evolutionary technique. The prediction of miRNA transcription start sites is an inter-
esting topic of researches for knowing about primary miRNAs (Mallik and Maulik
2015). Recently, Bhattacharyya et al. (2012) developed a miRNA TSS prediction
model by integrating a support vector machine with an archived multi-objective sim-
ulated annealing-based feature reduction technique (Bhattacharyya et al. 2012; Sen
et al. 2017). Moreover, fundamental comparative study and further discussion are
included for enlightenment of advantages and limitations of the described methods.

2 Fundamental Terms and Preliminaries

In biological perspective, a gene (Pearson 2006) is stated as the primary physical
as well as functional unit of heredity in an organism. Deoxyribonucleic acid (DNA)
exists in the chromosomes of all the organisms in each cell. It encodes genetic infor-
mation in terms of functioning and development of organisms including human.
Each gene is associated with a particular function or protein through a specific set of



Multi-Objective Optimization Approaches in Biological … 161

instructions (coding).According tomolecular biology (Claverie 2005), in a biological
system, the flow of transfer of genetic sequence information (like DNA replication,
transcription, and translation) takes place between sequential information-carrying
biopolymers (viz., DNA, RNA, and protein). DNA replication is a process where two
similar copies of DNA are created by an existing DNA. DNA transcription transfers
DNA information to RNA (ribonucleic acid), whereas translation creates protein
from RNA. MicroRNAs (miRNAs) are noncoding RNAs tiny in size, i.e., length
approximately 22 nucleotides, but it plays a significant role in the transcriptional and
post-transcriptional regulation of the gene expression. By surveying existing litera-
ture, we have found several strong evidence where miRNAs have a great impact on
occurring diseases such as cancers, diabetes, AIDS, etc. Irregular expression of mul-
tiple genes/miRNAs causes disease condition in the human body. Such deregulation
is generally affected by many genetic and epigenetic factors.

2.1 Microarray

Microarray (Bandyopadhyay et al. 2014) is a technique in which a supporting
material (made of either a glass slide or bead) is used onto which numerous
molecules or their fragments such as DNA fragments or proteins are attached in
a fundamental pattern for biochemical experiment or genetic analysis. In order
to measure the activity levels of the thousands of biochips (i.e., genes/miRNAs)
simultaneously over different experimental conditions, DNA microarray is a use-
ful technology. Microarray data are highly useful in the experiments through clus-
tering (Maulik et al. 2011), biclustering (Maulik et al. 2015), multi-class clus-
tering (Maulik et al. 2010), classification (Wu 2006), differential gene selection
(Joseph et al. 2012), single-nucleotide polymorphism (SNP) detection (Hacia et al.
1999), cancer subtypes selection (Maulik et al. 2010), etc. Epigenetics (Mallik
et al. 2017) is the study of rapid changes or phenotypes without alteration in DNA
sequence. DNAmethylation (Mallik et al. 2017, 2013a, b) is an important epigenetic
factor which generally reduces gene expression. DNA methylation is nothing but an
inclusion of a methyl group (i.e., “–CH3”) to the position of number five of the
cytosine pyrimidine ring in genomic DNA.

2.2 Statistical Tests

Interestingly, statistical analysis plays a significant role to identify differentially
expressed or differentially methylated genes (Mallik et al. 2013b) in the diseased
samples as compared to the normal samples. There are various types of statis-
tical tests (Bandyopadhyay et al. 2014) which can be grouped into two cate-
gories, i.e., parametric test, and nonparametric test. The parametric test is used
broadlywhichmight have two subcategories: equal variance assumption and unequal
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variance assumption. Somewell-known statistical tests under equal variance assump-
tion are t-test, one-way ANOVA (Anova1) test, and Pearson’s correlation test. Under
the unequal variance assumption, the popular statistical test isWelch’s t-test. Besides,
somewell-known statistical tests under the nonparametric test are significant analysis
of microarrays (SAM), linear models for microarray and RNA-seq data (LIMMA),
Wilcoxon rank sum test, etc. In the parametric test, data are assumed to be existed
in the form of the normal distribution, whereas the nonparametric test basically per-
forms well for non-normal distributed data.

T-test

T-test (Bandyopadhyay et al. 2014) a fundamental statistical test. The “two sample
t-test” compares the difference between themeans between the two groups in relation
to the variation in the data. In the t-test statistics, p-value is computed from t-table or
cumulative distribution function (CDF) (Bandyopadhyay et al. 2014). This p-value
indicates the probability of observing a t-value which is either equal to or greater
than the actually observed t-value in which the given null hypothesis is true.

Anova 1 Test

Anova 1 ( Analysis of Variance 1) (Bandyopadhyay et al. 2014) is a statistical test
where the mean in between two or more populations or groups can be tested. By
estimating comparisons of variance estimates, we can make comparison among the
group means. Variance is partitioned into two components, one is caused by a ran-
dom error (i.e., square sum within groups) and another is caused by the differences
between themeans of groups. After that, these variance components are tested for the
statistical significance. If significance is true, we reject the null hypothesis of no dif-
ference between the means in between the populations and subsequently we accept
the alternative hypothesis concerning about the significant difference in between the
two populations.

Pearson’s Correlation Test

Pearson’s Correlation Test (Bandyopadhyay et al. 2014) applied on the data are from
bivariate normal population since correlation is a degree to which two variables
are covaried in either positive or negative. In order to measure the actual strength
of a relationship between two variables, correlation coefficient is used. In linear
regression, we use Pearson’s correlation coefficient to estimate the intensity of linear
association between variables. However, it may be possible to have the nonlinear
association. Hence, we need to test the data closely to determine whether there is
any linear association or not.
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Wilcoxon Rank Sum Test (RST)

In case of small sample size where the groups are not normally distributed, t-test
might not provide the valid result. In such case, we use an alternative test which is
Wilcoxon rank sum test (RST) (Bandyopadhyay et al. 2014). In this test first, the
ranks of the combined samples are computed. Thereafter, the summation of ranks
for each different group is computed. RST is almost equivalent to Mann–Whitney
test. Of note, RST is much slower than the Student’s t-test.

Significance Analysis of Microarray (SAM)

Significance analysis of microarrays (SAM) (Bandyopadhyay et al. 2014) is some-
what same as the t-test. However, it can overcome the limitation of t-test. The only
difference is that SAM uses a fudge factor which is added to the standard error in
the denominator, whereas t-test does not use such fudge factor. This fudge factor is
used to solve the low variance problem. In spite of that, the main problem of using
SAM is that its performance is not always consistent.

Linear Models for Microarray Data (LIMMA)

Microarray data normally consists of few numbers of arrays/samples. Sowhen a large
number of genes are present in the data, a dimensionality problem may arise. Linear
Models for Microarray Data (LIMMA) method (Bandyopadhyay et al. 2014) may
overcome this problem. To handle such limitation, an empirical Bayes approach is
considered inLIMMAtest. Thismethod is one of the best efficient and consistent tests
for microarray data as well as RNA-Seq data where a prior knowledge regarding the
unknown gene (or, miRNA) specified variances to be the inverse-gamma distribution
is assumed.

2.3 Epigenetic Biomarker

In medical science, some medical conditions that are observed in a patient externally
andwhich differ frommedical symptoms felt by patients themselves only, are termed
as biomarker (Mallik et al. 2017). It is a special subtype of a medical sign. Epigenetic
biomarkers discovery is also a popular ongoing research domain.

2.4 Multi-Objective Optimization

However, we generally face some challenges with different benchmark cluster-
ing algorithms like k-means, k-medoids, partition around medoids (PAM) to cope
up with different types of categorical data. In general, such clustering algorithms
are based on single-objective function. In mathematics or computer science, an
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optimization problem is nothing but finding the best solution from all feasible solu-
tions. Thus, to get this optimal solution, we need to do maximization or mini-
mization of each objective function. However, in those clustering algorithms, the
single-objective function is not so efficient for the categorical data. To overcome
this limitation, we utilize multiple objective functions (Mukhopadhyay et al. 2007)
that should be optimized simultaneously. In a multi-objective scenario, conflicting
objective functions are often considered as the underlying objective functions. The
single-objective function produces us the best solution whereas multi-objective opti-
mization (MOO) produces a set of Pareto-optimal solutions as a final solution. In
formal, multi-objective optimization can be defined as a set of decision parameters
which will satisfy some inequality constraints and some equality constraints, and
finally optimize the objective functions.

2.5 Pareto-Optimal

The concept of Pareto-optimal (Mukhopadhyay et al. 2007) has a good effect on
multi-objective optimization. From the viewpoint of the minimization problem, a
decision vector might be defined as Pareto-optimal if and only if there exists no
such vector which dominates it or there exists no such feasible solution which might
produce a reduction based on any criterion without the concurrent increase in at least
one.

3 Method Hierarchy
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4 Description of Methods

Multi-objective optimization and machine learning techniques are currently utilized
on integrated manner for solving several research objectives in the domain of bioin-
formatics. In this chapter, we elaborate several such algorithms that employ with the
aforementioned problem.

4.1 Integrated Learning Approach to Classify Multi-class
Cancer Data

Deb and Reddy (2003) proposed a multi-objective optimization-based learning
approach for classification of binary and multi-class (Bhadra et al. 2017) microarray
data (Deb and Reddy 2003). In the bioinformatic field, finding gene subsets play a
responsible role to classify available samples into two or more classes (malignant
and/or, benign) through utilizing this model. The availability of a very few disease
samples compared to the number of genes and amassive search space of the solutions
stand researchers in front of a big challenge. Different combinations of genes may
obtain almost identical classification accuracy. The main challenge of researchers is
to find a small-sized reliable gene classifier with a high classification accuracy rate.
In this multi-objectiveminimization problem, the authorsminimize the classifier size
as well as the number of misclassified samples in both training and test datasets. To
tackle binary andmulti-class classification problems, they used the standardweighted
voting method for building a unified model. Their proposed multi-objective evolu-
tionary algorithm can uniquely identify several robust classifiers. It can also classify
the smaller sized testing dataset with 100% accuracy rate. The experimental results
demonstrate that its accuracy rate is comparatively better than the earlier reported
values. Furthermore, the algorithm is found to be flexible and highly effective in
nature.

4.2 Multi-Objective Optimization Method on Gene Regularity
Networks

Spieth et al. (2005) have combinedly applied a multi-objective optimization model
and microarray data technology (Liu et al. 2011) on gene regulatory networks. In
systems biology, the study on gene regularity networks is one of the very interesting
topics of research. Here, the authors focused on the task of obtaining gene regulatory
networks from empirical DNA microarray data. In this regard, authors used reverse
engineering sets of the time-series data profile acquired through the artificial expres-
sion analysis to obtain the parameters of a nonlinear biological systems from the
viewpoint of a multi-objective optimization problem. The first objective, also known
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as relative standard error (RSE), is the discrepancy between the simulated and exper-
imental data. On the other hand, the second objective measures the affinity of the
system. Here, the goal is to minimize both objectives to develop a system, fitting the
data as best as possible, and making it connected sparsely, thereby biological believ-
able. This approach can analyze the impact of the affinity of the regulatory network
on the overall interpretation process. Here, authors have developed a mathematical
model which simulates the gene regularity system in the interpretation process with
a multi-objective evolutionary algorithm (MOEA). From the abstract point of view,
here authors have obtained the nature of a cell through a gene regulatory network
that contains N genes where every gene gi crops a convinced extend of RNA ri
in expression and then alters the absorption of this RNA level with the changes of
time : r(t + 1) = h(r(t)); r(t) = (r1, . . . , rn). Here, authors use fine documented and
tested S-Sytems to model and to replicate regulatory networks. S-Systems follow the
power-law form which can be depicted through a set of the nonlinear differential
equations:

dri(t)

dt
= αi

N∏

k=1

rk(t)
Gi,k − βi

N∏

k=1

rk(t)
H
i,k (1)

whereGi,k andHi,k denote kinetic exponents, αi and βi define positive rate constants,
and N is the total number of equations in this system. They split the equations in (1)
into two integrals: an excitatory and an inhibitory component. The kinetic exponents
Gi,k and Hi,k regulate the framework of the regulatory network. If Gi,k > 0, gene
gk starts the fusion of gene gi. If Gi,k < 0 gene gk stops the fusion of gene gi.
Similarly, a positive value of Hi,k reveals that gene gk generates the deterioration
of the mRNA level of gene gi whereas a negative value of Hi,k proves that gene gk
conceals the deterioration of the mRNA level of gene gi. The authors simultaneously
test the affinity and the RSE by using a multi-objective evolutionary algorithm, that
optimizes the parameters denoted by G, H, αi and βi. The first objective function to
estimate the RSE fitness of the individuals is equated by

fobj1 =
N∑

i=1

S∑

p=1

{ (
r̂i(tp) − ri(tp)

ri(tp)

)2 }
(2)

where N be the number of genes in a system, S be the number of samples observed
in the empirical time-series data, and x̂ and x differentiate the estimated data of the
replicated model and sampled data in the experiment. The aim is to minimize the
fitness value fobj1. However, the second optimization objective refers to theminimiza-
tion of the closeness of the system, since in biology, the gene regulatory network is
treated as a sparse network. The affinity can be presented in two distinct manners:
The first one computes the maximal affinity of the genes which is the total number
of synergies that the system contains. It is formulated as follows:
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f 1obj2 =
N∑

i=1

(|sign(αi) + |sign(βi)) +
N∑

i=1

N∑

k=1

(|sign(Gi,k)| + |sign(Hi,k)|) (3)

And the second one is defined as follows, the median moderate affinity of all genes:

f 2obj2 = median

(
f 1obj2
N

)
(4)

After that, author has compared their proposed algorithmwith variousmulti-objective
techniques to infer gene regulatory networks from the time-series microarray data
(Bandyopadhyay et al. 2014). The result shows that the number of interactionbetween
different integrals has a great impact.Here, the increasing number of communications
makes the algorithm more difficult since the correct affinity is not previously known
by any researcher. However, the authors claim that their result is in a set of the
Pareto-optimal solutions from which the researcher can choose the most suitable
one.

4.3 Multi-Objective Genetic Algorithm in Fuzzy Clustering of
Categorical Attributes

Mukhopadhyay et al. (2010) proposedmulti-objective genetic algorithm-based fuzzy
clustering method (Mukhopadhyay et al. 2007) designed solely for categorical
attributes (Mukhopadhyay et al. 2007). In general, most of the clustering algorithms
such as partitioning around medoids (PAM), K-medoids, K-modes, and fuzzy K-
modes intend to optimize a single measure or objective function. Genetic algorithms
are also often used to design clustering algorithms formany data clustering problems.
Most of them generally optimize a single-objective function. However, optimizing
a single measure may not be appropriate for different types of categorical datasets.
To overcome this limitation, the authors used multiple, often conflicting, objective
functions in their proposed multi-objective-based fuzzy clustering approach. Here,
authors apply the concept of NSGA-II (non-dominated sorting genetic algorithm-
II), the popular elitist multi-objective genetic algorithm (MOGA), for an evolving
set of near-Pareto-optimal nondegenerate fuzzy partition matrices. Besides this, the
distance measure in between the two feature vectors is selected in this article. The
fitness objective vector is made of global compactness of the clusters as well as fuzzy
separation which they optimized simultaneously. In this article, authors have adopted
their method by following steps:
Step 1: Developing a distance measure.
Step 2: Chromosome encoding and population initialization.
Step 3: Computation of fitness functions.
Step 4: Applying genetic operators conventional uniform crossover and mutation.
Step 5: Obtaining final solution.
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Here, authors calculate the discrepancy between two categorical objects which have
more than one categorical attributes as a distance measure. Let, ak = [ak1, ak2, . . . ,
akn] and al = [al1, al2, . . . , aln] be the two categorical objects denoted by n categor-
ical attributes. The distance measure between ak and al is defined by Dist(ak , al)
which measures the total dissimilarity of the respective attribute categories of the
two categorical objects. Notably,

Dist(ak , al) =
n∑

i=1

δ(aki, ali) (5)

where

δ(aki, ali) =
{
0 if aki = ali
1 if aki �= ali

(6)

Here, authors define chromosome as a chain of characteristic values depicting the
K cluster modes. Since the number of characteristics of each categorical object is
m X1,X2, . . . ,Xm, the size of a chromosome is measured by m × K through the
assumption that the first m genes express the m-dimensions of the first cluster mode,
and the next m positions depict the same for the second cluster mode, and so on. The
initial population of chromosomes is formed by random data points. After defining
the initial population, next step is the computation of fitness function. The fitness
vector is made of the two fitness functions: i.e., the global compactness π of the
clusters, and the fuzzy separation Sp. Here, authors optimize two objective functions
simultaneously. To compute the measure first need to extract mode from an encoded
chromosome. Let the modes are denoted by b1, b2, . . . , bK . The membership values
upr , p = 1, 2, …, K and r = 1, 2, …, m are computed as follows:

upr = 1
∑K

q=1(
Dist(bp,ar)
Dist(bq,ar)

)
1

w−1

, for 1 ≤ p ≤ K; 1 ≤ r ≤ m (7)

Dist(bp, ar) and Dist(bq, ar) are priory defined. w is weighting coefficient. If
Dist(bq, ar) is equal to zero for some q, upr = 0 for all p = 1, 2, …, K, p �= q,
Otherwise upr = 1. Afterwards, each mode encoded in a chromosome is modified by
bp = [bp1, bp2, . . . , bpn] . The variance σp and fuzzy cardinality np for the pth cluster
are defined by

σp =
m∑

r=1

uwprDist(bp, ar), 1 ≤ p ≤ K (8)

and

np =
m∑

r=1

upr 1 ≤ p ≤ K (9)
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Now the global compactness π of the solution is depicted by the chromosome is
formulated as

π =
K∑

p=1

σp

np
=

K∑

p=1

∑m
r=1 u

w
prDist(bp, ar)∑m
r=1 upr

(10)

Another fitness function fuzzy separation Sp, the mode bp is assumed as the center
of a fuzzy set of the pth cluster, {bq|1 ≤ q ≤ K, q �= p}. The membership score of
each bq to bp, q �= p, is formulated as

μpq = 1
∑K

t=1,t �=q(
Dist(bq,bp)
Dist(bq,bt)

)
1

w−1

, p �= q (11)

The fuzzy separation is referred as

Sp =
K∑

p=1

K∑

q=1,q �=p

μw
pqDist(bp, bq) (12)

Here, the objective functions are chosen for their contradictory nature because mini-
mizing π increase the compactness of clusters as well as maximizing Sp increase the
intercluster separation. Need to balance these two objective function critically to get
good solutions. After that, authors obtain the new offspring solutions from thematch-
ing set of chromosomes by using the first genetic operator, i.e., conventional uniform
crossover with a random mask. Mutation is another genetic operator is applied on
a chromosome for selecting it to be mutated. However, the gene position of that
chromosome is selected randomly. After that, another random value is selected from
respective categorical set of attributes, and the categorical value of a particular gene
position is substituted by it. Here, the non-dominated solutions of parent and child
populations are reproduced in next generation. The different solutions are provided
to the clustering problem by the near-Pareto-optimal strings of the last generation.
In case of each non-dominated solution, the clustering label vector is identified from
the solution first through assigning every point to the cluster by according to their
memberships from highest to lowest. After that, need to reorder the label vectors in a
fashion of one after another. Subsequently, the clustering points reveal at least 50%
accuracy of solution. Authors use those points as the training set and the remaining
points are taken as a test class. Different methods like K-nearest neighbor (K-NN)
are applied for classification. Using this process, authors obtain final solution. In this
article, authors conclude that their proposed method is significantly superior to other
well-known techniques on basis of their developed statistical significance test. This
method is also efficiently applicable on various synthetic and real-life categorical
datasets.
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4.4 Multi-Objective Differential Evolution for Automatic
Clustering of Microarray Datasets

Suresh et al. (2009) adopted differential evolution (DE) (Bhadra et al. 2012) to
design a multi-objective optimization-based automatic clustering method (Suresh
et al. 2009). For this purpose, the authors used two conflicting objective functions :
the Xie-Beni index (XiBr) and a penalized version of fuzzy C means (FCM) function
(Jr). The main steps of the multi-objective clustering scheme are mentioned below.

Step 1: Search for the variable representation and plan to obtain the accurate number
of clusters: The authors considered n data pointswhere each of them is d-dimensional.
A maximum number of clusters, denoted by Kmax, is defined as Kmax + Kmax ∗ d .
Here, the authors specified a threshold value Thi,j where i represents the vector in
DE population and j represents a specific cluster. When Thi,j > 0.5 the j-th cluster
corresponding to the i-th vector is active; otherwise, it is inactive.
Step 2: (a) Choosing the objective functions: In general, the conflicting type objective
functions are chosen while designing the multi-objective clustering algorithm as it
directs the path of obtaining globally optimal solutions. The Xie-Beni index XiBr

and a penalized version of the FCM function Jr have chosen as the two objective
functions. The FCM measure is referred as

Jr = (1 + k)
n∑

j=1

k∑

i=1

urij.dist
2(

−→
Vj ,

−→ci ), 1 ≤ q ≤ ∞ (13)

−→
Vj = {V1, V2, . . . , Vd }

which is a real-coded search vector of d optimization parameters

−→ci = {c1, c2, . . . , ck}

which represents the centers encoded in DE vectors.
Here, r denotes the fuzzy exponent, dist specifies a distance measure between i-th
cluster centroid and the j-th pattern vector, k denotes the number of active cluster
centroids, and uij stands for the membership value of j-th pattern in the i-th cluster.
The ratio of the total variation σ to the minimum separation Sp of the clusters is
revealed by a function which is called XiB index, where σ and Spwas formulated as

σ =
n∑

t=1

k∑

i=1

u2it .dist(
−→ci ,−→Vt ) (14)

and

Sp(V ) = min
i �=j

{dist2(−→ci ,−→cj )} (15)
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The Xie-Beni Index was then formulated as

XiBr = σ

n × Sp(V )
=

∑n
t=1

∑k
i=1 u

2
it .dist(

−→ci ,−→Vt )

n × mini �=j{dist2(−→Vi ,
−→
Vj )}

(16)

It is noted that when the compactness of partitions is high and all the clusters are
appropriately separated, the value of the σ becomes low whereas the value of Sp
turns out to be high. This indicates it provides lower values of XiBr index. So, the
objective is minimizing the Xie-Beni index. uij stands for the membership score of
the j − th pattern in i − th cluster, where i = 1, 2, . . . , k and j = 1, 2, . . . , n. The
membership score is depicted as

uij = 1

∑k
t=1

(
dist(−→ci ,−→Vj )

dist(−→ct ,−→Vj )

) 2
r−1

(17)

To obtain good solutions, it is therefore necessary to simultaneously minimize
both Jr and XiBr indices.
(b) The conventional DE operator is used to create a trial vector of regulatory genes
and cluster centroids to simultaneously optimize the said two indices. Hence, the
regulatory genes and cluster centroids are matured in nature.
Step 2 is repeated until it meets the stopping condition.
Step 3: Selection of the best solution from Pareto-front: Finally, it obtains the final
set of Pareto-optimal solution from which the best one needs to be chosen by using
by gap statistic. It is important to say that the actual Pareto-optimal solution here
implies the correct number of clusters.

Here, authors have used six artificial and four real-life datasets of a variable range
of complexities and obtained promising result during the comparison with some
well-known schemes of multi-objective evolution algorithms.

4.5 Multi-Objective Particle Swarm Optimization to Identify
Gene Marker

Mandal andMukhopadhyay (2014) introduced a new approach using particle swarm
optimization (PSO) with the properties of the multi-objective function (Liu et al.
2008) to identify nonredundant and relevant gene markers from the microarray data
(Mandal and Mukhopadhyay 2014; Sabzevari and Abdullahi 2011). In fact, this
article concerns about a feature selection problem that utilizes a graph-theoretic
method in which a feature-dissimilarity graph is formed from the given data matrix.
A node represents a feature whereas an edge stands for a dissimilarity. Both the
nodes and edges are utilized in terms of some weight according to the relevance and
dissimilarity, respectively, among the features. The authors map the identification
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of the nonredundant and relevant gene marker problem into the densest subgraph
finding problem. The proposed multi-objective PSOmethod optimizes two objective
functions, viz., average node weights and average edge weights, simultaneously. The
algorithm proposes to detect nonredundant and relevant disease-related genes from
microarray gene expression data.

4.6 Multi-Objective Binary Particle Swarm Optimization
Algorithm for Cancer Data Feature Selection

RaoAnnavarapu et al. (2016) proposed an approach ofmulti-objective binary particle
swarm optimization (MOBPSO) for generating the cancer gene markers (Sarkar and
Maulik 2014) from the microarray gene expression profile (Rao Annavarapu et al.
2016). Using some preprocessing techniques, the size of the high-dimensional cancer
gene expression data is reduced to select proper domain features from the initials.
The aim of preprocessing step is to eliminate the redundant genes. During feature
subset generation, an appropriate smallest set of deferentially expressed genes are
selected across the classes for the efficient and accurate classification. Preliminarily,
we convert the values ranging in between zero to one using min-max normalization
technique (Bandyopadhyay et al. 2014). The gene-wise min-max normalization is
described as follows:

ab1(xi) = (abj(xi) − minj)

(maxj − minj)
∀i (18)

where ab1j and abj refer to the normalized score and unnormalized score, respectively.
Of note, maxj and minj signify the maximum and the minimum values, successively
in each gene-wise vector abj. After that, they have taken two thresholds Thinitial and
Thfinal , based on the central concept of quartiles in the literature by Banerjee et al.
(2007). Then, the gene-wise value table is converted to the Boolean (viz., either 0 or
1) form in the following way:
if ab1(x) ≤ Thinitial , then fix “0”; else if ab1(x) ≥ Thfinal , then fix “1”; else keep “*”
denoting “don’t care” condition. The mean of the occurrences of “*” is computed
on the threshold Thab. The genes (attributes) whose number of “*”s are ≥ Thab are
discarded from the table. It is the updated (i.e., reduced) attribute (gene) table value.
Thereafter, distinction table (i.e., a matrix having the Boolean values) is prepared
of which an entry d((k, j), i) denotes the pair of objects (xk , xj) along with gene
(attribute) abi. This discretization is performed by the following step:

d((k, j), i) =
{
1 if abi(xk) �= abi(xj)
0 if abi(xk) = abi(xj)

(19)

Now, the presence of a “1” refers to the gene (attribute) abi’s capability to distin-
guish in between the pair of the objects (xk , xj). The authors define a multi-objective
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function by using two fitness (objective) functions, which are made of the cardinality
of feature subsets, and that contain distinctive capability of those selected subsets.
First one (depicted as Ft1) is defined by the number of features (viz., a number of
1’s) and the second one (depicted as Ft2) is defined on the extent to which the feature
can recognize among the pair of the objects. The aforementioned objective functions
are defined as follows:

Ft1(va) = (Nva − Obva )

Nva

(20)

where va is the subset of attributes or genes, Obva is the number of 1’s in the feature
vector va, and Nva is the number of conditional features in vector va or the length of
va

Ft2(va) = Rva

(cl1 × cl2)
(21)

where Rva stands for the number of the object pairs va that can be distinguishable.
The two objective functions are conjoined into one through the weighted sum as

Ft = Ft1 × α + Ft2 × (1 − α) (22)

where 0 < α < 1. Let us assume an example where there are seven conditional
features, viz., (f1, f2, f3, f4, f5, f6, f7). Thus, the length of the vector is Nva = 7. The
Boolean digit becomes “1” if the respective feature can be distinguished between
the two objects, whereas the Boolean digit becomes “0” if the corresponding feature
cannot be differentiated between two objects. Suppose, here, there are two classes:
cl1 that contains two objects cl11 and cl12, and cl2 that has three objects cl21, cl22,
and cl23. The objective is here to select the minimal number of columns (features or
genes) from Table1 that covers all the rows (i.e., object pairs in Table1) denoted by
the Boolean digit “1”. Let us assume a sample input vector depicted as va = (1, 1, 1,
0, 1, 0, 1) where cl1 = 2, cl2 = 3, and the number of 1’s in va denoted by Obva is 5.
Rva is here computed as compare to the input vector va matching number of 1’s from
each row in the distinction table, which signifies that Rva is equal to 5. Thus,

Table 1 A simple example of a distinction table

Object
pairs

f1 f2 f3 f4 f5 f6 f7

(cl11, cl21) 1 1 1 0 1 0 1

(cl11, cl22) 0 1 0 1 0 1 0

(cl11, cl23) 0 1 1 0 1 0 0

(cl12, cl21) 1 0 1 0 1 0 1

(cl12, cl22) 0 1 0 0 1 0 0

(cl12, cl23) 1 0 1 0 1 0 0
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Ft1(va) = (Nva − Obva )

Nva

= (7 − 5)

7
= 0.29

and

Ft2(va) = Rva

(cl1 × cl2)
= 5

2 × 3
= 0.84

At each formation, the best non-influenced solutions for united populace of the
swarm at two successive genesis (current and next) are conserved. The best 50%
of solutions are permitted to derive the next genesis. This step has been repeated
for a finite number of times (generations). One random solution among top-ranked
non-dominated solutions is chosen as best. There might be more than one top-ranked
solutions available, but all solutionsmight have the same priority (Mallik et al. 2015).
Authors claim that the algorithm provides more accurate and validate results with
compare to the other benchmark methods.

4.7 Multi-Objective Approach for Identifying Coexpressed
Module During HIV Disease Progression

Ray and Maulik (2017) have applied a multi-objective methodology in human
immunodeficiency virus (HIV) infection progression to find differentially coex-
pressed modules (Ray and Maulik 2017). Here, authors analyze the gene expression
data to generate the co-regulated pattern of a cluster of a specified phenotype. The
proposed approach prepares a novel multi-objective framework to identify differen-
tially coexpressed modules in terms of altering coexpression in the gene modules
across the various stages of HIV-1 progression. The proposed method is completely
depending on the genetic algorithm-basedmulti-objective approach. Here, the objec-
tive function is formulated through the diversity of coexpression pattern of gene pairs
over the acute and the chronic stages in the HIV infection. The authors have pro-
moted the two correlationmatrices which depict the association of expression among
each association over the two epidemic stages. The first objective function is made
by the distance between two correlation matrices. Suppose, Mati(sk) stands for the
correlation matrix of the module Mati in the stage denoted as sk . Authors assume
that the inner product between two matrices Mati(s1) and Matj(s2) of the infection
stages s1 and s2 satisfy the following expression:

[Mati(s1),Matj(s2)] = tr{Mati(s1)Matj(s2)} ≤ ||Mati(s1)||F ||Matj(s2)||F (23)

For the two infection stages referred to as s1 and s2, the distance metric is formulated
as follows:

d1 = DistMati,Matj = 1 − tr{Mati(s1)}tr{Matj(s2)}
||Mati(s1)||F ||Matj(s2)||F (24)



Multi-Objective Optimization Approaches in Biological … 175

where tr denotes the trace operator,whereas ||.||F depicts Frobenius norm.Themetric
DistMati,Matj denotes the gap (i.e., distance) in between the two correlation matrices
Mati andMatj. If the two correlation matrices are same it will be zero, whereas it will
be equal to one whenever thematrices varymaximum amount. However, the distance
is inspired by Herdin et al. (2005), in which the metric utilized in order to notify the
variation of the spatial structure ofmultiple-input multiple-output (MIMO) channels.
Of note, the second objective function promotes the module eigengene oriented
measure. Module eigengene is basically treated as a representative of the entire gene
module. The first left singular vector of the gene expression matrix with respect to
the module is kept as the second objective function. Module eigengene is generally
measured by the highest amount of alternations in the module expression data. The
Pearson correlation between the expression data of a gene and a module eigengene
is measured through the membership score of that gene in a specific module. For
a module, the module membership (Mμ) values of all genes are obtained by two
infection stages. Let,Mμ

ms
k

gk depicts the module membership score of a gene gk of the
module mk in the infection stage s. For every module, they have calculated a metric
for the two infection stages s1 and s2. Specially, for individual gene of a module,
they have calculated the following metric:

diff _Mμs1,s2
gk = |Mμ

ms1
k

gk − Mμ
ms2

k
gk | (25)

This metric stands for the absolute change between the module membership score
of a gene in two individual infection stages. Here, authors compute the mean value
of all these values within a module. The second objective function is described by

d2 =
∑

Mok∈Mo

∑
gk∈Mok

diff _Mμs1,s2
gk

K
(26)

whereMobe themodule set, andK denotes the number ofmodules.Here, authors also
compare their results (i.e., a set of Pareto-optimal solution) with the state-of-the-art
methods using simulated data.

4.8 Other Methods

Seridi et al. (2012) propose a novel hybrid multi-objective meta-heuristic depend-
ing upon NSGA-II (non-dominated sorting genetic algorithm-II), CC (Cheng and
Church) heuristic, and a multi-objective local search PLS-1 (Pareto Local Search 1).
The objective of any biclustering algorithm in microarray data is to identify a subset
of genes which are expressed similarly in a subset of conditions. Maulik et al. (2008)
have used the concept of fuzzy for discovering overlapping biclusters. Here, they
have developed a multi-objective genetic algorithm-based approach for probabilistic
fuzzy biclustering (Liu et al. 2011) which minimizes the residual but maximizes
cluster size as well as the expression profile variance.
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5 Discussion

In 2003 (Deb and Reddy 2003), the multi-objective evolutionary algorithm is applied
on various disease-related datasets such as leukemia dataset, colon cancer dataset,
and multi-class several tissue-specific tumor datasets to find optimal gene subset.
Comparative result depicts that the updated version of NSGA-II generates smaller
sized classifiers, but provides more accurate classifications than the previous. The
generic procedure involves two ormore classes. Reliability in classification ensures a
prediction strength in the evaluation of a classifier. It is an approach which is capable
to figure outmultiple different classifiers, each having the same size and classification
accuracy. Since there are very few samples as compared to the large number of genes
in the gene expression data, it may produce nearly 100% classification accuracy.

In Spieth et al. (2005), the results of the test examples show that the number of
the interactions has a significant impact on the ability of an Evolutionary Algorithm
(EA) to fit a mathematical model to a given time series of microarray data. The large
number of connections between the system components provides a better result as
compared to the data fitness. Since there is a large number of model parameters as
well as the small number of datasets available, the system of equations is to be under-
determined highly. The multi-objective technique shows promising performance as
compared to the standard single-objective algorithms. Multi-objective evolutionary
algorithm (MOEA) preserves better diversity of the solutions in the respective popu-
lation since the standard algorithms are able to cope better with the issue of ambiguity
than the single-objective optimization algorithms. Furthermore, with the situation of
increasing the number of interactions, it would be more difficult to identify the real
system with respect to the correct parameter values. MOEA generates the outcome
in a set of Pareto-optimal solutions from which the researchers can select the most
preferable and appropriate model complying with different biological constraints.

A multi-objective genetic algorithm, NSGA-II utilizes the fuzzy clustering of
categorical attributes to obtain an evolving set of near-Pareto-optimal nondegenerate
fuzzy partitionmatrices (Mukhopadhyay et al. 2007).Here, authors have applied their
proposed algorithm on two synthetic (artificial) datasets and two real-life datasets
(Congressional Votes and Zoo) and compared the performance with other different
algorithms. In this article, the performance of the algorithmmeasured by %CP score
which is defined as the percentage of pairs of points which are clustered together
correctly. In addition, one way ANOVA test is applied to compare the mean %CP
in different algorithms. Authors produce extremely strong evidence against the null
hypothesis which states that the multi-objective fuzzy clustering generates better
%CP as compared to the other benchmark algorithms only for the goodness of
algorithm, but not by chance. For all other datasets, the proposed algorithm proves
same.

In Suresh et al. (2009), authors have proposed twomulti-objective algorithmswith
variants of DE and compared their proposed algorithm with two other well-known
multi-objective clustering algorithms. Here they test their method on six artificial
datasets and four real-life datasets. They have compared their results with the result
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of NSGA-II method for the same dataset. DE-variant multi-objective optimization
algorithms produce better final clustering solutions as compared to NSGA-II or
MOCK using the same objective function. In fact, they not only find out the correct
partitions in the data but also, in all cases, they are able to determine an optimal num-
ber of classes with minimum standard deviations. Here, the experimental outcome
indicates that DE holds immense promise as a candidate optimization technique for
the multi-objective clustering. Apart from this, in this book chapter, we have dis-
cussed some other multi-objective optimization methods that are based on particle
swarm optimization (PSO).

In Mandal and Mukhopadhyay (2014), authors have extended particle swarm
optimization (PSO) with the properties of the multi-objective function to identify
nonredundant and relevant gene markers from microarray data (Sarkar and Maulik
2014). The performance of the method is evaluated using several evaluation met-
rics such as sensitivity, specificity, accuracy, fscore, AUC, and average correlation.
Here, the entire dataset is divided into two different sets, viz., training set and test
set. First, they apply their proposed approach on the training data. Thus, a set of
non-dominated candidate solutions are obtained. After that, for finding final genetic
markers, they employ with the BMI score which considers the discriminative power
of each gene by incorporating the true positive rate from the logistic regression. They
basically utilize graph-based multi-objective particle swarm optimization (MPSO)
where they have identified subgraph having nonredundant and relevant feature nodes.
They basically model their multi-objective framework by non-dominated sorting
and crowding distance sorting. Three real-life datasets are used here in performance
analysis. Their proposed method provides better performance as compared to the
corresponding single-objective versions. They further apply various statistical tests,
viz., t-test, Wilcoxon’s rank sum test to obtain the significance and verification of
proposed method. In Rao Annavarapu et al. (2016), authors applied multi-objective
binary particle swarm optimization approach for the cancer feature selection of the
microarray data. They use different types of cancer microarray datasets like colon
cancer, lymphoma, and leukemia and obtain minimal subsets of features. For lym-
phoma dataset, 100% correct classification score is achieved by using Bayes logistic
regression, whereas Bayes net classifier yields 95.84% and naive Bayes classifiers
produce 97.42% on 22 feature subsets. Similarly, for the leukemia data, the percent-
ages of classification accuracy are 92.1% with Bayes Logistic Regression, 89.48%
with the other two classifiers on the 14 feature subsets. The result of the three bench-
mark cancer datasets demonstrates the feasibility and effectiveness of the proposed
method. The performance of the proposed method along with the existing methods
is compared with the standard classifiers, and it reports that the proposed method is
better in competitive performance than the other methods.

InRay andMaulik (2017), authors develop amulti-objective framework to identify
differential coexpression modules from two microarray dataset corresponding to
two different phenotypes. They optimize their two objective functions and compare
their algorithm with some state-of-the-art algorithms for measuring the differential
coexpression. It is evident that the proposed algorithmperforms better than the others.
Theymeasure the performance of their algorithmon simulated dataset. The simulated
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study validates the correctness. Through the simulated data, it represents that the
mean value is increasingwith StandardDeviation (SD) values ranging from 0.1 to 0.5
as expected. Hence, it shows a strong increasing pattern of mean with increasing SD
values. This proposed algorithm produces essential symptoms of HIV in human body
which ultimately causes AIDS. However, a tiny part of HIV infected gene remains
clinically stable for a long time span, and they refer to as long-term nonprogressors.
Since in nonprogressor stage, HIV infected individual remains clinically stable for
a long time span, we need to know how the regulation pattern of genes changes
across the three stages of progression, viz., acute to chronic stages along with acute
to nonprogressor stage. This is the future scope of this article.

Throughout the analysis of all existing multi-objective optimization techniques
on microarray data, it is clear that most of them are based on the approach of either
Genetic Algorithm or PSO or differential evolution. From the various dimensions,
those methods can win over other or can be lost by other one.

6 Conclusion

In this chapter, we have reviewed a number of multi-objective optimization tech-
niques toward solving several biological problems dealing with the microarray data.
In this context, three popular multi-objective optimization techniques, viz., MOGA,
MOEA, and MPSO, have been reviewed to show their effectiveness in tackling the
various aspects of biological problems. It could conclusively be argued that multi-
objective optimization techniques are one of the most useful techniques and thus,
are highly recommended to design sophisticated learning systems related to vari-
ous biological problems such as gene marker detection, gene-module identification,
development of rule-based classifier, etc., in microarray data as well as multi-omics
data containing several profiles from different directions.

Hence, in this chapter, to analyze the correct applicable method under some con-
straints in terms of fulfilling specified biological functional objectives, we have cov-
ered all such works along with their scope, advantages, limitations, and comparative
studies.
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Application of Multiobjective
Optimization Techniques in Biomedical
Image Segmentation—A Study

Shouvik Chakraborty and Kalyani Mali

1 Introduction

Among many problems, image segmentation is considered as one of the major chal-
lenges and a necessary stage of image analysis process. Segmentation is one of the
important stages of medical image analysis, and it has a high impact on the quality
and accuracy of the final results obtained. In biomedical domain, the accuracy of
the final result is very important (Demirci 2006). The process of segmentation is
nothing but the clustering of similar pixels. The similarity is determined depending
on one or more than one properties. The major goal of the segmentation process is to
find similar regions that indicate different objects in an image. To achieve this goal,
multiple objectives may need to be considered.

Multiobjective optimization in the decision-making process of image segmenta-
tion can be considered as a new area of research (Saha et al. 2009; Nakib et al. 2009a;
Shirakawa and Nagao 2009; Maulik and Saha 2009). In general, different objectives
for a problem are conflicting in nature. Therefore, it is not possible to optimize all
objectives simultaneously. In general, most of the real-world problems have different
objectives to be optimized. For example, maximize intercluster distance, minimize
intra-cluster distance,minimize feature count, maximize feature similarity index, etc.
Optimization of thesemetrics as a whole is a difficult issue because there are different
types of images of different modalities. Multiobjective optimization techniques are
useful and effective to solve these kinds of problems (Guliashki et al. 2009; Jones
et al. 2002; Coello 1999).
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The objective of this chapter is to study the literature related to the multiobjective
segmentation methods. In this work, the problem of image segmentation is discussed
in the light of multiobjective optimization. Moreover, study about the application of
multiobjective optimization methods in classification approaches is also provided.
Some clustering methods with different objectives are also discussed.

In general, image segmentation methods consist of various stages. The process
generally begins with the representation of the pattern that can be done by means
of cluster count, estimating the available patterns, and different properties found
in the clusters. Some features may be controllable. But some features may not be
controllable by the user. After selecting the appropriate representation of the pattern,
the next step is to select feature. Feature selection is one of the important tasks and
it needs some careful investigation of the image. In this stage, identification of the
most suitable set of feature that can be taken from the actual feature set is performed.
These features are useful in the clustering process. After feature selection, feature
extraction is performed. Feature extraction is one of the necessary steps where some
new features are derived by employing some algorithms on the selected features
(from the previous stage) (Chakraborty et al. 2017a).

Any one or both of the discussedmethods can be employed to get useful collection
of features that can be used in clustering. The main goal of feature selection and
extraction process is to select appropriate features and discard irrelevant features.
In biomedical image analysis, images of different modalities are considered, and
some set features that can be useful in one modality may not be applicable for other
modalities. Moreover, some features are very useful for a particular modality. For
example, different features based on intensity values, shape, and spatial association
are considered for the segmentation process of the images that are obtained using
CT scan method.

Similarity among patterns is computed with the help of selected and extracted fea-
tures. In general, the similarity is computed using a distance function that computes
the distance between two patterns. Variouswell-known distances are used to compute
the similarity between two patterns. For example, common distances like Euclidean,
City-Block, etc., are frequently used to represent similarity or dissimilarity among
different patterns. Now, distance measures are not sufficient to reflect conceptual
similarity among different patterns. So, different other similarity measures are used
to find the conceptual similarity among patterns. The selection of similarity measure
generally depends on the type of the image under test. For example, in the segmenta-
tion process of biomedical images, features like spatial coherence and homogeneity
are widely used. Some other commonly used criteria are connectedness of different
regions versus compactness within a region (Chin-Wei and Rajeswari 2010).

The whole process discussed above can be greatly affected by the grouping
approach. Different approaches can be considered for grouping. The obtained results
can be represented using two methods, namely hard/crisp and fuzzy. In case of crisp
representation, the boundary of a particular region is determined rigidly, i.e., one
pixel can be a part of only one region. But in case of fuzzy representation, one region
is not rigidly restricted within a certain boundary, i.e., one pixel can be a member
of different region with a degree of membership. Figure 1 illustrates the difference
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Fig. 1 a Original image of angioma skin disease. b Naïve segmentation provided in ISIC dataset.
c Crisp representation. d Fuzzy representation

between crisp and fuzzy representation. Here, the boundary of a skin lesion image
(International Skin Imaging Collaboration Website n.d.) is considered for illustra-
tion. In this figure, both crisp and fuzzy clustering has been demonstrated. In Fig. 1c,
it can be observed that each pixel belongs to a particular class only, i.e., either 0 or 1.
This is the hard or crisp representation. On the other hand, Fig. 1d shows the fuzzy
representation of the same. Here, one pixel has a variable degree of participation in
one class. Hence, each pattern has a variable membership.

To measure the quality of the output obtained by a clustering method, the validity
analysis must be performed. It is an important step that helps us to assess the result
and sometimes the algorithm. Sometimes this analysis is performed subjectively,
however, several indexes are available for the quantitative assessment of the results
obtained from a clusteringmethod. Thesemethods basically employ some objectives
(can be one or more than one) that can be optimized. Quality measures are generally
objective in nature and are used to judge the quality of the output. Different objectives
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Fig. 2 Multiobjective nature of the problems from input to output

are used in this process which is needed to be optimized to obtain an accurate number
of clusters which leads to the better segmentation results.

Multiple objectives (i.e., criteria) may be useful in the segmentation process as
well as in the evaluation scheme. In the analysis of the biomedical images, there
may be various sources of data that is used for a particular problem. There can be
multidimensional data that is needed tobeprocessed. Sometimes,multiple techniques
are combined to solve a particular instance of a problem (i.e., ensemble). These issues
lead us towards the multiobjective methods of problem-solving. Figure 2 illustrates
the multiobjective nature of the problems from input to output.

One of the popular and widely used multiobjective optimization techniques is to
convert the different objectives in such a way so that they can be treated and pro-
cessed as a single objective. This is generally performed by imposing some numeri-
cal weights on different evaluation parameters (i.e., criteria). After assigning suitable
weights, these values are multiplied with the objective function and aggregated to
form a single objective. Apart from this, another well-known technique is concur-
rent optimization of different objectives. These techniques are also known as Pareto
optimization approaches.

In the Pareto optimization methods, a simple transformation of multiple crite-
ria into a single one using some weights is not sufficient. Here, the computation
is performed on the basis of the dominance of attributes (Miettinen 2008). In the
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method, the relationship among different objectives is considered to compute inter-
mediate results prior to achieve a Pareto-optimal result (Bong andWang 2006). In this
context, the Pareto-optimal output is a collection of results that are non-dominated
with respect to each other. If we deviate from Pareto-optimal solution, then we may
achieve some gain for a certain objective but we have to compromise some other
objectives. This kind of solutions is preferred over single solutions because they are
more realistic and can be applied on many real-life problems. Different methods
have been developed to analyze biomedical images considering multiple objectives
to be optimized. In this chapter, a comprehensive review is provided on different
multiobjective methods for image segmentation.

2 Multiobjective Optimization

In this section, somebasic ideas ofmultiobjective optimizationmethod are illustrated.
In various real-life problems, different objectives have to be optimized simulta-

neously. It is in contrast to the situations handled by the conventional techniques
where a single objective needs to be optimized. The major problem in multiobjective
optimization is lack of well-defined optimum. Therefore, it is difficult to compare
obtained solution with each other. Generally, these kinds of problems can have mul-
tiple solutions. Each solution can be accepted where the relative significance of
different objectives is not known. In these cases, the optimum solution is somewhat
subjective and dependent upon the user (Deb 2001).

Multiobjective optimization problems can be defined as follows (Deb 2001):

optimize �F(�x) � [
f1(�x), f2(�x), . . . , fk(�x)

]

Satisfying the constraints,

gi (�x) ≤ 0 i � 1, 2, 3, 4, . . . ,m

hi (�x) � 0 i � 1, 2, 3, 4, . . . , p

Here,

�x � [x1, x2, . . . , xn]

fi (i = 1, 2, 3, …, k) are the objective functions, gi (i = 1, 2, 3, …, m) and hi (i = 1,
2, 3, …, p) are the constraint functions.

To define optimality, some definitions must be discussed.

Definition 1 (Dominating Solutions) A set of solutions �x � [x1, x2, x3, . . . , xk] is
said to be dominating over another vector �y � [y1, y2, y3, . . . , yk] if and only if �x is
partially less than �y. It is denoted by �x ≺ �y.
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Definition 2 (Pareto-optimal solutions) A solution is said to be Pareto-optimal solu-
tion if and only if the solution is not dominated by any other solution.

Definition 3 (Pareto-optimal front) The graphical representation of the fitness func-
tions whose non-dominated vectors belongs to the set of Pareto-optimal solutions is
known as Pareto-optimal front.

One point can be noted that all Pareto-optimal solutions may not be useful or
sometimes, not feasible.

3 Application of Multiobjective Optimization
in Biomedical Images

One of the oldest approaches that use multiobjective optimization for image anal-
ysis can be found in Bhanu et al. (1993). In this work, television image analysis
was performed. Later, many works has been done using multiobjective optimization
for image analysis. Various image analysis tasks like segmentation, classification,
etc., have been performed using the multiobjective optimization technique. A sum-
mary of multiobjective optimization techniques used in biomedical image analysis
is summarized in Table 1.

From Table 1, it can be observed that multiobjective-based methods are widely
used for medical image analysis. In general, medical images fall under themultispec-
tral image analysis category. Therefore, problem representation using multiobjective
methods is suitable for medical images (Niu and Shen 2006). In someworks, a fusion
of various features obtained from different images has been proposed (Zhang and
Rockett 2005). Wavelet (Seal n.d.; Mali et al. 2015)-based fusion has been used in
(Niu and Shen 2006). Multiobjective techniques for medical images analysis can be
tested on various datasets. One of the popular ones is the UCI repository (Newman
et al. 1998). In this repository, one can get some images on skin, Iris, Wine, Breast
cancer, etc., and so on. Another popular one is the BrainWeb (Cocosco et al. 1997).
In (Saha and Bandyopadhyay 2010), various types of datasets have been used to test
the effectiveness of the multiobjective techniques in digital image segmentation.

Segmentation of digital images can be considered as the classification of pixels.
The classification of the pixels is done on basis of different features (Hore et al.
2016a; Chakraborty et al. 2016). In case of classification, multiobjective approach
is used to extract features. In case of medical image analysis and segmentation, the
classifiers are trained in such away so that edges of different regions can be efficiently
tacked, and it is one of the important jobs for different applications (Hore et al. 2015,
2016b; Chakraborty et al. 2017a, b). Multiobjective approaches are also useful in
constructing an ensemble of various classifiers.

In general, two types of approaches are considered for biomedical image clas-
sification. The first one is called supervised, where the classifier is trained earlier.
And, the second one is called unsupervised classification, where the process begins
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Table 1 Summary of multiobjective optimization methods used in biomedical image analysis
Method Description Dataset

Nakib et al. (2009b) In this work, a multiobjective
optimization-based technique was proposed
for thresholding. Pareto-based method was
employed to perform the job. This method is
capable of solving multiple criteria
simultaneously. This feature helps to enhance
the quality of the segmented image. NSGA-II
method was used to generate the Pareto front
and desired optimal solution

Berkley dataset (Berkeley University 2007)

Omran et al.
(2005a)

Differential Evolution (DE)-based method
was proposed in this work. It is basically a
clustering technique that computes the user
given number of clusters

Imaginary dataset contains three types:
synthetic, MRI, and LANDSAT 5 MSS (79 m
GSD)

Mukhopadhyay
et al. (2009b)

A clustering method based on multiobjective
genetic fuzzy clustering technique was used in
this work. It takes help from the NSGA-II for
searching purpose. This method was applied
on different medical images like T1-weighted,
T2-weighted, MRI brain images, etc.

BrainWeb database (n.d.)

Faceli et al. (2008) In this work, a selection technique was
developed. This method was based on
corrected Rand index. This method was
applied on the collection of solutions
collected from the MOCLE method

Synthetic and datasets like iris, glass obtained
from UCI Machine learning repository
(Newman et al. 2006)

Pulkkine and
Koivisto (2008)

In this work, a hybrid technique was
developed to identify Pareto-optimal fuzzy
classifiers. This method uses an initialization
technique that consists of two stages. So, no
early knowledge is needed. Moreover, no
random initialization is performed. In the first
step, a decision tree is constructed. To
construct the decision tree, C4.5 method was
employed. Depending on the decision tree,
input space is divided. The population is then
created by substituting parameters of fuzzy
classifiers. One thing should be kept in mind
that the initial population should be well
distributed. NSGA-II was employed to
optimize initial population. One of the
advantages of this technique is, it does not
need the count of the fuzzy sets along with
distribution

Wisconsin breast cancer, Pima Indians
diabetes, Glass Cleveland heart disease, Sonar
Wine (Newman et al. 2006)

Ahmadian et al.
(2007)

This work focuses on the ensemble of
classifiers. Multiobjective optimization
method was employed to support the
classifier. In this method, a
“bagging-and-boosting-like” technique was
used. It is also advantageous in smaller
dimensional feature space. In lower
dimension of the feature space, ambiguity can
be generated which can be removed by this
method. Multiobjective GA has been used to
combine and create an ensemble

Wisconsin Breast Cancer, Wisconsin Breast
Cancer, Iris, Pima (Newman et al. 2006)

(continued)
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Table 1 (continued)
Method Description Dataset

Cococcioni et al.
(2007)

In this work, a method has been proposed that
can choose most appropriate binary classifier
based on fuzzy rule for a particular problem.
An algorithm consisting of three objectives
has been developed. Sensitivity and specificity
were used to compute the accuracy of the
system. The ROC convex hull technique was
used to find the most appropriate classifier

20 clinical cases, containing a total of about
7,000 slices. The CT scans were collected
during a mass screening performed in an
Italian Hospital

Erin (2001) In this work, a feature selection method was
proposed. Multiobjective GA is applied to
choose some features that can give the
optimal segmentation output. This method
was tested on medical images. Here,
self-organizing map is employed to perform
classification. Quantization error and
topology preservation are the two attributes of
the SOM that is used as the objective function
of the GA. This method was tested on MRI
image data and 3D simulation model

MRI dataset from the whole brain atlas
(Johnson and Becker 1999)

Nakib et al. (2008) The main motivation behind this method
is—single objective optimization methods
may not always be useful for the segmentation
job. In this method, two objectives have been
considered. These are within-class attribute
and the overall probability of error attribute. It
is used to compute optimal threshold value.
Moreover, a modified simulated annealing
method was proposed for the “histogram
Gaussian curve fitting” problem

Berkley dataset (Berkeley University 2007)

Wang and Wang
(2006)

This work focuses on building an ensemble of
classifiers. Here, each classifier is trained
depending on specific weights. Weighting is
associated with the input set. A genetic
algorithm was used for the searching purpose.
It can find suitable chromosomes. One of the
major differences from the traditional GA is
that it does not only consider the best
solution. It exploits all solutions generated
during the process. This method was tested on
the UCI benchmark datasets

This breast cancer database is obtained from
the University of Wisconsin Hospitals,
Madison from Dr. William H. Wolberg and
some other datasets

Krishna and Kumar
(2016)

In this work, a hybrid approach has been
proposed for color image segmentation.
Genetic algorithm and differential evolution
has been used as a hybrid method for color
image segmentation

Berkley dataset (Berkeley University 2007)
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with the partitioning process the input image into different clusters, i.e., set of related
objects.

Multiobjective methods may use some different criteria than the conventional
unsupervised methods. In (Optiz 1999), the fitness criteria are defined as the accu-
racy and diversity of the classifier used instead of conventional fitness criterion of the
unsupervised classifiers. In (Cococcioni et al. 2007), accuracy and complexity of the
used classifier have been considered as the objective. In this method, approximate
Pareto-optimal solutions have been computed. In some of the cases, multiobjec-
tive optimization methods have been used along with semi-supervised classification
methods (Ghoggali and Melgani 2007; Ghoggali et al. 2009).

Sometimes, fuzzy segmentation method gives better performance. In case of
images that contain ambiguity, fuzzy methods perform better than crisp techniques.
Imprecise data can be easily handled using fuzzy methods (Karmakar and Dooleya
2002). Fuzzy rule-based methods are useful in various occasions because they can
interpret both linguistic and numeric variables. So,multiobjective techniques coupled
with fuzzy rule-based systems can also be used for classification purpose. Fuzzy rules
can be used to find a collection of non-dominated rules with the help of some meta-
heuristic (Chakraborty et al. 2017a; Chakraborty and Bhowmik 2013; Chakraborty
and Bhowmik 2015a, b; Chakraborty et al. 2015, 2017; Roy et al. 2017) methods.
A multiobjective method based on the fuzzy rule has been tested in (Ishibuchi and
Nojima 2005). In (Cococcioni et al. 2007), binary classifiers based on fuzzy rule
were investigated. In this approach, an optimization method was tested consisting of
three objective functions. These methods show that fuzzy-based methods along with
multiobjective techniques give faster convergence.

In some of the cases, multiobjective fuzzy clustering techniques are used with
artificial neural networks. In (Mukhopadhyay et al. 2008), a probabilistic classifier
has been developed based on this technique that gives better performance. This
concept was first introduced in (Kottathra and Attikiouzel 1996). In (Abbass 2003),
a learning method based on multiobjective ANN was proposed where the main
objectives were network complexity and the error involved in training. A summary
of somemultiobjective approaches that have been applied in different domains along
with biomedical image analysis is given in Table 2.

4 Conclusion

In general, image segmentation problems consist of several objectives that have
to be optimized simultaneously. So, multiobjective solutions are very helpful in
determining the segments by optimizing different objective functions. Evolutionary
algorithms are very useful in this context. Multiobjecive evolutionary segmentation
methods perform well on different modalities of biomedical images. This chapter
investigates some of the multiobjective methods that have been used for biomedical
image segmentation as well as some other techniques that can be applied on biomed-
ical images. Different multiobjecive methods along with their features have been
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Table 2 Summary of some multiobjective approaches
Method Multiobjective technique Number of

objectives
Brief description

Mukhopadhyay and
Maulik (2009a)

NSGA-II 2 In this method, a fuzzy voting
method was developed along with
SVM classifier

Mukhopadhyay
et al. (2007)

NSGA-II 2 A multiobjective GA-based
method was developed for image
segmentation

Faceli et al. (2008) NSGA-II 2 In this work, a method has been
proposed for selecting

Mukhopadhyay
et al. (2009b)

NSGA-II 3 A clustering method based on
multiobjective genetic fuzzy
clustering technique was used in
this work

Saha and
Bandyopadhyay
(2010)

Simulated annealing 3 In this work, multiobjective
clustering method was developed.
The result of this method was the
solution that has the minimum
Minkowski score

Collins and Kopp
(2008)

Simulated annealing 2 In this work, a synthetic data was
prepared along with a new
performance metric to test the
method

Saha and
Bandyopadhyay
(2008)

Simulated annealing 2 Multiobjective SA-based method
was proposed. A parameter to
compute the validity of a cluster
output was employed for selection

Handl and Knowles
(2007)

PESA-II 2 In this work, Silhouette Width
along with the attainment score
was used to determine the
optimum solution and

Shirakawa and
Nagao (2009)

PESA-II 2 This method computes different
segmentation result using an
evolutionary approach. A basic
heuristic technique was used for
selecting a single solution from
the set of Pareto solutions

Matake et al. (2007) SPEA-2 2 A multiobjective method has been
developed to determine the “K”
value

Bhanu et al. (1993) Genetic algorithm and hill
climbing

5 Image segmentation method with
hybrid search mechanism

Omran et al.
(2005b)

Differential evolution 2 DE-based method for
unsupervised classification

Paoli et al. (2009) PSO 2 Multiobjective PSO-based image
clustering method was developed.
The nearest result to the source of
the performance space has been
selected
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studied in this paper that can help in taking the decision about the algorithm that can
solve a particular problem of segmentation more efficiently. Choice of the algorithm
is highly dependent on the nature of the problem and the complexity involved. More-
over, problems, as well as algorithms, may have to be customized for an appropriate
formation that can handle different constraints appropriately. The determination of all
Pareto fronts is not necessary for most of the cases. In general, a portion of the com-
plete solution space is sufficient if it can be determined efficiently. In future, different
evolutionary approaches (e.g., firefly, bat, etc.) along with multiobjective solutions
can be investigated and compared with others to test the efficiency. Improvement in
biomedical image analysis is highly required for accurate and efficient analysis of
the data to diagnose various diseases in a timely manner that can save numerous lives
and enhance the quality of living.
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Feature Selection Using Multi-Objective
Optimization Technique for Supervised
Cancer Classification

P. Agarwalla and S. Mukhopadhyay

1 Introduction

The importance of classifying cancer and appropriate diagnosis of advancement of
disease has leveraged many research fields, from biomedical to the machine learning
(ML) domains. For proper diagnosis of a disease and categorizing it into different
classes, investigation in the changes of genetic expression level is needed. Gene
expression data (Zhang et al. 2008) has a huge impact on the study of cancer clas-
sification and identification. The ability of machine learning approaches to detect
key features from a huge complex dataset reveals their importance in the field of
feature selection frommicroarray dataset. Modelling of cancer progression and clas-
sification of disease can be studied by employing learning-based approaches. The
methodology that has been intimated here is based on supervised learning technique
for different input feature genes and data samples. In the supervised learning process,
a set of training data has been provided along with their class information. Based on
the methodology, it will identify the relevant informative features which will further
identify the class of an unknown test sample. Multi-objective optimization tech-
niques are involved in this paper to select the required features which are efficient in
the classification purpose as well as carry significant biological information related
to disease. Then, those features are used to train the classifier and a new sample is
diagnosed.

Different approaches are developed by the researchers for finding marker genes
(Khunlertgit and Yoon 2013; Bandyopadhyay et al. 2014; Mukhopadhyay and Man-
dal 2014; Apolloni et al. 2016) related to different diseases. Various statistical filter
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approaches (Bandyopadhyay et al. 2014), clustering processes (Mukhopadhyay and
Mandal 2014) and wrapper-based hybrid approaches (Apolloni et al. 2016) are uti-
lized for this purpose. Many supervised and unsupervised classification techniques
are used for classification or clustering of tissue samples. A family of bio-inspired
algorithms has also been applied while formulating the problem as an optimization
problem. The gene subset identification problem can be reduced to an optimization
problem consisting of a number of objectives. However, identifying most relevant
and non-redundant genes is the main goal that is to be achieved. Motivated by this,
different multi-objective methodologies are proposed in the literature (Mukhopad-
hyay andMandal 2014; Ushakov et al. 2016; Zheng et al. 2016;Mohamad et al. 2009;
Hero and Fluery 2002; Chen et al. 2014). Recently, a number of literature involve
multi-objective based methods for the feature selection from microarray datasets.
To obtain a small subset of non-redundant disease-related genes by using the multi-
objective criterions, different bio-inspired algorithms are applied. For example, a
variable-length particle swarm optimization (Mukhopadhyay and Mandal 2014) is
implemented. A bi-objective concept is implemented for clustering of cancer gene
frommicroarray datasets (Ushakov et al. 2016). Inwork (Zheng et al. 2016), a numer-
ical method is implemented with GA to extract informative features in the domain
of bioinformatics. Multi-objective function is optimized by genetic algorithm (GA)
(Mohamad et al. 2009) to obtain significant genes for cancer progression. Pareto-
based analysis is performed for filtering the relevant genes (Hero and Fluery 2002).
In this chapter, the problem is formulated as a multi-objective optimization prob-
lem, and multi-objective blended particle swarm optimization (MOBPSO), multi-
objective blended differential evolution (MOBDE), multi-objective blended artificial
bee colony (MOBABC) and multi-objective blended genetic algorithm (MOBGA)
are proposed for this purpose. Here, the stochastic algorithms are modified using
Laplacian blended operator to incorporate diversity in the search process. It helps to
get more diversified and promising result. This has been established theoretically and
experimentally in the subsequent sections. The modified multi-objective algorithms
are searching for Pareto-front solution which represents the feature genes for cancer
classification. Then, the comparative analysis is performed based on the efficiency
of finding relevant marker genes which are significantly associated with the disease.

For the reliable classification of a disease, multiple objectives play an important
role. In the context of gene selection from the microarray data, two objectives are
considered. One of them allows selection of the most differentially expressed genes
which help in identifying the separation between classes. Another consideration is
given to the accurate classification of the disease. T-score is used for the job of
selecting differentially expressed feature. Those selected genes may not be efficient
to provide good classification result due to the heterogeneous nature of gene expres-
sion. Our mission is to choose the combination of feature which is providing high
accuracy also. Again, if entire differential features are used, it can cause over-fitting
of the classifier. So, it is necessary to eliminate redundant features for the task of
classification. Here, our aim is to obtain high accuracy of classification. As well as
the selected features should have good value of t-score and this in turn indicates
differentiability in expression level. If the proper combination of genes for the deter-
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mination of disease can be identified, then it will be a significant contribution for the
diagnosis of disease and the treatment will be more effective and precise.

Experiments are performed using different types of microarray datasets which
include Child_ALL (Cheok et al. 2003), gastric (Hippo et al. 2002), colon (Alon
et al. 1999) and leukemia (Golub et al. 1999) cancer data. Initially, the performance
of the proposed methodologies for the job of classification of disease through super-
vised learning process is evaluated. As mentioned, in this chapter, differential evo-
lution (DE) (Price et al. 2006), artificial bee colony (ABC) (Karaboga and Basturk
2007), genetic algorithm (Yang and Honavar 1998) and particle swarm optimization
(PSO) (Kennedy 2011) algorithms are involved for solving multi-objective feature
selection problem along with Laplacian operator. Then, the results of classifica-
tion are compared with other established methods for four real-life cancer datasets.
The proposed Laplacian operator integrated with multi-objective swarm and evolu-
tionary algorithms establishes good results in all respect. The results ascertain the
ability of multi-objective blended particle swarm optimization (MOBPSO), multi-
objective blended differential evolution (MOBDE), multi-objective blended artificial
bee colony (MOBABC) andmulti-objective blended genetic algorithm (MOBGA) to
produce more robust gene selection activity. At the end of the chapter, the biological
relevance of the resultant genes is also validated and demonstrated.

The remaining of the chapter is presented as follows: First, a description of exper-
imental datasets is presented. Next, the proposed technique is presented for marker
gene selection. In the next section, the result of the proposed technique is demon-
strated and a comparative analysis is provided. Finally, the biological relevance of
the result is given.

2 Experimental Datasets

Two classes of raw microarray data for different types of cancers are collected.
In microarray data, the expressions of genes are arranged column-wise, whereas
the samples, collected from different sources, are arranged in row. The changes at
molecular level of genes can be visualized from the microarray technology. Here,
gene expressions from different samples are analysed in a single microscopic slide.
Samples from cancerous and non-cancerous tissues are taken and dyed using fluo-
rescent colours. Then, through hybridization procedure, the combined colours are
analysed. The intensity of different areas of microarray slide reveals the informative
content and subsequently, conclusion can be made by investigating the expression
level. Authors have collectedmicroarray datasets of different variants of cancers from
reliable sources such as National Centre for Biotechnology Information (NCBI).
A brief description of the microarray datasets used for the experimental purpose is
given below.

Child-ALL (GSE412) (Cheok et al. 2003): 110 samples of childhood acute lym-
phoblastic leukemia are collected. Among them, 50 and 60 examples are of before
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and after therapy, respectively. The samples are having expression level of 8280
genes. So, the dimension of the dataset matrix is D110X8280.

Gastric Cancer (GSE2685) (Hippo et al. 2002): Gastric cancer occurs due to the
growth of cancerous cells in the lining of stomach. This experimental dataset is
having expression of 4522 genes from total 30 number of different tissue samples.
Two classes of tumour such as diffuse and intestinal advanced gastric tumour samples
are considered. 22 samples are present in the first class and another class is having 8
samples.

Colon cancer (Alon et al. 1999): The colon dataset contains expression values of
6,000 genes column-wise. Totally, 62 cell samples are present row-wise, among
which first 40 biopsies are from tumour cells and next 22 samples are from healthy
parts of the colon. The data is collected from a public available website: www.bico
nductor.com/datadet.

Lymphoma and Leukemia (GSE1577) (Golub et al. 1999): The leukemia dataset
consists of 72microarray experiments including two types of leukemia, namelyAML
(25 samples) and ALL (47 samples). Expressions of 5147 genes are present in the
dataset. The data is collected from a public website: www.biolab.si/supp/bi-cancer/
projections/info/.

Preprocessing Microarray Data: The microarray data generally consists of noisy
and irrelevant genes which may mislead the computation. So, to extract most infor-
mative and significant gene subset which is relevant for the diagnosis of the disease,
first the noisy and irrelevant genes are to be eliminated. To analyse the noise content,
signal-to-noise ratio is calculated for each gene and based on the SNR value, the
top 1000 genes are selected for the next level of computation. The formula for SNR
value calculation is given in Eq. (1). Here, μ1, μ2 are the means of gene expression
of a particular gene over the samples of first class and second class, respectively.
sd1, sd2 are the standard deviations of gene expression of a particular gene over the
samples of first and second class, respectively.

SN R � μ1 − μ2

sd1 + sd2
(1)

Next, usingmin-max normalization process (Bandyopadhyay et al. 2014), those 1000
genes are normalized. If the expression of a gene over the samples is represented
by the variable g, then the min-max normalization formula for a data point gi is
described by Eq. (2). Thus, a data matrix Dmx1000 is formed where m is the number
of samples. This generated data matrix is used for the next level of computation.

xi (normali zed) � gi − min(g)

max(g) − min(g)
(2)

http://www.biconductor.com/datadet
http://www.biolab.si/supp/bi-cancer/projections/info/
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3 Objectives

A multi-objective optimization problem (MOP) can be represented as follows:

maximize F(x) � ( f (x), . . . , f m(x))T (3)

subject to x ∈ �, where � is the search space and x is the decision variable vector.
F: � → Rm, where m is the number of objective functions, and Rm is the objective
space. The heterogeneity in the expression level of genes must be high from one
patient to another and an optimal combination of feature set through learning process
is to choose which will perform well for the classification of new sample. It has
been noticed that a particular combination of gene set which is highly differentiable
from one class to another sometimes fails to achieve good classification result. It
sometimes causes over-fitting of the classifier. So, to keep a balance between them,
a multi-objective problem is constructed. It gives rise to a set of trade-off between
Pareto-optimal (P-O) solutions (Srinivas and Deb 1994). Here, two objectives are
considered in this chapter which are described below:

t − score � μ1 − μ2√(
sd2

1
n1

+ sd2
2

n2

) (4)

Accuracy � tn + tp
tn + tp + f p + fn

(5)

For t-score calculation, the mean expression of the selected genes over the sam-
ples for both the classes is calculated. Then, the difference between the two mean
expressions is computed. For fitness function for PSO computation t-score is utilized
which is described in Eq. (4) where μ and sd represent the mean and the standard
deviation value of the two classes, respectively. n1 and n2 are the number of samples
present in the two classes, respectively. Higher fitness function indicates the better
selectivity of genes. As another objective function, accuracy is estimated using the
number of false positive (fp), true negative (tn), false negative (fn) and true positive
(tp) for class prediction. The objective used for formulating multi-objective problem
and the proposed methodology is discussed in brief in the following sections.

4 Proposed Methodology

The problem has been modelled as a multi-objective optimization problem, and dif-
ferent multi-objective evolutionary algorithms are employed. In the multi-objective
optimization problem, a set of solutions called Pareto-optimal has to be achieved.
Here, based on two objective functions, optimal Pareto solution is generated and
for this purpose non-dominated sorting technique (Srinivas and Deb 1994) has been
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used. A new version of optimization algorithm is proposed and developed, entitled
as multi-objective blended particle swarm optimization (MOBPSO) algorithm for
finding gene subsets in cancer progression. PSO algorithm is modified, and Lapla-
cian blended operator is integrated to provide better diversity in searching procedure.
So, the multi-objective blended PSO based concept is implemented along with GA,
DE and ABC algorithms and MOBABC, MOBGA and MOBDE are developed.
Subsequently, a comparative study is performed using the proposed multi-objective
stochastic computational methods. For the selection of genes from microarray data,
supervised learning method is employed where the total experimental dataset is par-
titioned into two subsets. One is used for training purpose of the proposed model
and the other one is used for evaluation of the model. The schematic diagram of the
proposed methodology is shown for MOBPSO in Fig. 1, and the process selection
of bio-markers from gene expression profile is described below.

4.1 Multi-Objective Blended Particle Swarm Optimization
(MOBPSO)

4.1.1 Concept of Particle Swarm Optimization (PSO)

Particle swarm optimization, proposed by Eberhart andKennedy in 1995, is a simple,
well-established and widely used bio-inspired algorithm in the field of optimization.
The technique is developed based on the social behaviour of a bird flock, as the flock
searches for food location in a multidimensional search space. Location of a particle
represents the possible solutions for the optimization function, f(x). Velocity and the
direction of a particle are affected by its own past experience as well as other particles
in the swarm have an effect on the performance. The velocity and position update
rule for ith particle at tth generation are given in Eqs. (6) and (7) where the values of
two random weights, c1 and c2, represent the attraction of a particle towards its own
success pbest and the attraction of a particle towards the swarm’s best position gbest
respectively. w is the inertia weight. After a predetermined number of iterations, the
best solution of the swarm is the solution of the problem.

vi (t) � w ∗ vi (t − 1) + c1 ∗ rand ∗ (
pibest − xi

)
+ c2 ∗ rand ∗ (

gibest − xi
)

(6)

xi (t) � xi (t − 1) + vi (t) (7)
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Fig. 1 Computational methods using MOBPSO-based approach

4.1.2 Concept of Multi-Objective Blended Particle Swarm
Optimization (MOBPSO) for the Selection of Genes

The main drawback of PSO algorithm is that it is easily trapped to local optima due
to scarcity of divergence which leads to premature convergence. To get rid of the
issue, a diversity mechanism should be applied to get rid of any local optima. So,
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archiveSwarm

Fig. 2 Schematic diagram of the proposed methodology

in course of searching, better results can be achieved by introducing some sort of
diversity technique. Beingmotivated by this, a blended operator is implemented with
PSO and MOBPSO is proposed. In MOBPSO, particles are searching for optima,
following the rules of PSO and if any particle is stuck at local optima, then it comes
out of the situation by using the new probable solution generated through Laplacian
blended operator. Blended Laplacian operator works very effectively to generate
new probable solutions in the search space. The whole swarm is directed to the new
solution which helps to discover new area of searching. As a whole the performance
of the algorithm is accelerated and a better optimized result of the problem can
be obtained. The mechanism is discussed below and shown in Fig. 2. MOBPSO
is applied in the domain of multi-objective problem where the aim is to choose
the Pareto-optimal solution. For the selection of feature genes, it is optimizing two
objective functions and after each iteration non-dominated solutions are selected. As
a single fitness value cannot be assigned, a modification is performed in the updating
rule of the particles. In MOBPSO, the particles of the swarm are updating their
velocity, and position towards the food using Eqs. (8), (9) and during updating the
effect of gbest is only taken into consideration.

vi (t) � w · vi (t − 1) + c1 · rand · (gibest − xi ) (8)

xi (t) � xi (t − 1) + vi (t) (9)

The gbest is the best solution chosen among the non-dominated solutions obtained
so far. For the problem of identifying significant genes, the differentially expressed
genes in different classes are important to be identified. As mentioned, t-score is
used as one of the objective functions for the purpose. Accuracy is chosen as another
objective function where the aim is to maximize the value of the accuracy. Now for
each iteration, new subset of genes is generated by MOBPSO. The position of each
particle represents a possible gene subset of the problem. Then, the fitness value of
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each particle is calculated and based on the non-dominated sorting, better solutions
are sorted. The non-dominated solutions are stored in an archive. As, for multi-
objective problem, a number of Pareto-optimal solutions can be achieved, one of the
Pareto-optimal solutions is randomly chosen as gbest. The gbest is used for the updating
of velocity and position of a particle of MOBPSO. In the next iteration, again new
subsets of genes are selected by the particles and the non-dominated solutions are
loaded into the archive. Now, the archive is updatedwith the non-dominated solutions
among the solutions obtained so far. A binary version of the optimization algorithm
is used to select feature genes which are to be presented in the computation. The
selection of genes is done based on Algorithm 1.

Algorithm-1 (Implementation of Binary concept)

for j=1:dimension of particle
if x (j) > 0.5

x(j)=1;
else x (j)=0;
end; 

end;

During the search process, it may happen that generation of new better solution
is stuck after few iteration due to the lack of diversity. So, the algorithm needs
some mechanism which can direct the particles to a new probable region. Blended
Laplacian operator works very efficiently to provide diversity to the swarm. If no
better solution is generated, blended operator produces a new gbest at that point to
provide diversification to the swarm. The mechanism is shown schematically in
Fig. 2. First, two random solutions, sol1 and sol2, are chosen from the archive. Then,
using a random coefficient termed as beta, two new solutions y1 and y2 are produced.
The new gbest, gbest_new, is a combination of these two new solutions y1 and y2 having
a weightage factor gamma. Blended Laplacian operator used for gbest_new generation
is described below. gbest_new is completely a new solution generated from the old best
non-dominated solutions, achieved so far. The new solution works to direct the entire
swarm to a new possible direction.

gamma � 0.1 + (1−0.1)0.95∗i ter

beta � 0.5 ∗ log(rand)

y1 � sol1 + beta ∗ (sol1 − sol2)

y2 � sol2 + beta ∗ (sol1 − sol2)

gbest_new � gamma ∗ y1 + (1 − gamma) ∗ y2

(10)

The new gbest_new provides a momentum in the velocity of the particles. The
position of the particles consequently changes. So, the stagnancy in the movement
of the particles can be overcome. To establish the effectiveness of blended Laplacian
operator, few plots are provided in Fig. 3. The experimental analysis is performed for
gastric cancer data, and the fitness values of searching particles for the two objectives
t-score and accuracy are plotted for different iterations. After a 100 iteration when
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New
solu on

Fig. 3 Plot of fitness values for gastric cancer at different iterations

swam is unable to generate new better solution, a new solution is produced using
blended operator. As a result, the swarm updates themselves and overcomes the
stagnancy. The effect is shown for iteration number 120. New better solutions are
generated by the searching particles. The overall MOBPSO technique is described
in Algorithm 2.

Algorithm-2 (MOBPSO)

1. Initialization.
Total Number of particle=N 

(a) Randomly initialize the position of particles, Xi (1=1, 2,…, N)
(b)Initialize archive1 with few randomly chosen solutions

2. Termination check.
(a) If the termination criterion holds go to step 8.
(b) Else go to step 3.

3. Set t=1(iteration counter)
For i= 1,2…N Do

(a) If stagnancy occurs, 
Choose gbest randomly from the archive1

Else choose gbest randomly from the archive2
End If

(b) Update the position according to Equations (8),(9)
(c) Evaluate the fitness of the ith particle f1(Xi) and f2(Xi)  

for two objectives
End For

(d) Choose the non-dominated solutions among N particles
(e) Update the archive1 with non-dominated solutions
(f) Check for stagnancy

If stagnancy occurs
i) Generate few new solutions (gbest_new) using blended laplacian 

operator as equation (10)
ii) Construct a new archive2 using those gbest_new

End If
4. Set t=t+1.
5. Go to step 2
6. Solution is the solution from archive1
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4.2 Other Comparative Methods for the Selection of Genes

Most of the evolutionary and swarm intelligence algorithms such as genetic algorithm
(GA), differential evolution (DE) and artificial bee colony (ABC) suffer from local
trappingwhich results in premature convergence. TheLaplacian blendedoperator can
be implementedwhen such situation occurs as it produces fewnew solutions blending
some previously generated solutions. So, the use of operator makes the optimization
algorithms more efficient in the process of stochastic searching. Here, authors have
integrated the blended operator with the above-mentioned algorithms and introduced
multi-objective blended differential evolution (MOBDE), multi-objective blended
artificial bee colony (MOBABC) and multi-objective blended genetic algorithm
(MOBGA) in the similar fashion as it is done for MOBPSO. MOBDE, MOBABA
and MOBGA are now applied to the four cancer datasets for marker gene selection.
In the next subsection, the methodologies are discussed in brief.

4.2.1 Multi-Objective Blended Genetic Algorithm (MOBGA)

GA is a metaheuristic algorithm which is being inspired by the natural selection.
It constitutes of few steps like parent selection, crossover and mutation (Yang and
Honavar 1998). Initially, the algorithm starts with few solution termed as chromo-
some. Now, fitted chromosomes are considered as parents who are used to generate
new child solutions. To create new solutions, a set of genetic operations like crossover
and mutation are used. In MOBGA, initially non-dominated solutions are stored in
an archive. Parents are chosen randomly from the archive to create next generation
of solutions. Next, based on Pareto-optimal concept, fitted chromosomes survive
and the archive is updated accordingly. Similar to the MOBPSO, when stagnancy
occurs, blended Laplacian operator is utilized to overcome it. New parents are gen-
erated using blended Laplacian operator. For MOBGA, the process of gene selection
is kept same as shown in Fig. 1, and only the MOBPSO block is replaced by the
MOBGA.

4.2.2 Multi-Objective Blended Differential Evolution (MOBDE)

DE is a population-based stochastic optimization technique which adopts mutation
and crossover operators to search for new promising areas in the search space (Price
et al. 2006). The algorithm starts with a number of solutions based on non-dominated
sorting and more promising solutions are kept in an archive. From the archive, fitted
solutions are selected formutation purpose andnewsolutions are produced. Similar to
previously mentioned algorithms, when no further improvement is found, Laplacian
blended operator is used. The binary format is implemented as done usingAlgorithm-
1, and the process of gene selection is same as described in Fig. 1 except that the
MOBPSO block is replaced by MOBDE.
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Table 1 Parameters used in different swarm and evolutionary algorithms

Algorithms Parameters Explanation Value

MOBPSO N Number of particle(s)
in one swarm

20

c1, c2 Acceleration constants 1.49

w Inertia 0.7

r1, r2 Random numbers [0, 1]

MOBGA N Number of genetic(s)
in one group

20

Ps Selection ratio 0.8

Pc Crossover ratio 0.9

Pm Mutation ratio 0.01

MOBDE N Number of
individual(s) in one
group

20

fm Mutation factor 0.6

CR Crossover rate 0.9

MOBABC N Number of bee(s) in
one swarm

20

L Limit for scout phase 100

4.2.3 Multi-Objective Blended Artificial Bee Colony (MOBABC)

Artificial bee colony (ABC) algorithm is inspired by the foraging behaviour of honey
bees (Karaboga and Basturk 2007). Three groups of bees, employee bees, onlooker
bees and scout bees, are involved in the searching process. The employee bee pro-
duces a modification on the position (solution) and depending on the non-dominated
sorting procedure best positions are memorized. Here, those positions are stored
in an archive. Onlooker bee chooses a food source from the archive and searches
thoroughly across it. When stagnancy occurs, the archive is updated with new solu-
tions, produced through Laplacian blended operator. MOBABC is applied to cancer
datasets similar to the process as described in Fig. 1 just replacing the block of
MOBPSO by MOBABC. The parameter settings of all other stochastic algorithms
are given in Table 1.

5 Experimental Results

The experimental datasets consist of microarray data of Child_ALL, leukemia, colon
and gastric cancer. Multi-objective blended GA (MOBGA), multi-objective blended
DE (MOBDE), multi-objective blended ABC (MOBABC) and multi-objective
blended PSO (MOBPSO) are employed for the task of feature gene selection using
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supervised learning process in the field of cancer classification. The performance of
the proposed multi-objective gene selection techniques is analysed and compared
for four real-life cancers. The evaluation is performed based on classification results
such as sensitivity, specificity, accuracy and F-score (Agarwalla and Mukhopad-
hyay 2016) using 10-fold cross-validation. Different classifiers are involved for the
classification such as support vector machine (SVM), decision tree (DT), K-nearest
neighbour (KNN) classifier and naive Bayes (NB) classifier (Kotsiantis et al. 2007).
Experiments are carried out 10 times, and the average results are reported. The perfor-
mance of MOBPSO is given in the subsequent sections utilizing different classifiers.
Then, a comparative study is performed involving all the algorithms. Next, the results
are compared with other existing methods reported in different research articles. The
proposed methodologies establish promising results, indicating the capability to pro-
duce more effective gene selection activity.

5.1 Classification Results

In this chapter, the aim is to identify top differentially expressed genes (DEGs)
which are performing well in the process of classification. By involving MOBPSO,
MOBGA,MOBDEandMOBABCalgorithms, the optimized gene subset is obtained.
The gene subset which is identified is validated by analysing the classification results.
The proposed methodology is implemented using four different well-known classi-
fiers (SVM, DT, KNN and NB). The experimental result ascertains that the proposed
methodology is able to extract important features from the huge dataset. The clas-
sification results of MOBPSO algorithm for different cancer datasets are given in
Table 2. For leukemia cancer, NB classifier shows better performance compared to
others classifiers. Here, 100% accuracy is achieved which indicates the perfect clas-
sification of disease. For colon cancer, decision tree classifier is working efficiently
in terms of providing good specificity of the result. Highest accuracy is achieved by
the SVM classifier which is equal to 87%.

For gastric cancer, SVM achieves 89% accuracy which establishes its superiority
over the other classifiers, used for the experiment. KNN classifier is providing 79%
accuracy and 89% sensitivity as the classification result of Child_ALL data.

The accuracy of classification obtained using different classifiers is also given in
the form of bar chart in Fig. 4 for better interpretability of the results. The compara-
tive result shows that for leukemia data, NB and decision tree both work effectively
to classify the cancer. In case of colon cancer, SVM classifier is producing reliable
result. For gastric cancer, SVM and NB classifiers are able to find out relevant genes
for disease classification. KNN classifier is performing top for Child_ALL cancer
compared to all other classifier techniques. Similar to MOBPSO, the other method-
ologies like MOBGA, MOBABC and MOBDE are applied on the cancer datasets
and a comparative study is performed in the next subsection.
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Table 2 Results of classification using MOBPSO for different cancer datasets

Dataset Algorithms Sensitivity Specificity Accuracy F-score

Leukemia MOBPSO-
SVM

1.00 0.78 0.89 0.87

MOBPSO-
KNN

0.89 0.87 0.89 0.91

MOBPSO-
tree

0.96 1.00 0.99 0.98

MOBPSO-NB 1.00 1.00 1.00 1.00

Colon MOBPSO-
SVM

0.91 0.72 0.87 0.81

MOBPSO-
KNN

0.75 0.71 0.73 0.70

MOBPSO-
tree

0.72 0.77 0.77 0.75

MOBPSO-NB 0.78 0.76 0.76 0.75

Gastric MOBPSO-
SVM

1.00 0.89 0.89 0.92

MOBPSO-
KNN

0.81 0.87 0.83 0.89

MOBPSO-
tree

0.78 0.83 0.82 0.86

MOBPSO-NB 0.91 0.87 0.89 0.90

Child_ALL MOBPSO-
SVM

0.71 0.76 0.70 0.71

MOBPSO-
KNN

0.89 0.73 0.78 0.81

MOBPSO-
tree

0.78 0.77 0.74 0.72

MOBPSO-NB 0.72 0.73 0.71 0.69

5.2 Comparative Analysis

To estimate the effectiveness of the proposed method, experiments are conducted
on the four real-time cancer datasets. Here, authors have provided the results of
classification of disease after applyingMOBPSO,MOBDE,MOBGAandMOBABC
on the datasets. SVM classifier is used for each classification purpose. Average
result of 10 times 10-fold cross-validation is reported for the comparative study in
Table 3. Best results are marked in bold. For leukemia, good results are obtained
using MOBGA. For colon cancer, MOBPSO is the best performing feature selection
technique and MOBABC is able to obtain second position. MOBDE has achieved
promising result for gastric cancer, whereas all the algorithms are able to achieve
100% sensitivity for the data. For Child_ALL data, MOBPSO is able to estimate
the proper genes for the classification of disease with an accuracy of 75%. The
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Fig. 4 Accuracy of
classification using different
classifiers for a leukemia, b
colon, c gastric, d
Child_ALL cancer datasets

comparison of accuracy obtained from different proposed algorithms is also shown
in Fig. 5.

In Table 4, results are again compared with other approaches, reported in different
literature for gene selection methodology (Mukhopadhyay and Mandal 2014; Apol-
loni et al. 2016; Salem et al. 2017; Luo et al. 2011). NSGA-II (Deb et al. 2002) and
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Table 3 Result of comparison with different swarm and evolutionary algorithms

Dataset Algorithms Sensitivity Specificity Accuracy F-score

Leukemia MOBPSO 1.00 0.78 0.89 0.87

MOBABC 0.84 0.86 0.83 0.80

MOBDE 0.71 0.83 0.81 0.79

MOBGA 0.90 0.91 0.90 0.89

Colon MOBPSO 0.91 0.72 0.87 0.81

MOBABC 0.90 0.76 0.81 0.83

MOBDE 0.71 0.69 0.67 0.68

MOBGA 0.78 0.73 0.77 0.80

Gastric MOBPSO 1.00 0.89 0.89 0.92

MOBABC 1.00 0.90 0.90 0.92

MOBDE 1.00 0.94 0.91 0.93

MOBGA 1.00 0.86 0.87 0.89

Child
_ALL

MOBPSO 0.71 0.76 0.75 0.71

MOBABC 0.60 0.64 0.61 0.62

MOBDE 0.65 0.70 0.67 0.63

MOBGA 0.50 0.70 0.66 0.68

Fig. 5 Accuracy of classification using different algorithms

MOEA/D (Zhang andLi 2007) are also applied on the cancer datasets to obtain Pareto
solutions for the objectives. For colon and Child_ALL datasets, MOBPSO is able to
gain the best result of accuracy in classification of cancer among the techniques, used
for comparison. For other two datasets, the results are also quite promising. The com-
parative result signifies the efficiency of the proposed methodology for supervised
cancer classification.
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Table 4 Comparison of accuracy of classification with other results reported in the literature

Reference Year Leukemia Colon Gastric Child_ALL

(Salem et al. 2017) 2017 0.97 0.85 – –

(Luo et al. 2011) 2011 0.71 0.80 – –

(Apolloni et al.
2016)

2016 0.82 0.75 – –

(Mukhopadhyay and
Mandal 2014)

2014 – – 0.96 0.74

NSGA-II (Deb et al.
2002)

2002 0.78 0.75 0.93 0.68

MOEA/D (Zhang
and Li 2007)

2007 0.92 0.81 0.91 0.72

MOBPSO 2017 0.89 0.87 0.89 0.75

MOBDE 2017 0.83 0.81 0.90 0.61

MOBGA 2017 0.81 0.67 0.91 0.67

MOBABC 2017 0.90 0.77 0.87 0.66

Table 5 Biological significance for gene–disease association

Dataset Associated diseases Gene symbol

Leukemia Leukemia RAG1(3), MSH(61), CD36(2)

Lymphomas CCND3(7), LYN(4)

Colon Colorectal cancer MAPK3(11), EGR1(1)

Malignant tumour of colon IGF1(67), KLK3(781)

Gastric Malignant neoplasm of
stomach

CYP2C9(1), SPP1(20)

Stomach carcinoma SPP1(21), NOS2(2),

Child_ALL Tumour progression SMAD3(1), ITGA6(1)

5.3 Biological Relevance

Biological relevance of the experimentally selected genes is analysed by gather-
ing the information about those genes from disease–gene association database.
Also, the information of number of Pubmed citations against those genes is
collected. In Table 5, disease information related to those top genes is given.
For example, MSH gene has 61 Pubmed citations as evidence that the gene is
related to leukemia cancer. Similarly, for colon cancer KLK3 is the most cited
gene related to the disease. The information proves the biological significance
of the proposed work. As a whole, it can be concluded that the proposed gene selec-
tion methodologies are more efficient in detection of the relevant genes for all the
different types of datasets.
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6 Conclusion

Classification of disease through supervised learning method leads to the inves-
tigation on feature selection technique. So, for the feature reduction and extrac-
tion from the huge dimension of data, authors involve new multi-objective blended
particle swarm optimization (MOBPSO) technique. The methodology uses a
new concept of integrating blended Laplacian operator in the algorithmic por-
tion, and it generates a subset of genes based on two objectives. The multi-
objective concept along with the proposed methodology is proved to be very
useful in the context of diagnosis of disease as it identifies biologically sig-
nificant genes related to the disease. Similarly, authors have implemented the
concept with other swarm and evolutionary algorithms and developed multi-
objective blended differential evolution (MOBDE), multi-objective blended arti-
ficial bee colony (MOBABC) and multi-objective blended genetic algorithm
(MOBGA). The experimental result establishes that the proposed technique is able
to provide promising result in the context of classification of disease which reflects
its effectiveness of selecting relevant feature genes.
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Extended Nondominated Sorting Genetic
Algorithm (ENSGA-II)
for Multi-Objective Optimization
Problem in Interval Environment

Asoke Kumar Bhunia, Amiya Biswas and Ali Akbar Shaikh

1 Introduction

In the existing literature of optimization, most of the works have been reported for
optimization of single objective. However, in real-world design or decision-making
problems, it is often required to simultaneously optimize more than one objective
functions which are conflicting in nature. The goal of these problems is to maximize
or minimize several conflicting objectives simultaneously. These types of problems
are known as multi-objective optimization problems. In this subarea, most of the
works have been done in crisp environment. However, in reality, due to uncertainty
or ambiguity, the parameters of the problems are not always precise and should
be considered as imprecise. To represent the impreciseness of a parameter, several
approaches like stochastic, fuzzy, fuzzy stochastic and interval approaches have been
reported in the existing literature. Among these approaches, interval approach is
more significant. Due to this representation, either all the objectives or some of the
objectives would be interval valued.

Thus, the general form of multi-objective optimization problem with interval
objectives can be written as

Minimize {A1(x), A2(x), . . . , Ak(x)}
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subject to x ∈ S ⊂ R
n

where Ai (x) � [ fi L (x), fiU (x)], i � 1, 2, . . . , k

and S � {
x : g j (x) ≤ 0, j � 1, 2, . . . ,m

}

For solving multi-objective optimization problems with crisp objectives, several
approaches have been reported in the existing literature. Among these approaches,
NSGA-II (elitist nondominated sorting genetic algorithm) is very well known and
widely used efficient algorithm. The idea of nondominated sorting genetic algo-
rithm (NSGA) was proposed by Srinivas and Deb (1995). Thereafter, Deb et al.
(2000) modified NSGA and proposed a computationally fast elitist genetic algo-
rithm (called NSGA-II). After Deb et al. (2000), several researchers applied this
algorithm to solve different types of application-oriented multi-objective optimiza-
tion problems. To improve the performance of NSGA-II, Murugan et al. (2009)
modified the algorithm by introducing virtual mapping procedure and controlled
elitism. Then they applied the modified algorithm to solve the multi-objective gen-
eration expansion planning problem with two objectives (by minimizing investment
cost and maximizing reliability). Again, introducing dynamic crowding distance
and controlled elitism, Dhanalakshmi et al. (2011) proposed modified NSGA-II and
applied this algorithm to solve the economic emission dispatch problem. Using the
same algorithm, Jeyadevi et al. (2011) solved multi-objective optimal reactive power
dispatch problem by minimizing real power loss and maximizing the system volt-
age stability. Deb and Jain (2012) suggested a reference point based many-objective
NSGA-II that emphasizes population members which are nondominated close to a
set of well-distributed reference points. Kannan et al. (2009) discussed the use of
multi-objective optimization method, elitist nondominated sorting genetic algorithm
version II (NSGA-II), for solving the generation expansion planning (GEP) problem.
They formulated and solved two different bi-objective optimization problems. The
first problem has been solved by minimizing the cost as well as the sum of normal-
ized constraint violations. On the other hand, the second one has been solved by
minimizing the investment cost and maximizing the reliability.

To the best of our knowledge, very few works have been reported in the existing
literature regarding the solution methodology of multi-objective optimization prob-
lem with interval objectives. Wu (2009) first proposed an approach for solving this
type of problem. For this purpose, he derived Kurush–Kuhn–Tucker optimality con-
ditions by defining Pareto optimal solution based on the interval ranking proposed
by Ishibuchi and Tanaka (1990). After Wu (2009), Sahoo et al. (2012) proposed
different techniques based on interval distance between two interval numbers in the
area of reliability optimization. In their paper, they also proposed new definitions
of interval ranking by modifying earlier definitions. However, using this new def-
inition of interval ranking, Pareto optimality cannot be proved for their proposed
interval distance. Very recently, Bhunia and Samanta (2014) proposed new defini-
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tions of interval ranking and interval metric modifying earlier definitions. Using
these definitions, they solved multi-objective optimization problem by converting
it into a single objective optimization problem with interval objective. For solving
the transformed problem, they proposed hybrid tournament genetic algorithm with
interval fitness, whole arithmetical crossover and double mutation. Till now, none
has developed any method/technique based on NSGA-II for solving multi-objective
optimization problem with interval objectives.

In this book chapter, for the first time, we have proposed an extended version
of NSGA-II (ENSGA-II) for solving the multi-objective optimization problem with
interval objectives using recently developed interval ranking and interval metric
(Bhunia and Samanta 2014), along with whole arithmetical crossover and double
mutation. For this purpose, we have proposed crowding distance and crowded tour-
nament selection along with nondominated sorting of solutions with interval fitness.
Then, the efficiency and performance of the proposed algorithm have been tested
by considering and solving four numerical examples. Finally, another set of four
numerical examples with the same lower and upper bounds has been solved by the
proposed algorithm for comparing the computational results with the existing one.

2 Interval Mathematics and Order Relations Between
Intervals

2.1 Interval Mathematics

An interval number A can be expressed in two different forms:

(i) Lower and upper bounds form, i.e., A � [aL , aU ]
(ii) Center and radius form, i.e., A � 〈ac, aw〉

where aL and aU are the lower and upper bounds of the interval A, respectively
ac � (aL + aU )

/
2 and aw � (aU − aL)

/
2.

Again, a real number p can also be expressed in interval form as [p, p] with center
p and radius zero.

According to Moore (1966), the definitions of addition, subtraction, multiplica-
tion, and division of interval numbers are as follows:

Definition 2.1.1 If A � [aL , aR] and B � [bL , bR]

A + B � [aL , aR] + [bL , bR] � [aL + bL , aR + bR]

A − B � [aL , aR] − [bL , bR] � [aL − bR, aR − bL ]

For any real number λ,
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λA � λ[aL , aR] �
{
[λaL , λaR] i f λ ≥ 0

[λaR, λaL ] i f λ < 0,

A × B � [min{aLbL , aLbR, aRbL , aRbR},max{aLbL , aLbR, aRbL , aRbR}]

A

B
� A × 1

B
� [aL , aR] ×

[
1

bR
,
1

bL

]
, provided 0 /∈ [bL , bR].

Definition 2.1.2 In center and radius form of interval, addition, subtraction, and
multiplication by a scalar of interval numbers are defined as follows:

Now if A � 〈ac, aw〉 and B � 〈bc, bw〉

A + B � 〈ac, aw〉 + 〈bc, bw〉 � 〈ac + bc, aw + bw〉

A − B � 〈ac, aw〉 − 〈bc, bw〉 � 〈ac − bc, aw + bw〉

For any real number λ,

λA � λ〈ac, aw〉 � 〈λac, |λ|aw〉

According toHansen andWalster (2004), the definition ofn-th power of an interval
number is as follows:

Definition 2.1.3 Let A � [aL , aR] be an interval and n be any nonnegative integer,
then

An �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[1, 1] if n � 0
[
anL , a

n
R

]
if aL ≥ 0 or if n is odd

[
anR, anL

]
if aR ≤ 0 and if n is even

[
0,max(anL , a

n
R)

]
if aL ≤ 0 ≤ aR and if n(> 0) is even.

In this definition, when n=0 and 0 ∈ A then An 	� [1, 1].
Hence the revised definition is as follows:

Definition 2.1.4 Let A � [aL , aR] be an interval and n be any nonnegative integer,
then

An �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[1, 1] if n � 0 and 0 /∈ [aL , aR]
[
anL , a

n
R

]
if aL ≥ 0 or if n is odd

[
anR, anL

]
if aR ≤ 0 and if n is even

[
0,max(anL , a

n
R)

]
if aL ≤ 0 ≤ aR and if n(> 0) is even.
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In the existing literature, there is no definition regarding the negative integral
power of an interval. We have defined the same which is as follows:

Definition 2.1.5 Let A � [aL , aR] be an interval and n be any positive integer, then

(A)−n � 1

An
�

(
1

A

)n

provided 0 /∈ [aL , aR].

According to Karmakar et al. (2009), the n-th root of an interval number is defined
as follows:

Definition 2.1.6 Let A � [aL , aR] be an interval and n be any positive integer, then

(A)
1
n � [aL , aR]

1
n � n

√
[aL , aR] � [

n
√
aL , n

√
aR

]
if aL ≥ 0 or if n is odd

� [
0, n

√
aR

]
if aL ≤ 0, aR ≥ 0 and n is even

� φ if aR < 0 and n is even

where φ is the empty interval.

However, for aL < 0 and even value of n, (A)1/n is not a real interval. Moreover,
it is a complex interval (For complex interval, see Kearfott 1996).

Hence, the revised definition of n-th root of an interval number will be as follows:

Definition 2.1.7 Let A � [aL , aR] be an interval and n be any positive integer

(A)
1
n � [aL , aR]

1
n � n

√
[aL , aR] � [

n
√
aL , n

√
aR

]
if aL ≥ 0 or if n is odd.

Again, by applying the definition of power and different roots of an interval,
we can find any rational power of an interval. Suppose we have to find A

p
q , where

A � [aL , aR], then it can be found by defining A
p
q as (Ap)

1
q .

According to Sahoo et al. (2012), the interval power of an interval is defined as
follows:

Definition 2.1.8 Let A � [aL , aR] and B � [bL , bR] be two intervals, then

(A)B � [aL , aR ]
[bL ,bR ]

�

⎧
⎪⎨

⎪⎩

[
emin(bL log aL ,bL log aR ,bR log aL ,bR log aR ), emax(bL log aL ,bL log aR ,bR log aL ,bR log aR )

]
if aL ≥ 0

a complex interval if aL < 0

However when aL � 0, aR> 0 and 0 /∈ B � [bL , bR ] or aL � 0, aR� 0 and 0 /∈
B � [bL , bR ], the result of (A)B will be different from the above definition. On the
other hand, when aL < 0 and either 0 /∈ B � [bL , bR ] or when 0 /∈ A � [aL , aR ],
(A)B is not a real interval, it must be a complex interval.

Hence, the revised definition of interval power of an interval will be as follows:
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Definition 2.1.9 Let A � [aL , aR] and B � [bL , bR] be two intervals, then

(A)B � [
aL , aR

][bL ,bR
]

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
emin(bL log aL ,bL log aR ,bR log aL ,bR log aR ),

emax(bL log aL ,bL log aR ,bR log aL ,bR log aR )

]

if aL > 0

[
0, emax(bL log aR ,bR log aR )

]
if aL � 0,aR >0 and 0 /∈ B � [

bL ,bR
]

[0, 0] if aL � 0,aR = 0 and 0 /∈ B � [
bL ,bR

]

2.2 Order Relations of Interval Numbers

In solving optimization problemswith interval objective, decision regarding the order
relation between two arbitrary intervals is an important task. In this section, we shall
discuss the earlier developments of order relations between interval numbers. Any
two closed intervals A � [aL , aR] and B � [bL , bR] may be one of the following
three types:

Type I: Nonoverlapping intervals, i.e., when either aL > bR or bL > aR .
Type II: Partially overlapping intervals, i.e., when either bL < aL < bR < aR or
aL < bL < aR < bR .
Type III: Fully overlapping intervals, i.e., when either aL ≤ bL ≤ bR ≤ aR or
bL ≤ aL ≤ aR ≤ bR .

From the existing literature, it is observed that several researchers proposed the
definitions of order relations between two interval numbers based on either set prop-
erties or fuzzy applications or probabilistic approaches or value-based approaches or
depending upon some specific indices/functions. Most of the definitions are incom-
plete. The detailed comparison is available in Karmakar and Bhunia (2012). Here,
we shall discuss some significant definitions only.

2.2.1 Mahato and Bhunia’s Definition

Mahato and Bhunia (2006) proposed two types of definitions of interval order
relations with respect to optimistic and pessimistic decision-making. In optimistic
decision-making, the decision-maker ignores the uncertainty whereas the pessimistic
decision-maker prefers the interval according to the principle “less uncertainty is bet-
ter than more uncertainty”. The order relations for these types of decision makers
are as follows:

Optimistic Decision-Making

Definition Forminimizationproblems, the order relation≤omin between the intervals
A � [aL , aR] and B � [bL , bR] is
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A ≤omin B ⇔ aL ≤ bL

A <omin B ⇔ A ≤omin B and A 	� B.

Definition For maximization problems, the order relation ≥omax between the inter-
vals A � [aL , aR] and B � [bL , bR] is

A ≥omax B ⇔ aR ≥ bR

A >omax B ⇔ A ≥omax B and A 	� B.

Pessimistic Decision-Making

Definition For minimization problems, the order relation <pmin between two inter-
vals A � [aL , aR] � 〈ac, aw〉 and B � [bL , bR] � 〈bc, bw〉 for a pessimistic
decision-maker is

(i) A <pmin B ⇔ ac < bc, for Type I and Type II intervals
(ii) A <pmin B ⇔ (ac ≤ bc) ∧ (aw < bw) for Type III intervals.

However, for Type III intervals with (ac ≤ bc) ∧ (aw > bw), a pessimistic decision
cannot be taken. In this case, the optimistic decision is to be taken.

Definition For maximization problems, the order relation >pmax between two inter-
vals A � [aL , aR] � 〈ac, aw〉 and B � [bL , bR] � 〈bc, bw〉 for a pessimistic
decision-maker is

(i) A >pmax B ⇔ ac > bc, for Type I and Type II intervals
(ii) A >pmax B ⇔ ac ≥ bc ∧ aw < bw for Type III intervals.

However, for Type III intervals with (ac ≥ bc)∧ (aw > bw), a pessimistic decision
cannot be taken. In this case, the optimistic decision is to be considered.

2.2.2 Hu and Wang’s Definition

Hu and Wang (2006) proposed a modified version of order relations for interval
numbers based on center and radius of the intervals. In theirwork, theyfirst studied the
incompleteness of interval ranking techniques developed earlier. Then introducing
new approach, they tried to fulfill the shortcomings of the previous definitions. Their
interval ranking relation “≺�” is defined as follows:

Definition For any two intervals, A � [aL , aR] � 〈ac, aw〉 and B � [bL , bR] �
〈bc, bw〉
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A ≺� B ⇔
{
ac < bc i f ac 	� bc
aw ≥ bw i f ac � bc

and A ≺ B ⇔ A ≺� B and A 	� B.

The relation “≺�” satisfies the following relational properties:

(i) A ≺� A for any interval A (Reflexivity).
(ii) If A ≺� B and B ≺� A, then A � B for any two intervals A and B (Antisym-

metry).
(iii) If A ≺� B and B ≺� C, then A ≺� C for any three intervals A, B and C

(Transitivity).
(iv) One of A ≺� B and B ≺� A holds for any two intervals A and B (Compara-

bility).

In this definition, for intervals with the same center, the interval with more uncer-
tainty is considered as the lesser interval. However, it is not true in case of pessimistic
decision-making for minimization problems.

2.2.3 Sahoo et al. Definition

In the definition of Mahato and Bhunia (2006) of pessimistic decision-making of
Type III intervals, it is observed that sometimes optimistic decisions are to be taken.
To overcome this situation, Sahoo et al. (2012) proposed two new definitions of order
relations irrespective of optimistic as well as pessimistic decision-maker’s point of
view for maximization and minimization problems separately.

Definition For maximization problems, the order relation>max between two inter-
vals A � [aL , aR] � 〈ac, aw〉 and B � [bL , bR] � 〈bc, bw〉 is
(i) A >max B ⇔ ac > bc for Type I and Type II intervals
(ii) A >max B ⇔ either ac ≥ bc ∧ aw < bw or ac > bc ∧ aR > bR for Type III

intervals.

Definition For minimization problems, the order relation <min between two inter-
vals A � [aL , aR] � 〈ac, aw〉 and B � [bL , bR] � 〈bc, bw〉 is
(i) A <min B ⇔ ac < bc for Type I and Type II intervals
(ii) A <min B ⇔ either ac ≤ bc ∧ aw < bw or ac < bc ∧ aL < bL for Type III

intervals.

2.2.4 Bhunia and Samanta’s Definition

In the definition of Sahoo et al. (2012), it is observed that for different types of
intervals, different conditions for interval order relations have been considered which
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can be put in amuch simplerway.Accordingly, Bhunia and Samanta (2014) proposed
two order relations ≥max and ≤min separately for maximization and minimization
problems, respectively.

Definition The order relation≥max between two intervals A � [aL , aR] � 〈ac, aw〉
and B � [bL , bR] � 〈bc, bw〉 for maximization problems is as follows:

A ≥max B ⇔
{
ac > bc i f ac 	� bc
aw ≤ bw i f ac � bc

and A >max B ⇔ A ≥max B and A 	� B.

Definition The order relation≤min between two intervals A � [aL , aR] � 〈ac, aw〉
and B � [bL , bR] � 〈bc, bw〉 for minimization problems is as follows:

A ≤min B ⇔
{
ac < bc i f ac 	� bc
aw ≤ bw i f ac � bc

and A <min B ⇔ A ≤min B and A 	� B.

Theorem 1 (i) A ≥max A for any interval A (Reflexivity).
(ii) If A ≥max B and B ≥max A, then A � B for any two intervals A and B

(Antisymmetry).
(iii) If A ≥max B and B ≥max C, then A ≥max C for any three intervals A, B,

and C (Transitivity).
(iv) One of A ≥max B and B ≥max A holds for any two intervals A and B

(Comparability).

Proof (i) Let A � [aL , aR] � 〈ac, aw〉 be an interval. Then ac � ac and aw ≤ aw.

Therefore A ≥max A. Since A is an arbitrary interval, this is true for all
intervals. Hence ≥max is reflexive.

(ii) Let A � [aL , aR] � 〈ac, aw〉 and B � [bL , bR] � 〈bc, bw〉 be two intervals
such that A ≥max B and B ≥max A holds, then A ≥max B ⇒ ac ≥ bc
and B ≥max A ⇒ bc ≥ ac. Therefore ac ≥ bc and bc ≥ ac ⇒ ac � bc.
Now if ac � bc, A ≥max B ⇒ aw ≤ bw and B ≥max A ⇒ bw ≤ aw. Again
ac � bc, aw ≤ bw and bw ≤ aw ⇒ ac � bc and aw � bw ⇒ A � B. Since A
and B are arbitrary intervals, this is true for all intervals A, B. Hence ≥max is
antisymmetric.

(iii) Let A � [aL , aR] � 〈ac, aw〉, B � [bL , bR] � 〈bc, bw〉 and C � [cL , cR] �
〈cc, cw〉 be three intervals such that A ≥max B and B ≥max C holds, then
A ≥max B ⇒ ac ≥ bc and B ≥max C ⇒ bc ≥ cc. Therefore, ac ≥ bc ≥
cc ⇒ either ac > cc or ac � bc � cc. Now if ac > cc, then A ≥max C. On
the other hand, if ac � bc � cc then A ≥max B ⇒ aw ≤ bw and B ≥max

C ⇒ bw ≤ cw. Again ac � bc � cc, aw ≤ bw and bw ≤ cw ⇒ ac � cc and
aw ≤ cw ⇒ A ≥max C. Since A, B, and C are arbitrary intervals, this is true
for all intervals A, B, C. Hence, ≥max is transitive.
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(iv) Let A � [aL , aR] � 〈ac, aw〉 and B � [bL , bR] � 〈bc, bw〉 be any two intervals.
Then ac > bc or bc > ac or bc � ac holds obviously. Now ac > bc ⇒
A ≥max B, bc > ac ⇒ B ≥max A and if bc � ac then either aw ≤ bw
or bw ≤ aw. Hence bc � ac and aw ≤ bw ⇒ A ≥max B; bc � ac and
bw ≤ aw ⇒ B ≥max A. Since A and B are arbitrary intervals, this is true for
all intervals A, B. Hence any two intervals are comparable.

Theorem 2 (i) A ≤min A for any interval A (Reflexivity).
(ii) A ≤min B and B ≤min A then A � B for any two intervals A and B

(Antisymmetry).
(iii) A ≤min B and B ≤min C then A ≤min C for any three intervals A, B, and C

(Transitivity).
(iv) A ≤min B or B ≤min A holds for any two intervals A and B (Comparability).

Proof The proof is similar to Theorem 1.

Theorem 3 Let A and B be two intervals then

(i) A >max B ⇔ A >max B

(ii) A <min B ⇔ A <min B.

Proof It can easily be proved.

Definition LetM be any non-empty set. A functiond : M × M → IR (set of all real
intervals) is said to be an interval metric if it satisfies the following properties:

(i) Reflexivity: d(X, X )c � 0 ∈ d(X, X ), ∀X ∈ M
where d(X, X )c is the center of the interval d(X, X ).

(ii) Triangular inequality d(X,Y ) ≤min d(X, Z ) + d(Z ,Y ), ∀ X,Y, Z ∈ M
(iii) Symmetry: d(X,Y ) � d(Y, X ), ∀ X,Y ∈ M
(iv) Indiscernible identity: if d(X,Y ) � d(X, X ), then X �Y (∀ X,Y ∈ M).

Definition Let X and Y ∈ IR (set of all real intervals). An interval distance between
X and Y , denoted by dI (X,Y ), is defined by

dI (X,Y ) � |̃X − Y |̃ � |̃〈xc, xw〉 − 〈yc, yw〉|̃
� |̃〈xc − yc, xw + yw〉|̃ � 〈|xc − yc|, xw + yw〉

Definition Let X � (X1, X2, . . . , Xk) and Y � (Y1,Y2, . . . ,Yk) ∈ IRk . An interval
distance between X and Y is denoted by dI (X,Y ) and is defined by

dI (X,Y ) �
k∑

i�1

|̃Xi − Yi |̃
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3 Multi-Objective Optimization Problem with Interval
Objectives

The general form of multi-objective optimization problem with interval objectives
can be written as

Minimize {A1(x), A2(x), . . . , Ak(x)}

subject to x ∈ S ⊂ R
n

where Ai (x) � [ fi L (x), fiU (x)], i � 1, 2, . . . , k

S � {
x : g j (x) ≤ 0, j � 1, 2, . . . ,m

}

and fi L , fiU : Rn → R, g j : Rn → R, i � 1, 2, . . . , k, j � 1, 2, . . . ,m.

Here, x � (x1, x2, . . . , xn) ∈ S is the solution vector and S is the feasible space.
As all the objectives are interval valued, so we have used the existing extended
definitions of Pareto optimality and weak Pareto optimality (Bhunia and Samanta
(2014)) for multi-objective optimization with interval valued objectives. According
to them, the extended definitions are as follows.

Definition 3.1 A decision vector x∗ ∈ S is Pareto optimal if there does not exist
another decision vector x ∈ S such that Ai (x) ≤min Ai (x∗) for all i � 1, 2, . . . , k
and A j (x) <min A j (x∗) for at least one index j.

Definition 3.2 A decision vector x∗ ∈ S is weakly Pareto optimal if there does
not exist another decision vector x ∈ S such that Ai (x) <min Ai (x∗) for all i �
1, 2, . . . , k.

4 Nondominated Sorting Genetic Algorithm for Interval
Objectives

The nondominated sorting genetic algorithm-II (NSGA-II) is well known andwidely
used algorithm proposed by Deb et al. (2000) based on its preceding algorithm
NSGA which was initiated by Srinivas and Deb (1995) as a computationally fast
elitist genetic algorithm. In this method, the idea of ranking is involved to reflect
the performance of an individual and the rank of an individual is obtained by the
dominance relation. Again the idea of crowding distance is used to reflect the density
of solutions surrounding a particular solution in the population and the individuals
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with a lower rank and a larger crowding distance have good performance in diversity;
therefore they havemore opportunities to be preserved. This NSGA-II algorithmwas
proposed for solvingmulti-objective optimization problemwith crisp objectives, i.e.,
there is no uncertainty in these objectives. However, in reality, the parameters of
decision-making problems need not be precise and may be imprecise in nature due
to uncertainty. In this work, our objective is to solve the multi-objective optimization
problem with interval objectives. For this purpose, we have extended the existing
NSGA-II (proposed by Deb et al. 2000) algorithm in interval environment and we
call it as ENSGA-II. As a result, we have to redefine the following components of
ENSGA-II.

(i) Constraint handling techniques
(ii) Nondominated sorting
(iii) Interval crowding distance
(iv) Crowded Tournament Selection.

4.1 Constraint Handling Techniques

In ENSGA-II, the constraint handling technique towards the feasible region is an
important task.As all the constraints are crisp in nature, sowe have used the following
constraints handling technique.

Definition 4.1.1 A solution x∼ � (x1, x2, . . . , xn) is said to constraint dominate a

solution y
∼

� (y1, y2, . . . , yn), if any one of the following conditions is true:

(i) Solution x∼ is feasible and solution y
∼
is not.

(ii) Solutions x∼ and y
∼
are both infeasible, but solution x∼ has a smaller constraint

violation.
(iii) Solutions x∼ and y

∼
are both feasible and solution x∼ dominates solution y

∼
.

4.2 Nondominated Sorting

The dominance relation is very important for solving multi-objective optimization
problem. Here, as the objective functions are interval valued, so the existing domi-
nance relation for fixed objectives in NSGA-II is not applicable for a Pareto optimal
set of solutions. As a result, it is necessary to define a new dominance relation for
interval objectives to get a Pareto optimal set of solutions for a multi-objective opti-
mization problem with interval objectives. This dominance relation depends on the
type (maximization/minimization/both) of objective functions, and also on the order
relations between interval numbers. Accordingly, we have proposed the following
dominance relation.
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Definition 4.2.1: Dominance relation For two solutions x∼ and y
∼
, x∼ dominates y

∼
if

any one of the following conditions is satisfied:

(i) Ai (x∼) ≥max Ai (y
∼
) (i � 1, 2, . . . , k) in case of maximization of all the objec-

tive functions
(ii) Ai (x∼) ≤min Ai (y

∼
) (i � 1, 2, . . . , k) in case ofminimization of all the objective

functions
(iii) Ai (x∼) ≥max Ai (y

∼
) for all i � 1, 2, . . . , p and Ai (x∼) ≤min Ai (y

∼
) for all

i � p + 1, . . . , k, when p number of objectives are to be maximized and the
rest are to be minimized.

We know that in the objective function space, as the number of objectives is two,
three, or even more, the product of the objective values gives an ordinary rectangle,
an ordinary cuboid or generalized hyper-cuboid respectively. Usually, the solutions
in a particular front (front 1 or 2 …) of a multi-objective optimization problem
with more than three objectives describe a hyper-surface, whereas the solutions in
a Pareto front (front 1 or 2 …) that we discuss here describe a hyper-cuboid. As a
result, it is more complicated than the former, so it is a greater challenge to obtain the
Pareto front in this case. In Fig. 1, the objective function values of a minimization
problem with two objectives are marked. Here, the alphabets denote the solution
name and the numerical digits denote its front. Clearly, the solutions a, b, c, d and e
are nondominated because the centers of the corresponding objective function values
are nondominated. However, for the solutions g and j, the corresponding objective
function values have the same center but as g have lower uncertainty than j, so g
dominates j.

Now in order to sort a population according to the level of nondomination, each
solution must be compared with each other solution in the population to check
whether it is dominated or not. This process is continued to select the members
of the first nondominated class (we call it as first front) from the population. In order
to find the solutions for the next front, the solutions of the previous fronts (in this case
only the solutions of first front) are temporarily rejected and the above procedure is
repeated to find the solutions of the subsequent fronts.

4.3 Interval Crowding Distance

For a multi-objective optimization problem, it is an important task to estimate the
density of solutions in the objective space. In order to estimate the density of solutions
near a particular solution in the population, we calculate the average distance of two
solutions on either side of this solution along each of the objectives.

For a multi-objective optimization problemwith interval objectives, the crowding
distance guides the search process towards a uniformly spread-out Pareto optimal
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Fig. 1 Dominance relationships among solutions

front. However, the idea of existing crowded distance is suitable only for crisp objec-
tives, not for interval objectives, sowehave to redefine the crowding distance operator
for interval objectives.

To compute the crowding distance of a solution, first we have to choose a front
and then the population in that front is sorted in ascending order according to the
values of each objective function values using interval ranking. Then for each objec-
tive function, the boundary solutions are assigned to an infinite distance values. All
other intermediate solutions are assigned to a distance which is equal to the interval
distance of the function values of two adjacent solutions. The crowding distance of
intermediate solutions are as follows:

d I j � d I j + dI
(
f
(I mj−1)
m , f

(I mj+1)
m

)
, j � 2, 3, . . . , l − 1

where I j denotes the solution index of the j-th member in the sorted list, d I j is the

crowding distance of the solution index I j , f
(I j )
m denotes the m-th objective function

value of the solution index I j , dI
(
f
(I mj−1)
m , f

(I mj+1)
m

)
is the interval distance between

objective function values f
(I j−1)
m and f

(I j+1)
m , l is the number of solutions in that list,

I1, and Il is the lowest and highest solution indices of fm among all solution index in
the list. This calculation is continued with other objective functions also. Finally, the
overall crowding distance is computed as the sum of the individual distance values
corresponds to each objective.

Now we have to compare the solutions according to the crowding distance using
interval order relations (Bhunia and Samanta 2014). In Fig. 2, the crowding distance
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Fig. 2 Crowding distance of solutions for a particular front

of i-th solution in its front is an interval whose center is the average side length of the
dotted rectangle and radius, i.e., the uncertainty is the sum of the average uncertainty
of the objective function values of the (i−1)-th and (i+1)-th solutions.

4.4 Crowded Tournament Selection

This selection process is dependent on the following attributes of each solution:

(i) A nondomination rank of a solution in the population.
(ii) Local crowding distance of a solution in the population.

By tournament selection, i-th solution with nondomination rank ri and local
crowding distance di will be selected from all the solutions not yet selected if any
one of the following conditions is true:

(i) If the rank of i-th solution is less than that of all other solutions not yet selected.
(ii) If there exist any other solution say, j-th solution with nondomination rank r j

and crowding distance d j , not yet selected, have the same rank but solution i
has a better crowding distance than j-th solution, i.e., if ri � r j and di > d j .

From the first condition, it is ensured that the selected solution lies in a better
nondominated front. On the other hand, when both the solutions are taken from the
same nondominated front, the selection of a better solution is done according to their
crowding distances.
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4.5 Crossover

The goal of crossover operation is to exchange the information between randomly
selected parent chromosomes (individuals) by combining their features. In our work,
we have used whole arithmetical crossover (Michalewicz 1996). The different steps
of this operation are as follows:

Step 1: Find the integral value of the product of population size and crossover rate
and store it in M.

Step 2: Select the chromosomes vi and v j randomly from the population for
crossover.

Step 3: Generate a random real number λ in [0, 1].
Step 4: Produce two offspring v′

i and v′
j by

v′
i � λvi + (1 − λ)v j and v′

j � (1 − λ)vi + λv j .

Step 5: Repeat Steps 2–4 for M
2 times.

4.6 Mutation

The aim of mutation operation is to introduce random variations into the population.
Generally, it performswith lower probability. In thiswork,wehave used doublemuta-
tion which is a combination of two different mutation operations, viz., nonuniform
mutation and boundary mutation (Michalewicz 1996). The action of nonuniform
mutation is dependent on the age of population. If the gene vi j of chromosome vi
is selected for this operation and if the domain of vi j is an interval [l j , u j ] then the
reduced value of vi j is given by

v′
i j �

{
vi j + �(t, u j − vi j ) i f r ≤ 0.5

vi j − �(t, vi j − l j ) i f r > 0.5

where j ∈ {1, 2, . . . , n}, �(t, y) returns a value in the range [0,y] and r is a uniformly
distributed random number in [0,1].

In our work, we have considered

�(t, y) � yr1

(
1 − t

T

)b

where r1 is a uniformly distributed random number in [0,1], T and t represent the
maximumandcurrent generationnumbers respectively andb is called the nonuniform
mutation parameter which is constant (in this work, we have considered b=2).

In boundary mutation, the new value of vi j is generated as follows:
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v′
i j �

{
l j i f r2 ≤ 0.5

u j i f r2 > 0.5

where the domain of vi j is an interval [l j , u j ] and r2 is a uniformly distributed random
number in [0,1].

The computational steps of mutation operation are as follows:

Step 1: Find the integral value of the product of population size and mutation rate
and store it in M ′.
Step 2: Select a non-mutated gene vi j of individual vi for mutation.
Step 3: Create new gene v′

i j by the following process:
If r ≤ 0.5 (r being a uniformly distributed random number), create the new gene
by nonuniform mutation process, otherwise create the same by boundary mutation
process.
Step 4: Repeat Step 2 and Step 3 for M ′ times.
Step 5: Stop.

4.7 Algorithm

The proposed algorithm corresponding to ENSGA-II is as follows:
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Fig. 3 Center of interval valued objectives corresponding to nondominated solutions algorithm for
Example1

5 Numerical Simulation

To test the performance of the proposed extended nondominated sorting genetic
algorithm-II (ENSGA-II) for solving multi-objective nonlinear programming prob-
lems with interval objectives, we have considered and solved eight examples (Exam-
ples1–8). These examples are given in the Appendix. Among these examples, the
objective functions of first four examples are interval valued whereas for the others,
the objective functions are crisp. The computational results of examples with crisp
objectives have been compared with the solutions available in the existing literature.
In these cases, where crisp objectives are given, crisp objectives have been converted
into interval objectives considering lower and upper bounds to be the same. Then the
transformed problems have been solved by the proposed algorithm.

In solving all the examples, we have used the following values of different
GA parameters: population size�100, probability of crossover�0.8, probability
of mutation�0.1, and maximum number of generations�500. The proposed algo-
rithm has been coded in C programming language and the numerical experiments
have been carried out in a PC with Dual Core Processor in LINUX environment.

In case of Example1, the problem is linear bi-objective optimization problem
with two constraints and two decision variables. Using the proposed algorithm (i.e.,
ENSGA-II), Example1 has been solved and the values of center of both interval
valued objective functions corresponding to 100 nondominated solutions after 500
generations have been considered. These results have been shown in Fig. 3. On the
other hand, the values of radius of the interval valued objective functions correspond-
ing to 100 nondominated solutions have been shown in Fig. 4.

In case of Example2 (Wu 2009), there are two nonlinear interval objectives
whereas constraints are linear with nonnegativity restrictions of the variables. Solv-



Extended Nondominated Sorting Genetic Algorithm (ENSGA-II) … 233

10.8

11

11.2

11.4

11.6

11.8

12

11.5 12.5 13.5 14.5 15.5

f2

f1

Fig. 4 Uncertainty of interval valued objectives corresponding to nondominated solutions for
Example1

ing this example, we obtain a Pareto optimal set which contains only one solution
and this solution is given by x* � (1.8, 0.6), z1 � [4.6, 5.6] and z2 � [10.2, 11.2].

In Example3, the given problem is a three-variable multi-objective optimization
problem with three objectives in which the first objective is interval valued and the
others are crisp. Using the proposed algorithm (i.e., ENSGA-II), Example3 has been
solved and the center values of interval valued objective functions corresponding to
nondominated solutions after 500 generations have been considered. These results
have been shown in Fig. 5. On the other hand, the values of radius of the interval
valued objective function lie between 0.1444 and 0.8818whereas the values of radius
corresponding to other objectives are zero, as these are crisp objectives.

In Example4, there are two interval valued objectives with 10 constraints and
7 decision variables. Solving this example, the values of center of the two interval
valued objective functions corresponding to 100 nondominated solutions after 500
generations have been considered. These results have been shown in Fig. 6. On
the other hand, the values of radius of these interval valued objective functions
corresponding to 100 nondominated solutions have been shown in Fig. 7.

Example5 has been considered from Deb et al. (2000). This example contains
two objective functions, and two constraints with two decision variables. Using the
proposed algorithm, we have solved the problem and plotted the objective function
values corresponding to 100 nondominated solutions after 500 generations in Fig. 8.
On the other hand, the problem has been solved by the existing NSGA-II and after
500 generations, the computational results have been considered corresponding to
100 nondominated solutions. These results have been plotted in Fig. 9.
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Fig. 5 Center values of interval valued objectives corresponding to nondominated solutions for
Example3
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Fig. 6 Center of interval valued objectives corresponding to nondominated solutions for Example4

In the sameway, Examples 6, 7, and 8 have been solved by the proposed algorithm
and existing NSGA-II and the computational results have been plotted in Figs. 10,
11, 12, 13, 14 and 15.



Extended Nondominated Sorting Genetic Algorithm (ENSGA-II) … 235

200

400

600

800

1000

1200

1400

200 300 400 500 600 700

f2

f1
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Fig. 8 Nondominated solutions of Example5 by the proposed algorithm (ENSGA-II)
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Fig. 9 Nondominated solutions of Example5 by NSGA-II
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Fig. 10 Nondominated solutions of Example6 by the proposed algorithm (ENSGA-II)
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Fig. 11 Nondominated solutions of Example6 by NSGA-II
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Fig. 12 Nondominated solutions of Example7 by the proposed algorithm (ENSGA-II)
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Fig. 13 Nondominated solutions of Example7 by NSGA-II
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Fig. 14 Nondominated solutions of Example8 by the proposed algorithm (ENSGA-II)
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Fig. 15 Nondominated solutions of Example8 by NSGA-II
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6 Concluding Remarks

For the first time, in this book chapter, we have proposed ENSGA-II by extending the
existing NSGA-II algorithm for solving multi-objective optimization problem with
interval objectives. In this algorithm, nondominated sorting, crowding distance, and
crowded tournament selection play an important role. To suitably adapt the existing
NSGA-II (for crisp objective functions) with interval valued objective functions,
the nondominated sorting, crowding distance, and crowded tournament selection
have been modified using the recently developed definitions of interval ranking and
interval distance (Bhunia andSamanta 2014). For further research, onemay apply this
algorithm to solve different types of application problems in the areas of Engineering
Design, Operations Research, and Management Science.

Appendix
Example 1

Maximize Z1 � C1x1 + C2x2

Maximize Z2 � C3x1 + C4x2

subject to 3x1 + 4x2 ≤ 42

3x1 + x2 ≤ 24

C1 � [1, 2.5], C2 � [3, 4], C3 � [2, 3], C4 � [1.5, 2.5]
search region x1 ∈ [0, 10], x2 ∈ [0, 9].

Example 2 (Wu 2009)

Minimize Z1 � [
x21 + x22 + 1, x21 + x22 + 2

]

Minimize Z2 � [
2x21 + 2x22 + 3, 2x21 + 2x22 + 4

]

subject to x1 + x2 ≥ 1

6x1 + 2x2 ≥ 12,

and x1 ≥ 0, x2 ≥ 0

Example 3

Minimize Z1 � C1 + {x1 − C2}C3
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Minimize Z2 � x2

Minimize Z3 � x3

subject to x23 + {1 + (x1 − 1)5}2 ≥ 0.5

x22 + x23 ≥ 0.5

where C1 � [0.82, 1.1], C2 � [0.9, 1.25], C3 � [4.5, 5.5]
search region: x1 ∈ [1.25, 2], x2, x3 ∈ [0, 1].

Example 4

MinimizeZ1 � C1x1x
2
2

(
C2x

2
3 + C3x3 − C4

) − C5x1
(
x26 + x27

)

+ C6
(
x36 + x37

)
+ C12x4x

2
6

Minimize Z2 �

√
C7

x24
x22 x

2
3
+ C8

C9x36

subject to 1
x1x22 x3

− 1
27 ≤ 0

1
x1x22 x

2
3

− 1
397.5 ≤ 0

x34
x1x3x46

− 1
1.93 ≤ 0

x35
x1x3x47

− 1
1.93 ≤ 0

x2x3 ≤ 40
x1
x2

− 12 ≤ 0

5 − x1
x2

≤ 0

10.9 − x4+10.5x6 ≤ 0

10.9 − x5+10.1x7 ≤ 0
√
555025 x25

x22 x
2
3
+ 1.575 × 108

0.1x37
≤ 1100
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where C1 � [0.7, 0.8], C2 � [3, 3.5], C3 � [14.5, 15.5], C4 � [43, 44], C5 �
[1.5, 1.6], C6 � [7, 7.75], C7 � [555020, 555030], C8 � [1.65, 1.75] × 107,
C9 � [0.05, 0.15].

search region: x1 ∈ [2.6, 3.6], x2 ∈ [0.7, 0.8], x3 ∈ [17, 28], x4, x5 ∈ [7.3, 8.3],
x6 ∈ [2.9, 3.9] x7 ∈ [5, 5.5].

Example 5 (Deb et al. 2000)

Minimize f1(x) � x1
Minimize f2(x) � (1 + x2)/x1
subject to g1(x) � x2 + 9x1 ≥ 6

g2(x) � −x2 + 9x1 ≥ 1

search region: x1 ∈ [0.1, 1.0], x2 ∈ [0, 5]

Example 6 (Srinivas and Deb 1995)

Minimize f1(x) � (x1 − 2)2 + (x2 − 1)2 + 2

Minimize f2(x) � 9x1 − (x2 − 1)2

subject to

g1(x) � x21 + x22 ≤ 225

g2(x) � x1 − 3x2 ≤ −10

search region: xi ∈ [−20, 20], i � 1, 2

Example 7 (Tanaka 1995)

Minimize f1(x) � x1
Minimize f2(x) � x2

subject to g1(x) � −x21 − x22 + 1 + 0.1 cos(16 arctan x1/x2) ≤ 0

g2(x) � (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

search region: xi ∈ [0, π], i � 1, 2

Example 8 (Binh and Korn 1997)

Minimize f1(x) � 4(x21 + x22 )

Minimize f2(x) � (x1 − 5)2 + (x2 − 5)2

subject to g1(x) � (x1 − 5)2 + x22 ≤ 25

g2(x) � (x1 − 8)2 + (x2 + 3)2 ≥ 7.7

search region: x1 ∈ [0, 5]x2 ∈ [0, 3]
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A Comparative Study on Different
Versions of Multi-Objective Genetic
Algorithm for Simultaneous Gene
Selection and Sample Categorization

Asit Kumar Das and Sunanda Das

1 Introduction

Gene selection and sample categorization is one of the vital tasks to identify andmon-
itor the target diseases. Genetic algorithm (GA) in gene selection and clustering has
been proved beneficial in a variety of contexts to solve for a globally optimal solution
of several complex problems. Genetic Algorithm makes an effort to swallow up the
ideas of natural evolution. The basic idea behind genetic algorithm is to replicate nat-
ural evolution of evolving solutions generation wise by applying genetic operators.
So, for the clustering task, the evolutionary algorithm, in particular, the GA is chosen
frequently as the appropriate algorithm. A goodGA always explores the search space
in appropriate manner to search the globally optimal solution. The main objective of
MOGA is to find out the possible pareto optimal solutions and diverse set of solutions
in non-dominated fronts. In the last decade, many pareto-based algorithms have been
proposed like pareto-based ranking procedure (FFGA), niched pareto genetic algo-
rithm (NPGA), non-dominated sorting genetic algorithm (NSGA), and NSGA II, the
strength pareto evolutionary algorithm (SPEA), and SPEA2. Fonseca and Fleming
GeneticAlgorithm (FFGA) is amulti-objectiveGA,which is now an interesting topic
onmulti-objective evolutionary algorithms (MOEAs). This method is a pareto-based
ranking scheme, which is highly incorporated on the sharing factor. A Niched Pareto
Genetic Algorithm (NPGA) is a kind of pareto dominance based tournament selec-
tion with multiple objectives. The NSGA and SPEA able to handle any number of
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objectives. SPEA2, an advance version of Strength Pareto Evolutionary Algorithm,
is a density estimation technique, which uses a fine-grained fitness assignment strat-
egy and an enhanced archive truncation method. In this section, several versions of
genetic algorithm are discussed with their merits and demerits.

In this chapter, different versions ofMOGA such as NSGA, SPEA and SPEA2 are
explored for gene selection and sample categorization. The objective functions used
in the methods are: (i) external clustered validation index between two set of clusters,
one based on sample type and the other based on applied clustering technique on
data subset associated to the chromosome, (ii) intra-correlation among the genes of
the associated data subset, and (iii) overlapped cluster validation index.

Based on these three objective functions, the GA is run and after the convergence,
the best non-dominated solution is identified which gives the important genes and
the clusters of sample. Sample clustering is very helpful and widely used data mining
techniquesmainly to dealwith finding the natural structures in collected experimental
data,which is essential for data analysis to reveal interesting patterns in the underlying
data. Till now none of the clustering algorithm is proved to be the best for all possible
solutions even different configurations of the same algorithm. Cluster validation is a
process of estimating howwell a partition fits the structure underlying the data.Many
researchers have proposed several internal and external cluster validation indices that
quantize the goodness of a partition. The experimental results of all three methods
are compared and observed that SPEA2 outperforms the others.

The chapter is organized into four sections. In Sect. 2, a brief overview of existing
GA based optimization techniques is mentioned. Section 3 describes the proposed
simultaneous gene selection and sample categorization method based on above three
mentioned multi-objective genetic algorithms. Experimental results pertaining to the
performance evaluation of the proposed methods with respect to the existing state-
of-the-art methods are presented in Sect. 4 using various microarray cancer datasets.
Finally, the chapter is summarized in Sect. 5.

2 Brief Overview of State-of-the-Art Methods

Genetic algorithm (GA) is a heuristic search technique for providing a global optimal
solution. It imitates both the genetic and the evolutionary process of natural evolu-
tion. Professor Holland first proposed this technique in Michigan University of the
United States. It is very useful for finding the solutions of the optimization problems
because of its robustness. Themethod is also highly benefited for searching a solution
in a high dimensional search space. The method starts with a randomly generated
population and finds the fitness of each chromosome in the population iteratively
until it converges, providing the chromosomes or candidate solutions with the opti-
mum fitness values. All the versions of GA perform three basic operations such as
selection, crossover and mutation but they may use one or more objective functions.
Different versions of GA are briefly discussed below.
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A. The Vector Evaluated Genetic Algorithm (VEGA)

The Simple Genetic Algorithm (SGA) was extended by David Schaffer in the year
1984 to propose Vector Evaluated Genetic Algorithm (VEGA) (Schaffer 1987).
VEGA is almost same as SGA except the selection operation. At each generation its
operators are modified till the number of sub populations are generated. So a problem
having k objectives and n size of population generates k sub populations each of size
n/k. Finally, the sub populations are mixed together to get a new population of size
n and crossover and mutation operations are performed on the new population in a
usual way.

B. Multi-Objective Genetic Algorithm proposed by Fonseca and Fleming
(FFGA)

Using the concept of Goldberg’s suggestion, the FFGA is implemented in a different
way than the traditional GA. Firstly, the entire population is searched and all non-
dominated individuals are identified as top ranked individuals in FFGA (Fonseca and
Fleming 1993). The remaining individuals are ranked based on their non-dominant
factors considering the rest of the population. If an individual chi of t-th generation
is dominated by n(t)

i number of solutions in the current generation, then its present
rank is defined by Eq. (1).

Rank(chi, t) � 1 + n(t)
i (1)

The fitness to each individual is assigned after completion of the ranking proce-
dure. FFGA assigns fitness value to the individuals by any one of the following two
fitness-assigning methods: (i) rank based method and (ii) Niche formation method.
The rank based fitness assignment method suffers from a large selection pressure,
which may result into an early convergence. To avoid this, FFGA mainly uses the
second method of fitness assignment or the Niche formation method. In this method,
sharing on the fitness values is used and the population is distributed over Pareto
optimal region.

C. The Niched Pareto based Genetic Algorithm (NPGA)

Tournament selection is one of the most widely used selection techniques in GA.
Horn, Nafloitis and Goldberg proposed the NPGA (Horn et al. 1994), which works
using the concepts of Pareto dominance tournament selection and equivalence class
sharing. This kind of tournament selectionmethod selects some subsets of individuals
randomly from the current population and the best one is retained in the subsequent
population to determine the dominant individuals. The convergence speed of the
method can be increased by adjusting the size of the tournament, which controls
over the quantity of selection difficulty. When individuals become in a tie, then
fitness sharing helps to choose the winner.

The equivalence class sharing procedure with an aim to select the most fitted
individuals from the population is shown in Fig. 1. Here, the niche radius (σshare)
is chosen and according to the radius, candidates that have the least number of
individuals are chosen as the ‘best fit’.
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Fig. 1 Equivalence class
sharing

Equivalence Class Region
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Candidate 2

Niche Radius

D. The Non-dominated Sorting based Genetic Algorithm (NSGA)

NSGA is different from a simple GA in terms of selection operator with keeping
the crossover and mutation operations the same. NSGA (Srinivas and Deb 1995)
eliminates the bias in VEGA with an objective to circulate the population in the area
of pareto optimal front. It includes two steps selection process namely (i) the rank of
solutions computed using individual’s non-domination level and (ii) fitness sharing
to each individual in the population. In the first step, all the dominated individuals
are detected and in the second step strength is given to each solution based on its
non-domination level. Lower fitness assignment to higher level individual gives a
result towards Pareto optimal region.

E. Non-dominated sorting GA II (NSGA II)

In multi-objective GA, the three main difficulties are in: (i) computational complex-
ity which is O (mN3), wherem is the number of fitness functions and N is the size of
the population (ii) implementing non-elitism approach and (iii) specifying a sharing
parameter. All these 3 difficulties are eliminated byNSGA II (Deb et al. 2002).NSGA
II adopts a fast non-dominated sorting methodology with computational complex-
ity O(mN2). The selection operator generates a mating pool from parent and child
populations and selects the best N solutions.

F. Strength Pareto Evolutionary Algorithm (SPEA)

Zitzler and Thiele in the year 1999 (Zitzler and Thiele 1999) proposed the SPEA. It
combined the elitism and non-domination approach. At every generation of this algo-
rithm, an external population is maintained which takes part in genetic operations.
The external population is generated considering a set of non-dominated solutions
from the current population. The fitness of each individual in the current and external
population is defined using the dominated solutions in the population. After generat-
ing population for the next generation, it is required to update the external population.
Each individual in the current population is checked whether both current popula-
tion and external population dominate it. If both the populations do not dominate
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the individual then it is added to the external population. Finally, all individuals of
external populations, which are dominated by the added individual, are eliminated.
This is the updating procedure followed by SPEA.

G. Stronger Version of SPEA (SPEA 2)

Zitzler and Thiele proposed a modified version of SPEA known as Strength Pareto
Evolutionary Algorithm 2 (SPEA2) (Zitzler et al. 2002). There are three main dif-
ferences of this algorithm with SPEA; these are as follows: (i) it defines a fitness
function for each individual using both the number of solutions that dominates it and
the number of solutions dominated by it (ii) it computes the nearest neighbor density
of each solution for efficient searching and (iii) it has an improved archive truncation
method to retain the boundary solutions.

3 Proposed Methodology

Simultaneous gene selection and sample clustering help to increase understandabil-
ity, scalability and accuracy by identifying relevant genes for sample categorization.
Here, sample clustering and gene subset selection is done together using genetic
algorithm (GA). Basically, GA is used to select the optimal subset of genes which
automatically finds optimal set of clusters of samples when the GA converges. Clus-
tering is a data mining technique used in different fields to discover the overall
distribution pattern and correlation among the data. Till now many clustering algo-
rithms have been devised by the researchers for extracting hidden patterns from the
dataset. In this section, multi-objective genetic algorithm (MOGA) based clustering
algorithm is proposed for selecting relevant gene subset and obtaining optimal set
of clusters of samples. Almost all real world optimization problems have multiple
objectives that is why the MOGA is so useful for searching optimal solutions. This
technique provides an appropriate distribution of individuals with multiple equiva-
lent solutions. Optimality of the clusters is measured using various cluster validation
indices. Here, NSGA (Srinivas and Deb 1995), SPEA (Zitzler and Thiele 1999), and
SPEA2 (Zitzler et al. 2002) have been explored for finding both optimal gene subset
and clusters of samples from microarray datasets.

The methods use the concepts of cellular automata to generate initial population
of binary chromosomes as input. Assume that the size of the population is m and
length of each chromosome in the population is n, which is the number of genes in
each sample. The fitness of each chromosome is calculated using the subset of the
gene set. This subset is generated considering some genes of the original set. Which
genes will be selected that depends on in which position of the chromosome the bit
‘1’ occurs. Since the sample size and chromosome size are same, so all the genes of
the gene set are selected for which in corresponding positions of the chromosome
have bit ‘1’s. Thus, a chromosome provides a collection of genes. At the end of the
process, the chromosomes of the final population are placed into pareto fronts so that
each non-dominated chromosomes are in the same front. Thus, the chromosomes in
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Fig. 2 Basic workflow of
proposed methods between
two successive iterations
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the population are partitioned into non-dominated sets, which regulate flow of the
genetic algorithm. A chromosome ch1 is said to dominate the other solution ch2, if
both the following conditions are true.

(i) For all objectives, ch1 will never be worse than ch2.
(ii) For some objective functions, ch1 is strictly better than ch2.

Two individuals of same front are independent to each other and considered as
similar solutions. The best solution of first front (either it is determined bymeasuring
some strength excluding the fitness value or it is selected randomly) of the final
population gives the optimal gene subset and clusters of samples. Figure 2 describes
the overall work flow of the proposed work.

3.1 Initial Population and External Population

Initial population generation plays an important role in evolutionary algorithms
(Gong et al. 2015; Price et al. 2005; Gu et al. 2015). When there is no idea about the
solution of the problem, then the obvious choice is to generate the initial population
randomly. But the GA takes long computational time to converge when the searching
space is unpredictable. At the same time, the initial population generated using quasi-
random sequences is very complex and not appropriate in high dimension (Maaranen
et al. 2004). As a result, a suitable cellular automata based technique is applied for
making a simple and faster initial population in high dimensional space.

Abstract Cellular Automata (CA) (Waters 2012), a pseudorandom pattern genera-
tor, plays an important role for any population based stochastic search method. Here,
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Seed:  1            1                 0 1                        1

X Y Z X Y Z X     Y      Z X Y Z X Y Z

Cell values:     1       1      1        1      1       0        1      0      1         0     1      1        1      1      1

Apply rules:             R1 R2                                      R2 R4 R3

Next state:      1                 0                   1 0          1

Fig. 3 Next-state population generation using cellular automata

the nonlinear hybrid uniform cellular automata have been used for generating the
initial population so that the initial solutions are situated over the major portion in the
searching space. As a result, optimization becomes more efficient using the proposed
population generation approach. The nonlinear hybrid uniform CA is modeled as a
large number of cells organized like a lattice. It is a very powerful automaton where
each cell has the ability of self-breeding. The proposed GA based methods generate
next state (NS) of each cell c using its present state (PS) and states of its neighbor
cells based on the four basic rules R1, R2, R3, and R4 as defined below. The method
considers only 3-neighbors (namely; left neighbor (LNB), self or current (SLF) and
right neighbor (RNB)) one-dimensional cellular automata and each cell only have
any one of two states (0 or 1).

R1 : NS(c) � (LNB(c) ∧ SLF(c)) ∨ (∼ LNB(c) ∧ RNB(c))
R2 : NS(c) � (LNB(c) ∧ RNB(c)) ∨ (SLF(c)∧ ∼ RNB(c))
R3 : NS(c) � LNB(c) ⊕ SLF(c) ⊕ RNB(c)
R4 : NS(c) � SLF(c) ⊕ (LNB(c)∨ ∼ RNB(c))

Where, LNB(c) denotes the left cell value of current cell c, SLF(c) denotes the c-th
current cell value and RNB(c) denotes the right cell value of current cell c. For every
cell to generate the next state, a feasible rule is chosen dynamically. Among the rules,
R1, R2, and R4 are nonlinear while R3 is linear and therefore, it is named as nonlinear
hybrid CA. Population generation uses these rules as mentioned in Fig. 3 with an
example, where X, Y and Z stand for Right (RNB), Current (SLF) and Left (LNB)
cell respectively.

Thus, the initial population of chromosomes is created and used as current pop-
ulation for the first iteration and after every iteration a new current population is
generated.
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There is a possibility in GA based heuristic that some comparatively better solu-
tions can get rid of the populationwhichmay slower the process of finding the optimal
solution or quite difficult to achieve it. Elitism is the property used in GA to keep the
copy of the better chromosomes in an external population and move them directly
into the next generation. Thus, a portion of external population is chosen to produce
offspring for new generation in each successive generation. Here, together with the
internal population or simply populationP, external populationP′ is also generated to
maintain the elitism property for allowing the best chromosome(s) from the present
population to the next population directly. Thus, quality of the solutions obtained by
GA will not degrade from one generation to other. Generally the size of the external
population is one-fourth of the original population. The external population is filled
by the non-dominated solutions of the optimal pareto front.

3.2 Fitness Function

Thefitness function is defined to determine the quality of a solutions in the population.
It gives the direction of looking for the optimal solution of the problem that helps to
quick convergence of the process. These functions for each solution in the population
are defined using (i) external cluster validation index between the two set of clusters,
one based on sample type and the other based on applied clustering technique on
data subset associated to the chromosome, which needs to be maximized, (ii) intra-
correlation among the genes of the associated data subset, which is to be minimized,
and (iii) overlapped cluster validation index, needs to be minimized.

3.2.1 External Cluster Validation Index

To define the external cluster index, the samples are clustered using the Enhanced
Cluster Affinity Search Technique (E-CAST) (Bellaachia et al. 2000). It determines
clique graphs, which are basically a set of disjoint undirected complete graph. Each
complete graph inside the clique is a cluster, where every node (i.e., sample) in the
complete graph is similar to each other and dissimilar to node (i.e., sample) of other
complete graph inside the clique. The similarity is measured using cosine similarity
of the samples. In E-CAST algorithm, each cluster has a connectivity threshold and
each member/sample has certain affinity to a particular cluster. A node/sample is said
to be a high connectivity node to a cluster only when the affinity of that node to that
cluster is larger than or equal to the connectivity threshold of that cluster; else the
node/sample is called low connectivity node to that cluster.

The external cluster index is computed using the following process:

(a) The data subset associated to each chromosome is first classified into different
groups based on the sample types. Thus, a set of clusters CL1 �{Cl11, Cl12, …,
Cl1s} are obtained, where s is the number of sample types exist in the dataset.
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The following two steps give the second set of clusters CL2.

(b) For every pair of samples in the data subset, Cosine similarity is calculated using
Eq. (2) and a Cosine similarity matrix is obtained.

S(P,Q) �
∑n

i�1 PiQi
√∑n

i�1 P
2
i

√∑n
i�1 Q

2
i

(2)

where, Pi and Qi are i-th gene of samples P and Q respectively. It is a measure
of orientation and not magnitude; two vectors of equal orientation have a cosine
similarity value 1, so higher the similarity value implies more similar the samples
are and vice versa. Instead of cosine similarity, several other similarity measures
can be used like Euclidean distance, Pearson correlation, and so on. The E-CAST
clustering algorithm uses cliques of the graph and divisive hierarchical clustering
algorithm to partition the samples into different groups in a top down approach. The
algorithm relies on input called affinity threshold μ, on which the size and cluster
quality depends. A hardcoded predetermined value for affinity threshold μ is used in
Ben-Dor et al. but better option is the dynamic calculation of its value. When affinity
threshold value is calculated dynamically, only the similarity values of samples not
yet clustered are considered. By using the similarity matrix S defined in Eq. (2), the
affinity of a sample p is found to a particular cluster Ci as a(p) � ∑

u∈Ci
S(p, u).

Each cluster have a connectivity threshold defined as χ � μ|Ci|, where |Ci| is the
number of elements in that cluster. A sample is known as a highly connected node to
a cluster if its affinity to that cluster is higher than the connectivity threshold of that
cluster; otherwise the sample is called low connectivity node to that cluster. Each
Cluster is formed using following three operations:

(i) Node Addition: Add a sample to the cluster having highest affinity or connec-
tivity.

(ii) Node Deletion: Remove a sample from a cluster having low connectivity or
affinity.

(iii) Cluster Clearing: It is used to remove any node from its current assigned cluster
to another cluster to which it has highest affinity. But sometimes this step may
not be required to improve the cluster’s performance. Thus, after applying E-
CAST algorithm, a set of t-clusters CL2 �{Cl21, Cl22, …, Cl2t} are generated.

(c) Now, the external cluster index namely, F-Measure between two sets of clus-
ters CL1 and CL2 is measured. This index value ranges in [0–1]. Higher value
indicates clusters obtained by both the clustering algorithms are more similar to
each other.
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3.2.2 Intra Correlation Among Genes

The intra correlation among genes is measure to define a fitness function of the
chromosome ch to maximize non-redundancy i.e. minimize intra-correlation among
the genes in the dataset, defined in Eqs. (3) and (4).

f 3(ch) � 1

MC(ch)
(3)

MC(ch) � 2

N (N − 1)

N∑

i�1

N∑

j�i+1

∣
∣corr

(
chi, chj

)∣
∣ (4)

where, f3(ch) is the non-redundancy, MC(ch) is the intra-correlation of genes in
chromosome ch, and corr(chi, chj) is the correlation between two genes chi and chj
of ch, N is the number of genes in chromosome ch.

3.2.3 Overlapped Cluster Validation Index

Now, the overlapped external cluster validation index between two set of clusters
CL1 and CL2 are measured using the concept discussed in paper (Campo et al.
2016), briefly discussed as follows:

For a cluster Ci probability that every pair of samples belongs to the cluster is
measured by Eq. (5).

Pr((sx, sy) ∈ Ci) �

(
Mi

2

)

(
N
2

) � Mi(Mi − 1)

N(N − 1)
(5)

where, Mi is the number of objects in cluster Ci. Here, the numerator represents
the number of pairs that can be found in cluster Ci. In order to normalize it, the
denominator represents a similar situation where all of the samples are grouped
together in a single cluster; hence any possible pair could be found. The probability
of finding a pair of elements in any cluster Ci for all of the existing clusters k is
estimated using Eq. (6).

P̃ �

∑k
i�1

(
|Mi|
2

)

k

(
N
2

) (6)
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where, the numerator accumulates all of the pairs found in each cluster. The denom-
inator represents a normalization factor, which acts as if all of the samples were
grouped together. The k factor considers the situation where the overlapping is
complete up to all k clusters. An identical reasoning could be applied to obtain a
comparable expression for C′ in Eq. (7).

P̃′ �

∑k′
j�1

(
|Mi|
2

)

k

(
N
2

) (7)

The same analysis described for P̃ and P̃′ can be performed for both solutions
together which is defined in Eq. (8), where Mij � number of objects common in
Ci andC ′

j .

Pr((sx, sy) ∈ Ci ∧ (sx, sy) ∈ C′
j) �

(
Mij

2

)

(
N
2

) � Mij
(
Mij − 1

)

N(N − 1)
(8)

It is seen that, as an approximation to the probability, the pair of data points (Sx,
Sy) is present in both solutions. The whole expression stands for the event of drawing
two samples that are in both clusters Ci and Cj

′. It is assumed that the same analysis
is made for every possible pairing between clusters of C and C′. So, the probability
of finding (Sx, Sy) in both solutions can be estimated using Eq. (9).

t̃ �

∑k
i�1

∑k′
j�1

(
Mij

2

)

(
N
2

)
max(n, n′)

N min
(
k, k′)

(9)

where n and n′ are the number of samples that can be counted in solutions C and
C ′, respectively. Similar to P̃ and P̃′, the numerator of Eq. (9) counts all of the
effective pairs of samples that can be found in both solutions simultaneously. The
denominator acts once again as a normalization term. It basically covers the extreme
scenario where all of the samples are clustered together several times. Just as in

Eqs. (6) and (7),

(
N
2

)

counts the number of pairs that can be arranged given all

N samples. Since there could be overlap in both solutions, the given number of
pairs should be multiplied by a factor. On the one hand, there could be as many
overlaps as k in C and k ′ in C ′. Also, it was found that the matching between clusters
of both solutions produces at most min

(
k, k ′) pairs of clusters in the comparison.
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Finally,max
(
n, n′)/N is the average number of samples that can be found considering

overlaps.
With these elements in mind, the new index for overlapped clusters (OC) could be

defined as the ratio between the probabilities of finding two items grouped together
in both solutions and the maximum probability of finding them in one of the given
solutions, which is defined in Eq. (10).

OC � T̃

max
(
P̃, P̃′

) (10)

This validation index value ranges in [0–1]. Higher value indicates clusters
obtained by both the clustering algorithms are more similar to each other.

3.3 Tournament Selection

Selection operation is considered as the first genetic operator of GA. The solutions
selected as parents are involved in crossover operation to produce offspring for the
next operation. Selection operations popularly used are roulette wheel selection,
boltzmann selection, tournament selection, rank selection, and steady state selec-
tion to select the best chromosomes for mating pool generation. In the proposed
work, tournament selection method is used, where four competitors participate in
the tournament each time. Chromosome with the best fitness value is chosen in each
tournament and the selection process is continued until the mating pool is filled up.

3.4 Crossover Operation

The fittest chromosomes of the current population P are selected using the selection
operation, which gives some direction of searching solutions but offsprings are cre-
ated by crossover operation for searching the better solutions throughout the whole
search space. Crossover is one of the basic operations of GA by which new chromo-
somes are generated to give the direction of searching solutions in the population
towards local optima. As the main goal ofGA is to make the population convergence,
so crossover is basically happened more frequently, generally in every generation.
New solutions are found from old solutions by the process of crossover andmutation,
much like what happens in nature with chromosomes. So, new solutions are the off-
spring of the old solutions or the children of the old solutions. There are many cross
over operations like single point crossover, uniform crossover, multi point crossover
out of which two-point crossover operation is used in thework between twomembers
present in the mating pool with crossover probability 0.8.
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3.5 Mutation Operation

Mutation is a crucial operation to maintain the diversity in the population. In spite of
popularity of the single bit mutation in GA, diversity could not be maintained all the
time in the population. The reason behind this is no change of the first bit of binary
string. Jumping gene mutation methodology (Pati et al. 2013) helps to overcome
this demerit for mutating the genes with probability 0.02. The genes capable of
jumping dynamically within the chromosome are known as jumping genes. These
genes have the great potential to maintain diversity throughout the entire population
and take very crucial role for evolutionary searching algorithm. Let, a chromosome
in population is (x1, x2, …, xn). Jumping genes of length p (p	n) say, (y1, y2, …, yp)
and the initial position of the chromosome from which mutation occurs is selected
randomly and the portion of the chromosome is substituted by the jumping gene. Let
r be the starting position, so after mutation the muted chromosome is (x1, x2, …,
xr−1, y1, y2, …, yp, xr+p, …, xn).

3.6 Multi-Objective Genetic Algorithm for Gene Selection
and Sample Clustering

Clustering is an important data mining technique to find the actual clusters of data.
Many clustering algorithms are devised for searching optimal set of actual clusters
to identify the overall distribution patterns and that helps in prediction of future
trend. In this section, a multi-objective GA based clustering algorithm is proposed to
find the clusters of genes. Generally, real world optimization problems have multi-
ple objectives so multi-objective genetic algorithm is a perfect treatment for finding
multiple optimal solutions. Thus, the usefulness of application of this algorithm is
to partition the samples into different clusters based on the defined objective func-
tions. In this chapter, NSGA, SPEA, and SPEA2 have been explored for finding both
important gene subset and optimal set of clusters of samples from the dataset. The
corresponding algorithms are named as GNSGA, GSPEA and GSPEA2 respectively.

All the above methods need a population of chromosomes which are different
individuals in the search space. Length of each chromosome is set as n, the number
of genes present in the dataset and population size is set as m, a predefined constant.
Initial population of binary chromosome is generated using cellular automata. The
‘1’ in the i-th position of a chromosome corresponds to i-th gene in the dataset. Thus,
a chromosome in the population represents a collection of genes corresponds to value
‘1’ across its length. This collection of genes is considered as a cluster associated to
that chromosome. After convergence, final population is divided into pareto optimal
fronts based on their objective functions and genes and clusters of samples associated
to the best chromosome of the first front are considered as the optimal gene subset
and optimal clusters of samples of the gene datasets.
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3.6.1 The Proposed GNSGA Method

The main difference between NSGA and Single Objective Genetic Algorithm (SGA)
is only in selection operation but crossover andmutation operations are same for both
the GA. In Vector Evaluation Genetic Algorithm (VEGA) (Schaffer 1987), there are
some biasness which is removed by NSGA and the NSGA distributes the population
over the entire Pareto optimal region. In NSGA, the selection operation functions
using following steps: (i) the chromosomes are ranked by their non-domination level
and (ii) sharing is used to assignfitness to each chromosome.Lowerfitness is assigned
to a chromosome in higher level. This fitness assignment provides a result towards
Pareto optimal region.

(A) Parameter Setting

The sharing function, defined later, requires two parameters; α and σshare. The param-
eter α does not havemuch influence on the performance of sharing function but σshare

need to be set perfectly in order to define the niche size. In our method, similar to
paper (Deb 2001), α is considered as 2 and genotypic sharing is considered. For
genotypic sharing, the Hamming distance is used instead of Euclidean distance. It
takes an integer value between [0, n], where n is the length of the string. For a given
string, the number of strings having different bit differenceswith it in the entire search
space is calculated. Let the number of allowed bit differences is K . Then all strings
having K or less bit differences, occupy at least 1/qth portion of the entire search
space, are determined in Deb and Goldberg (1989). K is calculated using Eq. (11).
If K is not an integer then the least value of K is chosen so that the left side of the
equation greater than or equal to the right side. This minimum value K is assigned
to σshare.

∑K

i�0

(
l
i

)

� 2l

q
(11)

(B) Shared Fitness Assignment

NSGA provides solutionswhich are classified intomutually exclusive non-dominated
fronts. The solutions in first front are the best solutions of the current population.
Similarly, solutions in the second fronts are the next best solution of the current popu-
lation and so on. Therefore, the highest fitness is assigned to the chromosomes in first
front, and gradually worse fitness to solutions in higher level fronts. This is because,
the best non-dominated solutions in a population are closest to the actual Pareto-
optimal front compared to other solutions in the population. The fitness assignment
to the chromosome starts from the first non-dominated front and successively fitness
assignment is continued to other fronts in order. In any r-th solution of the first front,
a fitness value Fr �m is assigned; m is the population size. As the diversity among
the solutions in a front need to be maintained, so shared function method is used that
degrades the assigned fitness based on the number of neighboring solutions.
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Sharing function value is computed between every pair of solutions in a front
using Eq. (12), d in the distance between any two solutions in the population.

Sh(d) �
⎧
⎨

⎩

1 −
(

d
σshare

)α

, if d ≤ σshare

0, otherwise
(12)

The function Sh(d) takes a value in [0, 1], depending on the value of d and σshare.
Both the solutions are same if d is zero and in this case Sh(d) � 1, which implies that
the solution has full sharing effect on itself. Two solutions are at least at a distance
of σshare from each other if d ≥ σshare and in this case Sh(d) � 0 indicating that they
don’t have any sharing effect on each other. The two solutions have a partial effect
on each other for any other distance d . This sharing function values are computed
for each individual considering all solutions in the same front. Thus, niche count nci
for i-th solution is computed using Eq. (13). Here, dij is the distance between i-th and
j-th solution. The niche count provides an estimation of crowding near a solution.
If no other solutions exist within a radius σshare of a solution in the same front, the
niche count would be one for that solution. But, if all solutions in the front are very
close to each other and within radius σshare, the niche count of any solution in the
group are closer to number of solutions in the front.

nci �
n∑

j�1

Sh
(
dij

)
(13)

After computing niche count of a solution, the fitness Fi assigned to i-th solution
is divided by nci to obtain its share fitness value. As all over-represented optima will
have a larger nci value, the fitness of all representative solutions would be degraded
more and vice versa. The procedure is performed for all solutions in the first front.
Next, the fitness value slightly smaller than the least shared fitness in the first front,
is assigned to all the solutions in the second front. The whole fitness sharing process
is repeated for second front and so on. The chromosome with maximum share fitness
value of each front is considered as the best chromosome of that front.

As already mentioned, NSGA used a mating restriction scheme (Deb 1989) based
on genotypic distances betweenmating individuals. To select amate for an individual,
their hamming distance is computed. If the distance is smaller than the parameter
σshare, they are involved in crossover operation, otherwise another mate is selected
at random.

3.6.2 The Proposed GSPEA Method

Here, instead ofNSGA, SPEA (Zitzler and Thiele 1999) is applied for important gene
subset selection. An external population is selected from the current population to
breed a new generation. The method uses a binary tournament selection operation
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based on the strength assigned to the chromosomes. The strength SE(chi) assigned
to each chromosome chi in external population is computed using Eq. (14).

SE(chi) � ni
m + 1

(14)

where,ni is the number of current populationmembers dominatedby chromosome chi
andm is the population size. So, the strength of a chromosome is directly proportional
to the number of chromosomes dominated by it. The strength of each chromosome
chj in internal population is defined using Eq. (15).

SI
(
chj

) � 1 +
∑

i∈P′∧i ��j

SE(chi) (15)

In Eq. (15), i �� j signifies that the fitness of j-th chromosome in internal popula-
tion is one more than the sum of the strength values of all chromosomes in external
population which weakly dominate j. So, according to SPEA algorithm, the chromo-
some having less strength is considered as the best chromosome to be selected for
the mating pool. This selection method is continued till the mating pool is filled.

3.6.3 The Proposed GSPEA2 Method

In this method, improved version of strength pareto evolutionary algorithm (SPEA2)
(Zitzler and Thiele 1999) is explored to identify gene subset sufficient for sample
clustering. Like other methods, external population P′ is generated together with the
current population P to allow the best chromosome(s) from the current population to
the next population. The method is differed from SPEA in two respects; (i) the num-
ber of external population member is constant and (ii) it uses truncation operation,
which allow to considered the boundary solutions. The external population of cur-
rent generation is made considering all the non-dominated solutions of the previous
internal population and the external population. If the size of the external population
exceeds than its predefined size then truncation operation is used. On the other hand,
if the number of solutions in the external population is less than its size then the
dominated solutions with more fitness value are selected from the previous internal
and external population to fill up the size. All non-dominated members are identified
from the combined internal population and external population whose fitness value
F(i)<1 i.e. P′

t+1 � { k|k ∈ Pt + P′
t ∧ F(k) < 1}.

Thus, if
∣
∣P′

t+1

∣
∣ is the external Population Size, then nothing need to be done and if∣

∣P′
t+1

∣
∣ < the external Population Size (N ′) then fill the remaining N ′ − ∣

∣P′
t+1

∣
∣ portion

of the population, i.e., copy the first N ′ − ∣
∣P′

t+1

∣
∣ members of the internal and external

populations having F(k)≥1. But if
∣
∣P′

t+1

∣
∣ >External Population Size then the size

of the external population is reduced by truncation operator discussed below:
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Fig. 4 Illustration of the truncation method used in GSPEA2

Truncation operator

The k-th solution of the external population P′
t+1 is removed when k ≤d j for all

j ∈ P′
t+1 with

k ≤d j :⇔ ∀0 < l <
∣
∣P′

t+1

∣
∣ : σ l

k � σ l
j ∨ ∃0 < l <

∣
∣P′

t+1

∣
∣ : [

(
∀0 < m < l : σm

k � σm
j

)
∧ σ l

k < σ l
j ]

where, σ l
k denotes the distance of k-th solution to its l-th nearest neighbor in P′

t+1.
Thus, the individual with the minimum distance to other individuals is chosen at each
stage. If there are multiple such individuals, then the tie is broken by considering
the second smallest distance and so on. Figure 4 expresses the truncation operation
used in the proposed SPEA2 based method. The left side diagram shows the external
population of eight solutions, where the population size is considered as five. Thus,
after truncation operation, the external population contains a non-dominated set of
five solutions as shown in the right side diagram. The figure also depicts which
solutions are removed in which order by the truncate operator. Though the proposed
method uses three objective functions, but for better understanding, the diagram is
explained with first two objective functions.

Each individual or member of the external population and current population has
the strength value S(k). The strength S(k) of a member k is equal to the number of
members in both current and external population to which it dominates, as defined
by Eq. (16).

S(k) � {j|j ∈ Pt + P′
t ∧ k �� j} (16)

where, ‘k �� j’ implies that the member k dominates member j.
Then the rawfitness valueR(k) is calculated for eachmember/solution byEq. (17).

R(k) �
∑

j∈Pt+P′
t∧j ��k

S(k) (17)
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where, ‘j ��k’ implies that the member j dominates member k, i.e., raw fitness is
determined by its dominators in both internal and external population. The lowest
the value of R(k) indicates that it is not dominated by any other solutions, hence it is
a non-dominated solution.

Finally, the density estimation technique is used when most of the solutions do
not dominate each other. So, the distance of every k-th solution to other solutions
present in both initial population and external population is measured and arranged
in increasing order. Then, taking theK-th entry of that ordered list as distance sought
σK
k such that K � √

N + N ′, where N and N ′ are the current and external population
sizes respectively. The density of each solution k is defined by Eq. (18). Here, ‘2’ is
added in the denominator to make the value of D(k) within the range [0, 1].

D(k) � 1

σ l
k + 2

(18)

The Fitness function is defined by Eq. (19).

F(k) � R(k) + D(k) (19)

The fitness value of non-dominated solution is less than 1.

3.6.4 Gene Selection and Sample Clustering

In all three multi-objective GA, one fitness function is the external cluster validation
index which is measured using the Enhanced Cluster Affinity Search Technique (E-
CAST ) based clustering algorithm. This algorithm is applied for each member in the
population for partitioning the samples into different groups. Thus, after convergence
of each of the GA based method, the genes associated to the best solution in the
population is the final gene subset and clusters corresponding to the best solution in
the population is the final set of clusters.

3.6.5 Cluster Validation

Cluster validation, a very important issue in cluster analysis, is the measurement of
goodness of the clusters relative to others created by clustering algorithms using dif-
ferent parameter values. The difficulty of determining the clusters number is known
as “the fundamental problem of cluster validity” (Akogul and Erisoglu 2017). There
aremany validation indices likeCalinskiHarbasz index (CH) (Calinski andHarabasz
1974), Davies-Bouldin (DB) index (Davies and Bouldin 1979), I-index (Maulik and
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Bandyopadhyay 2002) and Xie–Beni index (XB) (Xie and Beni 1991) for predicting
quality of the clusters.

(A) Calinski Harbasz index

Calinski-Harabasz index (CH) (Calinski and Harabasz 1974), is defined by Eq. (20).

CH (K) � [trace B/K − 1]

[trace W/N − K]
for K ∈ N (20)

where, B is the sum of squares error between different clusters and W is the square
of the differences of all objects in a cluster from their respective cluster center.

trace B �
K∑

k�1

|Ck |
∥
∥Ck − x̄

∥
∥2

traceW �
K∑

k�1

K∑

i�1

wk,i

∥
∥xi − Ck

∥
∥2

The maximum value of the CH-index (Calinski and Harabasz, 1974) gives the
optimal number of clusters.

(B) Davies-Bouldin Validity Index

This index (Davies and Bouldin 1979) is a function defined as the ratio of the sum of
intra-cluster scatter to inter-cluster separation. Let C1,C2, . . . ,Ck be the k number
of clusters, then the DB-index is defined using Eq. (21).

DB � 1

k

k∑

i�1

max
1≤j≤k and i ��j

{
δ2i + δ2j

d2
ij

}

(21)

where, δ2i and δ2j are the variance of clusters Ci and Cj, respectively and d2ij is the
distance between centers of clusters Ci and Cj. A low variance and high distance
between clusters lead to low value ofDB that corresponds to clusters that are compact
and centers are far away from each other.

(C) I-Index

The I-Index index (II) (Maulik and Bandyopadhyay 2002) is defined in Eq. (22).

II(K) �
(
1

K
× E1

EK
× DK

)P

(22)

where, E1 � ∑
j

∥
∥xj − c̄

∥
∥
2 and EK � ∑K

k�1

∑
j∈ck

∥
∥xj − ck

∥
∥
2,DK �

maxKi,j
∥
∥ci − cj

∥
∥
2 and the power P is a constant, which normally is set to be two.

The optimal K is the one that maximizes II(K).
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(D) Xie–Beni index

The Xie-Beni index (XB) (Xie and Beni 1991) is an index of fuzzy clustering which
exploits the compactness and separation. XB computes the ratio between the com-
pactness and the separation. The XB for a given dataset X with a partition with K
clusters is mathematically defined by Eq. (23).

XB(K) � VC(K)/N

VS(K)
�

∑N
n�1

∑K
k�1 u

m
k,n‖xn − ck‖2

N × min
i,j

∥
∥ci − cj

∥
∥

(23)

VC(K) gives the compactness of K clusters, ck�
∑N

n�1 u
m
k,nxn/

∑N
n�1 u

m
k,n is the

centroid of the k-th cluster. VS(K) is the degree of separation between clusters. In
general, an optimal K is found for min

k∈[2,N−1]
XB(K) to produce the best clustering

performance.

4 Experimental Results

Extensive experiments are done to evaluate the proposedmethods using experimental
microarray datasets (‘Kent Ridge Bio-medical Data Set Repository’) describes as
follows:

4.1 Microarray Dataset Description

I. Leukemia Dataset: It is a well-understood gene database published in (Baraldi
andBlonda 1999). The rawdata is available in (Steinbach et al. 2000). It consists
of 27 ALL and 11 AML over 7129 human genes.

II. Lung Cancer Dataset: It is a well-understood gene database published in
(Pedrycz and Hirota 2007). The raw data is available in (Tetko et al. 1995). The
dataset contains 32 samples of which 16 are Malignant Pleural Mesothelioma
(MPM) and 16 are Adenocarcinoma (ADCA).

III. ProstateCancerDataset: The dataset published in (Gowda andKrishna 1978).
The raw dataset is available in Huang and Ng (1999). It contains 52 prostate-
tumor samples and 50 non-tumor prostate samples with around 12600 genes.

IV. Breast Cancer Dataset: The experimental dataset is published in (Liu et al.
2006). The raw data is available in (Bhat 2014). The dataset contains samples
of 78 patients, 34 of which are from patients (labeled as “relapse”) who had
developed distance metastases within 5 years, the rest 44 samples (labeled as
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Table 1 Parameters for GA
control

Parameter Value

Size of the population 200

Number of generations 100

Crossover probability 0.80

Mutation probability 0.02

“non-relapse”) are from patients who remained healthy from the disease after
their initial judgment for interval of at least 5 years. The number of genes is
24481.

V. Diffuse Large B-cell Lymphoma (DLBCL) Dataset: The DLBCL dataset is
published by (Petrovskiy 2003). The raw data available in (Nag and Han 2002).
The classification about data addressed in the publication isDLBCL against Fol-
licular Lymphoma (FL) morphology. The dataset contains 58 DLBCL samples
and 19 FL samples. The expression profile contains 6817 genes.

VI. Colon Cancer Dataset: This gene database is published in (Merz 2003). The
raw data available in (Rousseeuw 1987). It Contains 62 samples collected from
colon-cancer patients. Among them, 40 tumor (labeled as “negative”) biopsies
are from tumors and 22 normal (labeled as “positive”) biopsies are from healthy
parts of the colons of the same patients. The expression profile contains 2000
genes.

4.2 Parameter Setup and Preprocessing

The datasets contain high volume of unwanted genes with random noise and the
samples are linearly inseparable. To obtain the optimal solution, parameter tuning
for the GA is important. Crossover probability and mutation probability are two
important parameters of the GA. Here, tuning of these two parameters are completed
owing to the optimal performance of the GA. It is observed that varying values of
the parameters tend to verify the convergence of the GA. Finally, these parameters
are selected after several test evaluation of proposed methods on the listed datasets.
The parameters used in GA environment are listed in Table 1. Here, the ChiMerge
discretization (Kerber 1992) algorithm is used to convert continuous attributes into
discretized values.

4.3 Performance Measurement

The experimental results have been provided for the mentioned microarray datasets.
The proposedmethods use cellular automata for initial population generation instead



264 A. K. Das and S. Das

Table 2 Comparison between GNSGA, GSPEA and GSPEA2 regarding time (minutes)

Dataset

Method Leukemia Lung Prostate Breast DLBCL Colon

GNSGA 46.48 52.5 57.3 68.25 57.35 43.27

GSPEA 42.52 40.03 50.21 57.43 52.27 41.36

GSPEA2 34.75 40.36 53.17 55.18 54.04 40.25

Table 3 Comparison between different methods in terms of classification accuracy and number of
selected genes

Dataset Classification accuracy (# Number of genes)

GNSGA GSPEA GSPEA2 (Mundra and
Rajapakse
2010)

(Alonso-
Gonzalez
et al. 2012)

Leukemia 97.34 (146) 96.41(154) 96.85 (148) 96.88 (88) 95.49 (74)

Lung 99.87 (220) 99.91 (216) 99.92 (210) 99.90 (29) 99.63 (5)

Prostate 91.27 (236) 94.31 (239) 94.55 (234) 93.41 (85) 90.26 (4)

Breast 91.63 (211) 90.26 (219) 90.77 (215) 87.65 (67) 86.93 (57)

DLBCL 93.49 (256) 94.32 (253) 94.35 (250) 91.23 (76) 90.84 (62)

Colon 91.23 (197) 90.62 (215) 91.21 (201) 88.18 (95) 88.41 (25)

of random initialization, tournament selection strategy, two-point crossover operation
for new offspring generation instead of single point crossover and jumping gene
mutation instead of multi-bit mutation to improve the efficiency of the generated
system. The Table 2 shows the comparison between GNSGA, GSPEA and GSPEA2.
It is observed that the GSPEA and GSPEA2 are more efficient than GNSGA with
respect to the execution time.

The experimental results prove the usefulness of all these methods. It is observed
that all these simultaneous gene selection and clustering methods are very efficient
for high dimensional microarray dataset. The experimental results for these three
methods are described in Table 3 and Table 4 to make a comparative study among
them. In Table 3, the classification performance by Support Vector Machine (SVM)
and number of genes selected are listed considering related state-of-the-art methods
for microarray datasets. It is observed that both GNSGA and GSPEA2 represent bet-
ter classification accuracy. It is also noticed that though the state-of-the-art methods
give less number of genes in compare to the proposed methods but the advantage of
the proposed methods is its simultaneous gene selection and clustering.

Whereas, a comparison ofGNSGA,GSPEA andGSPEA2 based on validity indices
is shown in Table 4. The result in Table 4 shows that, in most of the cases the index
values are better in GNSGA and GSPEA2 methods compare to GSPEA method.
Thus, it is concluded thatGNSGA andGSPEA2methods both are more efficient than
GSPEA method for simultaneous gene selection and clustering of samples.
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Table 4 Cluster analysis for GNSGA, GSPEA and GSPEA2 based on validity indices

Dataset Leukemia Lung Prostate Breast DLBCL Colon

GNSGA CH 0.424 0.226 0.217 0.473 0.314 0.253

DB 0.343 0.271 0.136 0.346 0.223 0.219

II 0.315 0.352 0.242 0.425 0.541 0.438

XB 6.283 2.214 3.492 4.168 2.174 3.215

GSPEA CH 0.427 0.362 0.256 0.513 0.337 0.336

DB 0.347 0.253 0.215 0.286 0.219 0.212

II 0.428 0.275 0.257 0.445 0.552 0.416

XB 5.431 2.324 3.464 4.529 2.194 3.151

GSPEA2 CH 0.429 0.392 0.268 0.515 0.341 0.345

DB 0.403 0.234 0.214 0.288 0.217 0.211

II 0.465 0.277 0.264 0.445 0.558 0.424

XB 5.356 2.303 3.339 4.453 2.187 3.172

5 Summary

The microarray technology, a salient tool for research in the field of Bio-Technology,
leads to the global view of high dimensional gene dataset over different time-points
of different biological experiments. The gene expression analysis of microarray data
manifests the relationships among the patterns present in the data. Gene selection
and sample clustering are two significant tasks for data analysis to locate the char-
acteristics of genes. Instead of gene selection followed by sample clustering, finding
clusters for samples along with gene selection for a specific gene expression data
in a single process is seemed to be a better approach. In this chapter, three methods
are demonstrated for optimal gene subset selection and sample clustering simultane-
ously. The optimality of the clusters ismeasured by some important cluster validation
indices. A comparative study betweenGNSGA,GSPEA andGSPEA2 is presented to
show the goodness of proposedmethods. The result proves the superiority ofGNSGA
and GSPEA2 methods over the GSPEA method. The values of internal cluster vali-
dation indices are also satisfactory which imply that the methods may be useful for
important gene selection and sample clustering simultaneously from a gene dataset
without sample class.
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A Survey on the Application
of Multi-Objective Optimization
Methods in Image Segmentation
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1 Introduction

Image segmentation scheme is a pixel clustering procedure, which involves a
sequence of steps. It is the most significant and crucial step in imaging systems
(Zaitoun and Aqel 2015). Segmentation finds the homogeneous regions in the image
which are distinct in nature. Classical image segmentation procedure involves a
sequence of steps where decisions are made prior to final output creation. In Fig. 1,
the general framework of image analysis is given. It has three layers: Processing
(Bottom), Analysis (Middle), and Understanding (Top). Segmentation of image
would be the first stage of image analysis. Frommultiple perspectives, to achieve the
goal of segmentation, multi-objective optimization plays a crucial role. Applying
multiple objectives in problem formulation in image segmentation appears as a new
trend in recent research work (Nakib et al. 2009; Ganesan et al. 2013). Generally,
in case of MOO, objective functions would be conflicting and prevent concurrent
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optimization for objectives. Image segmentations in the real world have multiple
objectives. Here, the aim is to maximize the inter-cluster connectivity and minimize
overall intra-cluster data deviation. As a result, it reduces the classifiers’ error rate.
These objectives formulation creates a gap in between the characteristics of segmen-
tation problem with the solution of realistic problem. Here, in this concern, MOO
is a suitable scheme for the said issue (Wong et al. 2017; Saha and Bandyopadhyay
2010). The aim of this research article is to explore the survey report in this concern.
It will provide a general review of the following:

Multi-objective optimization in image segmentation scheme. The multi-objective
schemes are classified according to their relevant features. In this research article,
explanation of image segmentation is given in Sect. 2 and relates it with the problem
of multiple objectives. Here, also MO is identified, which is related with the image
segmentation problems. Section 3 will describe the design issues applying objective
optimization concept. Section 4 will provide the application of MO optimization
methods along with different classifications. Section 5 will provide the survey of
image application with multi-objective optimization. Finally, conclusion is given.

2 Image Segmentation and MOO

Image segmentation involves several activities. Initially, pattern representation gen-
erates the classes for clustering operation. Thereafter, feature selection and extraction
are the important activities. Feature selection is a method to select the best subset for
clustering, where feature extraction is the transformation of input subset to generate
new salient features. Either feature selection or extraction or both can be employed
to achieve appropriate features for clustering. Hence, to select the suitable features,
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there is a chance to select multiple features at the clustering process. For illustra-
tion, the detection of diabetic retinopathy, multiple features of the retinal image like
shape, intensity may be considered. After that, pattern proximity is considered. It is
generally measured by the distance function characterized by the group of patterns.
In this contrast, Euclidean distance reflects variation in between two patterns. In this
regard, inter-pattern similarity is a crucial issue for multiple objective criteria. As
an illustration, in medical fundus image segmentation, special coherence through
feature homogeneity may be considered. The feasible criteria may include here the
inter-region connectors versus intra-area compactness. The classification may affect
the feature extraction and similarity calculation. The grouping operation can be done
in different manners. The resultant image (Fig. 1) can be presented in fuzzy or hard
rules. Algorithms generate multiple numbers of groups based on a set of factors.
For an instance, a hierarchical clustering method generates a sequence of partitions
based on splitting or merging. Basically, partition clustering methods specify the
partition that optimizes the clustering criterion. In case of validity test for cluster-
ing, validity index with multiple objectives may be formulated. The aim of these
optimization schemes is to achieve the optimal set of clusters for image segmenta-
tion method. Multiple criteria or objectives begin from the realization of data to its
preferred segmentation method and ends with the evaluation of the output. Figure 2
reflects multiple sources of information for the exact segmentation problem. Hence,
multiple representations may be considered. In image segmentation method, there is
also scope to combinemultiple methods to achieve the desired output. In case ofMO,
select multiple optimizations as well as decision-making methods, where multiple
validity testing methods should be applied (Chen et al. 2015; Nedjah and Mourelle
2015; Arulraj et al. 2014).

3 Image Segmentation Design Issue

Image segmentation is a decision-making process. In computer science, segmentation
in the image is the procedure to partition a digital image into multiple segments.
The aim of segmentation is to simplify or make changes in image representation
into more meaningful for analysis. The stages are intelligence, problem design, and
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Table 1 Three phases in image segmentation and MOO

Image segmentation (Decision-making) Issues (MOO)

1. Intelligence phase a. Understanding problem
b. Aim identification
c. Possible conflict may define

2. Design phase a. Define objective function
b. Identify weight values
c. Customization of objective function

3. Choice phase a. Verify the decision rules
b. Interact with decisions-makers

choice. Initially, intelligent decision-making ability may be considered. This stage
is concerned with decision environment. All the raw or input data are, therefore,
collected, processed, and tested. So, frommulti-objective optimization point of view,
concerned issues would be understanding of the problem, goal definition, identify the
possible conflict in between the existing objectives. The second stage is involvedwith
analyzing and developing a set of solutions or alternative paths. In the optimization
phase, the objective function is defined by selected attributes and weighted values.
So, fromMOOpoint of view, this stagewould be: identification of objective function,
realization of attributes, optimization of search strategies, etc. The final phase is to
design the choice. Choice is the selection of alternatives from the available options. In
this stage, each and every alternative is evaluated in terms of specific rules. Basically,
the rules are applied for ranking different alternatives. So, in multi-objective point
of view, this stage deals with different types of rules and creating links with decision
makers (Table 1).

4 Image Segmentation Classification Using Multi-Objective
Perspective

In case of image classification, chiefly two methods are available: unsupervised and
supervised. In the unsupervised method, the classes will be unfamiliar and the said
method begins by partitioning image dataset into clusters or by means of groups.
To measure the similarity of the results, the outcome has to be compared with the
reference data. These overall tasks are done by a data analyst. So, for that reason,
classification using unsupervised method is also called clustering problem (Xu and
Wunsch 2005) In case of the supervised method, the mean value and the variance
number in image classes are familiar in advance. These datasets are applied in training
phase, which is tagged on next stage, i.e., at classification (Bezdek et al. 1993). The
applications of multi-objective optimization (MOO) in the classification technique, a
number of objective criterions are defined. In the clusteringmethod, generally, cluster
validity is examined which is formulated as the objective function. Here, the objec-
tive functions are generally associated with a set of rules which are defined by the
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classifiers. Basically, objective functions are characterized by the tradeoff between
sensitivity and the variety of classifier. In this concern, Cococcioni et al. (2007)
have used an evolutionary 3-objective optimization method to produce the optimal
solution approximately. It generates the trade-offs between exactness along with the
complexity of classifiers. From the review work, it appears that the multi-objective
optimization (MOO) schemes are most accepted for the design of multiple classifiers
(Cococcioni et al. 2011; Oliveira et al. 2006; Ahmadian and Gavrilova 2012; Nojima
2006). Multiple classifiers have two levels in general. For an example, Ahmadian
et al. (2007), initially generates a classifier which is based on aggregation error into
every separate class. The subsequent level explores the best ensemble for classifiers
withMO genetic algorithm. Pulkkinen andKoivisto (2008) have applied themultiple
layer perceptron neural networks (i.e., MLP) as the classifiers to create classifiers.
Here, the next level utilizes hidden Markov Model to select the best classifiers. Gen-
erally, the classifiers have been applied to reduce the classification ambiguity of the
model, also increase the level of performance. This scheme is clearly described by
Oliveira et al. (2006). In review of this specific area, it is observed that a superior
quality ensemble would be the collection of individual classifiers which is highly
accurate. To create any classifier, accuracy and diversity are two significant objec-
tive criteria or crucial issues that should be considered. For an example, Ahmadian
et al. (2007) represent the simulation of classifiers using the concept of error that are
created in each class. The researchers examined the level of performance of multi-
objective classifier and realized the need to generate the classifiers including high
diversity (Ishibuchi and Nojima 2015). Multi-objectivity with diversity and accuracy
is still an open area for research work. Now, in image segmentation where ambigu-
ities arise, fuzzy segmentation technique will be more suitable. Generally, fuzzy
segmentation deals with inexact data (Datta et al. 2016). Rule-based fuzzy image
segmentation methods are proficient to assimilate expert-based knowledge and also
computationally less expensive (Karmakar and Dooleya 2002). Fuzzy segmentation
is able to infer linguistic variables. Hence, the rule-based fuzzy classification system
including multi-objective (MO) scheme is also a significant research area. In this
concern, Cococcioni et al. (2007) used an evolutionary MOO algorithm considering
rule-based fuzzy classifiers. To gain a better performance,MO fuzzy scheme has been
merged with artificial neural networks. Kottathra and Attikiouzel (1996) presented
the multi-objective setup using a neural network. Here, set up a branch and bound
technique to find out the number of hidden neurons. Ghoggali et al. (2009) have been
applied to support vector machine on multi-objective genetic algorithm for limited
training dataset. Thus, a lot of facility was provided by genetic algorithms and the
evolutionary algorithms for real-life difficult problems which involve features like
multimodality, discontinuities, noisy function assessment, etc. Here, the population-
oriented nature iswell suited for optimizingmultiple objectives (Bandyopadhyay and
Pal 2007). Though a lot of efficient algorithms have been formulated for classifiers,
but unable to show a single algorithm, this is theoretically or empirically better than
in the mentioned scenarios. Multi-objective optimization scheme includes scatter
search, particle swarm optimization (PSO), artificial immune systems, etc., which
makes the classifier more effective.
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Table 2 Image dataset where MO is applied

Natural images Remote sensing
images

Simulating images Medical images

Nakib et al. (2009),
Bhanu et al. (1993),
Shirakawa and Nagao
(2009), Omran et al.
(2005), Zhang and
Rockett (2005),
Pulkkinen and
Koivisto (2008),
Bandyopadhyay et al.
(2004)

Mukhopadhyay and
Maulik (2009),
Mukhopadhyay et al.
(2007), Paoli et al.
(2009), Saha and
Bandyopadhyay 2008,
Ghoggali et al. (2006)

Saha and
Bandyopadhyay
(2010), Guliashki
et al. (2009), Matake
et al. (2007), Zhang
and Rockett (2005)

Cococcioni et al.
(2011), Datta et al.
(2016), Collins and
Kopp (2008), Cocosco
et al. (1997), Wen
et al. (2017), Gupta
(2017))

5 Survey on Image Application Including MOO

Today multi-objective scheme is very frequently used in image application. Bhanu
et al. (Bhanu et al. 1993) recorded the first use of multi-objective scheme in image
segmentation. Histogram thresholding, image clustering, and classification are the
major areas, where multi-objective schemes have been applied. Table 2 represents
a variety of image dataset that has been applied in image applications including
multi-objective scheme.

Current review reflects that multi-objective schemes are becoming popular in
medical and also remote-sensing image processing. As a result, a number of recent
articles were found in which multi-objective schemes have been applied (Cococcioni
et al. 2011; Datta et al. 2016; Collins and Kopp 2008; Cocosco et al. 1997; Wen et al.
2017; Gupta 2017; Nakib et al. 2007; Wu and Mahfauz 2016; Das and Puhan 2017;
Alderliesten et al. 2012). For research purposes, there are a number of online datasets
offered for experiments in multi-objective methods. For example, the renowned UCI
repository (Newman et al. 1998) with images is related to iris, dermatology, wine
yeast, a cancerous cell, etc. Other online available medical repositories are BrainWeb
(Cocosco et al. 1997) and so on. The nature of modern imaging problem is associated
with multi-spectra and the problem formulation with multi-objective is suitable for
merging images with several spectral, spatial, and temporal resolutions. This concept
is also applicable to generate new images. The multi-objective schemes have been
applied in different areas of medical imaging as in dermatology, iris, breast cancer,
and in BrainWeb (Cocosco et al. 1997). For an example, Carla and Luís (Carla and
Luís 2015) have proposed a multi-objective scheme to detect exudates in retinal fun-
dus images. The performance is evaluated by online dataset and the outcomes prove
that the proposed scheme is better than traditional Kirsch filter for the identification
of exudates.

Testing the retinal fundus images is useful to detect ocular disease like diabetic
retinopathy (DR) and also able to interpret several problems in medical science.
Usually, fundus camera produces low-quality noisy retinal images for DR and other
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Fig. 3 Application of MOO in retinal image segmentation

ocular disease identification. In this scenario, contrast enhancement of retinal fun-
dus image is a mandatory task. Recently, Punia and Kaur (2017) has presented a
genetic algorithm-based multi-objective optimization method for the retinal image
contrast enhancement and obtained a good result. Initially, the chromosomes are
randomly distributed. In the next stage, initialize the random chromosome using
heuristic methods. Then, adaptive crossover and mutation have been done. Here,
MO is applied to get optimum scaling. Figure 3 represents the overall retinal image
contrast enhancement scheme using MO.

Besides this, recently, multi-objective schemes have been used for medical
resource allocation. Wen et al. (2017) have proposed a method for medical resource
allocation applying multi-objective optimization method. The proposed algorithm
provides a new searching technique for discrete value optimization. Generally, image
segmentation is a pixel-based classification scheme. This scheme is conducted by
calculating the features of each pixel and provides a decision surface at feature space.
In case of classification, the partition of object space is done by training objects. So,
multiple objective schemes have been applied for classifier design. Now, in case of
segmentation in medical images, classifiers are “trained” to “learn” about the image.
Here, input fundus images are a collection of sub-images with a variety of spatial
locations in fundus image. In these classification schemes, a few are fully supervised
whereas the rest of these are semi-supervised schemes. In this concern, clustering
method is an important issue and unsupervised classification scheme is used to cre-
ate a group in the clusters. Generally, the clustering scheme has been applied on
image segmentation method especially for unsupervised partitioning of the object
space using predefined lists like feature homogeneity, spatial coherence, etc. In this
regard, to optimize different criteria, multi-objective schemes have been selected.
Another image segmentation problem is to apply threshold method in image pro-
cessing applications. Generally, thresholding is a region segmentation scheme. In
this scheme, a threshold value is chosen so that the image is subdivided into pixels
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group with the value either lesser or greater than or equal to the selected threshold
value. Comparing with multi-objective clustering application, a limited effort has
been found in multi-objective thresholding method. Nakid et al. (2007) have applied
multi-objective scheme to get the optimal threshold value. Here, the optimization
scheme uses the simulated annealing for Gaussian Curve. Besides these, for unpop-
ular applications like shape- and region-based image segmentation problems are
associated with multi-objective scheme. Though in research, these are unusual but it
is a probable research area in favor of multi-objective optimization method.

6 Conclusion

In recent years, there is an increase in the research interest on multi-objective opti-
mization domain. Most of the realistic image segmentation involves multi-objective
optimizationmethod. For the past few years, evolutionary scheme and different types
of heuristic methods have been useful to solve realistic MO methods. Currently, for
problem formulation in image segmentation multi-objective optimization (MOO)
methods have been applied. The MOO procedure is the collection of realistic com-
plex optimization problems, where the objective functions are generally conflicting
and have the ability to make decisions. In image processing, image segmentation is
the clustering of pixels by applying definite criteria. It is one of the crucial parts in
image processing. Here, in this article, the segmentation models are categorized by
the problem formulation with relevant optimization scheme. The survey also pro-
vides the latest direction and challenges of MOO methods in image segmentation
procedure. It is clearly observed that varieties of schemes are needed for optimiza-
tions. At the same time, it is very common to manage or customize the property of
the problem to achieve the objective. In this concern, it is not essential to detect each
pareto-optimal solution as researchers study MOO from different angles.

References

K. Ahmadian, M. Gavrilova, Chaotic neural network for biometric pattern recognition. Adv. Artif.
Intell. 2012, 1 (2012)

K. Ahmadian, A. Golestani, M. Analoui, M.R. Jahed, Evolving ensemble of classifiers in low-
dimensional spaces using multi-objective evolutionary approach, in 6th IEEE/ACIS International
Conference on Computer and Information Science (ICIS, 2007), pp. 20–27

T. Alderliesten, J.J. Sonke, P. Bosman, Multi objective optimization for deformable image registra-
tion: proof of concept, in Proceedings of the SPIE Medical Imaging 2012 (54), 32–43 (2012)

M.Arulraj, A.Nakib,Y.Cooren, P. Siarry,Multi criteria image thresholding based onmulti objective
particle swarm optimization. Appl. Math. Sci. 8(4), 131–137 (2014)

S. Bandyopadhyay, S. Pal, Multiobjective VGA-classifier and quantitative indices of classification
and learning using genetic algorithms, in Applications in Bioinformatics and Web Intelligence
(Springer, Berlin, Heidelberg, 2007)



A Survey on the Application of Multi-Objective Optimization … 277

S. Bandyopadhyay, S.K. Pal, B. Aruna, Multi objective GAs, quantitative indices, and pattern
classification. IEEE Trans. Syst. Man Cybern.-Part B Cybern. 34, 2088–2099 (2004)

J.C. Bezdek, L.O. Hall, L.P. Clarke, Review of MR image segmentation techniques using pattern
recognition. Med. Phys. 20, 1033–1048 (1993)

B. Bhanu, S. Lee, S. Das, Adaptive image segmentation using multi objective evaluation and hybrid
search methods. Mach. Learn. Comput. Vis. 3(1993), 30–33 (1993)

P. Carla, G. Luís, Manuel Ferreira Exudate segmentation in fundus images using an ant colony
optimization approach. Inf. Sci. 296, 14–24 (2015)

L. Chen, F.P.T. Henning, A. Raith, Y.A. Shamseldin, Multiobjective optimization for maintenance
decision making in infrastructure asset management. J. Manag. 31(6), 1–12 (2015)

M.Cococcioni, P.Ducange,B. Lazzerini, F.Marcelloni,APareto-basedmulti objective evolutionary
approach to the identification ofMamdani fuzzy systems. Soft Comput. 11(11),1013–1031 (2007)

M. Cococcioni, P. Ducange, B. Lazzerini, F. Marcelloni, Evolutionary multi-objective optimization
of fuzzy rule-based classifiers in the ROC space. FUZZ-IEEE 1–6 (2011)

C.A. Cocosco, V. Kollokian, R.K.S. Kwan, A.C. Evans, BrainWeb: online interface to a 3D MRI
simulated brain database. Neuro Image 5 (1997)

M.J. Collins, E.B. Kopp, On the design and evaluation of multi objective single-channel SAR image
segmentation. IEEE Trans. Geosci. Remote Sens. (46), 1836–1846 (2008)

V.Das,N. Puhan,Tsallis entropy and sparse reconstructive dictionary learning for exudates detection
in diabetic retinopathy. J. Med. Imaging 4(2), 1121–1129 (2017)

N.S. Datta, H.S. Dutta, K. Majumder, An effective contrast enhancement method for identification
of microaneurysms at early stage. IETE J. Res. 1–10 (2016)

T. Ganesan, I. Elamvazuthi, K.Z.K. Shaari, P. Vasant, An algorithmic framework for multi objective
optimization. Sci. World J. 2013, 1–11 (2013)

N. Ghoggali, Y. Bazi, F. Melgani, A multi objective genetic data inflation methodology for support
vector machine classification, in IEEE International Conference on Geoscience and Remote
Sensing Symposium (2006), pp. 3910–3916

N. Ghoggali, F. Melgani, Y. Bazi, A multiobjective genetic SVM approach for classification prob-
lems with limited training samples. IEEE Trans. Geosci. Remote Sens. 47, 1707–1718 (2009)

V. Guliashki, H. Toshev, C. Korsemov, Survey of evolutionary algorithms used in multi objective
optimization. Probl. Eng. Cybern. Robot. Bulg. Acad. Sci. 2009, 42–54 (2009)

P. Gupta, Contrast enhancement for retinal images using multi-objective genetic algorithm. Int. J.
Emerg. Trends Eng. Dev. 6, 7–10 (2017)

H. Ishibuchi, Y. Nojima, Performance evaluation of evolutionary multi objective approaches to
the design of fuzzy rule-based ensemble classifiers, in Fifth International Conference on Hybrid
Intelligent Systems (5) (2015), pp. 16–18

G.C. Karmakar, L.S. Dooleya, A Generic fuzzy rule based image segmentation algorithm. Pattern
Recogn. Lett. 23, 1215–1227 (2002)

K. Kottathra, Y. Attikiouzel, A novel multi criteria optimization algorithm for the structure determi-
nation of multilayer feed forward neural networks. J. Netw. Comput. Appl. 19, 135–147 (1996)

A. Mukhopadhyay, U. Maulik, Unsupervised pixel classification in satellite imagery using multi
objective fuzzy clustering combined with SVM classifier. IEEE Trans. Geosci. Remote Sens. 47,
1132–1138 (2009)

A. Mukhopadhyay, S. Bandyopadhyay, U. Maulik, Clustering using multi-objective genetic algo-
rithm and its application to image segmentation. IEEE Int. Conf. Syst. Man Cybern. 3, 1–6
(2007)

N. Matake, T. Hiroyasu, M. Miki, T. Senda, Multi objective clustering with automatic k-
determination for large-scale data, in Genetic and Evolutionary Computation Conference, Lon-
don, England (2007), pp. 861–868

A.Nakib,H.Oulhadj, P. Siarry, Image histogram thresholding based onmulti objective optimization.
Signal Process. 87, 2515–2534 (2007)

A. Nakib, H. Oulhadj, P. Siarry, Fractional differentiation and non-Pareto multi objective optimiza-
tion for image thresholding. Eng. Appl. Artif. Intell. 22, 236–249 (2009)



278 N. S. Datta et al.

A. Nakid, H. Oulhadj, P. Siarry, FastMRI segmentation based on two dimensional survival exponen-
tial entropy and particle swarm optimization, In Proceedings of the IEEE EMBC’07 International
Conference, 22–26 August 2007.

N. Nedjah, LdMMourelle, Evolutionary multi-objective optimisation: a survey. Int. J. Bio-Inspired
Comput. 7(1), 1–25 (2015)

D.Newman, S.Hettich,C.Blake,C.Merz,UCI repository ofmachine learning databases,University
of California, Department of Information and Computer Sciences (1998)

Y. Nojima, Designing fuzzy ensemble classifiers by evolutionary multi objective optimization with
an entropy-based diversity criterion, in Sixth International Conference on Hybrid Intelligent
Systems, vol. 16(4) (IEEE, 2006), pp. 11–17

L.S. Oliveira, M. Morita, R. Sabourin, Feature selection for ensembles using the multi-objective
optimization approach. Stud. Comput. Intell. (SCI) 16, 49–74 (2006)

M.G.H. Omran, A.P. Engelbrecht, A. Salman, Differential evolution methods for unsupervised
image classification. Congr. Evol. Comput. 3(8), 331–371 (2005)

A. Paoli, F.Melgani, E. Pasolli, Clustering of hyper spectral images based onmulti objective particle
swarm optimization. IEEE Trans. Geosci. Remote Sens. 47, 4179–4180 (2009)

P. Pulkkinen, H. Koivisto, Fuzzy classifier identification using decision tree and multi objective
evolutionary algorithms. Int. J. Approx. Reason. 48, 526–543 (2008)

P. Punia, M. Kaur, Various genetic approaches for solving single and multi objective optimization
problems: a review, Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(7), 1014–1020 (2017)

S. Saha, S. Bandyopadhyay, Unsupervised pixel classification in satellite imagery using a new
multi objective symmetry based clustering approach, in IEEE Region 10 Annual International
Conference (2008)

S. Shirakawa, T. Nagao, Evolutionary image segmentation based on multi objective clustering, in
Congress on Evolutionary Computation (CEC ‘09), Trondheim, Norway (2009), pp. 2466–2473

S. Saha, S. Bandyopadhyay, A symmetry based multi objective clustering technique for automatic
evolution of clusters. Pattern Recogn. 43(3), 738–751 (2010)

T. Wen, Z. Zhang, Q. Ming, W. Qingfeng, Li Chunfeng, A multi-objective optimization method for
emergency medical resources allocation. J. Med. Imaging Health Inform. 7, 393–399 (2017)

T.E. Wong, V. Srikrishnan, D. Hadka, K. Keller, A multi-objective decision-making approach to
the journal submission problem. PLOS ONE 12(6), 1–19 (2017)

J. Wu, M.R. Mahfauz, Robust X-ray image segmentation by spectral clustering and active shape
model. J. Med. Imaging 3(3), 1–9 (2016)

R. Xu, D. Wunsch, Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(2005), 645–678
(2005)

Y. Zhang, P.I. Rockett, Evolving optimal feature extraction using multi-objective genetic program-
ming: a methodology and preliminary study on edge detection, in Conference on Genetic and
Evolutionary Computation (2005), pp. 795–802

M.N. Zaitoun, J.M.Aqel, Survey on image segmentation techniques. Int. Conf. CCMIT 65, 797–806
(2015)

Y. Zhang, P.I. Rockett, Evolving optimal feature extraction using multi-objective genetic program-
ming, a methodology and preliminary study on edge. Artif. Intell. Rev. 27, 149–163 (2005)



Bi-objective Genetic Algorithm
with Rough Set Theory for Important
Gene Selection in Disease Diagnosis

Asit Kumar Das and Soumen Kumar Pati

1 Introduction

In DNAmicroarray data analysis (Causton et al. 2003), usually biologists determine
the gene expressions in the samples from patients and discover details regarding how
the genes of samples relate to the specific varieties of disease. A lot of genes could
robustly be correlated to a specific kind of disease; though biologists wish to indicate
a small set of genes that controls the results before conducting expensive experi-
ments on the high dimensional microarray data. Consequently, automated selection
of the minimal subset of genes (Schaefer 2010; Leung and Hung 2010) is highly
advantageous.

Gene selection is frequently performed in data mining and knowledge innovation
to select anoptimal set of genes from thehighdimensional genedataset basedon some
appropriate evaluation functions. Evolutionary Algorithms (EAs) (Price et al. 2005;
Gu et al. 2015) are the optimization techniques used for finding an optimal subset of
genes for disease prediction in an efficient way. A standard genetic algorithm deals
with single fitness function, however, most of the real-life problems are intrinsically
multi-objective in nature where concurrent satisfaction of two or more conflicting
fitness functions is required. The purposes of this type of algorithmare to approximate
a set of Pareto-optimal outcomes (Zitzler and Thiele 1999; Knowles and Corne 2000)
instead of a single one; because the objectives regularly conflict with each other and
enhancement of one objective may direct to deterioration of other. These methods
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are optimized all objectives concurrently for a particular outcome. Therefore, the
Pareto-optimal outcomes are important to a decision-maker instead of the best trade-
off results.

The most popular multi-objective EAs, such as NSGA-II (Deb et al. 2002), pro-
vide much promising outcome by the modification of Pareto dominance relation
and rank definition to increase the selection difficulty in identifying the nondom-
inated Pareto optimality set. The main disadvantage of the technique is its high
computational complexity, which is most expensive when the size of population is
increased. The MOEA with decomposition (MOEA/D) (Zhang and Li 2007) opti-
mizes scalar optimization problems instead of directly resolving a multi-objective
problem (optimization) as a whole. The MOEA/D has lesser computational com-
plexity at every generation compared to NSGA-II (Deb et al. 2002). The MOEA/D
with a small amount of population size is capable to construct a smaller number of
evenly distributed outcomes. A single and bi-objective evolutionary algorithm based
filter approach for feature selection is proposed in Santana and Canuto (2014).

In the chapter, a new gene selection technique is proposed based on bi-objective
GA (GSBOGA) to pick the small number of genes without sacrificing any infor-
mation in the dataset. The proposed method uses nonlinear uniform hybrid Cellular
Automata (CA) (Neumann 1996) which is highly acceptable for its capability as
an exceptional random pattern creator for producing initial population of the binary
strings. Generally, normal GA deals with single objective function but most of our
real-life problems are multi-objective in nature where simultaneously two or more
conflicting fitness functions are required for optimization purpose. Two objective
functions for GSBOGA are defined as the one which uses the lower bound approx-
imation with exploration of the boundary regions of the Rough Set Theory (RST)
(Jing 2014) to incorporate some vagueness to achieve comparatively better solutions
and the other uses Kullback–Leibler (KL) divergence method (Kullback and Leibler
1951) of Information Theory to select more precise and informative genes from
the dataset. To create new individuals, most of the GA literature uses single-point
crossover but the proposed method uses multipoint crossover. The motivation for
using it is that the newly created offspring are mostly similar to one of their qual-
ity full parents than they are in single-point crossover. Consequently, convergence
is accepted to arise earlier. In single-bit mutation, a gene is randomly selected to
be mutated and its value is changed depending on the underlying encoding scheme
although it lacks diversity in the population as the first bit of the binary string nor-
mally does not modify. In multi-bit mutation, multiple genes are randomly selected
and their values are changed depending on the encoding type used. So, both of the
mutations are depended on the random bit position generated with respect to muta-
tion probability which is inefficient in high dimensional space. To overcome these
demerits, a unique jumping gene mutation methodology (Chaconas et al. 1996) is
used in the method for mutating the genes. Thus, the proposed method preserves the
diversity of the population applyingmultipoint crossover and jumping genemutation
techniques. The replacement strategy for the creation of the next generation popula-
tion is based on the Pareto-optimal concept (Zitzler and Thiele 1999; Knowles and
Corne 2000) with respect to both objective functions.
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The performance of the GSBOGA method is compared with some popular state-
of-the-art feature selection techniques (like CFS (Hall 1999) and CON (Yang and
Pedersen 1997)) is provided in the chapter. TheGSBOGA also confirmsmost promis-
ing outcome with lower computational cost as there need not require of any global
computation typical of other Pareto optimality based MOEA. The MOEA method
employs a steady state selection procedure, no need for the fitness sharing parameter
utilized in NSGA or crowding distance applied in NSGA-II (Deb et al. 2002) or con-
verting the multi objectives problem into scalar objective problem and use weighted
aggregation concept of the individual objectives in MOEA/D (Zhang and Li 2007).

The chapter is structured into four sections. The proposed gene selection method-
ology is described based on bi-objective GA in sufficient details in Sect. 2. Experi-
mental outcomes pertaining to the performance assessment of the proposed method
with respect to the existing state of the art are presented in Sect. 3 using various
microarray cancer data. At last in Sect. 4, the chapter is concluded.

2 Bi-objective Gene Selection

Gene selection based on single criteria may not always yield the best result due to
varied characteristics of the datasets used. If multiple criteria are combined for fea-
ture selection, an algorithm generally provides more important features compared to
the algorithm relying on a single criterion. Here, two criteria are united and a novel
bi-objective genetic algorithm (GSBOGA) is reported for gene selection, which effec-
tively reduces the dimensionality of the dataset without sacrificing the classification
accuracy. Themethod uses nonlinear hybrid uniform cellular automata (Waters 2012)
for generating initial population, stable selection strategy, multipoint crossover oper-
ation for creating new offspring, and a unique jumping gene mechanism (Chaconas
et al. 1996) for mutation in the population to maintain diversity.

2.1 Initial Population Generation

Initial Population generation is a fundamental task in evolutionary algorithms (Gu
et al. 2015; Price et al. 2005; Gong et al. 2015). Random initialization is the most
commonly used mechanism to initiate population when no information regarding
the way out is given, but it takes long computational time, particularly when the
solution space is difficult to investigate. The creation of quasi-random sequences is
very complicated and their benefit disappears for high dimension space (Maaranen
et al. 2004). So, a suitable cellular automata based technique is applied for making
a simple and faster initial population in high dimensional space.

Abstract Cellular Automata (CA) (Waters 2012), a pseudorandom pattern genera-
tor, plays an important role in any population-based stochastic search method. Here,
the nonlinear hybrid uniform cellular automata have been used for generating the
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initial population covering major portion of search space. Since most of search space
can be explored, optimization becomes more efficient using the proposed population
generation approach. The model is represented as a large number of cells organized
in the form of a lattice where each cell has the potential of self-reproduction and is as
influential as a general Turing machine. The GSBOGA methodology generates next
state of a cell using its current state and states of its neighboring cells based on the
rules R1, R2, R3, and R4 as defined below. The method considers only three neigh-
borhoods namely, left neighbor, self or current, and right neighbor one-dimensional
cellular automata and each cell only has any one of two states (0 or 1).

R1 : Next_state(i) � (L(i) ∧ C(i)) ∨ (∼ L(i) ∧ R(i))

R2 : Next_state(i) � (L(i) ∧ R(i)) ∨ (C(i)∧ ∼ R(i))

R3 : Next_state(i) � L(i) ⊕ C(i) ⊕ R(i)

R4 : Next_state(i) � C(i) ⊕ (L(i)∨ ∼ R(i))

where L(i), C(i), and R(i) are the values of left cell, current cell (i), and right cell,
respectively. For each of the cell to generate the next state, a feasible rule is chosen
dynamically. Among the rules, R1, R2, and R4 are nonlinear while R3 is linear and
therefore it is named as nonlinear hybrid CA. These rules are utilized for population
generation as illustrated with an example.

Example 1 The binary chromosomes are randomly generated having a length equiv-
alent to the number of genes in the experimental data. Suppose, there are five genes
in the data and a randomly generated chromosome is 11011 (called seed). To every
cell, one of the rule from R1 to R4 is randomly assigned and the value of next state
for the corresponding cell is achieved, as shown in Fig. 1, where R(i) and L(i) for
any cell are obtained from C(i) value of right and left cell, respectively. The same
procedure is continued for a definite number of times to obtain all chromosomes in
the population.

2.2 Bi-objective Objective Function

The objective function determines excellence of a solution in the population; there-
fore a strong objective function is imperative for getting a good outcome. Contrary to
single objective GA (Goldberg and Holland 1988), multi-objective GA (Gong et al.
2015) handles with simultaneous optimization of various incommensurable and reg-
ularly opposite objectives in nature. The objectives often conflict with one another.
The enhancement of one objective may direct to deterioration of the other. The
method uses a bi-objective fitness function with two parameters based on attribute
dependency value with exploring boundary region (LBA) (Pawlak 1998) in RST
and Kullback–Leibler Divergence (KLD) method (Kullback and Leibler 1951) in
information theory. These two objectives are conflicting (i.e., minimum for LBA and
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Chromosome: 1             0 1 1                          1

R C     L       R     C      L      R     C     L     R      C     L        R     C     L    

Cell values:     0 1      1        1     0       1 1      1     0 1 1      1        1      1  1
Apply rules:        R4 R2                                      R2 R1 R3
Next state:      1                 0                    1 0          1 

Fig. 1 Generation of next state chromosome

maximum for KLD) in nature and used to approximate a number of Pareto optimality
based solutions instead of only one.

2.2.1 Modified Attribute Dependency Exploring Boundary Region
(LBA)

The objective function concludes the excellence of a chromosome. Consequently, a
quality full objective function is imperative for producing a good outcome. Here, the
objective function measures a chromosome by its dependency value by exploring
boundary region for the gene set presented by a chromosome, as explained below.

(A) Attribute dependency value

Let be an information systemwhere is the non-empty, finite set of objects
(called universe) and is a finite, non-empty set of attributes or features. Each
attribute can be defined mathematically by Eq. (1).

(1)

where is the collection of values of attribute , that denoted the domain of . .
For any , there exists a binary relation called indiscernibility relation
as defined in Eq. (2).

(2)

where denotes the value of attribute for object .  Clearly, is an
equivalence relation which provides equivalence classes. All equivalence classes of

are defined by (or and an equivalence class of contain-
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ing is defined by If a pair of object then and are called
-indiscernible. The indiscernibility relation is utilized to define the

upper and lower approximations in RST . For each set of attributes an indiscerni-
bility relation partitions the objects into number of equivalence classes,
defined as partition (or ), equal to where Similarly,
equivalence classes are formed using Eq. (2) for the decision attribute. Thus,
two different partitions and of the equivalence classes and respec-
tively, are formed. Now each class is considered as the target set (i.e.,

). The lower approximation of under is computed using Eq. (3), for all
The positive region is obtained by taking the union of the lower

approximations under for all using Eq. (4). Then, dependency value of
decision attribute on (i.e., ) is obtained using Eq. (5), which is dependent
only on the set lower approximation value.

(3)

(4)

(5)

If, , then is totally reliable with respect to . Feature selection in RST
is achieved by identifying only a necessary and sufficient subset of features (called
reduct) of a given set of features. A set is a reduct of , if (i) and
(ii) there does not exist such that Each reduct has the property
that a feature cannot be eliminated from it without altering the dependency of the
decision attribute on it.

(B) Exploring Boundary region

The upper approximation of target set , for all under attribute subset
, is computed using Eq. (6) which contains the set of attributes possibly belong to

the target set and the boundary region, as shown in Fig. 2, for the decision system
is obtained using Eq. (7) which possesses the degree of uncertainty as the objects in
this region may or may not belong to the target set.

(6)

(7)
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Upper Approximation

Target Set

Lower Approximation

Boundary Region

Fig. 2 Illustrate the boundary region of a target set

Obviously, from the definition of the positive region, equivalence class in
that is not a subset of in falls in the boundary region. If more falls in the
boundary region, the dependency value will decrease. An equivalence class may
go down because of some objects do not belong to If very few objects of are
responsible for placing it in the boundary region, then the class almost agrees to
the target set i.e., a class in So attribute dependency should not be the only
criterion for reduct generation. To overcome this shortcoming, boundary region is
explored by computing similarity factor of set (classes of whose objects lie in
the boundary region, formed using Eq. (8)) to formulated using Eq. (9).

(8)

(9)

In Eq. (9), summation of maximum number of common objects is calculated
between an element and all elements in and then it is divided
by the total number of objects in So, if very few objects of are responsible
for placing it into the boundary region, then the class almost agrees with the target
class, i.e., a class in and similarity factor will increase, where in the
same situation dependency value decreases.

Since, for a decision system, these two factors namely, dependency value
and similarity factor need to be maximized, so the fitness function F(ch) for
chromosome ch of associated GA-based optimization problem is considered as the
weighted average of these two factors, computed using Eq. (10).

(10)

where is the weight factor, which is set experimentally. Obviously, higher the
fitness value F(ch), better the quality of the chromosome (or encoded string) ch.
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2.2.2 Kullback–Leibler Divergence

Kullback–Leibler divergence (KLD) (Harmouche et al. 2016; Kullback and Leibler
1951) computes the proximity of two ormore probability distributions in information
theory. It quantifies the measures how close up a probability distribution (p) is to a
model distribution (q) in statistics. The KLD (i.e., DK L ), which is nonsymmetric and
nonnegative in two probability distributions, is defined in Eq. (11).

DK L (p||q) �
∑

i

Pi log2

(
Pi

qi

)
(11)

DK L (p||q) is computed using Eq. (11) which evaluates pair to pair whose mean
distance is used as another fitness function which is to be minimized that governs
maximum similarity between p and q.

2.3 Multipoint Crossover

It expresses examine towards the best existing offspring although is not able to gen-
erate new offspring. To generate new offspring, crossover mechanism is mandatory.
In environment, individual has two parents and inherit several of their characteris-
tics. The crossover does the same matter. The two new offspring is created by the
crossover with probability (cp) from an identified pair of parents. In this methodol-
ogy, two-point crossover has been utilized generating the two random positions in
the chromosome. The substrings of the parent chromosomes, lying between the two
randomly identified positions, are exchanged and two new offsprings are generated.
The motivation for this operation is that, the produced new offspring are most similar
to one of their quality full parents than they are in one point crossover. Consequently,
convergence arises in advance that is expected.

2.4 Jumping Gene Mutation

A gene is randomly selected to be mutated and its value is changed depending on
the encoding type used although it lacks the diversity in the chromosome pool as the
initial (first) bit of the string commonly does not modify in single-bit mutation. Alter-
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natively, in multi-bit mutation, multi-genes are randomly selected for mutation and
their values changed depending on the encoding type used. So, both of the mutations
are dependent on the random bit number generation with respect to mutation prob-
ability which is inefficient in high dimensional space. To overcome these demerits,
jumping gene mutation methodology (Chaconas et al. 1996) is used here for muta-
tion. The jumping genes are a subset of original genes (with mutation probability
mp), which can dynamically jump within the respective chromosome. This type of
genes has an immense prospective for maintaining diversity, a crucial characteristic
for evolutionary search throughout the entire population.

Example 2 Let, in the population, the original chromosome be (x1, x2, …, xn). Ran-
domly, a jumping gene of length z (z<<n) say, (y1, y2, …, yz) is identified. Sub-
sequently, randomly the primary position from anywhere of the chromosome to be
changed by the jumping genes which are selected. Let the initial location be w, there-
fore the muted chromosome is (x1, x2, …, xw-1, y1, y2, …, yz, xz+1, xz+2, …, xn) after
mutation. This mutation mechanism offers much promising outcome compared to
single-bit mutation operation.

2.5 Replacement Strategy

In this optimization strategy, the two objective functions are conflicting in nature
and not possible to optimize simultaneously. Consequently, it is necessary to have a
trade-off between them in decision-making during the replacement of chromosomes
in population. The replacement strategy of GSBOGA is based on Pareto optimality
concept (Zitzler and Thiele 1999; Knowles and Corne 2000; Shelokar et al. 2013).
Figure 3demonstrates themeasurement of dominance regarding thePareto optimality
concept, which is defined below.

Definition 1 (Strongly dominated solution) A solution X1 is strongly dominated by
the other solution X2, if the X1 is strictly better compared to X2 with respect to all
fitness functions.

Definition 2 (Nondominated solution) TheX1 andX2 are supposed to nondominated
solutions to each other if some objectives of one solution are higher than that of the
other.

Definition 3 (Dominated solution) A solution X1 is dominated by another solution
X2, if theX1 is strictly worse compared toX2 regarding all objective function values.
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S

Indifferent R
Better 

Q
Indifferent

T

F2

Pareto optimal = Non dominated

Dominated

F1

Worse  
P

Strong dominated

Fig. 3 The concept of Pareto optimality

Figure 3 demonstrates the nondominated and dominated solutions with respect
to two fitness functions F1 and F2. Here, better means an outcome is not inferior in
any fitness values. The solution symbolized by the point P is worse than the solution
symbolized by the point Q and the solution at point R is better compared to that at Q.
But, it cannot be stated that the R is better than the S or vice versa since the fitness
value (single) of every point is better compared to the other solution. These are called
nondominated or Pareto-optimal solution represented by the dotted line in the figure.
The solution T is strongly dominated compared to all other solutions with respect
to both objective values. So, after mutation, both fitness values are evaluated for
offspring and the elitism property is maintained replacing parent with its offspring
according to strong dominated or non-dominated property.

2.6 The GSBOGA Algorithm

The algorithm of the GSBOGA methodology is represented below
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The algorithm of the GSBOGA methodology is represented below- 

Procedure: GSBOGA 

Input: Size of the Population: M

Maximum generation numbers: G

Probability of crossover: cp 

Probability of mutation: mp 

Output: Strongly dominated and non-dominated solutions  

Begin 

Create initial population P of the size M utilizing nonlinear cellular automata;  

Evaluate fitness values of all chromosomes; 

Set, c = 0;  

Repeat 

For i=1 to M do 

First_ parent = Pi;

cp to produce two offspring;  

mp;

If (both offspring either strongly or non-dominate with the parents) Then 

Else If (one offspring strongly dominates the parents) Then 

This offspring replaces the dominated parent;  

Else 

Select another parent randomly from the remaining population;

Apply multipoint crossover with probability 

Use jumping gene mutation to the offspring with mutation rate

Evaluate fitness values of the offspring;

Both the parents are replaced by the offspring;

Both the offspring are discarded;

End-for  

c = c+1;  

Until (c<=G);

Return (strongly dominated and non-dominated chromosomes);  

End. 



290 A. K. Das and S. K. Pati

3 Experimental Results of GSBOGA Method

Extensive experiments are done to evaluate theGSBOGAmethod using experimental
microarray data (“Kent Ridge Biomedical Dataset Repository”(n.d)) describes as
follows.

3.1 Microarray Dataset Description

I. Leukemia Dataset

Publication: This is a well-understood gene database published in Golub et al.
(1999).

Raw Data: The raw data is available in http://www-genome.wi.mit.edu/cgi-bin/
cancer/datasets.cgi.

Description: This data contains 7129 human genes over 38 samples (27 ALL and
11 AML) of bone marrow.

II. Lung Cancer Dataset

Publication: This is a well-understood gene database published in Gordon et al.
(2002).

Raw Data: The raw data is available in http://www.chestsurg.org/microarray.
htm.

Description: The data consists of 32 lung samples (16 are malignant pleural
mesothelioma (MPM) and 16 are adenocarcinoma (ADCA)) with
12553 genes.

III. Prostate Cancer Dataset

Publication: The dataset published in Singh et al. (2002).
Raw Data: The raw dataset is available in http://www-genome.wi.mit.edu/mpr/

prostate.
Description: The data consists of 52 tumor samples and 50 non-tumor samples

with 12600 prostate genes.

IV. Breast Cancer Dataset

Publication: The experimental dataset is published in Veer et al. (2002).
Raw Data: The raw data is available in http://www.rii.com/publications/2002/v

antveer.htm.
Description: The data consists of 78 samples (34 samples (patient) labeled as

“relapse” and the remaining 44 samples labeled as “non-relapse”).
The total number of gene is 24481.

V. Diffuse Large B-cell Lymphoma (DLBCL) Data

Publication: This data (DLBCL) is available in Shipp et al. (2002).

http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
http://www.chestsurg.org/microarray.htm
http://www-genome.wi.mit.edu/mpr/prostate
http://www.rii.com/publications/2002/vantveer.htm
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Table 1 Initial parameters of
GSBOGA methodology

Parameter Value

Size of population (M) 100

Generation number (G) 300

Crossover probability (pc) 0.90

Mutation probability (pm) 0.05

Raw Data: The raw data available in http://www-genome.wi.mit.edu/cgi-bin/ca
ncer/datasets.cgi.

Description: The classification about data addressed in the publication is DLBCL
against Follicular Lymphoma morphology (FL). The data consists of
58 DLBCL and 19 FL samples over 6817 genes.

VI. Colon Cancer Dataset

Publication: This gene database is published in Alon et al. (1999).
Raw Data: The raw data available in http://microarray.princeton.edu/oncology/a

ffydata/index.html.
Description: The data consists of 62 samples (40 tumor samples labeled as

“negative” and rest 22 normal samples labeled as “positive”). The
expression profile contains 2000 genes.

3.2 Parameter Setup and Preprocessing

The parameters used in GSBOGA are presented in Table 1. The parameters are iden-
tified after various test evaluation of the proposed methodology and data instances
until achieve to the best arrangement in terms of the excellence of results and the
computational efficiency.

Here, the ChiMerge discretization (Kerber 1992) algorithm is used to convert
continuous attributes into discretized values.

3.3 Performance Measurement

The proposed GSBOGA method uses cellular automata for initial population genera-
tion instead of random initialization, multipoint crossover for new offspring genera-
tion instead of single-point crossover, and jumping genemutation instead ofmulti-bit
mutation to progress the efficiency of the created system. Table 2 shows the com-
parison between GSBOGA and, normal MOGA (i.e., NMOGA). The NMOGA uses
random initialization, single-point crossover, two-point mutation, and two objective
functions, such as LBA and KLD. It is observed that the GSBOGA method is more
efficient than NMOGA with respect to the execution time.

http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
http://microarray.princeton.edu/oncology/affydata/index.html
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Table 2 Comparison between GSBOGA and NMOGA regarding time (min)

Method Dataset

Leukemia Lung Prostate Breast DLBCL Colon

NMOGA 46.48 66.5 75.30 86.25 62.35 43.27

GSBOGA 39.53 43.32 64.55 77.50 53.30 35.45

Fig. 4 Converging nature of best chromosome for aLeukemia bLung c ProstatedBreast eDLBCL
and f Colon cancer dataset

The GSBOGA is terminated after 300 generations for all data, in spite of the fact
that for most of the cases, convergence is expected soon. Figure 4 represents behavior
of the best chromosome and population mean of all chromosomes with respect to
individual fitness values by the GSBOGA method. The usual examination is that
the best chromosome discovers the top performing fitness values relatively quicker
compared to the mean population.

The GSBOGA method runs several times and obtains the Pareto front approxima-
tions with respect to each of the fitness function for all datasets after final generation.
For each fitness function, the statistical measures like minimum (Min.), maximum
(Max.), mean (Avg.), and standard deviation (Std.) are computed among all chromo-
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Table 3 Statistical measures of the population after final generation for a run

Dataset LBA KLD

Min. Max. Avg. Std. Min. Max. Avg. Std.

Leukemia 0.5903 0.7317 0.6337 0.1714 0.5008 0.6470 0.5792 0.1972

Lung 0.7611 0.8601 0.8040 0.1618 0.4927 0.5605 0.5716 0.1296

Prostate 0.8681 0.8943 0.8841 0.2027 0.1570 0.2431 0.2226 0.0113

Breast 0.6355 0.7602 0.7373 0.2094 0.5382 0.5905 0.5514 0.1138

DLBCL 0.8375 0.9002 0.8662 0.1063 0.1922 0.2648 0.2207 0.0138

Colon 0.6229 0.7422 0.6770 0.2172 0.1400 0.2917 0.2262 0.2226

Table 4 Average statistical measures of the population for 50 runs

Dataset LBA KLD

Min. Max. Avg. Std. Min. Max. Avg. Std.

Leukemia 0.5718 0.7217 0.6199 0.1857 0.5119 0.6651 0.5817 0.2007

Lung 0.7521 0.8581 0.7968 0.2600 0.5008 0.5596 0.5700 0.1218

Prostate 0.8172 0.8514 0.8266 0.3738 0.1853 0.3005 0.2374 0.2849

Breast 0.6004 0.7576 0.7204 0.2189 0.5399 0.6182 0.5629 0.2086

DLBCL 0.8144 0.8918 0.8417 0.1240 0.2134 0.2860 0.2397 0.1129

Colon 0.6162 0.7409 0.6721 0.3284 0.1511 0.3007 0.2212 0.2420

somes for a particular run, as listed in Table 3. Also, the average values of 50 runs
for all datasets are presented in Table 4.

3.4 Comparative Study

The GSBOGA method produces some Pareto-optimal solutions after final generation
fromwhere all strongly dominated solutions and some best non-dominated outcomes
regarding the fitness functions are considered for the comparative study. The average
classification accuracies are computed with consideration of all base classifiers for
all selected solutions and best feature subset is selected with respect to average
classification accuracy, which is used as comparison purpose for GSBOGA.

The efficiency ofGSBOGA is comparedwith some existing state-of-the-art feature
selection methodologies like PCA (Jackson 1991), SVD (Petrou and Bosdogianni
2000), CON (Yang and Pedersen 1997), CFS (Hall 1999), NSGA-II (Deb et al.
2002), and MOEA/D (Zhang and Li 2007). The accuracies of some base classifiers
and average accuracy are listed in Table 5. From the multiple gene subsets (i.e.,
chromosomes after final generation), generated by the GSBOGA, the result of the
best subset is shown in Table 5.
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Table 5 Performance comparison of GSBOGA and other gene selection methods

Dataset Methods
(#genes)

Classifiers (%) Avg.
acc.

NB J48 SVM KNN MLP RBF (%)

Leukemia PCA
(89)

78.95 76.32 76.32 73.68 76.32 81.58 77.20

SVD
(89)

81.58 78.95 76.32 81.58 76.32 81.58 79.39

CON
(159)

78.95 76.32 81.58 76.32 81.58 78.95 78.95

CFS
(147)

84.21 81.58 84.21 78.95 84.21 81.58 82.46

NSGA-II
(99)

86.84 89.47 92.11 86.84 86.84 84.21 87.72

MOEA/D
(100)

84.21 86.84 92.11 84.21 84.21 86.84 86.40

GSBOGA
(89)

92.11 89.47 94.74 86.84 94.74 92.11 91.67

Lung PCA
(95)

84.38 78.12 84.38 84.38 81.25 84.38 82.82

SVD
(95)

87.50 84.38 87.50 84.38 84.38 81.25 84.90

CON
(190)

87.50 90.62 87.50 87.50 90.62 87.50 88.54

CFS
(205)

90.62 87.50 84.37 87.50 90.62 84.37 87.50

NSGA-II
(110)

96.88 90.62 100 93.75 100 90.62 95.31

MOEA/D
(96)

96.88 96.88 100 93.75 87.50 90.62 94.27

GSBOGA
(95)

100 96.88 100 96.87 100 96.87 98.44

Prostate PCA
(74)

85.29 83.33 86.27 83.33 84.31 83.33 84.31

SVD
(74)

86.27 84.31 82.35 86.27 82.35 84.31 84.29

CON
(138)

84.31 82.35 88.24 83.33 86.27 84.31 85.64

CFS
(127)

86.27 84.31 90.20 88.24 91.18 88.24 88.07

NSGA-II
(107)

91.18 90.20 91.18 89.22 92.16 91.18 90.85

MOEA/D
(89)

88.24 83.33 89.22 86.27 91.18 84.31 87.09

GSBOGA
(74)

94.12 93.14 95.10 93.14 96.08 94.12 94.28

(continued)
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Table 5 (continued)

Dataset Methods
(#genes)

Classifiers (%) Avg.
acc.

NB J48 SVM KNN MLP RBF (%)

Breast PCA
(85)

70.51 67.95 73.08 71.79 73.08 70.51 71.15

SVD
(85)

71.79 70.51 74.36 71.79 73.08 69.23 71.79

CON
(168)

73.08 71.79 75.64 70.51 74.36 71.79 72.86

CFS
(194)

73.08 70.51 73.08 76.92 75.64 73.08 73.72

NSGA-II
(117)

78.21 75.64 80.77 78.21 79.49 76.92 78.21

MOEA/D
(91)

82.05 83.33 85.90 84.61 85.90 83.33 84.19

GSBOGA
(85)

83.33 84.61 87.18 84.61 85.90 83.33 84.61

DLBCL PCA
(68)

75.32 72.73 80.52 74.02 77.92 72.73 75.54

SVD
(68)

80.52 76.62 81.82 79.22 80.52 77.92 79.44

CON
(145)

79.92 77.92 81.82 81.48 80.52 77.92 79.93

CFS
(180)

80.52 79.92 83.12 80.52 83.12 83.12 81.72

NSGA-II
(89)

84.41 83.12 84.41 81.82 84.41 83.12 83.55

MOEA/D
(83)

84.41 85.71 87.01 83.31 85.71 84.41 85.09

GSBOGA
(68)

92.21 90.91 93.51 89.61 93.51 92.21 91.99

Colon PCA
(57)

75.81 74.19 79.03 77.42 79.03 77.42 77.15

SVD
(57)

72.58 75.81 77.42 75.81 74.19 75.81 75.27

CON
(134)

80.64 79.03 82.26 79.03 80.64 82.26 80.64

CFS
(140)

77.42 79.03 80.64 75.80 82.26 75.80 78.49

NSGA-II
(93)

83.87 82.26 85.48 82.26 83.87 82.26 83.33

MOEA/D
(81)

80.64 79.03 82.26 80.64 82.26 80.64 80.91

GSBOGA
(57)

85.48 83.87 88.71 85.48 87.10 85.48 86.02
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From Table 5, it has been observed that the GSBOGA is superior to most of
the other methodologies with respect to both the number of features and the average
classification accuracy. For example, in case of Leukemia dataset, J48 and KNN give
the best results both for NSGA-II and GSBOGA methods; but for other classifiers,
only GSBOGA gives the best results. Similarly, for remaining datasets, the other
methods give better results for some classifiers but in most of the cases, the proposed
GSBOGA gives the best results, which are marked by the bold font in Table 5. The
GSBOGA represents very promising solution with lesser time complexity compared
to NSGA-based methods since there is not require of global computation usual of
other Pareto optimality concept based MOEA methods. It utilizes a stable state
identification methodology, not required for fitness sharing parameters, which is
employed in NSGA method or crowding distance employed in NSGA-II method.

4 Summary

A novel gene selection (GSBOGA) methodology regarding bi-objective GA is pro-
posed in this chapter. The GSBOGA represents very promising solution with lesser
time complexity compared to NSGA based methods, since there is not require any of
global computation of other Pareto optimality based MOEA methods. The method-
ology also explores the boundary region of the rough set to allow some vagueness
which ultimately helps to find the optimal solutions from the searching space. It uti-
lizes a stable selection technique, not required for fitness sharing parameters, which
is employed in NSGA method or crowding distance utilized in NSGA-II method.
Jumping gene mutation in proposed method moreover conquers the lack of diversity
of the chromosome pool that might occur in the sense of single-bit mutation.
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Multi-Objective Optimization
and Cluster-Wise Regression Analysis
to Establish Input–Output Relationships
of a Process

Amit Kumar Das, Debasish Das and Dilip Kumar Pratihar

1 Introduction

We, human beings, have a natural tendency to know input–output relationships of
a process. Goldberg (2002) claimed that a genetic algorithm (GA) is competent
for yielding innovative solutions in a single-objective optimization (SOO) problem
domain. An SOO is generally used for finding out a single optimal solution out
of several possibilities. However, a multi-objective optimization (MOO) problem
involves at least two conflicting objective functions and a Pareto-optimal front of
solutions can be obtained for the same. This present chapter deals with an application
of MOO.

For the last few decades, MOO had been applied for solving various research and
industrial problems (Ahmadi et al. 2015, 2016; Aghbashlo et al. 2016; Jarraya et al.
2015; Khoshbin et al. 2016; Marinaki et al. 2015; Ahmadi and Mehrpooya 2015;
Sadatsakkak et al. 2015). Making large data intelligent transportation system (Wang
et al. 2016), fabrication and optimization of 3D structures in bone tissue engineering
area (Asadi-Eydivand et al. 2016), portfolio optimization with functional constraints
(Lwin et al. 2014), optimization of building design (Brownlee and Wright 2015),
disaster relief operations (Zheng et al. 2015), etc. are some of the worth-mentioning
examples, where MOO has been utilized successfully in the recent times. By using
a multi-objective evolutionary algorithm (MOEA), a Pareto-front of solutions is
obtained. These solutions are not generated randomly (Askar and Tiwari 2009) and
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they must satisfy mathematically Karush–Kuhn–Tucker (KKT) conditions (Mietti-
nen et al. 1999). It is argued (Deb and Srinivasan 2008) that there is a high chance of
finding some commonalities among these high-performing solutions of the Pareto-
front. Nevertheless, it is also debated that this commonality may exist for either the
whole Pareto-front or different subsets of the same. However, if the said commonal-
ities are embedded in those optimal or near-optimal solution sets, then it is expected
to obtain the design principles for that process after some numerical analysis of the
solutions.

The said fact can have an immense effect in designing a product or process. If a
designer does have this type of information a priori, then it will help him to do his
job more efficiently. For example, let us take the case of metal cutting operation with
the inputs, such as cutting speed, feed, and depth of cut, and take two conflicting
outputs as minimizing the machining time and minimizing the surface roughness of
the machined product. By using theMOEA, if it is found that one or more parameters
are varying in a particular fashion within the Pareto-front or the objective functions
are changing with the inputs in a certain manner, then this information can provide
an extra advantage to the process designer to set the same in a more efficient way.
Similar things are applicable to other processes as well.

This fact of obtaining various design principles has another significance for the
manufacturing industries. Reduction of cost without compromising the safety and
quality of the products has always been the primary concern of any industry. The
scope of cost minimization through proper inventory and manpower management
would be possible, if the facts discussed above are available. Moreover, similar prior
information may assist the process designer to establish and stabilize the process of
interest with ease.

To use an MOEA, input–output relationships are required to define the objective
functions. In many instances, these equations are not obtained from the literature
and we have to derive these using the statistical tools on the experimental data. Now,
generation of a wide range of experimental data requires not only proper facilities,
but also a sequence of several tedious steps, and it demands time, cost, and effort.
Moreover, noticeable variations in output data of any experiments are likely to be
observed for a given set of input parameters. This results in fuzziness and inaccuracy
in the experimental dataset, as shown by Gil and Gil (1992). The inaccuracy of
the data can be minimized through multiple repetitions of the experiments, thereby
providing the upper and lower limits of variation in the developed dataset, for a given
set of input parameters. However, it again becomes difficult due to time and resource
constraints in most of the cases. Gil (1987) also argued that experimental data may
suffer from the loss of information about the state or parameter space owing to the
fuzziness in it. Therefore, the generated Pareto-optimal solutions using an MOEA
may also be affected by the fuzziness and inaccuracy of the experimental data, and
we may end up with largely inaccurate design principles for the analyzed process.
Due to this issue, it is desirable to tackle inherent fuzziness of the experimental data
to establish input–output relationships of the process more accurately.
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2 Literature Survey

Evolutionary multi-objective optimization has been used to establish input–output
relationships by several researchers. The existence of the resemblance among the
Pareto-optimal front of solutions was highlighted by Deb (2003). He also suggested
that these commonalities could be revealed through regression and manual plotting.
Obayashi and Sasaki (2003) used the self-organizing map to view the higher dimen-
sional objective space and design variable space on a lower dimensional map. They
also used a clustering technique to make the clusters of decision parameters, which
showed the role of the variables in improving the design and trade-offs. Taboada and
Coit (2006) suggested applying k-means clustering technique on the Pareto-optimal
solutions for ease of further analysis. Deb and Srinivasan (2008) used Benson’s
method to obtain a modified Pareto-front from the initial one and after that, they
used statistical regression analysis to get different design principles. This method
had also been adopted and implemented by various researchers in their works (Deb
et al. 2009; Deb and Jain 2003; Deb and Sindhya 2008). An analytical approach
was suggested by Askar and Tiwari (2011) to get a Pareto-front for multi-objective
optimization problem, and the obtained Pareto-optimal solutions were analyzed to
derive several innovative commonality principles. Deb et al. (2014) proposed the
method of automated innovization to decode several important relationships through
the extensive use of an evolutionary algorithm. They used the word, innovization,
which means the act of obtaining innovative solutions through optimization. In this
case, they had not used regression tools to decipher the said principles. Later, a
concept of higher level innovization was introduced by Bandaru et al. (2011) and
Bandaru et al. (2015) in a generalized form. Also, a simulation-based innovization
procedure was developed by Dudas et al. (2011). In this approach, they tried to eval-
uate the effect of variables on the performance of the process and they showed a
method of getting in-depth knowledge about a process after these analyses.

Among all these stated approaches, no one adopted any method to model the
inherent fuzziness of the Pareto-optimal solutions. As already discussed, if this work
is not done, then there will be a high chance that we shall obtain imprecise design
principle for the process of interest. Therefore, a method has been developed here
to obtain different input–output relationships after modeling the fuzziness in the
Pareto-optimal dataset. This method has been applied for an electron beam welding
process on SS304 plates, and the obtained results clearly show the significance of
this developed approach. The rest of the text has been arranged as follows:

The developed method has been described in Sect. 3, whereas Sect. 4 deals with
the experimental data collection procedure. The results and discussion are provided
in Sect. 5, and some concluding remarks are made in Sect. 6.
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3 Developed Approach

In the proposed approach, an attempt has been made to establish the input–output
relationships of a process through the extensive use of a multi-objective evolutionary
algorithm (MOEA). The approach has been explained in the following steps:

Step 1: Develop initial Pareto-optimal front

In this step, an initial Pareto-front is obtainedusing anMOEA,where the input–output
relationships are used to determine the fitness values of the objective functions. The
obtained Pareto-front is subjected to some inherent fuzziness in it, which is going to
be removed in further steps.

Several strategies for the MOEA are available in the literature, such as niched
Pareto genetic algorithm (NPGA) (Horn et al. 1994), strength Pareto evolution-
ary algorithm (SPEA) (Zitzler and Thiele 1998), Pareto-archived evolution strat-
egy (PAES) (Knowles and Corne 1999), non-dominated sorting genetic algorithm-
II (NSGA-II) (Deb et al. 2002), multi-objective algorithm based on decomposi-
tion (MOEA/D) (Zhang and Li 2007), multiple populations for multiple objectives
(MPMO) (Zhan et al. 2013), and others. In our study, NSGA-II has been used as the
MOEA and its working principle is described in Fig. 1.

Step 2: Train a neuro-fuzzy system

Using the initial Pareto-front of solutions, a neuro-fuzzy system (NFS) is trained. In
NFS, a fuzzy logic controller (FLC) is expressed as the form of a neural network.
During the training, an evolutionary optimization technique is used to tune the NFS.
The initial Pareto-optimal solutions are clustered using a clustering algorithm, and the
number of rules of the NFS is kept as the same with that of a total number of clusters
obtained. The data obtained through experiments are subjected to inaccuracy and
fuzziness. This may be due to various reasons, such as experimental inaccuracy, error
due to the unskilled operator, instrumental inaccuracy, and others. To take care of this
inherent fuzziness, NFS is an efficient tool (Mitra and Pal 1996), which works based
on the principles of fuzzy sets. In NFS, the advantages of both fuzzy logic controller
and neural network are clubbed together to design and remove the uncertainty and
imprecision of a set of data. The NFS has been used successfully to solve a variety
of problems related to several fields of research (Takagi and Hayashi 1991; Takagi
et al. 1992; Keller et al. 1992; Berenji and Khedkar 1992; Jang 1993; Ishibuchi
et al. 1994). Here, an NFS with Mamdani approach (Mamdani and Assilian 1975)
is used to model fuzziness in the initial Pareto-optimal solutions. The said NFS has
mainly five layers, namely, input layer, fuzzification layer, And operation layer, fuzzy
inference layer, and defuzzification layer. Gaussian type of membership functions,
which has been used in input and output layers of the NFS, can be expressed using
Eq. (1):

μGaussian � e
−

[
(x−m)2

2σ2

]
, (1)
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  Begin 

Generate initial population of size N (Gen =1) 

Evaluate fitness values of the objectives functions 

           Non-dominated sorting based on rankings and crowding distances 

       Using selection, crossover and mutation operators to get offspring population of size N

                         Combine population of parent and offspring 

Choose population size of N based on rankings and crowding distances comparison 

If Gen 
reaches 
maxGen 

 Stop 

No

Yes 

Fig. 1 Flowchart of NSGA-II algorithm

where σ and m are the standard deviation and mean of the Gaussian distribution,
respectively. During the training, the NFS is evolved with the help of a genetic
algorithm, where the Gaussian parameters (σ andm) are used as the design variables
and the objective is to minimize the root-mean-square error (RMSE) value (here,
error is the amount of deviation in prediction).

Step 3: Obtain a modified Pareto-front

In this step, the trained NFS is used in another MOEA to evaluate the fitness values
of the objective functions. As NFS is a strong tool to take care the fuzziness of the
used data, there is every possibility to get a better quality of Pareto-front compared
to that of the initial one. In this way, the imprecision of the initial Pareto-optimal
solutions is removed using the NFS and a modified and better Pareto-front in terms
of both the objective functions’ values is obtained.
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Step 4: Clustering of the obtained modified Pareto-front

The modified Pareto-optimal dataset, obtained in Step 3, is clustered using a clus-
tering algorithm. The purpose of carrying out this operation is to find that whether
the design principles of the process are varying for the different clusters, or they are
kept the same for the whole set of Pareto-front.

There are several techniques of clustering available in the literature. However, we
have considered three popular clustering algorithms like fuzzy C-means clustering
(FCM) (Bezdek 1973), entropy-based fuzzy clustering (EFC) (Yao et al. 2000), and
density-based spatial clustering applicationwith noise (DBSCAN) (Ester et al. 1996),
in our study. In case of FCM, a data point may belong to several predefined numbers
of clusters with different membership values. It is an iterative method, where the
cluster centers and the membership values of the cluster members are going to be
updated with the iterations. In every step of the algorithm, the focus is to reduce the
dissimilarity measurement (which is evaluated in terms of Euclidean distance) of
the cluster members. The members of the same cluster are likely to have the higher
values of similarity, whereas the data points belonging to different clusters should
be dissimilar in nature. The EFC algorithm works based on the entropy measures of
the data points, which are calculated depending on the values of the distances (say
Euclidean distances) among them. A data point is declared as a cluster center, if it is
found with the minimum entropy value. The other points, which have the similarity
measures with the cluster center greater than a user-defined value, will be put into
the cluster. In case of DBSCAN, two user-specified parameters are used, such as
neighborhood radius and minimum number of neighborhood points. The philosophy
of this algorithm is that the density of the members lying within a cluster is higher
than that of the outsider points. The details of these algorithms can be found out in
(Pratihar 2007).

Step 5: Analysis of the modified Pareto-front

The obtained modified Pareto-optimal solutions are statistically analyzed cluster-
wise to get several input–output relationships for the problem. Moreover, any rela-
tionship, which is common to all the clusters, has to be checked. The developed
approach has been described through a flowchart, as shown in Fig. 2. Generally,
the outputs of a natural process vary nonlinearly with the input parameters. Keep-
ing this idea in mind, a nonlinear regression tool (using MINITAB 16.0 software
(http://www.minitab.com)) has been used to determine various input–output rela-
tionships in power form.

4 Experimental Data Collection

To explain the proposed approach in more details, an engineering problem, namely,
electron beam welding (EBW), has been selected and the developed approach has
been implemented for the said process. The details of the experimental procedure,
along with the setup information, have been provided in this section.
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Step 1: Develop initial Pareto-optimal front

Step 2: Train a Neuro-Fuzzy System

Step 3: Obtain a modified Pareto-front

Step 4: Clustering of the obtained modified Pareto-front 

Step 5: Analysis of the modified Pareto-front 

Fig. 2 Flowchart of the developed approach

4.1 Experimental Setup and Procedure

Bead-on-plate welding was carried out on EBW facility, developed by Bhabha
Atomic Research Centre (BARC), Mumbai, at IIT Kharagpur (refer to Fig. 3). The
machine has amaximum power rating of 12 kW. The beamwas kept stationary, while
the table containing the workpiece, fixture, and other arrangements traveled in the
horizontal plane at a predefined welding speed. A vacuum was provided in the work
chamber and gun chamber with the help of vacuum pumps before the initiation of
the welding process. The stream of highly accelerated electrons was made incident
on 20-mm-thick AISI 304 stainless steel workpiece in the vacuum environment. The
chemical composition of the used material can be found out in (Das et al. 2016). The
EBW experiments had been carried out following a multilevel full-factorial design.
This study aims to investigate the effects of beam power and welding speed on the
depth of penetration and bead width of the weld.

4.2 Data Collection

Two input parameters, namely, beam power (P in W) and welding speed (S in
mm/min), were considered in this study. Considering four levels of the input param-
eters, the experiments had been carried out according to the multilevel full-factorial
design with 24 = 16 combinations of design variables. For each combination of input
variables, welding was carried out three times in order to ensure repeatability.

These samples were sectioned, polished, etched, and observed under the micro-
scope in order to obtain the desired measurements. The average values of the bead
width (BW in mm) and depth of penetration (DP in mm) were calculated and used
in this study. The details of the experimental data used for developing the model and
testing the same are shown in Appendices 1 and 2, respectively.
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Fig. 3 Electron beam welding (EBW) setup, IIT Kharagpur, India

5 Results and Discussion

As like other natural processes, electron beam welding process has also nonlinear
input–output relationships (Jha et al. 2014). These relationships were obtained from
the experimental data using a nonlinear regression tool. After this, the developed
approach was used to get the relationships among the responses and design variables,
and other important information regarding the said process.

5.1 Obtaining Nonlinear Input–Output Relationships
from the Experimental Data

Using the statistical software Minitab 16.0, a nonlinear regression analysis had been
carried out to obtain the input–output relationships from the experimental data (refer
to Appendix 1) collected within the upper and lower limits of the input variables, as
provided in Table 1.

The following expression was obtained for depth of penetration:

Table 1 Input variables and their ranges

Sl. no Input variables Symbols Minimum value Maximum value

1 Beam power (W) P 3200 5600

2 Welding speed
(mm/min)

S 900 1800
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DP � −2.31965 + 0.00443709 × P − 0.00486308 × S − 2.08008E − 07 × P2

+ 2.67361E − 06 × S2 − 1.16208E − 06 × P × S. (2)

The model was found to be capable of predicting accurate results because of a high
value of regression coefficient of 0.97. A confidence level of 95% was considered.
The other response, BW was also expressed in terms of the input parameters as
follows:

BW � 18.0029 − 0.00554238 × P + 0.000857167 × S + 6.32813E − 07 × P2

− 5.69444E − 07 × S2 − 2.61667E − 07 × P × S. (3)

The regression coefficient for this case was found to be 0.8.

5.2 Formulation of the Optimization Problem

The objective was to maximize the depth of penetration (DP), while keeping the bead
width (BW) at a lower value. These said goals are contradictory to each other, as
with the increase of DP, and output parameter BW increases. Therefore, this is an
ideal problem for MOO and it can be expressed as follows:

Minimize 1/DP

Minimize BW
subject to

3200 ≤ P ≤ 5600

900 ≤ S ≤ 1800

(4)

5.3 Obtaining Initial Pareto-Front

Using NSGA-II, an initial Pareto-front was obtained (refer to Fig. 4). In this case,
Eqs. (2) and (3) were used to evaluate the numerical values for the outputs DP and
BW, respectively. The user-defined parameters for the NSGA-II, such as probability
of crossover (pc), probability of mutation (pm), population size (N), and maximum
number of generations (Gmax ), were selected through a detailed parametric study.
This study had been carried out by varying parameters one at a time and keeping the
others fixed.The sequence for varying the parameterswas taken as follows: pc, pm, N
and Gmax , as suggested in Pratihar (2007). The best parameters were chosen based
on the maximum spread of the Pareto-front. The details of this parametric study have
been provided in Table 2, where the selected parameters are written in bold.



308 A. K. Das et al.

Table 2 Results of the parametric study to select NSGA-II parameters

Exp no. Fixed GA parameters’
values

Varying GA parameter
value

Spread of
Pareto-optimal data set
(X- and Y-coordinates
represent 1/MRR and
SR values,
respectively)

Is the
parameter
selected?

1 pm = 0.06, N = 300
and Gmax �1000

pc �0.6 (0.125994, 5.80199) to
(0.247707, 3.41509)

No

2 pc �0.7 (0.125994, 5.80199) to
(0.247708, 3.41509)

No

3 pc �0.8 (0.125994, 5.80199) to
(0.247716, 3.41509)

Yes

4 pc �0.9 (0.125994, 5.80199) to
(0.247704, 3.41509)

No

5 pc �1.0 (0.125994, 5.80199) to
(0.247707, 3.41509)

No

6 pc = 0.8, N �300 and
Gmax �1000

pm �0.02 (0.125994, 5.80199) to
(0.247703, 3.41509)

No

7 pm �0.04 (0.125994, 5.80199) to
(0.247715, 3.41509)

No

8 pm �0.06 (0.125994, 5.80199) to
(0.247716, 3.41509)

Yes

9 pm �0.08 (0.125994, 5.80199) to
(0.247711, 3.41509)

No

10 pm �0.1 (0.125994, 5.80199) to
(0.247708, 3.41509)

No

11 pc �0.8, pm �0.06
and Gmax �1000

N �100 (0.125994, 5.80199) to
(0.247701, 3.41509)

No

12 N �200 (0.125994, 5.80199) to
(0.2477, 3.41509)

No

13 N �300 (0.125994, 5.80199) to
(0.247716, 3.41509)

Yes

14 N �400 (0.125994, 5.80199) to
(0.247709, 3.41509)

No

15 N �500 (0.125994, 5.80199) to
(0.247708, 3.41509)

No

16 pc �0.8, pm �0.06
and N �300

Gmax �1000 (0.125994, 5.80199) to
(0.247716, 3.41509)

Yes

17 Gmax �2000 (0.125994, 5.80199) to
(0.247708, 3.41509)

No

18 Gmax �3000 (0.125994, 5.80199) to
(0.247705, 3.41509)

No

19 Gmax �4000 (0.125994, 5.80199) to
(0.247709, 3.41509)

No

20 Gmax �5000 (0.125994, 5.80199) to
(0.247709, 3.41509)

No
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Fig. 4 Obtained initial
Pareto-front of solutions

In NSGA-II, different genetic operators, such as tournament selection, arithmetic
crossover, and Gaussianmutation, were used. Now, the initial Pareto-front of optimal
solutions was obtained utilizing the selected parameters, as shown in Fig. 4.

5.4 Training of an NFS

Using the initial Pareto-front dataset, a neuro-fuzzy system (NFS) had been trained.
The training dataset had been clustered using a clustering technique, namely, fuzzyC-
means clustering and in this case, the level of cluster fuzziness was considered as 2.0.
To obtain the best results, the said data set was clustered into 16 different clusters.
Therefore, the total number of rules for the NFS became equal to the number of
clusters made. The structure of the developed NFS has been shown in Fig. 5.

In the used NFS, a supervised learning with a batch mode of training method
had been applied. In the input and output layers, the Gaussian type of membership
functions had been used. So, the total number of unknown parameters of this model
was found to be equal to (16 × 4 × 2 =) 128 (as there are two inputs and two outputs
each in the model, and each Gaussian function has two unknown parameters, that is,
σ and m). For the training purpose, 300 input data points of the initial Pareto-front
had been used and a root-mean-square error (RMSE) was calculated each time. Here,
the error is nothing but the deviation in prediction. This NFS was evolved using a
genetic algorithm, where the objective was set to minimize the RMSE value and
the design variables were those 128 numbers of unknown parameters of the model.
Different genetic operators, such as roulette wheel selection, linear crossover, and
random mutation, had been utilized in the GA, and to obtain the best results, the
selected GA parameters were as follows: crossover probability (pc � 0.9),mutation
probability (pm � 0.1), and population size (N � 60).
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Input Input Membership Function Rule
Output Membership 

Function Output 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Fig. 5 Structure of the neuro-fuzzy system

5.5 Obtaining Modified Pareto-Front

In this step, the trained NFS had been used in an NSGA-II for determining the
fitness values of the objectives. It is important to note that Eqs. (2) and (3) were
used previously in the NSGA-II for obtaining the initial Pareto-front of solutions.
The parameters for this NSGA-II were kept the same as in that of the previous case
described in Sect. 5.3. We could get a modified Pareto-front, as shown in Fig. 6, and
the quality of this Pareto-front had been improved in terms of the objective function
values compared to that of the initial one.

5.6 Clustering of the Modified Pareto-Front Data Set

The obtained modified Pareto-optimal solutions were clustered using three different
algorithms, namely, fuzzy C-means clustering (FCM), entropy-based fuzzy cluster-
ing (EFC), and density-based spatial clustering application with noise (DBSCAN).
By using FCM algorithm with the level of cluster fuzziness kept equal to 1.25, two
clusters were obtained, as shown in Fig. 7.
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Fig. 6 Initial and modified
Pareto-front of solutions

Fig. 7 Clustering of the
modified Pareto-front using
FCM

In case of EFC, two distinct clusters (refer to Fig. 8) were obtained with the user-
defined parameters like the constant of similarity (α � 0.12) and threshold value of
similarity (β � 0.9).

In another case, where the clustering was done using DBSCAN algorithm, three
distinct clusters were obtained, as shown in Fig. 9. In this algorithm, a point was
considered to form a cluster, when a minimum of three other points were found to
be present in a neighborhood radius of 0.032.

For the different clusters obtained using the said three clustering algorithms, the
respective ranges of variation for the two outputs, such as DP and BW, are given in
Table 3.
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Fig. 8 Clustering of the
modified Pareto-front using
EFC

Fig. 9 Clustering of the
modified Pareto-front using
DBSCAN

The clustered solutions were analyzed using nonlinear regression analysis. For
this purpose, a Gauss–Newton approach was used with 95% confidence level for
all intervals and the convergence tolerance was assumed to be equal to 0.00001. In
Table 4, cluster-wise obtained different input–output relationships are provided.

The two extreme points on the modified Pareto-front correspond to the maxi-
mum and minimum values of the two outputs of the EBW process. One of these
points shows the highest values of DP and BWwith the input parameters as follows:
P � 5600W, S � 900mm/min. On the other hand, the other point provides the
information regarding the lowest values of the outputs with an input variables setting
as P � 4750.98W, S � 1800mm/min. It is observed (refer to Fig. 10) that for
increasing the depth of penetration (DP), beam power (P) has to be increased and
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Table 3 Ranges of DP and BW in different clusters

Cluster algorithm Cluster number Output parameters

DP (mm) BW (mm)

Minimum Maximum Minimum Maximum

FCM 1 7.4441 7.8581 4.6191 5.7872

2 4.0632 7.4252 3.4281 4.6039

EFC 1 7.6593 7.8581 5.0077 5.7872

2 4.0632 7.6535 3.4281 4.9897

DBSCAN 1 7.8502 7.8581 5.7519 5.7872

2 7.5697 7.8472 4.7989 5.7124

3 4.0632 7.5481 3.4281 4.7629

Table 4 Relationships among decision variables and responses for EBW problem

Clustering algorithm Cluster number Relationships among design variables and objectives

FCM 1 DP � P0.443585 × S−0.257345

1 BW � P1.13416 × S−1.17341

2 DP � P0.790491 × S−0.713536

2 BW � P0.40339 × S−0.290404

EFC 1 DP � P0.351876 × S−0.14233

1 BW � P0.848204 × S−0.814444

2 DP � P0.880063 × S−0.818614

2 BW � P0.450339 × S−0.345143

DBSCAN 1 DP � P0.228065 × S0.013738

1 BW � P0.228118 × S−0.0315064

2 DP � P0.454036 × S−0.26975

2 BW � P1.23061 × S−1.29156

3 DP � P0.835263 × S−0.765954

3 BW � P0.422925 × S−0.313142

welding speed (S) should be at its lower value. In other situation,where a user requires
a lower value of bead width (BW), the input parameter, P, has to be decreased and S
is needed to be increased. Moreover, both DP and BW are found to be proportional to
the heat input, which is a unified effect of beam power and welding speed on the weld
geometries. This trend is in accordance with the literature (Das et al. 2017; Kar et al.
2015). Therefore, a user may be recommended to choose input parameters setting
to avail the high depth of penetration (7.01 mm) and low bead width (4.36 mm) as
follows: P � 5548.8W, S � 1096.46mm/min.

The obtained input–output relationships were used on some test data (refer to
Appendix 2), and an average absolute percentage error (AAPE) was calculated
for each of the cases of clustering techniques. These were compared to the results
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Fig. 10 Variations of DP and BW with the inputs, P and S, in the modified Pareto-front

Table 5 Comparison of results using the relationships obtained from developed approach and
experimental data

Output AAPE in case of
FCM (%)

AAPE in case of
EFC (%)

AAPE in case of
DBSCAN (%)

AAPE in case of
Eqs. from
experimental data
(%)

DP 2.9822 3.2329 2.9903 3.7288

BW 5.4764 5.4009 5.6698 6.3340

obtained using Eqs. (2) and (3). The comparison (refer to Table 5) clearly indicates
the fact that the relationships derived by the developed approach could predict more
accurately compared to the regression equations did. In addition, FCM algorithm
could perform a slightly better compared to the other two algorithms of clustering.

Another interesting fact to observe here is that the range for the input variable
power (P) had been squeezed from (3200, 5600 W) to (4750.98, 5600 W) in the
modified Pareto-optimal dataset. This fact denotes that the effective range of the
input parameter P for this process has been shortened and it is advisable to operate
only in this squeezed range to get the best results. This information will surely help
the designers to design and establish the process efficiently.

6 Conclusion

An approach was developed to obtain different input–output relationships of the
EBW process by the extensive use of a multi-objective optimization technique and
a neuro-fuzzy system. It is quite different from the approaches available, because it
adopts a method to model the inherent fuzziness in the experimental data and at the
end, it could generate more accurate input–output relationships for a process. The
approach was applied for an EBW process, and the results obtained were superior
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to that of the other methods in terms of precision and accuracy. This happens due
to the fact that in the developed approach, an NFS, which is capable of handling
uncertainty and inaccuracy of the data, is used and the imprecision in the data is
removed to come up with the more accurate relationships.

The solutions of the modified Pareto-front were clustered and analyzed to obtain
input–output relationships cluster-wise. A comparison has also been made among
the relationships obtained in different cases of clustering algorithms based on the
results of the test cases. Another interesting fact has been found out that for an input
parameter, the effective range to get the best results has been squeezed. This prior
informationmay increase the opportunities to reduce the operating cost andmake the
process more stable.Moreover, some physical aspects of the process are derived after
analyzing the modified Pareto-optimal dataset, and the conclusions are seen to be
inline with those made by other researchers for the process. Therefore, the developed
approach can be applied to any process for obtaining input–output relationships and
other important facts of the same.

Appendices

Appendix 1 collected experimental data

Sl. no. Power (W) Speed (mm/min) Depth of
penetration (mm)

Bead width (mm)

1 3200 1800 2.73 4.82

2 3200 1500 3.27 5.36

3 4000 1800 3.43 4.46

4 3200 1200 4 3.4

5 4000 1500 4.13 4.4

6 4800 1800 3.41 5.54

7 5600 1800 4.55 3.4

8 4800 1500 4.5 3.5

9 4000 1200 4.6 4.7

10 3200 900 3.9 6.92

11 5600 1500 4.8 5.1

12 4800 1200 5.29 5.31

13 4000 900 5.69 4.99

14 5600 1200 5.8 5.5

15 4800 900 7.15 5

16 5600 900 8.2 5.6
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Appendix 2 Experimental data collected for testing the performance of the developed approach

Sl. no. Power (W) Speed (mm/min) Depth of
penetration (mm)

Bead width (mm)

1 4800 1650 4.37 3.38

2 4800 1325 5.03 3.87

3 5200 1650 4.39 3.86

4 5200 1325 5.27 4.51

5 5600 1000 7.91 5.28
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