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Chapter 3
Muscle Mass, Quality, and Composition 
Changes During Atrophy and Sarcopenia

Yosuke Yamada

Abstract Skeletal muscle mass (SMM) and muscle strengh reach their peak in 20s 
to 40s of age in human life and then decrease with advancing age. The decrease rate 
of muscle strength or power was twice to four times as large as that of the 
SMM. Thus, the normalized muscle force (muscle strength divided by SMM) also 
decreases in aging. It depends on the number of factors in skeletal muscle tissues 
and neuromuscular system. In human study, SMM cannot be measured directly 
without dissection so that all of the methodologies are indirect methods to assess 
SMM, even computing tomography or magnetic resonance imaging. Dual-energy 
X-ray absorptiometry, ultrasonography, anthropometry, and bioelectrical imped-
ance analysis (BIA) are used as secondary indirect methods to estimate SMM. Recent 
researches show muscle composition changes in aging, and in particular, the ratio of 
muscle cell mass (MCM) against SMM decrease and relative expansion of extracel-
lular water (ECW) and extracellular space is observed with advancing age and/or 
decrease of physical function. The intracellular water (ICW) and ECW estimated by 
segmental bioelectrical impedance spectroscopy or multifrequency BIA are good 
biomarkers of the ratio of MCM against SMM in limbs. The BIS and other state-of- 
the-art technology for assessment of muscle mass, quality, and composition are use-
ful to fully understand the muscle atrophy in a living organism.
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3.1  Introduction

Muscle strength generally reaches its peak in 20s to 40s of age in human life and 
then decreases with age. Skeletal muscle mass (SMM) also decreases with age 
(Figs. 3.1 and 3.2). The study of Allen et al. (1960) was probably the first scientific 
report about SMM decrease with age [1]. Allen et al. reported that muscle mass is 
decreasing with age by calculating total body potassium (TBK) via whole body 
counter, using the fact that a small amount of radioisotope 40K exists naturally. In 
this method, based on the hypothesis that the potassium volume (concentration) in 
body cell mass (BCM) is constant, the BCM was estimated from the TBK, and then 
the BCM was used as an index for skeletal muscle mass [2, 3].

Since then, various methods such as X-ray computed tomography (CT) and mag-
netic resonance imaging (MRI) have been invented (Figs. 3.1 and 3.2). Using these 
methods, the SMM change with age in the human body has been examined in many 
researches. In the systemic review for the SMM change with age by various mea-
surement methods [4], the SMM decreased only 0.37% per year in female and 
0.47% per year in male when compared with the young adult (18 to 45 years old) to 
the elderly (65 years old or over). The decrease rate of muscle mass per 10 years 
drops more steeply after a certain age (i.e., 50 to 65 years old) than younger age; the 
longitudinal study that assessed in older adults (65  years old or over) over 
5  to 12.2 years showed that the decrease rate was approximately 0.51% [4]. The 
decrease rate is much lower than muscle strength.

The longitudinal study with the elderly showed the muscle strength decreased 
2.5 to 3% in female and 3 to 4% in male in a year. In the cohort that muscle mass 
and muscle strength were measured at the same time (e.g., Baltimore Longitudinal 
Study and Health ABC study), the decrease rate of muscle strength was twice to 
four times as large as that of the SMM [5, 6] (Fig. 3.3). Furthermore, it is clear that 
low muscle strength rather than low SMM is a risk factor for mobility disability and 
mortality [7–9]. In consideration of the above, the meaning of muscle mass or 
strength measurement has become a controversial topic; it has been discussed that 
“dynapenia,” which focuses on age-related loss of muscle function, is probably 
more useful than “sarcopenia” which is mainly considered on age-related loss of 
SMM [10, 11].

The term “sarcopenia” was originally created by Rosenberg at a meeting sum-
mary (1989) [12] of “Epidemiologic and methodologic problems in determining 
nutritional status of older persons (Albuquerque, New Mexico, USA, October 
19–21)” in 1988. In its proceedings, Rosenberg mentioned that “the prevention 
and/or attenuation of decreasing lean mass with age” is one of the most important 
public health issues for exercise and nutrition for older adults and coined sarcope-
nia from Greek words σάρξ sarx, “flesh,” and πενία penia, “poverty.” Rosenberg 
summarized the meeting to introduce what the meeting was like and what the sen-
tence meant [12].

One out of 25 persons was the elderly population (65 years old or over) in 1900, 
1 out of 9 in 1989, and then 1 out of 5 in the twenty-first century. Drs. Samet, Rhyne, 
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Fig. 3.1 Typical example of mid-thigh cross-sectional area (CSA) obtained by X-ray computed 
tomography (CT) in each age individual. Skeletal muscle CSA (gray area) is decreased with 
advancing age. In addition, the signal intensity of muscle area became low with advancing age. 
(The figure is reprinted from Yamada 2015 [2] with permission (see detail in Sect. 6 in this 
chapter))
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Fig. 3.2 Relationship 
between age and whole- 
body skeletal muscle mass 
assessed by magnetic 
resonance imaging (MRI). 
(The figure was created 
based upon Table 1 of 
Janssen et al. 2000 [3] for 
the present article by 
Yamada)
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Harris, Hegsted, and Goodwin et al. [13–17] emphasized the diversity of elderly in 
the meeting; there is not only non-negligible differences between a 65-year-old and 
an 80-year-old person (chronological age) but also inter-individual variation of 
aging (biological age) which is different from chronological age. There are also dif-
ference in races, ethnicity, and sex. Furthermore, the activity level of elderly varies: 
some are independent and active, some cannot leave home, and others stay in the 
nursing home. Some uses multiple medications, which affects to the body and men-
tal functions. We must conduct research for all those elderly since we cannot evalu-
ate the populations of “normal aging” or “normal nutritional status” if we use the 
cohort of only elderly who visit a hospital, excluding active healthy elderly, or the 
cohort of elderly excluding persons who are charged in the nursing home or cannot 
leave home. Therefore, the method we should use is to evaluate various old popula-
tion including a marathon runner and a person who needs nursing care, to clarify the 
effect of decreased function of each organ with age to food and nutritional condi-
tions, and to have better understanding for the influence of food and nutrition to the 
maintenance or decreased function of each organ. From the NHANES, National 
Health and Nutrition Examination Survey, III (from 1988 to 1994), Harris and 
Kuczmarski et  al. [15, 18] revealed these problems applying oversampling tech-
nique for 5000 elderly including 1300 who were older than 80.

Drs. Kuczmarski, Chumlea, Heymsfield, and Schoeller [18–21] lectured about 
body composition assessment method in the meeting, which is essential for nutri-
tional status assessment. Each method has both  advantages and disadvantages. 
Because of recent drastic progress of body composition assessment method, it is 
possible to evaluate various compositions instead of using a traditional two- 
composition model (fat and lean mass). Thus, using these methods, it is necessary 

Fig. 3.3 Changes of knee extension strength (KES) and leg muscle mass (LMM) in Baltimore 
Longitudinal Study of Aging. KES was measured by isokinetic dynamometry, and LMM was 
assessed by dual-energy X-ray absorptiometry (DXA). The rate of decline for both parameters is 
steeper with older age (in particular, 45+ and 75+); the decrease rate of muscle strength was twice 
to four times as large as that of the muscle mass. (The figure is reprinted from Ferrucci et al. 2012 
[5] with permission)
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to have a wide variety of data including the abovementioned race and ethnic differ-
ences. Rosenberg asseverated that there is no important dramatic functional change 
with age other than lean mass change. Decreased lean body mass influences on vari-
ous aspects such as mobility ability, physical functions, energy (calorie) intake and 
expenditure, nutrient consumption, nutritional condition, independence (nursing 
care requirement), cardiovascular function and/or respiratory function. To pay more 
attention to lean mass decrease, Rosenberg proposed the term sarcomalacia/sarco-
penia and suggested that more research should be conducted for the relationship 
lean mass decrease and exercise. Muscle mass would be increased even  in the 
elderly, and the elderly with frailty would drastically improve physical function.

In summary, Rosenberg [12] picked up Dr. Hegsted’s topic related to recom-
mended dietary allowance (RDA) [16]. What is the role of RDA for elderly with 
wide variety of characteristics? When it comes to the recommended food to maxi-
mize one’s healthy living and to maintain activities in one’s life cycle, it is necessary 
to understand the diversity and variability in young and old women and men.

Sarcopenia was originally the proposed term to proceed the research about loss 
of lean mass during age considering appropriate nutrition and exercise for each old 
person with understanding of variety of old people in the meeting summary com-
ment. However, as it is mentioned above, from the results that many researches had 
proceeded focusing on muscle mass and strength since 1990, the risk for mortality 
and/or loss of physical function and independence cannot be fully explained by only 
muscle mass.

Therefore, the European Working Group on Sarcopenia in Older People 
(EWGSOP) in 2010 [22], the International Working Group on Sarcopenia (IWGS) 
in 2011 [23], the Asian Working Group for Sarcopenia (AWGS) [24], and the 
Foundation for the National Institutes of Health (FNIH) Biomarkers Consortium 
Sarcopenia Project [25] in 2014 defined sarcopenia as low muscle strength and/or 
low physical function in addition to SMM.

In those consensus, muscle strength and physical function are important compo-
nents of sarcopenia, but the assessment of muscle strength and/or physical function 
is not sufficient to apply a medical diagnosis under the precedent of the medical 
diagnosis of osteoporosis or metabolic syndrome. The SMM is still used as a pri-
mary marker, which is a more objective parameter than voluntary force production 
or conducting physical function test [26–31].

It is, however, not easy to assess human’s SMM in vivo accurately, and its defini-
tion is needed to be reconsidered. Especially, I would like to explain the concept of 
in vivo SMM is different from that of “muscle cell mass” (MCM). The ratio of MCM 
against SMM (MCM/SMM) changes with advancing age.

All methods of assessing SMM are indirect methodology since human body 
composition cannot be measured directly except for cadaver. As they are indirect 
methods, there are always hypotheses. The  results of any indirect methods have 
systematic and/or random bias from those of direct measurement [32]. Therefore, 
when body composition is mentioned, the term “estimate, assess, or calculate” is 
used; avoid using the term “measure” in this article.

3 Muscle Mass, Quality, and Composition Changes During Atrophy and Sarcopenia
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3.2  Estimate of Skeletal Muscle Mass (SMM)  
in Human Body

It has been tried to estimate SMM as one of the body compositions along with the 
fat and bone mass [1, 33]. In relation with obesity, the amount of body fat or percent 
body fat against body mass has been focused along with visceral fat, ectopic fat, 
hyperglycemia, hypertension, and hyperlipidemia. Bone mass and bone mineral 
content has been given attention with bone density, bone metabolism markers, and 
spine morphology because of its relationship with osteoporosis and risk of fracture. 
The SMM has been given importance in complex metabolic disorder syndrome 
(cachexia) that is characterized by the loss of muscle mass observed with drastic 
weight decrease in patients with chronic disease and myopathy such as muscular 
dystrophy and amyotrophic lateral sclerosis (ALS); however, the establishment of 
its clinical meaning in non-disease adult is delayed in comparison with body fat 
amount (obesity) and bone mass (osteoporosis).

On the other hand, in sports science area or exercise physiology, skeletal muscle 
mass assessment has been conducted relatively early because skeletal muscle mass 
has strong correlation with muscle strength or power which is one of the essential 
sport performance factors [34]. After various imaging methods and other estimation 
methods are invented, the research using assessment of muscle mass or muscle mass 
distribution has been performed strenuously [3, 34–44]. Especially, CT and MRI are 
currently considered as standard methods to estimate whole-body skeletal muscle 
volume or mass (e.g., skeletal muscle tissue density, 1.041 g/cm3 [45]) since they 
can estimate the total volume of whole-body skeletal muscle tissue by filming the 
whole body and extracting signal from skeletal muscle tissue. Dual-energy X-ray 
absorptiometry (DXA) is considered an alternative method to separate bone mass, 
adipose mass, and other soft lean tissues. It does not estimate whole-body SMM 
itself that is different from MRI and CT; however, appendicular lean soft tissue 
(ALST) estimated by DXA can be converted to SMM measured by MRI (at least in 
American) using the equation by Kim et al. [46].

3.3  The Difference of Age-Related Decreases 
Between Muscle Mass and Strength

In consideration with the above, muscle strength decreases 2.5 to 4% in a year, but 
SMM decreases only 0.5 to 1% [4]. To scrutinize Janssen et al. [3] research which 
measured skeletal muscle mass by MRI in 468 females and males with age from 18 
to 88, the SMM difference of 20s to 70s in the upper body is approximately 8%. The 
SMM difference of 20s to 70s in the lower body is ~26% in male and ~23% in 
female; the decrease rate of lower body is about three times as high as that of the 
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upper body, but it is still only about 0.5% decrease in a year. It is worth noting that 
there is a significant difference in decrease rate between muscle groups even in the 
lower body muscles. Assessing for muscle thickness change of each body part with 
age, ultrasound imaging device has been especially used for many previ-
ous  researches [34, 44, 47–53]. For example, when it is measured by ultrasound 
imaging, the decrease rate of the front thigh is greater than that of the back thigh 
[42, 43, 54, 55]; the decrease ratio of 20s to 70s in the front thigh muscle thickness 
is ~30%. These values are very similar to the direct measurement of cross-sectional 
area (CSA) of the vastus lateralis muscle in the cadavers by Lexell et al. [56]; the 
decrease ratio of 20s to 70s was ~26% (Fig. 3.4).

With all the above considered, the measurement sensitivity of muscle mass 
change is higher in using MRI or CT than in using traditional two-component 
method of lean mass estimation. Furthermore, the measurement of muscle groups, 
which atrophy rate is large, such as muscle mass in the lower body, is seemingly 
more useful than that of the whole-body muscle mass for the relationship with 
physical function. However, this explains only 20  to 50% of muscle force or its 
decrease rate, and the rest of 50 to 80% can be explained by, what we call, “factors 
other than SMM decrease” [4]. For these “factors other than SMM decrease,” “neu-
ral factors” that include from central nerve to neuromuscular junction have been 
considered as major factors. Various researches have been proceeded, however, and 
other potential factors of neural factors are also discussed recently as described in 
the following sessions.
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Fig. 3.4 Relationship between age and skeletal muscle mass (SMM) in the lower body and upper 
body in 268 men (a) and 200 women (b) aged 1888 years old. The SMM was assessed by MRI, 
and its difference of 20s to 70s in the upper body is approximately 8%. The SMM difference of 20s 
to 70s in the lower body is ~26% in male and ~23% in female; the decrease rate of the lower body 
is about three times as high as that of the upper body, but it is still only about 0.5% decrease in a 
year. (The figure was created based upon Table 1 of Janssen et al. 2000 [3])
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3.4  Concept About Skeletal Muscle Cell Mass (MCM)

In the abovementioned cadaver research by Lexell et al. [56], in addition to mea-
surement of vastus lateralis CSA, myofiber number, myofiber size, and the ratio of 
fast muscle fiber to slow-twitch fiber were also measured under the microscope 
(Fig. 3.5a and b). Scrutinizing this research data brings about significant meanings. 
The CSA decrease rate of 20s to 70s was ~26%, but the myofiber number decrease 
ratio was up to 41%. The decrease rate of mean CSA of one myofiber was ~11% 
(Type I myofiber, ~0% decrease; Type II myofiber, ~25% decrease). Thus, from the 
values in literature, when I calculate “total myofiber CSA” using the equation of 
myofiber number multiplied by mean one myofiber CSA, the decrease rate of 20s to 
70s is ~48% [57, 58]. This shows that the proportion of myofiber (cell) area to 
whole-muscle CSA is decreased with advancing age. SMM decrease rate with age 
is different from MCM decrease rate (Fig. 3.5c). As implied by Fig. 3.1a, this is 
because intercellular gap becomes large. Intercellular gap includes connective tis-
sue, adipose outside of muscle cell, and extracellular water (ECW) (Fig. 3.5).

Normal imaging methods, like MRI, CT, or DXA, cannot evaluate this intercel-
lular gap, and this results in overestimating muscle cell mass. Skeletal muscle is not 
a homogeneous tissue and composed of MCM, extracellular space (ECS), and adi-
pose tissue mass (ATM) in its cell level (Fig. 3.2) [59]. Since the MCM gives ten-
sion, the assessment of MCM and/or the ratio of MCM/SMM is essential. It is well 
known that the proportion of ATM to SMM increases with advancing age; except 
for this, the MCM/SMM changes if ECS and MCM ratio changes. The ratio of solid 
to liquid in the MCM (intracellular water, ICW), the ratio of solid to liquid in the 
ECS (extracellular water, ECW), and the ratio of water in the ATM (adipose tissue 
water, ATW) are not always constant but can be considered to be relatively stable as 
0.72, 0.97, and 0.14  in normal hydration status of homeostasis, respectively. 
Therefore, in this case, the ratio of intracellular water to total water (TW) in the 
skeletal muscle tissue (ICW/TW) can be considered an index for the MCM/SMM 
(Fig. 3.6).

3.5  Estimation Method of MCM/SMM

Segmental bioelectrical impedance spectroscopy (BIS) or multifrequency bioelec-
trical impedance analysis (MF-BIA) is useful to assess the ratio of ICW/TW that is 
related to the MCM/SMM.  The detailed explanation for BIS and MF-BIA was 
described in our previous articles [60, 61] (Fig. 3.8), which is briefly summarized 
below. Muscle cell membrane is composed of phospholipid bilayer and works as a 
capacitor on the alternating current circuit. The alternating current with low fre-
quency (e.g., 5 kHz) cannot pass through inside of cells and mainly pass through 
extracellular space. On the other hand, the alternating current with high frequency 
(e.g., 250 kHz or 500 kHz) can pass through inside of cells [62] (Fig. 3.4a). Since 
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the ICW/TW is relatively stable in normal young adults and there is strong correla-
tion among TBW, ICW, and ECW [63, 64], single-frequency bioelectrical imped-
ance analysis (SF-BIA) using 50 kHz is sufficient to evaluate skeletal muscle mass 
[65, 66]. For example, Miyatani et al. research [65] in young adults showed that, 
with impedance value at 50 kHz (Z50), the impedance index (L2/Z50; L, segment 
length), which is an index related to muscle mass in the upper leg, lower leg, upper 

Fig. 3.5 (a) Micrographic picture of cross section of m. vastus lateralis from a young (left) and an 
old (right) individual. (Originally from Lexell et al. 1988. The scale of the picture from old indi-
vidual was modified to match into the scale of the younger one by Yamada.) (b) The picture of 
prepared cross section of m. vastus lateralis for measurement of cross-sectional area (CSA). (c) 
The rate of loss of whole-muscle CSA and total muscle fiber (cell) CSA. Total muscle fiber CSA 
was calculated as muscle fiber number multiplied by mean fiber size by Yamada 2015. (Figures A 
and B are reprinted from Lexell et al. 1988 [56] and Fig. C is reprinted from Yamada 2015 [32] 
with permission)
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arm, and forearm, was highly correlated to SMM obtained by MRI and maximal 
voluntary joint torques of corresponding muscle groups (Fig. 3.7).

On the other hand, in our research with 405 old female and male participants 
aged 65 to 90 years old [60], the impedance index of 50 kHz in the upper leg seg-
ments (L2/Z50) was just moderately correlated to maximal voluntary knee extension 
strength. This means the muscle mass must be evaluated in consideration with the 
ICW/TW change with age in the elderly [67]. Actually, the relative expansion of 
ECW and decrease of ICW/TW were observed in older adults compared with 
younger adults (Fig. 3.8). We, therefore, proposed to use the segmental MF-BIA for 
skeletal muscle mass evaluation and validated it against CT [68]. While the tradi-
tional method overestimates muscle mass in the people who have larger ECW/ICW 
ratio, the newly developed segmental MF-BIA can evaluate muscle mass properly 
in the elderly since the impedance value combination of 250 kHz and 5 kHz can 
discriminate ICW from ECW. In addition, this method shows more significant cor-
relation in muscle strength in the elderly in comparison with the traditional method 
[60]. This index is also correlated to walking speed in the elderly [69] (Fig. 3.9).
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Fig. 3.6 Model of muscle composition (Mingrone et al. 2001). Skeletal muscle contains not only 
“contractile” tissue but also “non-contractile” tissue. Inter- muscular adipose tissue and intramus-
cular fat and extracellular water are “non-contractile” components in muscle tissue. (The figure is 
reprinted from Yamada 2015 [32] with permission)
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While this method used fixed frequencies of 250 kHz (or 500 kHz) and 5 kHz 
[63, 70], various frequency currents ranging from 1 to 1000 kHz (BIS; Fig. 3.4b) 
were used in the other method [71, 72]. Resistance values (R0 and R∞) at 0 kHz 
(direct current) and infinite frequency (∞ kHz) obtaining from Cole-Cole plot of 
resistance (R) vs. reactance (Xc) resulting in a semicircular arc, BIS characterizes 

Fig. 3.7 (a) Upper panel: electrode placements of segmental bioelectrical impedance spectros-
copy (S-BIS) measurement for a single leg. Lower panel: schematic representation showing mus-
cle mass detection by dual-energy X-ray absorptiometry (DXA) and S-BIS.  DXA measures 
appendicular lean mass and cannot inform about lean mass composition. (b) S-BIS takes advan-
tage of the partitioning of contents in appendicular skeletal muscle between intracellular and extra-
cellular pools. (c) Representative Cole-Cole plot of resistance versus reactance measures obtained 
by leg S-BIS from one individual from the study cohort. The intracellular resistance (RI) was cal-
culated using 1/[(1/R∞)  −  (1/R0)]. (d) Representative frequency versus reactance measures 
obtained by leg S-BIS from 29-, 56-, and 76-year-old female adults (solid line, dashed line, and 
chain line, respectively). Older adults tended to have lower reactance. (The figure is reprinted from 
Yamada et al. 2017 [61] with permission)
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the measurement segment for ECW and ICW. There is another model that is the 
combination of this model with the emulsion electrochemical model [64, 72] by Dr. 
Tetsuya Hanai (Hanai mixing theory) [73]; this is beyond scope  of this article. 
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Fig. 3.8 Water distribution in the lower leg estimated by S-BIS (mean ± SD). (a) ***significantly 
lower intracellular water (ICW) than young adult (p  <  0.001); †significantly lower ICW than 
elderly adults. No significant main effect was observed in extracellular water (ECW). The total bar 
shows the sum of ICW and ECW (total water [TW]). (b) The ECW/TW ratio increased signifi-
cantly with aging. ***significantly higher than young adult (p < 0.001); †significantly higher than 
elderly adults. (The figure is reprinted from Yamada et al. 2010 [67] with permission)
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The BIS method is theoretically reflected to ECW and ICW more precisely [64]. 
But when there is correlation coefficients with the muscle strength or power were 
compared between MF-BIA and BIS, there is no significant difference between 
MF-BIA and BIS. Although BIS is more strictly stick to the theory but reactance 
measurement is difficult especially at lower or higher frequency, R0 and R∞ that are 
calculated by extrapolation method of curve regression may have a large margin of 
error. It is, therefore, meaningful to directly use impedance at 250 kHz or 5 kHz 
that has less error cause [60]. Note that there is an alternative way for SF-BIA to 
use Xc and phase angle information to obtain body compositions [74, 75] and elec-
trical characteristics of BIS are related to muscle function [61]. Additionally, most 
recent study shows that appendicular ICW estimating BIS have interesting infor-
mation for sarcopenia [76].

Impedance is influenced not only by the amount of water but ion concentration 
in the fluid; thus, it is required to use assumption for the specific resistance of ICW 
and ECW. In relationship K+ ion and BCM or ICW in the elderly [77], TBK/FFM 
or TBK/TBW decreases with age in the whole-body measurement, but TBK/BCM 
and TBK/ICW are constant [78]; this is supported by the data in rat exenterate 
skeletal muscle [79]. Therefore, ICW can be considered the index to reflect 
MCM. As another issue, the change of ICW/TW in the limbs with age obtained by 
BIS or MF-BIA is seemingly greater than that of ICW/TBW in the whole body in 
physiology field. This may be partly because few research has been conducted in 
elderly with age over 80; it is necessary to perform the investigation of skeletal 
muscle compositions in various ages. It is also necessary to evaluate edema, inflam-
mation, body fluid shift after exercise or posture change, or the influence on various 
diseases [80–82].

Fig. 3.9 The relationships between the ratio of extra- and intracellular water (ECW/ICW) in the 
upper legs as assessed by segmental bioelectrical impedance spectroscopy (S-BIS) and isometric 
knee extension strength (a) and maximal gait speed (b). ○ women and ● men. (The figure is 
reprinted from Yamada et al. 2017 [69] with permission)
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3.6  Relationship Between Muscle Composition and Muscle 
Function

Whenever BIS or MF-BIA is used, ICW in the limbs, which is reflected to MCM, 
decreases with age [67], especially the elderly who require nursing care shows low 
ICW in the limbs [77]. In comparison with a traditional muscle mass index, ICW 
shows stronger correlation to muscle strength, muscle power, and ability to stand up 
from the chair; it is possible to discriminate the requirement of nursing care with 
good sensitivity and specificity. In addition, ICW/TW, which is a biomarker of 
MCM/SMM, also decreases with age and especially shows low value in the elderly 
who require nursing care. Interestingly, ICW/TW, being independent of skeletal 
muscle index of ICW, is also statistically significantly correlated to muscle strength, 
muscle power, and ability to stand up from the chair. ICW/TW decrease reflects the 
decrease of the ratio of muscle cells per unit volume; it is also the index for relative 
expansion of ECW or dilatation of extracellular matrix, connective tissue, or adi-
pose tissue between muscle cells. The relationship between this index and the 
increase of adipose tissue mass and connective tissue must be scrutinized; if the 
density of muscle fiber is low (low muscle density), the decrease of lateral transmis-
sion of force can happen [83].

It is possible to evaluate muscle composition or muscle quality by not only 
relative increase of ECW by BIS but CT, MRI, diffusion tensor MRI (DT-MRI), 
Dixon MRI, or ultrasonic image echo intensity [84]. For example, Hounsfield unit 
(HU), signal strength of CT, is the degree of X-ray attenuation with the following 
conditions: distilled water at standard pressure (1000  hPa) (STP defined by 
IUPAC) and standard temperature (0 °C) is defined as 0 HU; the radiodensity of 
air is defined as −1000 HU. The HU value of the fat tissue is negative (approxi-
mately -100 to -50HU) while that of the muscle tissue is positive (approximately 
0 to 100HU). Mean HU value of muscle tissue area decreases with age; the pro-
portion of  normal- density muscle area (30 to 100HU) decreases, and that of low-
density muscle area (0 to 30HU) increases. This fact especially reflects to adipose 
tissue mass [85, 86]. However, since HU value of water is 0 HU and that of solid 
mass in the skeletal muscle shows high, mean HU value decreases even if the 
MCM/SMM decreases. Thus, the low HU value in the elderly possibly also 
reflects relative ECW increase in addition to adipose tissue mass increase. It is 
known that adipose tissue mass measured by MRI or a non-contraction factor is 
high in the elderly [87], the λ value of diffusion tensor MRI changes with age 
[88], and T2 value of the skeletal muscle at rest is high in the elderly [89]. In addi-
tion, in recent years, it is clear that ultrasonic image shows brighter in the elderly 
than in the young, and its echo intensity is negatively correlated to muscle force 
[52, 90–92]. Most recent study suggests that ultrasonic image echo intensity is 
correlated to muscle strength independent of the ratio of intracellular fluid to 
extracellular by BIS in the elderly [93] (Fig. 3.10).

As it is mentioned above, while muscle force decreases 2.5 to 4% in a year, the 
SMM decreases only 0.5 to 1% in a year [4]. In contrast, the actual decrease rate of 
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MCM is thought to be as twice as that of SMM since the composition of muscle 
changes drastically. However, MCM decrease rate does not explain fully about the 
muscle force decrease. For this part, as it is mentioned above, ICW/TW (or MCM/
SMM) is the factor to explain muscle force independent of ICW; the decrease of 
myofiber density is probably related to the decrease of lateral transmission of force 
[83]. But, in addition to this, various changes happen to the muscle tissue and the 
neuromuscular system [4]. Muscle tissue factors are as follows: the decrease of 
pennation angle and muscle fascicle length with age [94], selective atrophy of fast 
muscle fiber with change of its cross-sectional shape (e.g., a crushed shape) [56], 
qualitative and quantitative changes of extracellular matrix (ECM) [83, 95], 
decrease in the number of satellite cells relative to the total number of nuclei of 
muscle fibers [96], increased occurrence of coexistence of myosin heavy chain iso-
forms in single fibers [97], increased myonuclear domain (MND) size variability 
[98], and the decrease of Ca2+ sensitivity and the reduction of Ca2+ release [99]. 
Age-related change in the tendon tissue also occurred [100]. Neuromuscular sys-
tem factors are as follows: decrease in the number of motoneurons and the remain-
ing intact motoneurons sprouting to innervate the denervated fibers [101], decrease 
in α-motoneuron excitability [102, 103], excitability of the motor cortex to the 

Fig. 3.10 (a) Ultrasound sites for each muscle. a.. Biceps brachii, two-thirds of the way between 
the acromion and the antecubital crease. b. Quadriceps femoris, midway between the anterior 
superior iliac spine and the proximal end of the patella. c. Rectus abdominis, 3 cm lateral to the 
umbilicus. d. External oblique, internal oblique, and transversus abdominis, 2.5 cm anterior to the 
midaxillary line, at the midpoint between the inferior rib and the iliac crest. (b) Representative 
ultrasound images. Echo intensity (EI) can be assessed by computer-assisted 8-bit gray-scale anal-
ysis using the standard histogram function in Adobe Photoshop Elements (Adobe Systems, San 
Jose, CA, USA) or other image software as an index of muscle quality. (The figure is reprinted 
from Fukumoto et al. 2015 [52] with permission)
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spine [104, 105], decrease of nerve conduction velocity [106], co-contraction of the 
antagonistic muscle [107], and elaborated muscle synergy adjustment [108]. 
However, exhaustive research is required to determine how much degree these fac-
tors influence to the decrease of muscle force with aging since there is a literature 
stating antagonist torques cannot explain the observed torque declines at the knee 
joint, for example [109].

At any rate, skeletal muscle cell mass in the body may change more drastically 
than it used to be considered. Ikenaga et al. reported that ICW at the thigh increased 
when slightly weighted (+200 g) shoe interventions were given to the elderly and 
the lower and long-term low degree burden (average 10,000 step walking for 
100 min a day) was given to the lower limbs [110]. Also, ICW increase in the thigh 
was observed when weekly 90- to 180-min/wk moderate intermittent slow jogging 
interventions for 12 weeks were given, although the total muscle CSA obtained by 
CT was not changed [111].

3.7  Frailty, Sarcopenia, Skeletal Muscle Cell Mass, 
and Muscle Composition

World turns into the  aging,  aged or  super-aged society, and life expectancy is 
increasing worldwide. The population of elderly over 75 is drastically increasing. 
The elderly gradually decreases physical function, daily activity level, and indepen-
dence with advancing age [112]. This process is called frailty [113, 114]. According 
to Fried et al. criteria, if one has the presence of three or more of the following five 
components, one is frail: “shrinking: weight loss, unintentional,” “grip strength 
weakness,” “poor endurance and energy,” “slowness,” and “low physical activity 
level.” “Poor endurance and energy” is included because it is a good indicator of 
VO2max and is a predictive indicator of cardiovascular disease. Depending on 
cohort design, it is possible to determine frailty by just asking all questions, but 
basic concept of Fried criteria is to use actual measurement values since it consists 
of “weight (muscle mass) decrease,” “grip strength,” “aerobic capacity,” “walking 
speed,” and “daily physical activity.” The concept of this type of frailty seems to be 
based on factors measured in exercise physiology area [113, 114]. Other  several 
types of frailty indices were also proposed [115–117]. The frailty with or without 
muscle atrophy is a research topic for healthy life span from rodents [118–122], 
nonhuman primates [123], and human [114, 115, 124, 125].

The concept of frailty and sarcopenia is overlapped currently, and central com-
ponent of frailty is considered to be sarcopenia. Since EWGSOP proposed the defi-
nition of sarcopenia with advancing age and its diagnosis criteria in 2010 [22, 26], 
active discussion is ongoing like IWGS [23, 27], FNIH sarcopenia project [28–31, 
126], and AWGS [24]. In addition, the concept between sarcopenia, cachexia, and 
muscle wasting disorders is complex and sometimes confused in research or clinical 
settings [127–130]. One of the current important issues is that it is difficult to reach 
international consensus because the prevalence of sarcopenia is different depending 
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on what guidelines and which SMM assessment techniques are used [131–133]. 
One of the biggest problems is that there is no consensus about how to assess “skel-
etal muscle mass (SMM)” quickly and easily in clinical settings [134]. For example, 
since it is not feasible to measure skeletal muscle mass in the whole body by CT or 
MRI in clinical environments and the measurement by DXA or BIA is device-
dependent, there is no absolute method [135, 136]. Furthermore, SMM or CSA by 
CT that is estimated by ALST via DXA is moderately or poorly correlated to physi-
cal function decrease or total death risk [7–9]. To solve this, it is necessary to recon-
struct the definition of “skeletal muscle mass.” Most recent 4-year longitudinal 
study found that association of physical activity with age-related changes in quadri-
ceps femoris muscle thickness and echo intensity in older adults [137].  As it is 
mentioned above, it is necessary to reconsider skeletal MCM and muscle composi-
tions by paying attention to SMM compositions and their quality. In addition, the 
researches about effects of exercise, physical activity, nutritional status on MCM or 
SMM and complex frailty cycle are needed for future direction (Fig. 3.11) [138].
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Cycle of Frailty

Physical activity ↓

Malnutrition
Weight loss   

(KCL Q11, Q12)
↓

Basal metabolic rate ↓

Mobility disability/ 
Falls and injuries 

(KCL Q6-Q10)

Oral/Eating 
function ↓ 

(KCL Q13-Q15)

Sociological frailty
Decreasing IADL (KCL Q1-Q5)
Housebound (KCL Q16, 17)
Living Alone
Low Socioeconomic status

Appetite↓
Total energy intake ↓

Protein intake ↓

Psychological frailty
Depression (KCL Q21-24)
Exhaustion / Loss of vitality (KCL Q25)

Sarcopenia

Loss of cognitive function 
(KCL Q18-Q20)

Fig. 3.11 Schematic diagram of the cycle of frailty by the Kihon Checklist (KCL) and its relation-
ship to protein intake. IADL Instrumental activities of daily living, KCL Q question number of 
KCL. (This figure is reprinted from Nanri et al. [137] with permission)
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