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Chapter 29
Muscle Atrophy: Present and Future

Richard Y. Cao, Jin Li, Qiying Dai, Qing Li, and Jian Yang

Abstract  Muscle atrophy is the loss of muscle mass and strength, and it occurs in 
many diseases, such as cancer, AIDS (acquired immunodeficiency syndrome), con-
gestive heart failure, COPD (chronic obstructive pulmonary disease), renal failure, 
and severe burns. Muscle atrophy accompanied by cachexia worsens patient’s life 
quality and increases morbidity and mortality. To date there is no effective treatment 
on that. Here we summarize the diagnosis methods and cellular mechanisms of 
muscle atrophy. We also discuss the current strategies in muscle atrophy treatment 
and highlight the potential treatment strategies to resist muscle atrophy.
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29.1  �Introduction

Muscle atrophy results from a variety of common diseases, including cancer, AIDS 
(acquired immunodeficiency syndrome), congestive heart failure, COPD (chronic 
obstructive pulmonary disease), renal failure, and severe burns [1, 2]. Muscle atro-
phy is a complex and highly regulated phenomenon. It is characterized by a decrease 
in muscle fiber cross-sectional area, myonuclear number, protein content, muscle 
strength, an increase in fatigability, and resistance to insulin [3, 4]. It is also associ-
ated with an increased risk of morbidity and mortality.
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Despite decades of research, no effective treatments have been proven to prevent 
muscle mass loss. Here we will provide a brief overview of researches in the field of 
muscle atrophy. We will discuss about the new progress in the field as well as its 
limitations and highlight the future direction of muscle atrophy therapy.

29.2  �Diagnosis Methods

Diagnosis is important for clinical management of muscle atrophy. Skeletal muscle 
mass index (SMI) is the most common indicator to diagnose muscle atrophy. It can 
be measured by image or laboratory functional test. Dual-energy X-ray absorptiom-
etry (DXA), magnetic resonance imaging (MRI), and computerized tomography 
(CT) are used in SMI detection. Also, anthropometry (which means by directly 
measuring the muscle mass) and bioelectrical impedance analysis (BIA) are useful 
tools in muscle atrophy diagnosis [5, 6]. Lab tests mainly focus on detecting creati-
nine and urea. Levels of these two chemicals correlate with muscle injury and mus-
cle loss [7, 8]. Strength of handgrip and exercise capacity reveal muscular function. 
Finally, muscle biopsies could directly show evidence of muscle atrophy but are 
seldom used due to its invasiveness.

Several technical improvements have been made in lab testing for muscle atro-
phy. Transcript profiling showed a subset of universal upregulated genes in rat mus-
cle atrophy model, such as muscle RING finger 1 (MuRF1) and muscle atrophy 
F-box (MAFbx). Especially the latter one could be potential therapeutic target for 
muscle atrophy [2].

Current tests to evaluate muscle atrophy are time-consuming, invasive (as biopsy 
is the only confirmatory test), and complicated. However, the biggest disadvantage 
is that no tests could detect atrophy at the early stage.

Noncoding RNAs (ncRNAs) are a group of RNAs that is not translated into pro-
teins. They function as gene regulators and are widely detected in tissue or in 
peripheral blood. Noncoding RNAs include microRNAs (miRNAs), long noncod-
ing RNAs (lncRNAs), circular RNAs (circRNAs), etc. Previous studies have found 
several miRNAs could be candidate serum markers for muscle atrophy. Muscle-
specific miRNAs have been proven to regulate muscle metabolism under different 
conditions [9]. In aging-related muscle atrophy, Let-7 family members including 
Let-7b and Let-7e were found to be increased compared to young individuals. 
Meanwhile the expression of cell cycle regulators was significantly downregulated 
[10]. A study discovered that miR-431 influenced muscle mass through promoting 
myoblast differentiation and modulating TGF-β downstream effectors [11]. miR-
NAs are also reported to involve in other muscle wasting conditions, such as regular 
catabolism, dexamethasone-induced atrophy, denervation injury, and even cancer 
[12]. Functional miRNAs in muscle atrophy mainly include miR-23a/206/499, 
miR-1, miR-133, miR-23a, miR-206, miR-27, miR-628, and miR-21 [13–15]. 
Among them, miR-29b was found to be commonly upregulated in different muscle 
wasting conditions, including denervation-induced, dexamethasone-induced, 
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fasting-induced, cancer cachexia-induced, aging-induced, and immobilization-
induced muscle atrophy. Moreover, the expression of miR-29b is positively corre-
lated with the degree of denervation-muscle atrophy [16]. Thus, ncRNAs might also 
be used to diagnose muscle atrophy.

Exosome was also shown to play important roles in muscle atrophy. Exosomes 
are vesicles measuring from 30 to 100 μm and able to carry many factors (RNA and 
protein) in the blood. They mediate cell–cell and tissue–tissue communication in an 
autocrine, paracrine, or endocrine manner [17]. Exosomes are nature reservoirs for 
signal factors, and they are detectable in the peripheral blood, which makes them 
ideal disease markers. In dexamethasone-induced muscle atrophy model, miR-23a 
is reported to participate in muscle atrophy through calcineurin/NFAT pathway. 
Dexamethasone increases concentration of miR-23a in the exosomes while it does 
not affect the number of exosomes [18]. Other studies showed a connection between 
exosomes secretion and malignancy-related muscle loss. Exosomes secreted by 
cancer cells carried miRNAs that function as apoptosis factors. miRNAs like miR-
21, miR-182, and some other miRNAs from heart shock family were found to 
induce apoptosis in myocytes [19, 20]. Other noncoding RNAs, such as lncRNAs 
and circRNAs, were also reported to be contained in exosomes and contribute to 
various processes [21].

29.3  �Pathways Regulating Muscle Atrophy

The major process during muscle atrophy is myofiber reduction, which is the result 
of excessive protein degradation. Current theory for these degradation pathways 
was the ubiquitin–proteasome system and the autophagy–lysosome pathway. 
Studies have been carried out to explore the regulating factors of these two path-
ways. Both of them could be triggered by stimulation like chronic inflammation and 
acute metabolic changes.

Ubiquitin–proteasome system (UPS) could degrade sarcomeric proteins in 
response to catabolic stimulate. UPS works through a series of enzymatic reactions 
involving activating (E1), conjugating (E2), and ligating (E3) enzymes [22]. Among 
them, atrogin-1/MAFbx (muscle atrophy F-box) and muscle RING finger 1 
(MuRF1) are the main E3 ubiquitin ligases that play important roles in muscle atro-
phy. Genetic deficiency of either of these two genes showed a significant resistance 
to atrophy [2]. Likewise, their expressions were elevated in almost all types of mus-
cle atrophy [23]. Other E3 ligating enzymes, such as Trim32 [24], TRAF6, ZNF216, 
USP14, and USP19 [25], were identified to function in muscle atrophy.

IGF1-PI3K-AKT pathway is the dominant pathway that mediates protein degra-
dation. Catabolic signals inhibit this pathway by reducing the protein phosphoryla-
tion levels and then promote the proteolysis and depress protein synthesis. In 
addition, IGF1–PI3K–AKT–mTOR pathway and IGF1–PI3K–AKT–FoxO path-
way also regulate the autophagy–lysosome systems [26–29].
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Chronic inflammation influences myocyte metabolism through the interactions 
between different cytokines. Studies have found that interleukin 6 (IL-6) deficiency 
is associated with muscle atrophy [30, 31]. On the other hand, IL-6 induces myocyte 
proliferation through STAT3 signaling pathway, which occurs exclusively in the 
nuclei of satellite cells [32]. Other inflammatory pathway like IKKbeta/NF-kappaB/
MuRF1 pathway was also found to regulate muscle atrophy [33].

Another way to disturb muscle volume is to inhibit muscle growth. Myostatin is 
the major autocrine inhibitor of muscle growth. It binds to the activin A receptor 
type IIB (ActRIIB) in skeletal muscle cells and activates transcription factors 
SMAD2 and SMAD3, thus suppressing muscle growth [34–37].

Catecholamine axis also contributes to the balance of muscle atrophy and growth. 
Deficiency of β2-adrenoceptors worsens skeletal muscle atrophy in patients with 
heart failure [38]. In cardiac muscle, sympathetic neurons control cardiomyocyte 
size by a β2-AR-dependent mechanism [39]. Further study showed this could be a 
result of its suppression effects on atrogin-1/MAFbx, which has been known as a 
muscle-specific ubiquitin ligase [40, 41].

Noncoding RNAs like miR-1, miR-1331a/b, miR-206, miR-146a, miR-221, 
miR-499, miR-208b, miR-486, and miR-29b, several long noncoding RNAs, and 
circRNAs are reported to contribute to muscle atrophy as well [42–44]. The fruitful 
achievements in the nucleic acid studies have led us to understand disease in a new 
way.

Even with these accomplishments, challenges still exist in the muscle atrophy 
field. First, functional noncoding RNAs are still to be studied. Second, epigenetic 
genes involving a serious of histone and DNA modifying enzymes have emerged as 
novel targets for the therapeutics purpose. They are widely studied in various fields, 
but little is known in muscle atrophy [45]. Third, current studies are mainly focused 
on the muscle cell itself, neglecting the cross talk between muscle cells and other 
factors, such as extracellular matrix, stem cells, and immune cells. Muscle atrophy 
always represents as a complication, which means it happens along with other dis-
eases. For example, in cancer-induced muscle atrophy, cancer cells release exo-
somes which specifically interfere muscle cell growth. While under the condition of 
inflammation, muscle cells are influenced by inflammatory factors. Also, the bio-
logical process of muscle atrophy varies in different external conditions. For exam-
ple, autophagy was considered as defense mechanism in fasting-induced muscle 
atrophy, but it causes damages in other scenarios [25, 46, 47]. Understanding this 
difference may be important for treatment of muscle atrophy. Finally, almost all 
previous study has stayed at the animal level. Translational research and clinical 
research need to be carried out in the future.
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29.4  �Therapeutic Approaches and Limits

Although a lot of basic research has been invested to treat muscle atrophy, there are 
no efficient drugs for neither prevention nor treatment of muscle atrophy [5]. Current 
standard treatments for muscle atrophy are nutritional supplement, physiologic 
therapy, and drug treatment.

29.4.1  �Nutrition Treatment

Nutrition supplement provides energy for muscle activity directly and helps to 
maintain muscle mass. Increased consumption of calorie and protein could bring 
beneficial effects. In severely ill patients or those who suffer from muscle atrophy, 
some trials have shown that nutrition treatment improved life quality and long-term 
survival [48, 49]. In fact, many nutritional components were found to be beneficial 
to muscle atrophy (Table 29.1). But the effects might be only limited within patients 
who have primary muscle wasting [50].

29.4.2  �Exercise Training

Physical therapy has been well studied to be effective in maintaining muscle strength 
[64, 65]. Exercise has also been considered as an effective way to promote muscle 
hypertrophy and muscle regeneration [66, 67]. In heart failure-induced muscle atro-
phy, aerobic exercise alleviates the process by reducing inflammatory reactions and 
decreasing ubiquitin-proteasome activities [68, 69]. Malignancy-related muscle 

Table 29.1  Nutrition treatment used in muscle atrophy

Component Muscle atrophy type References

Protein Sarcopenia [51]
Heart failure [52]

Essential amino acid Sarcopenia [53]
Heart failure [52]

β-Hydroxy β-methylbutyrate (HMB) Cancer [54]
AIDS [55]
Chronic obstructive pulmonary disease [56, 57]
Sarcopenia [58]
Immobilization [59]

Vitamin D Sarcopenia [60]
Cancer cachexia [61]

Allopurinol Sarcopenia [62]
Unloading [63]
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atrophy could also benefit from exercise therapy. Apart from suppressing inflamma-
tion, exercise promotes the mitochondrial biogenesis via peroxisome proliferator-
activated receptor (PPAR)-γ coactivator-1α (PGC-1α) pathway [70–74]. In addition, 
exercise training inhibits myocyte autophagy [73]. Unfortunately, exercise therapy 
cannot be applied to everybody. It has limited effects on patients who are immobi-
lized on the bed or patients who have nerve injury. Moreover, certain patients with 
severe muscle atrophy cannot tolerate exercise therapy.

29.4.3  �Drug Treatment

Based on the prior studies, current drug treatment for muscle wasting mainly 
focused on improving appetite, modulating inflammation, and interfering with ana-
bolic and catabolic reactions. Table 29.2 summarized the candidate medications and 
its therapeutic targets. However, no medications have been approved to be effective 
in clinical trials so far.

29.5  �New Therapeutic Strategy

Due to the advance of new technologies and theories, novel treatment strategies 
have sprung up.

29.5.1  �Noncoding RNAs

With the development of next-generation deep sequencing, the research on gene 
regulation transfers from genome to transcriptome. Researches on RNA field have 
been developed unprecedentedly. Unlike protein-coding genes, noncoding RNAs 
are the ones which lack the ability to code protein. They were once considered as 
“evolutionary junk,” until later on it was discovered that these group of RNAs had 
tremendous effects on regulating gene expression. Current well-defined noncod-
ing RNAs include ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), long non-
coding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), and 
other small RNA-related molecules. Great achievements have been made in 
exploring the functions of these RNAs. Some of the noncoding RNAs have already 
been studied in clinical trials. For instance, liposomal miR-34 mimic was used to 
repress oncogene expression, and its ability to shrink tumor size has been proved 
[102]. On the other hand, miRNA antagomirs, such as anti-microRNA oligonucle-
otides (AMOs) and N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine 
(“ZEN”), are used to downregulate certain miRNAs [103, 104]. The use of anti-
sense RNA in long noncoding RNA interference has showed a significant value in 
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treating myocardial hypertrophy and fibrosis [105–107]. Besides, miR-1, miR-
133, miR-23a, miR-206, miR-27, miR-628, miR-431, miR-21, and miR-29b are 
considered to be the therapeutic target for muscle atrophy. miR-29b was an 
increased miRNA in multiple types of muscle atrophy, and miR-29b inhibition 
could relieve muscle atrophy [11, 108–113].

Table 29.2  Studies of agents with potential efficacy in muscle atrophy

Disease process Drug/compound Target References

Cancer cachexia Thalidomide TNF-α [75]
ALD-518 IL-6 [76]
RC-1291 Ghrelin mimetic [77]
RC-1291 Ghrelin receptor agonist [78, 77]
Celecoxib COX-2 [79]
BYM338 Myostatin and the activin 

type II B receptor 
(ActRIIB)

[26]

MG132 Ubiquitin–proteasome 
system

[80]

Myostatin-specific 
antibody

Myostatin [81, 82]

Heart failure JA-16 Myostatin [83]
Salbutamol β2-Agonists [84]
Clenbuterol β2-Agonists [85]
Testosterone Testosterone [86, 87]
Selective androgen 
receptor modulators 
(SARMs)

Hormonal [88]

Ghrelin agonist Ghrelin [89] [90]
Sarcopenia Metformin / Clinical Trials 

NCT01804049
Incretins Enzyme dipeptidyl 

peptidase IV
[91]

Statins Glucose oxidation [92]
Allopurinol Xanthine oxidase (XO) [62]
Formoterol β2-adrenoceptor [93]
Myostatin-specific 
antibody

Myostatin [94]

Chronic obstructive 
pulmonary disease 
(COPD)

Ghrelin/GH/IGF-axis 
Ghrelin

Stimulates GH secretion [95]

SUN11031 Synthetic ghrelin [96, 97]
NAC ROS scavenger [98]
α-lipoic acid ROS scavenger [99]

Renal failure Myostatin-specific 
peptibody

Myostatin [100]

C188-9 STAT3 [101]
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29.5.2  �Gene Therapy

In the last few years, targeted genome-editing technology has developed. Among 
them, clustered regularly interspaced short palindromic repeats (CRISPR) are well 
studied and applied in clinical trials. This is a highly versatile system, which is 
derived from a prokaryotic adaptive immune system. In bacteria, CRISPR/Cas sys-
tem captures and avoids the invasion of foreign DNA via RNA-guided DNA cleav-
age [114]. The recently developed CRISPR–Cas9 system has two biological 
components: the RNA-guided DNA endonuclease Cas9 and a chimeric single guide 
RNA (sgRNA) [115–119]. The guide RNA binds Cas9 with one end, and the other 
end recognizes the target DNA sequence by base pairing. This system has been 
applied to modify endogenous genes in a wide range of organisms, including bacte-
ria, yeast, plants, fruit flies, zebrafish, frogs, rabbits, mice, rats, pigs, dog, sheep, 
goat, monkeys, and human cells [120].

This technique can be applied to various research fields. In cancer, CRISPR/cas9 
was used to produce the next-generation chimeric antigen receptor T cells (CAR-Ts), 
which have potential effects in cancer treatment [121, 122]. CRISPR/Cas9 was also 
used to disturb HIV duplication by targeting LTR sequence [123]. Additionally, 
CRISPR/Cas9 disrupts rs1421085 of FTO region and thus restores thermogenesis 
and opposes obesity [124].

CRISPR is widely used in muscle atrophy studies as well. CRISPR was used to 
knock out myostatin in dog, goat, pig, sheet, and rabbit and thus induce typical 
muscle hyperplasia or hypertrophy in vivo [125–132]. This highlights the hope in 
muscle atrophy treatment. Interestingly, CRISPR/Cas9 was used to target myostatin 
in cancer-related cachexia [133]. Insulin-like growth factor-1 (IGF1) and FGF5 are 
also potential targets for muscle atrophy treatment [134, 135].

Another strategy used in gene therapy is gene transfer vectors. Vectors transport 
genes to target cells. They are usually adeno-associated virus (AAV) – a group of 
viruses that cause low risk of genotoxicity [136]. Plus, they have long-term stable 
transgene expression [137]. Preclinical and clinical studies have been carried out 
using AAV as tools to deliver therapeutic genes [138–140]. In muscle atrophy, 
AAVs like rAAV6 and AAV2/9 have been used to deliver microutrophin to improve 
muscle function [141, 142]. In neurogenic muscle atrophy, AAVs containing neuro-
trophin3 were injected in the mouse model. Reevaluation showed an increased mus-
cle fiber size as well as a change in oxidative state [143]. In malignancy-related 
striated muscle wasting, Smad7 gene delivery by rAAV6 was able to inhibit the 
expression of atrophy-related ubiquitin ligase MuRF1 and MAFbx through ActR2b 
pathway [144, 145]. Similarly, other studies with therapeutic genetic molecules car-
ried by AAVs validated their efficacy by checking downstream factors like vascular 
endothelial growth factor (VEGF), sarcoplasmic reticulum Ca2+ ATPase 1 (SERCA), 
and β2-adrenoceptor or associated Gα proteins [146–148].

Lack of clinical trials is the main disadvantage of gene therapy. Safety issues 
with these therapies remain unknown since current studies mainly focus on the 
positive effects on muscle atrophy. More studies need to be carried out for safety 
and capability.
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29.5.3  �Stem Cell Therapy

Stem cell therapy (also called cellular therapy or cytotherapy) refers to a process 
during which cellular material is injected to treat disease. The effectiveness of stem 
cell therapy has been studied in a variety of diseases [149–155].

Satellite cell is the original stem cell in muscle tissue. These cells are usually 
located between muscle fiber or in basal lamina. Under normal conditions, they are 
naturally quiescent. They start to actively proliferate and differentiate to compen-
sate muscle fibers loss in response to stimuli. In a healthy individual, the compensa-
tion is usually adequate. However, in patients with muscle atrophy, the self-renewal 
capacity of satellite cell was significantly decreased [156, 157]. Hence, increasing 
satellite cells or enhancing the functions of them could potentially solve the prob-
lem of atrophy. Studies have been conducted to transplant myogenic stem cells into 
atrophied muscle. Promising results have been observed in some studies, showing 
the tremendous capacity of regenerating new muscle fibers and fusion with the host 
myofibers after transplantation [158–161]. Unlike skin or adipose tissue transplan-
tation, technical difficulty complicates muscle fiber grafting and makes it difficult to 
apply in clinical practice. Other stem cells, such as mesenchymal stem cells [162, 
163], iPSCs [164], pericytes [165], and endothelial cells [166], could also be used 
as stem cell therapy.

29.6  �Conclusions and Remarks

Muscle atrophy is one of the most common and devastating events in chronic dis-
eases. Unlike the diseases that cause muscle atrophy, muscle atrophy itself is not 
life-threatening. But it can lead to devastating consequences including but not lim-
ited to osteoporosis, blood clot, pressure ulcer, and, more importantly, psychologi-
cal effects. Preventing muscle atrophy can prolong the patient’s life span and 
improve life quality. However, studies exploring the biology nature and molecular 
mechanisms of muscle atrophy only started in the recent two decades. Our knowl-
edge in this field is way lag behind compared to other diseases.

We have made a great number of achievements in learning this disease in the 
recent years. Challenges still exist. Lacking appropriate markers make it hard to 
monitor muscle atrophy. As we have discussed in this chapter, either proteins or 
noncoding RNAs could be a candidate to indicate muscle atrophy, but more clinical 
trials need to be conducted. The causes of muscle atrophy are multifactorial which 
makes the treatment more complex. In the future, gene therapy and stem cell ther-
apy will be applied in muscle atrophy treatment.
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