
307© Springer Nature Singapore Pte Ltd. 2018 
J. Xiao (ed.), Muscle Atrophy, Advances in Experimental Medicine and Biology 
1088, https://doi.org/10.1007/978-981-13-1435-3_14

Chapter 14
Disturbed Ca2+ Homeostasis  
in Muscle- Wasting Disorders

Guillermo Avila

Abstract Ca2+ is essential for proper structure and function of skeletal muscle. It 
not only activates contraction and force development but also participates in multi-
ple signaling pathways. Low levels of Ca2+ restrain muscle regeneration by limiting 
the fusion of satellite cells. Ironically, sustained elevations of Ca2+ also result in 
muscle degeneration as this ion promotes high rates of protein breakdown. Moreover, 
transforming growth factors (TGFs) which are well known for controlling muscle 
growth also regulate Ca2+ channels. Thus, therapies focused on changing levels of 
Ca2+ and TGFs are promising for treating muscle-wasting disorders. Three principal 
systems govern the homeostasis of Ca2+, namely, excitation-contraction (EC) cou-
pling, excitation-coupled Ca2+ entry (ECCE), and store-operated Ca2+ entry (SOCE). 
Accordingly, alterations in these systems can lead to weakness and atrophy in many 
hereditary diseases, such as Brody disease, central core disease (CCD), tubular 
aggregate myopathy (TAM), myotonic dystrophy type 1 (MD1), oculopharyngeal 
muscular dystrophy (OPMD), and Duchenne muscular dystrophy (DMD). Here, the 
interrelationship between all these molecules and processes is reviewed.

Keywords EC coupling · Ca2+ channel · Myogenesis · Intracellular Ca2+  · 
Atrophy

14.1  Introduction

Numerous biological processes depend on the levels of intracellular Ca2+. The neu-
romuscular transmission (NMT) is an emblematic example. It begins with the 
arrival of an action potential (AP) to the nerve terminal, with the ensued release and 
accumulation of acetylcholine (ACh) into the synaptic cleft. Subsequently, precise 
coordination of the gating of many types of ion channels (and transporters) results 
in a transitory increase in the levels of free myoplasmic Ca2+ ([Ca2+]i). More specifi-
cally, the influx of Na+ through skeletal muscle ACh receptors depolarizes the 
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membrane and thereby activates voltage-gated Na+ channels, an AP is fired, and a 
process known as excitation-contraction (EC) coupling begins. During EC cou-
pling, the voltage sensors of a voltage-gated Ca2+ channel (CaV1.1) activate the 
opening of ryanodine receptors (RyR1s, located in the sarcoplasmic reticulum or 
SR), which allows a massive release of Ca2+ to the cytosol. The resulting rise of 
[Ca2+]i activates, in turn, not only the contractile machinery but also the SR Ca2+ 
ATPase (SERCA) that pumps Ca2+ back into the SR (reviewed recently in [1]).

Many human diseases course with skeletal muscle weakness, which (not surpris-
ingly) can be explained by alterations in either NMT or EC coupling. Nevertheless, 
such modifications can also elicit a chronic loss of muscle mass. For example, by 
inhibiting the activity of the Ca2+-calmodulin-dependent protein kinase (CamK). 
This kinase is important to not only stimulate the differentiation of precursor cells 
(myoblasts) [2] but also to induce transactivation of genes involved in hypertrophy. 
Apparently, CamK stimulates hypertrophy by inactivating a protein named glyco-
gen synthase kinase 3 beta (GSK3β) [3], whose function is to limit the synthesis of 
proteins. Thus, by downregulating CamK, low levels of Ca2+ are well suited to gen-
erate atrophy. Paradoxically, a sustained rise of [Ca2+]i also results in muscle wast-
ing. This is because the amount of muscle mass depends on a balance between 
protein synthesis and degradation, and the elevated levels of Ca2+ can activate pro-
teases and thereby promote the breakdown of proteins (Fig. 14.1) [4]. Accordingly, 
both agonists of the CamK signaling pathway and inhibitors of Ca2+-dependent pro-
teases represent intriguing candidates for treating the pathological loss of skeletal 
muscle (reviewed in [4, 5]). Herein, the interrelationship between all these physio-
logical and pathological processes is reviewed. An emphasis is put on the role of 
Ca2+ as a critical node that manages the transition, from a healthy muscular structure 
to weakness and atrophy.

Fig. 14.1 The scheme depicts how pathological alterations of [Ca2+]i can lead to atrophy. Changes 
in the levels of Ca2+, in the up-and-down direction, activate two different signaling pathways that 
converge in promoting a significant loss of muscle mass. High: Sustained elevations of Ca2+ can 
activate a Ca2+-dependent protease (calpain) and thereby result in the breakdown of proteins and 
atrophy. Low: On the other hand, a decrease in resting Ca2+ levels leads to an impaired formation 
of myotubes, preventing the proper regeneration of muscle and thus promoting the development of 
atrophy. See the text for further details

G. Avila



309

14.2  Dynamic Changes in Myoplasmic Ca2+

The following three major physiological processes contribute to regulating the 
homeostasis of Ca2+. They reflect the expression and activity of both Ca2+ channels 
and the SERCA pump.

14.2.1  Excitation-Contraction (EC) Coupling

EC coupling is the process by which an AP induces contraction and force develop-
ment. A transitory increase in [Ca2+]i (Ca2+ transient) is responsible for activating the 
contractile machinery, whose relaxation occurs as the Ca2+ levels return to normal 
values, thanks to the activity of SERCA. The source of Ca2+ for EC coupling is the 
SR, and it has been firmly established that extracellular Ca2+ is irrelevant for this 
process. For example, in the absence of extracellular Ca2+, the skeletal muscle fiber 
contracts vigorously, for several minutes [6]. Additionally, the maximum levels of 
both [Ca2+]i and contractile force can be elicited at membrane potentials where the 
influx of Ca2+ is practically null [7, 8]. Moreover, in 1973 Schneider and Chandler 
published what is known as the hypothesis of the physical link for EC coupling. It 
states that mobile particles embedded in the sarcolemma (voltage sensors) sense 
APs and mechanically activate the release of Ca2+ from the SR [9]. The molecular 
identity of voltage sensors was subsequently defined. They form part of a voltage- 
gated Ca2+ channel, also known as the dihydropyridine receptor (DHPR), or CaV1.1 
[10, 11]. The junctional gap between transverse tubes of the sarcolemma (T-tubes) 
and terminal cisterns of the SR contains electron dense structures, termed “feet.” 
They reflect the presence of the SR Ca2+ release channel, also known as RyR1 [12]. 
Indeed, mice knockout for the RyR1 gene lack feet [13]. Thus, CaV1.1 and RyR1 are 
both essential for EC coupling. Accordingly, they are also critical for survival 
[14–16].

14.2.2  Excitation-Coupled Ca2+ Entry (ECCE)

The Ca2+-conducting activity of CaV1.1 is irrelevant for EC coupling [17]. This fact 
indirectly reinforces the concept that the SR is the only source of Ca2+ for this pro-
cess (see Sect. 14.2.1). Nevertheless, it has been proposed that the entry of Ca2+ 
through CaV1.1 might participate in replenishing the SR during sustained depolar-
izations. A process known as excitation-coupled Ca2+ entry (ECCE, [18]) provides 
indirect support for this speculation. ECCE is a slow increase in the entry of Ca2+ in 
response to either sustained or repetitive depolarization (for review see [19]). A 
large amount of data suggests that in both, developing myotubes and adult muscle 
fibers, an entry of Ca2+ via CaV1.1 represents the underlying mechanism for ECCE 
[20–22].
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The following direct evidence supports the notion that ECCE effectively contrib-
utes to SR Ca2+ loading. Robin and Allard (2015) reported that the SR Ca2+ loading 
is potentiated in response to an increase in the magnitude of Ca2+ current associated 
to ECCE. Moreover, they also found that Mn2+ is not only able to permeate during 
ECCE but also produces quenching of the fluo-5 N trapped in the SR [22]. Although 
these findings could be interpreted to suggest that ECCE is physiologically relevant, 
neither the development nor performance of skeletal muscle is altered in response to 
the elimination of Ca2+ influx via CaV1.1 [23]. Thus, the possibility that a reduced 
magnitude of ECCE be of pathophysiological relevance is practically null. 
Nevertheless, future work may lead to the exciting discovery that, conversely, an 
increase in ECCE leads to pathological symptoms.

14.2.3  Store-Operated Ca2+ Entry (SOCE)

SOCE is the process in which a decrease in the load of SR Ca2+ induces a protein 
of the SR to oligomerize and directly activate a Ca2+ channel of the sarcolemma: 
STIM is the SR protein, whereas Orai is the Ca2+ channel. Three isoforms of Orai 
have been identified in human, namely, Orai1, Orai2, and Orai3. They conform the 
well- known calcium release-activated Ca2+ channels (CRAC) [24]. STIM, on the 
other hand, consists of two isoforms, which have been detected in vertebrates 
(STIM1 and STIM2). The principal isoforms that underlie SOCE in skeletal mus-
cle are STIM1 and Orai1 [25]. The C-terminal portion of STIM1 is cytosolic and 
presents domains critical for binding to—and activating—Orai1. On the other 
hand, the NH2-terminal segment of STIM1 is located in the lumen of the SR. It 
contains two regions that are critical for sensing the levels of luminal Ca2+. More 
specifically, the following domains, EF-hand and sterile alpha-motif (SAM), are 
thought to constitute the sensor of Ca2+ (EF-SAM). Under normal levels of SR Ca2+ 
loading, the binding of Ca2+ to EF-SAM keeps STIM1  in its monomeric form. 
However, the EF-SAM conforms dimers and oligomers in response to depletion 
and thus promotes both binding of STIM1 to Orai1 and the subsequent entry of 
Ca2+ [21, 24, 26, 27].

It has been proposed that SOCE participates in refilling the SR of Ca2+, but this 
idea is controversial. Evidently, an SR depletion is required for activating SOCE, 
but this condition is difficult to reach, not only physiologically but also experimen-
tally [28]. The following evidence supports the view that SOCE, in effect, contrib-
utes to refilling the SR of Ca2+. Mice knockout for myostatin (Sect. 14.3.3) develop 
a severe reduction in expression levels of STIM1 and Orai1, which correlates with 
an inhibition of SOCE and a faster SR depletion (induced by repetitive release of 
Ca2+) [29]. Indeed, this tendency to readily exhaust the SR might explain why those 
mice deficient in myostatin also exhibit a significant muscle weakness (low specific 
force), in the face of an excessive muscle mass [30].
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14.3  Myogenesis

14.3.1  Myogenesis Is Critical for Muscle Growth and Force 
Development

This is a brief explanation of how precursor cells contribute to the genesis and 
regeneration of skeletal muscle. The reader is encouraged to consult more extensive 
reviews on this topic [31–33]. During the embryonic development, precursor cells 
(termed myoblasts) fuse and form multinucleated cells, known as myotubes. The 
myoblasts withdraw from the cell cycle, adopt a spindle shape, and align with each 
other—forming a braid—and the fusion occurs. Subsequently, the myotubes are 
transformed into muscle fibers, through a maturation process that involves (among 
other things) the formation of T-tubes. The fusion of myoblasts is also known as 
“terminal differentiation” because it implies that DNA from the fused myoblasts 
will no longer replicate, and thereby the cell proliferation is arrested. In the adults, 
myotubes continually form. The corresponding precursor cells are known as satel-
lite cells (SCs). Although not fully differentiated, proliferating myoblasts and SCs 
are committed to the myogenic lineage (i.e., they already express transcription fac-
tors of the MyoD family). Depending on specific conditions, precursor cells can be 
either mitotically quiescent or induced to proliferate. For example, injury stimulates 
SCs to proliferate, and the resulting colony provides for generating both a stock of 
quiescent cells and a significant number of fusion-competent myoblasts. The latter 
eventually will either form a new fiber or fuse into injured fibers contributing to 
healing [31–33].

In vitro, the fusion of myoblasts is often quantified as the “fusion index”: that is, 
the number of nuclei per myotube, divided by the total number of nuclei per field of 
observation. The fusion index is crucial for in vivo conditions because the myofiber 
size and thereby the contractile strength depend on the number of nuclei in the fiber. 
Accordingly, it is well known that the number of nuclei in the myofiber declines 
during atrophy. Conversely, the restoration of muscle mass requires myonuclear 
accretion [34]. Remarkably, SCs also contribute to a robust neuromuscular junction 
(NMJ) [35, 36]. Indeed, the deterioration of NMJs, in aging, is more closely related 
to deficiencies in SCs and myogenesis rather than to denervation [36].

14.3.2  Role of Ca2+ in Skeletal Muscle Development

Myogenesis involves a dramatic change in phenotype which in turn depends on a 
coordinated activation of skeletal muscle-specific genes [37–39]. Apart from the 
expression of myogenic factors (e.g., MyoD, Myf5, Myf6, and myogenin), this pro-
cess requires Ca2+. More precisely, a Ca2+-dependent signaling pathway that involves 
calmodulin and the family of transcription factors known as NFAT leads to the 
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fusion of myoblasts (for review see [5, 39, 40]). The recent discovery of a feedback 
mechanism by which SOCE and NFATc3 control the fusion of myoblasts highlights 
the relevance of this Ca2+-dependent pathway [41].

Because myogenesis requires Ca2+, a reduced entry of this ion tends to inhibit the 
proper regeneration of muscle. Ironically, however, sustained elevations of [Ca2+]i 
also contribute to the degeneration of skeletal muscle (Fig. 14.1). This is because 
Ca2+-dependent proteases lead to protein degradation (i.e., calpains, which contain 
Ca2+-binding domains) [4]. Indeed, an increase in intracellular Ca2+ is frequently 
observed in both congenital myopathies and muscular dystrophies (see Sect. 14.4). 
Additionally, high rates of protein breakdown have been reported in many muscle- 
wasting diseases [42].

During myogenesis, the expression of several proteins involved in the homeosta-
sis of Ca2+ is induced. An intricate relationship exists because Ca2+, in turn, regulates 
the expression of at least two of these proteins (i.e., SERCA and CaV1.1) [43–45]. 
Therefore, dissecting the role of a specific protein in myogenesis is complicated. 
Nevertheless, the use of knockout animals has provided irrefutable proofs pointing 
to a leading role for CaV1.1 and RyR1. For example, it has been reported that dys-
pedic and dysgenic mice (i.e., RyR1 and CaV1.1 knockout) die both at birth. More 
interestingly, these two strains of mice also develop malformations, consisting in 
delayed development of skeletal muscle [14–16, 46]. Thus, RyR1 and CaV1.1 are 
both of paramount relevance for not only EC coupling (Sect. 14.2.1) but also myo-
genesis. On the other hand, a recent work elegantly showed that the Ca2+-conducting 
activity of CaV1.1 is irrelevant for skeletal muscle development and function [23]. 
Thus, most likely this protein exerts its regulatory actions via mechanical control of 
RyR1 (as opposed to regulating the entry of Ca2+, see Sect. 14.2).

In mice, the voltage-gated Ca2+ channel isoform CaV3.2 is expressed during 
embryonic development and then gradually disappears, after birth [47, 48]. In 2000, 
Biglenga et al. proposed that the entry of Ca2+ through this channel stimulates myo-
genesis [49]. More recently, this idea was tested and discarded because the fusion of 
myoblasts was unaltered by nickel (a CaV3.2 blocker) [50]. In addition to CaV3.2, 
both Orai1 (see Sect. 14.2.3) and a transient receptor potential channel (TRCP1) 
have also been proposed as necessary for myogenesis [51, 52].

14.3.3  Transforming Growth Factors Regulate Both 
Myogenesis and Ca2+ Channels

Several extracellular signaling factors participate in controlling distinct phases of 
myogenesis. For example, the hepatocyte growth factor (HGF) and fibroblast 
growth factor (FGF) are both considered of critical relevance for SCs activation 
[53]. Myostatin (growth differentiation factor 8, GDF-8) is a member of the trans-
forming growth factor-β (TGF-β) superfamily, and it has also proven essential to 
regulate myogenesis [54, 55]. The TGF-β superfamily includes many other types of 
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growth factors, which, similarly to myostatin, also inhibits the development of skel-
etal muscle. Specifically, in less than 24 h, the bone morphogenetic protein type 2 
(BMP-2) and transforming growth factor β1 (TGF-β1) decrease both the expression 
of MyoD and myogenin. The effect on these transcription factors precedes a drastic 
inhibition of myotube formation (Fig. 14.2) [56], which saturates at nanomolar con-
centrations [57].

Because myogenesis requires Ca2+ (Sect. 14.3.2), it is possible that BMP-2 and 
TGF-ß1 arrest this process by interfering with the activity of Ca2+ channels. In sup-
port of this view, both growth factors also inhibit the functional expression of CaV3 
channels (in semi-differentiated myotubes, see Fig. 14.2). Moreover, TGF-β1, but 
not BMP-2, also downregulates the activity of CaV1.1 [56]. Although these data 
suggest that CaV1.1 and CaV3 channels participate in myogenesis, a role for only 
CaV1.1 has been firmly established (see Sect. 14.3.2).

14.4  Role of Ca2+ in Diseases That Course with Skeletal 
Muscle Atrophy

The calcium ions are of paramount relevance in the context of muscle atrophy (Sect. 
14.3.2). Thus, not surprisingly, the list of diseases in which alterations in the homeo-
stasis of Ca2+ and skeletal muscle atrophy concur is vast. This section discusses 
examples where dysregulation of Ca2+ channels and SERCA has been observed. It 
also explains how such dysregulation contributes to understanding the correspond-
ing loss of muscle mass. It is highly recommended to consult the following excel-
lent reviews on these topics [58, 59].

14.4.1  Congenital Myopathies

14.4.1.1  Brody Disease

Brody disease is a congenital myopathy characterized by muscle cramping that usu-
ally manifests after exercise (especially in the cold) and is accompanied by impair-
ment of muscle relaxation. Muscles from the legs, arms, and eyelids are principally 
affected, and they slowly return to relaxation if maintained at rest (reviewed in 
[60]). This disease is linked to mutations in the gene encoding the skeletal muscle 
SERCA (i.e., SERCA1) [61]. A related myopathy has also been observed but in the 
absence of SERCA mutations (termed Brody syndrome). Thus, in more general 
terms, these disorders are just referred to as “Brody myopathy.” It has been reported 
that patients with advanced phases of this myopathy also show skeletal muscle 
weakness and atrophy (of both type I and type II fibers) [60, 62, 63].

A reduced SERCA activity is observed in muscle samples of Brody myopathy 
patients, and this alteration explains an increase in time needed for myoplasmic Ca2+ 
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Fig. 14.2 TGF-β1 and 
BMP-2 inhibit myotube 
formation. Light-field images 
of myoblasts that were 
obtained from newborn mice 
and then kept 6 days under 
control differentiation 
conditions (upper panel) and 
the presence of either BMP-2 
(5 nM, middle panel) or 
TGF-β1 (40 pM, lower 
panel). The scale bar 
represents 50 μm
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extrusion after repetitive stimulation. Although this mechanism underlies the dam-
aged muscle relaxation, stiffness, and cramping [64, 65], the primary functional 
defect responsible for the loss of SERCA activity remains unknown [60]. Likewise, 
the molecular basis underlying loss of muscle mass has yet to be elucidated. Because 
an increase in time needed for myoplasmic Ca2+ extrusion is ostensibly involved in 
this myopathy, it seems reasonable to speculate that an elevated level of [Ca2+]i 
recruits Ca2+-dependent proteases and thereby induces protein degradation 
(Fig. 14.1; see also Sect. 14.3.2). Dantrolene and verapamil, two inhibitors of EC 
coupling, are promising therapeutic agents for Brody myopathy. They limit the 
amount of Ca2+ released, and thereby the low Ca2+ pumping capacity readily restores 
the normal resting [Ca2+]i levels, preventing Ca2+ overload ([65], discussed in [60]). 
Thus, in the near future, it will be interesting to investigate if these compounds also 
prevent the development of atrophy.

14.4.1.2  Central Core Disease

The following congenital myopathies have been related to mutations in the gene 
encoding RyR1: central core disease (CCD), multiminicore disease (MmD), core 
myopathies with rods, centronuclear myopathy (CNM), and congenital fiber-type 
disproportion (CFTD). They conform the also known as “RyR1-related congenital 
myopathies” (RyR1-RCM) [66, 67]. CCD was the first one being linked to RyR1, 
and thus the corresponding mutations have been more thoroughly investigated.

CCD is of early onset and courses with proximal weakness, wasting, and skeletal 
deformities. These symptoms can range from very mild to extremely severe. The 
diagnosis is based on the identification of areas located within the center of the 
myofiber, depleted of mitochondria and with poor oxidative enzymatic activity (for 
recent reviews, see [68, 69]).

Several CCD RyR1 mutant proteins exhibit an overactive or “leaky” behavior 
that depletes the SR of Ca2+ and thereby decreases the magnitude of the Ca2+ tran-
sient [43, 45, 70]. Another set of mutations, located nearby the pore leaning segment 
of RyR1 (i.e., exon 102, within the C-terminus region), results in mutant proteins 
with poor Ca2+ permeability. Thus, rather than being leaky, these “pore mutations” 
result in a functional uncoupling of SR Ca2+ release from the electrical stimulus 
(termed “EC uncoupling”) [71–73]. A third mechanism indicates that certain CCD 
mutations induce a reduced expression level of RyR1 and thus also promote a lower 
magnitude of Ca2+ transients [74–77]. These three primary defects (i.e., leaky, Ca2+-
impermeable, and decreased expression) are not mutually exclusive. For example, it 
has been reported that the Y4864H mutation results in mutant RyR1 proteins that 
exhibit both, low expression level and altered functional properties (leaky behav-
ior). Remarkably, this mutation also elicits a reduced magnitude of Ca2+ transients, 
and this defect is attributed to a modified gating of the channel (as opposed to a 
reduced number of Ca2+ release units) [77].
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Although mutations located in many regions of the RyR1 result in leaky behav-
ior, evidence exists suggesting that this alteration ultimately depends on a structural 
modification of the protein portion facing the lumen of the SR. In particular, it has 
been reported that the leak depends on a reduced threshold for store overload- 
induced Ca2+ release (SOICR) [78].

As reviewed above (Sect. 14.3.2), mice knockout for RyR1 exhibit several mal-
formations, including a delayed development of skeletal muscle. Conceivably, these 
alterations could simply arise from the physical absence of RyR1. Nevertheless, the 
following evidence indicates that they are due to the inevitable loss of SR Ca2+ 
release. A point RyR1 mutation that renders Ca2+ impermeable channels (equivalent 
to I4897T in humans) also inhibits the fusion of C2C12 myoblasts [45]. Moreover, 
mice knock-in for the same mutation also exhibit a delayed development, which 
includes a reduced and amorphous skeletal muscle, and very small myotubes [72]. 
Thus, a reduced level of SR Ca2+ release is sufficient for disrupting myogenesis and 
thereby also contributes to explaining the atrophy seen in the corresponding CCD 
patients (Fig. 14.1).

On the contrary, in patients expressing leaky CCD mutations, the atrophy is 
likely due to a sustained increase in the levels of [Ca2+]i [43, 45, 70]. More specifi-
cally, Ca2+-dependent proteolysis [4] may result in increased rate of protein degra-
dation [42] and thereby promote the corresponding loss of muscle mass (Fig. 14.1).

In a mouse model of CCD, the I4897T mutation (see above) was found to induce 
the development of endoplasmic reticulum stress, unfolded protein response, mito-
chondrial reactive oxygen species (ROS) production, muscle weakness, and atro-
phy. Currently, it is unclear how this Ca2+-impermeable mutant protein results in all 
these alterations. Nevertheless, it is important to note that they were reverted by 
treatment with the chemical chaperone 4-phenylbutyrate (4-PBA) [79]. Similarly to 
4-PBA, agonists of the Gs subgroup of G-protein-coupled receptors have also been 
reported to be of therapeutic potential in CCD [45, 80]. These findings are encour-
aging since no effective treatment exists for CCD.

14.4.1.3  Tubular Aggregate Myopathy

Tubular aggregate myopathy (TAM) is a condition characterized by the presence of 
“tubular aggregates,” cramps, weakness, and myalgia. Such aggregates contain pro-
teins of the SR and thereby are thought to represent structural alterations of this 
organelle. A genetic cause of the disease was recently found. Specifically, in 2013 
Böhm and collaborators discovered a form of TAM that is inherited with an autoso-
mal dominant pattern and is associated with mutations in the gene encoding STIM1 
[81]. This finding was confirmed more recently [82–84]. Most of the naturally 
occurring mutations in STIM1 are punctual substitutions, and they are positioned 
within the NH2-terminal sequence, just where the EF-hand is located (Sect. 14.2.3). 
Accordingly, these mutations result in mutant proteins that exhibit an altered 
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capability to bind luminal Ca2+ and thereby also present constitutive oligomeriza-
tion [81, 83, 85]. The principal role of STIM1 is to activate the entry of Ca2+ via 
Orai1 channels (during SOCE, Sect. 14.2.3). Thus, prominent levels of SOCE may 
represent an important functional defect of this myopathy. Indeed, TAM has also 
been linked to mutations in Orai1, and the corresponding mutant proteins allow an 
exacerbated influx of Ca2+ [86–88].

A TAM STIM1 mutation that consists of an extension of amino acids 
(I484RfsX21) was reported recently. Remarkably, it resides in the cytosolic part of 
the protein (C-terminal portion) and, in contrast to mutations of the lumen, it inhib-
its the entry of Ca2+ [84]. In addition, TAM has been linked to three different muta-
tions in the gene encoding calsequestrin (CASQ1, which is responsible for Ca2+ 
storage in the SR). Interestingly, while all CASQ1 mutant proteins show a reduced 
ability to store Ca2+, only two appear to stimulate SOCE [89]. These findings sug-
gest that TAM, and the corresponding atrophy, can both arise from other patho-
physiological mechanisms, in addition to elevated levels of SOCE.

14.4.2  Muscular Dystrophies

14.4.2.1  Myotonic Dystrophy Type 1 (MD1)

This disease is caused by the expansion of a CTG repeat in the gene encoding a 
protein kinase termed MDPK. Increased excitability, delayed relaxation, atrophy, 
and weakness represent the most common symptoms. The CTG-repeat expansion 
results in both lower MDPK protein levels and trapping of the corresponding mRNA 
into nuclear foci. Interestingly, muscle degeneration has been related to increased 
rates of myofibrillar protein breakdown [42], which in turn could be explained by an 
exacerbated activity of Ca2+-dependent proteases [4]. Indeed, elevated levels of 
[Ca2+]i have been observed in myotubes derived from both MD1 patients and DMPK 
knockout mice [90–92]. Nevertheless, it is important to note that a deficiency in 
DMPK has functional effects in neither cardiac nor skeletal muscle. Thus, the MD1 
symptoms likely arise from toxic effects of the trapped transcripts, rather than to 
decreased levels of the protein [93]. Transcripts of at least both, transcription factors 
and alternative splicing factors can be trapped, which explains why in this myopa-
thy the expression of multiple genes is altered. Remarkably, the trapping of mRNAs 
modifies not only the function but also the structure of the nuclei [94].

MD1 has also been associated with misregulated alternative splicing; for exam-
ple, MD1 patients show repressed alternative splicing of exon 29 in CaV1.1. Of note, 
the degree of exon skipping correlates with the severity of muscle weakness, sug-
gesting that the corresponding functional alteration in CaV1.1 contributes to exacer-
bating symptoms [95]. Additionally, the alternative splicing of both RyR1 and 
SERCA (1 and 2) is misregulated. Thus, aberrant splicing of the corresponding tran-
scripts most likely also contribute (by affecting Ca2+-dependent pathways) [92, 96].
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14.4.2.2  OPMD

Oculopharyngeal muscular dystrophy, or OPMD, is a late-onset autosomal domi-
nant congenital myopathy. The first symptoms begin between the fifth and sixth 
decades of life. They consist of progressive drooping of eyelids (ptosis), swallowing 
difficulty (dysphagia), muscle atrophy, and proximal upper and lower weakness. 
OPMD is linked to mutations in the gene encoding poly(A)-binding protein nuclear 
1 (PABPN1). The OPMD mutations consist of an expansion of a tract that contains 
10 alanines (to 12–17). The pathological hallmark is that the nuclei of skeletal mus-
cle fibers develop aggregates or inclusions (termed intranuclear inclusions, INI), 
which contain a misfolded PABPN1 and sequester poly(A) RNA [97, 98]. This 
disease is also frequently accompanied by other severe symptoms, such as weak-
ness and atrophy of the tongue, dysphonia, limitation of upward gaze, and facial 
muscle weakness [99].

Although the precise underlying mechanism is not yet clear, it has been proposed 
that the INIs generate toxic effects, likely by interfering with the cellular traffic of 
poly(A) RNA, and thus affecting gene expression [97, 98]. The expression of at 
least 202 genes is misregulated, as shown by microarray assays performed in mus-
cle fibers from a mouse model of OPMD [100]. A recent study reported that an 
OPMD mutant protein (PABPN1-17A) promotes structural alterations of the 
nucleus, which contributes to explaining the wide range of genes whose expression 
is misregulated [101].

Interestingly, PABPN1 stimulates the fusion of myoblasts, and this property is 
missing in the PABPN1-17A mutant protein [101]. Thus, an altered capacity to 
regenerate muscle may explain the corresponding muscle atrophy and weakness in 
OPMD.  In C2C12 myotubes, PABPN1-17A also elicits many alterations in the 
homeostasis of Ca2+ [101]. For example, it promotes a ~50% reduction of the mag-
nitude of Ca2+ transients. This effect can be explained by parallel changes in the 
expression of RyR1 and SR Ca2+ content. In fibers from adult mice, however, this 
mutant protein is unable to modify the magnitude of Ca2+ transients [101]. This find-
ing indirectly supports the notion that atrophy, due to inability to stimulate myogen-
esis (Fig.  14.1), likely represents the most significant pathophysiological 
consequence of PABPN1 mutant proteins [101–104].

14.4.2.3  Duchenne Muscular Dystrophy

The absence of dystrophin, a cytosolic protein that is critical for proper structure of 
the muscle, results in a genetic disorder known as Duchenne muscular dystrophy 
(DMD). This disease is characterized by shorter lifespan, cardiac involvement, and 
skeletal muscle degeneration and weakness. An increased structural fragility of 
muscle fibers and altered homeostasis of Ca2+ represent two relevant pathophysio-
logical mechanisms. Indeed, an increased entry of Ca2+ (which promotes protein 
degradation and higher levels of ROS) has been proposed to explain the 
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corresponding atrophy [42, 105]. Accordingly, myotubes of mdx mice (a commonly 
used model of DMD) exhibit a higher activity of Ca2+ channels at resting membrane 
potentials, compared with controls. This hyperactivity is due to the presence of a 
mechano-transducing Ca2+ channel, which likely contributes to the high influx of 
Ca2+ [106, 107]. Although the identity of the corresponding stretch-activated Ca2+ 
channel(s) (SACs) has yet to be firmly established, members of the transient recep-
tor potential channel (TRPC) family may be involved. TRPCs participate in muscle 
differentiation, and thus changes in their function/expression might also contribute 
to generating the corresponding loss of muscle mass. For a recent and comprehen-
sive review, see [108].

An exacerbated SOCE has also been linked to DMD. For example, muscle fibers 
from mdx mice show not only increased levels of SOCE but also higher expression 
level of both Orai1 and STIM1 [109, 110]. Accordingly, it has been reported that the 
severity of this disease can be reduced by expressing a dominant negative Orai1, in 
two mouse models of DMD [111].

Like in many human myopathies, no effective treatment exists for DMD (other 
than palliatives focused on easing the symptoms). Thus, the search for a more effec-
tive treatment continues. With regard to “fixing” alterations in the homeostasis of 
Ca2+, pharmacological approaches have been investigated. More precisely, the 
efforts have focused on using blockers of Ca2+ channels, as well as on regulating the 
activity and expression of SERCA (reviewed in [112, 113]). Knocking down the 
expression and activity of myostatin (see Sect. 14.3.2) also represents a promising 
therapy. This intervention is particularly beneficial to counteract muscle weakness 
and wasting, in not only DMD [114, 115] but also many other disorders [116].

14.5  Conclusions

In skeletal muscle fibers, much work has evolved in acquiring a deep knowledge of 
the mechanisms that control the homeostasis of Ca2+, under both physiological and 
pathological conditions. Meanwhile, significant efforts have firmly established a 
pivotal role for Ca2+ in determining the amount of muscle mass. Accordingly, it is 
now generally accepted that this ion controls not only muscle mechanical properties 
but also the corresponding development, regeneration, atrophy, and hypertrophy. 
Therefore, treating wasting disorders with therapies based on a precise tune-up of 
the activity/expression of Ca2+ channels and transporters could eventually become a 
daily clinical practice.
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