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Chapter 13
Redox Homeostasis in Age-Related  
Muscle Atrophy

Giorgos K. Sakellariou and Brian McDonagh

Abstract Muscle atrophy and weakness, characterized by loss of lean muscle mass 
and function, has a significant effect on the independence and quality of life of older 
people. The cellular mechanisms that drive the age-related decline in neuromuscu-
lar integrity and function are multifactorial. Quiescent and contracting skeletal mus-
cle can endogenously generate reactive oxygen and nitrogen species (RONS) from 
various cellular sites. Excessive RONS can potentially cause oxidative damage and 
disruption of cellular signaling pathways contributing to the initiation and progres-
sion of age-related muscle atrophy. Altered redox homeostasis and modulation of 
intracellular signal transduction processes have been proposed as an underlying 
mechanism of sarcopenia. This chapter summarizes the current evidence that has 
associated disrupted redox homeostasis and muscle atrophy as a result of skeletal 
muscle inactivity and aging.
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13.1  Background

Loss of skeletal muscle mass and function is among the most consistent and striking 
change associated with the advance of age [1]. Age-related muscle atrophy (sarco-
penia) is described as a progressive loss of lean muscle mass and muscle function, 
which has a significant effect on the quality of life of older people and overall mor-
bidity. A reduction in overall muscle function with age is linked to an increased 
mortality risk [2], which leads to instability, a subsequent increased risk of falls and 
consequently an increased demand for medical and social care. Deficits in skeletal 
muscle begin at a relatively young age and continue until the end of life [3]; human 
studies have reported that by the age of 70, there is a 25–30% reduction in the fiber 
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cross-sectional area of skeletal muscle and a subsequent reduction in muscle 
strength by 30–40% [4].

Reduced muscle mass and contractile force inherent with aging have been exten-
sively studied in both murine models and humans and are associated with various 
neurological impairments including loss of motor units [5, 6], structural alterations 
and degeneration of neuromuscular junctions (NMJ) [7–10], a decline in motor 
nerve function (partial denervation) [9, 11–13], impaired nerve redox signaling 
[14], and changes in fiber type related to continual cycles of denervation and rein-
nervation [15]. While physical activity can inhibit the decline of muscle functional 
deficits [16], even physically active older adults exhibit age-related deficits in mus-
cle mass and function [17]. Age-related muscle atrophy and weakness is a lifelong 
process with a multifactorial and complex etiology that involves both extrinsic and 
intrinsic factors [15]. However, elucidation of the primary molecular and biochemi-
cal mechanisms underlying the age-related decline in neuromuscular integrity and 
function has yet to be determined.

13.2  Reactive Oxygen and Nitrogen Species (RONS) 
Produced by Skeletal Muscle

The cellular damage induced by O2 toxicity was first reported more than 50 years ago 
and related to the increased generation of reactive species [18, 19], as a result of 
derivatives of O2 (Fig. 13.1). Studies in the 1980s reported that reactive species are 
endogenously generated in skeletal muscle [20–22]. It has since been determined 
that both resting and contracting myofibers can generate reactive oxygen and nitro-
gen species (RONS). Reactive oxygen species (ROS) refer to O2-derived molecules 
that are reactive species including O2-centered radicals but also non-radical species 
which are reactive derivatives of O2 [23]. Similarly, the term reactive nitrogen spe-
cies (RNS) refers to both nitrogen radicals along with other reactive molecules where 
the reactive center is nitrogen [24–26]. RONS generation by skeletal muscle has 
been detected and quantified by a variety of methods including fluorescence-based 

Fig. 13.1 Reactive oxygen derivatives produced by the sequential reduction of O2to H2O. 
Superoxide (O2

∙−), hydrogen peroxide (H2O2), hydroxyl radical (●OH). (Redrawn from Sakellariou 
et al. [88])
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microscopic assays [27, 28], spectrophotometry [29, 30], chemiluminescence [31, 
32], HPLC techniques [33, 34], electron spin resonance spectroscopy (also known as 
electron paramagnetic resonance, EPR) [35, 36], and transfection methods including 
in vivo [37, 38] and in vitro [39]. Using a combination of the above techniques, it has 
been determined that the primary radical species generated by skeletal muscle 
include superoxide and nitric oxide (NO) [26, 40, 41].

13.2.1  Superoxide

Superoxide is derived either from the incomplete reduction of O2 during metabo-
lism in the electron transport chain (ETC) or as a specific product of dedicated 
enzymatic systems [42]. The subcellular location of superoxide generation in skel-
etal muscle is dependent on whether the muscle is quiescent or contracting, as dif-
ferent pathways are involved. Figures 13.2 and 13.3 depict the different sites within 
skeletal muscle and proposed reactions for RONS generation. Superoxide genera-
tion is associated with electron leakage and incomplete O2 metabolism by mito-
chondrial ETC including complex I and complex III [43, 44] but also more recently 
complex II [45–47]. However, dedicated enzymes such as nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase enzymes including NOX2, NOX4, 
DUOX1, and DUOX2 [28, 29, 32, 48], xanthine oxidase (XO) [49, 50], and the 
lipoxygenases (LOXs) [51] which are linked to arachidonic acid (AA) release by 
the phospholipase A2 enzymes (PLA2) [52, 53] are also sources of superoxide; for a 
detailed review, see Ref. [54].

13.2.2  Nitric Oxide

Nitric oxide (NO) is endogenously generated within cells by the nitric oxide syn-
thases (NOS), through the conversion of L-arginine to citrulline utilizing NADPH 
as a cofactor [55]. NO is a primary radical, and its concentration has been demon-
strated to be regulated by NOS isoenzymes: the neuronal NOS (type I or nNOS), the 
inducible NOS (type II or iNOS), and the endothelial NOS isoenzyme (type III or 
eNOS) [54, 56]. nNOS was originally discovered in neuronal tissue but has also 
been shown to be expressed in the plasma membrane of skeletal muscle fibers where 
it interacts with the dystrophin-glycoprotein complex via a linkage to α1-syntrophin 
[57]. The eNOS isoenzyme was originally described in the endothelium where it is 
associated with caveolin-1; in skeletal muscle it is localized in the mitochondria and 
has been reported to be activated by heat shock protein 90 (HSP90) [58]. The 
expression of iNOS in skeletal muscle is increased in response to inflammatory 
conditions or following a septic challenge [59, 60]. NO has shown to interact with a 
number of different cytoskeletal proteins mainly through reactive cysteine residues 
and the formation of S-nitrosated residues [61]. The nNOS isoform is particularly 
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expressed in glycolytic or fast muscle fibers [62] and has been suggested to be the 
primary source of NO release from myocytes [63]. The close proximity of nNOS to 
the dystrophin-glycoprotein complex has a pivotal role in skeletal muscle physiol-
ogy as highlighted from studies utilizing the mdx mice [64] but also in humans 
suffering from muscle dystrophy [57, 65]. It has been suggested that NO has a direct 
functional signaling role via the formation of S-nitrosylated sites with effects on 
protein activity or indirectly by interactions with heme or nonheme Fe and Cu [66].

Fig. 13.2 Schematic representation of the non-mitochondrial sites for nitric oxide and super-
oxide production in skeletal muscle. Superoxide (O2

∙−) is produced by multicomponent NAD(P)
H oxidase 2 (NOX2), xanthine oxidase (XO), and the lipoxygenases (LOX) which activity is regu-
lated by the phospholipase A2 enzymes (PLA2). Arachidonic acid (AA) release by the membrane 
bound calcium-dependent PLA2 (sPLA2) facilitates extracellular O2

∙− release by the membrane 
bound LOX. It is uncertain whether the cytosolic LOX enzymes contribute to intracellular O2

∙− 
changes which substrate availability might be regulated by the cytosolic calcium-independent 
PLA2 (iPLA2). NAD(P)H oxidase 4 (NOX4) also contributes to ROS changes, though the primary 
ROS product, O2

∙− or hydrogen peroxide (H2O2) of NOX4 is uncertain. Cytosolic and extracellular 
O2

∙− is dismuted into H2O2 by superoxide dismutase (SOD), SOD1 and SOD3, respectively, or 
reacts rapidly with membrane permeant nitric oxide (NO) produced by the endothelial and neuro-
nal nitric oxide synthase (eNOs and nNOS) to form peroxynitrite (ONOO−). H2O2 formed within 
the extracellular space is reduced into H2O by the action of glutathione peroxidase 3 (GPX3) or 
peroxiredoxin IV (PRX4), while cytosolic H2O2 is reduced into H2O by glutathione peroxidase 1 
(GPX1), catalase (CAT), or peroxiredoxins (PRXs). Reduced glutathione (GSH) provides the elec-
trons to GPX to catalyze the reduction of H2O2; GSH is oxidized to glutathione disulfide (GSSG). 
Reduction of GSSG is catalyzed by glutathione reductase (GR), where NAD(P)H is used as the 
reducing agent. Cytosolic PRXs utilize thioredoxin 1 (Trx1Red) for their reducing action. Oxidized 
form of Trx1 (Trx1Ox) is reduced by thioredoxin reductase 1 (TR1), by utilizing electrons from 
NAD(P)H. ONOO− can be reduced predominantly into nitrite (NO2−) by peroxiredoxin V (PRX5). 
Sarcoplasmic reticulum (SR). (Redrawn from Sakellariou et al. [88])
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Fig. 13.3 Schematic representation of the mitochondrial sites for nitric oxide and superoxide 
production and the channels that mediate the release of superoxide to the cytosolic compart-
ment in skeletal muscle. Superoxide (O2

∙−) is produced by complex I, complex II, and complex III 
of the mitochondrial electron transport chain (ETC) of the inner mitochondrial membrane (IMM) 
and released into the matrix and the mitochondrial intermembrane space (MIS). NAD(P)H oxidase 
4 (NOX4) also contributes to ROS changes, though the primary ROS product, O2

∙− or hydrogen 
peroxide (H2O2) of NOX4 is uncertain. Arachidonic acid (AA) release by the calcium-dependent 
phospholipase A2 enzymes (sPLA2) interacts with complex I and enhances superoxide generation 
by this complex. O2

∙− released into the matrix, and the MIS is dismuted into H2O2 by superoxide 
dismutase (SOD), SOD2 and SOD1, respectively, or reacts rapidly with nitric oxide (NO) produced 
by the endothelial nitric oxide synthase (eNOS) to form peroxynitrite (ONOO−). H2O2 is reduced 
into H2O by the action of glutathione peroxidase 4 (GPX4) or peroxiredoxins (PRXs). Reduced 
glutathione (GSH) provides the electrons to GPX4 to catalyze the reduction of H2O2; GSH is oxi-
dized to glutathione disulfide (GSSG). Reduction of GSSG is catalyzed by glutathione reductase 
(GR), where NAD(P)H is used as the reducing agent. Mitochondrial PRXs utilize thioredoxin 2 
(Trx2Red) for their reducing action. Oxidized form of Trx2 (Trx2Ox) is reduced by thioredoxin reduc-
tase 2 (TR2), by utilizing electrons from NAD(P)H. ONOO− can be reduced predominantly into 
nitrite (NO2−) by peroxiredoxin V (PRX5). O2

∙− is essentially membrane impermeant, while H2O2 
is readily diffusible. Matrix O2

∙− can diffuse to the cytosol through the inner membrane anion chan-
nel (iMAC) that spans the IMM and the outer mitochondrial membrane (OMM) or via the mito-
chondrial permeability transition pore (mPTP) comprised of the voltage-dependent anion channels 
(VDAC) on the OMM, the adenine nucleotide translocator (ANT) located on the IMM, and 
cyclophilin D (Cyclo D) located in the matrix. Channels of the OMM including VDAC, BAX, and 
possibly the translocase of outer membrane 40 (TOM40) can also mediate the release of O2

∙− from 
the MIS to the cytosol. (Redrawn from Sakellariou et al. [88])
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13.2.3  Hydrogen Peroxide

Hydrogen peroxide (H2O2) is a relatively stable molecule in comparison with the 
other reactive species with a longer half-life; hence H2O2 been suggested as the most 
likely candidate for redox signaling pathways [67]. H2O2 can interact with redox- 
sensitive components or pathways typically via oxidation of sensitive Cys residues 
and has been demonstrated to regulate the activity of a variety of transcription fac-
tors in skeletal muscle [68]. In aqueous solutions, superoxide can be protonated to 
produce hydroperoxyl radical or reduced undergoing a dismutation reaction to pro-
duce H2O2 [69]. In addition, a number of enzyme systems have also been reported 
to generate H2O2 including NOX4 [70, 71], urate, and amino acid oxidases [72]. 
Moreover, recent evidence supports endoplasmic reticulum (ER) H2O2 generation 
in vivo [73] via thiol-disulfide exchange mechanisms [74]. The catalytic activity of 
a wide range of metabolic enzymes can be modulated by H2O2, typically by oxida-
tion of catalytic Cys residues or residues essential for disulfide bonds [75]. In addi-
tion there are a number of different enzymes that use H2O2 as a substrate including 
the peroxiredoxins, glutathione peroxidases, and catalase; isoforms of these 
enzymes are located in specific cellular locations which would suggest that it plays 
an important physiological signaling role.

13.2.4  Hydroxyl Radical

The hydroxyl radical is a highly reactive molecule due to its strong oxidizing poten-
tial and can rapidly react with biomolecules located close to its site of generation. In 
skeletal muscle fibers and other biological systems, hydroxyl radicals are typically 
generated as a result of the Fenton reaction that involves the reductive decomposi-
tion of H2O2 with reduced transition metal ions, copper (Cu) or iron (Fe) [76]. 
Oxidation of FeS cluster enzymes can result in an increase of “free iron” within the 
cell, allowing for the formation of hydroxyl radicals and altered redox homeostasis 
[77]. Similar to the Fenton reaction, the Haber-Weiss reaction can also generate 
hydroxyl radicals by Fenton chemistry, Fe or Cu is maintained in a reduced form by 
superoxide, which can result in the formation of hydroxyls from H2O2 [78]. There is 
some in vivo evidence to suggest that during skeletal muscle contractile activity, 
there is enhanced hydroxyl radical generation [79]. An increased intracellular con-
centration of highly reactive hydroxyl radicals can affect calcium dynamics and 
maximum force of skeletal myofibers [76]. There are a number of neuromuscular 
disorders such as including glucocorticoid-induced myopathy [80] and 
immobilization- induced skeletal muscle atrophy [81] that have reported an increase 
in hydroxyl radical formation.
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13.2.5  Peroxynitrite

Peroxynitrite is another endogenously generated reactive species that can act as an 
intracellular oxidant; it is primarily generated by the reaction between NO and 
superoxide, often as a result of the close proximity of NOX and NOS enzymes [82]. 
Further evidence to support endogenous generation of peroxynitrite in skeletal 
muscle is shown in studies using transgenic animals where the levels of NO and/or 
superoxide were elevated [34]. Similar to the some of the other reactive species, 
peroxynitrite can oxidize sensitive Cys residues involved in disulfides or catalytic 
sites [83]. The protonated form, peroxynitrous acid, is also highly reactive and can 
oxidize Cys residues resulting in protein oxidation, phospholipid and DNA damage 
[82, 84]. It has also been reported that peroxynitrite is involved in tyrosine nitration 
[85] as well as the formation of S-nitrosylated Cys residues [86]; mass spectrome-
try approaches have identified an increasing number of proteins being nitrosylated 
and nitrated in skeletal muscle. In conditions where there are high concentrations of 
peroxynitrite, it can result in reversible and irreversible oxidation of cellular com-
partments of myofibers [34, 87], affecting overall enzymatic activity through struc-
tural modifications, including altered cytoskeletal dynamics and an impair cell 
signal transduction [82].

13.3  Primary Antioxidant Enzymes Expressed in Skeletal 
Muscle

Skeletal muscle expresses a sophisticated system to control the production of oxi-
dants and protect the myofibers from oxidative damage. The system that functions 
to prevent oxidative damage consists of enzymatic and nonenzymatic antioxidants 
that work in a coordinated fashion to regulate redox disturbances in the muscle cell. 
An extended coverage of these goes beyond the scope of this chapter (for detailed 
review, see Ref. [88]. However, we summarize the most important enzymatic sys-
tems expressed in skeletal muscle including superoxide dismutases, catalase, gluta-
thione peroxidases, peroxiredoxins, and glutaredoxins.

Superoxide dismutase (SOD) was discovered in 1969 and represents a family of 
metalloenzymes that catalyze the one electron dismutation of superoxide into O2 
and H2O2 [26]. There are three SOD isoenzymes depending on the metal ion bound 
to the active site. Skeletal muscle expresses copper-zinc SOD (SOD1 or CuZnSOD), 
which is a highly stable enzyme present within the cytosol and the mitochondrial 
intermembrane space (MIS), and manganese-SOD (SOD2 or MnSOD) which is 
found in the mitochondrial matrix [89]. There is however an additional isoform of 
SOD, the extracellular SOD isoenzyme (SOD3 or EcSOD) [90] which is present in 
the interstitial spaces of tissues and extracellular fluids of many cell types and tis-
sues and its primary function is to reduce superoxide formed outside the cell mem-
brane [90].
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Catalase (CAT), a homotetramer with a molecular mass of 240kDa catalyzes the 
reduction of H2O2 into H2O and O2. CAT is mainly found in the cytosolic compart-
ment of the muscle fibers and requires heme (Fe3+) bound at the enzyme’s active site 
for its catalytic function [91]. CAT enzymatic activity increases with increased 
H2O2, and reports have shown that protein expression and activity is higher in highly 
oxidative myofibers [92]. CAT does not require reducing equivalents to function as 
a H2O2 reducer; thus CAT is considered an energy-efficient antioxidant [93].

Glutathione peroxidase (GPX), a homotetramer with each 22kDa subunit con-
taining a selenium atom in the form of a selenocysteine, also catalyzes the reduction 
of H2O2 to H2O or organic hydroperoxides (ROOH) to alcohol, using reduced gluta-
thione (GSH) or in some cases thioredoxin (TRX) or glutaredoxin (GRX) as an 
electron donor [94]. In addition, reports also suggest that GPX is also implicated in 
the reduction of hydroxyl radical by elimination of H2O2 [95]. Mammalian cells 
express five isoforms of GPX (GPX1-GPX5), which differ in cellular localization 
and substrate specificity [96] with GPX1 as the cytosolic form [97] and GPX4 as the 
most widely expressed. GPX4 is a membrane-associated enzyme, partly localized 
to the MIS.  GPX3 also known as plasma or extracellular GPX is present in the 
extracellular space [98, 99], whereas GPX2 is mainly expressed in the gastrointes-
tinal system [100]. GPX5 is expressed in the epididymis in the mammalian male 
reproductive tract and is the least studied isoenzyme [100, 101]. The expression of 
the GPX genes is controlled by different mechanisms including O2 tension, meta-
bolic rate, toxins, and xenobiotics [23] as well as growth and development [102]. 
Similarly, to CAT, oxidative muscle fibers express higher amounts of GPX com-
pared with glycolytic myofibers [100]. Though there is an overlap between the func-
tion of GPX and CAT, GPX has a higher affinity for H2O2 at low concentrations. 
However, under conditions where H2O2 is significantly increased, CAT becomes 
more significant in protecting biological systems, and its catalytic function prevails 
since it cannot be saturated under any H2O2 concentration since there is no apparent 
Vmax [103].

Peroxiredoxins (PRXs) initially described as thiol-specific antioxidants [104] 
were discovered in the late 1980s [105, 106] and are a family of cysteine-dependent 
thioredoxin peroxidases [107]. PRXs are capable of reducing both ROOH and H2O2 
[108] with the use of electrons provided by thioredoxins [108]. Skeletal muscles 
express six isoforms of PRXs, which are present in the cytosolic compartment (PRX 
I, II, VI), the mitochondrion (PRX III), the extracellular space, and endoplasmic 
reticulum (PRX IV) [42]. PRXV is expressed in the cytosol, mitochondria, nuclei, 
and perixosomes [108] and is considered a peroxynitrite reductase [109]. PRX pro-
teins have recently received much attention as they have shown to play a key role in 
transmitting redox signals into a dynamic biological response and to have subtle 
changes in both abundance and oxidative state with age [35, 110, 111].

Glutaredoxins (GRXs) are small ubiquitous disulfide oxidoreductases which 
share many of the functions of TRXs but are reduced by GSH rather than a specific 
reductase [122]. GRXs are small redox enzymes that exist in either a reduced or 
oxidized form and are involved in the protection and repair of protein and nonpro-
tein thiols during compromised redox homeostasis [112]. GRXs are divided into 
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monothiol (Cys-X-X-Ser) and dithiol (Cys-X-X-Cys) GRXs [113]. Dithiol GPXs 
participate in the regulation of H2O2 via PRX pathways [114], proliferation and dif-
ferentiation [115], transcription regulation via modulating the activity of nuclear 
factor κB (NFκB) [116], and apoptosis [117]. Monothiol GRXs are implicated in 
iron sulfur (FeS) cluster biosynthesis and Fe homeostasis [118]. GRX1 prevents 
oxidative damage and apoptosis and is found in the cytosol, and the MIS. GPX1 has 
also shown to translocate into the nucleus and exported from the cell [113]. GRX2 
is localized in the mitochondria [119] and GRX3 in the nuclear and cytosolic com-
partment. Monothiol GRX5 has a mitochondrial translocation signal and shares the 
active-site motif of GRX3 [120]. Reports have also revealed that the GRX system 
can also catalyze reversible protein glutathionylation [121] and regulate the redox 
state of thiol groups [122] during aberrant redox control.

In addition to the main antioxidant enzyme defense network, skeletal muscle 
also expresses glucose-6-phosphate dehydrogenase (G6PD) and isocitrate dehydro-
genase (IDH) which do not directly scavenge RONS but play a pivotal role in redox 
regulation by providing reducing power in the form of NADPH to the antioxidant 
enzymatic systems [123]. In addition, skeletal muscle also contains nonenzymatic 
antioxidants, which regulate reactive species and protect muscle cells from oxida-
tive injury. These are H2O soluble and fat soluble and are classified into two catego-
ries: (i) the endogenously produced and (ii) dietary antioxidants which cannot be 
synthesized or induced and must be taken from the diet. The main nonenzymatic 
antioxidants found in myofibers include GSH, uric acid, bilirubin, and coenzyme 
Q10 endogenously produced antioxidants but also dietary antioxidants including 
vitamin C, vitamin E, and carotenoids. An extended coverage of the nonenzymatic 
defense systems in skeletal muscle goes beyond the scope of this review; for a 
detailed review, see Refs. [124, 125].

13.4  Age-Related Muscle Atrophy Is Linked to Increased 
Oxidative Damage

The dual role of RONS to act as signaling molecules at low concentrations but also 
damage critical cellular compartment when produced at high concentrations is fun-
damental in skeletal muscle physiology/pathology. Reports in humans [126–128] 
and rodents [87, 129, 130] have provided evidence that age-related muscle atrophy 
is linked to an altered oxidative status of redox-responsive proteins [131], elevated 
concentration of oxidized macromolecules including an increase in DNA damage 
[126, 132], increased levels of lipid peroxidation [133, 134], and accumulation of 
oxidized proteins [127, 128]. Increased DNA damage has been shown to alter 
genetic stability which may induce the expression of genes that regulate cell prolif-
eration and/or block the expression of certain genes, thus permitting damage with 
increasing age [135]. RONS-induced DNA sequence changes or mutations have 
been suggested to affect the cellular state of differentiation [23, 136] and 
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accumulation of mitochondrial DNA damage [132] which may prevent the rejuve-
nation of the mitochondrial population and lead to bioenergetic decline and cellular 
death [137]. In addition, aged skeletal muscle exhibits an accumulation of catalyti-
cally inactive or less active forms of enzymes and the observed age-related changes 
in catalytic activity have been suggested to occur due to oxidative modifications 
induced by RONS [138, 139].

Recent reports have provided evidence that increased oxidative damage inherent 
with aging is linked to age-associated changes in RONS, with myofibers from old 
rodents exhibiting increased intracellular RONS levels compared to young/adult 
rodents [140, 141]. Oxidants can modulate various intracellular signal transduction 
pathways, and age-related disruption of these processes due to compromised redox 
homeostasis has been suggested as contributing factor to muscle atrophy inherent 
with aging. The role of redox homeostasis in age-related muscle atrophy and weak-
ness has been studied in various model organisms (reviewed in [88]) which have 
undergone genetic manipulations (transgenic and knockout models) and have pro-
vided insight into the function of RONS regulatory systems in neuromuscular aging.

13.5  Deletion of Cu-Zn Superoxide Dismutase in SOD1−/− 
Mice Leads to Accelerated Neuromuscular Aging 
and Functional Deficits

The association between redox regulation and age-related atrophy has been studied 
in several mammalian models which have undergone genetic manipulations 
(reviewed in [88]), to enable the study of disrupted redox signaling on the aging 
process. Deletion of CuZnSOD in mice (SOD1−/− mice) leads to a reduction in lifes-
pan and an accelerated aging phenotype associated with myofiber atrophy 
(Fig.  13.4), neurological impairments (Fig.  13.5), and functional deficits [142]. 
Elevated oxidative damage has also been observed in skeletal muscles from 

Fig. 13.4 Gross morphology of skinned hindlimb and forelimb muscles of SOD1−/−and WT 
mice at 12 months of age. Arrows indicate the phenotypic hindlimb muscle changes observed in 
SOD1−/− compared to WT mice. (Redrawn from Sakellariou et al. [14])
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SOD1−/− mice [34, 143–149], and many features of the muscles of SOD1−/− mice 
including loss of fibers, reduction in contractile force, a constitutive activation of 
redox-sensitive transcription factors [146], degeneration of neuromuscular junc-
tions (NMJ), and of loss of innervation resemble those observed in old wild-type 
mice [144, 145] and in older humans [13, 144]. Hence, it has been suggested that 
the SOD1−/− model may potentially provide a useful model to study the role of 
chronic oxidative stress in loss of skeletal muscle and to uncover potential targets 
for intervention for preventing age-related muscle wasting.

The prominent sarcopenic phenotype observed in the SOD1−/− model is associ-
ated with a number of neurological impairments (Fig.  13.5), including striking 
alterations in NMJ and peripheral nerve integrity/function (Fig. 13.5), motor axon 
degeneration, postsynaptic endplate fragmentation, terminal sprouting and axon 
thinning and irregular swelling, reduced occupancy of the motor endplates by axons, 
loss of innervation and motor function [143], impaired neurotransmitter release 
[150], and reduction in isometric force [145]. Collectively, these findings may sug-
gest that the muscle atrophy phenotype shown in the SOD1−/− model might be initi-
ated by disrupted redox signaling in motor neurons.

Fig. 13.5 Neuromuscular junction structure and peripheral nerve integrity in SOD1−/−mice. 
(a) Intravital immunofluorescence imaging of neuromuscular junctions (NMJ) of an AT muscle 
from a SOD1−/− mouse. Presynaptic motor neurons immunolabeled with neuronal class III 
β-tubulin monoclonal antibody (TUJ1), a neuronal marker (green), and postsynaptic motor end-
plate acetylcholine receptors (AChRs) stained with Alexa Fluor 594-conjugated α-bungarotoxin 
(red). Right panels show enlarged area marked by white box in the left panel. 10x original magni-
fication (left panel). Scale bar, 150μm. (b) Transverse section of a sciatic nerve (SN) from a WT 
(SOD1+/+) mouse (top panel). 20x original magnification. Scale bar, 100μm; Bottom left panel 
shows enlarged area marked by red box in the top panel to show the morphology and myelin thick-
ness of motor axons of the peripheral nerve. 60x original magnification. Scale bar, 10μm; 
Transverse section of a SN from a SOD1−/− mouse (bottom right panel). Note reduced myelin 
thickness of motor axons from peripheral nerve of the SOD1−/− model, indicated by arrowheads. 
60x original magnification. Scale bar, 10μm. (Redrawn from Sakellariou et al. [14])

13 Redox Homeostasis in Age-Related Muscle Atrophy



292

Disrupted redox signaling in motor neurons as a potential mechanism of sarco-
penia in SOD1−/− mice has recently been assessed in genetically engineered mouse 
models including models with targeted deletion of CuZnSOD specifically in skele-
tal muscle alone [149] or motor neurons [148] but also in a “nerve rescue” SOD1−/− 
mouse model with neuron-specific expression of CuZnSOD [147], using a transgenic 
SOD1−/− mouse model in which SOD1 was expressed under control of the synapsin 
1 promoter. The data from these studies provided evidence that CuZnSOD deficits 
in either the muscle or motor neuron alone are not sufficient to initiate a full sarco-
penic phenotype and that deficits in both tissues are required to recapitulate the loss 
of muscle and function observed in the SOD1−/− model. Moreover, the data further 
showed that neuron-specific insertion of SOD1 corrected the skeletal muscle aging 
phenotype observed in SOD1−/− mice indicating that deficits in redox homeostasis 
in motor nerves appear to be the underlying factor that initiates mitochondrial dys-
function and oxidative damage which triggers a retrograde response leading to fur-
ther NMJ degeneration and dysfunction. These reports have provided insight into 
the understanding of (i) the defective redox signaling events that underlie age- 
related atrophy and (ii) the redox-mediated cross talk between motor neurons and 
skeletal muscle.

13.6  Neuromuscular Aging Is Associated with Redox 
Proteomic Changes

In order to unravel the mechanisms responsible for the structural and functional 
changes associated with neuromuscular aging, many laboratories have begun to 
investigate both the proteome and site-specific redox modifications within skeletal 
muscle, to identify those proteins that change in abundance but also to identify those 
proteins that are particularly sensitive to redox changes.

Site-specific RONS-induced redox modifications of key regulatory enzymes can 
alter a wide variety of metabolic pathways related to cellular response to energy and 
stress. Modulation of the activity of downstream protein targets by redox modifica-
tions can also influence a variety of key regulators of distinct posttranslational mod-
ifications (PTMs) such as phosphorylation, ubiquitination, and acetylation, 
including components that control metabolic rate such as AMP-activated protein 
kinase (AMPK), protein kinase C (PKC), sirtuin 1, and mammalian target of 
rapamycin (mTOR) [131]. In skeletal muscle a number of redox-sensitive proteins 
are involved in excitation-contraction coupling; these modifications can specifically 
affect calcium homeostasis including calcium release, binding, and sequestration 
through site-specific redox modifications of specific cysteine (Cys), e.g., sarcoplas-
mic/endoplasmic reticulum Ca2+ ATPase (SERCA) and ryanodine receptor 1 (Ryr1) 
[151, 152]. The nature or type of RONS-induced redox modification is dependent 
on a number of factors including the residues modified (typically Cys), the species 
and concentration of RONS generated, and the properties of the amino acids 
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 surrounding the modified residue which can influence the sensitivity to modifica-
tions. One of the goals of redox proteomic approaches is to identify the RONS 
modification, the amino acid residue that has been modified, and the relative quan-
tification of the modified amino acid, including both reversible and irreversible 
modifications which have shown to influence contractile force [48, 111, 153]. The 
major reversible RONS-induced modifications of Cys residues include sulfenyl-
ation (-SOH), glutathionylation (-SSG), nitrosylation (-SNO), and inter-/intra-
disulfide bond formation (-S-S-) [131]. The largely irreversible modifications 
include sulfonic (-SO3H) or sulfinic (SO2H) acid formation [154].

Neuromuscular aging exhibits an altered redox proteome with subsequent bio-
chemical and physiological effects on the cytoskeleton, mitochondria, calcium sig-
naling and sequestration [155–157]. Redox proteomic approaches have demonstrated 
that skeletal muscle aging is correlated with altered catalytic activity of a number of 
regulatory enzymes and an overall reduction in the identification of redox-sensitive 
proteins particularly involved in the generation of precursor metabolites and energy 
metabolism [111, 131]. These results suggest that age-related redox changes have a 
significant role in the loss of skeletal muscle mass and function inherent with aging. 
Reversible redox modifications on specific proteins are essential for correct adap-
tive response to contractile activity with activation of specific pathways, and skele-
tal muscle has shown to develop a dysregulated redox response with aging [111, 
131]. However, irreversible oxidative modifications as a result of excessive RONS 
can lead to insoluble protein aggregates and protein degradation, which have been 
reported to increase in neurodegenerative diseases and aging [158]. Recent reports 
have demonstrated that reversible and irreversible redox modifications of myofila-
ment proteins can modify both structure and function [159]; several regulatory and 
cytoskeletal myofilament proteins including troponin C [160], actin, α-actinin [111, 
159], and myosin heavy chains [161–163] are susceptible to RONS-induced oxida-
tive modifications, thus affecting Ca2+ dynamics and Ca2+ sensitivity [164] and as a 
result cross-bridge cycling [160] which ultimately affects contractile function.

13.7  Causative Links Between Disrupted Redox Signaling 
and Muscle Atrophy

There are a number of studies that have demonstrated a link between increased 
intracellular RONS concentrations and an altered redox environment in skeletal 
muscle atrophy, as a result of either muscle disuse [165] or disease [166]. The caus-
ative links between redox homeostasis and skeletal muscle atrophy include signal-
ing pathways that regulate both protein synthesis and protein breakdown [167–169]. 
Regular exercise can help maintain skeletal muscle mass, yet contracting skeletal 
muscle generates RONS predominantly from NOX and NOS systems [28], which in 
turn are thought to acutely activate a variety of redox-regulated transcription factors 
(Nrf-2, NF-κB) required for adaptation to exercise [170]. In exercise studies it has 
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been reported that ingesting high doses of vitamin C and E can blunt the beneficial 
and adaptive responses induced by exercise in skeletal muscle presumably by dis-
rupting the RONS signaling cascade [71]. However, in skeletal muscle from older 
individuals, there is a higher basal level of RONS, and as a result, chronic activation 
of many redox-regulated transcription factors may blunt many of the beneficial 
adaptive responses following an acute RONS-dependent increase during exercise 
[172].

The IGF1-Akt pathway is one of the key global regulators of protein synthesis; a 
number of studies have demonstrated that activation of IGF1 receptor can promote 
muscle hypertrophy, while inactivation is related to an impairment of muscle 
growth. [173]. The role of oxidative damage in relation to IGF1 signaling is unclear 
with reports suggesting that it may result in the promotion and inhibition of Akt 
signaling [174]. Studies using C2C12 myotubes have shown that oxidative damage 
due to chronic exposure to low levels of H2O2 attenuates Akt phosphorylation which 
would be predicted to result in an overall decrease in protein synthesis, increased 
proteolysis, and as a result increased muscle atrophy [174]. In support of this find-
ing, a recent report demonstrated that administration of the mitochondrial targeted 
antioxidant peptide SS-31 resulted in an increase in the phosphorylated form of Akt 
and mTORC1 indicating that aberrant redox homeostasis can attenuate muscle pro-
tein synthesis by inhibiting the Akt/mTORC1 signaling pathway [175].

Growing evidence suggests that disrupted redox signaling due to enhanced 
RONS generation effects autophagy-mediated protein breakdown, a highly regu-
lated lysosomal pathway used for the degradation of non-myofibril cytosolic pro-
teins and organelles in skeletal muscle [167]. RONS can directly affect this process 
as oxidative damage induced by H2O2 treatment of fibroblasts can result in an 
increase in the expression of key autophagy components such as LC3, beclin1, and 
increased formation of autophagosomes [176]. RONS may also alter the activity of 
the regulators of autophagy; for example, the inactivation of ATG4 can prevent the 
cleavage of LC3 during the generation of the autophagosome, which is an essential 
step in the process of autophagy [167, 177].

Furthermore, the regulation of the proteasomal degradation pathway can also be 
regulated by intracellular RONS. In vivo studies have demonstrated that increased 
RONS can promote muscle protein breakdown via increased activity of the protea-
some system [178], [14] but also through the activation of calpains, specific prote-
ases that are involved in the selective cleavage of target proteins [179].

13.8  Perspectives

Muscle atrophy and weakness, in the context of neuromuscular aging and a wide 
range of myopathies, has a significant effect on individuals with respect to indepen-
dence and overall quality of life. There is ongoing research to develop both pharma-
cological and non-pharmacological therapeutic approaches to inhibit or prevent loss 
of skeletal muscle mass and function [180]. Age-related skeletal muscle atrophy is 
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a multifactorial process, involving a variety of metabolic processes and signaling 
pathways whose disruption ultimately result in skeletal muscle loss and functional 
deficits. The primary biochemical and molecular mechanisms responsible for mus-
cle atrophy have not been fully identified. Considerable evidence in both humans 
and various organisms has shown that the myofibrillar redox environment can influ-
ence the activity of crucial pathways involved in biogenesis and degradation but 
also the regulation of excitation contraction coupling, making it an attractive target 
for interventional approaches. There is a wealth of scientific research from both 
human and animal studies that have described an altered redox environment within 
skeletal muscle with age, in particular increased oxidation of redox-sensitive pro-
teins and macromolecules correlated with age-related atrophy. An altered redox 
environment has also been described in many age-related diseases including neuro-
degenerative disorders, neuromuscular diseases, and diabetes. However, whether 
disrupted redox signaling is the initial cause of disease, development or a conse-
quence leading to disease progression has yet to be fully determined. To elucidate 
the role of redox homeostasis in age-related disease, particularly in neuromuscular 
integrity and function, the generation of tissue-specific knockout models and the 
development of sensitive tools for measuring RONS generation and the subsequent 
redox modifications and signaling roles are warranted. Identification of the precise 
signaling roles of endogenously generated RONS and the balance between RONS 
signaling and oxidative damage will increase our understanding of the role of redox 
homeostasis in skeletal muscle adaptation to exercise and maintaining neuromuscu-
lar integrity. Increased understanding of the precise molecular pathways that regu-
late the balance between adaptation and muscle growth compared with disuse and 
atrophy may reveal potential therapeutic targets for intervention and ultimately pre-
vent sarcopenia in humans.
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