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Chapter 1
An Overview of Muscle Atrophy

Shengguang Ding, Qiying Dai, Haitao Huang, Yiming Xu, 
and Chongjun Zhong

Abstract Muscle is the most abundant tissue in human body, and it can be atrophy 
when synthesis is inferior to degradation. Muscle atrophy is prevalent as it is a com-
plication of many diseases. Besides its devastating effects on health, it also decreases 
life quality and increases mortality as well. This review provides an overview of 
muscle atrophy, including its prevalence, economic and health burden, and clinical 
therapy. Its clinical therapy includes exercise training, nutritional therapy, electrical 
stimulation, and drugs such as testosterone and ghrelin/IGF-1 analogues. More 
large-scale, long-term clinical trials are needed for therapies for muscle atrophy. In 
addition, more therapeutic targets are highly needed.

Keywords Muscle atrophy · Overview

1.1  Introduction

As the most abundant tissue in the human body, muscle occupies around 40% of the 
body weight. It stores the most amount of amino acids which can be utilized by 
other organs under certain situations [1, 2]. In response to physical or pathological 
stimuli, muscle tissue changes fiber content, capillary distribution, and the compo-
nents of intracellular connective tissue. All these changes may finally lead to patho-
logic consequences like atrophy or hypertrophy [3]. Muscle metabolism is important 
for the dynamic balance of protein degradation and synthesis [3, 4]. Two different 
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AKT signaling pathways are responsible for the balance. Muscle protein synthesis 
is controlled by the AKT/mTOR (mammalian target of rapamycin) pathway, while 
the AKT/FOXO (forkhead box O) pathway regulates the degradation process [5, 6]. 
Myostatin, a member of the transforming growth factor-ß (TGF-ß) superfamily, is 
the key factor involved in the cross-talk between these two AKT pathways. 
Overexpression of myostatin induces muscle atrophy by downregulating phosphor-
ylation of AKT and FOXO transcription factors. Muscle atrophy occurs when syn-
thesis is inferior to degradation, followed by reduced muscle strength and function 
[7]. Causes of muscle atrophy can be divided into three types: diffuse decondition-
ing like denervation, microgravity, or immobilization, nature aging, and chronic 
diseases [8–10]. Muscle atrophy is very prevalent as it is a complication of numer-
ous diseases. Besides its devastating effects on health, it also reduces life quality 
and increases mortality [10].

1.2  Prevalence

In the USA, muscle atrophy occurs in about 20,000,000 patients with chronic kid-
ney disease, which leads to spiraling healthcare costs [11]. Heart failure (HF) is 
another common cause of muscle atrophy. With advanced healthcare, people with 
HF tend to live longer. It is reported that people over 65 years old account for 80% 
of HF patients. The combination of cardiac dysfunction and aging significantly 
impairs normal muscle metabolism. Around half of HF patients suffer from muscle 
atrophy. As much as 68 in 100 patients have the symptoms of muscle atrophy. Many 
factors contribute to the HF-related muscle atrophy. Fibrosis between muscle fibers 
is also observed in HF samples. Tissue from HF rat models showed a lower capillary- 
to- fiber ratio and capillary density [12]. Alterations in muscle structure like switch-
ing muscle fiber types and decreasing the numbers of mitochondria occur during 
HF. With all these modifications, muscle metabolism change to a state where there 
is less oxidative metabolism but more proteolysis [13–16]. In the end, cardiac 
cachexia developed, with a remarkable feature of body wasting, especially the loss 
of muscle tissue [15, 17, 18].

The key factor that gives rise to muscle atrophy is sarcopenia. Sarcopenia was 
first proposed in 1989 by Irwin Rosenberg through Greek to describe the decrease 
of skeleton muscle mass and strength which is related to the growing age [19–22]. 
Later on, a great number of researches have revealed that sarcopenia has a wide 
clinical prevalence. It is conservatively estimated that nowadays over 50 million 
people have been affected by sarcopenia and 150 million more will be affected in 
the following four decades [23].In western countries, sarcopenia prevalence is 
around 5–40% in the common population. Sarcopenia is positively related to age. 
When people are in their 70s, prevalence of sarcopenia is about 5–13%. When the 
age increases to over 80, prevalence shoots up to 11–50% [23, 24]. Females age 
over 80 have a prevalence range of 16%, which is almost doubled compared to that 
of under 70 [25–27]. On the other hand, socioeconomic status affects sarcopenia 

S. Ding et al.



5

distribution. Generally, higher socioeconomic status is associated with better 
 outcome [25, 27]. The difference may be due to some other biological changes, such 
as obesity and fat infiltration [23, 28, 29]. Sarcopenia is coupled with other muscle 
atrophy syndromes as well, such as cachexia, frailty, and obesity. Cachexia is a 
complicated metabolic syndrome which presents with insulin resistance, protein 
degradation, and inflammation [30–33]. Sarcopenia acts as one of the factors to 
cause cachexia [23, 30]. Frailty happens frequently in old people and is associated 
with a lot of disabilities and frequent falls. Sarcopenia and frailty can occur at the 
same time. People with sarcopenia are frail, and frail people can also have certain 
degree of sarcopenia [34]. Sarcopenic obesity is a state with the coexistence of both 
sarcopenia and obesity. When there is a high fat mass component, the condition is 
known as sarcopenic obesity [35].

In order to set out a diagnostic criteria and operational definitions for clinical 
practice, an organization, named the European Working Group on Sarcopenia in 
Older People (EWGSOP), was established by the European Union Geriatric 
Medicine Society (EUGMS) [23, 36]. The organization established the famous 
EWGSOP principles to identify sarcopenia with a study involving 103 community- 
dwelling older people in the UK. The study found that the rate of sarcopenia of 
6.8% is the lowest third marker of dual-energy X-ray absorptiometry and lean mass, 
while the rate of sarcopenia of 7.8% is the lowest third marker of skinfold-based 
fat-free mass [36]. EWGSOP definition studies have been carried out to detect the 
prevalence of sarcopenia. It was found that the prevalence of sarcopenia in 
community- dwelling older adults varied from 3.9% to 7.3% in Taiwan [37]. In Italy, 
about 20% of community-dwelling people had reduced muscle mass. In Barcelona, 
every ten men and every three older women suffer from muscle wasting [38]. In 
Germany, the prevalence rate of sarcopenia is 4.5% in community-dwelling females 
over 70 years old. In the same study, 252 participants with osteoarthritis at the hip 
and lower limbs showed 3 times higher rates of sarcopenia [39]. In China, the preva-
lence rate of sarcopenia is 9.8%. Sarcopenic women account for about 12%, which 
is almost doubled compared to men. Also, the rate is two times higher in people who 
live in rural areas than those who live in urban areas [40]. According to Baumgartner 
criteria, the prevalence of sarcopenia in Korea was 1.3% in men and 0.8% in women 
over 60s. Every one fifth women aged over 65 years showed a decrease in muscle 
mass, and 7.6% of them showed a decrease in both muscle mass and strength [41–
43]. A report including 31 studies and 9416 participants showed 17.0% of elderly 
people in Brazil have sarcopenia. Among these people, women account for 20.0% 
and men account for 12.0% [44]. In another report involving 59,404 people, the 
overall prevalence of sarcopenia was 10% in men and 10% in women, and the rate 
is lower in Asians compared to non-Asian people [45]. Sarcopenia prevalence 
increases with age. It was found that in patients aging from 73 to 89 years, the rate 
of sarcopenia could be as high as 31% [46]. Residence also influences the distribu-
tion of sarcopenia. In patients who live in convalescent rehabilitation ward, 343 of 
637 were identified to have sarcopenia [47]. Chronic disease is another factor that 
contributes to sarcopenia. For example, intestinal failure is strongly associated with 
malabsorption, which directly impacts muscle metabolism balance. Patients with 
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this disease are found to have significant higher risk of developing sarcopenia. 
72.7% of intestinal failure patients were found to have sarcopenia [48]. Alcohol 
abuse is another common condition that is related to malnutrition. Prevalence of 
sarcopenia in female alcoholics who drank weekly or daily was 2.8 times higher 
than social drinkers. Even after adjusting covariates (age, body mass index, energy 
intake, and physical activity), alcoholics are still 3.9 times more likely to suffer from 
sarcopenia [49]. Organic disease can cause sarcopenia by inducing chronic inflam-
mation. Sarcopenia was more commonly observed in patients with advanced kidney 
disease and is associated with worse outcomes [50].

1.3  Economic and Health Burden

High prevalence of sarcopenia brings tremendous economic burden on healthcare 
[51, 52]. On one hand, sarcopenic patients are more likely to be dependent on medi-
cal care, which has made great impact on public finance expenditures. On the other 
hand, muscle weakness creates more accidental falls [53]. In the USA, direct health-
care costs for sarcopenia was $18.5 billion, with $10.8 billion for men and $7.7 bil-
lion for women. It nearly occupied 1.5% of total healthcare expenditures in 2000 
[54]. It was evaluated that every year 1.1 billion dollars would be saved if the preva-
lence of sarcopenia can be reduced by 10% [54]. In addition, other healthcare costs, 
such as productivity, psychological problems, and life quality will be saved along 
with sarcopenia reduction [55–57].

1.4  Clinical Therapy

Considering the great economic and societal burden that sarcopenia could bring, 
effective treatment and prevention system are necessary. Physical exercise training 
has been proven to be the most doable and effective therapy. However, it is not 
applicable for all patients, because one needs to have certain muscle strength to 
participate physical therapy. Patients who are bedbound or extremely fragile are not 
suitable for the physical therapy [58, 59]. In order to create new and doable therapy 
for this disease, researchers have been doing their best to elucidate mechanism of 
sarcopenia in molecular level [5, 15, 60–62].

1.5  Exercise Training

Exercise training has been studied for years. It is easy to perform and has been used 
prevalently in all medical facilities. It remains the most commonly used therapy for 
sarcopenia.
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A clinical study involving 60 patients with HF found that oxygen uptake peak 
was increased in HF patients after 1 month of exercise training. Further biological 
study detected the expression of MuRF-1 (a component of the ubiquitin-proteasome 
system participated in muscle proteolysis) in HF patients and healthy controls. 
MuRF-1 expression was significantly decreased after exercise training, which 
meant that exercise suppressed the activity of ubiquitin-proteasome system [63].

Muscle growth could be affected by exercise, depending on its intensity. Sixty- 
four people over 65 years old are randomly assigned to different exercise regimens: 
high-resistance concentric-eccentric training (H) 3 days per week (HHH); H train-
ing 2 days per week (HH); 3 days per week of mixed model consisting of H training 
2 days per week separated by 1 bout of low-resistance, high-velocity, concentric- 
only (L) training (HLH); and 2 days per week mixed model consisting of H training 
1 day per week and L training 1 day per week. After 4 weeks, HLH group presented 
with significant benefits over others. Also, HLH showed greatest improvement in 
body lean mass, thigh muscle mass, and knee extension maximum isometric 
strength, while HHH induced the expression of pro-inflammatory cytokine recep-
tors in muscle [58, 64].

It is common to see high prevalence of muscle atrophy in hemodialysis patients. 
Chronic systemic inflammation impairs mitochondria function and endothelial 
hemodynamics and then leads to muscle atrophy. Exercise therapy could improve 
these problems and also increase the muscle fiber number [65].

In old people, declined muscle mass and strength are always accompanied with 
mitochondrial volume decrease [66]. Exercise could induce up to 40% increase of 
the mitochondrial volume. This volume increase consists of increase in cross- 
sectional area and longitudinal growth [66, 67]. On the other hand, moderate exer-
cise training improves mitochondrial biogenesis through mitochondrial transcription 
factor A (TFAM)-dependent pathway [68].

In molecular levels, exercise training protects individuals from muscle atrophy 
by suppressing oxidation-related injuries. Reactive oxygen species (ROS), which 
could be induced in any stimulation, damages muscle fibers. One theory proposes 
that ROS accelerates muscle fiber degradation by inducing ubiquitin-proteasome 
pathway [68–72]. Exercise training reverses this process by activating antioxidant 
enzymes [73–76]. Besides, many other nonenzymatic antioxidants could be induced 
by exercise training to act as ROS antagonists, like glutathione (GSH) [77]. 
Endurance exercise training can increase the expression of GSH [77–79]. Other 
nonenzymatic antioxidants, such as α-lipoic acid and bilirubin, are regulated by 
exercise training as well [76, 79–81].

Aggravated chronic inflammation is a key factor in age-induced muscle atrophy. 
Elderly people with a smaller muscle area, less appendicular muscle mass, and a 
lower knee extensor strength seem to have a higher plasma concentration of inflam-
matory cytokines including IL-6 (interleukin-6) and TNF-α (tumor necrosis 
factor-α). Both of them have inhibitory effects on muscle protein synthesis, which 
also promotes insulin resistance. In addition, IL-6 can prohibit the expression of 
insulin-like growth factor-1 (IGF-1) [82]. A significant decrease of IL-1 and TNF-α 
was observed after exercising training for about 12 weeks in the elderly [83]. Other 
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anti-inflammatory cytokine or cytokine inhibitors, such as IL-10, IL-1ra (IL-1 
receptor antagonist), sTNF-r1, and sTNF-r2 (TNF receptors), could be suppressed 
by exercise too. By decreasing these inflammatory signals, exercise training allevi-
ated inflammation-mediated muscle damage [76, 84–87].

1.6  Nutritional Therapy

Increasing studies have found that nutrients, mainly protein, play an important 
role in muscle damage treatment, especially in chronic disease caused by muscle 
atrophy [88–91].

Forty-one sarcopenic patients were randomized into amino acid treatment group 
and placebo group. The treatment of amino acids was implemented twice per day 
in the morning and afternoon with a content of 8 g of essential AA snacks. After 
6 months and 18 months, muscle tissue mass was measured by dual-energy X-ray 
absorptiometry as well as fasting blood glucose and insulin resistance. Patients 
who received amino acid treatment have higher muscle tissue compared to placebo 
counterparts. Moreover, serum TNF-α and IGF-1 concentrations were decreased 
significantly without any side effects in the treatment group [92]. Whey protein 
intake combined with additional supplements is also demonstrated to benefit mus-
cle mass [93, 94].

Not only the amino acid supplementation helps improve sarcopenia; daily con-
sumption of dairy products also has similar effects. It was found that additional 
daily ricotta cheese could improve sarcopenia symptoms [95].

Another study was conducted using fish oil-derived n-3 (omega-3) PUFA to treat 
60 men and women aged 60–85 years old. After n-3 PUFA (n = 40) or corn oil 
(n = 20) treatment for 6 months, isokinetic leg exercises were used to access muscle 
status and exercise ability. People from n-3 PUFA group have an improvement in 
average isokinetic power, thigh muscle volume, handgrip strength, and one- 
repetition maximum muscle strength. PUFA treatment is considered as a novel 
therapy for muscle atrophy in older individuals [96].

1.7  Electrical Stimulation

Exercise therapy is not applicable in patients who are bedbound or sedated. 
Neuromuscular electrical stimulation (NMES) is a kind of electrical stimulation 
that uses a device to send electrical stimulations to nerves. This stimulation will 
cause muscle contraction. Unlike exercise therapy, NMES does not require any 
muscle strength to participate in treatment. Passive muscle contraction initiated by 
the electrical stimulation is found to be effective in treating muscle atrophy [97]. A 
study was conducted in six patients. For experimental group, one patient leg was 
subjected to neuromuscular electrical stimulation twice a day, while the others 

S. Ding et al.



9

served as control. Later, muscle fiber-type-specific cross-sectional area was 
assessed from the quadriceps muscle biopsies of both groups. Moreover, muscle 
protein synthesis was compared. Muscle cross-sectional area was reduced by 20% 
in the control legs, while no muscle atrophy was detected in electrically stimulated 
legs. Phosphorylation level of mTOR (mammalian target of rapamycin) was 
increased by 19% in the treated legs, but no change was found in the control ones 
[98].

1.8  Drugs

Several medications have been studied to be potentially effective in treating muscle 
atrophy.

1.8.1  Testosterone

It is reported that serum testosterone is closely relevant to muscle myopathy and 
mortality [99–102]. Testosterone increases muscle volume by inducing muscle fiber 
hypertrophy, in a dose-dependent manner [103, 104]. In order to explore its medical 
benefit, a study detected maximal exercise capacity, ventilatory efficiency, barore-
flex sensitivity, insulin resistance, and muscle strength in 35 heart failure patients 
after 12  weeks of testosterone administration. Compared to control group, peak 
VO(2), peak torque, insulin sensitivity, and quadriceps maximal voluntary contrac-
tion were all significantly increased in testosterone group [105]. Similar results had 
been observed in another study involving female patients [106]. Further study dem-
onstrated that the effect of continuous testosterone treatment was more effective 
than monthly testosterone administration [107]. Although testosterone is proved to 
be effective in treating muscle atrophy, its side effects including increasing risk of 
cancer and multiple behavior abnormalities prevent it from becoming a standard 
treatment [101, 108–113].

Encouraged by the positive findings on testosterone, nonsteroidal selective 
androgen receptor modulators (SARMs) were subsequently studied in the field of 
muscle atrophy [114–117]. SARMs are frequently used to treat testosterone-related 
disease, like benign prostate hyperplasia. The advantage of SARMs is that they 
stay at target organs without affecting luteinizing hormone or cross-activating with 
other steroid receptors. Many clinical trials had suggested the benefit of SARMs in 
treating cancer-related cachexia and prostate surgery-related sarcopenia [118–
120]. Enobosarm is one of SARMs being studied in the current clinical trial. A 
12-week double-blind phase II clinical trial revealed a dose-dependent improve-
ment in lean body mass and insulin resistance [120, 121]. Another phase II clinical 
trial supported the protective effects of enobosarm as well as its safeties in cancer 
patients [122].
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1.8.2  Ghrelin/IGF-1 Analogues

Ghrelin, a peptide with 28 amino acids, is mainly produced by gastrointestinal tis-
sues, especially the stomach [16, 123, 124]. It maintains body weight and muscle 
volume by assisting food absorption and controlling the expression of IGF-1 and 
growth hormone in certain levels [125, 126]. In addition, ghrelin plays an important 
role in depressing chronic cancer or cachexia-induced chronic inflammation [127–
129]. In general, it increases the level of anti-inflammatory cytokine interleukin-10 
and decreases the pro-inflammatory cytokines interleukin-1β, IL-6, and TNF-α 
[130–132]. However, its short half-life limits its clinical use [133, 134]. For this 
reason, anamorelin, a non-peptidic ghrelin mimetic, was developed, which could be 
taken orally and has a longer half-life [135, 136]. Healthy participants received vari-
ous doses of anamorelin or placebo for 5–6 days, and an increased level of IGF-1 
and growth hormone was detected in anamorelin group. A positive relation between 
anamorelin and body weight was found as well [137]. The following studies had 
been done to further validate its clinical applications [138–141]. However, any 
agents which increase the level of IGF-1 or growth hormone may lead to diabetes or 
insulin resistance diseases [125, 142–145]. Clinical trials with long-term follow-up 
should be conducted to evaluate these side effects.

1.9  Conclusion

With various pathogenic factors and wide prevalence, muscle atrophy remains a 
great challenge in clinical practice [146]. Several treatments mentioned above, exer-
cise therapy, NMES, and drugs, have been proven to be effective. Medication ther-
apy for muscle atrophy has received great achievements in the recent studies. 
However, their long-term effects remain unknown, and most of the studies only 
follow up patients for several months. More large-scale, long-term clinical trials are 
needed [5, 60, 147–150].
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Chapter 2
Myofibers

Dragos Cretoiu, Luciana Pavelescu, Florentina Duica, Mihaela Radu, 
Nicolae Suciu, and Sanda Maria Cretoiu

Abstract Muscle tissue is a highly specialized type of tissue, made up of cells that 
have as their fundamental properties excitability and contractility. The cellular ele-
ments that make up this type of tissue are called muscle fibers, or myofibers, because 
of the elongated shape they have. Contractility is due to the presence of myofibrils 
in the muscle fiber cytoplasm, as large cellular assemblies. Also, myofibers are 
responsible for the force that the muscle generates which represents a countless 
aspect of human life. Movements due to muscles are based on the ability of muscle 
fibers to use the chemical energy procured in metabolic processes, to shorten and 
then to return to the original dimensions. We describe in detail the levels of organi-
zation for the myofiber, and we correlate the structural aspects with the functional 
ones, beginning with neuromuscular transmission down to the biochemical reac-
tions achieved in the sarcoplasmic reticulum by the release of Ca2+ and the cycling 
of crossbridges. Furthermore, we are reviewing the types of muscle contractions 
and the fiber-type classification.
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2.1  General Description of Skeletal Muscle Structure

Movement is one essential characteristic of living creatures, its forms becoming 
varied and highly complex in the humans for which it is specific. Due to active 
movements, humans gain greater independence toward changes in their environ-
ment. Motor actions, results of contractions and relaxations of the muscles, rep-
resent the expression of the volitional aspect of the act of communication, while 
mimic muscles, voice, and writing express aspects of the human personality. In 
this sense, the nervous and muscular systems form a functional unit.

In the human body, the skeletal muscles represent about 40% of the total 
weight, being the most abundant tissue. Skeletal muscles are specially designed 
to perform contractions based on their characteristic properties such strength, 
flexibility, and plasticity [1]. They allow various actions to be taken from writing 
to weight lifting or jumping. Muscle contraction is involved in a series of impor-
tant physiological processes such as breathing or heat generation, in maintaining 
normal body temperature. Human skeletal muscles are made up of muscle fibers 
(myofibers) and other different types of cells (adipocytes, fibroblasts, satellite 
cells, smooth and endothelial cells which are part from the vessel walls, neurons, 
and Schwann nerve cells) [2]. The main source of energy that provides ATP for 
contraction is glycogen. After contraction, there are three major systems for the 
replenishment of ATP: the phosphagen system (ATP–creatine phosphate sys-
tem), the glycolytic system, and the mitochondrial oxidative phosphorylation 
system [3].

2.1.1  Embryology and Postnatal Development  
of the Myofibers

Skeletal muscles are derived from the paraxial mesoderm, along the embryonic 
development being divided into somites [4]. Each group is divided into three divi-
sions: sclerotome (vertebrates), dermatome (which forms the skin), and myotome 
(which forms muscles) [5]. During development, myoblasts (muscle progenitor 
cells) that originated from mesenchymal stem cells may remain in somites to com-
pose muscles of the spine; otherwise they participate in the formation of other mus-
cles [6]. In the development of striated muscle fibers of the postnatal period, the 
satellite cells are also involved, and they are also responsible for the regeneration of 
the muscles in the adult [7, 8]. Skeletal muscle fibers develop through the fusion of 
myogenic progenitors (myoblasts) forming muscles in a process known as myogen-
esis [9]. Myogenesis is regulated by a series of transcription factors, including Pax 
3, Pax 7, and Gli, and four myogenic regulatory factors: MyoD, Myf-5, myogenin, 
and MRF-4 [10, 11].

D. Cretoiu et al.
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2.1.2  Organizational Hierarchy of Skeletal Muscle

Skeletal muscles are hierarchically comprised of muscle fascicles and muscle fibers, 
which are made of myofibrils (arranged in parallel), are further divided into myofila-
ments and sarcomeres (arranged in series), and are ultimately broken down into 
structural proteins. In skeletal muscles, there is a close relationship between the 
muscle fibers and the connective tissue responsible for providing the nourishment of 
the muscle and the transmission of the force. Thus, each striated muscle is sur-
rounded on the outside by a fibrous structure called fascia (dense lamellar connec-
tive tissue), which is anchored by epimysium (dense semi-coordinated connective 
tissue) [12]. The epimysium, consisting of collagen, reticular, and elastic fibers, pro-
vides the shape of the muscle and contains blood vessels and nerves. From the epi-
mysium start connective septa – perimysium – which delimits and wraps muscle 
bundles. The internal perimysium envelops the primary muscles, and the external 
perimysium covers the secondary and tertiary muscle bundles [13]. Several muscle 
fibers form a primary fascicle, some primary fascicles form a secondary fascicle, 
and some secondary fascicles form a tertiary fascicle. In the connective tissue of 
perimysium, there are vessels, nerves, and proprioceptors (neuromuscular spindles, 
Vater-Pacini corpuscles, Ruffini corpuscles). Each muscle fiber is wrapped in endo-
mysium, composed mainly of reticulin fibers (type III collagen) and rare type I col-
lagen fibers. Endomysium contains numerous blood capillaries and nerve fibers, but 
there are no lymph capillaries (Fig. 2.1). All these connective structures represent 
10–15% of the volume of the muscle and form a sort of “skeleton” of the muscle that 
modulates and controls its activity [14]. The number of fibers ranges from several 
hundred in small muscles to >1 million in large muscles. Muscle fibers are inner-
vated by somatic efferent (motor) neurons which participate in the formation of a 
motor unit consisting of axonal terminals and skeletal muscle fibers that it innervates 
[15]. Each muscle is formed by tens or hundreds of motor units, each with own 
specificity that allows the same muscle from the same species and in different spe-
cies to be used for various tasks [16]. These vary from continuous low- intensity 
activities, like posture keeping in humans and supporting their body weight, to per-
forming movements in a large variety of situation (e.g., locomotion) that involve 
repeated submaximal contractions and fast and strong maximal contractions (jump-
ing, kicking) [16]. To deal with these divergent activities, muscle cells have been 
provided with large differences in their contractile properties and metabolic profile, 
the nerve activity being a major determinant of the fiber-type profile [16].

2.1.3  Skeletal Muscle Cells: General Characteristics 
and Morphological Aspects

The skeletal muscle fiber is a cylindrical cell, with a length that can range from 
2–3 cm up to 50 cm (with an average of 10 cm in men) and a thickness between 10 
and 100 μm. From the ultrastructural point of view, skeletal striated muscle fibers 
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describe all three classical components of a cell: membrane (sarcolemma), cyto-
plasm (sarcoplasm), and numerous peripheral nuclei. The myofiber contains up to 
100–200 nuclei representing the largest cell in the body. Each myofiber contains 
long, thin, cylindrical rods, called myofibrils, usually 1–2 μm in diameter, which 
run parallel to the long axis of the muscle fiber occupying most of the intracellular 
space [17]. As a consequence, cell organelles, like mitochondria and nuclei, are 
pushed to the periphery of the sarcoplasm. Myofibrils are about 2500 per fiber, and 
each one contains approximately 8000 repetitive units called sarcomeres (2.7 μm in 
length for the human muscle), which are joined end to end [18]. Each sarcomere is 
delineated between two Z lines and is made up of myofilaments comprised of thick 
and thin filaments (Fig. 2.2), the thick one consisting in myosin and the thin com-
posed of actin, troponin, and tropomyosin [19]. In fact, sarcomere periodicity is 
responsible for the distinctive banding pattern of striated muscle, which can be 
observed in light and electron microscopy. Myofibrils are specific contractile 

Fig. 2.1 The three connective tissue layers of a skeletal muscle. The muscle is surrounded by a 
connective tissue sheath called epimysium. Bundles of muscle fibers, called fascicles, are covered 
by the perimysium. Each skeletal muscle fiber is covered by the endomysium. (Image credit: 
download for free at http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.119)
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organelles, arranged parallel to each other and to the longitudinal axis of the muscle 
fiber. They can take up between 80 and 86% of the cell volume. Myofibrils are com-
posed of thin and thick myofilaments, parallel to each other. Myofilaments are 
accompanied by regulatory proteins (tropomyosin and troponin) and stabilizing 
proteins [17].

In a longitudinal section, skeletal muscle fibers appear as parallel, organized, 
multinucleated structures (plasmodial aspect), with hundreds of fallen, pliable 
nuclei distributed across the length of the fiber and placed subsarcolemmally. 
Sometimes the round-oval nuclei of the satellite cells can be seen outside the myo-
fiber [20]. Sarcoplasm is almost entirely occupied by striated myofibrils. These are 
parallel to the long axis of the skeletal muscle fiber and placed so that all the clear 
and dark disks overlap perfectly, giving the fiber the striated appearance (Fig. 2.3a). 
These transverse strains are less obvious in the usual staining techniques but readily 
detectable with Heidenhain’s hematoxylin. By this method, it is possible to empha-
size, especially in the immersion objective, the alternation of clear I band bisected 

Fig. 2.2 Muscle fiber. A skeletal muscle fiber is surrounded by a plasma membrane called the 
sarcolemma, which contains sarcoplasm, the cytoplasm of muscle cells. A muscle fiber is com-
posed of many myofibrils, which give the cell its striated appearance. Each myofibril is a succes-
sion of sarcomeres. Each sarcomere is delineated between two Z lines. (Image credit: download for 
free at http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.119)
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by Z line (for Zwischen-Scheibe meaning interim disk) and dark A band containing 
the clear H band (for HelleScheibe), halved by M line (for mittel – middle). The 
myofibrils are grouped in bundles called Leydig colonnettes (Koelliker) separated 
from each other by acidophilic sarcoplasm [21].

In the cross section, the muscle fibers have a polygonal contour (due to tight 
wrapping of the cells) or round-oval, with 1–3 nuclei surprised in the section field, 
and there is a punctual aspect given by the organized myofibrils in the Cohnheim 
areas or fields (clusters of points delimited by clear spaces) in the cytoplasm 
(Fig.  2.3b). The cross-sectional area of an individual muscle fiber ranges from 
approximately 2000 to 7500 μm2.

As observed in the transmission electron microscope, sarcolemma has the clas-
sical structure of a plasmalemma and is surrounded by a glycoprotein/glycosami-
noglycan layer similar to a basal lamina of epithelia. Reticular fibers are also 
present in its structure, mingled with those from the endomysium. At each end of 
the muscle fiber, this surface layer is lost between the tendinous fibers with which 
it merges. Satellite cells are located between the basal lamina of the muscle fiber 
and sarcolemma, closely intimate with the muscle fiber whose sarcoplasm is 
deformed to the inside by the satellite cells, the outer surface of the fiber being not 
deformed [22, 23].

Sarcolemma has inward extensions (invaginations) into the sarcoplasm and 
forms the T (transverse) tubule system – T system:

Fig. 2.3 Light microscope slide of skeletal muscle stained by H&E. (A) Longitudinal section 
depicting the A bands which are stained dark and the I bands which are lighter forming the  
so- called striations. (B) A cross section of skeletal muscle – one cannot see the striations, but in the 
bundles of circles that contain mosaic-like figure formed by a group of myofibrils separated by a 
clear interstitial substance called “Cohnheim fields,” you can identify the peripherally located 
nuclei (dense purple spots around the large pink fibers). Courtesy of Dr. Adrian Dumitru
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 – It builds a very branched network filled with extracellular fluid that prolongs the 
extracellular space in the depth of the cell up to the vicinity of the contractile 
structures; this system together with a pair of terminal cisterns of the sarcoplas-
mic reticulum forms triads [24]; T tubules penetrate to all levels of the muscle 
fiber.

 – It is perpendicular to the plane of the membrane at the junction where the A and 
I bands of the myofibrils overlap and where a mesh surrounding each myofibril 
is formed. In this way, ions and signal molecules can reach up to the contractile 
structures [25].

 – Sarcolemma of the T tubules is intertwined with a large number of L-type cal-
cium channels, designed to propagate the potential of action initiated at the neu-
romuscular junction within the muscle fiber.

Sarcolemma itself contains the integral proteins and ion pumps (ATPase, adenyl-
ate cyclase, 5′-nucleotidase) to control plasma ATP concentration. Also, at the level 
of the sarcolemma are described the costameres – structural-functional components. 
Costameres are subsarcolemmal assemblies of proteins aligned across the circum-
ference of the skeletal fiber at the Z lines and have the role of physically coupling 
the force generated by sarcomeres with sarcolemma, tethering the sarcomere to the 
cell membrane [26–28]. The DAG (dystrophin-associated glycoprotein) complex 
contains various integral and peripheral proteins, such as dystroglycan and sarco-
glycan, which are thought to be responsible for the connection between the internal 
cytoskeletal system of myofibers (actin) and the structural proteins within the extra-
cellular matrix (such as collagen and laminin) [29]. Through this complex, sarco-
lemma ensures the binding of the sarcomere to the extracellular connective tissue. 
If the complex comes to be associated with desmin, the respective regions turn out 
to be involved in signaling. Proteins associated with dystrophin-glycoprotein com-
plex might be dysfunctional, leading to myopathies, which manifest by progressive 
muscle damage and impairments in regeneration [29]. Caveolae are sarcolemmal 
invaginations existing in the regions of the membrane microdomains rich in caveo-
lin- 3 and organized into multilobed structures which provide a large reservoir of 
surface-connected membrane underlying the sarcolemma. Besides acting as cellular 
devices involved in the concentration and functional regulation of various signal 
molecules [30], caveolae can protect the muscle sarcolemma against damage in 
response to excessive membrane activity [31].

The skeletal muscle fiber contains numerous nuclei (30–40  nuclei/cm long), 
oval-elongated (8–10 μm) and rich in heterochromatin. The nuclei are disposed in 
the peripheral sarcoplasm immediately beneath the sarcolemma, with their long 
axis parallel to the fiber and in alternate positions. Their number is higher at the 
level of the motor end plates and the myotendinous junctions, where they form 
agglomerations [12].

Sarcoplasm is a component found among myofibrils and can vary in quantity 
depending on the type of skeletal fiber in which it is found (red muscles, rich in 
cytoplasm; white muscles, little sarcoplasm) [32]. It also contains common and spe-
cific organelles and various inclusions (glycogen, lipid, pigments).
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Common Organelles Mitochondria are located in the sarcoplasm in the vicinity of 
the nucleus or among the bundles of myofibrils – intermyofibrillar [33]. The number 
of mitochondria is higher at the Z line and in the I band where they have a long axis 
parallel to the long axis of the muscle fiber and are very numerous in high-speed 
skeletal fibers.

Specific Organelles Sarcoplasmic reticulum (SR) can be considered as a muscle- 
specific organelle, although it is, actually, the smooth endoplasmic reticulum spe-
cialized in calcium release/storage [34]. The sarcoplasmic reticulum describes a 
dilated portion (junctional SR) in contact with the T tubules and a binding portion 
(free SR). In the SR lumen, calcium is linked to calsequestrin and has a concentra-
tion of 104–105 times higher than cytoplasmic calcium. The action potential of the 
sarcolemma is led up to the neighborhood of the SR through the T-tubes and deter-
mines the release of calcium from SR cisterns through membrane ion channels. The 
calcium concentration in the sarcoplasm increases from 10−7 to 10−6 and triggers the 
contraction. Calcium reuptake is performed by an enzyme, the Ca2+ pump, with ATP 
consumption, against the concentration gradient, the consequence being the decrease 
of calcium in the sarcoplasm followed by relaxation [35].

Muscle contraction is triggered by electrical activity induced at the level of the 
transverse tubules and the membrane cell surface. The scientific research is cur-
rently focusing on the correlation between two major components, respectively, SR 
and T tubules. This interaction is mediated by the dihydropyridine receptors 
(DHPRs) and by ryanodine receptors (RyRs). These channels are implicated in cal-
cium release mechanism. Optimal functioning of the skeletal muscles requires three 
essential processes, respectively, storage, discharge, and recovery of calcium. In 
these mechanisms are implicated three classes of SR calcium-regulatory proteins: 
luminal calcium-binding proteins, SR calcium release channels, and sarcoplasmic 
reticulum Ca2+-ATPase (SERCA) pumps. The first category includes calsequestrin, 
histidine-rich calcium-binding protein, junctate, and sarcalumenin and is involved 
in calcium storage, while the second category (type I ryanodine receptor or RyR1 
and IP3 receptors) is implicated in calcium release. Calcium recovery is provided by 
SERCA pumps [36]. Triads are specialized complexes consisting of a centrally 
located T tubule and flanked by two junctional sarcoplasmic reticulum cisterns [37, 
38]. They are located adjacent to the boundary between A and I bands and are 
designed to ensure a smoothing of muscle fiber contraction.

Myofibrils are the specific contractile organs parallel to each other and the longi-
tudinal axis of the muscle fiber, occupying between 80 and 86% of the cell volume. 
Myofibrils are composed of thin and thick myofilaments, parallel to each other, and 
are responsible for the striated nature of the muscle fiber. The skeletal fiber-specific 
band (cross striations) can be seen in optical microscopy as an alternation between 
dark A bands (anisotropic under polarized light, dark in phase contrast) and bright I 
bands (isotropic under polarized light, bright in phase contrast). In the middle of the 
bright bands, the narrow, dense lines, the Z lines or Z disks, can be seen (Fig. 2.4). 
The orderly arrangement of myofibrils is conferred by solidarization, by means of 
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intermediate filaments of desmin. The Z disks are solidarized between the adjacent 
myofibrils via plectin. The segment comprised of two Z-membranes (disks) is a 
sarcomere (the Krause muscular box) – the morpho-functional unit of the ribbed 
myofibril. The sarcomere is the functional unit of the myofibril and consists of an A 
band and two clear halves of I band and has a length of 2–3 μm. In electron micros-
copy, it is observed that the A band (1.5 μm long) is electron-dense and is crossed 
through by a clear area – H band (Hensen) through which a fine membrane passes – 
the M line (Mittel – middle line), hard to observe in optical microscopy. The I band 
(0.8 μm long) is transparent to the electron beam. The middle of clear bands is 
crossed by a thin membrane – Z (Stria Amici or Krause’s membrane) membrane. 
Myofilaments include:

 – Thick filaments, ~ 1.500 per sarcomere (15 nm in diameter and 1.5 μm long), 
disposed in the middle of the sarcomere and forming the A band.

 – Thin filaments, ~3000/sarcomere (7 nm in diameter and 1.0 μm long), form the I 
band but also participate in A band formation.

While A band contains thick and thin filaments (a thick filament is surrounded by 
six thin filaments), I band is formed only from thin myofilaments. The H band is 
composed only of thick myofilaments solidified at the M band by cytoskeletal 
 filamentous proteins. The Z band consists of actin-like filament anchor proteins: 
α-actinin, CapZ, and nebulin.

Fig. 2.4 Transmission electron micrograph (TEM) of a longitudinal section through the skeletal 
muscle. The striations are due to the presence of sarcomeres consisting of the darker bands – A 
bands (includes a lighter central zone, called the H band) – and the lighter bands, I bands. Each I 
band is bisected by a dark transverse line called the Z line flanked by mitochondria. Paired mito-
chondria are on either side of the electron opaque Z line. The Z Line marks the longitudinal extent 
of a sarcomere unit
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2.1.4  Molecular Organization of Myofilaments in Striated 
Muscle Fiber

The myofibrils are composed of proteinaceous structures, called myofilaments, 
which are different in size. Myofilaments are the actual contractile-specific organ-
elles of striated muscles, made of individual filamentous polymers of myosin II 
(thick filaments) and actin and specifically associated proteins.

Thin Filaments Thin myofilaments contain actin, tropomyosin, troponin, and 
other associates. The thin filaments are mostly made up of a globular monomeric 
protein called G-actin (globular) – about 300 individual molecules. They measure 
8 nm in diameter and extend from the Z line for a length of ~ 1.0 μm [19]. The 
G-actin monomers combine to form a long polymer chain F-actin (filamentous). 
Each G-actin molecule of the thin filaments has a myosin-binding site, which in 
resting stage is protected by tropomyosin molecule. Because all the actin mono-
mers are oriented in the same direction, actin filaments have a distinct polarity and 
their ends (called the plus and minus ends). Two such actin polymers intertwine in 
a helical fashion to form a thin filament strand. Thin filaments are oriented in oppo-
site directions at each Z line of a sarcomere, which is essential for the production 
of contractile forces [39]. Tropomodulin is intended to cover the end of the actin by 
preventing the addition of new actin G monomers. The F-actin filament has a spe-
cific polarity with a tropomodulin-coated end that penetrates the thick filaments 
which is called minus (−) end and a plus (+) end that anchors to the Z membrane 
by the CapZ protein when the filament reaches the right length. Then, the plus end 
of each filament is bound to the Z line by α-actinin (bundles thin filaments into 
parallel arrays and anchors them at the Z line) with nebulin assistance [40]. The 
minus end extends toward the M line and is protected by tropomodulin, an actin 
capping protein. Nebulin anchors through the terminal carboxyl-terminus at the Z 
lines and with the amino-terminal ends at the A band [41]. Nebulin is an inelastic 
filamentous protein that twists around the actin filament by packing with actin, 
troponin, and tropomyosin molecules [41]. The nebulin is linked with thin fila-
ments through tropomodulin and Z line proteins, being involved in establishing 
their length [26].

Tropomyosin is a fibrous protein consisting of rods (40 nm each) linked head-tail 
and is located in the grooves of the double helix of actin F. Tropomyosin has two 
α-helical polypeptides that bind laterally to seven contiguous actin subunits as well 
as head to tail to neighboring tropomyosins, forming a continuous strand along the 
whole thin filament. Troponin is a complex oligomeric protein and has three com-
ponents: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropo-
myosin binding) [42].

In striated muscles, the concentration of Ca2+ influences the complex formed 
from tropomyosin molecules and troponins; thus at low calcium concentration, 
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muscles do not contract. If the level of Ca2+ is higher, muscle contraction is initiated 
[26, 43].

Thick Filaments These filaments are 12–16 nm in diameter and ~ 1.6 μm long and 
are packed in a hexagonal array on 40–50 nm centers throughout the A bands [19]. 
Each thick myofilament contains approximately 250 myosin II molecules arranged 
antiparallel and associated with myomesin, titin, and protein C. The myosin II class 
includes various muscle myosins and cytoplasmic myosins that also have two heads 
and long coiled tails. The assembly of tails into bipolar filaments allows myosin II 
to pull together oppositely polarized actin filaments during muscle contraction. 
Myosin II, a 510 kDa, long, rod-shaped, actin-associated motor protein, is an asym-
metric dimer composed of two heavy polypeptide chains (222 kDa each) and four 
light chains (two regulatory chains and two essential chains). Heavy chains form a 
structure called a tail or stick, twisted in the form of a helix, but it also enters the 
constitution of a large part of the globular ends. The ends of the myosin molecule 
contain, besides heavy chains, the associated light chains, one of 20 kDa (LC20) 
and one of 17 kDa (LC17). LC20 comprises the phosphorylation site by MLCK 
(myosin light chain kinase).

Myosin molecules in striated muscle aggregate tail to tail to form bipolar thick 
myosin filaments; the tails overlap so that the globular heads protrude from the thick 
filament at regular intervals to form transverse bridges. In the middle of the fila-
ment, there are not any globular projections.

The regions of the myosin heads contain distinct actin-binding sites, ATP hydro-
lysis, and association of light chain subunits. By limited proteolysis, myosin can be 
divided into two functional domains due to the presence of protease-sensitive sites 
in the hinge region and the head-tail junction. Under the controlled action of trypsin, 
light meromyosin (LMM) is formed – the region in which myosin molecules inter-
act to form filaments – and heavy meromyosin (HMM) is the transverse bridge (the 
tail and the two globular ends). HMM can be cleaved under the action of papain in 
two subfragments: S2 representing the rest of the tail and S1 (representing the two 
globular ends) containing the ATP and actin-binding sites.

Several accessory proteins stabilize thick filaments. The M line in the center of 
the sarcomere is a three-dimensional array of protein cross-links that maintains the 
precise registration of thick filaments. M line proteins include myomesin, M pro-
tein, obscurin, and muscle creatine phosphatase. The interaction between the heavy 
and light chains determines the speed and strength of muscle contraction. The myo-
sin head has two specific binding sites, one for ATP with ATPase activity and one 
for actin [26].

Myomesin is a protein that solidarizes the filaments at the level of line M. The 
protein C binds to the myosin in the vicinity of the M line at the end of the thin fila-
ment at the intersection of A and I bands.

Titin is a large (2500 kDa) protein, which spans half of the sarcomere, and is 
responsible for the axial periodicity of myofilaments because it maintains 
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 three- dimensional relationships by keeping the thick and thin filaments in proper 
alignment. Titin is named after the mythological giants, due to its remarkable size: 
more than 30,000 amino acids folded into a linear array of 300 immunoglobulins 
and fibronectin II measuring more than 1.2 μm long. The amino terminus end of 
the titin molecule completely crosses the Z lines and is anchored to α-actinin. At 
the Z band, the titin molecules in the adjacent sarcomeres overlap. The carboxy 
terminus end traverses the entire M line and overlaps the titin molecules in the 
other half of the sarcomere and binds to the myomesin. At I band, titin interacts 
with actin molecules and at A band interacts with protein C. If titin molecules are 
broken experimentally, thick filaments slide out of register toward one Z disk dur-
ing contraction.

Desmin helps to align the sarcomere laterally by linking each Z disk to its neigh-
bors and to specialized attachment sites on the plasma membrane (intermediate fila-
ments that interconnect adjacent myofibrils).

The interaction of these myofibrillar proteins allows muscles to contract.

2.2  Skeletal Muscle Contraction Mechanism

2.2.1  Neuromuscular Transmission

Skeletal muscle works under voluntary control. Muscles will contract or relax when 
they receive signal from the nervous system. The control of skeletal muscle fibers is 
performed by alpha motor neurons located in the anterior horns of the spinal cord 
and in motor nuclei of the origin of the cranial nerves. A neuron, along with the 
specific muscle fibers that it innervates, is called a motor unit. The axons of the 
neurons branch as they are adjoining the muscle, giving rise to terminal branches 
that end on individual muscle fibers. The neuromuscular junction is the site of the 
signal exchange where synaptic bulb of an axon and a muscle fiber connect. The 
axon ending is a typical presynaptic structure which contains numerous mitochon-
dria and synaptic vesicles that contain the neurotransmitter acetylcholine (ACh). 
The neuron that carries the action potential is known as the presynaptic cell and the 
cell receiving it (muscle cell) as the postsynaptic cell. The neurotransmitter is 
released in the synaptic cleft, the space between the axon terminal and the muscle 
cell (the space contains amorphous basal lamina matrix). Motor end plate is a region 
of the sarcolemma that participates in the synapse having ACh receptors. The nico-
tinic ACh receptor in striated muscles is a transmitter-gated Na+ channel. Binding of 
ACh opens Na+ channels, causing an influx of Na+ into striated muscle cell. These 
channels are not voltage-gated, and they will open only when the ACh attaches to 
them. Once open, they will allow the passage of sodium ions into the muscle cell, 
down their electrochemical gradient.
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2.2.2  Excitation-Contraction Coupling (Exposure of Active 
Sites)

When sarcolemma is depolarized, an action potential (AP) is generated and triggers 
muscle cell contraction. The AP initiated on the membrane surface spreads radially 
in all directions, spanning the entire surface and then penetrating deep into the cell 
via T tubule (invaginations of the sarcolemma). Due to these tubules, the action 
potential can spread along the muscle cell evenly and quickly [44]. As the AP 
reaches the membrane of the sarcoplasmic reticulum, it makes it permeable to cal-
cium ions. Once the calcium is inside the cytosol, it can interact to thin filaments to 
initiate contraction. T tubules show numerous L-type voltage-dependent Ca2+ chan-
nels. The change in potential difference opens the Ca2+channels and allows the cal-
cium to penetrate into the cell according to the concentration gradient. This type of 
calcium channels is also called dihydropyridine (DHP)-dependent channels because 
they can be blocked by dihydropyridine. The amount of Ca2+ penetrated through 
these channels is small and incapable to trigger muscle fiber contraction. However, 
activation of these dependent Ca2+ DHP channels is mandatory in triggering the 
contraction. Activation of Ca2+ L-type-dependent channels (DHP dependent) drives 
two mechanisms:

 – The flow of Ca2+ through the channel produces conformational changes in the 
subunits that compose it. Through the proximity of the T tubule with the sarco-
plasmic reticulum within the triad, intimate contact is allowed between the 
dependent DHP channels and the Ca2+ channels of the sarcoplasmic reticulum 
and the RyRs-dependent channels. Activating dependent Ca2+ DHP channels 
activates RyRs-dependent channels [45].

 – The release of Ca2+ from the sarcoplasmic reticulum increases the concentration 
of Ca2+ approximately 10−7 to 10−5 M. The bond between troponin-tropomyosin 
complex and actin becomes weak. The action potential causes a short-lived con-
formational change in DHP receptors that is transmitted directly to the associ-
ated RyRs Ca2+ release channels. Cytoplasmic Ca2+ binds to troponin C. Troponin 
changes position, pulling tropomyosin away from the active sites. This shift 
increases the probability that myosin-ADP-Pi heads will bind to the thin fila-
ment, dissociating their bound Pi and producing force. Ca2+ binds to troponin C 
rapidly (milliseconds) but dissociates slowly (tens of milliseconds) [46].

2.2.3  The Main Steps Involved in Muscle Contraction

The interaction between myofibrillar proteins myosin (the thick filament) and actin 
(the thin filament) allows muscles to contract. This fact was demonstrated long 
before the fine structure of the myofibril became known. In 1954, the mechanism of 
muscle contraction, based on muscle proteins that slide past each other to generate 
movement, was suggested by Andrew F.  Huxley and is known as the sliding 
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filament model of contraction [47–49] (Fig. 2.5). The movement of muscle in mam-
malian species is directly dependent on the hydrolysis of ATP as its source of energy 
[1]. The first step is represented by the exposure of actin active sites. In a second 
step, myosin crossbridges bind to actin active sites. ATP binds to myosin head and 
induces conformational changes of the actin-binding site. The third step is repre-
sented by cycles of the myosin heads. The light chain enzyme of the myosin head 
allows ATP cleavage in ADP and Pi. As a result of the dissociation of the macroergic 
bond, part of the energy is released, and the head of myosin bends from an angle of 
90 degrees to an angle of 45 degrees with the advancement of the actin filaments by 
11 nm [50]. After crossbridge attachment, the energy is released as the myosin head 
pivots toward the M line. This action is called the power stroke. When adenosine 
diphosphate (ADP) and Pi are released, both products remain bound to the myosin 
head. The fourth step consists of the detachment of crossbridges [51]. Another ATP 
binds to the myosin head, and the link between the actin active site and myosin head 
is broken. The active site is now exposed and able to interact with another cross-
bridge. When a muscle is stimulated to contract, the myosin heads start to walk 
along the actin filaments in repeated cycles of attachment and detachment. During 
each cycle, a myosin head binds and hydrolyzes one molecule of ATP. Myosin mol-
ecule moves the tip of the head along the actin filaments toward the plus end. This 
movement, repeated with each round of ATP hydrolysis, propels the myosin mole-
cule unidirectionally along the actin filament. In the last step, the reactivation of 
myosin occurs when myosin heads split ATP and myosin head is in the resting 
 position (Fig.  2.6). The contraction stops by Ca2+ returning to the sarcoplasmic 

Fig. 2.5 The sliding filament model of muscle contraction. When a sarcomere contracts, the Z 
lines move closer together, and the I band becomes smaller. The A band stays the same width. At 
full contraction, the thin and thick filaments overlap completely. (Image credit: download for free 
at http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.119)
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Fig. 2.6 (a) The active site on actin is exposed as calcium binds to troponin. (b) The myosin head 
is attracted to actin, and myosin binds actin at its actin-binding site, forming the crossbridge. (c) 
During the power stroke, the phosphate generated in the previous contraction cycle is released. 
This results in the myosin head pivoting toward the center of the sarcomere, after which the 
attached ADP and phosphate group are released. (d) A new molecule of ATP attaches to the myosin 
head, causing the crossbridge to detach. (e) The myosin head hydrolyzes ATP to ADP and phos-
phate, which returns the myosin to the cocked position. (Image credit: download for free at http://
cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.119)
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reticulum via the SERCA pump. The SERCA pump is found in the membrane of the 
sarcoplasmic reticulum and plays a role in pumping Ca2+ against the concentration 
gradient. Pump activity is controlled by phospholamban, regulated in turn by 
β-adrenergic receptors. β-Adrenergic stimulation is followed by phosphorylation of 
phospholamban (activated form) followed by inhibition of Ca2+ pumps with 
increased concentration in the cytoplasm and increased contraction force.

Because all the sarcomeres contract together, the entire muscle shortens at the 
same rate. When a skeletal muscle fiber contracts the H bands and I bands get 
smaller, the overlapping zones get larger, the Z lines move closer together, and the 
width of the A bands remains constant. The contraction ends once the fiber has 
shortened by 30% (elimination of the I bands) [52, 53].

2.2.4  Types of Muscle Contractions

Single direct electrical stimulation of a muscle, or indirect through the motor nerve, 
with a constant current of a certain intensity and duration, causes a muscular twitch 
(rapid shortening followed by a return). Twitch is an elemental, biologically active 
functional manifestation of muscle contractility consisting of its shortening and ten-
sion development. Twitches can be experimentally produced by applying an electric 
current to a motor nerve. Under physiological conditions, there are no twitches. 
Shiver, contraction of extraocular muscles, and other types of contractions, even if 
they are short-duration contractions, require a short-term discharge of a large num-
ber of nerve impulses [54].

During twitch, a series of steps are described that follow the unique stimulation 
of the fiber muscle:

 – There is a latency phase of approximately 5 ms from the initiation of the process 
to the beginning of the contraction. This is given by the time required to propa-
gate the action potential and the time required to mobilize Ca2+ from the sarco-
plasmic reticulum.

 – There is a contraction phase of about 15 ms when the increased concentration of 
Ca2+ in the cytosol allows actin-myosin coupling that corresponds to muscle 
shortening and muscular force generation.

 – There is relaxation phase, longer than 25 ms, in which the Ca2+ concentration in 
the cell slowly decreases by pumping it into RS, followed by the decrease of the 
actin-myosin bridges.

Physiologically, all contractions of the skeletal muscles are done by tetanus con-
traction. Tetanus contraction is a summary of twitches. Strong, efficient, variable- 
duration contraction is achieved. The contraction of the heart muscle is a response 
to a single stimulus, but due to the long duration of the action potential, the cardiac 
twitch is entirely different from the skeletal muscle. Increasing the frequency of 
stimulation of the muscle fiber generates a continuous and stronger contraction than 
the twitch. When the stimulus frequency is low during the contraction period, 
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incomplete relaxation periods will occur, and muscle tension will be inconsistent. 
This type of contraction is called incomplete tetanus. If the stimulation frequency 
does not allow relaxation periods during muscle contraction, a plateau of muscle 
tension appears, and the contraction is called complete tetanus. The developed force 
is maximal, superior to both twitch and incomplete tetanus contraction [54].

Muscle fiber generates tension through the action of actin and myosin cross-
bridge cycling. While under tension, the muscle may lengthen, shorten, or remain 
the same. Muscle activity in the body is a combination of the isometric, isotonic, 
and auxotonic forms of contractions. An isometric contraction occurs when the con-
tracting muscle is fixed to both extremities. Thus, the length of the fibers does not 
change during contraction, but the increase in muscle tension occurs [55]. The anti-
gravity muscles, those  which maintain the posture, and the masticatory muscles 
used in the process of crushing food perform isometric contractions. Isotonic con-
traction is performed by the muscle that raises a weight. During contraction, its 
length is reduced, but the tension is remaining unchanged. Isotonic contractions are 
characteristic of the movement of limbs in the process of walking or lifting of con-
stant weight [56]. There are two types of isotonic muscle contraction: concentric 
and eccentric muscle contraction. In concentric muscle contraction, muscle fibers 
shorten as tension in the muscle increases, as when lifting a weight. In eccentric 
muscle contraction, although the actin and myosin filaments within the muscle 
fibers contract (to produce the force needed), the fibers themselves also slide along-
side each other resulting in the overall lengthening of the muscle [57]. Muscle 
lengthens as tension in the muscle increases, as when slowly lowering a weight. 
Auxotonic contraction is an intermediate functional manifestation. During the con-
traction, the muscle shortens but with the progressive increase of the tension. 
Auxotonic contractions are combined with the previous ones in the work process 
when the superior muscular force defeats a growing external force [58].

2.3  Biochemical Diversity of Skeletal Muscle

In the last decade, the biochemical, structural, and functional properties of myofi-
bers were intensively studied, but understanding molecular processes regulating 
fiber-type diversity is still poorly understood, due to the heterogeneity of cell types 
present in the skeletal muscle organ [2].

Skeletal muscle is a complex and versatile tissue composed of a variety of func-
tionally diverse myofibers which reach their normal length at puberty (13–15 years). 
Regarding the mean fiber diameter in normal muscles, there are no significant dif-
ferences between the three muscle fiber types which are less than 12% [59]. Gender 
difference shows larger myofibers in men than women for type I and type II.  In 
women, type I fibers are larger than type II, while in men these dimensions are 
reversed. The muscle mass begins to decrease between 20 and 80 years by reducing 
the number of myofibers by 30–40% [60].
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Skeletal muscle tissue is a very heterogeneous one, composed of a bundle of 
muscle cells which are implicated in a series of activities appropriate to each animal 
species. To deal with divergent activities, muscles are composed of muscle cells 
with large differences in metabolic profile and contractile properties, found under 
the influence of hormonal and neural systems. Moreover, it seems that nerve activity 
plays a major role in the determination of the fiber type [16]. Skeletal muscle fibers 
can be classified based on their color (red, high in myoglobin; white, low myoglo-
bin), on their speed (slow, fast, intermediate), on their fatigability (fatigue resistant 
and fatigable), or on their myosin isoforms.

At the beginning of the nineteenth century, based on their speeds of shortening, 
muscle fibers were defined as slow or fast [61]. In the mid-twentieth century, by 
refining certain techniques for myosin ATPase (mATPase) histochemistry and elec-
tron microscopy and by advanced biochemical studies regarding oxidative and gly-
colytic enzymes, skeletal muscle cells were characterized in much more details. The 
combination of histochemical analysis for myofibrillar actomyosin ATPase (myosin 
ATPase) and for enzymes of energy metabolism gives rise to the fiber nomenclature. 
Also, the speed of contraction is dependent on how quickly the ATPase of myosin 
can hydrolyze ATP to produce crossbridge action. Based on these criteria, there are 
three main types of skeletal muscle fibers (cells): slow oxidative (type I), fast oxida-
tive (type IIa), and fast glycolytic (type IIb) [62]. Fast fibers hydrolyze ATP approxi-
mately twice as quickly as slow fibers. The fast-twitch muscle fibers are known as 
the white muscle, while the slow-twitch muscle fibers are known as red muscle. 
Based on their fatigability, fast-twitch motor units can be categorized as fast-twitch 
fatigue resistant (type FR), fast-twitch fatigue intermediate (type FInt), and fast- 
twitch fatigable (type FF) [63].

Slow-contracting muscle fiber (type I) is characterized by (a) low myosin ATPase 
activity (compared with type II fibers), (b) high capacity for ATP production via 
oxidative phosphorylation (aerobic cellular respiration), (c) very dense capillary 
network, (d) high levels of intracellular myoglobin (predominant color is red), and 
(e) function for long periods without fatigue.

Fast-contracting muscle fiber (type IIa) is characterized by (a) higher myosin 
ATPase activity than type I fibers, (b) high capacity for ATP production via oxida-
tive phosphorylation (aerobic cellular respiration), (c) dense capillary network, (d) 
high levels of intracellular myoglobin (predominant color is red), and (e) being 
more fatigue resistant than type IIb fibers.

Fast-contracting muscle fiber (type IIb) is characterized by:

 (a) Higher myosin ATPase activity than type I fibers.
 (b) Lower capacity for ATP production via oxidative phosphorylation than “red” 

fibers (anaerobic glycolysis); muscle fatigue occurs sooner.
 (c) Sparser capillary network.
 (d) No intracellular myoglobin (predominant color is white).
 (e) These fibers fatigue quickly.

Type IIb fibers can be converted into type IIa fibers by resistance training.
Details about all these fibers can be found in Table 2.1.
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Another classification system is based on myosin heavy chain (MHC) isoforms, 
and the heterogeneity of myosin isoform expression dates back to 30 years ago [64, 
65]. Originally, four major myosin isoforms were identified: MHCI, MHCIIa, 
MCHIIx, and MHCIIb [66–68]. Recently, myosin ATPase histochemical staining 
allows the description of some other types, such as Ic, IIc, IIac, and IIab, based on 
the intensity of staining at different pH levels [69, 70]. Several isoforms of MHC are 
known to exist in mammalian skeletal muscle including IIm, alpha, neonatal, 
embryonic, and extraocular. These isoforms can be determined using anti-myosin 
antibodies or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- 
PAGE) [71]. Nowadays, one knows that these MHC isoforms are first established by 
intrinsic myogenic control mechanisms during embryonic development and are 
later modulated by neural and hormonal factors [9]. According to a study conducted 
by Schiaffino, in any muscle, different fiber types coexist. One can observe in 
Table  2.2 the complete panel of sarcomeric MHC genes with the corresponding 
protein products proposed by Schiaffino in mammalian species extrafusal muscle 
fibers [16].

2.4  Conclusion

Skeletal muscle physiology is complex, and there are many functional differences 
between fiber types starting with neuromuscular transmission, excitation- contraction 
coupling, and cycling of crossbridges and finishing with ATP consumption. Gene 
and protein expressions depending on the type of fiber are still at the beginning 
regarding their importance in several conditions leading to muscle atrophy.

Table 2.2 Panel of 
sarcomeric MHC genes with 
the corresponding protein 
products and their location

Gene Proteins Expression

MYH13 MyHC-EO Extraocular muscle
MYH8 MyHC-neo Developing muscle
MYH4 MyHC-2B Fast 2B fibers
MYH1 MyHC-2X Fast 2X fibers
MYH2 MyHC-2A Fast 2A fibers
MYH3 MyHC-emb Developing muscle
MYH6 MyHC-α Jaw muscle and heart
MYH7 MyHC-β/slow Slow muscle and heart
MYH7b MyHC slow/tonic Extraocular muscle
MYH15 MyHC-15 Extraocular muscle
MYH16 MyHC-M Jaw muscle

D. Cretoiu et al.
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Chapter 3
Muscle Mass, Quality, and Composition 
Changes During Atrophy and Sarcopenia

Yosuke Yamada

Abstract Skeletal muscle mass (SMM) and muscle strengh reach their peak in 20s 
to 40s of age in human life and then decrease with advancing age. The decrease rate 
of muscle strength or power was twice to four times as large as that of the 
SMM. Thus, the normalized muscle force (muscle strength divided by SMM) also 
decreases in aging. It depends on the number of factors in skeletal muscle tissues 
and neuromuscular system. In human study, SMM cannot be measured directly 
without dissection so that all of the methodologies are indirect methods to assess 
SMM, even computing tomography or magnetic resonance imaging. Dual-energy 
X-ray absorptiometry, ultrasonography, anthropometry, and bioelectrical imped-
ance analysis (BIA) are used as secondary indirect methods to estimate SMM. Recent 
researches show muscle composition changes in aging, and in particular, the ratio of 
muscle cell mass (MCM) against SMM decrease and relative expansion of extracel-
lular water (ECW) and extracellular space is observed with advancing age and/or 
decrease of physical function. The intracellular water (ICW) and ECW estimated by 
segmental bioelectrical impedance spectroscopy or multifrequency BIA are good 
biomarkers of the ratio of MCM against SMM in limbs. The BIS and other state-of- 
the-art technology for assessment of muscle mass, quality, and composition are use-
ful to fully understand the muscle atrophy in a living organism.
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3.1  Introduction

Muscle strength generally reaches its peak in 20s to 40s of age in human life and 
then decreases with age. Skeletal muscle mass (SMM) also decreases with age 
(Figs. 3.1 and 3.2). The study of Allen et al. (1960) was probably the first scientific 
report about SMM decrease with age [1]. Allen et al. reported that muscle mass is 
decreasing with age by calculating total body potassium (TBK) via whole body 
counter, using the fact that a small amount of radioisotope 40K exists naturally. In 
this method, based on the hypothesis that the potassium volume (concentration) in 
body cell mass (BCM) is constant, the BCM was estimated from the TBK, and then 
the BCM was used as an index for skeletal muscle mass [2, 3].

Since then, various methods such as X-ray computed tomography (CT) and mag-
netic resonance imaging (MRI) have been invented (Figs. 3.1 and 3.2). Using these 
methods, the SMM change with age in the human body has been examined in many 
researches. In the systemic review for the SMM change with age by various mea-
surement methods [4], the SMM decreased only 0.37% per year in female and 
0.47% per year in male when compared with the young adult (18 to 45 years old) to 
the elderly (65 years old or over). The decrease rate of muscle mass per 10 years 
drops more steeply after a certain age (i.e., 50 to 65 years old) than younger age; the 
longitudinal study that assessed in older adults (65  years old or over) over 
5  to 12.2 years showed that the decrease rate was approximately 0.51% [4]. The 
decrease rate is much lower than muscle strength.

The longitudinal study with the elderly showed the muscle strength decreased 
2.5 to 3% in female and 3 to 4% in male in a year. In the cohort that muscle mass 
and muscle strength were measured at the same time (e.g., Baltimore Longitudinal 
Study and Health ABC study), the decrease rate of muscle strength was twice to 
four times as large as that of the SMM [5, 6] (Fig. 3.3). Furthermore, it is clear that 
low muscle strength rather than low SMM is a risk factor for mobility disability and 
mortality [7–9]. In consideration of the above, the meaning of muscle mass or 
strength measurement has become a controversial topic; it has been discussed that 
“dynapenia,” which focuses on age-related loss of muscle function, is probably 
more useful than “sarcopenia” which is mainly considered on age-related loss of 
SMM [10, 11].

The term “sarcopenia” was originally created by Rosenberg at a meeting sum-
mary (1989) [12] of “Epidemiologic and methodologic problems in determining 
nutritional status of older persons (Albuquerque, New Mexico, USA, October 
19–21)” in 1988. In its proceedings, Rosenberg mentioned that “the prevention 
and/or attenuation of decreasing lean mass with age” is one of the most important 
public health issues for exercise and nutrition for older adults and coined sarcope-
nia from Greek words σάρξ sarx, “flesh,” and πενία penia, “poverty.” Rosenberg 
summarized the meeting to introduce what the meeting was like and what the sen-
tence meant [12].

One out of 25 persons was the elderly population (65 years old or over) in 1900, 
1 out of 9 in 1989, and then 1 out of 5 in the twenty-first century. Drs. Samet, Rhyne, 
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Fig. 3.1 Typical example of mid-thigh cross-sectional area (CSA) obtained by X-ray computed 
tomography (CT) in each age individual. Skeletal muscle CSA (gray area) is decreased with 
advancing age. In addition, the signal intensity of muscle area became low with advancing age. 
(The figure is reprinted from Yamada 2015 [2] with permission (see detail in Sect. 6 in this 
chapter))
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Fig. 3.2 Relationship 
between age and whole- 
body skeletal muscle mass 
assessed by magnetic 
resonance imaging (MRI). 
(The figure was created 
based upon Table 1 of 
Janssen et al. 2000 [3] for 
the present article by 
Yamada)
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Harris, Hegsted, and Goodwin et al. [13–17] emphasized the diversity of elderly in 
the meeting; there is not only non-negligible differences between a 65-year-old and 
an 80-year-old person (chronological age) but also inter-individual variation of 
aging (biological age) which is different from chronological age. There are also dif-
ference in races, ethnicity, and sex. Furthermore, the activity level of elderly varies: 
some are independent and active, some cannot leave home, and others stay in the 
nursing home. Some uses multiple medications, which affects to the body and men-
tal functions. We must conduct research for all those elderly since we cannot evalu-
ate the populations of “normal aging” or “normal nutritional status” if we use the 
cohort of only elderly who visit a hospital, excluding active healthy elderly, or the 
cohort of elderly excluding persons who are charged in the nursing home or cannot 
leave home. Therefore, the method we should use is to evaluate various old popula-
tion including a marathon runner and a person who needs nursing care, to clarify the 
effect of decreased function of each organ with age to food and nutritional condi-
tions, and to have better understanding for the influence of food and nutrition to the 
maintenance or decreased function of each organ. From the NHANES, National 
Health and Nutrition Examination Survey, III (from 1988 to 1994), Harris and 
Kuczmarski et  al. [15, 18] revealed these problems applying oversampling tech-
nique for 5000 elderly including 1300 who were older than 80.

Drs. Kuczmarski, Chumlea, Heymsfield, and Schoeller [18–21] lectured about 
body composition assessment method in the meeting, which is essential for nutri-
tional status assessment. Each method has both  advantages and disadvantages. 
Because of recent drastic progress of body composition assessment method, it is 
possible to evaluate various compositions instead of using a traditional two- 
composition model (fat and lean mass). Thus, using these methods, it is necessary 

Fig. 3.3 Changes of knee extension strength (KES) and leg muscle mass (LMM) in Baltimore 
Longitudinal Study of Aging. KES was measured by isokinetic dynamometry, and LMM was 
assessed by dual-energy X-ray absorptiometry (DXA). The rate of decline for both parameters is 
steeper with older age (in particular, 45+ and 75+); the decrease rate of muscle strength was twice 
to four times as large as that of the muscle mass. (The figure is reprinted from Ferrucci et al. 2012 
[5] with permission)
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to have a wide variety of data including the abovementioned race and ethnic differ-
ences. Rosenberg asseverated that there is no important dramatic functional change 
with age other than lean mass change. Decreased lean body mass influences on vari-
ous aspects such as mobility ability, physical functions, energy (calorie) intake and 
expenditure, nutrient consumption, nutritional condition, independence (nursing 
care requirement), cardiovascular function and/or respiratory function. To pay more 
attention to lean mass decrease, Rosenberg proposed the term sarcomalacia/sarco-
penia and suggested that more research should be conducted for the relationship 
lean mass decrease and exercise. Muscle mass would be increased even  in the 
elderly, and the elderly with frailty would drastically improve physical function.

In summary, Rosenberg [12] picked up Dr. Hegsted’s topic related to recom-
mended dietary allowance (RDA) [16]. What is the role of RDA for elderly with 
wide variety of characteristics? When it comes to the recommended food to maxi-
mize one’s healthy living and to maintain activities in one’s life cycle, it is necessary 
to understand the diversity and variability in young and old women and men.

Sarcopenia was originally the proposed term to proceed the research about loss 
of lean mass during age considering appropriate nutrition and exercise for each old 
person with understanding of variety of old people in the meeting summary com-
ment. However, as it is mentioned above, from the results that many researches had 
proceeded focusing on muscle mass and strength since 1990, the risk for mortality 
and/or loss of physical function and independence cannot be fully explained by only 
muscle mass.

Therefore, the European Working Group on Sarcopenia in Older People 
(EWGSOP) in 2010 [22], the International Working Group on Sarcopenia (IWGS) 
in 2011 [23], the Asian Working Group for Sarcopenia (AWGS) [24], and the 
Foundation for the National Institutes of Health (FNIH) Biomarkers Consortium 
Sarcopenia Project [25] in 2014 defined sarcopenia as low muscle strength and/or 
low physical function in addition to SMM.

In those consensus, muscle strength and physical function are important compo-
nents of sarcopenia, but the assessment of muscle strength and/or physical function 
is not sufficient to apply a medical diagnosis under the precedent of the medical 
diagnosis of osteoporosis or metabolic syndrome. The SMM is still used as a pri-
mary marker, which is a more objective parameter than voluntary force production 
or conducting physical function test [26–31].

It is, however, not easy to assess human’s SMM in vivo accurately, and its defini-
tion is needed to be reconsidered. Especially, I would like to explain the concept of 
in vivo SMM is different from that of “muscle cell mass” (MCM). The ratio of MCM 
against SMM (MCM/SMM) changes with advancing age.

All methods of assessing SMM are indirect methodology since human body 
composition cannot be measured directly except for cadaver. As they are indirect 
methods, there are always hypotheses. The  results of any indirect methods have 
systematic and/or random bias from those of direct measurement [32]. Therefore, 
when body composition is mentioned, the term “estimate, assess, or calculate” is 
used; avoid using the term “measure” in this article.

3 Muscle Mass, Quality, and Composition Changes During Atrophy and Sarcopenia
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3.2  Estimate of Skeletal Muscle Mass (SMM)  
in Human Body

It has been tried to estimate SMM as one of the body compositions along with the 
fat and bone mass [1, 33]. In relation with obesity, the amount of body fat or percent 
body fat against body mass has been focused along with visceral fat, ectopic fat, 
hyperglycemia, hypertension, and hyperlipidemia. Bone mass and bone mineral 
content has been given attention with bone density, bone metabolism markers, and 
spine morphology because of its relationship with osteoporosis and risk of fracture. 
The SMM has been given importance in complex metabolic disorder syndrome 
(cachexia) that is characterized by the loss of muscle mass observed with drastic 
weight decrease in patients with chronic disease and myopathy such as muscular 
dystrophy and amyotrophic lateral sclerosis (ALS); however, the establishment of 
its clinical meaning in non-disease adult is delayed in comparison with body fat 
amount (obesity) and bone mass (osteoporosis).

On the other hand, in sports science area or exercise physiology, skeletal muscle 
mass assessment has been conducted relatively early because skeletal muscle mass 
has strong correlation with muscle strength or power which is one of the essential 
sport performance factors [34]. After various imaging methods and other estimation 
methods are invented, the research using assessment of muscle mass or muscle mass 
distribution has been performed strenuously [3, 34–44]. Especially, CT and MRI are 
currently considered as standard methods to estimate whole-body skeletal muscle 
volume or mass (e.g., skeletal muscle tissue density, 1.041 g/cm3 [45]) since they 
can estimate the total volume of whole-body skeletal muscle tissue by filming the 
whole body and extracting signal from skeletal muscle tissue. Dual-energy X-ray 
absorptiometry (DXA) is considered an alternative method to separate bone mass, 
adipose mass, and other soft lean tissues. It does not estimate whole-body SMM 
itself that is different from MRI and CT; however, appendicular lean soft tissue 
(ALST) estimated by DXA can be converted to SMM measured by MRI (at least in 
American) using the equation by Kim et al. [46].

3.3  The Difference of Age-Related Decreases 
Between Muscle Mass and Strength

In consideration with the above, muscle strength decreases 2.5 to 4% in a year, but 
SMM decreases only 0.5 to 1% [4]. To scrutinize Janssen et al. [3] research which 
measured skeletal muscle mass by MRI in 468 females and males with age from 18 
to 88, the SMM difference of 20s to 70s in the upper body is approximately 8%. The 
SMM difference of 20s to 70s in the lower body is ~26% in male and ~23% in 
female; the decrease rate of lower body is about three times as high as that of the 
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upper body, but it is still only about 0.5% decrease in a year. It is worth noting that 
there is a significant difference in decrease rate between muscle groups even in the 
lower body muscles. Assessing for muscle thickness change of each body part with 
age, ultrasound imaging device has been especially used for many previ-
ous  researches [34, 44, 47–53]. For example, when it is measured by ultrasound 
imaging, the decrease rate of the front thigh is greater than that of the back thigh 
[42, 43, 54, 55]; the decrease ratio of 20s to 70s in the front thigh muscle thickness 
is ~30%. These values are very similar to the direct measurement of cross-sectional 
area (CSA) of the vastus lateralis muscle in the cadavers by Lexell et al. [56]; the 
decrease ratio of 20s to 70s was ~26% (Fig. 3.4).

With all the above considered, the measurement sensitivity of muscle mass 
change is higher in using MRI or CT than in using traditional two-component 
method of lean mass estimation. Furthermore, the measurement of muscle groups, 
which atrophy rate is large, such as muscle mass in the lower body, is seemingly 
more useful than that of the whole-body muscle mass for the relationship with 
physical function. However, this explains only 20  to 50% of muscle force or its 
decrease rate, and the rest of 50 to 80% can be explained by, what we call, “factors 
other than SMM decrease” [4]. For these “factors other than SMM decrease,” “neu-
ral factors” that include from central nerve to neuromuscular junction have been 
considered as major factors. Various researches have been proceeded, however, and 
other potential factors of neural factors are also discussed recently as described in 
the following sessions.
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Fig. 3.4 Relationship between age and skeletal muscle mass (SMM) in the lower body and upper 
body in 268 men (a) and 200 women (b) aged 1888 years old. The SMM was assessed by MRI, 
and its difference of 20s to 70s in the upper body is approximately 8%. The SMM difference of 20s 
to 70s in the lower body is ~26% in male and ~23% in female; the decrease rate of the lower body 
is about three times as high as that of the upper body, but it is still only about 0.5% decrease in a 
year. (The figure was created based upon Table 1 of Janssen et al. 2000 [3])
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3.4  Concept About Skeletal Muscle Cell Mass (MCM)

In the abovementioned cadaver research by Lexell et al. [56], in addition to mea-
surement of vastus lateralis CSA, myofiber number, myofiber size, and the ratio of 
fast muscle fiber to slow-twitch fiber were also measured under the microscope 
(Fig. 3.5a and b). Scrutinizing this research data brings about significant meanings. 
The CSA decrease rate of 20s to 70s was ~26%, but the myofiber number decrease 
ratio was up to 41%. The decrease rate of mean CSA of one myofiber was ~11% 
(Type I myofiber, ~0% decrease; Type II myofiber, ~25% decrease). Thus, from the 
values in literature, when I calculate “total myofiber CSA” using the equation of 
myofiber number multiplied by mean one myofiber CSA, the decrease rate of 20s to 
70s is ~48% [57, 58]. This shows that the proportion of myofiber (cell) area to 
whole-muscle CSA is decreased with advancing age. SMM decrease rate with age 
is different from MCM decrease rate (Fig. 3.5c). As implied by Fig. 3.1a, this is 
because intercellular gap becomes large. Intercellular gap includes connective tis-
sue, adipose outside of muscle cell, and extracellular water (ECW) (Fig. 3.5).

Normal imaging methods, like MRI, CT, or DXA, cannot evaluate this intercel-
lular gap, and this results in overestimating muscle cell mass. Skeletal muscle is not 
a homogeneous tissue and composed of MCM, extracellular space (ECS), and adi-
pose tissue mass (ATM) in its cell level (Fig. 3.2) [59]. Since the MCM gives ten-
sion, the assessment of MCM and/or the ratio of MCM/SMM is essential. It is well 
known that the proportion of ATM to SMM increases with advancing age; except 
for this, the MCM/SMM changes if ECS and MCM ratio changes. The ratio of solid 
to liquid in the MCM (intracellular water, ICW), the ratio of solid to liquid in the 
ECS (extracellular water, ECW), and the ratio of water in the ATM (adipose tissue 
water, ATW) are not always constant but can be considered to be relatively stable as 
0.72, 0.97, and 0.14  in normal hydration status of homeostasis, respectively. 
Therefore, in this case, the ratio of intracellular water to total water (TW) in the 
skeletal muscle tissue (ICW/TW) can be considered an index for the MCM/SMM 
(Fig. 3.6).

3.5  Estimation Method of MCM/SMM

Segmental bioelectrical impedance spectroscopy (BIS) or multifrequency bioelec-
trical impedance analysis (MF-BIA) is useful to assess the ratio of ICW/TW that is 
related to the MCM/SMM.  The detailed explanation for BIS and MF-BIA was 
described in our previous articles [60, 61] (Fig. 3.8), which is briefly summarized 
below. Muscle cell membrane is composed of phospholipid bilayer and works as a 
capacitor on the alternating current circuit. The alternating current with low fre-
quency (e.g., 5 kHz) cannot pass through inside of cells and mainly pass through 
extracellular space. On the other hand, the alternating current with high frequency 
(e.g., 250 kHz or 500 kHz) can pass through inside of cells [62] (Fig. 3.4a). Since 
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the ICW/TW is relatively stable in normal young adults and there is strong correla-
tion among TBW, ICW, and ECW [63, 64], single-frequency bioelectrical imped-
ance analysis (SF-BIA) using 50 kHz is sufficient to evaluate skeletal muscle mass 
[65, 66]. For example, Miyatani et al. research [65] in young adults showed that, 
with impedance value at 50 kHz (Z50), the impedance index (L2/Z50; L, segment 
length), which is an index related to muscle mass in the upper leg, lower leg, upper 

Fig. 3.5 (a) Micrographic picture of cross section of m. vastus lateralis from a young (left) and an 
old (right) individual. (Originally from Lexell et al. 1988. The scale of the picture from old indi-
vidual was modified to match into the scale of the younger one by Yamada.) (b) The picture of 
prepared cross section of m. vastus lateralis for measurement of cross-sectional area (CSA). (c) 
The rate of loss of whole-muscle CSA and total muscle fiber (cell) CSA. Total muscle fiber CSA 
was calculated as muscle fiber number multiplied by mean fiber size by Yamada 2015. (Figures A 
and B are reprinted from Lexell et al. 1988 [56] and Fig. C is reprinted from Yamada 2015 [32] 
with permission)
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arm, and forearm, was highly correlated to SMM obtained by MRI and maximal 
voluntary joint torques of corresponding muscle groups (Fig. 3.7).

On the other hand, in our research with 405 old female and male participants 
aged 65 to 90 years old [60], the impedance index of 50 kHz in the upper leg seg-
ments (L2/Z50) was just moderately correlated to maximal voluntary knee extension 
strength. This means the muscle mass must be evaluated in consideration with the 
ICW/TW change with age in the elderly [67]. Actually, the relative expansion of 
ECW and decrease of ICW/TW were observed in older adults compared with 
younger adults (Fig. 3.8). We, therefore, proposed to use the segmental MF-BIA for 
skeletal muscle mass evaluation and validated it against CT [68]. While the tradi-
tional method overestimates muscle mass in the people who have larger ECW/ICW 
ratio, the newly developed segmental MF-BIA can evaluate muscle mass properly 
in the elderly since the impedance value combination of 250 kHz and 5 kHz can 
discriminate ICW from ECW. In addition, this method shows more significant cor-
relation in muscle strength in the elderly in comparison with the traditional method 
[60]. This index is also correlated to walking speed in the elderly [69] (Fig. 3.9).
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Fig. 3.6 Model of muscle composition (Mingrone et al. 2001). Skeletal muscle contains not only 
“contractile” tissue but also “non-contractile” tissue. Inter- muscular adipose tissue and intramus-
cular fat and extracellular water are “non-contractile” components in muscle tissue. (The figure is 
reprinted from Yamada 2015 [32] with permission)
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While this method used fixed frequencies of 250 kHz (or 500 kHz) and 5 kHz 
[63, 70], various frequency currents ranging from 1 to 1000 kHz (BIS; Fig. 3.4b) 
were used in the other method [71, 72]. Resistance values (R0 and R∞) at 0 kHz 
(direct current) and infinite frequency (∞ kHz) obtaining from Cole-Cole plot of 
resistance (R) vs. reactance (Xc) resulting in a semicircular arc, BIS characterizes 

Fig. 3.7 (a) Upper panel: electrode placements of segmental bioelectrical impedance spectros-
copy (S-BIS) measurement for a single leg. Lower panel: schematic representation showing mus-
cle mass detection by dual-energy X-ray absorptiometry (DXA) and S-BIS.  DXA measures 
appendicular lean mass and cannot inform about lean mass composition. (b) S-BIS takes advan-
tage of the partitioning of contents in appendicular skeletal muscle between intracellular and extra-
cellular pools. (c) Representative Cole-Cole plot of resistance versus reactance measures obtained 
by leg S-BIS from one individual from the study cohort. The intracellular resistance (RI) was cal-
culated using 1/[(1/R∞)  −  (1/R0)]. (d) Representative frequency versus reactance measures 
obtained by leg S-BIS from 29-, 56-, and 76-year-old female adults (solid line, dashed line, and 
chain line, respectively). Older adults tended to have lower reactance. (The figure is reprinted from 
Yamada et al. 2017 [61] with permission)
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the measurement segment for ECW and ICW. There is another model that is the 
combination of this model with the emulsion electrochemical model [64, 72] by Dr. 
Tetsuya Hanai (Hanai mixing theory) [73]; this is beyond scope  of this article. 
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Fig. 3.8 Water distribution in the lower leg estimated by S-BIS (mean ± SD). (a) ***significantly 
lower intracellular water (ICW) than young adult (p  <  0.001); †significantly lower ICW than 
elderly adults. No significant main effect was observed in extracellular water (ECW). The total bar 
shows the sum of ICW and ECW (total water [TW]). (b) The ECW/TW ratio increased signifi-
cantly with aging. ***significantly higher than young adult (p < 0.001); †significantly higher than 
elderly adults. (The figure is reprinted from Yamada et al. 2010 [67] with permission)
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The BIS method is theoretically reflected to ECW and ICW more precisely [64]. 
But when there is correlation coefficients with the muscle strength or power were 
compared between MF-BIA and BIS, there is no significant difference between 
MF-BIA and BIS. Although BIS is more strictly stick to the theory but reactance 
measurement is difficult especially at lower or higher frequency, R0 and R∞ that are 
calculated by extrapolation method of curve regression may have a large margin of 
error. It is, therefore, meaningful to directly use impedance at 250 kHz or 5 kHz 
that has less error cause [60]. Note that there is an alternative way for SF-BIA to 
use Xc and phase angle information to obtain body compositions [74, 75] and elec-
trical characteristics of BIS are related to muscle function [61]. Additionally, most 
recent study shows that appendicular ICW estimating BIS have interesting infor-
mation for sarcopenia [76].

Impedance is influenced not only by the amount of water but ion concentration 
in the fluid; thus, it is required to use assumption for the specific resistance of ICW 
and ECW. In relationship K+ ion and BCM or ICW in the elderly [77], TBK/FFM 
or TBK/TBW decreases with age in the whole-body measurement, but TBK/BCM 
and TBK/ICW are constant [78]; this is supported by the data in rat exenterate 
skeletal muscle [79]. Therefore, ICW can be considered the index to reflect 
MCM. As another issue, the change of ICW/TW in the limbs with age obtained by 
BIS or MF-BIA is seemingly greater than that of ICW/TBW in the whole body in 
physiology field. This may be partly because few research has been conducted in 
elderly with age over 80; it is necessary to perform the investigation of skeletal 
muscle compositions in various ages. It is also necessary to evaluate edema, inflam-
mation, body fluid shift after exercise or posture change, or the influence on various 
diseases [80–82].

Fig. 3.9 The relationships between the ratio of extra- and intracellular water (ECW/ICW) in the 
upper legs as assessed by segmental bioelectrical impedance spectroscopy (S-BIS) and isometric 
knee extension strength (a) and maximal gait speed (b). ○ women and ● men. (The figure is 
reprinted from Yamada et al. 2017 [69] with permission)

3 Muscle Mass, Quality, and Composition Changes During Atrophy and Sarcopenia



60

3.6  Relationship Between Muscle Composition and Muscle 
Function

Whenever BIS or MF-BIA is used, ICW in the limbs, which is reflected to MCM, 
decreases with age [67], especially the elderly who require nursing care shows low 
ICW in the limbs [77]. In comparison with a traditional muscle mass index, ICW 
shows stronger correlation to muscle strength, muscle power, and ability to stand up 
from the chair; it is possible to discriminate the requirement of nursing care with 
good sensitivity and specificity. In addition, ICW/TW, which is a biomarker of 
MCM/SMM, also decreases with age and especially shows low value in the elderly 
who require nursing care. Interestingly, ICW/TW, being independent of skeletal 
muscle index of ICW, is also statistically significantly correlated to muscle strength, 
muscle power, and ability to stand up from the chair. ICW/TW decrease reflects the 
decrease of the ratio of muscle cells per unit volume; it is also the index for relative 
expansion of ECW or dilatation of extracellular matrix, connective tissue, or adi-
pose tissue between muscle cells. The relationship between this index and the 
increase of adipose tissue mass and connective tissue must be scrutinized; if the 
density of muscle fiber is low (low muscle density), the decrease of lateral transmis-
sion of force can happen [83].

It is possible to evaluate muscle composition or muscle quality by not only 
relative increase of ECW by BIS but CT, MRI, diffusion tensor MRI (DT-MRI), 
Dixon MRI, or ultrasonic image echo intensity [84]. For example, Hounsfield unit 
(HU), signal strength of CT, is the degree of X-ray attenuation with the following 
conditions: distilled water at standard pressure (1000  hPa) (STP defined by 
IUPAC) and standard temperature (0 °C) is defined as 0 HU; the radiodensity of 
air is defined as −1000 HU. The HU value of the fat tissue is negative (approxi-
mately -100 to -50HU) while that of the muscle tissue is positive (approximately 
0 to 100HU). Mean HU value of muscle tissue area decreases with age; the pro-
portion of  normal- density muscle area (30 to 100HU) decreases, and that of low-
density muscle area (0 to 30HU) increases. This fact especially reflects to adipose 
tissue mass [85, 86]. However, since HU value of water is 0 HU and that of solid 
mass in the skeletal muscle shows high, mean HU value decreases even if the 
MCM/SMM decreases. Thus, the low HU value in the elderly possibly also 
reflects relative ECW increase in addition to adipose tissue mass increase. It is 
known that adipose tissue mass measured by MRI or a non-contraction factor is 
high in the elderly [87], the λ value of diffusion tensor MRI changes with age 
[88], and T2 value of the skeletal muscle at rest is high in the elderly [89]. In addi-
tion, in recent years, it is clear that ultrasonic image shows brighter in the elderly 
than in the young, and its echo intensity is negatively correlated to muscle force 
[52, 90–92]. Most recent study suggests that ultrasonic image echo intensity is 
correlated to muscle strength independent of the ratio of intracellular fluid to 
extracellular by BIS in the elderly [93] (Fig. 3.10).

As it is mentioned above, while muscle force decreases 2.5 to 4% in a year, the 
SMM decreases only 0.5 to 1% in a year [4]. In contrast, the actual decrease rate of 
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MCM is thought to be as twice as that of SMM since the composition of muscle 
changes drastically. However, MCM decrease rate does not explain fully about the 
muscle force decrease. For this part, as it is mentioned above, ICW/TW (or MCM/
SMM) is the factor to explain muscle force independent of ICW; the decrease of 
myofiber density is probably related to the decrease of lateral transmission of force 
[83]. But, in addition to this, various changes happen to the muscle tissue and the 
neuromuscular system [4]. Muscle tissue factors are as follows: the decrease of 
pennation angle and muscle fascicle length with age [94], selective atrophy of fast 
muscle fiber with change of its cross-sectional shape (e.g., a crushed shape) [56], 
qualitative and quantitative changes of extracellular matrix (ECM) [83, 95], 
decrease in the number of satellite cells relative to the total number of nuclei of 
muscle fibers [96], increased occurrence of coexistence of myosin heavy chain iso-
forms in single fibers [97], increased myonuclear domain (MND) size variability 
[98], and the decrease of Ca2+ sensitivity and the reduction of Ca2+ release [99]. 
Age-related change in the tendon tissue also occurred [100]. Neuromuscular sys-
tem factors are as follows: decrease in the number of motoneurons and the remain-
ing intact motoneurons sprouting to innervate the denervated fibers [101], decrease 
in α-motoneuron excitability [102, 103], excitability of the motor cortex to the 

Fig. 3.10 (a) Ultrasound sites for each muscle. a.. Biceps brachii, two-thirds of the way between 
the acromion and the antecubital crease. b. Quadriceps femoris, midway between the anterior 
superior iliac spine and the proximal end of the patella. c. Rectus abdominis, 3 cm lateral to the 
umbilicus. d. External oblique, internal oblique, and transversus abdominis, 2.5 cm anterior to the 
midaxillary line, at the midpoint between the inferior rib and the iliac crest. (b) Representative 
ultrasound images. Echo intensity (EI) can be assessed by computer-assisted 8-bit gray-scale anal-
ysis using the standard histogram function in Adobe Photoshop Elements (Adobe Systems, San 
Jose, CA, USA) or other image software as an index of muscle quality. (The figure is reprinted 
from Fukumoto et al. 2015 [52] with permission)

3 Muscle Mass, Quality, and Composition Changes During Atrophy and Sarcopenia



62

spine [104, 105], decrease of nerve conduction velocity [106], co-contraction of the 
antagonistic muscle [107], and elaborated muscle synergy adjustment [108]. 
However, exhaustive research is required to determine how much degree these fac-
tors influence to the decrease of muscle force with aging since there is a literature 
stating antagonist torques cannot explain the observed torque declines at the knee 
joint, for example [109].

At any rate, skeletal muscle cell mass in the body may change more drastically 
than it used to be considered. Ikenaga et al. reported that ICW at the thigh increased 
when slightly weighted (+200 g) shoe interventions were given to the elderly and 
the lower and long-term low degree burden (average 10,000 step walking for 
100 min a day) was given to the lower limbs [110]. Also, ICW increase in the thigh 
was observed when weekly 90- to 180-min/wk moderate intermittent slow jogging 
interventions for 12 weeks were given, although the total muscle CSA obtained by 
CT was not changed [111].

3.7  Frailty, Sarcopenia, Skeletal Muscle Cell Mass, 
and Muscle Composition

World turns into the  aging,  aged or  super-aged society, and life expectancy is 
increasing worldwide. The population of elderly over 75 is drastically increasing. 
The elderly gradually decreases physical function, daily activity level, and indepen-
dence with advancing age [112]. This process is called frailty [113, 114]. According 
to Fried et al. criteria, if one has the presence of three or more of the following five 
components, one is frail: “shrinking: weight loss, unintentional,” “grip strength 
weakness,” “poor endurance and energy,” “slowness,” and “low physical activity 
level.” “Poor endurance and energy” is included because it is a good indicator of 
VO2max and is a predictive indicator of cardiovascular disease. Depending on 
cohort design, it is possible to determine frailty by just asking all questions, but 
basic concept of Fried criteria is to use actual measurement values since it consists 
of “weight (muscle mass) decrease,” “grip strength,” “aerobic capacity,” “walking 
speed,” and “daily physical activity.” The concept of this type of frailty seems to be 
based on factors measured in exercise physiology area [113, 114]. Other  several 
types of frailty indices were also proposed [115–117]. The frailty with or without 
muscle atrophy is a research topic for healthy life span from rodents [118–122], 
nonhuman primates [123], and human [114, 115, 124, 125].

The concept of frailty and sarcopenia is overlapped currently, and central com-
ponent of frailty is considered to be sarcopenia. Since EWGSOP proposed the defi-
nition of sarcopenia with advancing age and its diagnosis criteria in 2010 [22, 26], 
active discussion is ongoing like IWGS [23, 27], FNIH sarcopenia project [28–31, 
126], and AWGS [24]. In addition, the concept between sarcopenia, cachexia, and 
muscle wasting disorders is complex and sometimes confused in research or clinical 
settings [127–130]. One of the current important issues is that it is difficult to reach 
international consensus because the prevalence of sarcopenia is different depending 
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on what guidelines and which SMM assessment techniques are used [131–133]. 
One of the biggest problems is that there is no consensus about how to assess “skel-
etal muscle mass (SMM)” quickly and easily in clinical settings [134]. For example, 
since it is not feasible to measure skeletal muscle mass in the whole body by CT or 
MRI in clinical environments and the measurement by DXA or BIA is device-
dependent, there is no absolute method [135, 136]. Furthermore, SMM or CSA by 
CT that is estimated by ALST via DXA is moderately or poorly correlated to physi-
cal function decrease or total death risk [7–9]. To solve this, it is necessary to recon-
struct the definition of “skeletal muscle mass.” Most recent 4-year longitudinal 
study found that association of physical activity with age-related changes in quadri-
ceps femoris muscle thickness and echo intensity in older adults [137].  As it is 
mentioned above, it is necessary to reconsider skeletal MCM and muscle composi-
tions by paying attention to SMM compositions and their quality. In addition, the 
researches about effects of exercise, physical activity, nutritional status on MCM or 
SMM and complex frailty cycle are needed for future direction (Fig. 3.11) [138].
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Cycle of Frailty

Physical activity ↓

Malnutrition
Weight loss   

(KCL Q11, Q12)
↓

Basal metabolic rate ↓

Mobility disability/ 
Falls and injuries 

(KCL Q6-Q10)

Oral/Eating 
function ↓ 

(KCL Q13-Q15)

Sociological frailty
Decreasing IADL (KCL Q1-Q5)
Housebound (KCL Q16, 17)
Living Alone
Low Socioeconomic status

Appetite↓
Total energy intake ↓

Protein intake ↓

Psychological frailty
Depression (KCL Q21-24)
Exhaustion / Loss of vitality (KCL Q25)

Sarcopenia

Loss of cognitive function 
(KCL Q18-Q20)

Fig. 3.11 Schematic diagram of the cycle of frailty by the Kihon Checklist (KCL) and its relation-
ship to protein intake. IADL Instrumental activities of daily living, KCL Q question number of 
KCL. (This figure is reprinted from Nanri et al. [137] with permission)
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Chapter 4
Muscle Changes During Atrophy

Adrian Dumitru, Beatrice Mihaela Radu, Mihai Radu, 
and Sanda Maria Cretoiu

Abstract Muscle atrophy typically is a direct effect of protein degradation induced 
by a diversity of pathophysiologic states such as disuse, immobilization, denerva-
tion, aging, sepsis, cachexia, glucocorticoid treatment, hereditary muscular disor-
ders, cancer, diabetes and obesity, kidney and heart failure, and others. Muscle 
atrophy is defined by changes in the muscles, consisting in shrinkage of myofibers, 
changes in the types of fiber and myosin isoforms, and a net loss of cytoplasm, 
organelles and overall a protein loss. Although in the literature there are extensive 
studies in a range of animal models, the paucity of human data is a reality. This 
chapter is focused on various aspects of muscle wasting and describes the transi-
tions of myofiber types during the progression of muscle atrophy in several patho-
logical states. Clinical conditions associated with muscle atrophy have been grouped 
based on the fast-to-slow or slow-to-fast fiber-type shifts. We have also summarized 
the ultrastructural and histochemical features characteristic for muscle atrophy in 
clinical and experimental models for aging, cancer, diabetes and obesity, and heart 
failure and arrhythmia.
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4.1  Introduction

Muscle atrophy is also known as muscle wasting and represents a debilitating con-
dition when muscle mass decreases due to several factors. Atrophy of a muscle can 
occur mainly in two ways, due to disuse or denervation, and it occurs in a variety of 
pathologies (Fig. 4.1). Malnutrition, alcohol-associated myopathy, aging, obesity, 
and diabetes can lead to different degrees of muscle atrophy [1–3].

It can also be present in debilitating diseases such as cancer, AIDS, liver cirrho-
sis, chronic obstructive pulmonary disease (COPD), kidney failure, heart failure, or 
sepsis [4]. Muscle atrophy can be confined to one muscle group if patients are bed-
ridden or unable to move certain body parts or be more generalized in general path-
ological states. Muscle atrophy is characterized by the decrease in muscle mass due 
to the imbalance between protein synthesis and degradation. Denervation atrophy 
occurs when the muscle nerve is interrupted and the muscle tissue no longer receives 
stimulation signals from the nervous system. This type of atrophy may arise from 
damage to the central nervous system such as a spinal cord injury or peripheral 
nervous system such as a broken bone that destroys the surrounding nerve. Atrophies 
which usually reflect lower motor neuron deficiency can be found in Guillain-Barré 
syndrome, neuropathy, amyotrophic lateral sclerosis (ALS), multiple sclerosis, 
muscular dystrophy, spinal muscular atrophy, etc. [5–7].

Fig. 4.1 Clinical conditions associated with muscle atrophy
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4.2  Histochemical Changes of Myofibers in Muscle Atrophy

Muscle biopsy plays a crucial role as part of the diagnostic assessment for patients 
with neuromuscular conditions. Accurate histopathological diagnosis and identifi-
cation of the major pathogenic defects lead to a better understanding of the disease 
and personalized patient management. Supported by ancillary tests and, if needed, 
by genetic counseling, the histopathological diagnosis contributes to the develop-
ment of new therapies. Diagnosis of a muscle biopsy should always be based on 
proper clinical examination and family history in conjunction with such other useful 
investigations such as serum enzymes, molecular analysis, muscle imaging, and 
electromyography. The selection of the muscle should be based on the distribution 
of the muscle weakness, as judged by detailed clinical data.

Skeletal muscle atrophy can occur due to primary degenerative processes within 
the skeletal muscle fibers, in genetic or acquired myopathies or secondary to dener-
vation and inflammation or spontaneously during aging. Neurogenic-type atrophy is 
a descriptive diagnosis with multiple different etiologies, and in such cases, the 
underlying etiology usually cannot be elucidated by muscle biopsy alone, and it 
needs correct clinicopathologic or radiologic correlation.

The hallmark histopathological feature of skeletal muscle atrophy is the loss or 
reduction of myofiber diameter. Affected myofibers are frequently smaller, rounded 
to angular with hypereosinophilic sarcoplasm. Denervation atrophy is characterized 
by characteristic histologic features such as compressed angular myofibers and 
crowded nuclei. Other histopathological features may be found: degenerated, 
necrotic, or hyalinized myofibers, split or fragmented myofibers, and myofibers 
with central nuclei. However, these changes are not specific for skeletal muscle 
atrophy and are more often associated with nonneurogenic causes and more tradi-
tional myopathies. Aging-related atrophy is characterized by decreased myofiber 
size and number, increased variation of myofiber size, and increased accumulation 
of degenerative inclusion bodies such as lipofuscin or lipid droplets. Also, replace-
ment by connective tissue can be observed. Angulated myofibers are frequently 
observed, suggesting a possible role of spinal or nerve degeneration. Surrounding 
unaffected myofibers that are innervated differently may compensate by becoming 
hypertrophic. Atrophy can uniformly alter myofibers or selectively target specific 
muscle fiber types. For example, type II fibers are affected when atrophy is associ-
ated with cachexia or malnutrition, while type I fibers are selectively affected in 
thyrotoxicosis and several congenital myopathies and myotonic dystrophy [8]. 
However, atrophy of type II fibers is non-specific and occurs in a large number of 
myopathic disorders. It appears in almost any disease in which muscle strength is 
impaired secondary to problems remote from the muscle [9].

Muscle biopsies are interpreted based on the size of different types of muscle 
fibers in cross section. Among the most relevant parameters, one usually uses the 
perimeter of the myofiber, the cross-sectional area, and the smaller or the largest 
diameter [10]. However, these parameters are variable with age, sex, physical activ-
ity, dietary intake, and specific muscle. The concern to see the correlations between 
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these parameters and the hypo- or hypertrophy of the muscles has existed for a long 
time, in healthy subjects or pathology. In order to obtain the limits of normality of 
the cross-sectional areas, Pernus and Erzen analyzed the vastus lateralis muscle and 
found that the difference between type 1 and II fibers was not significant in size, 
whereas the differences between type 1 and 2b, type 1 and 2a, and type 2a and 2b 
fibers were significant [10].

Atrophy is a common occurrence when dealing with a muscle sample examined 
by conventional histopathological techniques or when using more elaborate ancil-
lary tests. Changes in fiber number and size may specifically affect one or other 
fiber types or both of them. In healthy muscle, there is a checkerboard, mosaic-like 
pattern of type 1 and type 2 fibers in the same sample. In most myopathies, there is 
simultaneous occurrence of atrophic and hypertrophic fibers of both types. For 
example, in neurogenic disorders, such as spinal muscular atrophy, the groups of 
atrophic fibers are of both types, while hypertrophy is observed mainly in the groups 
of type 1 fibers. This is due to the reinnervation of the denervated fibers by surviving 
collateral nerves. Atrophy of type 2 muscle fibers is a non-specific event that can 
occur in many myopathic disorders. When dealing with type 2 muscle fiber sub-
types, both 2A and 2B may be affected, but the specific involvement of type 2B 
fibers is more frequently seen. Selective type 2A muscle fiber atrophy is extremely 
rare and may occur in patients with a gene mutation for 2A myosin (MYH2) [11]. 
Selective type 1 atrophy occurs in several congenital myopathies and myotonic 
dystrophy.

The histochemical features of skeletal muscle fibers were used since early 1970 
to differentiate between atrophic fibers and fibers with myopathic changes in non- 
denervated fascicles of juvenile and adult patients with benign spinal muscular atro-
phy [12]. They found that atrophic fibers contained no glycogen or RNA, acid 
phosphatase activity could not be demonstrated, and SDH activity was very low, 
being a mixture of lightly and deeply staining fibers. It has been shown that histo-
chemical changes also appear in nerve root impairment leading to atrophy with a 
6.4% decrease in size for type 1 and 9.8% for type 2 muscle fibers [13].

Immunohistochemical studies of developmental isoforms of myosin are very 
useful for assessing immaturity and helping distinguish between atrophic muscle 
fibers and regenerating ones. The presence of so-called fetal myosin is frequently 
rendered to reflect immaturity, but in some situations the presence of fetal myosin is 
misleading as there is abundant evidence from studies on animal models that imma-
ture myosin isoforms can be re-expressed in neurogenic myopathies (denervated 
muscle) as well as during aging [14]. In humans, nuclear clumps which are chroni-
cally atrophic fibers [15], some small muscle fibers in motor neuron disease and 
spinal muscular atrophy may express fetal myosin and sometimes additional devel-
opmentally regulated proteins.

It is generally accepted that human muscles are characterized by the capacity to 
increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capac-
ity) by training. Muscle fiber changes during different pathological conditions are 
essential to be studied before optimizing training and rehabilitation programs since 
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one needs to know the relative contribution of the signaling pathways to protein 
turnover in high and low oxidative fibers [16].

Several morphological factors may contribute to muscle atrophy, including mus-
cle- and fiber-type heterogeneity, satellite cell diversity, and the susceptibility of 
different muscles and fiber types to muscle wasting (for review see [17]).

Muscle atrophy can be associated with slow-to-fast or fast-to-slow fiber shift. 
Depending on the pathological state, two types of fiber shifts have been 
described (Fig. 4.2): slow-to-fast fiber-type shift [18–23] and fast-to-slow fiber-
type shift [24–38].

Skeletal muscle fiber subtypes are otherwise sensitive to specific pathological 
atrophic signals. Oxidative type I muscle fibers have a higher turnover of protein 
synthesis and degradation and are more resistant to fasting than type II glycolytic 
fibers [39]. Contrarily, type I muscle fibers are much sensitive to inactivity, micro-
gravity, and denervation-induced atrophy [40].

In sarcopenia associated with aging was evidenced the fast-to-slow fiber transi-
tion in the myosin light chain population (e.g., MLC2 isoform), and this shift in 
aged skeletal muscles was explained by the tendency of slower-twitching fiber pop-
ulation to switch to a more aerobic-oxidative metabolism [37].

Fig. 4.2 Clinical conditions associated with muscle atrophy and the characteristic fiber-type shifts
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4.3  Molecular Alterations in Muscle Atrophy

Muscle atrophy was described to be associated with major imbalances in the 
ubiquitin- proteasome system [41–59] and/or the autophagy-lysosome system 
[60–64] (Fig. 4.3).

Among the three components of the autophagy-lysosome system, e.g., macroau-
tophagy, chaperone-mediated autophagy, and microautophagy, only macroautoph-
agy was demonstrated to be involved in muscle atrophy. In animal knockout for 
lysosomal alpha-glucosidase, it was shown that macroautophagy is upregulated in 
both slow (type I) and fast (type II) fibers [60]. Downregulation of histone deacety-
lases was demonstrated to be associated with altered autophagy and consequent 
muscle atrophy [61, 62]. Abnormal mitophagy and consequent altered mitochon-
drial degradation of parkin, PINK1, Bnip3, and Bnip3L have been documented to 
play an important role in muscle atrophy [63, 65, 66].

Several signaling pathways have been described to be altered in muscle atrophy, 
including IGF1-Akt-FoxO signaling pathway, myostatin signaling pathway, NFκB 
signaling pathway, and glucocorticoid signaling pathway (for review see [67]).

The intimate mechanisms of muscle atrophy in pathological conditions have 
been demonstrated using animal models. For example, Forkhead box O (FoxO), a 
transcription factor which mediates nutrient and metabolic homeostasis using the 
pathway of protein kinase B, is upregulated under pathophysiologic catabolic con-
ditions, such as denervation/immobilization, fasting, sepsis, and cancer cachexia 
[68]. FoxO1-related muscle atrophy primarily affects fast-twitch fibers [69]. Some 
factors are mainly involved in mitochondrial biogenesis, oxidative metabolism, and 
slow-twitch fiber formation such as peroxisome proliferator-activated receptor-γ 
coactivator-1 (PGC1α) which seems to play a dual role depending on its levels. It 
appears that a normal level of PGC1α has a protective effect against fiber 

Fig. 4.3 Molecular alterations in muscle atrophy
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 degradation, but excessive PGC1α levels will lead to muscle atrophy, especially for 
type IIb fibers [70].

Muscle atrophy can be identified based on immunohistochemistry (IHC) analy-
sis in different muscle diseases like dystrophy and congenital/structural and inflam-
matory myopathy [71]. In clinical practice, diagnosis of muscle pathology associated 
with muscle loss is based on the IHC analysis of multiple proteins, including lami-
nins, collagen VI, perlecan, dystrophin, dystroglycans, sarcoglycans, dysferlin, 
caveolin-3, actin, Z-disk proteins (e.g., α-actinin, nemaline, myotilin, telethonin, 
etc.), myosin, titin, calpain-3, desmin, emerin, etc. (Fig. 4.4) [71].

We have summarized the ultrastructural and histochemical features characteris-
tic for muscle atrophy in clinical and experimental models for aging, cancer, diabe-
tes and obesity, and heart failure (Fig. 4.5). However, it is difficult to distinguish 
specific muscle atrophy features that characterize each individual pathology due to 
the existent comorbidities. A detailed description of the muscle atrophy in different 
pathologies is done in the subsequent subsections of this chapter.

4.4  Muscle Atrophy in Aging

It is well known that human skeletal muscle fibers suffer age-related transformation. 
Lexell demonstrated that limb muscles of aging individuals are 25–35% smaller and 
have significantly more fat and connective tissue than those of younger persons. 
Type 2 fibers are smaller in old individuals, while type 1 fibers are less affected [30]. 

Fig. 4.4 Relevant markers in the immunohistochemical diagnosis of muscle atrophy classified 
based on their cellular localization
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Progressive aging is followed by a reduction in number and size of type II fibers 
after 50 years of age, accompanied by a decline in the overall muscle cross-sectional 
area [72].

With aging, the skeletal muscle cross-sectional area decreases and ranges 
between 21% and 40%, compared to healthy young subjects [73], and is associated 
with poorer physical performance [74]. The cross-sectional area might also be 
affected by muscle disuse, these changes being more pronounced in the elderly 
[75]. We provided an example of histopathological analysis of fiber atrophy in 
sarcopenia (Fig. 4.6).

Muscle weakness and wasting are commonly seen in aging people, and, regard-
ing histopathological examination, sarcopenia and cachexia are two of the most 
used terms to define the broad spectrum of microscopically aging-related changes 
in skeletal muscles. From a clinical point of view, it may be difficult to distinguish 
the two conditions [76]. Trying to establish some standards regarding the definition 
of the two terms, the European Working Group on Sarcopenia in Older People 
(EWGSOP) recommended using the presence of both low muscle mass and low 
muscle function for the diagnosis of  sarcopenia [77]. By definition, sarcopenia 
affects typically more than half of people over 80 years old and is not related to a 
known condition or secondary causes of muscle loss, whereas cachexia is defined as 
a complex metabolic syndrome associated with underlying illness such as malig-
nancy, chronic inflammation, insulin resistance, and others. Both processes imply 

Fig. 4.5 Comparative ultrastructural, histochemical, and morphometric analysis in muscle atro-
phy associated with different clinical/experimental conditions
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an involuntary loss of muscle mass, strength, and function and are a major contribu-
tor to disability in older people increasing the risks of falls and vulnerability conse-
quently leading to functional dependence and disability [78].

The etiology of sarcopenia is not clearly understood, and the pathological mech-
anisms are not well documented. The decrease of muscle mass in aging people is a 
direct effect of muscle fiber atrophy but is also due to loss of skeletal muscle fibers. 
Microscopically, sarcomere spacing becomes disorganized, muscle nuclei tend to 
be centralized along the muscle fiber, and there is a significant increase of fatty tis-
sue within and around the muscle fibers. Concomitant neuromuscular alterations 
have been observed in sarcopenia, including a decrease in the nervous firing rate to 
the muscle fibers, the plasma membrane which becomes less excitable, decreased 
number of motor neurons, and the deficient regenerative abilities of the nervous tis-
sue. The number decline of muscle fibers may be site-specific and is well docu-
mented. Lexell et al. demonstrated that the number of muscle fibers in the vastus 
lateralis decline begins around age 25, and at age 80 there is approximately a 50% 
reduction in the number of these fibers [79]. There is an overall change in types of 
fiber proportion and composition with marked atrophy of type II fiber shift and a 
relatively higher proportion of type I fibers.

The reduction in the basal muscle protein synthesis does not seem to play a cru-
cial role as originally thought. Recent data did not confirm the earlier reports and 
concluded that differences in basal muscle protein turnover between elderly and 
young men could not explain muscle loss with age [80].

Some ultrastructural changes also occur mainly due to age-related accumulation 
of mitochondrial DNA (mtDNA) mutations in postmitotic tissues. In aging mus-
cles, there is an increased proportion of cytochrome c oxidase (COX)-deficient 
muscle fibers and occasional ragged-red fibers [81–84]. Mitochondrial dysfunction 
has been involved in apoptosis and may play a pivotal role in muscle fiber loss lead-
ing to sarcopenia [85]. However, sarcopenia is a multifactorial change and is related 
to a myriad of different pathological pathways such as increased heat shock pro-

Fig. 4.6 Typical histopathological findings in sarcopenia: decrease in muscle fiber size (atrophy – 
a) and number (hypoplasia – b). The lost muscle fibers are replaced at first by fibrous, connective 
tissue and then by adipose tissue. Note the increased fiber size variability and increased interstitial 
fat and fibrotic connective tissue (magnification 100×, hematoxylin and eosin staining)
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teins, reactive oxygen species, myonuclear apoptosis, altered muscle protein turn-
over, and impaired satellite cell function with consequent muscle fiber-deficient 
regeneration [86]. Moreover, the immunohistochemical analysis in experimental 
aging indicated the predominance of fast-twitch muscle fiber atrophy (e.g., non-
postural plantaris and extensor digitorum longus muscles), but not of the primarily 
slow-twitch fibers (e.g., postural soleus) [87]. Increased transglutaminase C immu-
nopositivity in the soleus muscle was also reported in suspension-induced atrophy 
in the hind limb rat model [88]. The remodeling of the neuromuscular junction, 
e.g., reduction of axon terminal area, the absence of nerve terminals in some post-
synaptic acetylcholine receptor areas, and variable end plate structure, was also 
evidenced in aging rats [89].

Besides the muscle-specific alterations pointed out above, there are other age- 
related changes in endocrine function, nutrition, or responsiveness to dietary factors 
as well as physical activity that may be responsible for the development or exacer-
bation of sarcopenia.

4.5  Muscle Atrophy in Obesity and Diabetes

Older adults can suffer muscle composition changes, due to fat accumulation in the 
excessive weight gain, leading to a two to five times decreased muscle strength 
comparative with age-related loss of muscle size in healthy older adults [90]. Muscle 
quality, interpreted as the ratio between some measure of muscle strength and power 
per unit of muscle mass, is important together with muscle mass to prevent func-
tional decline. Body composition seems to contribute to muscle quality since ecto-
pic fat depot found beneath the fascia and within the muscle and intramyocellular 
lipid storage is seen in persons with high risk of metabolic diseases, such as diabetes 
[91]. With age, fat deposits are redistributed in harmful ectopic locations such as 
intermuscular adipose tissue [92].

Muscle function is affected in obese patients with type 2 diabetes mellitus which 
have a 60% higher skeletal muscle expression of the atrophy transcription factor 
FoxO1 [93]. Protein degradation in muscles is due to the activation of the ubiquitin- 
proteasome, autophagy-lysosome, and caspase-3-mediated proteolytic pathways 
[63]. Furthermore, a range of proinflammatory pathways are upregulated, e.g., che-
mokine (c-c motif) ligand (CCL2) [94], signal transducer and activator of transcrip-
tion 3 (STAT3), suppressor of cytokine signaling 3 (SOCS3), and nuclear factor κB 
(NF-κB) [95, 96].

Accumulation of advanced glycation end products is considered to be the main 
cause of skeletal muscle atrophy in diabetes, and several signaling pathways are 
involved, including the receptor for AGE (RAGE)-mediated pathway, the AMP- 
activated protein kinase (AMPK) pathway, and the Akt pathway [97]. Proteomics 
analysis of the skeletal muscle indicated an increase in adenylate kinase 1, 
glyceraldehyde- 3-phosphate dehydrogenase, and aldolase A in obese/overweight 
and morbidly obese women compared to lean patients [98], and this shift to 
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 glycolytic metabolism determined opposite muscle alterations in comparison to 
patients with drastic weight gain [99].

A clinical examination of 20 patients with type 1 or type 2 diabetes demonstrated 
that there is no direct correlation between the level of neuropathy and muscle fiber 
diameter/subtype distribution or the microvascularization [100]. However, the same 
study indicated an elevated number of type II fibers or capillaries in the striated 
musculature of patients with type 1 diabetes compared with the patients with type 2 
diabetes [100]. In aged patients, comorbidity with type 2 diabetes determines an 
increased decline of the muscle mass and strength and diminished functional capac-
ity with aging [101].

In experimental diabetes (e.g., streptozotocin-induced diabetes) was demon-
strated that the fast muscles were more atrophied than slower ones due to the intense 
oxidative metabolism, while the fiber redistribution occurred for all fiber subtypes 
[102]. Based on the immunohistochemical analysis, in STZ-induced diabetes, mus-
cle atrophy was characterized by thin, degraded, pyknotic, and locally necrotic 
muscle fibers, disordered muscle filaments, absent/diffuse sarcomeres, hyperplastic 
interstitial adipose tissue, and vessel dilatation [103]. Moreover, immunohisto-
chemical analysis evidenced an increased number of abnormal myofibers, present-
ing degeneration, denervation, and/or necrosis, decreased number of type 2A fibers, 
increased number of type 2B fibers, decreased myofiber size (type 2A and type 2B 
fibers), lipid accumulation, and altered mitochondrial organization [104, 105]. 
Interestingly, exercise upregulates MuRF1  in STZ-diabetic animals compared to 
control animals [106].

4.6  Muscle Atrophy in Cancer

Debilitating and consumptive diseases such as cancer lead to muscle fiber shrinkage 
due to modifications of their cytoplasm organelles and protein loss. The more 
important the changes are, the more accurate the mortality prediction is. Skeletal 
muscle atrophy in cancer is conditioned by several factors: cancer type, cancer ther-
apy, genetic predisposition, preexisting sarcopenia, reduced food intake, metabolic 
changes, and comorbidities [107].

Malignant tumors can also cause various neurological and musculoskeletal man-
ifestations involving the central nervous system, peripheral nerve fibers, and neuro-
muscular junctions or muscles, mainly due to paraneoplastic syndromes. Sometimes 
these manifestations occur just prior to diagnosing the primary tumor [108]. 
Secondary aberrant immunological or endocrine mechanisms are believed to play a 
key role for paraneoplastic manifestations which can lead, among many others, to 
the degeneration or atrophy of muscle fibers.

For proper muscle functionality, the percentage and structural morphology and 
integrity of the slow-twitch, type I and fast-twitch, type II muscle fibers, is essential. 
During malignancies, muscle atrophy evolves through different stages such as pre- 
cachexia, cachexia, and refractory cachexia [109]. Weber et  al. showed that 
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 cancer- related cachexia is associated with a loss of muscle volume, but not of mus-
cle function and ability to generate force [110]. In general, studies on human sub-
jects showed that cross-sectional area of muscle fibers is decreased, as well as 
content in the myosin heavy chain [111]. A study performed on patients newly 
diagnosed with colorectal cancer showed cancer-associated myopathy consisting in 
abnormalities in type II myofibers (fast type) which are with internalized or central 
nuclei and the presence of regenerating myofibers, suggesting a myogenic response 
to colorectal cancer [112].

The mechanism underlying the skeletal muscle atrophy in cancer is still under 
debate, and several theories have been proposed, including a cutback of protein 
synthesis, an elevation in protein in degradation, or a combined mechanism [107].

Type 2 fiber atrophy is a common but non-specific finding as a part of cachexia, 
due to various types of malignancies. Also, some inflammatory myopathies, such as 
dermatomyositis, are occasionally associated with malignancy, especially lung, gas-
trointestinal, ovarian, and nasopharyngeal carcinomas [113]. In a much more seri-
ous manner, skeletal muscles can be affected in paraneoplastic necrotizing myopathy. 
This rare and potentially fatal disease is a rapidly progressing proximal, symmetri-
cal myopathy associated with end stages of various types of malignancies [114]. 
The main histopathological feature of this disorder is the widespread muscle fiber 
necrosis with minimal regeneration and with limited or absent inflammatory reac-
tion. In some reported cases, focal or general capillary depletion was observed. In 
addition, the complement membrane attack complex (MAC) deposition was noticed 
in a significant proportion of endomysial capillaries [115]. Thickened hyalinized 
capillaries, sometimes called pipestem capillaries, are an ultrastructural feature 
related to paraneoplastic necrotizing myopathy [116].

In experimental cancer models, it was demonstrated that autophagy contributes 
to muscle wasting [117]. Several muscle changes have been evidenced in animal 
models of cancer, including increased proteolysis, decreased muscle weight and 
protein synthesis, increased expression of ubiquitin-dependent, calcium-dependent 
and lysosomal system, etc. [118]. However, due to the differences between cancer 
subtypes and the diversity of models of muscle wasting in cancer (e.g., Walker 256 
carcinosarcoma, Morris hepatoma 7777, Yoshida ascites hepatoma 130, Lewis lung 
carcinoma, murine adenocarcinoma 16, MCG 101, C26 colorectal adenocarcinoma, 
human melanoma), it is difficult to find a subset of histological features that charac-
terize experimental cancer. In some models have been proposed some therapeutic 
solutions that reverse/diminish muscle atrophy, including anti-myostatin drugs 
(e.g., soluble ActRIIB) [119] or the TRAF6 gene knockdown [58, 120, 121].
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4.7  Skeletal Muscle Atrophy in Heart Failure 
and Arrhythmia

Among the comorbidities of chronic heart failure have been described skeletal mus-
cle abnormalities, including abnormal energy metabolism, the transition of myofi-
bers from type I to type II, mitochondrial dysfunction, reduction in muscular 
strength, and muscle atrophy [122]. Heart failure was demonstrated to upregulate 
the genes encoding atrogin-1 and MuRF1 in skeletal muscle with fiber type-specific 
atrophy [123]. Myostatin might represent an important link between skeletal and 
cardiac muscles, being able to promote distinct responses to protein metabolism in 
relationship with the fiber-type composition [124].

In experimental heart failure, the histological analysis indicated that diaphragm 
muscles fibers shift from type II “fast-glycolytic” to type I “slow-oxidative” [125]. 
Additionally, histological investigation of soleus muscle atrophy in hypertensive 
versus non-hypertensive rats indicated a decrease in weight and fiber cross-sectional 
areas and an increase of the collagen fractional volume [126].

In both clinical and experimental heart failure was identified the programmed 
cell death in skeletal muscle and interstitial cells that is triggered by cytokines [127]. 
Indeed, in patients with heart failure have been detected increased serum levels of 
proinflammatory cytokines [128]. Besides apoptosis, ubiquitin/proteasome and 
non-ubiquitin-dependent pathways have been documented to be involved in heart 
failure [127, 129].

In some genetic pathology, skeletal muscle atrophy was identified to be accom-
panied by abnormal cardiac rhythm. To date, peroneal muscular atrophy (i.e., 
Charcot-Marie-Tooth disease) was described to cause cardiac arrhythmias and con-
duction disturbances in association with peripheral muscle atrophy [130]. Often, 
patients with spinal and bulbar muscular atrophy develop a cardiac disease, mani-
festing as ST-segment abnormalities, Brugada syndrome (i.e., genetic disorder that 
results in abnormal ECG), dilative cardiomyopathy, or sudden cardiac death [131, 
132]. Additionally, mutations in KCNH2 (the gene that encodes the human Ether-à- 
go-go-Related Gene type 1 (hERG1) K+ channels) determine long QT syndrome, a 
cardiac pathology characterized by ventricular arrhythmia, and upregulation of 
these channels was associated with skeletal muscle atrophy [133]. Interestingly, 
beta2-adrenoceptor agonists have been proposed to be potential pharmacological 
targets in skeletal muscle atrophy, but their chronic administration is prevented by 
cardiac side effects, including cardiac ischemia, arrhythmia, or heart failure [134].
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Chapter 5
Skeletal Muscle Damage in Intrauterine 
Growth Restriction

Leonard Năstase, Dragos Cretoiu, and Silvia Maria Stoicescu

Abstract Intrauterine growth restriction (IUGR) represents a rate of fetal growth 
that is less than average for the population and the growth potential of a specific 
infant. IUGR produces infants who are small for gestational age (SGA) but also 
appropriate for gestational age (AGA). It refers to growth less than expected for 
gestational age and is most often under 10th percentiles for age. It develops during 
the late second and third trimesters of gestation. The etiology of IUGR is multifac-
torial. One of the most important factors which leads to IUGR is a decrease of 
nutrients and oxygen delivered to the fetus by the placenta. The growth of adipose 
tissue and skeletal muscle is limited by the declined fetal nutrient supply later in 
gestation. IUGR affects about 24% of babies born in developing countries. 
Worldwide, IUGR is the second cause of perinatal morbidity and mortality behind 
the premature birth and a major predisposing factor to metabolic disorders through-
out postnatal life, even at adult age. Skeletal muscle represents about 35–40% of the 
body mass and plays an essential role in metabolic homeostasis, being responsible 
for 65% of fetal glucose consumption. A reduction in skeletal muscle growth char-
acterizes IUGR fetuses compared to normal weight neonates. The decrease in mus-
cle mass is not compensated after birth and persists until adulthood. This is a review 
of the literature, a neonatological, clinical point of view on the effects of IUGR on 
striated muscles. The available studies on this subject are currently the results of 
experimental research on animals, and information about the human fetus and new-
born are scarce.

Keywords Intrauterine growth restriction · Fetus · Muscle · Newborn · Glucose

L. Năstase (*) · D. Cretoiu · S. M. Stoicescu 
Carol Davila University of Medicine and Pharmacy, Bucharest, Romania 

Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, 
Bucharest, Romania

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1435-3_5&domain=pdf


94

5.1  Introduction

Intrauterine growth restriction (IUGR) represents a rate of fetal growth that is less 
than normal for the population and for the growth potential of a specific infant. 
IUGR produces infants who are small for gestational age (SGA) but also appropri-
ate for gestational age (AGA). It refers to growth less than expected for gestational 
age and is most often under 10th percentiles for age [1, 2].

IUGR may be categorized as symmetric (hypoplastic small for date), asymmetric 
(malnourished), and mixed [3]. The asymmetric form is more common than the 
symmetric one and specifies that body growth is limited to a much greater extent 
than head (brain) development. It grows during the late second and third trimesters 
(see Table 5.1).

The etiology of IUGR is multifactorial. It can result from maternal (age of mother, 
health, low inter-pregnancy interval, smoking, infections), fetal (congenital infec-
tions, congenital anomalies, genetic syndromes, or chromosomal  abnormalities), 

Table 5.1 Intrauterine growth restriction (IUGR type)

Characteristics
Asymmetric (disharmonic) malnourished 
IUGR

Disharmonic IUGR 
symmetric (harmonic) 
hypoplastic

Incidence Most of IUGR (70–80%) Uncommon (20–30%)
Birth weight 
(BW)

Any birth weight ≤ 1SD (percentiles 10)

Head 
circumference 
(HC)

> 1SD (percentiles 10) higher than BW (head 
sparing)

≤ 1SD or < 1 SD higher than 
BW (affect all growth 
parameters)

Factors Extrinsic influences: Preeclampsia, chronic 
HTA, uterine anomalies

Intrinsic: Genetic, 
chromosomal, early 
gestational infection 
(TORCH), maternal alcohol 
use

Time when the 
fetus is affected

Later in gestation Early gestation (under 16–20 
gestation weeks)

Time when the 
fetus is affected

Early gestation (under 16–20 gestation 
weeks)

Later in gestation

Postnatal growth Reductions in all parameters. Some studies 
observe gain in weight and height similar to 
IUGR symmetric but poorer long-term growth 
and poorer developmental outcome 
independent of HC at birth

Reduction in weight
Length and head 
circumference – normal 
(brain-sparing growth)

Malnutrition Less pronounced More pronounced
Ponderal index Normal (more than 2 SD) Low (less than 2 SD)
Skeletal muscles Cell number reduced Cell number normal

Cell size normal Cell size reduced
Prognosis Poor Good

(continued)
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Table 5.1 (continued)

Characteristics
Asymmetric (disharmonic) malnourished 
IUGR

Disharmonic IUGR 
symmetric (harmonic) 
hypoplastic

Long-term 
complication

Hypertension
Ischemic heart disease/stroke
Type 2 diabetes
Kidney disease
Liver disease
Hypercholesterolemia
Metabolic syndrome X
Obesity
Lung abnormalities – reactive airway disease
Cancer – breast, ovarian, colon, lung, blood
Schizophrenia/ Parkinsonism
Alzheimer disease
Polycystic ovarian syndrome, premature pubarche
Shortened life span
Depression, anxiety, bipolar disorder
Immune dysfunction
Osteoporosis
Social problems
Poor cognitive performance

Data in this table are collected from the following Refs. [4–12]

and placental factors (multiple infarctions, chronic inflammatory lesions, abruptio 
placentae, velamentous cord, multiple gestation, placental weight less than 350 
grams, abnormal uteroplacental vasculature) [3] or a combination of them [2]. One 
of the most critical pathways which lead to IUGR is a decrease of nutrients and 
oxygen delivered to the fetus by placenta [13].

IUGR affects about 24% of children born in developing countries. Worldwide, 
following the premature birth, the second cause of perinatal morbidity and mortality 
is represented by IUGR.  Also, IUGR is a major cause for metabolic diseases 
throughout postnatal life, even at adult age [14, 15]. It seems that obesity [16, 17], 
insulin resistance, type 2 diabetes [18, 19], and cardiovascular disorders are more 
ordinary among adults who were smaller than normal at birth and very likely SGA 
secondary to IUGR [20–25].

IUGR seen as an adaptive physiologic process can determine adverse fetal, neo-
natal, and possibly adult consequences. There are studies which suggest that adult 
pathologies can be consequences of severe and prolonged fetal undernutrition. This 
condition may be defined as an example of “programming,” in which the applica-
tion of an insult in a critical or sensitive period of evolution may result in a long-life 
impact on the structure or function of the organism [26].

IUGR is due to reductions in energy supply to the fetus, limiting fat and glycogen 
storage and the growth of skeletal muscle. The fetus receiving less than the neces-
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sary blood supply preferentially shunts blood to essential organs such as the brain at 
the expense of the liver, muscle, and fat. More extreme limitations of nutrients for 
more extended period affect both body weight and soft tissue mass [27]. Timing is 
crucial. Lower fetal nutrient supply later in gestation primarily restricts the growth 
of adipose tissue and skeletal muscle [3] (see Table 5.2).

Poor placental growth and function limit the placental supply of growth promot-
ing hormones to the fetus, like steroid hormones and insulin-like growth factor-1 
(IGF-1). More than this, reduced utilization of nutrients was observed in IUGR 
neonates than to those with normal birth weights [14, 28].

Skeletal muscle represents about 35–40% of the body mass and plays an essen-
tial role in metabolic homeostasis, being responsible for 65% of fetal glucose con-
sumption [29, 30]. Metabolism and growth of skeletal muscle are influenced by 
growth factors, endocrine hormones (insulin, thyroid, adrenal, and pituitary hor-
mones), oxygen, and nutrient availability [28, 31]. IUGR fetuses are characterized 
by a reduction in skeletal muscle growth compared to normal weight neonates 
(AGA – adequate gestational age). The decrease in muscle mass is not compensated 
after birth and persists until adulthood.

Fetal skeletal muscle growth is directly affected by placental insufficiency, one 
reason being that the essential nutrients and oxygen are redirected to vital organs dur-
ing development. Some scientific researches using DXA measurement have demon-
strated a correlation between lower adult muscle mass and low birth weight [32–34].

5.2  Endocrine Control Changes of IUGR

The fetal growth and development depend on insulin, thyroid, and adrenal hor-
mones [35, 36]. Insulin has mitogenic effects on cellular growth, controls glucose 
uptake and consumption by tissues, and decreases protein breakdown. Insulin defi-
ciency will lead to IUGR.  Skeletal muscle is the primary location for insulin- 
stimulated glucose uptake accounting for about 70% of whole-body glucose disposal 
and is a crucial regulator of body energy metabolism [37]. The principal metabolic 
aim in the skeletal muscle is the synthesis of ATP for muscle contraction. In the 
same time, the skeletal muscle is liable for the generation and storage of glycogen, 
an insulin-dependent cycle. ATP is involved too, in the β-oxidation process which 
breaks down free fatty acids to supply muscle with carbon chain substrates [38]. In 
insulin resistance status, skeletal muscle is no longer responsive to the anabolic 
effects of insulin reducing insulin-stimulated glucose uptake [39]. Insulin also acts 
as a fetal skeletal growth factor. Scientific research experiments using fetal sheep 
showed that the lack of insulin is an effect of development restriction in cases of 
pancreatic agenesis [40]. Furthermore, insulin infusion into neonatal piglets pro-
motes skeletal muscle protein synthesis [41, 42].

IUGR fetuses, experimental animal models or analysis of umbilical blood samples 
obtained by cordocentesis, have lower plasma glucose concentration compared with 
control fetuses. Fetal hypoglycemia limits glucose uptake by tissues, insulin secre-

L. Năstase et al.
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tion, and the effect of insulin on glucose uptake by skeletal muscles. Insulin plays a 
key role as an anabolic hormone that enhances protein balance by inhibiting protein 
breakdown. Thus, a decreased plasma insulin concentration, associated with hypogly-
cemia, results in increased protein breakdown and lower protein accretion [14, 43].

IGF-I is modulated by glucose supply in the fetus. IGF-I has mitogenic effects 
inducing somatic cell development and proliferation. It affects the carriage of glu-
cose and amino acids across the placenta. IGF-I deficiency causes a fall in fetal 
growth rate. IGF-II effect on human fetus is not well known although preclinical 
trials show that mutation in IGF-II gene determines smaller fetal size in mice. 
Insulin-like growth factor-binding protein-3 (IGFBP-3) is diminished in cord blood 
of IUGR [3, 44]. The cellular growth depends on the balance between the binding 
protein and IGF molecule itself. Vasoactive intestinal polypeptide (VIP) is a growth 
factor that affects the whole-body growth [3]. Hypothyroidism decreases circula-
tory and tissue concentrations of IGF-I, oxygen consumption, and glucose oxidation 
resulting in a deficiency of energy supply for growth [45].

5.3  Placental Insufficiency

One important factor modulating fetal development is nutrient delivery to the fetus 
via placental diffusion and transport [37], and one of the most frequent causes of 
IUGR is placental insufficiency [14]. Placental insufficiency is defined as a smaller 
than normal placenta with restriction of nutrient flow from mother to fetus [27, 37, 
46]. Placental insufficiency affects around 8% of all pregnancies and is associated 
with chronic hypertension, pregnancy-induced hypertension, preeclampsia, infarcts, 
and idiopathic causes [28, 47].

The most elevated method used for characterizing placental insufficiency and for 
defining abnormalities in the umbilical artery is Doppler velocimetry [48]. 
Degradation of small muscle arteries due to placental condition results in a high 
pulsatility index [47, 49, 50]. When the umbilical blood flow and fetal oxygenation 
are lower, the fetal ductus venous dilated to provide enough nutrients and oxygen 
for the brain and heart [51]. Redistribution of blood flow to the vital organs occurs 
at the expense of nutrient and oxygen delivery to the periphery. This particular situ-
ation seems to contribute to 25–40% reduction in muscle mass of IUGR neonates 
[27]. As the fetus grows, the affected placenta cannot provide increased nutritional 
demands of the fetus, resulting in chronic fetal hypoglycemia and hypoxemia. 
Hypoxemia elevates plasma and amniotic fluid norepinephrine and epinephrine 
concentrations. Catecholamines act via the G-protein-coupled receptors, Adrα and 
Adrβ. Receptor expression patterns determine how tissues respond to catechol-
amines. Skeletal muscle predominantly expresses Adrβ1 and Adrβ2 subtypes [14]. 
Catecholamines affect skeletal muscle directly by selectively impairing insulin sig-
naling and indirectly by suppressing insulin secretion from pancreatic β cells [14]. 
A chronic state of fetal hypoglycemia suppresses glucose oxidation. Consequently, 
an endocrine and metabolic adaptation develops to preserves fetal nutrients by 
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decreasing skeletal muscle energy requirements for protein synthesis and growth. 
Circulating concentration of IGF-1 is reduced too during fetal hypoglycemia which 
may contribute to increased fetal protein breakdown [14]. During gestation, muscle 
grows through a continued process of proliferation and fusion of myoblasts into 
determinated myofibers [52, 53]. Late gestation and postnatal muscle growth is gen-
erally produced by myofibers hypertrophy, as has been demonstrated in mice [54]. 
It is not known if the slow myofiber hypertrophy is an adaptation to reduced nutri-
ents and growth factors or if it activates protein breakdown as a result of cellular 
stress. It is possible that the fetus develops a slower growth rate as a response to the 
redistribution of blood flow away from skeletal muscle, but as the placental insuf-
ficiency advances, with progressive hypoxia, catabolic pathways are activated, and 
the production of catecholamine and cortisol is increased [55]. The postnatal myo-
genesis involves maintenance of the satellite cells that reside around muscle fibers 
in a latency state and are activated during muscle growth, repair, and regeneration 
[56]. Insulin controls the cell number, has a direct mitogenic effect, and promotes 
myoblast proliferation and differentiation. It conducts the tissular glucose uptake 
and consumption and protein breakdown and increases protein synthesis in fetal 
skeletal muscle [57]. Therefore, insulin deficiency will lead to IUGR and impaired 
muscle growth.

5.4  Fetal Adaptation

Elsie Widdowson introduced over 40 years ago the idea that chronic fetal malnutri-
tion (i.e., placental insufficiency and IUGR status) may disrupt normal myogenesis 
[58]. Placental insufficiency causes hypoxemia, hypoglycemia, hypercatecholamin-
emia, and suppression of glucose oxidation. Chronic hypoglycemia increases pro-
tein breakdown and rates of amino acid oxidation, lowering plasma insulin, glucose 
uptake, and fetal growth rate. These metabolic changes are correlated with placental 
oxygen supply and cannot be attenuated only by removing the nutrient deprivation 
[14]. IUGR is associated with slow rate and impaired growth and development of 
skeletal muscle [59]. Metabolic, physiological, and biochemical parameters of mus-
cle fibers are influenced differently by the timing of the fetal injuries. In the third 
trimester, the myogenesis process is complete and the fiber amount is determined. 
Another factor which reduced fiber density and affects myotube development is 
represented by nutritional insult [14]. Severe fetal conditions like hypoxemia and 
hypoglycemia that can occur late in gestation period are correlated with reduced 
muscle mass by impairing fiber growth [14]. Several studies showed muscle fiber 
number to be set at birth [58, 60, 61]. Recently, this affirmation was supported by a 
study showing that this is true for several human muscles; however tibialis anterior 
and extensor digitorum longus muscles are able to increase their myofibers during 
the first postnatal week [62]. Following myogenesis, muscle growth by fiber hyper-
trophy requires myoblast incorporation to increase genomic DNA content. Human 
IUGR fetuses have reduced skeletal muscle DNA content but have normal 
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protein-to-DNA ratios and normal molecular machinery needed for transcriptional 
control of proliferation [14, 63]. The mechanism that impaired proliferation and 
formation of myofibers is not entirely understood, though insulin and insulin-like 
growth factors which regulate fetal growth and myoblast proliferation are reduced. 
Composition and distribution of muscular fiber type are affected in IUGR, as well 
as fat and collagen concentrations [59, 64] (Fig. 5.1). Evidence of these findings are 
the changes detected in 12 proteins involved in processes like immune response, 
synthesis and degradation of proteins, cellular structure, and antioxidant function 
[28]. IUGR affects the proteomes of skeletal muscle in newborn piglets in a tissue- 
specific manner. Therefore it is assumed that altered expression of proteomes will 
enhance proteolysis, decrease polypeptide synthesis, cause oxidative stress, and 
affect health in IUGR newborns [28].

5.5  Postnatal Aspects of a Newborn with IUGR

Immediately after birth, newborns with IUGR bear the mark of chronic intrauterine 
pain in all tissues and, also, clinical evidence, particularly in the skeletal muscle and 
adipose tissue. The initial clinical appearance may highlight the type and degree of 
growth restriction (see Table  5.2). Their precise quantification can be achieved 
using several growth indices (see Table 5.3).

Growth and development in the postneonatal period are programmed by reactive 
hormonal changes in intrauterine life.

During embryonic myogenesis, only a small number of primary fibers are formed 
which then serve as a template for secondary fiber myogenesis in the fetal stage 
[65]. Due to the limited number of primary fibers formed during embryonic myo-
genesis, secondary myogenesis has a significant impact on muscle size and total 
fiber number [66]. The formation of secondary fibers is determined mainly by the 
fetal myoblasts number as well as their activity [67]. However, these cells are highly 
sensitive to nutrients which makes maternal nutrient supply a critical factor for 
 muscle development at the fetal stage [52, 68]. In fact, many studies have shown 
that IUGR piglets have reduced muscle size and total fiber number (mainly second-

Fig. 5.1 Tight muscle biopsy (postmortem) from preterm newborn, 32-week gestational age, 
extremely low birth weight, 950 g, with severe symmetric IUGR, with single umbilical artery. 
Minimal to moderate variability of muscle fiber size together with a low fiber diameter can be seen; 
nuclei are large, located at the periphery. (Photo collection of the Alessandrescu-Rusescu National 
Institute)
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ary fibers) which significantly affect postnatal muscle growth [28, 69–71]. The main 
contribution of nuclei for postnatal muscle growth is from muscle satellite cells 
[72]. Satellite cells were first discovered by Alexander Mauro in electron micro-
graphs of frog skeletal muscle in 1961 [73]. These cells were found closely attached 
to muscle fiber, between fiber membrane and basal lamina, which were then named 
“satellite cell” [73]. Once activated, satellite cells undergo rapid proliferation, with 
a small portion of daughter cells renewing the original satellite cell pool, while the 
majority of these cells differentiate to myoblasts [74, 75]. These myoblasts fuse 
with existing muscle fibers and provide external nuclei, thereby increasing DNA 
content and protein synthetic capacity in each fiber [76]. The majority of adult mus-
cle nuclei originate from the muscle satellite cell which suggests postnatal muscle 
growth potential is highly related to satellite cell number per muscle fiber, as well as 
their proliferation and differentiation [77–79].

5.6  Conclusions

IUGR is a major health problem of wide world with multiple determinant factors, 
such as maternal, fetal, placental, and genetic.

In order to minimize the risk of neonatal and perinatal mortality, early diagnosis 
and management of IUGR is needed.

There are primarily two types of IUGR, symmetrical and asymmetrical, depend-
ing on the onset of gestation and the IUGR etiology. These IUGR fetuses have both 
short-term and long-term complications, which make them high-risk neonates.

One of the major causes of IUGR is placental insufficiency that affects the sup-
ply of nutrients, oxygen, hormones, and growth factors. This affects the growth and 
fetal development and implicitly of skeletal muscles. Altering the structure and 

Table 5.3 Evaluation nutrition of newborn with IUGR

Indices Formula Interpretation

Ponderal index (PI) [weight (in gram) × 100] ÷ [length (in cm)3] Less than 10 
percentiles – Fetal 
malnutrition

Mid-arm circumference 
and mid-arm/head 
circumference ratios 
(Kanawati and 
McLaren’s index) [80]

Mid-arm/head circumference ratios (MAC/
HC)

Less than 0.27 – fetal 
malnutrition

Clinical assessment of 
nutrition score (CAN 
score) [81]

It includes nine parameters, namely, hair, 
cheeks, neck and chin, arms, legs, back, 
buttocks, chest, and abdomen. The maximum 
score is 36 with each parameter given a 
maximum score of 4 and a minimum score of 
1, in which 4 denotes normal nutrition and 1 
denotes malnutrition

CAN score of less 
than 25 is considered 
to be malnourished
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growth of muscle fibers during gestation influences their growth and subsequent 
development.

Hormonal changes (e.g., hypoinsulinism) play an essential role in the determin-
ism of muscle growth and development. Poor hormonal and oxygen supply affects 
the metabolism of skeletal muscles by programming deficient postnatal develop-
ment and postnatal recovery throughout life.

IUGR fetuses may develop a long-term decrease in insulin-mediated growth that 
will also lead to insulin resistance in adulthood, being correlated with type 2 
diabetes.

Improvement of postnatal weight loss is not associated with recovery of muscle 
mass to achieve similarity with AGA newborns.
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Chapter 6
The Role of IGF-1 Signaling in Skeletal 
Muscle Atrophy

Louk T. Timmer, Willem M. H. Hoogaars, and Richard T. Jaspers

Abstract Insulin-like growth factor 1 (IGF-1) is a key anabolic growth factor stim-
ulating phosphatidylinositol 3-kinase (PI3K)/Akt signaling which is well known for 
regulating muscle hypertrophy. However, the role of IGF-1 in muscle atrophy is less 
clear. This review provides an overview of the mechanisms via which IGF-1 signal-
ing is implicated in several conditions of muscle atrophy and via which mechanisms 
protein turnover is altered. IGF-1/PI3K/Akt signaling stimulates the rate of protein 
synthesis via p70S6Kinase and p90 ribosomal S6 kinase and negatively regulates 
protein degradation, predominantly by its inhibiting effect on proteasomal and lyso-
somal protein degradation. Caspase-dependent protein degradation is also attenu-
ated by IGF/PI3K/Akt signaling, whereas evidence for an effect on 
calpain-dependent protein degradation is inconclusive. IGF-1/PI3K/Akt signaling 
reduces during denervation-, unloading-, and joint immobilization-induced muscle 
atrophy, whereas IGF-1/PI3K/Akt signaling seems unaltered during aging- 
associated muscle atrophy. During denervation and aging, IGF-1 overexpression or 
injection counteracts denervation- and aging-associated muscle atrophy, despite 
enhanced anabolic resistance with regard to IGF-1 signaling with aging. It remains 
unclear whether pharmacological stimulation of IGF-1/PI3K/Akt signaling attenu-
ates immobilization- or unloading-induced muscle atrophy. Exploration of the pos-
sibilities to interfere with IGF-1/PI3K/Akt signaling reveals that microRNAs 
targeting IGF-1 signaling components are promising targets to counterbalance mus-
cle atrophy. Overall, the findings summarized in this review show that in disuse 
conditions, but not with aging, IGF-1/PI3K/Akt signaling is attenuated and that in 
some conditions stimulation of this pathway may alleviate skeletal muscle atrophy.
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6.1  Introduction

Insulin-like growth factor 1 (IGF-1) is a key anabolic growth factor which is 
involved in tissue development during growth, as well as in adaptation and regen-
eration of mature tissues and cells. IGF-1 is expressed in multiple isoforms in almost 
all tissues and cells [1]. It is therefore not surprising that mice deficient in IGF-1 or 
its receptor show decreased viability, growth deficiency, and malformations in sev-
eral tissue types [2]. IGF-1 is expressed in the liver, acts locally in an autocrine and 
paracrine manner on liver cells, but also has a strong endocrine function on other 
tissues like muscle. In muscle, IGF-1 isoforms that are most abundantly expressed 
are IGF-1Ea and mechano growth factor (MGF, also referred to as IGF-1Ec in 
humans or IGF-1Eb in rodents). In skeletal muscle, basal mRNA levels are higher 
for IGF-1Ea than MGF [3]. Paradoxically, the expression of IGF-1Ea is higher in 
relative small oxidative myofibers, expressing slow myosin heavy chains (MHCs) 
than in relative large, low oxidative myofibers expressing fast-type MHCs [4]. 
Expression of these main IGF-1 isoforms increases substantially in response to 
mechanical overload by stretching or increased contractile activity [1, 5, 6]. 
Moreover, IGF-1 expression is also enhanced biochemically by growth hormone 
(GH), and its half-life time and/or bioactivity is both negatively and positively regu-
lated by several IGF-binding proteins (IGFBPs) as well as by albumin [1, 7, 8]. 
Since different IGFBPs can compensate for each other [7], single IGFBP measure-
ments provide little evidence regarding the bioavailability of IGF-1.

Both IGF-1 isoforms are derived from the same gene which contains 6 exons. 
MGF is expressed by alternative splicing of exon 5 and 6 and differs from IGF- 
1Ea in its E peptide which contains exon 5 and 6 in stead of exon 6 in IGF-1Ea [6]. 
The IGF-1 domain of IGF-1Ea and MGF, which consists of exon 3 and 4, signals 
via the IGF-1 receptor (IGF-1R), which is a tyrosine kinase receptor expressed in 
both myofibers and muscle stem cells (also known as satellite cells). Also the E 
peptides of IGF-1Ea and MGF E are involved in signaling via the IGF-1R whereby 
the MGF E peptide is known for its stimulatory effect on satellite cell activation, 
proliferation, and migration [1, 9, 10]. Moreover, different IGF-1 isoforms exist 
also due to different promotor start regions upstream of exon 1 or 2 [11]. Transcripts 
including exon 1 are known as class 1 IGF-1 isoforms, whereas IGF-1 isoforms 
including exon 2 are referred to as class 2 [11]. Functional differences of the two 
classes remain however unclear [12]. IGF-1 and insulin share about 50% amino acid 
homology and can bind each other’s receptors, albeit with lower affinity.

IGF-1 and MGF are well known for their autocrine and paracrine roles during 
muscle overload and myofiber hypertrophy, however, less is known about how 
IGF-1 is involved in the induction of muscle atrophy. An important signaling path-
way in skeletal muscle atrophy is the IGF-1/phosphatidylinositol 3-kinase (PI3K)/
Akt pathway, since this is involved in both protein synthesis and protein degradation 
[4, 13–22]. Here we provide an overview of the main signaling pathways via which 
IGF-1 and MGF modulate the rate of protein synthesis and degradation during 
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 muscle atrophy, with particular emphasis on the IGF-1/PI3K/Akt pathway, and how 
IGF-1 signaling is altered.

6.2  The Role of IGF-1 in the Regulation of Protein Synthesis 
and Degradation

Changes in muscle size are the net effect of changes in the rate of protein synthesis 
and protein degradation. IGF-1 affects both processes, and as such, changes in its 
signaling have a strong effect on muscle size [4, 13–22]. In this paragraph, the role 
of IGF-1  in protein synthesis and different mechanisms of protein breakdown is 
reviewed.

Binding of IGF-1 to its receptor causes phosphorylation of the intracellular adap-
tor proteins Shc or insulin receptor substrate 1 (IRS-1), which results in the activa-
tion of two main pathways, RAS/RAF/MEK/ERK (also known as mitogen-activated 
protein kinase (MAPK) signaling) and PI3K/Akt, respectively [21, 23]. IGF-1- 
induced hypertrophy in rats is prevented by the inhibition of MEK [24], which indi-
cates the requisite for MAPK signaling in hypertrophy in vivo. In myotubes however, 
inhibition of RAF has been shown to induce hypertrophy [25], suggesting an inhibi-
tory effect of MAPK signaling on hypertrophy in vitro. These observations show 
that the role of MAPK in protein synthesis and degradation and the underlying 
mechanisms are not entirely understood. On the other hand, the IGF-1/PI3K/Akt 
pathway and its anabolic mechanisms underlying myofiber hypertrophy are well 
established. Translocation of PI3K to phosphorylated IRS-1 results in the phos-
phorylation of PI3K.  Subsequently, this causes the phosphorylation of 
phosphoinositide- dependent kinase-1 (PDK1) which then phosphorylates the ser-
ine/threonine kinase Akt (also known as protein kinase B) [26]. Akt is involved in 
multiple cellular processes including proliferation, metabolism, and cell size regu-
lation [27]. Because the IGF-1/PI3K/Akt pathway plays a major role in myofiber 
size, the main focus of this review will be on the role of this pathway during skeletal 
muscle atrophy.

6.2.1  Protein Synthesis

Changes in the rate of protein synthesis involve changes in the rate of mRNA tran-
scription and translation, which in muscle are both enhanced by IGF-1 [see for 
review 13, 28]. IGF-1 increases protein levels of β-catenin (a transcription factor 
involved in skeletal muscle growth) by phosphorylation of glycogen synthase kinase 
3 beta (GSK3β), which prevents atrophy and can even induce hypertrophy in 
dexamethasone- treated rats [29]. Moreover, IGF-1 has been shown to increase tran-
scription rate of α-skeletal actin during differentiation and myosin heavy chain 
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(MHC) IIB in C2C12 myoblasts and myotubes, respectively [30, 31]. Increased 
transcription by IGF-1 may be regulated by myogenin and MyoD, which are both 
transcription factors involved in the expression of actin and myosin, since IGF-1 has 
been shown to induce myogenin and MyoD expression [32] and both transcription 
factors increase in the human vastus lateralis after resistance exercise [33]. Note, 
myogenin has been shown to be stimulated by IGF-1/PI3K/Akt signaling when 
simultaneously MAPK signaling is inhibited [24, 34]. Indeed, IGF-1 treatment has 
also been associated with a lack of increase in myogenin and MyoD [31, 35]. These 
observations show that IGF-1 enhances transcription, but the underlying mecha-
nisms are not entirely clear.

In addition to transcription, the IGF-1/PI3K/Akt pathway stimulates translation 
by activation of a key anabolic target, the mammalian target of rapamycin (mTOR), 
which is a kinase that integrates multiple upstream signals, which are not solely 
derived from IGF-1/PI3K/Akt activation [36]. In addition to IGF-1, another impor-
tant activator of mTOR is mechanical loading [37], and therefore disuse atrophy is 
likely to decrease mTOR activity even if IGF-1 signaling would be unaffected. 
Moreover, mTOR is affected by several other upstream mediators such as energy 
status or amino acids [36]. Activation of mTOR stimulates the rate of mRNA trans-
lation by phosphorylation of 4E-BP (also known as PHAS-1), which prevents its 
binding (i.e., inactivation) to the eukaryotic initiation factor (eIF) 4E (Fig. 6.1) [17, 
38]. Furthermore, activated mTOR also activates p70S6Kinase (p70S6K) which 
stimulates mRNA translation by phosphorylating ribosomal protein S6 (rpS6) and 
activation of eukaryotic elongation factor (eEF) 2 [39–42].

Moreover, PDK1 which is phosphorylated by PI3K and subsequently phosphor-
ylates Akt is also likely to be involved in enhancement of the rate of protein synthe-
sis independent of Akt [26]. The role of PDK1  in skeletal muscle is not fully 
understood, but evidence from studies on several other cell types, including smooth 
muscle, suggests that PDK1 can phosphorylate Akt and has also the ability to 
directly activate p70S6K and p90 ribosomal S6 kinase (p90RSK), both increasing 
the rate of translation by regulation of rpS6 and eEF2 [26, 40, 41]. In smooth muscle 
cells, p90RSK is also activated by ERK [26]. In addition, mRNA translation rate is 
also increased by phosphorylation of Akt which then phosphorylates and inhibits 
GSK3β which is subsequently no longer able to suppress eIF2B activity [43]. 
GSK3β has been shown to be required for atrophy in C2C12 myotubes and is 
involved in both skeletal muscle hypertrophy and atrophy in humans [44, 45]. 
Moreover, GSK3β may also be inhibited by ERKs as it has been shown in cancer 
cells that ERKs facilitate the inhibition of GSK3β by [46].

The key regulatory kinases of which the activity is modulated by IGF-1 are 
p70S6K, p90RSK, and GSK3β, which are all involved in enhancement of the rate of 
mRNA translation (Fig. 6.1).
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6.2.2  Proteasomal Muscle Protein Degradation

The prime system for muscle protein degradation is the ubiquitin-proteasome sys-
tem [13, 14, 47, 48]. During protein degradation, contractile proteins are ubiquiti-
nated by the consecutive actions of E1, E2, and E3 enzymes which can then be 
recognized and subsequently degraded by proteasomes. The gene expression as 
well as their function in muscle atrophy of two E3 ligases, Muscle Ring Finger 1 
(MuRF1) and muscle atrophy F-box (MAFbx, also known as Atrogin-1), has exten-
sively been examined [see for review 48]. Both E3 ligases are particularly involved 

Fig. 6.1 An overview of the key signaling pathways underlying the hypertrophic effects of IGF-1. 
Stimulation is indicated by arrows, and inhibitory effects are indicated by lines capped by perpen-
dicular lines. Solid lines represent established mechanisms; dashed lines represent mechanisms 
that have not been consistently proven in myofibers. Colors represent different pathways or down-
stream targets. Two important signaling pathways induced by IGF-1 are the IGF-1/PI3K/Akt path-
way and the IGF-1/Ras/Raf/Mek/Erk pathway. Both pathways result in kinase activation or 
changes in binding proteins causing enhancement of mRNA translation by regulating ribosomal 
proteins, eukaryotic initiation factors (eIF), or eukaryotic elongation factors (eEF). Abbreviations: 
IGF-1 insulin-like growth factor 1, PI3K phosphatidylinositol 3-kinase, PDK1 phosphoinositide- 
dependent kinase-1, GSK3β glycogen synthase kinase 3 beta, mTOR mammalian target of rapamy-
cin, 4E-BP 4E-binding protein, ERK extracellular signal-regulated kinases
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in the degradation of contractile proteins and eIF3f [49, 50]. During several atrophic 
conditions, MuRF1 and MAFbx expression levels are increased [48, 51], and these 
ligases are critical for the enhanced rate of protein degradation as MuRF1- or 
MAFbx-deficient mice showed a 36% and 56% reduction in denervation-induced 
muscle atrophy after 14 days, respectively [51]. Expression of MuRF1 and MAFbx 
is regulated by a group of Forkhead box O (FOXO) transcription factors which 
stimulate expression of several genes involved in diverse mechanisms of protein 
degradation, including proteasomal degradation [18, 19]. Transcriptional activation 
of MuRF-1 and MAFbx expression requires nuclear localization of FOXO tran-
scription factors which is mediated by Akt. Active Akt phosphorylates FOXO tran-
scription factors resulting in their cytoplasmic retention and inactivation of their 
function as transcription factors in the nucleus [52, 53]. FOXO1, 3, and 4 are the 
most important FOXO transcription factors involved in muscle atrophy and are all 
regulated by Akt [18]. Moreover, muscle atrophy induced by IGF-1R and insulin 
receptor knockout could completely be prevented by the combined knockout of 
FOXO1, 3, and 4, whereas knockout of single FOXO transcription factors had little 
or no effect [54], which indicates the importance of all three FOXO factors in mus-
cle atrophy. In short, the IGF-1/PI3K/Akt pathway negatively regulates proteasomal 
degradation by inactivating FOXO transcription factors and hence the expression of 
the E3-ligases MAFbx and MuRF-1 (Fig. 6.2).

6.2.3  Lysosomal Muscle Protein Degradation

Autophagy is another key mechanism for muscle protein degradation [55]. 
Autophagy concerns the engulfment of cellular particles into autophagosomes 
which subsequently fuse with lysosomes to be degraded in the acid intralysosomal 
environment [55]. Several conditions like fasting and denervation result in the 
upregulation of expression of proteins involved in autophagy [56, 57]. Induced 
myofiber atrophy by constitutive active FOXO3 was attenuated by knockdown of 
LC3, a gene involved in autophagy [56]. An accumulation in ubiquitinated proteins 
was observed in autophagy-deficient mice [58], which suggest that some ubiquiti-
nated proteins are specifically degraded by lysosomal degradation. These observa-
tions indicate the involvement of autophagy in muscle atrophy. In addition to its role 
in muscle atrophy, autophagy is also important for cell maintenance as this mecha-
nism is also responsible for the clearance of misfolded proteins and dysfunctional 
organelles [55]; therefore both diminished and overactivity of autophagosomes 
could be harmful to myofibers. The first may affect the quality of myofibers, whereas 
the second affects the quantity of proteins within myofibers.

IGF-1 has been shown to regulate autophagy since deletion of insulin receptor 
and IGF-1R in mice increased an autophagic flux [54]. As in proteasomal degrada-
tion, deactivation of FOXO transcription factors by Akt is also a key mechanism in 
autophagy [56, 57]. FOXO3 is involved in the control of autophagosome formation 
by stimulating expression of two autophagy-related genes, i.e., LC3 and Bnip3 [56, 

L. T. Timmer et al.



115

57]. In addition, the upregulation of several autophagic factors and autophagosome 
formation induced by fasting or denervation, was abolished by exogenous expres-
sion of constitutively active Akt, while inhibition of Akt increased lysosomal prote-
olysis [56, 57]. The inhibition of total mRNA synthesis while Akt was blocked 
largely suppressed the increased lysosomal proteolysis caused by Akt inhibition 
[57], which suggests that FOXO-induced transcription is largely responsible for 
increased lysosomal proteolysis. Although the effect was relatively small, mTOR 
inhibition also caused an increase in lysosomal proteolysis, while blocking of 
mRNA synthesis did not prevent this increase, which indicates that mTOR can also 
suppress autophagy independent of transcriptional control [57]. These observations 
are in line with results of a study on acute uremia whereby IGF-1/PI3K/Akt- 
independent stimulation of mTOR by leucine also suppressed autophagy [59]. 
These data suggest that an increase in IGF-1/PI3K/Akt signaling inhibits autophagy 
through activation of predominantly FOXO3 and also mTOR. In addition to fasting 
and denervation, 4 days of knee joint immobilization in young adult humans caused 
increased LC3B-II/LC3B-I protein ratios, an indication of increased autophagy, 
concomitant with decreased pAkt/tAkt levels [60]. This suggests that an increase in 
autophagy due to reduced IGF-1/PI3K/Akt signaling is associated with unloading. 
Overall, there is strong evidence that the IGF-1/PI3K/Akt pathway inhibits 

Fig. 6.2 An overview of the key signaling pathway underlying the anti-atrophic effects of IGF-1. 
Stimulation is indicated by arrows, and inhibitory effects are indicated by lines capped by perpen-
dicular lines. Solid lines represent established mechanisms; dashed lines represent mechanisms 
that have not been consistently proven in myofibers. Abbreviations: IGF-1 insulin-like growth 
factor 1, PI3K phosphatidylinositol 3-kinase, FOXO Forkhead box O transcription factors, MuRF1 
Muscle Ring Finger 1, MAFbx muscle atrophy F-box, LC3 microtubule-associated protein 1A/1B- 
light chain 3, Bnip3 BCL2 interacting protein 3
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 autophagy during fasting, denervation, and potentially joint immobilization and that 
this is mediated predominantly through the inactivation of FOXO3 (Fig. 6.2).

However, the role of autophagy in different atrophic conditions is not unambigu-
ous. In contrast to adults, in elderly LC3B-II/LC3B-I protein ratios were unaffected 
after 4 days of knee joint immobilization [60], which suggests that in aged muscle 
autophagy may not be induced by joint immobilization. In the long term, after 
2  weeks of joint immobilization, no convincing increase in autophagy could be 
shown in both young adult and elderly. These observations indicate that in elderly 
joint immobilization does not increase muscle autophagy, whereas in adults autoph-
agy is increased shortly after immobilization and does not occur in the long term 
[60]. The lack of a long-term effect of unloading is confirmed by a study in which 
mice were subjected to 91 days of unloading in the International Space Station, 
which showed no changes in autophagy-related gene expression [61]. In contrast, in 
adult and old rats undergoing hind limb suspension for 2 weeks, no clear increase in 
autophagy was observed suggesting that in this unloading model, autophagy may 
not play a role in the induction of muscle atrophy [62].

Autophagy seems also to be regulated independent of IGF-1/PI3K/Akt signal-
ing, since mice showing aging-associated muscle atrophy, whereby IGF-1 signaling 
was unchanged, had an increase in autophagic vesicles [63]. This is in line with the 
effect of lipopolysaccharide (LPS) administration in rat skeletal muscle resulting in 
acute inflammation, which is associated with proteasomal and lysosomal proteoly-
sis [64, 65]. LPS injection caused a decrease in IGF-1 mRNA expression and Akt 
phosphorylation [64, 65]. Although blocking of this LPS-induced inflammation 
restored Akt phosphorylation and autophagy-related protein expression [65], IGF-1 
systemic or muscle-specific overexpression could not inhibit the LPS-induced 
increased autophagy-related gene expression [64]. This also suggests that autoph-
agy is regulated independently of IGF-1 signaling. Indeed, p38 MAPK has been 
suggested to regulate autophagy [55, 66]. p38 can be stimulated by IGF-1 but also 
independent of IGF-1 by, for instance, oxidative stress [66].

Overall, there is strong evidence that autophagy is regulated by the IGF-1/PI3K/
Akt pathway and is involved in fasting- and denervation-induced atrophy. However, 
the role of autophagy is not clear in all muscle atrophic conditions and seems to be 
transient and age dependent.

6.2.4  Caspase- and Calpain-Dependent Muscle Protein 
Degradation

6.2.4.1  Calpain-Dependent Protein Degradation

Calpains are cysteine proteases which are activated by free cytoplasmic calcium and 
degrade predominantly cytoskeletal proteins [see for review 67]. In skeletal muscle, 
three different calpain isoforms are mainly expressed, i.e., milli- and micromolar cal-
pains (also referred to as calpain 1 and 2, respectively), which are named after their 
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sensitivity for calcium, and calpain 3, also known as p94 [67]. Although calpains are 
also able to degrade contractile proteins, they predominantly degrade Z-discs of sarco-
meres which makes myofilaments available for degradation by the proteasome [67].

Calpain inhibition prevented immobilization-induced atrophy [68]. Moreover, 
calpain 3-deficient mice, which exhibit features of limb girdle muscular dystrophy 
type 2A, showed reduced muscle atrophy when subjected to unloading, suggesting 
calpain 3 requirement for muscle atrophy [69]. Because of their cooperation with 
the proteasome, it is conceivable that calpain expression is reduced by IGF-1, simi-
lar as E3 ligase expression. Indeed, both in vitro and in vivo studies on myotubes 
and mature myofibers show that IGF-1 inhibits calpain activity [70, 71]. Moreover, 
caloric restriction-induced muscle atrophy in neonatal calves was associated with 
an increase in calpain 1 activity and decrease in IGF-1 protein expression [72]. This 
observation is in line with that of another study showing that IGF-1 has an inhibi-
tory effect on calpain-dependent proteolysis in dexamethasone-induced L6 myo-
tube atrophy [73], which indicates that IGF-1 attenuates calpain activity. In contrast, 
another study investigating L6 myotube atrophy using the same calpain blocker in 
presence or absence of IGF-1 supplementation reported an increase instead of a 
decrease in myofibrillar protein degradation when calpain activity was blocked 
[74]. Although there are contrasting results regarding the effect of IGF-1 on calpain- 
induced proteolysis, the majority of these studies suggest an inhibitory effect of 
IGF-1 on calpain-dependent protein degradation (Fig. 6.2).

Although the role of IGF-1 in calpain activation is subject to controversy, a few 
studies have shown some insight in the interaction between calpain activity and Akt. 
In rat diaphragm muscle ex  vivo, it has been shown that activation of calpains 
reduces Akt activity by lowering the binding of heat shock protein 90 (HSP90) to 
Akt which preserves Akt activity [67, 75]. Also, a reduction in pAkt in rat soleus 
muscle was prevented when unloading-induced calpain 1 activation was blocked. 
[76]. These results indicate that calpain activity reduces Akt phosphorylation. Note 
that Akt phosphorylation was not affected in calpain 3-deficient mice [69] which 
suggests calpain isoform specificity for the interaction with Akt activity.

The studies discussed above show that little is known regarding the role of the 
IGF-1/PI3K/Akt pathway in calpain-dependent protein degradation and to the best 
of our knowledge, a direct link between IGF-1/PI3K/Akt signaling and calpain 
activity in skeletal muscle has not been investigated. The data available suggest that 
calpain 1 but not 3 can inhibit Akt activity and that IGF-1 can inhibit calpain activ-
ity, but there is no evidence suggesting that an inhibitory effect of IGF-1 on calpain- 
dependent muscle protein degradation is mediated by IGF-1/PI3K/Akt signaling.

6.2.4.2  Caspase-Dependent Protein Degradation

Caspases are proteases, which in particular are involved in apoptosis and inflamma-
tion. Caspase-3 is activated in both angiotensin II-induced muscle wasting [77] and 
chronic kidney disease (associated with muscle wasting) [78]. Moreover, caspase-3 
and caspase-9 activities increase during immobilization-induced muscle atrophy 
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[68, 79], and the inhibition of caspase-3 activity prevented immobilization-induced 
atrophy in the rat soleus [68]. In contrast, no increases in caspase-3, caspase-8, or 
caspase-9 activities have been observed following limb unloading in both rats and 
humans [62, 80]. These observations indicate that caspase-mediated protein degra-
dation is involved in several but not all conditions of muscle atrophy. Although sup-
port for IGF-1/PI3K/Akt-induced calpain-dependent degradation is scarce, evidence 
for the IGF-1/PI3K/Akt involvement in the reduction of caspase-dependent protein 
degradation is more substantial.

Administration of recombinant active caspase-3 to cultured L6 myotubes or rat 
psoas muscle lysates causes cleavage of myofibrillar proteins resulting in a detect-
able 14kD actin fragment which is degraded by the proteasome [81]. Serum 
deprivation also results in enhanced myofibrillar fragmentation which is abol-
ished after inhibition of caspase-3 activity by IGF-1 [81]. Moreover, the inhibi-
tory effect of IGF-1 on caspase-3 activity in L6 myotubes has been shown to be 
PI3K dependent [81]. These results suggest involvement of caspase-3 in myofi-
brillar degradation and that this caspase-mediated protein degradation is counter-
balanced by IGF-1/PI3K/Akt signaling. In addition to this in  vitro evidence, 
during angiotensin II administration inducing muscle atrophy in mice, IGF-1 sig-
naling reduced, which was indicated by decreased IRS-1 and Akt phosphoryla-
tion, while caspase-3- dependent actin degradation increased [77]. Moreover, 
transgenic mice overexpressing muscle-specific IGF-1 were prevented from cas-
pase-3-mediated actin degradation after angiotensin II treatment [77]. These 
observations indicate that caspase-3 cleaves myofibrillar proteins resulting in 
actin fragments which are degraded by the proteasome and that activity of cas-
pase-3 is negatively regulated by IGF-1/PI3K/Akt signaling. The results of these 
studies are in line with those of other studies suggesting an inhibitory effect of 
Akt on caspase-3 activation [c.f. 82, 83].

In contrast, rats subjected to hind limb suspension for 2  weeks showed no 
increases in caspase-3, caspase-8, or caspase-9 activity within their lower leg mus-
cles, while IGF-1 serum levels were slightly decreased [62]. However, since a large 
fraction of circular IGF-1 is produced by the liver, serum levels do not accurately 
reflect muscle-specific levels. In addition, as phosphorylated Akt was not decreased 
during unloading, it cannot be concluded that decreased IGF1/PI3K/Akt signaling 
is concomitant with a lack in change of caspase activity. This is line with a study 
showing no changes in both IGF1/PI3K/Akt signaling and caspase-3 mRNA levels 
following unilateral leg unloading humans [80]. Taken together, IGF-1/PI3K/Akt 
signaling inhibits caspase-mediated protein degradation (Fig. 6.2). It seems that in 
atrophic conditions in which IGF-1/PI3K/Akt signaling is unaffected, caspase- 
dependent protein degradation remains unaffected as well, whereas caspase- 
mediated protein degradation decreases in atrophic conditions associated with 
reduced IGF-1/PI3K/Akt signaling.
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6.3  The Role of IGF-1/PI3K/Akt in Skeletal Muscle Atrophy 
Models

Muscle atrophy is a hallmark of several conditions such as aging, disuse, space 
flight, and a variety of pathologies. These conditions have in common a reduction in 
contractile activity of myofibers as well as a reduction in intra- and extracellular 
mechanical stress and strains to which myofibers are subjected. Despite these simi-
larities, the impact on IGF-1 signaling within muscles varies between different dis-
use models. Here we discuss the effects of several conditions associated with muscle 
atrophy on IGF-1 expression and signaling in an attempt to explain the muscle atro-
phy associated with the corresponding physicochemical conditions.

6.3.1  Muscle Denervation and IGF-1 Signaling

A widely used model for studying mechanisms underlying muscle atrophy in vivo 
is muscle denervation which is associated with severe atrophy. Denervation of mus-
cles results in a tremendous loss of muscle activity, retaining little mechanical sig-
naling, however fibrillations occur as side effect [84]. Here we will discuss effects 
of denervation on IGF-1/PI3K/Akt signaling and how alterations in IGF-1 signaling 
contribute to denervation-induced atrophy.

Denervation of skeletal muscle has revealed myofiber-type-dependent differ-
ences. Three days following denervation in rats, increased IGF-1 mRNA expression 
levels in fast, glycolytic extensor digitorum longus (EDL) muscle were observed, 
whereas in slow, oxidative soleus muscle, no changes in IGF-1 mRNA expression 
were observed [85]. Since calcium-calcineurin signaling regulates IGF-1 mRNA 
expression [86], the myofiber-type difference in IGF-1 mRNA expression following 
denervation could well be explained by more fibrillations in fast, glycolytic muscles 
than in slow, oxidative muscle in the first 3 days following denervation [84]. The 
increase in IGF-1 mRNA expression in the EDL following denervation was com-
pletely blunted at day 7 after denervation [85], suggesting that IGF-1 expression 
after denervation shows only a transient increase which decays during the first 
week. A lack of a long-term effect of denervation on IGF-1 mRNA expression has 
also been shown in rat gastrocnemius muscle 7 weeks after botulin toxin-induced 
denervation [87]. Moreover, during the first 2 weeks after spinal cord injury in rats, 
IGF-1 mRNA expression levels in the EDL and soleus muscle were unaltered [85], 
whereas increased IGF-1 mRNA levels in the plantaris and soleus muscle have been 
reported after 30 days of spinal cord injury [88]. It seems that IGF-1 mRNA expres-
sion is either unaffected or increased after denervation, which depends on muscle 
type, denervation model, and/or time of measurement.

Regarding the effects of denervation on IGF-1 protein levels, the literature is less 
ambiguous. IGF-1 protein levels in denervated muscle of rodents or upper leg mus-
cles of humans with spinal cord injury are reduced [89, 90]. In line with these 
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 observations, IGF-1R and Akt phosphorylation and protein levels of P13K and 
IRS-1 have been shown to be decreased after denervation in rodents [88, 89, 91, 92]. 
Although spinal cord injury is associated with reduced IGF-1 protein levels in 
human upper leg muscle, Akt phosphorylation was unaltered suggesting a differ-
ence between surgical denervation in animal models and human spinal cord injury 
[90]. Therefore, even though increases in IGF-1 mRNA have been reported follow-
ing denervation, activity of IGF-1/PI3K/Akt signaling seems to be reduced, with a 
possible exception after human spinal cord injury.

Besides the observed denervation-related decrease in IGF-1/PI3K/Akt signaling, 
enhancement of this signaling pathway by either injection of IGF-1 into denervated 
muscle or transgenic muscle-specific overexpression of IGF-1 in mice has shown to 
diminish denervation-induced atrophy [19, 93–96]. Moreover, constitutive expres-
sion of activated P13K or Akt also inhibits denervation-induced atrophy in rodents 
[17, 97]. Similarly, several interventions counterbalancing denervation-induced 
atrophy are associated with increased Akt phosphorylation [98–101]. Taken 
together, IGF-1/PI3K/Akt activity reduces during denervation in adult skeletal mus-
cle, and it is obvious that increasing IGF-1/PI3K/Akt signaling inhibits denervation- 
induced atrophy.

6.3.2  Muscle Unloading and IGF-1 Signaling

Unloading of muscles by limb suspension is a disuse model that causes substantial 
skeletal muscle atrophy. The obvious difference with denervation is the still intact 
neuronal innervation, but external and internal loads applied to the limbs remain low.

Hind limb suspension (HLS) for 1–2 weeks did not change IGF-1 mRNA levels 
in rodent soleus, gastrocnemius, or plantaris muscle [102–109]. In contrast to 
1–2  weeks after HLS, IGF-1 mRNA expression levels in the soleus and tibialis 
anterior were decreased after 2 and 3 days of HLS [108, 110]. This suggests that 
IGF-1 mRNA expression is downregulated during the initial phase of HLS-induced 
atrophy but is not involved in the longer-term response. At the protein level, IGF-1 
expression drops in rat soleus muscle after 2–4 weeks of unloading [111, 112]. In 
line with reduced IGF-1 protein levels, HLS in rodents for at least 14 days caused 
decreased phosphorylated Akt levels and/or IRS-1 protein concentrations in soleus 
and gastrocnemius muscle, indicating that HLS is a strong stimulus for atrophy 
which is accompanied by reduced IGF-1/PI3K/Akt signaling [17, 110, 111, 113, 
114]. In addition to decreased IGF-1 protein levels, an explanation for the reduced 
Akt phosphorylation and muscle atrophy during unloading may be the increase in 
ubiquitin ligase Cbl-b expression which results in an elevated ubiquitination of 
IRS-1 complexes [114]. The contribution of Cbl-b to HLS-induced muscle atrophy 
is indicated by the observation that Cbl-b-deficient mice are protected from HLS- 
induced atrophy [114]. To summarize, IGF-1/PI3K/Akt signaling reduces during 
unloading in different rodent muscles, while IGF-1 mRNA expression is only 
decreased in the first days of HLS.
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Regarding the effectiveness of pharmacological enhancement of IGF-1/PI3K/
Akt signaling to counterbalance HLS-induced atrophy, the literature is contradict-
ing. After a period of 1–2 weeks of HLS, muscle-specific overexpression of IGF-1 
did not counteract muscle atrophy in mouse soleus, gastrocnemius, and tibialis ante-
rior muscles [107, 115, 116]. These observations are in line with a study showing 
that systemic injection of both GH and IGF-1 does not attenuate HLS-induced atro-
phy in rats, however when combined with exercise, muscle atrophy was attenuated 
[117]. These studies suggest that stimulation of IGF-1 alone is not sufficient to blunt 
HLS-induced atrophy, which indicates that unloading-induced atrophy is induced 
by other mechanisms than by reduced IGF-1/PI3K/Akt signaling solely.

In contrast, several studies show that increasing IGF-1/PI3K/Akt signaling can 
counterbalance HLS-induced atrophy. Overexpression of IGF-1 by DNA electro-
poration into skeletal muscle or subcutaneous injection of a mixture of IGF-1 and 
its stabilizing binding protein IGFBP-3 attenuated HLS-induced atrophy in rodents 
[118, 119]. Also exercise associated with increased IGF-1 and MGF mRNA levels 
attenuated HLS-induced atrophy in rats [109]. In addition, injections with ghrelin, a 
growth hormone-releasing peptide, in mice during 2 weeks of HLS enhanced IGF-1/
PI3K/Akt signaling in the plantaris but not in soleus muscle, which alleviated atro-
phy in the plantaris but not in soleus muscle [120].

It seems that HLS-induced muscle atrophy is accompanied by reduced IGF-1/
PI3K/Akt signaling as a result of the degradation of IRS-1. Why pharmacological 
increasing IGF-1/PI3K/Akt signaling alleviates muscle atrophy in some studies but 
not all remains unsolved. Exercise, however, seems an effective intervention in 
attenuating unloading-induced muscle atrophy.

6.3.3  Immobilization and IGF-1 Signaling

Another frequently applied model for disuse and muscle atrophy is joint immobili-
zation, using splints, casts, or surgical staples. The effect of joint immobilization- 
induced muscle atrophy on IGF-1 expression is however not clear. After ankle and 
knee immobilization in rodent, rabbit, dog, or human studies, levels of serum IGF-1, 
muscle protein, or mRNA were not affected [5, 121–124] or decreased [122, 125–
127]. Moreover, in human muscle increased levels of IGF-1 mRNA in muscle have 
been reported upon immobilization [60, 127].

In humans, unilateral knee joint immobilization in 30° knee flexion for 2 weeks 
in young and old adults was surprisingly related to increased IGF-1 and MGF 
mRNA levels in m. vastus lateralis, while atrophy was less in old compared to 
young adults [60, 127]. In contrast, 2 weeks of unilateral knee immobilization in 
50° flexion in young adults was associated with a lack of change in serum IGF-1 and 
mRNA expression levels of IGF-1 as well as MGF in m. vastus lateralis [123]. 
During immobilization in young adults, serum IGF-1, IGF-1, or MGF mRNA 
expression increased after administered growth hormone injections, however with-
out attenuating muscle atrophy [123]. When the same protocols were applied to 
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elderly, results were quite similar, except that growth hormone injections and con-
comitant increases in serum IGF-1, IGF, and MGF mRNA prevented muscle atro-
phy [124]. These observations indicate that the angle of immobilization affects 
IGF-1 expression levels and that increased IGF-1 expression levels during immobi-
lization (with or without growth hormone administration) can counterbalance 
immobilization-induced atrophy in old but not young adults. Since these results 
only report IGF-1 mRNA expression or serum levels, there is no certainty regarding 
the activity of the IGF-1/PI3K/Akt pathway. In accordance with the age effect in 
humans, attenuation of the reduction in Akt phosphorylation as observed during 
immobilization experiments by losartan supplementation could completely blunt 
muscle atrophy during 3  weeks of immobilization of the hind limb of old mice 
[128]. The protective effect of losartan was mainly by maintaining the number of 
myofibers, which decrease with aging. This might be an explanation for the age- 
related difference since IGF-1 is antiapoptotic and would therefore be able to inhibit 
a potential age-related loss of myofibers in immobilization-induced atrophy. Note 
that losartan treatment does not provide direct evidence for IGF-1/PI3K/Akt signal-
ing since it affects other signaling pathways such as TGF-β signaling as well.

IGF-1R and Akt phosphorylation decreased during immobilization-induced 
muscle atrophy in young and old mice, which implies blunted IGF-1/PI3K/Akt sig-
naling [122, 128, 129]. Akt phosphorylation also decreased in m. vastus lateralis of 
young but not adult humans after 2–4 days of knee joint immobilization [60]. In 
several models of atrophy including immobilization, miR-29b has been shown to be 
upregulated which downregulates IGF-1/PI3K/Akt signaling [89]. Subsequent 
in vitro overexpression of IGF-1 or PI3K concomitant with a miR-29b mimic atten-
uated miR-29b-induced atrophy [89]. Together these studies indicate that loss of 
IGF-1/PI3K/Akt signaling during joint immobilization contributes to 
immobilization- induced muscle atrophy although this may not be true for elder 
humans.

Increased IGF-1 receptor and Akt phosphorylation by angiotensin-(1-7) treat-
ment alleviated immobilization-induced muscle atrophy in mice [129]. In contrast, 
in vivo overexpression of IGF-1 (viral mediated or induced by growth hormone) 
improved muscle morphology, indicated by less widened interstitial space, necrotic 
fibers, and inflammatory cells, but did not reduce myofiber diameter or muscle 
cross-sectional area during immobilization [125, 130, 131]. Moreover, mice with 
reduced mTOR activity show muscle atrophy to the same extent as control mice 
during immobilization [122]. Taken together, some studies on animal models suc-
cessfully reduced muscle atrophy or morphology by increasing IGF-1 signaling or 
activation of downstream IGF-1 targets, while other studies did not show any reduc-
tions in immobilization-induced muscle atrophy.

From the above it is concluded that IGF-1/PI3K/Akt signaling reduces dur-
ing joint immobilization. Whether stimulation of IGF-1 signaling plays a role in 
the maintenance of muscle mass during immobilization-induced muscle atrophy 
has not been unambiguously established, although in older subjects this may be 
the case.
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6.3.4  Muscle Aging and IGF-1 Signaling

In addition to primary disuse models, aging is also associated with skeletal muscle 
atrophy. The loss of skeletal muscle mass and strength during aging, referred to as 
sarcopenia, is determined by combination of two processes, i.e., loss of myofibers 
and myofiber atrophy, which have different temporal distributions [132]. As a result 
of loss of motor units, remaining myofibers are possibly more active as compensa-
tion. Whereas under disuse conditions, predominantly type 1 fibers are affected, 
during aging type 2 myofibers are more susceptible to atrophy and necrosis com-
pared to type 1 myofibers. In aging, the loss of muscle mass is likely due to a reduc-
tion in physical activity, oxidative stress, chronic low-grade inflammation, and 
changes in systemic serum proteins [133]. The chronic state of low-grade inflamma-
tion related to aging is associated with increased IL-6 and TNF-α plasma levels 
[134]. These cytokines can interfere with IGF-1 signaling (see 6.4 Interference with 
IGF-1 Signaling) and are therefore likely to play a role in aging-associated muscle 
wasting [135, 136].

IGF-1 serum levels decrease with age, but no differences in IGF-1 serum levels 
were shown between elderly females with and without sarcopenia [137]. Based on 
small effects of GH injections on muscle hypertrophy in elderly, while exercise is 
capable of inducing hypertrophy, several literature-based studies suggest that locally 
expressed IGF-1 is important in the maintenance of muscle mass, while there is no 
consistent evidence for a relationship between IGF-1 serum levels and age-related 
loss of muscle strength [138–140]. The role of the IGF-1/PI3K/Akt pathway is dis-
cussed below.

Cross-sectional analyses of a large cohort including over 100 human participants 
and different mouse models, suggest that IGF-1/PI3K/Akt signaling activity is unaf-
fected during aging [141]. Whereas skeletal muscle mRNA levels of IGF-1Ea and 
MGF reduced with age in mice, this was not evident in skeletal muscle of human 
subjects. MuRF-1 knockout old mice showed a blunted atrophy but decrease in 
muscle force, which indicates that proteasomal degradation is essential for main-
taining muscle quality during aging. In addition, MuRF-1 and MAFbx mRNA lev-
els did not differ between old sedentary and young human participants [141]. These 
observations are in line with those of another study showing no change in IGF-1/
PI3K/Akt signaling, indicated by unaffected IGF-1R and Akt phosphorylation, in 
skeletal muscle of klotho mutant mice, a mouse model with an aging-related pheno-
type showing muscle atrophy [63]. In addition, it was shown that MuRF-1 and 
MAFbx protein levels in skeletal muscle were not upregulated in klotho mutant 
mice compared to control mice [63]. Also, no differences in IRS1 phosphorylation 
did exist between old and young adult rats [142]. Together, these studies indicate 
that IGF-1/PI3K/Akt signaling is not downregulated with aging and sarcopenia is 
not the result of increased activation of the ubiquitin-proteasome system.

Note that in old rodent muscles, both similar [62, 63, 143] and lower [142, 144] 
pAkt/tAkt levels compared to young rodent muscles have been reported. In line 
with these observations, in biopsies of young and old human subjects, both similar 
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[141] and decreased [145] levels of pAkt/tAkt with age have been reported. The 
decrease in pAkt/tAkt in aged humans was likely due to increased levels of tAkt, 
while pAkt levels were not affected, which suggest that in old human muscle, IGF/
PI3K/Akt signaling activity is not reduced, but Akt synthesis is upregulated [145]. 
Although some studies show decreased levels of pAkt/tAkt related to aging, there is 
not an obvious reduction in IGF-1/PI3K/Akt signaling.

In mice, virus-mediated or transgenic overexpression of IGF-1 can prevent 
aging-induced muscle atrophy and a decrease in type 2B fiber fraction [146, 147]. 
Despite elevated IGF-1 expression, sedentary transgenic IGF-1 old mice did not 
have larger myofiber diameters compared to their aged-matched controls, whereas 
sedentary transgenic IGF-1 adult mice did show larger myofiber diameters com-
pared to their aged-matched controls [148]. This suggests a decreased anabolic 
response to IGF-1/PI3K/Akt signaling with age rather than the inability of IGF-1/
PI3K/Akt signaling to prevent the aging-associated atrophy. Indeed, overload of 
hind limb muscles of young, mature, and old rats showed reduced hypertrophy and 
decreased upregulation of MGF and IGF-1 receptor mRNA with age [149]. This 
result is in accordance with those of other studies suggesting an impaired anabolic 
response of the IGF-1/PI3K/Akt pathway in aged rats [142, 150]. From this it can 
be concluded that the trophic response to IGF-1 decreases with age, but is not com-
pletely lost and overexpression of IGF-1 is capable of attenuating aging-related 
muscle atrophy. Moreover, decreased Akt phosphorylation but no changes in activ-
ity of downstream targets of mTOR upon a single bout of resistance exercise were 
observed in old compared to adult humans, suggesting that the synthesis machinery 
is not affected by age but rather the IGF-1/PI3K/Akt signaling [151]. A possible 
explanation is that exercise-induced IGF-1/PI3K/Akt signaling is inhibited by 
increased levels of IL-6 and TNF-α associated with the chronic low grade of sys-
temic inflammation seen with aging [135, 136].

Regarding the effects of aging, IGF-1/PI3K/Akt signaling does not seem to be 
reduced during aging-associated muscle atrophy, while IGF-1 overexpression is 
able to inhibit aging-associated muscle atrophy. However, the anabolic potential of 
this pathway reduces with age, which might be due to increased interference of pro- 
inflammatory cytokines.

6.4  Interference with IGF-1 Signaling

Changes in IGF-1/PI3K/Akt signaling can be the result of decreased IGF-1 expres-
sion, bioactivity, receptor availability, or inhibition along its pathway. Insight into 
the mechanisms affecting IGF-1/PI3K/Akt signaling will reveal possible candidates 
for counterbalancing reduced IGF-1/PI3K/Akt signaling. Because IGF-1 is involved 
in many tissues and cell types, clinical interventions should be muscle specific or 
target a factor which interferes with IGF-1 and has a lesser general effect. Although 
it is outside the scope of this review to discuss all different interfering factors, a few 
important ones are pointed out.
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AMP-activated kinase (AMPK) interferes with IGF-1 signaling by inhibiting 
and stimulating the downstream targets mTOR and FOXO3 [152–154]. Moreover, 
AMPK/FOXO3 signaling increased during HLS-induced muscle atrophy in rats 
[155], which could explain why not all studies report an effect of IGF-1 overexpres-
sion on HLS-induced muscle atrophy. Another negative regulator of myofiber size 
is myostatin, which is a member of the TGF-β family [156]. Myostatin inhibits Akt 
via Smad3 signaling and has therefore opposite effects compared to IGF-1 [157]. 
Several types of muscle atrophy are associated with increased myostatin expression 
(see Chap. 8).

As mentioned before, also pro-inflammatory cytokines like IL-6 and TNF-α can 
interfere with IGF-1 signaling and likely play a role in muscle atrophy associated 
with systemic inflammation, such as aging [135, 136]. IL-6 is able to inhibit mTOR, 
p70S6K, and p90RSK activation in muscle cells, without affecting Akt phosphory-
lation [158]. TNF-α impairs IGF-1R sensitivity [136] and increases MuRF-1 expres-
sion by activating a group of transcriptions factors known as nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) [13]. Reducing systemic 
inflammation could counterbalance inflammatory-associated muscle wasting by 
enhancing the effect of IGF-1. Regular exercise stimulates IGF-1 expression and 
has an anti-inflammatory effect [159] which attenuates the interference of cytokine 
signaling with IGF-1 and is therefore a safe and cheap intervention to counterbal-
ance muscle atrophy associated with elevated levels of IL-6 and TNF-α.

Recent studies have shown that microRNAs (miRNAs) are capable of interfering 
with IGF-1 signaling and thereby play an important role in muscle atrophy [89, 
160]. miR-29b negatively regulates IGF-1 and PI3K expression and has been shown 
to be upregulated in the tibialis anterior, soleus, and EDL muscle in denervation- 
induced muscle atrophy [89]. Moreover, miR-29b was also upregulated in immobi-
lization, dexamethasone, fasting, cancer cachexia, and aging-induced muscle 
atrophy [89]. In addition to miR-29b, miR-18a also suppresses IGF-1/PI3K/Akt 
signaling, and its overexpression induces muscle atrophy [160]. Because of the gen-
eral role of miR-29b in muscle atrophy (i.e., upregulation in several muscles and 
atrophic conditions) and the observation that many miRNAs have been shown to be 
tissue specific [161, 162], miRNAs are promising targets for counterbalancing mus-
cle atrophy. Preclinical and clinical trials in which miRNAs are targeted are cur-
rently conducted, although, to the best of our knowledge, not aimed to prevent or 
restore muscle wasting.

6.5  Conclusions and Future Perspectives

Here we reviewed the role of IGF-1 signaling in the induction of muscle atrophy 
and show that in disuse conditions muscle atrophy is in part due to a decline in 
IGF-1 signaling, whereas with aging-associated muscle atrophy, IGF-1 signaling 
remains unaffected. Moreover, enhancement of IGF-1/PI3K/Akt in some conditions 
is an effective strategy to counterbalancing muscle atrophy, however this does not 
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apply to all disuse conditions. Under hypertrophic conditions by mechanical load-
ing, IGF-1/PI3K/Akt signaling increases muscle mass by stimulating protein syn-
thesis and inhibiting protein degradation. Protein synthesis is stimulated by mTOR, 
which activates p70S6K and p90RSK, which are downstream targets of Akt and 
PDK1. Akt also stimulates protein synthesis by inhibiting GSK3β activity. During 
atrophic conditions, protein synthesis is reduced and/or protein degradation is 
increased. The four main mechanisms in protein degradation are proteasomal-, 
lysosomal-, and caspase- and calpain-dependent protein degradation. Regarding the 
role of IGF-1  in protein degradation, it is clear that IGF-1 inhibits proteasomal- 
mediated muscle protein degradation by lowering the expression of E3-ligases, 
resulting in attenuated protein ubiquitination. Reductions in expression of E3 ligases 
are a result of inactivation of FOXO transcription factors by phosphorylated Akt. In 
addition, FOXO inactivation by phosphorylated Akt also reduces lysosomal degra-
dation. When IGF-1/PI3K/Akt signaling decreases during atrophic conditions, 
caspase- dependent degradation seems to be reduced as well. Future research is 
required to obtain more detailed insight in the role of IGF-1/PI3K/Akt signaling on 
calpain-dependent degradation.

The role of the IGF-1/PI3K/Akt pathway differs between different models of 
skeletal muscle atrophy. During denervation-induced atrophy, IGF-1/PI3K/Akt sig-
naling activity is reduced, and upregulation of IGF-1/PI3K/Akt signaling counter-
balances denervation-induced muscle atrophy. In contrast, during unloading- and 
joint immobilization-induced atrophy, IGF-1/PI3K/Akt signaling activity is reduced 
as well, but it remains unclear whether upregulation of the IGF-1/PI3K/Akt path-
way is sufficient to attenuate denervation- or joint immobilization-induced muscle 
atrophy, suggesting that other pathways are involved which cannot be compensated 
by IGF-1/PI3K/Akt signaling. No obvious downregulation of IGF-1/PI3K/Akt sig-
naling is shown during aging-associated atrophy. Although the anabolic potential of 
the IGF-1/PI3K/Akt pathway reduces with age, activation of this pathway has the 
ability to achieve recovery of aging-associated muscle atrophy.

The role of miRNAs in regulation of myofiber size is a novel and promising area 
for further research. Many miRNAs are tissue specifically expressed and could tar-
get IGF-1 signaling components in muscle wasting without affecting its role in 
many tissues and cell types. Although there is substantial evidence showing that 
miRNAs can interfere with IGF-1/PI3K/Akt signaling, there remains a lack of 
knowledge regarding the possibilities to counterbalance muscle atrophy by target-
ing miRNAs. Because of the general effects of miRNAs in several conditions of 
muscle atrophy and muscle phenotypes, future studies should aim for more insight 
in knowledge regarding biological functions of miRNAs and clinical application of 
altering miRNA activity in prevention and recovery of muscle atrophy. Overall, 
IGF-1/PI3K/Akt is a key signaling pathway in protein synthesis and degradation, of 
which its activity is attenuated during several disuse models.
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Chapter 7
mTOR Signaling Pathway and Protein 
Synthesis: From Training to Aging and Muscle 
Autophagy

Jocemar Ilha, Caroline Cunha do Espírito-Santo,  
and Gabriel Ribeiro de Freitas

Abstract In muscle tissue there is a balance between the processes muscle synthe-
sis and degradation. The mammalian target of rapamycin (mTOR) signaling path-
way plays a critical role in regulating protein synthesis in order to maintain muscular 
protein turnover and trophism. Studies have shown that both down- and upregula-
tion mechanisms are involved in this process in a manner dependent on stimulus and 
cellular conditions. Additionally, mTOR signaling has recently been implicated in 
several physiological conditions related to cell survival, such as self-digestion 
(autophagy), energy production, and the preservation of cellular metabolic balance 
over the lifespan. Here we briefly describe the mTOR structure and its regulatory 
protein synthesis pathway. Furthermore, the role of mTOR protein in autophagy, 
aging, and mitochondrial function in muscle tissue is presented.
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7.1  Background

The abilities to get out of bed, stand up from a seat, walk, or reach for an object, 
such as a glass of water, are examples of the most common activities of daily life, 
which are fundamental to independence. The integrity of muscle mass and the 
capacity to generate muscular force are essential prerequisites for the performance 
of such activities. Moreover, maintaining and gaining muscle mass are critical fea-
tures for the preservation of health and quality of life. Skeletal muscle is a highly 
adaptable human tissue with a known sensitivity to environmental factors, such as 
the mechanical overload imposed by muscle activity, as well as muscular disuse 
caused by inactivity in situations of trauma, chronic illness, or aging [1–4].

In muscle tissue, there is a balance between the processes of synthesis and deg-
radation, with the continuous renewal of muscle proteins [5]. In healthy muscle, the 
mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in 
regulating protein synthesis in order to maintain muscular trophism. Notably, in 
muscle hypertrophy, the mTOR pathway is upregulated [5, 6]. By contrast, under 
hypotrophic conditions there is a reduction in mTOR pathway biomarkers [7], 
showing the direct role of this pathway in maintaining muscle fiber size.

Additionally, mTOR signaling has recently been implicated in several physio-
logical conditions related to cell survival, such as self-digestion (autophagy), energy 
production, and the preservation of cellular metabolic balance [8]. Moreover, dereg-
ulation of this mechanism leads to pathologic alterations associated with several 
diseases, such as cancer, neurodegeneration, and infection, as well as alterations to 
muscle homeostasis in the aging process.

In this chapter, we summarize the structure and roles of mTOR and the mTORC1 
complex in protein synthesis and during muscle hypotrophy. Below, we first describe 
the structure of the mTOR protein and its regulatory protein synthesis pathway. 
Afterward, we outline the role of mTOR in autophagy, aging, and its mitochondrial 
function in muscle tissue.

7.2  The Structure of TOR Signaling

The TOR protein was first identified in Saccharomyces cerevisiae yeasts. In these 
yeasts, rapamycin – a compound produced by bacteria originally isolated from the 
soil of Easter Island – was able to inhibit gene activity for eukaryotic cell growth 
and proliferation, while it remained bound to a highly conserved domain, called 
FK506-binding protein 1A (FKBP12) [9, 10]. Thus, it has been suggested that the 
protein products of these genes might be targets of rapamycin, designated the 
TOR – target of rapamycin [11]. In mammalian cells, the TOR ortholog was also 
identified and named mTOR, i.e., the mammalian target of rapamycin [12].

The mTOR is a serine/threonine kinase capable of integrating several stimuli 
from the medium, such as nutrients, growth factors, energy, and stress to regulate 
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cell growth, proliferation, and metabolism [13]. Structurally, mTOR contains 2549 
amino acids; additionally, the HEAT component (responsible for inter-protein inter-
action), FAT, FRB (rapamycin-binding site), catalytic domain kinase, and FATC 
form the mTOR major domains (Fig. 7.1). The FAT and FATC domains are always 
found in combination and contribute to the catalytic activity of mTOR [14–16]. To 
date, only a few mTOR phosphorylation sites have been described, namely, Thr- 
2446, Ser-2448, Ser-2481, Ser-1261, and Ser-2481, being the self-phosphorylation 
site for regulating intrinsic mTOR activity [17].

In mammals, mTOR works by forming two multi-protein complexes – mTOR 
complex 1 (mTORC1) and mTOR complex 2 (mTORC2) – which are responsible 
for different physiological functions and have distinct levels of sensitivity to 
rapamycin [18]. The mTORC1 is a raptor-sensitive complex composed of mTOR 
associated with Raptor (regulatory protein of mTOR activity kinase) [19, 20]. In 
mTORC2, mTOR is associated with Rictor (an mTOR partner insensitive to 
rapamycin), mTOR-associated protein (mLST8), and SIN1. The functions of 
mTORC2 include the activation of the Akt protein for protein degradation [19, 21], 
among others. However, few studies are available on mTORC2 activity [22].

On the other hand, mTORC1 has been the subject of several studies because of 
its variety of functions, the best described being related to the initiation of protein 
translation and transcription mechanisms for cell growth [13]. To play this impor-
tant role, mTORC1 activity is generally regulated by the phosphatidylinositol 
3-kinase (PI3K)/Akt/tuberous sclerosis complex 1 and 2 (TSC1–2) pathway in the 
presence of insulin or other growth factors [23] (Fig. 7.2).

Thus, the responsiveness of mTORC1 to insulin and growth factors is provided 
through the activation of PI3K and Akt protein kinases. In the presence of the 
stimulus, the tyrosine residues of the p85-PI3K regulatory subunit is activated and 
provide subsidies for the p110-PI3K catalytic subunit transfer phosphate pools to 
the phosphatidylinositol-3,4,5-triphosphate (PIP-3) membrane phospholipids. 
Once activated, PIP-3 attracts several protein kinases, especially Akt and 
3- phosphoinositide-dependent protein kinase 1 (PDK-1), translocating them to the 
cell membrane [24]. Then, the PDK-1 and PDK-2 proteins activate the Thr-308 and 
Ser-473 residues, respectively, for activation of Akt. Under favorable conditions for 
protein synthesis, activation of Akt culminates with the phosphorylation and 
 inhibition of the TSC1-2 complexes, which in turn convert the protein Ras  homolog 

Fig. 7.1 Illustration of the structural composition of the mammalian target of rapamycin (mTOR) 
with its domains: HEAT, FAT, FRB, kinase, and FACT
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enriched in brain (Rheb) to its inactive state, which allows the activation of 
mTORC1 [21] (Fig. 7.2).

At the same time, activation of mTORC2 via the PI3K/Akt/TSC1-2 pathway 
leads to the activation of Akt in order to control protein degradation [19, 21]. Once 
phosphorylated by mTORC2, Akt plays a role as a negative regulator of the tran-
scription factors called forkhead box protein (FoxO), shifting it from the cell nucleus 
to the cytoplasm. The retention of FoxO in the cytoplasm impedes the regulation of 
two ubiquitin ligases: atrogin-1 or MAFbx and MuRF1, both related to ubiquitin- 
proteasome system signaling, considered the major pathway of proteolytic degrada-
tion of eukaryotic cells [21, 25].

Fig. 7.2 The mammalian target of rapamycin (mTOR) pathway integrates signals from nutrients, 
energy status, and growth factors to regulate many processes, including protein translation, autoph-
agy, and ribosome biogenesis and cell proliferation. In skeletal muscle, the binding of insulin-like 
growth factor-1 (IGF-1) and/or insulin to its receptor on the cell membrane leads to the phosphory-
lation of insulin receptor substrate 1 (IRS-1), an adapter protein that activates phosphatidylinositol 
3-kinase (PI3K). Activated PI3K generates phosphatidylinositol-3,4,5-triphosphate (PIP3), which 
recruits (3- phosphoinositide-dependent protein kinase 1) PDK1 and phosphorylates the protein 
kinase B or Akt. The tuberous sclerosis complex (TSC1-TSC2) is a target downstream of Akt and 
inhibits the small G-protein, Ras homolog enriched in brain (Rheb) – a regulator of mTOR. The 
rapamycin-sensitive mTOR complex 1 (mTORC1) contains multiple proteins and phosphorylates 
the 70  kDa ribosomal S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 
1(4EBP1) for protein translation. Once phosphorylated, the p70S6K acts on ribosomal protein S6 
(S6 or rpS6), eukaryotic translation initiation factor 4B (eIF-4B), and eukaryotic elongation factor-
 2 kinase (eEF-2K). The phosphorylation of 4E-BP1 regulates eIF-4E availability, dissolving the 
4E-BP1/eIF-4E complex. The inhibition of the mTORC1 activates autophagy by phosphorylation 
of Unc-51 like autophagy activating kinase 1 (Ulk1) in the presence of AMP-activated protein 
kinase (AMPK). In addition, the mTOR can also suppress protein degradation via mTOR complex 
2 (mTORC2) interaction with Akt
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7.2.1  The mTOR Signaling in Muscle Protein Synthesis

The mTOR is considered the major effector of proliferation and cell growth through 
the regulation of protein synthesis. In muscle tissue with preserved innervation, it 
was observed that in the presence of rapamycin, muscle growth was partially inhib-
ited, showing that mTOR is an important pathway for trophic muscle regulation [26].

Stimulation of mTOR protein synthesis via mTORC1 is the most common bio-
logical response controlled by this pathway under favorable conditions, such as 
nutrient and oxygen availability [27]. In the presence of the appropriate stimulus, 
the mTORC1 mediates the signaling of two major substrates: the 70 kDa ribosomal 
protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 1 
(4E-BP1) [5, 21]. In general, both p70S6K and 4E-BP1 control the initiation of 
translation, favoring the attachment of messenger ribonucleic acid (mRNA) to the 
40S ribosomal subunit (Fig. 7.2). This in turn binds to other eukaryotic initiation 
factors to perform the codon reading and consequently promote the synthesis of 
new proteins [23] (Box 7.1).

In skeletal muscle, growth factors [35], mechanical adaptive overload [6, 36], 
and resistance exercise [37, 38] are described as the main promoters of protein bio-
synthesis. Bodine et al. [6] and Goodman et al. [36] reported overload in plantaris 
muscle increased protein content, characterized by augmented tissue cross-sectional 
area (CSA) and weight. These morphological changes go along with the phosphory-
lation of p70S6K and release of the eIF-4E of 4E-BP1/eIF-4E complex. By contrast, 
the combination of muscle workload with the rapamycin – mTORC1 inhibitor – 
attenuates hypertrophy and prevents p70S6K phosphorylation and the release of 
eIF-4E, indicating that muscle trophism is closely linked to the mTOR/p70S6K/4E-
 BP1 pathway [6, 36].

Box 7.1: Target Downstream of mTOR
The p70S6k signaling pathway culminates in phosphorylation of multiple 
 serine residues of 40S ribosomal protein S6 (RpS6) [28], which correlates with 
enhanced translation of mRNAs with a 5′-terminal oligopyrimidine (TOP) 
[29] and regulation of ribosomal protein synthesis [30]. In addition, p70S6K 
can alternatively phosphorylate and regulate the eukaryotic initiation factor 
(eIF) 4B (eIF-4B), responsible for facilitating mRNA binding to ribosomes 
[31] and the eukaryotic elongation factor (eEF) 2 kinase (eEF-2K), implicated 
in ribosomal translocation during the elongation stage of protein synthesis 
[32]. Another key modulator of protein biosynthesis is 4E-BP1, which is a 
natural inhibitor of translation started by repression of eIF- 4E. When phos-
phorylated, 4E-BP1 releases eIF-4E, responsible for the recruitment of eIF-4G 
and eIF-4A and formation of the eIF-4F complex translation [33]. In eukaryotic 
cells, the initiation of translation requires the formation of the eIF-4F complex 
(eIF-4E, eIF-4A, and eIF-4G) to direct ribosomes to codon initiation [34].
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Although both p70S6K and 4E-BP1 are implicated in the regulation of cell size, 
each has a distinct role in muscle protein biosynthesis. Studies have reported that 
p70S6K1 (an isoform of p70S6k which contains the Thr-389 threonine residue for 
mTOR phosphorylation) is crucial to initiating protein synthesis and preventing 
muscle hypotrophy [39]. In the temporal context, p70S6K1 is the first protein to be 
phosphorylated after resistance training, remaining in high concentrations for hours 
after training, and is associated with phosphorylation of S6 and increased muscle 
protein content [38]. In p70S6K1-deficient mice, genic deletion induced an atrophic 
phenotype marked by reduction in the CSA of soleus muscle, even in the presence 
of phosphorylated 4E-BP1 – another regulator of protein translation [39]. This indi-
cates muscle trophism substantially depends on p70S6K1 (Box 7.2).

Box 7.2 Downregulation of p70S6K by Other Pathways
The MAPK/ERK pathway contributes to cell proliferation by direct 
phosphorylation of the S6 protein

Unlike p70S6K1, the p70S6K2 isoform is activated by mTOR at Thr-388 
residue, but regulatory proteins composing MAPK/ERK pathway are indis-
pensable for the complete activation of this isoform. However, the relevant 
role of MAPK/ERK pathway has been implicated in the direct phosphoryla-
tion of Ser-235/236 residue in ribosomal protein S6 (substrate of p70S6K1 
and p70S6K2, involved in cell growth-cell proliferation) [45]. Pende et  al. 
[46] showed that p70S6K1−/−;p70S6K2−/−mouse cells exhibit impairment 
of S6 phosphorylation, interfering in animal viability, but the proliferative 
responses of these cell types were not affected. At the same time, S6 phos-
phorylation persisted at Ser235 and 236 residues (residues not phosphory-
lated by p70S6K2), in response to mitogens, suggesting the involvement of 
MAPK/ERK in the maintenance of cell proliferation, in the absence of mTOR/
p70S6K [46]. This means that the contribution of the MAPK/ERK pathway 
might involve the amplification of the p70S6K2 isoform, phosphorylated by 
mTOR in a distinct threonine residue (Thr-388) or in the direct phosphoryla-
tion of S6, to promote cell growth.

PKC is relevant for increased S6K2, but not S6K1, in cytoplasm cell
PKC is also a protein regulator of the p70S6K2 isoform (but not S6K1), 

which plays a role in the localization of p70S6K2 inside the cell [47]. This 
phospholipid-dependent serine/threonine kinase activates a domain nuclear 
localization sequence (NLS) binding at Ser486 residue of p70S6K2, in the 
nucleus, and promoting p70S6K2 nucleo-cytoplasmic shuttling, without 
affecting its activity [45]. This suggests PKC-mediated cell growth might be 
due to increased availability of p70S6K2 to the cytoplasm, which may be 
phosphorylated by mTOR at Thr-388 residue and other mitogenic factors, 
such as the MAPK/ERK pathway as mentioned above.
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Phosphorylation of 4E-BP1 alone appears to be insufficient to promote increased 
muscle trophism. In fact, several studies have shown that in hypertrophic muscle, 
the upregulation of 4E-BP1 occurs concomitantly with p70S6K in an mTOR- 
sensitive manner [6, 40], indicating that the 4E-BP1 phosphorylation is a coadjutant 
in protein synthesis. However, during resistance exercise, 4E-BP1 plays an inverse 
role. In this context, it prevents the translation of new proteins [7]. In conditions 
involving energetic imbalance, such as exercise, metabolic modulators are activated 
to direct energy to cellular events indispensable for survival and reducing protein 
synthesis (see more in Vavvas et al. [41] and Musi et al. [42]). This suggests 4E-BP1 
indirectly participates in energetic control and reducing muscle biosynthesis (saving 
energy), since the phosphorylation status of 4E-BP1 is temporarily reduced during 
resistance training [7].

Recently, researchers have found that resistance and endurance exercise pro-
grams can stimulate Akt, mTOR, and p70S6K, which are both involved in protein 
synthesis pathway [38, 43]. However, Akt/mTOR/p70S6K cascade signaling is 
transitory and only remains active during endurance exercise [43], being interrupted 
immediately after training. On the other hand, after resistance exercise, which pro-
motes increases in strength generation capacity, morphological changes, and pro-
tein content, phosphorylation of mTOR/p70S6K/S6 remains active for up to 4 h 
after training [38].

Although the mTORC1 is preferentially activated in response to resistance exer-
cise, it is possible that distinct pathways regulate the trophic state induction and 
maintenance mechanisms. Using an electrical stimulation protocol in the tibialis 
anterior combined or not with rapamycin, West et  al. [44] found a reduction in 
muscle protein synthesis and the ribosomal RNA precursor in animals treated with 
rapamycin up to 6 h after training. These changes were associated with a reduction 
in p70S6K and S6K phosphorylation. After this interval, protein synthesis, but not 
ribosome biogenesis, increased in a rapamycin-insensitive manner and is not medi-
ated by improvement in the translational capacity. Furthermore, the activation of 
mitogen-activated protein kinase (ERK 1–2) and dephosphorylated eEF-2 indicates 
a reduction in p70S6 protein phosphorylation  – occurring concomitantly with 
increased protein synthesis – suggesting an alternative mTOR-independent mecha-
nism for long-term cell size regulation in skeletal muscle [44].

Lastly, upstream targets of mTOR, such as Akt, have received considerable atten-
tion due to their capacity for upregulation after trophic stimulus. Léger et al. [5] 
reported that the activation of Akt occurs in parallel with the inhibition of FoxO 
protein. This transcription factor is required for the regulation of two types of ubiq-
uitin ligases: atrogin-1 or MAFbx and MuRF1, both related to ubiquitin-proteasome 
system signaling – considered the major pathway of eukaryotic cell proteolytic deg-
radation [21, 25]. For this reason, Léger et al. [5] believe the inhibition of FoxO – 
which consequently prevents muscle atrophy in healthy muscle  – can partially 
regulate muscle trophism.
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7.3  mTOR Signaling Autophagy, Aging, and Mitochondrial 
Function in Muscle Tissue

Autophagy is a mechanism of cellular self-degradation that plays an important role 
in cell survival. It is involved in promoting energy production and preservation of 
the cellular metabolic balance and removing damaged organelles and proteins that 
may be toxic to the body in some conditions [8]. Although this cellular mechanism 
is primarily protective, it can also play a role in cell death. Moreover, dysfunction of 
this mechanism is associated with several diseases, such as cancer, neurodegenera-
tion, and infection, as well as with the cellular aging process.

With aging, there is a change in the balance of the regular autophagy, with a 
gradual reduction in this process. This results in the accumulation of severely dete-
riorated proteins and organelles, increasing oxidative stress and tissue damage, 
inducing a progressive loss of system integrity, damaging functions, and making the 
organism vulnerable – thus limiting its useful life [48–50]. This dysregulation is 
associated with several pathologies in humans, including neurodegenerative dis-
eases; lysosomal disorders; cellular senescence and changes in muscular function, 
such as loss of myofiber number and protein content (hypotrophy); and reduction of 
muscle contractility, strength, and resistance [8, 48, 50–52]. The mTOR/mTORC1 
pathway – by regulating Unc-51 like autophagy activating kinase 1 (Ulk1) – seems 
to play a crucial role in this process (Fig. 7.2). This pathway may trigger two cel-
lular processes – protein synthesis and autophagy – depending on the nutrient con-
tent and energy available in the mTOR cascade targets, 4EBP1, p70S6K, AMPK, 
and Raptor [53].

Muscle biopsies, performed in humans after endurance exercise and high- 
intensity exercises, demonstrate that both physical exercises with the stimulation of 
insulin-like growth factor-1 (IGF-1) and insulin-related energy issues are able to 
control the autophagy flow via mTORC1 or AMPK by their interactions with the 
Ser/Thr Ulk1 kinase complex [54–56]. The balance between the TORC 1 and 2 
signals is maintained by the release/inhibition of Akt activity and consequently a 
negative/positive regulation of autophagy, which is one of the key points in the regu-
lation of the Akt pathway for the autophagy and aging process, depending on which 
TOR complex is active [54].

When insulin and IGF-1 growth factor signaling occurs via lipid and phospha-
tase and tensin homolog (PTEN) protein, which negatively regulates insulin/PI3-K 
activity, there are activation of Akt and a tendency for activation of the TORC1 
complex, promoting the suppression of autophagy by Raptor-mediated phosphory-
lation of ULK1 at Ser-757 [53, 55]. Under unfavorable conditions, such as nutrient 
reduction or as demonstrated in the treatment with rapamycin in animal models, the 
mTORC1 pathway is blocked, thus inducing AMPK activation, which in turn inter-
acts with Ulk1 and ATG13 promoting its phosphorylation at Ser-555 and blockade 
of the Raptor – triggering the onset of autophagy/phagocytosis [50, 57].

In addition to this relationship with autophagy/aging, the mTORC1 complex par-
ticipates in energy regulation through mitochondrial activity, enhancing functional 
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capacity and stimulating its biogenesis through peroxisome proliferator-activated 
receptor-gamma coactivator (PGC)-1 alpha (PGC-1α) and YY-1 transcription factor 
[58, 59]. There is a potential mechanism based on redox activity of the mTOR path-
way, detecting nutrients and mitochondrial activity, and its signaling may be active 
in the reciprocal direction regulating mitochondrial metabolism [60].

The relationship of the Raptor-mTORC1 complex with oxygen consumption in 
mitochondria and oxidative capacity has been shown in experiments involving 
blocking TORC1 complex activity by rapamycin, which results in decreased mito-
chondrial oxygen consumption levels [60–62]. The stimulation of the mTOR path-
way promotes an increase in ATP production by phosphorylation and the regulation 
of the balance between glycolysis and mitochondrial metabolism [60–63]. These 
data show that the mTORC1 complex plays a role in the control of mitochondrial 
oxidative function, positively regulating PGC1-α activity and in turn modulating the 
mitochondrial gene and oxidative metabolism, contributing to cell growth and mito-
chondrial metabolism [58, 59].

In situations of prolonged immobilization or when there is a reduction in muscle 
activity, as in the case of the aging process, signs of skeletal muscle atrophy – reduc-
tion in trophism and muscle strength – are triggered. This process is closely related 
to the decline in mitochondrial function, reduction in protein synthesis, and higher 
protein degradation – ATP-dependent processes [64–66].

These regulatory mechanisms of atrophy, energy content, autophagy, and mito-
chondrial function via the mTOR pathway are complex and may decrease with age 
in most tissues. This promotes impaired homeostasis and reduced cellular respira-
tion, leading to an increase in free radicals within cells, and may cause damage to a 
number of systems, including the heart and skeletal muscle, pancreas, and liver [49, 
63, 66].
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Chapter 8
Past, Present, and Future Perspective 
of Targeting Myostatin and Related Signaling 
Pathways to Counteract Muscle Atrophy

Willem M. H. Hoogaars and Richard T. Jaspers

Abstract Myostatin was identified more than 20 years ago as a negative regulator 
of muscle mass in mice and cattle. Since then, a wealth of studies have uncovered 
the potential involvement of myostatin in muscle atrophy and sparked interest in 
myostatin as a promising therapeutic target to counteract decline of muscle mass in 
patients afflicted with different muscle-wasting conditions. Insight in the molecular 
mechanism of myostatin signaling and regulation of myostatin activity has resulted 
in the identification of specific treatments to inhibit myostatin signaling and related 
signaling pathways. Currently, several treatments that target myostatin and related 
proteins have been evaluated in preclinical animal models of muscle wasting, and 
some potential therapies have progressed to clinical trials. However, studies also 
revealed potential downsides of myostatin targeting in skeletal muscle and other 
tissues, which raises the question if myostatin is indeed a valuable target to counter-
act muscle atrophy. In this review we provide an updated overview of the molecular 
mechanisms of myostatin signaling, the preclinical evidence supporting a role for 
myostatin and related proteins in muscle atrophy, and the potential issues that arise 
when targeting myostatin. In addition, we evaluate the current clinical status of dif-
ferent treatments aimed at inhibiting myostatin and discuss future perspectives of 
targeting myostatin to counteract muscle atrophy.
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8.1  Background

Elucidation of the molecular mechanisms and signaling pathways involved in dif-
ferent forms of muscle atrophy is crucial for the identification of potential targets to 
counteract muscle wasting. One of the most promising potential therapeutic targets 
to counteract muscle atrophy that emerged in past years was myostatin. Myostatin 
was identified in mice over 20 years ago in 1997 as growth and differentiation factor 
8 (GDF8), a new member of the TGF-β superfamily and specific regulator of muscle 
mass. Remarkably, genetic deletion of myostatin in male and female mice resulted 
in hypermuscularity caused by muscle fiber hyperplasia and to lesser extent muscle 
fiber hypertrophy [1]. In the same year, three groups independently identified muta-
tions in the myostatin gene in double-muscled Belgian Blue and Piedmontese cattle, 
which show increased muscle mass compared to conventional cattle mainly due to 
muscle fiber hyperplasia [2–4]. In the following years, myostatin loss-of-function 
mutations were also identified in other species that display hypermuscular pheno-
type including Texel sheep [5], whippet racing dogs [6], and Thoroughbred horses 
[7, 8], showing that myostatin is evolutionary conserved in mammals. Importantly, 
the association of decreased myostatin levels with athletic performance was demon-
strated in one study in whippets where haploinsufficiency of myostatin was associ-
ated with increased muscle mass and improved racing performance [6]. However, 
the advantage of this mutation in racing performance is lost in dogs homozygous for 
this allele, since these so-called bull whippets develop a double-muscled phenotype 
that hinders performance at the racing track [6]. Functional conservation of myo-
statin in humans was furthermore established in a study where the authors identified 
an intronic mutation in the MSTN gene of a German boy that resulted in missplicing 
of the mRNA and introduction of a premature stop codon causing pronounced mus-
cle hypertrophy [9]. This homozygous mutation in the boy was furthermore associ-
ated with extraordinary muscle strength and was inherited via his mother, who was 
heterozygous for the mutation and a former professional athlete [9].

The identification of myostatin as a muscle-specific regulator of muscle mass 
sparked interest in myostatin as a potential novel therapeutic target to counteract 
muscle atrophy. The discovery of myostatin was especially exciting since loss of 
function did not seem to result in pronounced side effects and resulted in specific 
increase of muscle mass. In this review we will describe the preclinical evidence 
that targeting myostatin and related signaling pathways may counteract muscle 
atrophy in different muscle-wasting conditions and present an update on the clinical 
translation of different compounds that target these pathways. In addition, latest 
insight in the upstream and downstream molecular pathways involved in myostatin 
signaling will be discussed as well as cross-signaling of this pathway with other 
pathways involved in the regulation of muscle mass.
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8.2  Molecular Mechanism of Myostatin Signaling in Skeletal 
Muscle

Myostatin, also known as growth and differentiation factor 8 (GDF8), is a member 
of the transforming growth factor beta (TGF-β) family of growth factors/cytokines. 
The TGF-β family consists of TGF-βs, activins, bone morphogenetic proteins 
(BMPs), and growth and differentiation factors (GDFs) and can roughly be divided 
into secreted ligands that mediate downstream intracellular signaling via Smad1/5/8 
proteins (BMPs/GDFs) or Smad2/3 proteins (activins, myostatin, GDF11, TGF-β). 
The active, mature domains of TGF-β, activins, and myostatin form dimers via 
cross-linking of conserved cysteine residues, and these dimers interact with the 
receptor domains of type II receptor kinases present on cell membranes. Subsequent 
recruitment and activation of type I receptor kinases result in activated ligand- 
receptor complexes that mediate downstream intracellular signaling via intracellu-
lar phosphorylation of the receptor-regulated R-Smad proteins Smad2 and Smad3 
(Fig. 8.1). Co-Smad protein Smad4 interacts with phosphorylated R-Smad proteins, 
which results in the translocation of these heteromeric Smad complexes to the cell 
nucleus where they regulate transcription of target genes by interacting with other 
sequence-specific transcription factors and cofactors [10]. In addition, myostatin 
and related ligands also activate several intracellular noncanonical pathways such as 

Fig. 8.1 Overview of the signaling pathway of myostatin and related TGF-β ligands, showing 
proteins/treatments that inhibit the activity of myostatin and related ligands, the effect of the 
canonical Smad2/3 pathway, and cross talk with Akt/mTOR pathway
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mitogen-activated protein kinase (MAPK) and interact with other signaling path-
ways such as PI3K/Akt/mTOR (Fig. 8.1).

The MSTN gene consists of three exons that encode the signaling peptide, the 
prodomain, and the mature ligand domain (Fig. 8.2). In contrast to other related 
members of the TGF-β family, myostatin is mainly expressed in skeletal muscle, 
although expression is also detected in the circulation and in other tissues such as 
the heart [11, 12]. To understand more about the function of myostatin in skeletal 
muscle and the role of this pathway in the regulation of muscle mass and muscle 
atrophy, it is first important to discuss the downstream effect of myostatin in skeletal 
muscle in this section. In addition, we will describe knowns and unknowns of the 
relative contribution of downstream canonical and noncanonical pathways in myo-
statin signaling in more detail and discuss how myostatin activity is regulated.

8.2.1  Effect of Myostatin on Myoblast/Satellite Cell Function 
and Muscle Regeneration

After identification of myostatin as conserved regulator of muscle mass in mam-
mals, multiple studies focused on the molecular and cellular mechanisms explain-
ing the effect of myostatin on skeletal muscle. Importantly, myostatin knockout 
results in increased muscle mass due to both an increase in muscle fiber number 
(hyperplasia) and muscle fiber size (hypertrophy). Since postnatal skeletal muscle 
growth is exclusively mediated by muscle fiber hypertrophy, this suggests that the 
effect of myostatin knockout on skeletal muscle mass is at least partly mediated by 
enhanced function of muscle progenitor cells in the embryo resulting in increased 
muscle fiber formation and the double-muscled phenotype. Initial formation of 
skeletal muscles in the embryo is initiated by muscle progenitor cells, or myoblasts, 
which originate from the pharyngeal arches and the dermomyotome compartment 
of somites and which migrate to the different sites in the embryo to form skeletal 
muscle fibers by cell fusion [13]. In adult skeletal muscle, a population of muscle 
stem cells, or satellite cells, that originate from these embryonic myoblasts resides 
between the basal lamina and the sarcolemma of the muscle fibers. These satellite 
cells play an important role in the regulation of postnatal muscle growth and are 
required for skeletal muscle regeneration after muscle damage [14]. Myostatin 
expression is detected in the embryonic stage in the somites and developing limbs, 
suggesting a role for myostatin in the regulation of myogenesis [15, 1]. In addition, 
Mstn expression is induced upon myogenic differentiation in myoblasts, and the 
myogenic regulatory factor MyoD regulates myostatin promoter activity in vitro 
[16]. The role of myostatin in muscle formation in the embryo was confirmed in 
studies that determined the effect of myostatin in chicken embryos. Implantation of 
myostatin-coated beads in developing limbs of chicken embryos inhibits the expres-
sion of Pax3, MyoD, and Myog and inhibits proliferation of embryonic myoblasts 
[17]. In addition, another study showed that embryonic myostatin overexpression in 
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Fig. 8.2 Overview of myostatin protein and processing. (a) Overview of the myostatin protein and 
the different steps of myostatin processing. (b) Structure of the myostatin protein. On the left the 
myostatin monomer is shown with the different domains and on the right the active myostatin 
dimer (second monomer shown in gray). The conserved cystine knot with the interactions between 
the different cysteine residues is shown in yellow and in purple the cysteine responsible for dimer 
formation. Protein structure is derived from Protein Data Bank (PDB): 3HH2. (c) Alignment of the 
mature domains of myostatin and the different related TGF-β ligands that signal via Smad2/3. The 
conserved cysteine residues of the cystine knot are shown in yellow and in purple the cysteine 
responsible for dimer formation. The residues that differ from the myostatin protein are shown in 
red
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chicken somites depleted the muscle progenitor cell population by inducing the 
expression of the cell cycle inhibitor Cdkn1a (p21) and stimulating premature dif-
ferentiation, resulting in decreased muscle development in chicken embryos [15]. 
These studies support the hypothesis that myostatin inhibits the function of embry-
onic myoblasts and that genetic deletion of myostatin enhances embryonic muscle 
growth by expansion of the population of embryonic myoblasts and increased 
myogenesis.

In contrast, the effect of myostatin on satellite cells in mature skeletal muscle is 
controversial. Early studies suggesting that myostatin can inhibit myoblast prolif-
eration and differentiation were mainly based on in vitro experiments in C2C12 myo-
blasts. The C2C12 myoblast cell line is a subclone of an immortalized cell line 
derived from myoblasts that were isolated from injured thigh muscle of 2-month- 
old wild type mice [18, 19]. In low serum medium, these myoblasts can fuse and 
differentiate to form multinucleated myotubes and are therefore frequently used as 
in vitro model for myogenesis and regeneration. High levels of myostatin protein or 
overexpression of myostatin inhibits proliferation of C2C12 myoblasts [20–22] by 
increasing the expression of cyclin-dependent kinase inhibitor Cdkn1a (p21) and 
inducing the degradation of cyclin D1 [22]. Furthermore, myostatin inhibits myo-
genic differentiation of C2C12 myoblasts by inhibiting the expression of myogenic 
regulatory factors MyoD and Myog [23, 24]. Apart from these experiments in C2C12 
myoblasts, other studies also suggest a role for myostatin in the regulation of satel-
lite cells and muscle regeneration. Myostatin and its type II receptor Acvr2B are 
detected in satellite cells in adult mouse muscle sections, and myostatin knockout or 
inhibition increases proliferation rate of primary myoblasts and increases activation 
of satellite cells cultured in their muscle fiber niche [25–27]. In addition to the regu-
lation of the cell cycle and myogenic differentiation, myostatin is also implicated in 
the regulation of satellite cell self-renewal by repressing the expression of satellite 
cell marker Pax7 [28]. The functional implication of the effect of myostatin knock-
out on satellite cell function was furthermore shown by studies that compared the 
efficiency of muscle regeneration in Mstn-/- mice with wild  type mice. Muscle 
regeneration is accelerated in Mstn-/- mice after muscle injury with cardiotoxin or 
laceration injury, as shown by increased levels of MyoD and Myog after damage 
and decreased fibrosis [29, 30], and this improved regenerative capacity was still 
observed in damaged muscles of senescent 24-month-old Mstn-/- mice [31].

However, results from other studies suggest that myostatin has either no or lim-
ited effect on satellite cells. Mstn-/- mice show muscle fiber hypertrophy without an 
increase in satellite cell number or number of myonuclei in muscle fibers, suggest-
ing that in these mice, muscle fiber hypertrophy is not accompanied by increased 
satellite cell fusion [32]. Experiments with postnatal myostatin inhibition in mice 
also showed similar results, suggesting that specific myostatin-targeting therapies 
may not affect satellite cell function or number in skeletal muscle and therefore do 
not deplete the satellite cell population nor enhance satellite cell function [32]. 
Moreover, muscle hypertrophy was not inhibited by depleting the satellite cell pop-
ulation in Mstn-/- mice, demonstrating that hypertrophy occurred independently of 
satellite cell activity [33]. A recent study showed that inhibition of both myostatin 
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and activins with soluble ACVR2B-Fc in mice resulted in low but detectable levels 
of satellite cell activation [34]. Importantly, muscle fiber hypertrophy preceded sat-
ellite cell activation and myonuclear accretion after the treatment and thus occurred 
independently of satellite cell activity.

The reason for the seemingly conflicting effects of myostatin on satellite cells 
is currently unclear but likely depends on differences in the concentration and 
source of myostatin protein, culture conditions and type of cells (C2C12, primary 
myoblasts, or satellite cells in the muscle fiber niche), and the type, duration, and 
timing of in vivo treatment with inhibitors of these pathways. In addition, the 
effect of postnatal myostatin inhibition on muscle regeneration remains unclear, 
and further studies are warranted to determine the role of myostatin and related 
proteins in muscle regeneration. Notably, evidence from multiple studies suggests 
that myostatin also affects the function of other cells that play an important role in 
muscle regeneration, such as fibroblasts and macrophages, and moreover suggests 
that myostatin contributes directly to muscle fibrosis by stimulating fibroblast pro-
liferation and survival [35, 36, 29, 30].

8.2.2  Effect of Myostatin on Skeletal Muscle Fibers

As mentioned before, genetic deletion of myostatin results in pronounced muscle 
hypertrophy caused by both an increase in muscle fiber hyperplasia and muscle 
fiber hypertrophy. To exclude the effects of myostatin inactivation on embryonic 
myogenesis, other studies determined the effect of conditional postnatal myostatin 
inactivation specifically in skeletal muscle. Importantly, inhibition of myostatin in 
adult mice resulted in muscle fiber hypertrophy and increase in muscle force pro-
duction [37–39]. In contrast to myostatin loss of function, the direct catabolic 
effect of myostatin on skeletal muscle was demonstrated in studies that showed the 
effect of myostatin overexpression in mice, which resulted in pronounced muscle 
atrophy [40–42].

Several lines of evidence suggest that myostatin causes muscle atrophy by induc-
ing catabolic pathways and repressing pathways involved in translation. Trim63 
(MuRF-1) and Fbxo32 (MAFbx/Atrogin-1) are E3 ubiquitin ligases that are involved 
in proteasomal degradation of proteins in catabolic muscle-wasting conditions. 
Gene expression of MuRF-1 and Atrogin-1 is increased in different forms of muscle 
atrophy, resulting in specific degradation of muscle proteins in muscle fibers. 
Forkhead box O (FoxO) proteins are crucial mediators of muscle atrophy via tran-
scriptional regulation of atrogenes such as MuRF-1 and Atrogin-1 and regulation of 
autophagy [43–45]. In vitro, high levels of myostatin (3–5μg/ml) increase Atrogin-1 
and/or MuRF-1 protein and mRNA levels in differentiated C2C12 myotubes, and this 
effect was found to be FoxO1 dependent [46–48]. In vivo, myostatin overexpression 
in skeletal muscle increases both MuRF-1 and Atrogin-1 expression in skeletal mus-
cles in mice [48]. In addition, downstream mediator Smad3 synergistically induces 
the expression of MuRF-1 together with Foxo1 [49]. This synergy between Smad3 
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and FoxO transcription factors in muscle cells is consistent with reports in other cell 
types showing that FoxO transcription factors are indispensable for the transcrip-
tional control of a subset of target genes that are regulated by Smad2 and Smad3 
[50, 51]. Furthermore, in vitro experiments showed that Foxo1 is also required for 
the transcription of myostatin together with Smad3 in C2C12 myotubes and showed 
that myostatin increases Foxo1 expression in vitro and in vivo, suggesting a positive 
feedback loop between these pathways [52, 48]. Together these studies suggest that 
the catabolic effects of FoxO and myostatin pathways on skeletal muscle are inte-
grated and that these pathways have a synergistic effect on muscle atrophy.

The IGF-1/PI3K/Akt/mTOR pathway is a critical regulator of muscle protein 
translation and skeletal muscle growth [53, 54]. Importantly, multiple evidence 
points to cross-signaling between myostatin and the IGF-1/PI3K/Akt/mTOR path-
way (Fig. 8.1). In myostatin knockout mice, the total and active phosphorylated Akt 
protein levels are higher in cardiac and skeletal muscle [55]. Furthermore, antibody- 
mediated postnatal inhibition of myostatin function in mice resulted in increased 
muscle protein synthesis and higher levels of phosphorylated active ribosomal pro-
tein S6 (p-rpS6) and p70 S6 kinase (pS6K), two downstream mTOR target proteins 
[56]. In vitro experiments furthermore demonstrated that myostatin inhibits IGF-1/
PI3K/Akt/mTOR pathways in C2C12 myoblasts and differentiated myotubes [55, 
57]. Importantly, this regulation is reciprocal since IGF-1 also has an inhibitory 
effect on myostatin signaling in C2C12 cells [58]. The mechanism of the crosstalk 
between these pathways is not entirely clear and may involve several different inter-
actions. Akt is known to physically interact with Smad3, thereby preventing Smad3 
phosphorylation, interaction with Smad4, and nuclear translocation [59, 60]. 
Furthermore, Akt prevents nuclear translocation of Foxo transcription factors [61], 
which may affect Smad2/3-dependent transcription and inhibit Mstn expression. 
Conversely, Smad3 indirectly induces expression of Akt/mTOR inhibitor PTEN by 
decreasing the expression of microRNA-29 [62].

In addition to regulation of muscle fiber growth, myostatin signaling is also 
implicated in regulation of muscle fiber type and muscle fiber metabolism. Myostatin 
is predominantly expressed in fast-twitch muscles, and Mstn promoter activity is 
mainly detected in fast type IIB muscle fibers in mice [63, 64]. Interestingly, the 
myogenic transcription factor MyoD is also mainly expressed in fast-type muscles 
in mature skeletal muscle and implicated in regulation of myostatin transcription 
[65, 64, 16], suggesting that the fiber-type-specific expression of myostatin is regu-
lated by MyoD. A direct role for myostatin in muscle fiber-type specification was 
found in Mstn-/- mice, which show a decrease in slow type I and type IIA and an 
increase in the percentage of fast glycolytic IIB fibers [66, 67]. Although Mstn-/- 
mice show pronounced increases in muscle mass, the specific force of Mstn-/- skel-
etal muscle (defined as the maximal tetanic force normalized by muscle weight) 
decreased compared to wild type mice [66]. Subsequent studies demonstrated that 
skeletal muscles of Mstn-/- mice show extreme fatigability associated with decreased 
oxidative capacity of muscle fibers and mitochondrial depletion [67, 68]. Postnatal 
myostatin inhibition by overexpression of the prodomain or injections with 
ACVR2B-Fc resulted in similar decrease of oxidative capacity and decrease in 
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fatigue resistance of skeletal muscle and in addition showed reduced muscle capil-
larization [68, 69]. Postnatal myostatin inhibition furthermore decreased expression 
of key enzymes and transcription factors involved in oxidative metabolism, such as 
Pdk4, Cpt1b, Pgc1α, Pparβ, and Porin, and resulted in a shift to anaerobic glycoly-
sis in skeletal muscle [69]. However, in contrast to Mstn-/- mice, no fiber-type 
switch toward fast IIB muscle fibers was observed after treatment with myostatin 
inhibitors [70, 69]. Together these results suggest that postnatal myostatin inhibition 
negatively affects oxidative metabolism and endurance capacity of skeletal muscle. 
However, recent experiments showed that despite the negative effect on oxidative 
capacity and endurance, treatment of mice with ACVR2B-Fc did not compromise 
bioenergetic status during fatiguing exercise, and these mice showed increased mus-
cle force generating capacity compared to control mice [71].

8.2.3  Regulation of Myostatin Activity

The active myostatin dimer signals via specific type I and type II receptors to acti-
vate downstream Smad2/3 pathways and other noncanonical pathways. In vitro 
affinity labeling assays showed that myostatin binds with high affinity to the type II 
receptor ACVR2B and to a lesser extent ACVR2A and forms a heteromeric receptor 
complex with either ALK4 (ACVR1B) or ALK5 (TGFBR1) [72, 73]. Systemic 
injections of a soluble compound composed of the receptor domain of ACVR2B 
and a soluble IgG Fc domain, ACVR2B-Fc, specifically result in muscle hypertro-
phy in mice which is reminiscent of the myostatin knockout phenotype [74]. We 
recently showed that the interaction of myostatin with type I receptors is cell type 
specific and regulated through interaction with the co-receptor Cripto [75]. 
Specifically, in vitro RNAi experiments showed that myostatin signaling was medi-
ated via ALK4/ACVR1B in C2C12 myoblasts and primary myoblasts and that 
expression of co-receptor Cripto was required for myostatin activity in these cells. 
In fibroblasts and mesenchymal stem cells, Cripto was absent, and myostatin signal-
ing was mediated via ALK5/TGFBR1 [75]. The relevance of Cripto in skeletal 
muscle was demonstrated by overexpression of soluble Cripto, which resulted in 
muscle hypertrophy and accelerated muscle regeneration in mice [25]. In contrast 
Cripto knockout resulted in impaired regeneration [25]. In contrast to our study, the 
authors showed that Cripto counteracts myostatin signaling in satellite cells, 
although these results were based on overexpression of soluble Cripto instead of 
knockdown of endogenous Cripto [25]. Other co-receptors are also known to regu-
late TGF-β activity, such as betaglycan (TGFBR3), and knockdown of this co- 
receptor inhibits myostatin activity in mesenchymal stem cells but not in myoblasts 
[75]. This suggests that TGF-β co-receptors play an important role in cell type spec-
ificity of TGF-β ligands including myostatin. However, the role of different co- 
receptors in the regulation of myostatin activity in vivo remains to be determined.

Local myostatin activation depends on cleavage of pro-myostatin by furin prote-
ases and the subsequent activation of the latent complex by cleavage of the 
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 prodomain by BMP1/TLD-like proteases (Fig. 8.2). After initial cleavage of pro-
myostatin by furin, the prodomain of myostatin binds the mature myostatin dimer 
via non- covalent interactions, thus forming a latent myostatin complex and prevent-
ing the binding of the mature dimer to the type II receptor. Subsequent proteolytic 
cleavage of the latent complex by BMP1/TLD-like proteases is crucial for releasing 
the mature dimer and activating downstream pathways (Fig.  8.2) [76]. Genetic 
knockout studies in mice showed that the protease tolloid-like 2 (TLL2) is likely at 
least partly responsible for proteolytic cleavage of the prodomain in skeletal mus-
cle, since genetic knockout of this protein also results in significant muscle hyper-
trophy [77]. However, muscle hypertrophy in Tll2-/- mice was not as pronounced as 
observed in Mstn-/- mice, suggesting that other proteases also play a role in process-
ing of myostatin prodomain [77]. Multiple studies showed that overexpression of 
the myostatin prodomain or a dominant-negative pro-myostatin protein that lacks 
the residues required for proteolytic cleavage (dnMstn) results in reduced myostatin 
activity in vivo and muscle hypertrophy in mice [78–80, 76]. In different preclinical 
animal models of muscle-wasting, treatment with these proteins shows promising 
results by counteracting muscle atrophy (Table 8.2).

Although myostatin is predominantly expressed in skeletal muscle [11, 1], it is 
also detected in the circulation [11]. However, studies showed that myostatin pro-
tein is inactive in serum because the mature active dimer is bound to inhibitory 
proteins including its own prodomain and a protein encoded by the follistatin- 
related gene (FLRG or FSTL3) [81]. In addition, activity of myostatin is also inhib-
ited by interactions with other proteins, such as follistatin (FST) [82, 83] and 
GDF-associated serum protein-1 and protein-2 (GASP-1/GASP-2, also known as 
WFIKKN-2/WFIKKN-1, respectively) [84, 85]. The significance of these inhibi-
tory proteins in regulation of muscle mass was shown by knockout experiments and 
overexpression experiments of the genes encoding these regulatory proteins. 
Genetic deletion of Fst [86] or Wfikkn-1/Wfikkn-2 [87] in mice results in decreased 
muscle mass and impaired muscle regeneration upon injury. In contrast, overexpres-
sion of FST, FLRG, or GASP-1/WFIKKN-2 in mice results in muscle hypertrophy 
and increased muscle strength [88, 38, 89, 72, 90]. In addition, muscle regeneration 
after injury is improved in transgenic mice overexpressing FST, which was associ-
ated with decreased fibrosis, increased angiogenesis, and decreased Mstn expres-
sion [91]. FST-based treatments so far have shown promising results in preclinical 
animal models of different muscle-wasting conditions (Table 8.2) and are currently 
being evaluated in different clinical trials (Table 8.3).

Local myostatin activity is furthermore regulated by the interaction of secreted 
myostatin with different extracellular matrix (ECM)-associated proteins. Decorin 
(DCN) is a proteoglycan that is highly expressed in skeletal muscle and is present 
in the extracellular matrix. DCN inhibits TGF-β and myostatin activity via interac-
tion of the core protein domain with the ligands and moreover it was shown that 
overexpression of DCN antagonizes the inhibitory effect of myostatin on myoblast 
differentiation [92, 30]. In addition, overexpression of DCN in mice accelerates 
skeletal muscle regeneration and counteracts fibrosis upon injury [93]. Another pro-
teoglycan, the ECM protein perlecan (HSPG2), also has been implicated in the 
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regulation of myostatin activity. Perlecan knockout mice display skeletal muscle 
hypertrophy and decreased levels of myostatin expression and myostatin protein 
[94]. In vitro experiments showed that the myostatin prodomain specifically inter-
acts with glycosaminoglycan chains of perlecan [95]. As yet the nature and rele-
vance of this interaction are unknown and it is unclear how perlecan can regulate 
myostatin expression. Myostatin can also bind latent TGF-β-binding proteins 
(LTBP), which are known to interact with ECM proteins and sequester TGF-β pro-
teins to the ECM.  Specifically, LTBP2 and LTBP3 bind pro-myostatin via non- 
covalent interactions that require both the prodomain and the mature domain [96]. 
LTBP3 can sequester the non-cleaved pro-myostatin to the ECM, and this form of 
unprocessed myostatin was found to be the main form present in the ECM of skel-
etal muscle [96, 97]. The relevance of this interaction was furthermore demonstrated 
by overexpression of Ltbp3 in skeletal muscle in vivo in mice, which resulted in 
pronounced muscle hypertrophy [96]. In addition, interaction of myostatin with 
another LTBP, LTBP4, was shown in a recent study. Co-immunoprecipitation 
experiments demonstrated a direct interaction of myostatin with the amino-terminal 
part of LTBP4. In addition to myostatin, TGF-β and GDF11 also interact with 
LTBP4, suggesting this protein can bind and regulate activity of multiple TGF-β 
family members. The therapeutic potential of this protein was shown in transgenic 
mice overexpressing Ltbp4, which resulted in a muscular phenotype comparable to 
that of Mstn-/- mice [98]. In addition, overexpression improved muscle pathology in 
a mouse model for Duchenne muscular dystrophy via inhibition of TGF-β and myo-
statin, resulting in decreased fibrosis and improved histology [98]. Moreover, recent 
studies suggest that LTBP4 is an important modifier gene in muscle-wasting condi-
tions. Polymorphisms in the Ltbp4 gene are associated with increased TGF-β 
release/activity and aggravate pathology in mouse models of muscular dystrophy 
[99, 100]. Differences in the sequence of the human LTBP4 gene result in proteins 
with shorter hinge regions compared to the mouse protein, which makes the human 
protein more susceptible to proteolytic degradation and results in higher TGF-β 
activity. Antibodies that stabilize the hinge region of LTBP4 and counteract prote-
olysis improve muscle pathology in mdx mice overexpressing the human LTBP4 
protein, suggesting the therapeutic potential of such treatments for patients with 
muscular dystrophy.

In summary, multiple proteins are involved in the regulation of myostatin activity 
and therapies aimed at treatment of some of these proteins, such as the myostatin 
prodomain, ACVR2B-Fc, FST, FLRG, and LTBP4, show promise in stimulating 
muscle growth and muscle regeneration, and are therefore candidates to counteract 
muscle atrophy.
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8.2.4  The Effect of Canonical Myostatin Pathway on Skeletal 
Muscle

Like the structurally related cytokines TGF-β1, TGF-β2, and TGF-β3, GDF11, and 
activins, myostatin activates downstream signaling via phosphorylation of Smad2 
and Smad3 proteins [73, 101]. Multiple studies suggest that canonical signaling via 
Smad3 is likely responsible for the effect of myostatin on myogenesis and skeletal 
muscle mass. First, Smad3 is known to physically interact with MyoD, a known 
master regulator of myogenesis, and thereby interferes with the transcriptional 
activity of MyoD and inhibits myogenic differentiation of myoblasts induced by 
MyoD [102]. This interaction was found to be specific since overexpression of 
Smad3, but not Smad2, interfered with MyoD-induced myogenic differentiation 
and muscle-specific reporter gene activity [102]. Myostatin stimulated the interac-
tion between Smad3 and MyoD in C2C12 myoblasts, and the inhibitory effect of 
myostatin on MyoD transcription was counteracted by a dominant-negative 
Smad3 in these cells [23]. In addition to the effect on MyoD, Smad3 can also inter-
fere with the interaction of another key myogenic factor, MEF2C, with coactivator 
GRIP-1 resulting in decreased transcriptional activity of MEF2C [103]. In addition 
to these downstream effects, myostatin also negatively autoregulates its own activ-
ity by Smad2/3-dependent upregulation of the gene encoding the inhibitory Smad 
protein Smad7, similar as described for TGF-β [104, 101]. Importantly, multiple 
studies show that Smad7 plays an important role in the regulation of muscle mass 
and muscle regeneration. Smad7-/- mice show muscle wasting and impaired muscle 
regeneration [105]. Conversely, Smad7 overexpression stimulates myoblast differ-
entiation in vitro and increases muscle mass and protects against muscle atrophy in 
vivo [106, 107].

In addition to the effect on myogenesis, both Smad2 and Smad3 proteins play a 
role in the regulation of muscle mass and muscle fiber atrophy. It was shown that 
type I receptor-mediated muscle hypertrophy induced by overexpression of consti-
tutively active ALK4 or ALK5 was Smad2/3 dependent and that RNAi-mediated 
inhibition of Smad2/3 promoted muscle hypertrophy in mice [108]. A recent study 
showed that unilateral sciatic nerve denervation and immobilization in mice result 
in muscle atrophy accompanied by upregulation of MuRF-1 and Atrogin-1 expres-
sion and increased levels of both total and phosphorylated Smad2 and Smad3 pro-
teins [109]. Genetic deletion of combined but not individual Smad2 and Smad3 
counteracted denervation-induced muscle atrophy in mice. Interestingly, increased 
expression of MuRF-1 and Atrogin-1 after denervation was counteracted specifi-
cally by Smad3 knockout, but not by Smad2 knockout, suggesting overlapping as 
well as different functions for Smad2 and Smad3 [109]. This is consistent with other 
studies reporting that Smad3 overexpression increased Atrogin-1 transcription and 
muscle atrophy and increased protein synthesis and inhibition of Smad3 resulted in 
muscle hypertrophy [62].
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In contrast to the catabolic and anti-myogenic functions of Smad3 we discussed, 
recent studies have suggested that Smad3 is required for proper function of satellite 
cells, muscle regeneration, and maintenance of skeletal muscle mass. Genetic dele-
tion of Smad3 in mice surprisingly resulted in skeletal muscle atrophy and impaired 
muscle regeneration [110, 111]. In addition, Smad3-/- myoblasts showed decreased 
proliferation rates and impaired differentiation in vitro compared to wild type myo-
blasts [110]. Mechanistically, Smad3 knockout resulted in increased Mstn and 
MuRF1 expression and protein levels in skeletal muscle and decreased Igf-1 expres-
sion [110, 111]. No difference was observed in Atrogin-1 and Foxo1/pFoxo1 pro-
tein levels, suggesting that these atrogenes are not downstream of Smad3. 
Importantly, myostatin knockout reversed muscle atrophy in these mice, suggesting 
that myostatin is responsible for the observed effect in skeletal muscle of Smad3 
knockout mice and mediates this effect via Smad2 or other noncanonical pathways. 
It will be important to determine whether the observed effects of Smad3 knockout 
are due to postnatal inhibition of Smad3  in skeletal muscle or due to effects on 
embryonic myogenesis. In addition, the potential overlapping and distinct functions 
of Smad2 and Smad3 in myostatin signaling remain as yet unresolved. Dissecting 
the specific functions of these R-Smads in more detail in skeletal muscle and deter-
mining their relative contribution to different forms of muscle atrophy will help us 
understand more about the different downstream effects of myostatin and related 
proteins.

8.2.5  Noncanonical Myostatin Pathways

Apart from canonical Smad2/3-mediated pathways, myostatin is also known to acti-
vate other intracellular pathways that may mediate important downstream functions 
of myostatin. In vitro studies showed that myostatin induces phosphorylation of 
mitogen-activated protein kinases (MAPK) JNK, p38MAPK, and ERK1/2 in myo-
blasts [112–114]. Although it is as yet not known what the relative contribution of 
these pathways is in the downstream functions of myostatin signaling in vivo, in 
vitro experiments suggest that ERK1/2 are required for the effect of myostatin on 
myogenic differentiation of myoblasts and satellite cell self-renewal. For instance, 
it was shown that small molecule inhibition of ERK1/2 counteracts the inhibitory 
effect of myostatin on myogenesis in C2C12 myoblasts [114]. In addition, high levels 
of myostatin inhibited Pax7 expression via ERK1/2 in primary myoblasts [28]. In 
vitro studies in C2C12 myotubes and in vivo studies of knockout mice showed that 
ERK1/2 are required for the preservation of muscle mass [115, 116]. However, local 
increase in ERK1/2 phosphorylation in skeletal muscle is also associated with mus-
cle atrophy, and myostatin/activin inhibition in mice prevents these changes, sug-
gesting that these noncanonical pathways may contribute to muscle atrophy in some 
conditions [117–119]. Moreover, a direct role for ERK1/2 was shown in a recent 
study in which treatment of tumor-bearing mice with an ERK inhibitor prevented 
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cachexia-induced muscle wasting [120], suggesting that inhibiting  this  path-
way may be potential therapy for muscle wasting conditions.

8.2.6  Cross-Signaling of Myostatin Pathways with Other 
Signaling Pathways

Recent studies indicate that myostatin signaling pathway interacts with several 
other pathways that are involved in muscle atrophy and regulation of muscle mass. 
Stat3 is a transcription factor that is activated by several cytokines, among others, 
TNF-α and IL-6, and that is known as an important cause of muscle atrophy in 
several muscle-wasting conditions [121–124]. Stat3 can stimulate expression of 
myostatin and atrogin-1 via CAAT/enhancer-binding protein δ (C/EBPδ) in cata-
bolic muscle-wasting conditions such as cancer cachexia and chronic kidney dis-
ease (CKD) [124, 125]. In addition, TGF-β signaling is known to stimulate 
phosphorylation and activation of Stat3, and Stat3 is known to physically interact 
with Smad2 and Smad3 and depending on cell type can inhibit or potentiate Smad-
dependent transcription [126–128]. Although it is not known whether Stat3 is 
required for the downstream effects of myostatin signaling and Smad2/3 function 
in skeletal muscle, it would be interesting to determine if this is the case and whether 
Stat3 inhibitors can be used to inhibit myostatin and/or TGF-β  signaling. 
Notably, small molecule inhibitors of Stat3 have been identified as potential treat-
ment to counteract muscle wasting during aging and in muscle degenerative dis-
eases such as Duchenne muscular dystrophy [129, 130].

Recently, a link between Notch and myostatin signaling pathways has been 
established in myoblasts and skeletal muscle. Notch is an important signaling path-
way that is involved in the regulation of satellite cell activation and myoblast prolif-
eration and inhibits myogenic differentiation [131]. Notch signaling is mediated by 
intracellular cleavage of the Notch receptor, which results in the release of the 
Notch intracellular domain (NICD) and subsequent translocation of this protein to 
the cell nucleus where it regulates transcription of specific target genes. In vitro 
experiments in human myoblast cultures showed that myostatin stimulates the 
physical interaction of the NICD with Smad3 and induces expression of down-
stream Notch target genes Hes1, Hes5, and Hey1 [132]. In addition, mice with 
genetic deletion of the gene encoding the Notch antagonist Numb show defective 
muscle regeneration, impaired satellite cell function, and increased Mstn  expres-
sion [133]. This muscle phenotype in Numb-/- mice was counteracted by specifi-
cally inhibiting myostatin with RNAi [133]. TGF-β also induces the expression of 
Notch target genes in C2C12 myoblasts and other cell types, and this effect is also 
dependent on the physical and transcriptional interaction between Smad3 and the 
NICD protein [134]. This suggests that the interaction between Notch- and Smad3-
mediated pathways is a general feature and regulates a subset of target genes that 
are regulated by both these pathways. However, increased  TGF-β  activity and 
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Smad3 have also been reported to inhibit Notch signaling in  muscles  and myo-
blasts of old mice, suggesting the crosstalk between these pathways is highly con-
text dependent  (see chapter 8.4.3 below).  Importantly, deregulation of Notch 
pathways has been reported in various muscle-wasting conditions and may contrib-
ute to muscle wasting in some conditions. For example, activation of Notch signal-
ing pathways has been reported in mouse models for glucocorticoid-induced muscle 
atrophy and muscle dystrophy [135, 136]. In addition, decreased activity of Notch 
has been reported in satellite cells in aging skeletal muscle and restoring Notch 
signaling can restore the regenerative potential of skeletal muscle in old mice [231, 
232]. It will therefore be interesting and important to determine how these pathways 
interact in different muscle wasting conditions. 

Other studies also indicate crosstalk between Wnt and myostatin pathways. 
Transcriptional profiling of muscle tissue of Mstn-/- mice indicated that the expres-
sion of genes involved in the canonical β-catenin-mediated Wnt pathway was 
decreased, while the expression of genes involved in the noncanonical Wnt/calcium 
pathway was increased upon myostatin loss of function [137]. Gene expression of a 
noncanonical Wnt, Wnt4, was specifically increased in Mstn-/- mice, and in vitro 
experiments showed that myostatin inhibits expression of Wnt4 [86]. Conversely, 
Wnt4 protein decreased the expression of Mstn in C2C12 myoblasts and decreased 
myostatin activity in both C2C12 myoblasts and primary myoblasts [138, 139]. 
Expression of Wnt4 is induced during myogenic differentiation in C2C12 myoblasts 
and primary myoblasts and during muscle regeneration in vivo in mice, and overex-
pression of Wnt4 stimulates myogenesis [138, 140].

Recent studies also highlighted an important function for bone morphogenetic 
proteins (BMPs) in the regulation of skeletal muscle mass and indicated cross talk 
of BMP signaling pathways with myostatin signaling pathways. As mentioned 
before, BMPs are members of the TGF-β family that mediate downstream signaling 
via interaction with distinct BMP type I receptors and type II activin/BMP recep-
tors, resulting in phosphorylation of R-Smads Smad1/5/8 and activation or repres-
sion of specific downstream target genes. BMP signaling plays an important role in 
protection against muscle atrophy and mediates muscle hypertrophy. Overexpression 
of constitutively active BMP type I receptor ALK3 (caALK3) or Bmp7 in mouse 
skeletal muscle resulted in increased levels of phosphorylated Smad1/5/8 
(pSmad1/5/8) and muscle hypertrophy and moreover counteracted denervation- 
induced muscle atrophy [141, 142]. In contrast, overexpression of the inhibitory 
Smad Smad6, the BMP antagonist Noggin, or intramuscular injection with small 
molecule BMP inhibitor LDN-193180 resulted in more pronounced skeletal muscle 
atrophy [141, 142]. BMP activity and expression of BMP family members Gdf5 
(Bmp14) and Gdf6 (Bmp13) were induced in skeletal muscle during denervation 
[141, 142]. This implies that increased BMP activity is a protective response in 
catabolic conditions in skeletal muscle, which was confirmed by the finding that 
Gdf5 knockout mice show aggravated muscle atrophy after denervation. Analysis of 
the downstream effects and target genes involved in BMP-mediated regulation of 
muscle mass resulted in the identification of a new member of the ubiquitin ligase 
family of proteins, MUSA-1 (FBXO30) as a novel target for BMP signaling in 
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skeletal muscle [141]. In addition, inhibition of BMP pathways in skeletal muscle 
induced the expression of other atrogenes such as MuRF1 and Atrogin-1 and 
induced activity of HDAC4-myogenin pathway, which plays an important role in 
denervation- induced atrophy by stimulating the expression of atrogenes. Cross talk 
between BMP and myostatin pathways was demonstrated in myostatin knockout 
mice or follistatin overexpression in mice, which resulted in elevated pSmad1/5/8 
levels, suggesting that the effect of myostatin inhibition was at least partly mediated 
by increased BMP activity [141, 142]. In addition, combined inhibition of activins 
and myostatin resulted in more pronounced hypertrophy and pSmad1/5/8 levels in 
skeletal muscle compared to overexpression of the individual prodomains [143]. 
There are several explanations possible for the observed crosstalk between myo-
statin/activin pathways and BMP pathways. First, inhibition of myostatin and/or 
activin may lead to increased BMP signaling via increased availability of type II 
activin receptors (ACVR2A/ACVR2B). Type II activin receptors are known recep-
tors for some BMP ligands, such as BMP6 and BMP7, and in vitro experiments 
showed that myostatin competes with BMPs for interaction with these receptors 
[73]. Secondly, inhibition of myostatin and/or activin may lead to increased avail-
ability of the co- Smad Smad4 and therefore results in increased interaction with the 
BMP Smads Smad1/5/8.

In addition to the regulation of muscle hypertrophy and protection against mus-
cle fiber atrophy, BMP signaling also plays an important role in the activation and 
expansion of the satellite cell population and prevention of premature differentia-
tion [144, 145]. It is as yet however unknown whether myostatin signaling also 
crosstalks with BMP signaling during myogenesis and regeneration. Furthermore, 
considering the important role of BMPs in skeletal muscle and the potential involve-
ment of myostatin and other TGF-β ligands in different muscle-wasting disorders, it 
is important to establish how these pathways interact and if deregulation of BMP 
signaling plays a role in different forms of muscle atrophy.

8.3  Function of Myostatin in Skeletal Muscle Atrophy

As mentioned before, artificially increased myostatin levels induce muscle atrophy 
in vivo in mice. However, such experiments do not provide direct evidence of the 
involvement of myostatin in different muscle-wasting conditions. Importantly, 
increased levels of myostatin expression and protein have been associated with 
some muscle-wasting conditions, suggesting a contribution of myostatin to muscle 
atrophy in some cases (Table 8.1). In addition, preclinical evidence suggests that 
targeting of myostatin and related pathways counteracts muscle atrophy in some 
conditions regardless whether myostatin is directly involved or not (Table 8.2). In 
the following section, we will discuss in more detail the effects of specific myostatin 
knockout and postnatal targeting in different preclinical animal models of muscle- 
wasting disorders.
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Table 8.1 Association of myostatin levels with different muscle-wasting conditions

Condition
MSTN level 
(ref) Species Local/systemic

Muscle-wasting conditions

Denervation atrophy ↑[258–261] Mouse, rat, human Local
Stroke ↑[262–264] Mouse, human Local
Unloading/disuse atrophy ↑[63, 146–148] Mouse, rat, 

human-mouse
Local

 = [265] Local
Glucocorticoid-induced atrophy ↑[184] Rat Local
Cachexia: ↑[11] Human Local, systemic
HIV-associated Cachexia
Cancer cachexia ↑[266, 124] Mouse, rat Local
Chronic kidney disease (CKD) ↑[267, 181, 125] Mouse, human Local
Chronic obstructive pulmonary 
disease (COPD)

↑[268–271] Rat, human Local, systemic

Heart failure/congenital heart 
disease

↑[272–274, 12] Mouse, sheep, human Local (heart), 
systemic

Sarcopenia ↑[258, 275, 27, 
276, 277]

Rat, human Local, systemic

= [278, 279, 
209, 280]

Mouse, rat, human Local, systemic

↓[281–283] Rat, human Local, systemic
Neuromuscular diseases

X-linked myotubular myopathy 
(XLMTM)

↓[218] Mouse (Mtm1-KO) Local

Sporadic inclusion body 
myositis (sIBM)
Hereditary inclusion body 
myositis (HIBM)

↓[218, 284] Human Local
↓[187] Human Systemic

Spinal muscular atrophy (SMA) ↓[218] Human Systemic
Duchenne muscular dystrophy 
(DMD)

↓[187, 218, 285] Mouse (mdx), dog 
(GRMD), human

Local, systemic

Becker muscular dystrophy 
(BMD)

↓[187] Human Systemic

Limb-girdle muscular dystrophy 
(LGMD) 2A

↓[187] Human Systemic

Limb-girdle muscular dystrophy 
(LGMD) 2B

↓[187] Human Systemic

Limb-girdle muscular dystrophy 
(LGMD) 2D

↓[286] Mouse (Sgca-/-) Local

Limb-girdle muscular dystrophy 
(LGMD) 2F

↓[194, 286] Mouse (Sgcd-/-) Local

↑ upregulated compared to control, = no difference compared to control, ↓ downregulated com-
pared to control
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Table 8.2 Effect of myostatin targeting in different muscle-wasting models

Condition
Method of 
inhibition Animal model Result References

Muscle-wasting conditions

Denervation atrophy Mstn-/- Mouse = [109]
Mstn 
prodomain

Rat + [153]

ACVR2B-Fc Mouse = [119]
dnACVR2B Mouse + [108]
FST Mouse + (treatment 

before)
[154]

= (treatment 
after)

[154]

Spinal cord injury ACVR2B-Fc Mouse = [287]
Stroke Mstn peptibody Mouse + [242]
Unloading/disuse atrophy Mstn-/- Mouse - [149, 150]

Mstn antibody Mouse + [152, 151]
ACVR2B-Fc Mouse + [119]

Glucocorticoid-induced 
atrophy

Mstn-/- Mouse + [185]
Mstn antibody Mouse + [152, 97]
RNAi myostatin Mouse + [184]
Bimagrumab 
(BYM338)

Mouse + [186]

Cachexia Mstn-/- Mouse (cancer) + [175]
Mstn antibody Mouse (cancer) + [177, 178]
Mstn peptibody Mouse (CKD) + [181]
ACVR2B-Fc Mouse (cancer) + [173, 174, 

179]
Macaque (SIV) + [180]

ACVR2 
antibody

Mouse (cancer) + [176]

Smad7 Mouse (cancer) + [107]
Heart failure/congenital 
heart disease

Mstn-/- Mouse + [288]
Mstn antibody Mouse + [288]

Sarcopenia Mstn+/-, Mstn-/- Mouse + [168, 166, 
167, 31]

Mstn antibody Mouse + [170, 169]
Mstn 
prodomain

Mouse + [171, 172]

Neuromuscular diseases

X-linked myotubular 
myopathy (XLMTM)

ACVR2B-Fc Mouse (Mtm1δ4) + [195]

Nemaline myopathy (NM) Mstn antibody 
(mRK-35)

Mouse 
(TgACTA1D286G)

+ [197]

ACVR2B-Fc Mouse 
(TgACTA1D286G)

+ [196]

(continued)
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Table 8.2 (continued)

Condition
Method of 
inhibition Animal model Result References

Spinal muscular atrophy 
(SMA)

Mstn-/- Mouse (SMAΔ7; 
severe)

= [158]

dnMstn Mouse (C/C; mild) + [162]
ACVR2B-Fc Mouse (C/C; mild) + [162]
FST Mouse (SMAΔ7; 

severe)
= [159]
=

Mouse (SMAΔ7; 
severe)

+ [160]

Mouse (SMAΔ7; 
severe)

= [159]

Mouse (SMAΔ7; 
mild)

+ [161]

ALS Mstn-/- Mouse + [157]
Mstn antibody Mouse, rat + (early 

stage)
[155]

ACVR2B-Fc Mouse + [157]
FST Mouse + [156]

Duchenne muscular 
dystrophy (DMD)

Mstn-/- Mouse (mdx) + [188]
Mouse (mdx) = [32]

Mstn+/- 
(whippet)

Dog (GRMD) - [289, 189]

Mstn antibody Mouse (mdx) + (young, 
adult)

[290, 191, 
239]

Mouse (mdx) = (adult) [191]
Mstn 
prodomain

Mouse (mdx) + [291, 292, 
79]

dnMstn Dog (GRMD) + [293]
ACVR2B-Fc Mouse (mdx) + [294, 292, 

295]
Mouse (mdx) - [69]

FST Mouse (mdx) + [38, 90, 257]
Limb-girdle muscular 
dystrophy (LGMD) 1C

Mstn 
prodomain

Mouse (Cav3-/-) + [296, 297]

RNAi myostatin Mouse (Cav3-/-) + [298, 299]
ACVR2B-Fc Mouse (Cav3-/-) + [296]
Type I receptor 
inhibitor

Mouse (Cav3-/-) + [300]

Limb-girdle muscular 
dystrophy (LGMD) 2A

Mstn 
prodomain

Mouse (Capn3-/-) + [193]

Limb-girdle muscular 
dystrophy (LGMD) 2B

ACVR2B-Fc
FST

Mouse (Dysf-/-) +/- [192]
Mouse (Dysf-/-) - [192]

Limb-girdle muscular 
dystrophy (LGMD) 2C

Mstn antibody Mouse(Sgcg-/-) + [301]

(continued)
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8.3.1  Role of Myostatin in Disuse and Denervation-Induced 
Muscle Atrophy

Disuse, unloading, and denervation lead to catabolic conditions that result in muscle 
atrophy via increased expression of atrogenes such as MuRF-1 and Atrogin-1. 
Myostatin mRNA and protein levels are induced after skeletal muscle unloading or 
disuse in mice, rats, and humans [63, 146–148]. Notably, myostatin mRNA and 
proteinlevels were induced during unloading-induced muscle atrophy in fast-twitch 
plantaris muscle but not in slow-twitch soleus muscle, suggesting that the change in 
myostatin levels is muscle fiber-type specific [63, 148]. The relevance of myostatin 
signaling in muscle atrophy in disuse and unloading conditions was shown in stud-
ies that determined the effects of myostatin knockout or postnatal inhibition in 
mouse models of these conditions (Table  8.2). Although myostatin knockout in 
mice results in muscle hypertrophy, the loss of muscle mass after 7 days of hind 
limb suspension was more pronounced in Mstn-/- mice compared to wild type mice, 
which was associated with impaired protein translation and more pronounced 
upregulation of MuRF-1 and Atrogin-1 [149, 150]. In contrast, inhibition of myo-
statin in mice using specific antibodies during limb cast immobilization or hind 
limb suspension counteracted the decline in muscle mass, increased muscle force, 
and decreased the expression of MuRF-1 and Atrogin-1 [151, 152]. Importantly, the 
positive effect of myostatin inhibition was observed during 14 days of immobiliza-
tion but not after 21 days of immobilization, suggesting that postnatal inhibition of 
myostatin efficiently counteract disuse atrophy only during shorter periods 
of immobilization [151].

In contrast to immobilization-/unloading-induced muscle atrophy, the contribu-
tion of myostatin in denervation-induced atrophy is questionable. Although myo-
statin expression increases locally in skeletal muscles during denervation atrophy 
(Table  8.1), the effect of myostatin inhibition in different studies is conflicting. 
Gene delivery of the myostatin prodomain or a proteinase-resistant pro-myostatin 
mitigated botulinum toxin-induced denervation atrophy in rats [153]. In addition, in 

Table 8.2 (continued)

Condition
Method of 
inhibition Animal model Result References

Limb-girdle muscular 
dystrophy (LGMD) 2D

Mstn 
prodomain

Mouse (Sgca-/-) = [193]

Limb-girdle muscular 
dystrophy (LGMD) 2F

Mstn-/- Mouse (Sgcd-/-) + (4wks) [194]
Mstn antibody Mouse (Sgcd-/-) + (4wks) [194]

= (20wks)
Merosin-deficient 
congenital muscular 
dystrophy (MDC1A)

Mstn-/- Mouse (dyW/dyW) - [198]

+, muscle mass and/or function increased compared to control; =, no difference in muscle mass 
and/or function compared to control; -, pathology aggravated compared to control
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vivo transfection of a dominant-negative myostatin type II receptor (dnACVR2B) 
that inhibits downstream signaling in mouse skeletal muscle partially protected 
muscles from denervation-induced muscle atrophy [108]. On the other hand, treat-
ment with the soluble ACVR2B-Fc myostatin receptor domain efficiently counter-
acted muscle atrophy induced by immobilization but not after sciatic nerve 
denervation in mice [119]. AAV-mediated overexpression of follistatin counteracted 
denervation atrophy when mice were injected before surgical denervation but not 
when mice were injected after the procedure, suggesting that the timing of treatment 
is important [154]. In addition, in vivo experiments in mice showed that although 
Smad2/3 is required for denervation atrophy, myostatin is not required for Smad2/3- 
mediated atrophy, suggesting that another mechanism is involved [109]. Instead 
IGF-1 receptor deactivation contributed to the accumulation of Smad2/3 proteins 
independently of myostatin signaling [109].

Some forms of neuromuscular diseases also cause denervation-induced muscle 
atrophy, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy 
(SMA). ALS is a lethal neuromuscular disease caused by late-onset degeneration of 
motor neurons in the brain and spinal cord, which results in muscle atrophy. In 
mouse and rat models of ALS, myostatin inhibition alleviated muscle atrophy and 
decline in muscle force during the early stages of the disease, but treatment did not 
result in functional improvement during the end stage of the disease and failed to 
improve survival in these animal models of ALS [155–157]. Treatment of ALS mice 
with ACVR2B-Fc resulted in more pronounced improvements compared to the 
effects of myostatin knockout, suggesting that targeting other TGF-β family mem-
bers in addition to myostatin is more effective [157].

In SMA animal models, the effect of myostatin inhibition appears to depend on 
the severity of disease. SMA is a lethal neuromuscular disease that is caused by 
degeneration of motor neurons in the spinal cord and can be divided in different 
subtypes depending on the severity and age of onset. Different animal models exist 
that model the mild or severe variants of the disease, such as the severely affected 
SMAΔ7 mice and the mildly affected C/C SMA mice. Myostatin knockout or 
ACVR2B-Fc treatment did not improve the pathology or survival of SMAΔ7 mice 
[158, 159]. The effect of FST treatment in SMAΔ7 mice is controversial, with one 
study showing no effect of the treatment and another study showing a positive effect 
on pathology, motor function, and survival [160, 159]. In mildly affected SMAΔ7 
mice treated with a SMN2 splicing modifier, FST treatment effectively counteracted 
muscle atrophy [161]. Correspondingly, both a myostatin inhibitor and ACVR2B-Fc 
treatment alleviated muscle pathology in the mildly affected C/C SMA mice [162]. 
Interestingly, ACVR2B-Fc treatment was more efficient in counteracting muscle 
wasting compared to the myostatin inhibitor, suggesting that multi-targeting com-
pounds are more effective therapeutics [162].
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8.3.2  Role of Myostatin in Sarcopenia

Sarcopenia is generally defined as aging-related muscle loss resulting in pronounced 
muscle weakness in elderly and is considered as a multifactorial condition [163]. 
When we age, a combination of disuse, loss of motor units, changes in diet, and 
pathological changes due to the aging process all contribute to muscle fiber atrophy 
and loss of muscle fiber number [164]. In addition, multiple studies suggest that 
satellite cell function is impaired as we age, leading to impaired muscle regenera-
tion and fibrosis and contributing to muscle atrophy in aging muscle [165]. Although 
the contribution of myostatin to sarcopenia is controversial since there is no clear 
consensus on changes in myostatin expression and protein in aging muscle and 
serum (Table 8.1), multiple studies determined the effect of myostatin inhibition on 
skeletal muscles during aging and showed that myostatin is a promising target to 
alleviate sarcopenia (Table 8.2). The therapeutic potential of myostatin inhibition to 
counteract sarcopenia was first shown in studies that determined the effect of myo-
statin knockout in aging mice. Myostatin knockout resulted in muscle fiber hyper-
trophy, increased muscle mass, increased satellite cell activation in vitro, and 
improvement of muscle regeneration in old mice compared to control mice, sug-
gesting that myostatin loss of function protects against sarcopenia [166, 167]. In 
addition, myostatin heterozygous knockout in mice (Mstn+/-) also protected against 
loss of muscle mass and function during aging and resulted in significant increases 
in muscle mass and in both absolute and specific muscle force [168]. Hydroxyproline 
content and Col1a2 expression decreased in old Mstn+/- mice compared to control 
mice, suggesting a decrease in fibrotic tissue [168]. Interestingly, in contrast to 
Mstn-/- mice, heterozygous loss of function of myostatin also resulted in signifi-
cantly increased longevity in mice [168]. In addition to genetic deletion of Mstn, 
several approaches of myostatin inhibition in aging mice also resulted in significant 
improvements in muscle mass, structure, and function. Treatment of older mice 
with myostatin antibodies increased muscle mass and muscle force (absolute force/
grip strength) and decreased apoptosis in skeletal muscle as demonstrated by 
decreased TUNEL staining and decreased Casp3 expression [169, 170]. Treatment 
of older mice with soluble myostatin  prodomain or overexpression of myostatin 
prodomain also increased muscle mass and absolute force and moreover resulted in 
decreased expression of Foxo1 and MuRF1 [171, 172]. Together, these preclinical 
studies suggest that myostatin inhibition may be a promising therapeutic strategy to 
counteract sarcopenia.

8.3.3  Role of Myostatin in Cachexia

Cachexia is a wasting syndrome that results in loss of weight, muscle fiber atrophy, 
fatigue, and frailty and is caused by chronic disease states, such as cancer, AIDS, 
chronic kidney disease (CKD), and chronic obstructive pulmonary disease (COPD). 
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The association of myostatin with muscle atrophy was first revealed in a study that 
compared serum protein and mRNA expression levels of myostatin in healthy and 
HIV-infected men [11]. Some HIV-infected men show pronounced skeletal muscle 
wasting due to the chronic nature of AIDS, and in this study, the authors showed that 
myostatin protein and mRNA expression levels in serum and skeletal muscle 
increased in these men compared to healthy men [11]. In addition, increased myo-
statin levels have been associated with other cachectic conditions such as cancer, 
CKD, and COPD (Table  8.1). Myostatin knockout or treatment with myostatin/
ACVR2 antibody or ACVR2B-Fc counteracts muscle atrophy and improves muscle 
function in mouse models of cancer cachexia [173–179]. Myostatin knockout and 
ACVR2 antibody or ACVR2B-Fc treatment furthermore increased survival of 
tumor-bearing mice [175, 176, 179]. In addition, combined inhibition of activins 
and myostatin with specific prodomains counteracted cancer cachexia more effi-
ciently compared to single treatments, showing that multi-targeting TGF-β ligands 
may be a more promising strategy to counteract cachexia-associated muscle wast-
ing [143]. A different strategy of inhibiting TGF-β pathways, gene delivery of 
Smad7, also counteracted cancer cachexia-induced muscle wasting in mice [107]. 
In addition to cancer cachexia, myostatin inhibition also prevented muscle atrophy 
in other cachectic conditions in preclinical animal models, such as chronic kidney 
disease in mice and AIDS in SIV-infected rhesus macaques [180, 181]. Together 
these studies show great promise of targeting these pathways to counteract muscle 
wasting in cachexia.

8.3.4  Role of Myostatin in Glucocorticoid-Induced Muscle 
Atrophy

Patients with chronic inflammatory diseases or degenerative muscle diseases such 
as muscular dystrophy are frequently treated with glucocorticoids such as predni-
sone to suppress inflammation. However, long-term glucocorticoid treatment has 
several side effects including muscle atrophy [182]. In addition, glucocorticoid 
treatment is associated with satellite cell dysfunction and impaired muscle regen-
eration in skeletal muscle [183]. Glucocorticoids directly induce Mstn expression 
via glucocorticoid response elements present in the myostatin promoter, and gluco-
corticoid treatment is associated with increased Mstn expression in rats [184]. The 
effect of specific myostatin inhibition on glucocorticoid-induced muscle wasting 
was first shown in Mstn-/- mice, which are protected from dexamethasone-induced 
muscle atrophy [185]. In addition, treatment with myostatin or ACVR2 antibodies 
also prevents glucocorticoid-induced muscle wasting in mice, showing the thera-
peutic potential for such treatments in this context [186, 152, 97].
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8.3.5  Role of Myostatin in Neuromuscular Diseases

Patients with inherited neuromuscular diseases that cause muscle degeneration may 
also benefit from myostatin-targeting therapies. Although the pathology of such dis-
orders, such as muscular dystrophy, is typically caused by mutations in genes that 
are important for skeletal muscle function and targeting of myostatin will not restore 
these primary causes, inhibiting these pathways may still alleviate muscle atrophy 
and some of the other secondary pathological processes that contribute to the pathol-
ogy of neuromuscular diseases, such as impaired muscle regeneration and fibrosis. 
In contrast to conditions that induce muscle fiber atrophy, recent studies show that 
degenerative muscle-wasting diseases such as muscular dystrophy are associated 
with decreased levels of myostatin protein and mRNA (Table 8.1). This suggests 
that myostatin most likely is not primarily responsible for some of the secondary 
pathological changes observed in these disorders, such as fibrosis and impaired 
regeneration. Moreover, myostatin levels were negatively associated with loss of 
ambulation in BMD/DMD, LGMD2A/2B, and HIBM patients, suggesting that pro-
gressive decline in muscle function results in further decrease in myostatin [187]. 
Nonetheless, a wealth of studies in preclinical animal models show that myostatin 
inhibition alleviates or counteracts muscle-wasting pathology in different neuro-
muscular diseases and may be a potential target regardless of the decreased myo-
statin levels detected in these muscle-wasting conditions (Table 8.2).

The first indication that myostatin targeting could be a promising therapy for 
patients with muscular dystrophy was provided by a study in 2002 that genetically 
crossed myostatin knockout mice with mdx mice, a mouse model for Duchenne 
muscular dystrophy (DMD) [188]. Importantly, this study showed that myostatin 
knockout in mdx background resulted in increased muscle mass as well as increased 
absolute muscle force, measured at different ages by grip strength in these mice 
compared to mdx control. In addition, the amount of fibrosis was decreased in these 
mstn-/- mdx mice [188]. However, these results are controversial since other studies 
failed to show a clear effect on muscle regeneration in mstn-/- mdx mice and even 
reported deleterious effects on oxidative metabolism and increased muscle fatiga-
bility after treatment with ACVR2B-Fc [32, 69]. Moreover, a recent study described 
the effect of cross-breeding whippets with a heterozygous myostatin mutation with 
golden retrievers that have DMD (GRMD dogs) and showed that the effects of 
genetic myostatin loss of function were deleterious  and aggravated the dystro-
phic  pathology in these so-called GRippet dogs [189]. However, a multitude of 
other studies showed positive effects of myostatin inhibition using antibodies, myo-
statin prodomain, ACVR2B-Fc, and FST in mdx mice (Table  8.2). It is further-
more  important to realize that Mdx mice show a mild pathology that is not 
comparable to the progressive pathology in DMD patients. Therefore, the question 
is whether mdx mice are a suitable preclinical model to test such therapies for 
DMD.  The diaphragm muscle is more severely affected in these mice and may 
therefore represent a more suitable muscle type to test myostatin-targeting therapies 
[190]. One study determined the effect of myostatin antibody treatment on the 
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pathology in diaphragm muscles of mdx mice and reported that the treatment coun-
teracted some of the pathological changes in young mdx  mice but not in older mdx 
mice, suggesting that the effect of the myostatin antibody treatment is age depen-
dent and may only be effective in the early stage [191]. In addition to mdx mice, 
other potentially more suitable mouse models of DMD are available, such as the 
more severely affected mdx utrn-/- mice and DBA/2J-mdx mice. Further studies are 
needed to test the efficiency of myostatin-targeting treatments in these mice in order 
to determine the effect on the pathology of DMD in more detail.

In addition to DMD, the effect of targeting myostatin and related proteins has 
been tested in other muscular dystrophy mouse models, such as different mouse 
models of the different types of limb-girdle muscular dystrophy (Table 8.2). LGMD 
is also characterized by muscle degeneration, but the severity, age of onset, and 
disease progression vary among the different subtypes. Myostatin-targeting thera-
pies show promising results in mouse models of LGMD1C, LGMD2A, and 
LGMD2C (Table 8.2). However, in a mouse model of LGMD2B (dysferlinopathy), 
the pathology of the disease worsened after treatment with FST or ACRV2B-Fc and 
accelerated muscle degeneration [192]. Furthermore, in a mouse model of 
LGMD2D, overexpression of myostatin prodomain did not result in any changes in 
the dystrophic pathology [193]. In a mouse model of LGMD2F, myostatin knockout 
and treatment with myostatin antibodies improved muscle pathology in 4-week-old 
mice but not in 20-week-old mice, suggesting that myostatin targeting is only effi-
cient in the early stage of this disease [194].

In addition to muscular dystrophies, myostatin targeting has also shown promis-
ing results in mouse models of other myopathies, such as nemaline myopathy and 
X-linked myotubular myopathy (XLMTM). Notably, treatment with ACVR2B-Fc 
increased muscle mass and survival in these mouse models, and treatment with 
myostatin antibody improved pathology and muscle force in a NM mouse model 
[195–197]. However, myostatin knockout did not improve muscle pathology in a 
mouse model for merosin-deficient congenital muscular dystrophy (MDC1A) but 
instead increased postnatal lethality [198].

In summary, these results show that targeting myostatin and related proteins alle-
viates the pathology of some degenerative muscle-wasting diseases but may have no 
effect or even worsen the pathology of other myopathies. In addition, due to dis-
crepancies between different studies and the use of animal models that do not accu-
rately resemble the human pathology, the effect of such therapies in muscle-wasting 
diseases such as DMD is still uncertain, and further research in more relevant pre-
clinical animal models is therefore warranted.

8.4  Function of Related TGF-β Pathways in Muscle Atrophy

The function of myostatin in the regulation in muscle mass and the role of this path-
way in muscle atrophy have become more evident in the past years. However, in 
recent years multiple studies also identified a role for other related members of the 
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TGF-β family in the regulation of muscle mass. The involvement of other related 
members of the TGF-β family in skeletal muscle growth was first discovered in 
studies that investigated the effect of proteins that inhibit activity of multiple mem-
bers of this family on skeletal muscle. These studies showed that overexpression of 
FST or treatment of mice with ACVR2B-Fc results in more pronounced increase of 
muscle mass compared to the effect of myostatin knockout alone [89, 72, 74]. In 
addition, overexpression of inhibitory proteins FLRG/FST in Mstn-/- mice results in 
additional increase of muscle mass in these mice, thereby almost quadrupling mus-
cle mass compared to wild-type mice [89]. Indeed it is known that several additional 
members of the TGF-β family interact with FLRG, FST, and ACVR2B that have a 
similar effect on myogenesis as myostatin, such as GDF11, activins A and B, and 
TGF-β [199, 200]. Next, we will discuss the evidence showing the involvement of 
these related proteins in different muscle-wasting conditions.

8.4.1  The Role of GDF11 in Sarcopenia

GDF11 is the closest structurally related member of myostatin, showing ~90% 
homology to myostatin in the mature ligand domain (Fig. 8.2). In contrast to myo-
statin this protein is not expressed in skeletal muscle and genetic deletion of GDF11 
does not result in muscle hypertrophy [201, 202]. Instead GDF11 plays an impor-
tant role during embryonic development in the patterning and development of the 
axial skeleton [202]. A potential involvement of GDF11  in sarcopenia was first 
uncovered by a study showing that GDF11 levels are reduced in serum of aged mice 
and in elderly and that injection of GDF11 can alleviate aging-related muscle wast-
ing in mice [203, 204]. It was already known that heterochronic parabiosis (the 
linkage of circulation of young mice to old mice) can alleviate sarcopenia, suggest-
ing the presence of a rejuvenating factor in young blood. These studies therefore 
suggested that GDF11 might be the rejuvenating factor in young blood responsible 
for the observed effects of heterochronic parabiosis. However, these findings came 
as a surprise since GDF11 is highly homologous to myostatin. Recent studies dem-
onstrated that GDF11 is a catabolic and anti-myogenic factor like myostatin and 
inhibits myogenesis and muscle regeneration and induces muscle wasting in vivo in 
mice [205–208]. In addition, differences found in GDF11 levels during aging were 
not reproducible due to methodological issues with the immuno-based assays used 
for detection, such as cross-reactivity of the Gdf11 antibody with the highly homol-
ogous myostatin protein and detection of non-specific background signals [205, 
203]. Recent results from a different study using a highly specific liquid chromatog-
raphy with tandem mass spectrometry (LC-MS/MS) assay showed that there were 
no significant changes in GDF11 levels in older men or women [209]. Although the 
results of different studies on the effect of GDF11 on aging skeletal muscle are not 
conclusive, potentially due to differences in experimental design, in our 
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opinion  most evidence now suggests that it is unlikely that decreased levels of 
GDF11 contribute to the development of sarcopenia.

8.4.2  The Role of Activins in Muscle Atrophy and Muscle- 
Wasting Disorders

Activin A and activin B are closely related members of the TGF-β family that are 
encoded by the INHBA and INHBB genes. Activins mediate downstream signaling 
via interactions with activin type II receptor ACVR2A and ACVR2B and type I 
receptor ACVR1B (ALK4). Importantly, several studies showed that activin A and 
activin B are also important regulators of muscle mass and play a role in muscle 
atrophy. The association of activins with cancer cachexia was first shown in inhibin 
knockout mice, which show highly elevated levels of activin A and activin B and 
develop ovarian and testicular sex cord-stromal tumors accompanied by severe 
cachexia [210]. In addition, elevated levels of activin A are detected in cancer 
patients and are associated with the development of cachectic wasting symptoms 
including muscle atrophy [211, 212]. Importantly, systemic inhibition of myostatin 
and activins with soluble ACVR2B-Fc counteracted cancer cachexia and prolonged 
survival in mice [179]. A direct role of these proteins in muscle wasting was shown 
recently in a study which demonstrated that systemic overexpression of activin A 
and activin B with adeno-associated viral vectors resulted in pronounced muscle 
atrophy and muscle fibrosis in mice [213]. In addition this study showed that over-
expression of activin A or activin B results in more pronounced muscle atrophy 
compared to myostatin and TGF-β [213]. Conversely, other studies showed that 
activin A knockout results in muscle hypertrophy in mice and that antibody- 
mediated activin A inhibition in combination with inhibition of myostatin results in 
synergistic increase in muscle mass in mice and monkeys comparable to the effect 
of ACVR2B-Fc [214, 86]. A recent study showed that specific inhibition of activins 
and myostatin with specific prodomains of these proteins prevented muscle atrophy 
in cancer cachexia in mice, showing the potential therapeutic value of targeting 
these pathways [143]. In addition to the effect on muscle mass, it is known that 
activins inhibit myogenesis in the embryo and inhibit myogenic differentiation of 
myoblasts in vitro [215, 216, 200]. Interestingly, pro-inflammatory cytokines TNF-α 
and IL-1α induce expression of activin A via TAK1/p38MAPK/NFkB-dependent 
pathways in vitro, and the anti-myogenic effect of these pathways was found to be 
mediated by activin A [217]. A recent study showed that systemic levels of activin 
A protein and INHBA mRNA expression in muscles of patients with different neu-
romuscular diseases did not differ [218]. Although these studies suggest that activin 
A does not directly contribute to the pathology of neuromuscular diseases, com-
bined inhibition of myostatin and activins does improve muscle histology in mouse 
models of DMD and synergistically increase muscle mass [143]. Together these 
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results show that activins may be a potential therapeutic target to alleviate muscle 
wasting in muscle-wasting conditions such as cachexia and DMD.

8.4.3  The Role of TGF-β in Muscle Atrophy

TGF-β ligands mediate signaling via the type II TGF-β receptor TGFBR2 and type 
I receptor TGFBR1 (ALK5). Although three isoforms exist (TGF-β1-3), mainly 
TGF-β1 has been associated with the pathology of different muscle-wasting disor-
ders. TGF-β1 plays an important role in wound healing and regulation of the 
immune system and is a key pro-fibrotic factor [219]. In addition, it is known that 
TGF-β inhibits myogenic differentiation of myoblasts in vitro [220, 221]. Given the 
role of TGF-β1  in fibrosis and regeneration, it is not surprising that the mRNA 
expression and protein levels of TGF-β1 are increased in patients with degenerative 
muscle-wasting diseases such as muscular dystrophies, where continuous break-
down and necrosis of muscle fibers result in chronic inflammation, fibrosis, and 
impaired muscle regeneration. The important contribution of TGF-β in the pathol-
ogy of muscle-wasting diseases was shown in a study that investigated the effect of 
inhibiting the TGF-β pathway using either specific antibodies against all three iso-
forms or losartan in mouse models of DMD or Marfan syndrome [222]. Inhibition 
of these pathways resulted in improved muscle regeneration and decrease in fibrosis 
in mouse models of these diseases [222]. Since then multiple studies have shown 
the important role of TGF-β1 and TGF-β2 in degenerative muscle-wasting diseases 
such as DMD [223–228]. In addition to fibrosis and the inhibitory effect on muscle 
regeneration, other studies also showed that TGF-β can directly induce muscle fiber 
atrophy. Overexpression of TGF-β1 in skeletal muscles resulted in fibrosis and mus-
cle fiber atrophy and increased expression of MuRF1 [229]. In addition, in vitro 
experiments in C2C12 myotubes showed that TGF-β induces atrophy and increases 
the expression of MuRF1. A recent study showed the relevance of TGF-β activity in 
cancer cachexia-induced muscle atrophy and introduced a new mechanism of how 
TGF-β can contribute to muscle weakness. Advanced cancer is associated with bone 
metastases and in mice this results in bone degradation and release of TGF-β [230]. 
Inhibition of TGF-β (all isoforms) counteracted muscle weakness, suggesting that 
TGF-β was directly responsible for the decline in muscle force in these mice [230]. 
Mechanistically, TGF-β increased expression of Nox4, which resulted in interaction 
of Nox4 with the RyR1 Ca2+ release channel and subsequent oxidization and leak-
age of RyR1 channel, contributing to reduced muscle contractility and muscle 
weakness.

In addition, increase in TGF-β activity is also associated with sarcopenia during 
aging. More specifically, in mice local and systemic increases of TGF-β are associ-
ated with elevated pSmad3 levels; increased expression of cyclin-dependent kinase 
inhibitors p15, p16, p21, and p27; and satellite cell dysfunction and impaired regen-
eration in aging skeletal muscle [231]. Hyperactivity of TGF-β pathway in old 
mouse satellite cells was also associated with a decrease in Notch activation, 
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 suggesting crosstalk between these pathways [231]. Indeed, Smad3 and Notch 
physically interacted in vitro, and activation of Notch resulted in decreased recruit-
ment of Smad3 to the promoter regions of p15, p16, p21, and p27 [231]. Moreover, 
systemic TGF-β type I receptor inhibition, local RNAi-mediated Smad3 inhibition 
in the muscle, or Notch reactivation rescues the regeneration defect in aging mouse 
muscle, suggesting the therapeutic potential of modulating these pathways [231–
233]. Experiments in human satellite cells showed that deregulation of these path-
ways is conserved during aging in humans [234].

8.5  Translation of Myostatin-Targeting Therapies 
to the Clinic

The prospect of inhibiting skeletal muscle atrophy using specific myostatin- targeting 
therapy has been tantalizing for many years since the discovery of myostatin in 
mice. First and foremost, this is because the muscle-specific expression and action 
of myostatin make it an appealing therapeutic target since potential harmful side 
effects in other tissues can be avoided. The second important reason is because evi-
dence has accumulated that myostatin contributes to the pathology of some muscle- 
wasting conditions and targeting of myostatin and/or myostatin-related pathways 
can alleviate some forms of muscle wasting as evidenced from studies in different 
animal models as mentioned before. Different treatments based on different strate-
gies of targeting myostatin have been translated to the clinic, and an overview of 
these treatments is provided in Table  8.3. It is important to distinguish between 
treatments that specifically target myostatin and treatments that in addition to myo-
statin also target other members of the TGF-β family, because the effects and effi-
ciency of these distinct strategies can be quite different. Targeting of multiple targets 
may prove to be more efficient in muscle-wasting conditions but may also result in 
serious side effects in other tissues. In the following section, we will discuss the 
progress that has been made in recent years in the clinical translation of specific 
myostatin-targeting compounds and multi-targeting compounds.

8.5.1  Specific Myostatin Inhibitors in Clinical Trials

The first example of translation of a myostatin inhibitor to the clinic was a study 
published 10 years ago in 2008 that tested the monoclonal human myostatin antibody 
stamulumab (MYO-029), which was developed by Wyeth (now Pfizer). In a double-
blind, placebo-controlled dose escalation study, three doses (1  mg/kg, 3  mg/kg, 
10 mg/kg) were compared to placebo controls and injected once every 2 weeks dur-
ing a 6-month treatment period in muscular dystrophy patients (BMD, FSHD, and 
LGMD). Although the safety profile of stamulumab was good, with few reported side 
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effects, the treatment with this antibody did not result in clear changes in muscle 
mass or function, which was supposedly mainly due to a small study size and lack of 
statistical power, after which further clinical studies were subsequently halted [235]. 
A recent study suggested that this antibody was less effective in monkeys compared 
to mice and that clearance of the antibody is higher in monkeys and humans, which 
may explain the limited efficiency of the treatment in the clinical study [236]. 
However, development of other potentially more efficient myostatin antibodies as 
treatment for muscle-wasting conditions is currently actively pursued by different 
companies (see Table 8.3).

Recently, the first results of a new antibody developed by Pfizer, domagrozumab 
(PF-06252616), showed that this antibody has a good safety profile in healthy vol-
unteers, displayed a slow clearance rate, and showed that a concentration of 10 mg/
kg induced whole-body lean mass and muscle volume (4.5% change from baseline) 
[237, 238]. In addition, the antibody was shown to efficiently increase whole-body 
lean mass (10–15% change from baseline) and muscle volume (24% change in 
baseline) in cynomolgus monkeys, and treatment with the mouse variant increased 
muscle mass and improved functional outcome measures in mdx mice [239]. At the 
time of writing of this review, the safety and pharmacodynamic profile as well as the 
functional effect of domagrozumab is being evaluated in a phase 2 clinical trial in 
DMD patients and a phase 1/2 trial in LGMD2I patients, both of which are random-
ized double-blind open-label multiple ascending dose escalation trials (active/not 
recruiting; clinicaltrials.gov identifier NCT02310763 and NCT02841267). In addi-
tion, a multicenter open-label extension study is planned in DMD patients and is 
currently recruiting participants (clinicaltrials.gov identifier NCT02907619).

A recent phase 2 clinical study tested the effect of a different humanized mono-
clonal myostatin antibody developed by Lilly, landogrozumab (LY2495655), on 
lean body mass and physical performance in older men and women aged >75 with 
low muscle mass and strength, who experienced recent falls [240]. The results 
showed that 20 weeks of treatment with this antibody (six s.c. injections of 315 mg 
in 20 weeks) significantly increased appendicular and total body lean mass (0.43 kg 
and 0.71  kg change, respectively) and improved some functional outcome mea-
sures, such as stair climbing and chair rise time, compared to placebo-treated indi-
viduals [240]. In a different phase 2 clinical trial study, the effect of different doses 
of landogrozumab (four s.c. injections of 35 mg, 105 mg, or 315 mg in 12 weeks) 
on muscle mass and function was evaluated in men and women aged >50 that 
received a hip replacement [241]. The results of this study were unfortunately less 
clear-cut with the primary endpoint, an increase in appendicular lean mass after 
12 weeks, not met and no effect observed on exploratory outcome measures for 
muscle function. However, the results of this study did show increased appendicular 
lean mass after 8 weeks and 16 weeks with the two highest concentrations used 
[241]. Other clinical trials in cancer patients have been completed with this antibody 
(clinicaltrials.gov identifiers NCT01505530 and NCT01524224), but as yet the 
results from these studies have not been published, and it is unknown whether Lilly 
is planning other clinical trials in the future. Other companies that have developed 
myostatin-targeting antibodies are currently recruiting (trevogrumab (REGN1033); 
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developed by Regeneron) or planning to start recruitment of participants (SRK-015; 
developed by Scholar Rock). SRK-015 was shown to bind specifically to pro- 
myostatin and the latent domain of myostatin and inhibits proteolytic processing of 
myostatin, thereby inhibiting myostatin activity via a different mechanism com-
pared to conventional myostatin antibodies that target the mature protein [97]. The 
company has announced on their website that they expect to start with a first trial in 
SMA patients in mid-2018.

In addition to antibodies, other specific myostatin-targeting methods have been 
developed that have been tested in clinical trials. A myostatin blocking peptide 
coupled to a IgG domain developed by Atara Biotherapeutics, PINTA 745, was 
reported to increase muscle mass and improve muscle function in stroke and CKD 
mouse models [242, 181]. A phase 1/2 clinical trial study of this compound in 
patients with end-stage renal disease was completed in 2016 (clinicaltrials.gov 
identifier NCT01958970), and the company announced that the primary endpoints 
were not met in this study and that the company would not continue further clini-
cal development of this treatment (http://investors.atarabio.com/news-releases/
news-release-details/atara-bio-announces-results-phase-2-proof-concept-
pinta-745). A myostatin-targeting adnectin was developed by Bristol-Myers 
Squibb company and is currently being evaluated in DMD patients. Adnectins are 
genetically engineered variants of the 10th type III domain of human fibronectin. 
The myostatin adnectin is composed of a human Fc IgG1 domain fused to an 
adnectin domain that specifically targets myostatin [243]. A multicenter, random-
ized, double-blind, placebo- controlled phase 2/3 study with this compound is cur-
rently ongoing in DMD patients and is estimated to finish in 2020 (ClinicalTrials.
gov Identifier: NCT03039686).

In summary, the first results of second-generation myostatin antibodies such as 
domagrozumab and landogrozumab in clinical trials show positive results in healthy 
volunteers and older individuals. The efficiency of these and other specific 
myostatin- targeting antibodies and compounds will become more evident in the 
coming years when the first results from new and ongoing clinical trials in patients 
with muscle-wasting disorders will be announced.

8.5.2  Multi-targeting Compounds in Clinical Trials

In addition to specific myostatin inhibitors, other clinical studies have concentrated 
on the effect of inhibitors that target other related TGF-β members in addition to 
myostatin (see Table 8.3). ACE-031 is the human variant of the ACVR2B receptor 
domain coupled to a soluble Fc domain (ACVR2B-Fc) developed by Acceleron. 
The ACVR2B receptor mediates signaling of myostatin, Gdf11, and activins and 
can also bind BMPs with lower affinity [200]. Initial clinical studies in healthy vol-
unteers (postmenopausal women) showed that one s.c. injection of this compound 
was safe and resulted in significant increase of lean body mass and muscle hyper-
trophy (4% increase at the highest concentration; 3 mg/kg) [244]. Although a sub-
sequent clinical trial showed a similar effect in DMD patients and moreover 
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suggested a trend toward improvement in functional outcome measures such as the 
6-min walking test, further trials were halted due to non-muscle adverse effects, 
such as epistaxis (nose bleedings) and telangiectasias (dilated blood vessels) [245]. 
A systemically active variant of ACE-031 that targets myostatin and activins but 
shows reduced affinity for BMPs, ACE-2494, has been tested in mice and increases 
muscle mass as efficiently as ACE-031 and healthy volunteers are currently recruited 
for a phase I trial (NCT03478319).

Bimagrumab (BYM338) is a multi-target antibody developed by Novartis against 
the type II ACVR2A and ACVR2B receptors and blocks the interaction of these 
receptors with their ligands: myostatin, activins, and BMPs [246]. Studies in mice 
showed that treatment with this antibody results in more pronounced muscle hyper-
trophy compared to myostatin or activin targeting alone and counteracts 
glucocorticoid- induced atrophy in mice [186, 246]. In a first randomized controlled 
clinical trial in 2014, the safety and effect of bimagrumab were evaluated in 14 
sporadic inclusion body myositis (sIBM) patients and demonstrated that a single 
injection of 30 mg/kg resulted in increased muscle mass and improvement in 6-min 
walking distance [247]. However, a subsequent phase 2b/3 clinical trial in sIBM 
patients unfortunately did not meet its primary endpoint, a change from baseline in 
6-min walking distance (NCT01925209). Importantly, results of other clinical trials 
suggest that bimagrumab can alleviate muscle atrophy and may improve muscle 
function in other muscle-wasting conditions. In a recent phase 2 clinical study, the 
safety and effect of bimagrumab on muscle mass and mobility were tested in 40 
individuals aged >65 with sarcopenia. Treatment of bimagrumab (30mg/kg) resulted 
in significant increases in muscle volume compared to placebo and furthermore 
showed improvement in gait speed and 6-min walking distance (NCT01601600) 
[248]. Similar results on muscle mass were shown in a phase 2 clinical trial in 
patients with casting-induced muscle atrophy, where treatment with a single dose of 
bimagrumab (30mg/kg) accelerated recovery of muscle volume (NCT01601600) 
[249]. In addition, in a different phase 2 trial COPD patients received two doses of 
either placebo or  bimagrumab (30mg/kg) and bimagrumab was found to  induce 
thigh muscle volume (5.0-7.8%)(NCT01669174) [304]. However, in this study no 
differences were found in functional outcome measures,  such as 6-min walking 
distance. Notably, in different clinical trials the safety of bimagrumab treatment was 
also demonstrated  with only mild adverse effects reported, such as  muscle 
spasms, acne and diarrhea [248, 304]. Further phase 2 clinical studies are planned 
and are currently recruiting participants to evaluate the effect of this antibody on 
sarcopenia in a larger cohort of older people (NCT02333331) and test the effect on 
muscle atrophy in hip fracture surgery patients (NCT02152761).

Adeno-associated virus (AAV)-mediated follistatin (FST) gene therapy, rAAV1.
CMV.huFollistatin344, also showed promising results in clinical trials in patients 
with muscle-wasting diseases. The isoform of FST used in these studies, FS344, is 
serum based and has lower affinity for activins compared to other FST isoforms 
[250]. A phase 1/2 clinical trial in a small cohort of Becker muscular dystrophy 
(BMD) patients (n=6) showed that a single bilateral intramuscular injection of two 
different doses of rAAV1.CMV.huFollistatin344 in the quadriceps (3 × 1011 vg/kg 
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or 6 × 1011 vg/kg) significantly increased 6-min walking distance in four out of six 
patients with no difference between doses [250, 251]. In addition, muscle biopsies 
showed signs of improved muscle histology at the highest dose as evidenced by 
decreased muscle fibrosis, reduced percentage of central nucleated muscle fibers, 
and muscle fiber hypertrophy [251]. Similarly, a phase 1/2 clinical trial in six sIBM 
patients also showed functional improvement in the 6-min walking distance after 
one bilateral intramuscular injection of 6  ×  1011  vg/kg of rAAV1.CMV.huFol-
listatin344 [252].

A different follistatin-based compound developed by Acceleron, ACE-083, 
showed promising results in a phase 1 clinical trial in healthy volunteers. Local 
injection of different doses of ACE-083 (50–200  mg/kg) in TA or RF muscles 
resulted in a dose-dependent increase in muscle mass of up to 10% for the TA 
muscle and up to 15% for the RF muscle [253]. Clinical phase 2 trials with ACE- 
083 are planned in patients with Charcot-Marie-Tooth disease (CMT; NCT03124459) 
and facioscapulohumeral muscular dystrophy (FSHD; NCT02927080) and are cur-
rently recruiting participants.

Together these studies suggest that targeting multiple TGF-β ligands may effi-
ciently induce muscle mass and improve muscle function in muscle-wasting condi-
tions. Although serious adverse side effects have been reported for ACE-031, initial 
clinical trials with other compounds showed a good safety profile and therefore 
show promise as potential therapy to counteract muscle wasting.

8.6  Future Perspective

Preclinical studies in animal models of muscle-wasting disorders have demon-
strated the potential of treatments that target myostatin and related signaling pro-
teins in counteracting the decline in muscle mass, and some strategies show 
promising results in clinical trials as well. However, several important issues remain 
to be resolved before such treatments are to be considered as realistic treatment for 
different muscle-wasting conditions.

First, because of contradicting results from different preclinical studies, it is 
unclear whether targeting of myostatin and related pathways is actually a good strat-
egy to counteract muscle atrophy and improve muscle function in some conditions 
such as denervation atrophy and muscular dystrophies. Recent reports of the detri-
mental effect of myostatin inhibition on the oxidative metabolism and endurance 
and the lack of effect of such treatments on muscle regeneration in DMD mouse 
models raise some concerns regarding the efficacy of such treatments in alleviating 
muscle wasting. Future studies in clinically more relevant animal models are there-
fore required, and results from clinical trials with myostatin inhibitors in DMD 
patients should result in more clarity on the effect of these treatments.

Second, it is important to distinguish between strategies that target myostatin 
specifically and treatments that target multiple members of the TGF-β family and to 
establish which strategy shows the highest efficiency in stimulating muscle growth 

8 Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling…



188

and muscle function without inducing serious adverse side effects in other tissues. 
Indeed, as we discussed, multiple preclinical experiments suggest that multi- 
targeting compounds are more efficient in counteracting muscle atrophy and muscle 
wasting and also show promising results in stimulating muscle regeneration in dif-
ferent animal models. Future studies are warranted to identify overlapping as well 
as different functions of different TGF-β ligands in muscle atrophy and should clar-
ify which ligands or downstream pathways are valid targets for therapy.

Last, it is important to realize that targeting of myostatin and related pathways is 
not a definitive cure for neuromuscular diseases such as muscular dystrophy and 
should be considered as supportive therapy in such cases. Indeed, preclinical studies 
showed the potential of combination therapies aimed at restoring the genetic defect 
of muscular dystrophy and stimulating muscle growth with myostatin targeting 
[254–257]. In addition, multiple signaling pathways play a role in muscle wasting, 
but as yet it is largely unknown if and how these pathways interact. More detailed 
knowledge of cross talk between myostatin/activin/TGF-β signaling pathways with 
other important pathways that regulate muscle mass and/or regeneration such as 
BMPs, Wnts, and Notch could lead to identification of novel targets for muscle 
wasting.
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Chapter 9
Hormones and Muscle Atrophy

Ana Isabel Martín, Teresa Priego, and Asunción López-Calderón

Abstract The endocrine system is an essential regulator of muscle metabolism in 
both health and disease. Hormones such as growth hormone (GH), insulin-like 
growth factor-I (IGF-I) and androgens are the main regulators of muscle metabo-
lism in both health and disease; have profound influences on muscle, acting as ana-
bolic factors; and are important regulators of muscle mass. On the contrary, 
glucocorticoids have direct catabolic effects and induce muscle protein loss. Muscle 
wasting is a systemic response to fasting and several diseases like cancer, sepsis, 
renal and cardiac failure and trauma. Muscle atrophy also occurs in specific muscles 
with denervation, immobilization or inactivity. All of these conditions are character-
ized by significant changes in the endocrine environment. The aim of this review 
was to describe the role of endocrine system on the development of muscle atrophy. 
Understanding hormonal regulation of the skeletal muscle in these conditions might 
facilitate the development of hormone-mediated therapies for muscle atrophy.

Keywords Hormones · GH · IGF-I · Glucocorticoids · Androgens · Testosterone · 
Thyroid hormones · Insulin · Leptin · Ghrelin

9.1  Introduction

The endocrine system plays an important role in regulating many functions such as 
development and growth, metabolism, energetic balance, reproduction, behaviour 
and adaptation to changes in the internal and external environments. Between these 
functions, the skeletal muscle is the target organ through which the endocrine sys-
tem controls the different body functions.

Skeletal muscle mass is mainly regulated by exercise, nutrition and hormones. In 
the skeletal muscle, numerous hormones control anabolic-catabolic balance, glu-
cose metabolism and muscle mass maintenance and reparation after injury. However, 
growth hormone (GH) and insulin-like growth factor I (IGF-I), testosterone, thyroid 
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hormones (TH) and glucocorticoids (GCs) exert major effects on skeletal muscle 
growth and function.

Muscle atrophy can be due to several causes: chronic illnesses, aging, malnutri-
tion, disuse and acute/chronic inflammatory conditions. The inflammatory process 
is characterized by an increase in pro-inflammatory cytokine production that trig-
gers many endocrine responses. During the acute phase, proteolysis in the skeletal 
muscle provides substrates to fuel the necessary increases in immune activity. 
However, in chronic diseases where inflammation persists, continuous muscle pro-
tein breakdown leads to a profound depletion of the skeletal muscle.

Muscle wasting or cachexia in chronic diseases (such as cancer, sepsis, chronic 
kidney or heart failure, chronic obstructive pulmonary disease and rheumatoid 
arthritis) is associated with an increase in muscle proteolysis, whereas anorexia can 
be present or not. Cachexia is characterized by a decrease in the size of the muscle 
fibres, myonuclear number, protein content and muscle strength. In those condi-
tions, fast glycolytic muscle fibres are more affected than oxidative-type fibres. On 
the contrary, muscle atrophy induced by aging or sarcopenia is associated with a 
decreased ability of muscle regeneration.

All conditions described above are characterized by decreased IGF-I levels, acti-
vation of the adrenal axis (characterized by an increased release of GCs), a decline 
in the gonadal axis (with a reduced secretion of gonadal steroids), an alteration in 
the thyroid axis and a dysregulation of the hormones involved in glucose and lipid 
metabolism (insulin and leptin). Even more, hormones involved in electrolyte 
metabolism (vitamin D and angiotensin II) seem to play a role in muscle wasting in 
some type of muscle atrophy. It is known that the dysregulation in the endocrine 
environment is the main mechanism involved in muscle atrophy, activating prote-
olysis and autophagy and, in some cases, inhibiting muscle regeneration (decreas-
ing protein synthesis and myocyte proliferation) (Fig. 9.1).

One of the most frequent types of systemic muscle loss is sarcopenia, which is 
seen in older patients. This phenomenon differs from other types of atrophy, as the 
muscle loss develops gradually and occurs over several years. Even though muscle 
atrophy occurs without apparent disease, older patients have a combination of sev-
eral factors, including decreased levels of GH and IGF-I, insulin resistance, pro-
longed periods of inactivity or bed rest, a decline in sex hormones, etc., which may 
directly contribute to the muscle wasting.

Muscle atrophy, also called disuse atrophy, occurs by prolonged reduction of 
physical activity. Muscle disuse includes joint immobilization, limb suspension, 
bed rest, denervation, microgravity and mechanical ventilation [1]. In these condi-
tions, the skeletal muscle adapts to a prolonged reduction in physical activity by 
decreasing total muscle mass and myosin content [2] and changing fibre type from 
slow to fast.

It is important to note that each atrophic condition has its own specific character-
istics, its particular hormonal environment and distinct mechanisms and pathways 
that lead to muscle wasting. Thus, in this chapter the main hormones involved in 
muscle atrophy and the main atrophic mechanisms in which the hormones are 
involved in each axis will be analysed.
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9.2  GH-IGF-I Axis

9.2.1  GH

GH or somatotropin is a peptide hormone synthetized by somatotrope cells in the 
adenohypophysis. This hormone regulates metabolism and has a crucial role in 
somatic growth and development. GH synthesis and secretion are stimulated by 
hypothalamic growth hormone-releasing hormone (GHRH) and by ghrelin mainly 
secreted by the stomach, whereas hypothalamic somatostatin and IGF-I, which are 
stimulated by GH, are the main inhibitors of GH. GH is secreted in a pulsatile mode, 
and pulse frequency is affected by many factors such as diet, deep sleep, exercise, 
stress and fasting.

GH stimulates IGF-I synthesis by the liver, and IGF-I is one of the main regula-
tors of muscle mass. IGF-I has receptors in a wide range of cell types, and receptor 
activation depends on IGF-I concentration in plasma, as well as on local production 
of this growth factor. GH administration increases serum IGF-I levels, skeletal mus-
cle weight and muscle fibre cross-sectional area. However, in mice lacking IGF-I- 
receptor function in the skeletal muscle, GH fails to reverse the impaired muscle 
function [3]. These data indicate that in vivo effects of GH on muscle mass and 
strength are primarily mediated by activation of the IGF-I receptor. Regardless of 
the indirect anabolic effect of GH due to IGF-I, GH binds to its receptor in myo-
cytes, activates Janus kinase 2 (JAK2) signalling and may have IGF-I-independent 
effects in the skeletal muscle [4]. GH and IGF-I have opposite metabolic effects. 
GH is lipolytic; increases free fatty acids in serum, which in turn inhibit glucose 

Fig. 9.1 Schematic diagram showing the main hormone alterations involved in several atrophic 
conditions with detrimental effects on the skeletal muscle
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uptake to muscle and other organs; and may induce hyperglycaemia and insulin 
resistance. On the contrary, IGF-I has lipogenic and hypoglycaemic effects.

Due to the pulsatile secretion of GH, it is not easy to determine modifications in 
GH secretion in muscle atrophy induced by different conditions. Nevertheless, GH 
deficiency syndrome and hypogonadism, at a young age, are associated with lower 
muscle mass, muscle strength and physical performance. The decrease in muscle 
mass and function in GH deficiency is reversible by GH administration. GH 
increases muscle strength by increasing muscle mass without affecting contractile 
force or fibre composition, an effect that is IGF-dependent [5, 6].

In several diseases such as sepsis, surgical diseases, chronic heart failure and 
critical illness, the increase release of cytokines is associated with liver GH resis-
tance, decreased circulating IGF-I levels and muscle atrophy, despite normal or 
even elevated circulating levels of GH [7, 8]. Similarly, cachectic colorectal cancer 
patients, but not gastric cancer patients, have acquired GH resistance: high GH but 
low IGF-I levels are corrected by radical surgery [9]. However, as these authors 
pointed out, GH resistance induced by cancer is not universal but depends on the 
cancer type.

Among the inflammatory mediators that induced GH resistance, pro- inflammatory 
cytokines (mainly TNF-α, IL-1β and IL-6) have been shown to inhibit GH signal-
ling [10, 11]. There are two mechanisms by which cytokines induce GH resistance, 
TNF-α and IL-1β downregulate GH receptor (GHR), whereas IL-6 upregulate the 
members of the suppressors of cytokine signalling (SOCS) family [12]. In addition 
to cytokines, in several chronic illnesses and/or organ injury, other mediators can 
induce GH resistance. Growth differentiation factor 15 (GDF15), also called MIC- 
1, is a member of the transforming growth factor-β (TGF-β) family of cytokines. 
Levels of GDF15 are low under healthy conditions, but it is upregulated by organ 
injury in several chronic diseases such as chronic obstructive pulmonary disease, 
sepsis, cancer, heart failure and chronic kidney disease [13–15]. Circulating 
GDF15  in turn acts on the liver to inhibit growth hormone (GH) signalling and 
IGF-I synthesis [16], therefore inducing muscle wasting.

On the other side, rheumatoid arthritis inhibits the GH-IGF-I axis both in experi-
mental animals and in humans and induces muscle wasting [17, 18]. GH treatment 
in patients with juvenile idiopathic arthritis increases growth, as well as bone and 
muscle cross-sectional area [19]. These data can be explained by the fact that con-
trary to sepsis or other inflammatory diseases, arthritis does not induce GH resis-
tance, since GH treatment is able to increase circulating IGF-I as well as IGF-I 
expression in the liver and in skeletal muscle [20, 21].

One of the endocrine changes associated with aging is the somatopause, or the 
continuous decline in plasma concentration of GH and IGF-I to very low levels 
[22]. This decrease in GH secretion contributes to sarcopenia, since GH administra-
tion is able to ameliorate the decrease in muscle mass secondary to aging [4, 23]. 
However, the risks related to GH therapy, such as cancer development, lead to 
safety concerns [24].
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9.2.2  IGF-I and IGFBP-3

As mentioned above, most of the GH actions on the skeletal muscle are IGF-I- 
dependent, since GH upregulates IGF-I synthesis in the liver, and therefore it 
increases plasma concentrations of this growth factor. IGF-I is the main stimulator 
of skeletal muscle mass, since this hormone increases protein synthesis and 
decreases proteolysis. In addition, IGF-I increases satellite cell proliferation [25], as 
well as myoblast proliferation and differentiation during normal growth or regen-
eration after skeletal muscle injury. Therefore, the effects of IGF-I in the skeletal 
muscle result in an increase in skeletal muscle mass and in improving the functional 
capacity of muscle.

In addition to circulating IGF-I, local IGF-I also plays an important role in the 
maintenance of muscle mass acting as a paracrine/autocrine growth factor. Muscle 
produces a local supply of IGF-I that is secreted from the fibres to the extracellular 
matrix [26]. It has been reported that local infusion of IGF-I increases muscle mass 
[27] and that muscle injury or resistance exercise training upregulates local IGF-I 
and induces muscle hypertrophy [28, 29]. Furthermore, muscle atrophy is higher 
after ablation of muscle IGF-I production than when liver IGF-I production is inhib-
ited [30], suggesting that local IGF-I is a crucial factor for muscle growth. All these 
data indicate that local IGF-I effects are important for muscle hypertrophy. Skeletal 
muscle cells, as other mechanosensitive cells, respond to mechanical stimuli by 
producing a special IGF-I isoform called mechano-growth factor (MGF) or IGF- 
1Ec in humans and IGF-IEb in rodents. This IGF-I isoform can play a role in muscle 
regeneration, since in basal conditions MGF levels in muscle are very low, but they 
increase after muscle injury [29].

IGF-I acts predominantly via the IGF-I receptor (IGF-IR), a transmembrane 
receptor with tyrosine kinase activity, and through the PI3K/Akt/mTOR/FoxO path-
ways, it activates protein synthesis and inhibits proteolysis (Fig.  9.2). MGF, the 
IGF-I isoform, is unable to activate Akt. Activated Akt phosphorylates and, thereby, 
prevents nuclear translocation of the FoxO (forkhead box class O factors) family of 
transcription factors (FoxO-1 and FoxO-3) that decrease the activity of the two main 
proteolytic pathways: the ubiquitin-proteasome system and autophagy. In addition, 
Akt activation increases glucose and amino acid uptake and via its actions on mTOR 
increases protein synthesis. The other signalling pathway activated by both IGF-I 
and its isoform MGF is the Ras/Raf/ERK pathway that is able to increase cell pro-
liferation in muscle cell cultures [31]. The hypertrophic action of IGF-I on the skel-
etal muscle is exerted on activated satellite cells. Under IGF-I stimulation, satellite 
cells divide and then differentiate in myoblast and fuse to muscle fibres or form new 
fibres [26]. It has been speculated that MGF is responsible for muscle progenitor 
proliferation through ERK activation, whereas mature IGF-I promotes differentia-
tion and protein synthesis [32] and simultaneously decreases the proteolytic 
pathways.

IGF-I action is regulated by six IGF-I-binding proteins (IGFBPs), which can 
either stimulate or inhibit the effect of IGF-I. IGFBP-3 synthetized by the liver is the 
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main IGF-I carrier in plasma. This protein is also expressed locally in tissues, where 
it binds to IGF-I and then impair the activation of its receptor IGF-IR. In addition to 
these effects, IGFBP-3 inhibits cell growth and promotes apoptosis by a non-IGF- 
dependent mechanism [33]. These and other data suggest that in the skeletal muscle, 
IGFBP-3 has opposite effect of IGF-I. Furthermore, IGFBP-3 can play an inhibitory 
role in the PI3K/Akt signalling pathway in different types of cells [34, 35]. In addi-
tion to their actions in muscle metabolism, GH and IGF-I also have different effects 
on the expression of the IGFBP-3. IGF-I significantly downregulates IGFBP-3 
expression in the skeletal muscle, whereas GH is unable to modify the expression of 
this binding protein in the skeletal muscle [21].

Sepsis and acute inflammatory diseases induce GH resistance and decrease circu-
lating IGF-I and its carrier protein IGFBP-3 by decreasing their synthesis in the liver 
[36–38]. However, in the skeletal muscle, IGF-I and IGFBP-3 expressions are 
affected differently, where muscle IGF-I is decreased by sepsis and IGFBP-3 is 
increased [39, 40]. IGFBP-3 is produced by myogenic cell cultures, and it suppresses 
proliferation in an IGF-dependent and IGF-independent manner [41]. Therefore, the 

Fig. 9.2 Schematic representation of signalling pathways used by growth hormone (GH) and 
insulin-like growth factor-I (IGF-I) system to regulate the skeletal muscle. GH induces hepatic 
production of IGF-I. In muscle, GH activates JAK2/STAT pathway which transduce GH actions. 
The binding of IGF-I to its receptor in muscle can result in signal transduction via two pathways: 
PI3K/AKT and Ras/MEK.  When activated, Akt stimulates protein synthesis through 
mTOR. Phosphorylation of FoxO by Akt inactivates this transcription factor, decreasing the activ-
ity of the proteolytic systems. The Ras/MEK pathway contains an elaborate kinase cascade that 
ultimately leads to stimulate myocyte proliferation
Akt protein kinase B, ERK ½ extracellular signal-regulated kinases 1 y 2, FoxO forkhead box pro-
tein O, mTOR mammalian target of rapamycin, MEK dual specificity mitogen-activated protein 
kinase kinase, PI3K phosphatidylinositol-3 kinase, STAT signal transducer and activator of 
transcription
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increased expression of IGFBP-3 in the skeletal muscle can  contribute to inflamma-
tion-induced muscle wasting, together with the decrease in local IGF-I.

A decrease in circulating IGF-I and in muscle IGF-I has been reported in experi-
mental cancer [42, 43]. Similarly, downregulation of muscle IGF-I expression has 
been observed in patients with gastric cancer [44]. These data, and others, suggest 
that downregulation of IGF-I is one of the causes of cachexia associated with cer-
tain, but not all, types of cancers. However, White et  al. [43] detected in cancer 
cachexia a reduction in muscle IGF-I also during the first phases of cachexia pro-
gression, but not during the most severe period of wasting. It can be concluded that 
local IGF-I and IGF-I signalling in the skeletal muscle are inhibited during the ini-
tial phases of muscle atrophy, but not during the later stages of cachexia.

In rheumatoid arthritis, the decrease in circulating IGF-I has been reported as 
one of the causes of rheumatoid cachexia [45]. The decrease in plasma IGF-I in 
humans and in experimental animals with arthritis correlates with the disease 
severity, the decrease in body weight and muscle atrophy [17, 46]. In arthritic rats 
muscle IGF-I was not decreased [47], and systemic IGF-I administration was able 
to increase body and muscle weight [48]. These data indicate that the decrease in 
muscle mass seems to be secondary to the circulating IGF-I, rather to a decrease 
in muscular IGF-I.  However, it is also possible that the increased IGFBP-3 
expression observed in the skeletal muscles of arthritic animals [47] contributes 
to the inhibitory effect of arthritis on gastrocnemius mass by preventing IGF-I 
action, since IGF-I administration normalizes the increased IGFBP-3 levels in 
muscle [48].

Chronic heart failure is associated with exercise intolerance, decreased muscle 
strength and peripheral muscle wasting [49]. There is consensus that local IGF-I 
is downregulated in the skeletal muscle of patients with chronic heart failure [50, 
51]. Furthermore, some authors found that exercise training programs reduced 
pro- inflammatory cytokines, increased local IGF-I production and attenuated 
muscle atrophy [50, 52]. However, the effect of this disease on circulating IGF-I is 
not very clear, since increased GH levels with normal or decrease IGF-I were 
reported [50, 53].

Although skeletal muscle disuse, immobilization or microgravity decrease mus-
cle mass and strength, these atrophies are not associated with systemic changes in 
circulating hormones but rather with alteration in  local anabolic factors such as 
IGF-I synthetized in muscle [54]. In this sense, local IGF-I injection is able to block 
disuse atrophy [55]. In contrast to muscle disuse, the decline observed during aging 
in circulating IGF-I plays a role in the development of sarcopenia. A decrease in 
IGF-I levels in plasma has been reported in sarcopenic women and men [56, 57]. As 
mentioned above, this decrease is secondary to alterations in GH secretion, but not 
to GH resistance, since GH treatment is able to ameliorate sarcopenia associated 
with aging. Similarly, low IGF-I levels during the chronic phase, but not during the 
acute one, of critical illness are less likely to be caused by GH resistance because 
they are not accompanied by elevated GH secretion and correlate positively with 
pulsatile GH secretion [58].
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9.3  The Adrenal Axis: Glucocorticoids

Secretion of glucocorticoids (GCs) by the adrenal cortex belongs to the classical 
hypothalamus-pituitary-adrenal (HPA) axis. Corticotrophin-releasing hormone 
(CRH) is released from the paraventricular nucleus (PVN) of the hypothalamus and 
induces the release by the pituitary corticotrophs of adrenocorticotropic hormone 
(ACTH) into the systemic circulation. ACTH stimulates cortisol (the main GC in 
humans) synthesis by the adrenal gland. This activation cascade is regulated by 
cortisol through negative feedback on hypothalamic CRH and on ACTH in the ante-
rior pituitary [59–61]. Cortisol is secreted following a circadian rhythm, with the 
highest concentrations in the morning and the lowest levels at night. Cortisol acts by 
binding to the intracellular glucocorticoid receptor (GR), virtually expressed in all 
cells. The physiological actions of cortisol range from the suppression of inflamma-
tion regulating the immune system to the control of energy homeostasis (supplying 
enough glucose into the circulation for the brain); GCs ensure the survival of the 
organism in response to stress situations and in conditions of metabolic dysfunction, 
including fasting and starvation, insulin resistance, obesity-related diabetes and 
cachexia [62].

Multiple pathological conditions characterized by muscle wasting (sepsis, 
cachexia, starvation, chronic obstructive pulmonary disease, diabetes, acidosis, can-
cer, etc.) are associated with increased GC levels, suggesting that these hormones 
may contribute to muscle atrophy observed in different pathological states [63–66]. 
In addition, high doses and sustained treatment with GCs in a variety of inflamma-
tory diseases represent an additional modus by which GC triggers muscular atrophy 
in humans and animals [67].

GC-induced muscle atrophy occurs predominantly in glycolytic muscles with 
fast-twitch (type II)  muscle fibre more than in oxidative muscles composed by 
slow- twitch fibre (type I). In muscles with mixed fibre type, such as gastrocnemius 
muscle, type II fibres show greater atrophy than type I. This specificity by fast-
twitch muscle atrophy comes from the vital role of slow-twitch muscle in mainte-
nance of posture and respiration [68].

GCs induce muscle atrophy both decreasing the rate of protein synthesis and 
increasing the rate of protein degradation in the skeletal muscle. It is possible that 
GCs also alter angiogenesis producing a decrease in capillary number that could be 
related to skeletal muscle atrophy [69, 70]. In addition, GCs inhibit in the muscle 
the local production of IGF-I and the action of anabolic stimuli, such as insulin and 
IGF-I, and induce a decline of the amino acid-mediated signalling pathways 
involved in the control of muscle protein synthesis. The reduction in anabolic activ-
ity results from different mechanisms that converge to inhibit mTOR [71]. Several 
evidences indicate that GCs inhibit the PI3K/Akt pathway, which mediates the ana-
bolic actions of insulin/IGF-I [72–74].

Several mechanisms are involved in GC-induced muscle protein degradation 
(Fig. 9.3). Firstly, GCs have been reported to stimulate atrogenes via the transcrip-
tional factors FoxO [19] and the NF-κB (nuclear factor-kappa B) pathway. Secondly, 
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GCs promote protein degradation via the induction of myostatin (a negative regula-
tor of skeletal muscle development) [75–77]. As it has been mentioned, GC-induced 
muscle atrophy occurs predominantly in fast-twitch muscle fibres, which appear to 
have much higher myostatin gene expression [78]. Myostatin induces muscle wast-
ing partly by activating the ubiquitin proteolytic system by downregulating the 
IGF-1/PI3K/AKT hypertrophic signalling pathway. This results in upregulation of 
atrogenic gene expression and inactivation of protein synthesis. In addition, myo-
statin inhibits the myogenic program by activating the SMAD complex and by 
MAPKs, thus resulting in a decrease of myoblast proliferation [79]. Recently, evi-
dence has accumulated supporting that GCs act via a posttranscriptional mecha-
nisms (such as microRNA miR-27a processing) to regulate myostatin expression 
[80]. Thirdly, GCs stimulate both the autophagic/lysosomal pathway [81] and the 
calpain pathway [82]. Autophagy-lysosome system is transcriptionally controlled 
through the expression of FoxOs [83]. FoxO3 is a critical factor for autophagy con-
trol in adult muscles [84]. MAPK pathway is also able to regulate the expression of 
autophagy-related genes independently of FoxO3 in cachectic muscle wasting [85]. 
The GC effect on calpain pathway could be mediated by calpeptin, a calpain inhibi-

Fig. 9.3 Mechanism of action of glucocorticoids (GCs) on muscle. GCs interact with cytosolic 
glucocorticoid receptor (GR) and induce muscle atrophy mainly increasing protein breakdown and 
decreasing protein synthesis (by the inhibition of the local production of IGF-I and/or his action). 
Catabolic effects of GCs in muscle are mediated by specific transcription factors including FoxO 
family. Activation of these transcription factors upregulates atrogene expression (atrogin-1 and 
MuRF1). GCs also promote protein degradation via the induction of myostatin and the calpain 
proteolytic pathway
Akt protein kinase B, ERK ½ extracellular signal-regulated kinases 1 y 2, FoxO forkhead box pro-
tein O, IGF-I insulin-like growth factor-I, mTOR mammalian target of rapamycin, MEK dual 
specificity mitogen-activated protein kinase kinase, MuRF1 muscle RING-finger protein-1, PI3K 
phosphatidylinositol-3 kinase
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tor, since it is able to block the dexamethasone-induced proteolysis [86]. In addi-
tion, Hayash et al. [82] reported that corticosterone administration increases calpain 
activity in muscle. A crosstalk between catabolic and anabolic processes in the skel-
etal muscle has been proposed [87]. In this sense, activation of the proteolytic sys-
tems by GCs stimulates the branched-chain amino acid degradation, which is 
believed to activate mTOR, and therefore indirectly inhibits mTOR-dependent pro-
tein synthesis.

Several experimental models have been used to investigate the effects of sepsis: 
peritonitis produced by caecal ligation and puncture, LPS administration on the 
skeletal muscle mass, etc. Sepsis, endotoxaemia and other acute/chronic inflamma-
tory conditions are characterized by an increase in inflammatory cytokine produc-
tion and a rapid and sustained elevation in GC levels. Although pro-inflammatory 
cytokines, in particular, TNF-α, IL-1β and IL-6, are sufficient to induce muscle 
atrophy [88], the increased GC levels evoked by inflammatory challenge are enough 
to induce atrophy [63]. Mice with specific deletion of the glucocorticoid receptor in 
muscle are more resistant to skeletal muscle atrophy induced by sepsis than control 
animals [89], which indicate that GCs are determinant in the inflammation-induced 
muscle atrophy. Furthermore, GCs by themselves have a direct effect in the skeletal 
muscle activating FoxO1 both in vivo and in vitro [90, 91]. In sepsis induced by 
caecal ligation and puncture, Wray et al. [92] reported that the glucocorticoid recep-
tor antagonist RU-486 inhibits the upregulation of MuRF1 and atrogin-1/MAFbx in 
septic rats, supporting the important role of GCs for the development of muscle 
wasting. By contrast, Frost et al. [93] reported that sepsis-induced increase in mus-
cle atrogin-1 and MuRF1 mRNA appears to be GC-independent, since pretreatment 
with RU-486 failed to ameliorate the sepsis-induced muscle atrophy. An explana-
tion for this discrepancy is the use of smaller, immature rats in the first study versus 
adult rat in Frost et al. experiment. It is interesting to note that both studies report 
that fast-twitch muscle is more sensitive to the effects of sepsis than slow-twitch 
muscle.

In cancer, the role of GCs has been analysed in several studies. Braun et al. [89], 
using mice with specific deletion of the glucocorticoid receptor, demonstrate that 
GCs play a critical role in the pathogenesis of cancer muscle atrophy. Conversely, 
previous studies [94, 95] that utilized the glucocorticoid antagonist RU-486 in mod-
els of cancer did not demonstrate a significant protection of muscle mass, probably 
because RU-486 has only a 2 h half-life in rodents. In addition, it is also possible 
that muscle wasting in some tumour models depends on GCs, while others do not.

In chronic diseases, heart failure, chronic kidney disease (CKD) and chronic 
obstructive pulmonary disease (COPD), despite the diverse nature of these illnesses, 
they all seem to increase muscle proteolysis, primarily through the ubiquitin- 
proteasome system. The increased proteolysis and rapid muscle loss in these 
 pathologies require GCs [96]. However, patients with CKD also have high levels of 
TNF-α, IL-6 and myostatin that seem to contribute to muscle loss. In these chronic 
diseases, the increase activity of the renin-angiotensin system also plays a critical 
role in skeletal muscle wasting. Alternately, in COPD increased myostatin expres-
sion has been reported in muscle of COPD patients with stable disease. Taking into 

A. I. Martín et al.



217

account that GCs increase myostatin expression [75], this could be one of the ways 
by which GCs trigger muscle atrophy.

Although it is unclear whether aging is associated with increased GC secretion 
[64], Waters et al. [97] reported that sarcopenic elderly persons have an increase in 
cortisol production compared with normal lean group. In women, Hassan-Smith 
et al. [98] have described that skeletal muscle 11β-hydroxysteroid dehydrogenase 
type 1 is upregulated with age and is associated with sarcopenia. This enzyme con-
verts inactive GCs to their active form (cortisone to cortisol in humans). This 
increase of cortisol at the level of the skeletal muscle may contribute to the develop-
ment of sarcopenia. In addition, GCs seem to be implicated in the delayed muscle 
mass recovery following a catabolic state in aged people. Muscle atrophy in old rats 
was due to depressed protein synthesis. In this sense, GCs induce a prolonged leu-
cine resistance on muscle protein synthesis in old rats [99].

Type 1 diabetes mellitus (T1DM) arising from insulin deficiency is a catabolic 
state characterized by an increased protein degradation rate that produces an accel-
erated muscle atrophy [100]. Hyperglycaemia and hypoinsulinaemia play key roles 
in reduced muscle growth or increased proteolysis. GCs are one of the factors that 
contribute to muscle protein breakdown. Adrenalectomy blocks muscle loss in dia-
betic animals suggesting that GCs are necessary for stimulating muscle proteolysis. 
A combination of deficient insulin signalling and activation of the GCs in muscle 
decreases insulin receptor substrate (IRS), IRS-associated PI3K and p-Akt activi-
ties, leading to accelerated muscle wasting [73]. GCs and insulin pathways interact 
to modulate the anabolic and catabolic balance in the skeletal muscle. Endogenous 
GCs alone do not stimulate muscle protein breakdown; therefore a rise in GCs 
increases insulin to overcome proteolytic responses to GCs.

GCs do not appear to be required for disuse [101] or denervation-induced atro-
phy [102], bed rest or microgravity [103]. However, hypercortisolaemia may exac-
erbate bed rest-induced atrophy and functional loss in soleus type I fibres [104].

Paradoxically, in spite of muscle weakness and atrophy in response to GCs, 
chronic GC steroids are used to treat Duchenne muscular dystrophy with benefi-
cial effects on muscle strength and function [105]. The positive effects of steroid 
treatment seem to depend on steroid dosing. Intermittent administration promotes 
muscle repair and increases muscle mass [106]. In addition, a low dose of GCs 
inhibits muscle inflammation, reduces fibre necrosis and increases myogenesis 
and low- dose inhibited muscle inflammation, reduced fibre necrosis and increased 
myogenesis [107].

9.4  Gonadal Steroids

Androgens and oestrogens are the main steroid hormones secreted by the testes and 
ovaries, respectively. They are essential for sexual and reproductive development 
and are regulated by the hypothalamic-pituitary-gonadal axis. The hypothalamus 
releases gonadotropin-releasing hormone (GnRH) that stimulates in the 
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adenohypophysis the secretion of the two gonadotropins: luteinizing hormone (LH) 
and follicle-stimulating hormone (FSH). Both gonadotropins are essential for 
gonadal steroidogenesis and for gamete production. Steroid hormones released by 
the male and female gonads are the regulatory factors of the hypothalamic-pituitary-
gonadal axis by negative feedback. Androgens and oestrogens, in a lesser extent, 
have a profound impact on muscle physiology and metabolism. They are involved 
in the process of growth, maintenance and repair of muscle mass [108]. Although 
both, oestrogens and androgens, have positive effects on muscle, there are important 
differences in the effects of either class of steroids on the skeletal muscle. In this 
sense, androgens have a predominant role in the regulation of muscle physiology in 
both sexes [108].

Sexual steroid action is mediated by intracellular receptors (AR and ER for 
androgens and oestrogens, respectively). These receptors are expressed in myocytes 
and satellite cells [108]. One of the mechanisms by which androgens activate myo-
cyte growth is increasing the expression of muscle IGF-I [109]. In addition, andro-
gens activate the expression of the IGF-I receptor, the downstream signalling (e.g. 
Akt) [110], and finally they activate the mTORC1 pathway [111] (Fig. 9.4). In this 
sense, it has been described a decline of the mTOR signalling pathway after castra-
tion in rodents and that the treatment with androgens restored the levels to those of 
sham-operated animals [112]. Androgens can also act independently of IGF-I path-

Fig. 9.4 Androgens (testosterone) activate PI3K/Akt signalling, either directly or through IGF-I 
stimulation. Activation of Akt leads to phosphorylation and activation of mTOR that increases 
protein synthesis. Androgen receptor activation (AR) leads to phosphorylation and inhibition of 
FoxO transcription factors, which are required for upregulation of the ubiquitin-proteasome sys-
tem and autophagy lysosome, decreasing protein degradation. Testosterone also inhibits myo-
statin, which represses protein synthesis and increases muscle atrophy
Akt protein kinase B, ERK ½ extracellular signal-regulated kinases 1 y 2, FoxO forkhead box pro-
tein O, IGF-I insulin-like growth factor-I, mTOR mammalian target of rapamycin, MEK dual 
specificity mitogen-activated protein kinase kinase, PI3K phosphatidylinositol-3 kinase
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ways, stimulating directly myotube hypertrophy but not differentiation [110]. It has 
been reported a direct stimulation of Ras/MEK/ERK pathway by testosterone in 
muscle cells [113] and a suppression of the myostatin expression [114]. Testosterone 
has also a potent antiapoptotic effect in muscle, it maintains FoxO element inacti-
vated, and it counteracts the upregulation of proapoptotic genes induced by H2O2 
[115]. In this way, androgens can influence muscle mass decreasing protein break-
down and autophagy; the lack of these steroids increases those processes, and the 
replacement of the hormones reverts those effects [111]. Oestrogens act likewise 
activating the Akt/mTOR pathway [116, 117] and play an important role in muscle 
development by activating the p38/MAP pathway [118], but no clear actions of 
oestrogens were observed in the ERK signalling [118, 119] nor in the FoxO family 
factors [120], and apparently they have no effect on myostatin expression [120].

Knowing the important role of sexual hormones on muscle growth, low circulat-
ing levels of these steroids (physiological, pathological or medical treatment related) 
have a significant impact on muscle proliferation and maintenance. Men with hypo-
gonadism have lower muscle size and strength [121]. Furthermore, individuals with 
low levels of androgens, as in androgen deprivation therapy for prostate cancer, 
showed an important decline in muscle strength and function [122].

In major illness, a decreased in testosterone levels, secondary to a decrease in 
gonadotropin secretion, has been reported [123]. The role of androgens in cancer 
cachexia is not well known because, as mentioned above, the causes, incidence and 
severity of cachexia can vary according to tumour type, site and mass. Nevertheless, 
hypogonadism is observed in the majority of patients with metastatic cancer and 
cachexia [124, 125]. Similarly, the decrease in testosterone levels, observed in 
COPD patients, can be one of the factors that contributes to the muscle atrophy and 
disability reported in those patients [126]. In muscle wasting induced by heart fail-
ure, a decrease in anabolic hormones such as testosterone and IGF-I has been 
reported [53].

The decline of oestrogens and androgens in aging contributes to the loss of mus-
cle mass in sarcopenia [108]. In neuromuscular diseases, such as Duchenne muscu-
lar dystrophy, it has been described the positive effect of androgen receptor agonist 
treatment increasing the muscle mass [127]. In the same way to androgens, the 
replacement of oestrogens in ovariectomized rat models has positive effects on mus-
cle contractile function and on proliferation of satellite cells [128–130]. In women, 
the age-associated muscle loss and accumulation of fat in muscle are dismissed by 
hormone replacement therapy [131], and a meta-analysis showed beneficial effects 
of oestrogens on muscle strength [132].

9.5  Thyroid Hormones

Thyroid hormone (TH) secretion is regulated by thyroid-stimulating hormone 
(TSH) or thyrotropin produced in a pulsatile fashion by the pituitary thyrotrope 
cells. TSH release is under the stimulatory control of the hypothalamic 
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thyrotropin- releasing hormone (TRH). The thyroid gland mainly produces tet-
raiodothyronine (T4) or thyroxine, but the biological activity of this thyroid hor-
mone is exerted by triiodothyronine (T3). In target cells, T4 is modified by 
deiodinating enzymes (D1, D2 and D3). D1 and D2 convert the prohormone thyrox-
ine (T4) into the active hormone T3 by outer-ring deiodination. In contrast, D3 
converts T4 into the biologically inactive compound reverse T3 (rT3). Thyroid hor-
mones control gene expression in various tissues by binding to nuclear thyroid hor-
mone receptors that heterodimerize with the retinoid X receptor. Hypothalamic 
TRH and pituitary TSH secretions are controlled by thyroid hormones by a negative 
feedback [133]. The skeletal muscle is a principal target of TH, which is involved 
on contractile function, regeneration and skeletal muscle metabolism. T3 treatment 
increases maximal oxygen consumption, promotes appropriate muscle responsive-
ness to insulin and stimulates oxidative pathways by increasing mitochondrial bio-
genesis [134]. TH not only increase the number and diameter of muscle fibres, but 
they also participate in the determination of the normal pattern of fibre distributions 
in each muscle [135]. However, both an excess [136] and a deficiency of TH [137] 
cause muscle wasting and are detrimental for muscle regeneration [135].

Critical illness, sepsis and chronic inflammation are associated with changes in 
TH metabolism that can lead to altered muscle function. In the skeletal muscle, 
concentrations of TH depend on local levels of TH transporters, TH receptors and 
the activity of deiodinases. D2 and D3 have been identified in the skeletal muscle. 
Deiodinase, THR and TH transporter expressions are modulated in muscle during 
acute and chronic systemic inflammation [138].

The hypothalamic-pituitary-thyroid axis response is different in the acute phase 
of critical illness than in the prolonged one. The initial response of the thyroid axis 
is referred as “nonthyroidal illness syndrome” [139]. In this disease, the most typi-
cal alterations in plasma are low T3, low or normal T4 and elevated rT3 levels, 
together with normal TSH levels [138, 139]. This decrease in T3 and in T3/rT3 ratio 
could be the result of concomitant anorexia and fasting, rather than the illness per 
se. A combination of reduced serum T3 and T4 levels indicates poor prognosis in 
critically ill patients. Therefore, several investigators proposed T3 and/or T4 treat-
ment to counteract this situation, but no beneficial and sometimes even harmful 
effects were observed (for review [140]). Since the skeletal muscle has the ability to 
store glucose, and houses nearly 75% of all protein in the body, muscle breakdown 
and atrophy in critically ill patients are proposed as physiological adaptations to 
save energy during acute illness. In these situations, the reduction of anabolic 
response in muscle mediated by the decreases in TH concentrations could favour 
energy preservation during illness. Through this response TH protect the organism 
against hypercatabolism, prevent muscle weakness and improve recovery.

In patients with prolonged critical illness, low plasma T4 concentrations and low 
T3 levels linked with low TSH secretion and hypothalamic TRH have been described. 
These data indicate central hypothyroidism with a lack of hypothalamic TRH-
mediated stimulation of the thyrotropes with suppressed TSH-mediated activation 
of the thyroid gland [141]. It remains unclear the mechanism implicated in this 
response, but it has been proposed an increased in the expression of D2 in the hypo-
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thalamus, which may increase the T3 supply to the TRH neurons, thus decreasing 
TRH secretion [142]. The skeletal muscle of patients suffering from prolonged criti-
cal illness adaptates to the low production of TH, increasing the local thyroid hor-
mone receptor, thyroid hormone transporters and local activation of D2 [139, 141].

9.6  Other Hormones Related with Muscle Atrophy 
in Metabolic-Altered States

Secretion of hormones such as leptin, insulin and vitamin D is altered in several 
diseases related with metabolic dysfunction such as diabetes mellitus, obesity and 
aging [143, 144]. Therefore, they also play an important role in the muscle atrophy 
observed in these conditions.

Leptin is a hormone mostly secreted by the white adipose tissue, and it has a 
main role regulating energy balance [145]. Its level in blood depends on the fat 
stores and acts in the hypothalamus stimulating anorexigenic pathways and increas-
ing energy expenditure [146]. Besides its central actions, this hormone has impor-
tant peripheral actions, specifically on the muscle. Leptin actions are mediated by 
its receptor, the long form of leptin receptor (ObRb). This receptor contains intra-
cellular motifs required for activation of the JAK/STAT signal transduction path-
way, one of the main signalling cascades activated by leptin [147]. The ObRb 
receptor is expressed mainly in the brain, but it can be found in other peripheral 
tissues such as the liver, pancreas, adipose tissue and skeletal muscle [148]. In the 
muscle, leptin has an important role stimulating myoblast proliferation and differ-
entiation [149, 150]. In addition, leptin inhibits muscle atrophy [151]. These actions 
of leptin are direct on the skeletal muscle, but also leptin can stimulate muscle 
growth indirectly by increasing both circulating and muscle-derived IGF-I [152, 
153]. Both hypoleptinaemia and leptin insensibility are main factors related with the 
muscle wasting observed in malnutrition, anorexia, obesity and aging [143, 154, 
155]. In this sense, treatment with leptin during aging has been proposed as a 
method to prevent sarcopenia [156].

Insulin, whose main role is the maintenance of glucose homeostasis, has also an 
important role in muscle growth. This hormone acts through an intracellular sig-
nalling pathway similar to that of IGF-I.  Tyrosine phosphorylation of insulin 
receptor substrates (IRSs) leads to the activation of PI3K/AKT and ERK path-
ways. Both pathways activate muscle growth and protein turnover [157]. 
Hypoinsulinaemia (TIDM) and insulin insensitivity (obesity, TIIDM and aging) 
are also associated with muscle atrophy [100, 158]. A diabetic environment 
increases protein degradation in muscle [159], and it has been described diabetes 
mellitus as one of the major endocrine causes of sarcopenia [144]. In metabolic 
syndrome, characterized by abdominal obesity, hypertension, hyperglycaemia and 
hypertriglyceridemia, both leptin and insulin insensitivities are present, and mus-
cle proliferation is impaired [143].
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Vitamin D is a hormone with a main role in calcium homeostasis and bone 
metabolism. However, recently it has been related with skeletal muscle physiology 
[160]. Deficiency in vitamin D is associated with muscle weakness [161–163], and 
treatment with vitamin D seems to have a positive impact on muscle strength and 
mass [164, 165]. Aging and obesity are two conditions in which it has been described 
low levels of vitamin D, and treatment with this hormone has beneficial effects on 
the associated sarcopenia [166, 167]; thus, it can be assumed that vitamin D has an 
important role in muscle function and development.

Angiotensin II, a hormone involved in blood pressure control, may also play a 
role in skeletal muscle atrophy. Infusion of this hormone induces skeletal muscle 
atrophy by increasing proteolysis and decreasing both circulating and local IGF-1 
[168]. In fact, angiotensin II has an inhibitory effect on the autocrine IGF-I system 
[169]. It has also been reported that angiotensin II increases hormones such as GC 
and myostatin and pro-inflammatory cytokines (TNF-α, IL-6) that contribute to the 
muscle atrophy. The renin-angiotensin system is activated in many catabolic condi-
tions, and it has been suggested that angiotensin II is an active participant in the 
skeletal muscle wasting [170]. Congestive heart failure and chronic kidney disease 
are characterized by increased levels of angiotensin II and cachexia. In these ill-
nesses, angiotensin-converting enzyme (ACE) inhibitor treatment improves the 
muscle loss [171]. Other situations in which angiotensin II is increased and may 
meditate skeletal muscle atrophy are obesity and aging in which the treatment with 
ACE inhibitors and angiotensin II receptor blockers showed beneficial effects on 
muscle [143, 172]. Therefore, the blockade of the renin-angiotensin system has 
been proposed as novel therapeutical tool for muscle atrophy [173].

9.7  Final Remarks

In summary, skeletal muscle atrophy is associated with a large assortment of condi-
tions ranging from disuse or immobilization to chronic catabolic states that courses 
with cachexia. It is evident that muscle wasting is a complex and multifactorial 
condition and can be attributed to the complex interactions among several factors 
including alterations of the endocrine system. The correction of certain hormonal 
derangements may facilitate the development of improved hormone-mediated ther-
apies for muscle-wasting conditions. Hormonal supplementation with growth hor-
mone, leptin, testosterone or vitamin D could be possible therapeutic strategies, but 
their efficacy and safety need to be definitively established through larger-scale 
trials.
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Chapter 10
Ubiquitin-Proteasome Pathway  
and Muscle Atrophy

Rania Khalil

Abstract Many systemic diseases are featured by muscle atrophy. Cellular pro-
teins are modified by covalent attachment to a small protein known as ubiquitin 
(Ub) through ubiquitination. This ubiquitination process serves as signal for protein 
turnover that leads to rapid muscle mass lack. This process is carried out through an 
enzymatic cascade, which includes three groups of enzymes termed ubiquitin E1 
(activating enzyme), ubiquitin E2 (conjugating enzyme), and ubiquitin E3 (ligase). 
There are several ways of ubiquitin conjugation driving to ubiquitination of specific 
proteins through ubiquitin-proteasome system (UPS). A lot of UPS genes stated to 
be included in skeletal muscle atrophy. These genes do their effects by modifying 
different processes which affect muscle mass including myofibrillar protein degra-
dation, myogenesis inhibition, and even modulation of autophagy as well as 
upstream regulatory pathways.

Keywords Muscle atrophy · Signal pathways · Ubiquitin · Ubiquitin ligases · 
Ubiquitin-proteasome system

10.1  Ubiquitin Ligases

Many systemic diseases are commonly featured by weakness through rapid atrophy 
of muscle that occurs in muscles upon disuse or nerve injury. These diseases include 
diabetes, cancer, sepsis, hyperthyroidism, and uremia [56]. A rapid lack of muscle 
mass and protein content occurred through general set of biochemical changes that 
described different types of muscle atrophy leading to an increase in the overall rate 
of breakdown of muscle proteins [54].

Many catabolic conditions have been distinguished by activation of protein deg-
radation in muscle through a short protein containing 76 amino acids known as 
ubiquitin (Ub) which present in mainly all tissues of eukaryotes [6]. Cellular pro-
teins are modified through covalent attachment to this Ub protein by cellular 
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 regulatory mechanisms called ubiquitination. The ability of the 26S proteasome 
complex to recognize ubiquitin chains attached to proteins can explain how cellular 
proteins can be targeted by ubiquitination for degradation. This protein system 
breakdown through proteasome complex is recognized as ubiquitin-proteasome 
system (UPS) [55].

There are four main endogenous proteolytic systems in which UPS is considered 
as one of them in vertebrates. UPS presents an important function in recycling of 
amino acids, controlling muscle protein turnover, or using it for energy production, 
as well as other roles in myogenesis. The other systems of proteolysis include 
cathepsins, calpains, and caspases [60].

The ubiquitination process serves as signal for protein turnover which is carried by 
an enzymatic cascade that involves three groups of enzymes termed ubiquitin E1 (acti-
vating enzyme), ubiquitin E2 (conjugating enzyme), and ubiquitin E3 (ligase enzyme). 
For some substrates, fourth enzyme, E4, lengthens short ubiquitin chains [61].

First, an ubiquitin E1-activating enzyme stimulates the carboxylic-terminal 
edge of ubiquitin by forming the highly reactive thiol-ester bond between it and a 
cysteine residue in the active site of the enzyme. The activated ubiquitin is sec-
ondly transferred onto the active-site cysteine residue of an ubiquitin E2 conjugat-
ing enzyme. Then E2 interacts with an ubiquitin E3 ligase that binds to the 
substrate [59]. Finally, E3 boosts the transfer of the ubiquitin onto the substrate. 
After recognition by the proteasome, the ubiquitin chains are elevated by deubiq-
uitinating enzymes to permit ubiquitin recycling for reuse in other new conjuga-
tion responses [62].

In this process of ubiquitination, E2 acts as specific Ub-carrier protein responsi-
ble for attaching Ub to protein substrates. On the other hand, Ub-E3 protein ligase 
is considered as the key enzyme that catalyzes this boost of an activated form of Ub 
[29]. Ubiquitination role is not limited to act as the main contributor between the 
three protein degradation pathways by targeting substrates to the proteasome, the 
lysosomal system, and the autophagosome but also adjusts key cellular approaches 
including cell cycle progression, gene transcription, DNA repair, virus budding, 
receptor endocytosis, and apoptosis [64].

In spite that UPS is the main proteolytic pathway accountable for disposal of the 
damaged proteins, which accumulate in skeletal muscle; it is actually associated 
with enhancing of atrophy of skeletal muscle through its over-activation [18]. A lot 
of evidences showed that increased UPS expression may be occasional for skeletal 
muscle atrophy. The transient highly regulated manner for the ability of the UPS to 
target specific proteins for degradation arises from the large number of genes 
involved in regulating the state of protein ubiquitination [2].

The genes that are reported to be regulated in skeletal muscle wasting in the 
ubiquitin-proteasome system are nearly 35 E2s, nearly 750 E3s, and nearly 90 deu-
biquitinating enzymes known as atrogenes. These atrogenes spend their effects by 
modulating the various processes that determine muscle mass (myogenesis, protein 
synthesis, and degradation) as well as the upstream regulatory pathways [11]. These 
USP genes can be grouped into three functions: (1) myofibrillar protein  degradation, 
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(2) myogenesis inhibition, and (3) autophagy modulation. Table 10.1 represents the 
list of genes in the UPS that are stated to be regulated in skeletal muscle atrophy [19].

10.1.1  UPS Genes Modulate Myofibrillar Protein Degradation

One of the first UPS genes oncoming to be fundamental for muscle atrophy is the 
ubiquitin-E3ligase muscle ring finger-1 (MuRF1). MuRF1 role occurs through 
myofibrillar proteins, which has been implicated in the myofibrils degradation. 
Actually, it links to and ubiquitinates myosin light chains 1 and 2, myosin heavy 
chain, and myosin-binding protein C and also troponin I. In spite that the effect of 
MuRF1 on troponin was monitored in non-muscle cell lines but could be pertinent 
also in skeletal muscle [50]. Experiments carried out on mutant form of MuRF1 
support a certain role for it in targeting thick filaments for degradation. [13] stated 
that mice expressing a prevalent negative mutant form of MuRF1 showed degrada-
tion of thin filament with a simple loss of thick filaments in response to denervation, 
suggesting that MuRF1 is not involved in targeting of thin filaments [13].

On the other hand, thin filaments in other experiments have been found to be 
targeted by MuRF1 in vitro in cultured cells. Otherwise, exogenous corticosteroids 
lead to ubiquitinating actin. This conflict is explained by experiments carried out on 
purified monomeric actin that stated actin ubiquitinated by MuRF1 in vitro only, but 
the degradation of actin is independent of MuRF1 when present in myofibrils [14].

In addition to that, MURF1 gene is considered as the most important UPS 
component which precedes in vivo special function in skeletal muscle atrophy; 
several studies reported that MURF1 is downregulated in cardiac and skeletal 
myopathy [3, 4, 45, 58].

Another ligase which is known as muscle atrophy F-box/Atrogin-1 (MAFbx/
atrogin-1) also ubiquitinates desmin. Also, intermediate filament protein, vimentin, 
is targeted by MAFbx/atrogin-1  in which vimentin is also associated with sarco-
mere Z-disk. These actions on Z-line proteins by ubiquitin ligases propose that 
ubiquitination plays presumed roles in mediating both the degradation of the fila-
ment proteins and the disassembly of myofibrils, leading to loss of muscle function 
through the loss of muscle mass and strength [9].

Table 10.1 Examples on some ubiquitin ligases and their related genes and conjugated enzymes

Ubiquitin genes Ubiquitin-conjugated enzymes Ubiquitin ligases

UbB E214K/HR6B/UBC2 MAFbx/Atrogin-1
UbC E220K (203) UBC4/UBC5 MuRF1
UbA52 Cb1-b
UbS27A E4

E3α/UBR1
E3α-II/UBR2UBR3

10 Ubiquitin-Proteasome Pathway and Muscle Atrophy



238

Subsequently, muscle atrophy treatment could be based on inhibition of UPS 
gene expression through inhibition of the two identified ligases MURF1 and MAFbx/
atrogin-1. The treatment depends on the responsibility of these genes for the eleva-
tion of protein degeneration through the ubiquitin-proteasome system and is consis-
tent in different models of muscle atrophy [7]. Recently, Khalil et al. [37] observed 
a significant decrease of MURF1 gene expression in muscle atrophied animals 
treated with taurine. Otherwise, a possible decrease of MURF2 and 3 activities in 
ischemic reperfusion injury was reported since 1977 by Crass and Lombardini [16].

10.1.2  UPS Genes Regulate the Myogenesis

The process whereby muscle satellite stem cells with positive Pax7 are stimulated 
to turn into proliferating myoblasts with positive MyoD is known as myogenesis. 
Pax7 expression is widely used as marker that approved to be ubiquitously expressed. 
On the other hand, myogenic activation could be detected by MyoD which is a basic 
helix-loop-helix transcription factor and is one of the four myogenic regulatory 
growth factors required for myogenesis [28]. The myoblasts that proliferated 
through myogenesis subsequently induce myogenin that fuse to form multinucle-
ated myotubes. After birth, the myoblasts are going to fuse with the present myofi-
bers, which is important for early life muscle growth. Under normal conditions, 
myofiber maintenance is not dependent on myogenesis; otherwise, upon subsequent 
aging, inducible depletion of muscle satellite stem cells in young adult does not 
affect muscle mass [47]. Also, mechanical loading-induced hypertrophy is not 
dependent on myogenesis. However, impaired myoblast fusion occurs in cancer 
cachexia that plays a significant role in the pathogenesis of the muscle atrophy, 
providing evidence that ongoing myoblast fusion is important in myofiber mainte-
nance under catabolic situations [48].

Impairing myoblast fusion and differentiation is also one of the atrogin-1 ligase 
effects and, in addition to its effect on intermediate filaments, ubiquitinates and 
targets MyoD for degradation. The atrogenic effect of atrogin-1 appears to be medi-
ated by this ubiquitination that is approved through mutant mice with a MyoD engi-
neered to be resistant to atrogin-1 ubiquitination that is found to be significantly 
protected against muscle atrophy [52]. Also, atrogin-1 can inhibit fusion and expres-
sion of myofibrillar proteins through ubiquitinating myogenin. These effects are 
likely considered to myoblasts, while, in whole muscle both myogenin and MyoD 
are induced upon denervation. Actually, the promoters of MuRF1 and atrogin-1 are 
activated by this induced myogenin that is required for atrophy [22].

Another ubiquitin E3 ligase tripartite motif protein 32 (Trim32) participated also 
in myogenesis-dependent disuse atrophy. Its ubiquitination of the transcription fac-
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tor NDRG2 is thought to cease the effect [44]. Trim32 role in egression from cell 
cycle and myogenesis, respectively, could be indicated from NDRG2 absence which 
leads to upregulation of cell cycle inhibitors and markers of differentiation. NDRG2 
is confirmed to be phosphorylated by protein kinase B (Akt) and may intercede the 
myogenic-promoting activity of insulin and IGF-I [40].

The role of tripartite motif protein 72 (Trim72) is also studied in promoting 
myogenesis by its capability to modify fusion and myogenin expression. It aims to 
the focal adhesion kinase (FAK) for degradation, and FAK has been noticed to 
enhance the expression of the profusion genes caveolin-3 and 1D-integrin as well 
as myogenin [33].

Additionally, the expression of myogenin and myofibrillar proteins in muscle 
cells could be modulated by the USP19 deubiquitinating enzyme. This represents 
also the ability of USP19 to regulate muscle cell differentiation. Otherwise, USP19 
has been shown to prevent cultured muscle cell fusion through inhibition of a tran-
sient induction of the unfolded protein response that is essential for the fusion of the 
myoblast [63]. Moreover, USP19 downregulates myogenin that has an important 
function in myogenesis which may suppose that inhibition of USP19 may be a 
therapeutic way for rising of muscle growth after injury [61].

Another ubiquitin E3 ligase, Nedd4–1 (neural precursor cell-expressed develop-
mentally downregulated Nedd4–1), is characterized to mediate inactivity-induced 
muscle atrophy. The transcription factor Pax7 can be ubiquitinated by Nedd4–1, 
which via its differential effects on MyoD can act both as a promoter of myogenesis 
and as a repressor of myogenesis [46]. Therefore, it is believed that regulation of 
myogenesis can be controlled by the Pax7-to-MyoD ratio in which by ubiquitinat-
ing Pax7, Nedd4–1, transmits the balance in direction of MyoD and stimulates myo-
genesis [12].

Interestingly, tumor necrosis factor receptor-associated factor (TRAF) is an 
important binding protein of tumor necrosis factor (TNF) superfamily and the toll/
IL-1 receptor (TIR) superfamily, which play an important role in innate immunity 
and acquired immunity. TRAF family has seven members (TRAF1–7), and TRAF6 
has its special facture and biological function. Two domains which are N-terminal 
domain and C-terminal domain of TRAF6 could regulate signaling pathway func-
tion as ubiquitin E3 ligase through integration by multiple kinases [20].

The TRAF6 ubiquitin ligase stimulates ERK1/2 and JNK1/2  in satellite cells, 
leading to c-Jun activation and Pax7 induction, and the knockout of TRAF6 leads to 
impairment of muscle regeneration through increased Pax7 levels. This mechanism, 
along with the observation that TRAF6 is involved in the p38/mitogen-activated 
protein kinase (MAPK) and Akt pathways, can provide a mechanistic explanation 
for the impaired myogenesis seen in mice with silenced TRAF6 [24].
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10.1.3  USP Genes Interact with Autophagy

Ubiquitin-proteasome system and autophagy are the two major mechanisms for 
protein degradation in eukaryotic cells. Autophagy is the mechanism by which cyto-
plasmic contents and organelles are delivered to lysosomes for degradation. LC3, an 
ubiquitin-like protein, plays an essential role in autophagy through its ability to be 
conjugated to phosphatidylethanolamine [57].

LC3 processing by the 20S proteasome requires both the N-terminal helices and 
the ubiquitin fold of LC3 in which addition of the N-terminal helices of ubiquitin to 
the N terminus of LC3 renders ubiquitin susceptible to 20S proteasomal activity 
[38]. Further, processing LC3 by the 20S proteasome in stepwise stages is consid-
ered. LC3 is cleaved firstly by its ubiquitin fold and thus holds up the conjugation 
function of it; thereafter and especially at high levels of the proteasome, LC3 is 
completely decayed. On the other hand, proteolysis of LC3 by the 20S proteasome 
can be prevented by an LC3-binding protein which known as p62, that intercede 
autophagic degradation of polyubiquitin assembles in cells [27].

However, complete/long-term inactivation of autophagy by knockout of the 
autophagy-related 7 (Atg7) gene leads to both atrophy and impaired muscle func-
tion, since this process plays a critical role in cell homeostasis through removal of 
dysfunctional mitochondria and protein aggregates. Therefore, both excessive 
autophagy, through excessive catabolism, and insufficient autophagy, through accu-
mulation of proteins, generation of oxidative stress, and apoptosis, can lead to mus-
cle atrophy [31].

TRAF6 ligase not only promotes myogenesis but also can modulate autophagy. 
TRAF6 ligase forms K63-linked ubiquitin chains on Beclin-1, a gene essential for 
the activation of autophagy. This ubiquitination does not target the protein for deg-
radation but promotes the oligomerization of Beclin-1. TRAF6 may also interact 
with p62, a protein that plays a role in clearance of protein aggregates, and its inac-
tivation in muscle leads to suppressed autophagy [30].

Moreover, knocking out the deubiquitinating enzyme USP19 results in down-
regulation of autophagy-promoting genes in muscle, indicating that USP19 may 
promote autophagy. A recent report indicates that USP19 can deubiquitinate and 
stabilizes Beclin-1, thereby promoting autophagy. These studies were carried out in 
non-muscle cell lines but, if relevant also in skeletal muscle, could be part of the 
mechanism by which USP19 promotes autophagy and muscle wasting [32].

Autophagy initiation is critically dependent on a serine/threonine kinase (ULK1), 
which acts as a substrate of the Cul3-KLHL20 ubiquitin ligase. During autophagy 
induction, ULK1 autophosphorylation facilitates its induction to KLHL20 for ubiq-
uitination and proteolysis. This autophagy-stimulated, KLHL20-dependent ULK1 
degradation holds the extent and duration of autophagy. Besides that, the break-
down of ATG13, ATG14, Beclin-1, and VPS34 are dominated by KLHL20  in 
extended starvation. Exhausted KLHL20 leads to disturbed autophagy and then 
muscle atrophy [41, 42].

R. Khalil



241

10.2  Associated Signaling Pathways of Ubiquitin Ligases

A single E1 gene appears to exist in somatic cells and supplies activated ubiquitin 
to a larger family of E2s. Approximately 30 genes encode E2s in mammalian cells. 
Each E2 appears to interact with distinct E3s and different E3s recognize distinct 
substrates. Where multiple E2s can interact with an E3, the different E2s can medi-
ate formation of different types of ubiquitin chain linkages. Thus, there are multiple 
pathways of ubiquitin conjugation leading to precise ubiquitination of specific pro-
teins [5].

E3s can be organized into two major classes. One class (~90 human genes) con-
tains a conserved C-terminal HECT domain (homologous to E6-AP carboxy- 
terminus – named after E6AP, the first E3 described in this class) and functions by 
first accepting ubiquitin from E2 onto a cysteine residue and then conjugating the 
ubiquitin to the substrate. The other E3 class (~800 human genes) contains a con-
served RING finger motif 28–29 and functions by binding both substrate and the 
E221 and activating E2’s conjugating activity. Ligases can exist as monomeric pro-
teins or as multi-subunit complexes such as the family of cullin-RING ligases in 
which the substrate recognition and E2-binding functions are located on distinct 
subunits of the complex [7].

Forkhead box-containing, subfamily O3 (FoxO3) is the main transcription factor 
driving the expression of most of the atrogenes, such as those implied in the lyso-
somal and proteasomal pathways, which promote overall proteolysis. Two muscle- 
restricted ubiquitin ligases, atrogin-1 and muscle RING finger protein 1 (MuRF1), 
are dramatically upregulated by FoxO3 in all settings of muscle wasting. Molecules 
that block this activation of proteolysis or increase muscle protein synthesis might 
serve as pharmacological agents to combat wasting [8].

10.3  Signaling Pathways for Muscle Protein Loss

10.3.1  Toll–Like Receptor 4 (TLR4)

Toll-like receptors (TLRs) are an ancient conserved receptor family. The best- 
characterized member of this family is toll-like receptor 4 (TLR-4), the receptor for 
lipopolysaccharide (LPS), which is the best-known that can elicit cellular responses. 
Interaction between LPS and TLR-4 leads to the formation of an LPS signaling 
complex consisting of surface molecules, such as CD14 and MD2, as well as intra-
cellular adaptor molecules, including myeloid differentiation primary response 
gene 88 (MyD88) and tumor necrosis factor (TNF)-α receptor association factor 6 
(TRAF6), and activation of transcription factors such as nuclear factor κB (NFκB), 
which then induce activation of the inflammatory genes, such as TNF-α, interleukin 
(IL)-1, IL-6, and IL-8 [36].
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Excessive inflammatory response has been recognized as a crucial mechanism for 
muscle atrophy in various models of the disease. Inflammatory cytokines levels in 
skeletal muscle of patients with cachexia and septicemia are higher than that in skel-
etal muscle of healthy individuals, and these cytokines contribute to maintain the 
pathological chronic inflammatory conditions [43]. Furthermore, upon immobiliza-
tion in atrophied muscles, inflammatory cytokine gene expression is increased [49].

Although inflammatory cytokines are released from the immune and parenchyma 
cells (including muscle cells), they regulate pathways of intracellular signal trans-
duction involved in muscle atrophy [15]. In vitro studies have shown that inflamma-
tory cytokines enhance the expression of muscle-specific ubiquitin ligases such as 
MAFbx/atrogin 1 and MuRF1, which have been linked to the degradation of muscle 
proteins [10]. Therefore, immobilization causing local inflammation of skeletal 
muscles is associated with the development of muscle atrophy. However, the mech-
anisms underlying inflammation induced by immobilization causing muscle atro-
phy remain to be elucidated.

Activation of TLR4 signaling has been considered to be associated with 
inactivity- induced muscle atrophy. In fact, Schellekens et  al. [53] reported that 
TLR4 knockout mice exhibit decreased mechanical ventilation-induced diaphrag-
matic muscle atrophy than that exhibited by wild-type mice. Interestingly, a recent 
study showed that even short-term bed rest can induce increased mRNA levels of 
inflammatory cytokines and protein levels of TLR4  in the skeletal muscles of 
healthy older adults [21]. Therefore, increased TLR4 expression, by inactivity such 
as immobilization, may be an important factor in muscle atrophy and excessive 
inflammatory response. The cast immobilization-induced muscle atrophy and 
inflammation is reduced in TLR4-defective C3H/HeJ mice [35].

Moreover, pro-inflammatory cytokines such as TNF-α promoted the loss of mus-
cle protein in skeletal muscle. This is inconsistent with Frisard et al. [23] who found 
that TLR4 stimulation leads to activation in skeletal muscle; otherwise, upregulated 
TLR4 mRNA expression leads to further increased MyD88 mRNA expression in 
gastrocnemius muscle [65].

10.3.2  Nucleotide–Binding Oligomerization Domain Proteins 
(NODs)

Nucleotide-binding oligomerization domain protein (NOD) is among inflammatory 
signaling pathways as well as TLR4 that activate NF-κB to release pro- inflammatory 
cytokines. Loss of lean body mass can be caused by upregulation of the pro- 
inflammatory cytokines [34].

Among the NOD family, NOD1 and NOD2 are the best characterized members, 
which possess the ability to connect with the LPS and peptidoglycan and to trans-

R. Khalil



243

duce a TLR-independent signal [25]. Multiple NODs are expressed in the skeletal 
muscle cells. They play major roles in the detection of microbial infection and the 
induction of innate antibacterial and inflammatory responses by recognition of 
pathogen-associated molecular patterns (PAMPs) [39]. Activation of TLRs or NODs 
by interaction with their specific PAMPs triggers downstream signaling pathways 
that results in activation of nuclear factor-κB (NF-κB). Activation of NF-κB further 
provokes the expression of pro-inflammatory genes, including tumor necrosis 
factor-α (TNF-α), interleukin (IL)-1β, and IL-6. These pro-inflammatory cytokines 
are key regulators that induce muscle atrophy directly [41, 42, 51].

10.3.3  Akt/Forkhead Box O (Akt/FOXO)

In addition, pro-inflammatory cytokines can lead to muscle atrophy partially via 
changing the Akt/forkhead box O (FOXO)/ubiquitin-proteasome proteolysis 
(UPP) pathway. Akt/FOXO signaling cascade is an important signaling mecha-
nism in the pro-survival pathway. Seventy five percent of protein degradation dur-
ing skeletal muscle atrophy is contributed by UPP, which can degrade most cell 
proteins. Therefore, controlling levels of specific proteins is considered as a criti-
cal function of UPP [17].

Phosphorylation of Akt inhibits proteolytic transcription factors. Phosphorylation 
is required for full activity of Akt, which stimulates protein synthesis and induces 
FOXO1 that initially stimulates protein degradation, and participates in MuRF1 and 
MAFbx transcription during muscle atrophy. Both MuRF1 and MAFbx are relied 
by UPP to degrade specific proteins within the cells [7].

10.3.4  Mammalian Target of Rapamycin (mTOR) Signaling 
Pathways

Moreover, many evidences have shown that mammalian target of rapamycin 
(mTOR) pathway also plays a very crucial role on protein synthesis. mTOR stimu-
lation and eukaryotic initiation factor (eIF) 4E-binding protein-1 (4EBP1) phos-
phorylation are reported to increase protein synthesis. Control of protein synthesis 
could be by 4EBP1 that is one of the downstream targets in mTOR signaling path-
way. Otherwise, activation of 4EBP1 could be via the Akt-dependent signaling 
pathway that prevent proteolysis and induce protein synthesis in muscle [26].

The excitatory amino acid transporters 3 (EAAT3), which was the glutamate 
transporter, exists in many tissues, including skeletal muscle. Almilaji et  al. [1] 
reported that EAAT3 could be powerfully upregulated by mTOR and then later 
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could augment carrier protein concentration in the cell membrane. Therefore, 
mTOR induction leads to the increase of EAAT3 which could augment glutamate 
transposition increasing p-4EBP1/t-4EBP1 ratio (Fig. 10.1).
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Chapter 11
Noncoding RNAs in Muscle Atrophy

Yongqin Li, Xiangmin Meng, Guoping Li, Qiulian Zhou, and Junjie Xiao

Abstract Denervation, disuse, fasting, and various diseases could induce skeletal 
muscle atrophy, which results in the decline of life quality and increase of the mor-
tality risk for patients. Noncoding RNAs (ncRNAs) are implicated important in 
regulating gene expression. Thus, ncRNAs, especially microRNAs and long non-
coding RNAs (lncRNAs), have gained widespread attention as crucial players in 
numerous physiological and pathological processes, including skeletal muscle atro-
phy. In this review, we comprehensively described the potential of circulating 
microRNAs as biomarkers, summarized the profiling of microRNAs and lncRNAs 
in atrophying muscles, as well as discussed the effects and underlying mechanisms 
of microRNA machinery proteins, microRNAs, and lncRNAs in skeletal muscle 
atrophy. Considering the large quantity and variety of ncRNAs, the understanding 
of ncRNAs in muscle atrophy is still very limited. Future studies are needed to elu-
cidate the possibility of ncRNAs as diagnosis biomarkers and therapeutic targets in 
muscle atrophy.
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11.1  Background

Muscle atrophy is characterized as the decrease in myofiber size, strength, protein 
content, and total muscle mass [1]. Muscle atrophy can be divided into primary 
muscular disease and secondary muscular disorders. Primary muscle atrophy is 
caused by direct diseases of the muscle such as Duchenne muscular dystrophy 
(DMD) [2] and myotonic dystrophy type 1 (DM1) diseases [3]. Secondary muscular 
disorders are usually the complications of other  diseases, which include chronic 
kidney diseases (CKD) [4], sepsis [5], diabetes [6], cancers [7], renal and cardiac 
failure [8], burn injury [9, 10], and HIV/AIDS and neurodegenerative disorders 
[11]. Additionally, secondary muscular disorders can also occur in healthy individu-
als under the conditions such as spaceflight, starvation, aging, hindlimb unloading, 
bed rest, and immobilization [12]. It is well-known that muscle atrophy reduces the 
quality of life and increases the mortality risk for patients [13]. However, effective 
treatment methods for muscle atrophy are currently lacking. Thus, there is an urgent 
need to understand the molecular mechanisms that mediate muscle atrophy, which 
could greatly contribute to design therapies for alleviating muscle atrophy.

Accumulating evidence shows that noncoding RNAs (ncRNAs) play an impor-
tant role in regulating distinct steps of muscle atrophy. ncRNAs comprise a large 
and heterogeneous family including microRNAs (miRs, miRNAs), long noncoding 
RNAs (lncRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), 
small nucleolar RNAs (snoRNAs), and tRNA derivatives. Among them, miRNAs 
and lncRNAs are the best-studied classes in different physiologic and pathological 
conditions, including muscle development and muscle diseases. miRNAs, short 
ncRNAs (∼22 nucleotides), are endogenous and evolutionarily conserved, which 
mainly repress gene expression posttranscriptionally. One single miRNA has mul-
tiple target mRNAs, while individual mRNA can be modulated by numerous miR-
NAs [14, 15]. miRNAs collectively regulate the expression of 30% of human genes 
[16]. lncRNAs are a diverse class of noncoding RNAs which are more than 200 
nucleotides in length. lncRNAs have been shown vital in regulating gene expression 
both transcriptionally and posttranscriptionally via various mechanisms. Given that 
aberrant gene expression underlies muscle atrophy, it is critically important to 
understand how gene expression is regulated by ncRNAs in response to diverse 
stresses or diseases which lead to muscle atrophy.

In this review, we will focus upon the ncRNAs (miRNAs and lncRNAs) involved 
in regulating muscle atrophy and the underlying molecular mechanisms.

11.2  MicroRNA Machinery Proteins in Muscle Atrophy

It is now evident that miRNAs play important roles in multiple physiological and 
pathological processes including muscle development, muscle regeneration, and 
muscle atrophy. After transcription by RNA polymerase II or III, miRNA precursors 
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are catalyzed by DROSHA/DGCR8 complex and exported from the nucleus to 
cytoplasm by Exportin-5 [17]. Then the enzyme Dicer processes the miRNAs into 
~22 nt RNA duplex in cytoplasm, which are loaded onto RNA-induced silencing 
complex (RISC) and mediate translational repression/mRNA degradation [18, 19].

These proteins involved in miRNA biogenesis and production have been shown 
important in regulating muscle development and muscle atrophy. Loss of Dicer 
activity specifically in the myogenic compartment during embryogenesis reduced 
muscle-specific miRNAs, caused perinatal lethality, and resulted in decreased skel-
etal muscle mass and abnormal myofiber morphology [20]. Additionally, specific 
ablation of Dicer1 in postmitotic spinal motor neurons in mice from postnatal day 7 
exhibited signs of denervation-related muscle atrophy, including myofiber type 
grouping, loss of muscle fibers with a large cross-sectional area, and the decreased 
total fiber diameter [21]. Another miRNA machinery protein Argonaute2 (Ago2) 
has also been shown important for regulating skeletal muscle atrophy [22]. 
Crystallin-B (CryAB), a small heat shock protein, interacts with the N and C termini 
of Ago2 [22]. When the endonuclease activity of Ago2 was significantly repressed 
through loss of CryAB in mice, the body weight and myofiber cross-sectional area 
were significantly reduced, while the fibrosis was increased in the skeletal muscle 
[22]. These results indicated that inhibition of Ago2 caused skeletal muscle 
atrophy.

In addition, some RNA-binding proteins were also found to negatively regulate 
miRNA biogenesis. For example, the nuclear factor 90 (NF90; also referred to as 
ILF3, NFAR1, or DRBP76)-nuclear factor 45 (NF45) complex suppresses miRNA 
processing through inhibition of pri-miRNA processing [23]. Adult NF90-NF45 
double-transgenic mice exhibited skeletal muscle atrophy and centronuclear muscle 
fibers [24]. Compared with controls, microarray analysis demonstrated that 
NF90-NF45 overexpression reduced the expression of 23 miRNAs in skeletal mus-
cles, including miR-133a, miR-133b, miR-1, and miR-378 which are reported to 
promote muscle development [24]. Among them, the processing of pri-miR-133a 
was found to be suppressed by NF90-NF45 complex [24]. And concomitantly, 
dynamin 2, a target of miR-133a, is elevated in the muscle of NF90-NF45 double- 
transgenic mice [24]. Therefore, the upstream regulation of miRNAs plays vital 
roles in muscle atrophy.

11.3  MicroRNAs Served as Potential Biomarkers in Muscle 
Atrophy

The reliable and sensitive blood biomarkers are useful, easily accessible, and con-
venient for the diagnosis, monitoring, and potential future therapy of diseases. miR-
NAs are found to be present in blood circulation and have been increasingly 
suggested as biomarkers for several diseases and clinical conditions [25]. As a con-
sequence of fiber damage during atrophy, muscle-expressed miRNAs have been 
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found to be released into the blood, and their levels are usually correlated with the 
severity of muscle diseases. Thus, many scientific reports emphasize the possibility 
of muscle-specific miRNAs as circulating biomarkers for muscle atrophy induced 
by various stimuli.

Muscle atrophy and weakness are the primary characteristics of Duchenne mus-
cular dystrophy and myotonic dystrophy type 1 patients. Quantitative real-time 
polymerase chain reaction (qRT-PCR) analysis demonstrated that several muscle- 
specific miRNAs (miR-1, miR-133a, and miR-206) are increased in the serum of 
mouse and dog models of DMD [2]. Additional studies indicate that miR-1, miR- 
133a, and miR-206 are enriched in serum of DMD patients, and their levels were 
correlated with the severity of DMD disease, indicating that miR-1, miR-133a, and 
miR-206 are new biomarkers for the diagnosis of DMD and for evaluating the out-
comes of therapeutic interventions in humans [26]. By multiplex qRT-PCR analysis 
of 381 miRNAs in 36 consecutive DM1 patients and 36 healthy controls, a signature 
of 9 deregulated miRNAs in plasma samples of DM1 patients was identified [3]. 
miR-133a, miR-193b, miR-191, miR-454, miR-574, miR-885-5p, and miR-886-3p 
were increased, while miR-27b was decreased in DM1 patients [3]. Among them, 
miR-133a was suggested to be used as candidate diagnostic biomarker for DM1 [3]. 
Another study demonstrated that miR-1, miR-133a, miR-133b, and miR-206 were 
increased in the serum from DM1 patients with progressive muscle atrophy com-
pared to disease-stable DM1 patients [27]. And the levels of miR-1, miR-133a, 
miR-133b, and miR-206 were correlated with the progression of muscle atrophy in 
the DM1 patients, supporting their potential as useful and reliable biomarkers for 
DM1 patients [27].

Muscle atrophy is a common systemic complication of chronic obstructive pul-
monary disease (COPD). The expression of muscle-specific miRNAs was deter-
mined in serum from 31 COPD patients with muscle atrophy and 14 healthy 
age-matched controls by qRT-PCR [28]. The expression of miR-1 was reduced in 
COPD patients compared with controls, but there was no significant difference in 
the expression of miR-499, miR-208, miR-181, miR-145, miR-206, and miR-133 
[28].

Additionally, the serum levels of muscle-specific miRNAs (miR-1, miR-23a, 
miR-133, miR-206, miR-208b, and miR-499) were all significantly elevated after 
hindlimb unloading for 7 days in mice, which could induce severe muscle atrophy 
[29]. Moreover, the serum levels of miR-23a, miR-206, and miR-499 were increased, 
while miR-1, miR-206, and miR-208b were not changed in 15 healthy human par-
ticipants after 45 days of head-down bed rest [29]. And the levels of miR-23a, miR- 
206, and miR-499 were positively correlated with the ratio of soleus volume loss 
induced by head-down bed rest [29], indicating that circulating miR-23a, miR-206, 
and miR-499 could be used as candidate biomarkers for the diagnosis of muscle 
atrophy induced by disuse.

One study selectively characterized the expression of miR-9, miR-206, and miR- 
132  in serum from spinal muscular atrophy (SMA) mice and patients [30]. Both 
miR-9 and miR-132 were elevated in the serum from SMA mice and patients [30]. 
Serum miR-206 was increased in SMA mice compared with controls, but its level 
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in SMA patients has no significant difference [30]. These results indicated the 
potential of miR-9 and miR-132 as candidate serum biomarkers for SMA.

Collectively, some miRNAs have been identified as possible circulating bio-
markers for the diagnosis of DMD, SMA, and DM1 diseases, as well as muscle 
atrophy induced by hindlimb unloading, head-down bed rest, and COPD disease. 
However, the specific, sensitive, and reliable biomarkers are still lacking for muscle 
atrophy.

11.4  MicroRNAs in Muscle Atrophy

To understand the involvement of miRNAs in muscle atrophy, a large number  
of miRNA profiling have been performed in atrophying muscles under different 
conditions such as fasting, denervation, diabetes, disuse, and cancer cachexia.  
The miRNA signature of muscle atrophy has been found peculiar under each  
condition [31].

In primary muscle atrophy caused by direct diseases of the muscle, miRNA 
microarrays in muscle tissues identified 39 miRNAs such as miR-29a, miR-30c, 
miR-30b, miR-92, miR-29c, miR-423, miR-361, miR-299-3p, and miR-181d which 
were upregulated in Duchenne muscular dystrophy patients [32]. Sixty-two miR-
NAs such as miR-16, miR-279, miR-99a, miR-93, miR-455, miR-20b, miR-18a, 
miR-17-5p, miR-152, miR-106a, and miR-106b were upregulated in facioscapulo-
humeral muscular dystrophy patients [32]. The levels of miR-1 and miR-133a/b 
were significantly decreased, while miR-206 was significantly increased in muscles 
of 12 myotonic dystrophy type 1 patients as compared to 6 healthy controls [33].

Lipopolysaccharide, cancer cachexia, and chronic alcohol exposure are the path-
ological stimuli for muscle atrophy. Small RNA deep sequencing in pig skeletal 
muscles analyzed the miRNA expression profiles during lipopolysaccharide- 
induced wasting [34]. Four miRNAs (miR-146a-5p, miR-221-5p, miR-9860-5p, 
and miR-148b-3p) were significantly upregulated, while three miRNAs (miR-192, 
miR-215, and miR-429) were downregulated in the lipopolysaccharide-challenged 
samples [34]. Cancer cachexia-induced muscle atrophy is a direct cause in the func-
tional decline of cancer patients [35]. By injecting Lewis lung carcinoma cells into 
C57BL/6 J mice to induce muscle atrophy, miRNA sequencing identified nine dys-
regulated miRNAs including miR-147-3p, miR-299a-3p, miR-1933-3p, miR- 
511- 3p, miR-3473d, miR-233-3p, miR-431-5p, miR-665-3p, and miR-205-3p in 
the tibialis anterior muscles injected by Lewis lung carcinoma cells [36]. Utilizing 
a zebrafish model of muscle atrophy induced by chronic alcohol exposure, miRNA 
microarray identified that 14 miRNAs were upregulated, while 47 miRNAs were 
downregulated more than twofold in skeletal muscles [37]. Among them, miR- 
140- 3p was downregulated, whereas miR-146a was upregulated. Interestingly, the 
potential targets of both miR-140-3p and miR-146a include several members of the 
Notch signaling pathway [37].

Recently, RNA sequencing was performed to assess the whole transcriptome  
in mouse models of denervation-induced muscle atrophy [38]. There were 671  
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differentially expressed miRNAs in gastrocnemius muscles at different time points 
(1 week, 2 weeks, 4 weeks, and 8 weeks) after nerve injury compared with controls 
[38]. At an early denervation stage, another miRNA microarray analysis in rats 
showed that miR-206, miR-195, miR-23a, and miR-30e were differentially 
expressed in the slow muscles, while other miRNA molecules (miR-214, miR-221, 
miR-222, miR-152, miR-320, and let-7e) were differentially expressed in the fast 
muscles compared to controls [39]. These studies indicated that miRNAs were 
dynamically altered in the progression of muscle atrophy and miRNAs in different 
types of skeletal muscles respond to the same stimuli in distinct ways.

Amyotrophic lateral sclerosis (ALS) is characterized by the signs of denervation- 
induced muscle atrophy. In human studies of ALS, miR-206 was elevated in mus-
cles of four early-stage ALS patients [40] and characterized as a potential biomarker 
for ALS patients [41]. Using small RNA-seq, the expressions of small RNAs in 
muscle tissues of ALS patients and healthy age-matched controls were compared 
[42]. Nineteen miRNAs such as miR-100, miR-10a, miR-125a, miR-125b, miR- 
1260a, miR-128, miR-1291, miR-132, miR-133a, and miR-151a were upregulated, 
while 10 miRNAs such as miR-126, miR-1285, miR-1303, miR-150, miR-191, and 
miR-28 were downregulated in the ALS groups [42]. Interestingly, this study did 
not find changes in the expression of miR-206 in ALS patients [42], which might be 
due to the differences in study populations.

Spinal cord injury can induce severe skeletal muscle atrophy and the transforma-
tion toward fast-twitch, type II fibers. In human, miR-208b and miR-499-5p expres-
sions were progressively declined in skeletal muscle during the first year after spinal 
cord injury [43]. Moreover, miR-208b and miR-499-5p were inversely correlated 
with the expression of myostatin, an inhibitor of muscle growth, in human skeletal 
muscle after spinal cord injury [43]. miR-208b reduced myostatin expression in 
intact mouse skeletal muscle after spinal cord injury, whereas miR-499-5p had no 
obvious effect [43].

Addition of dexamethasone (Dex) leads to a distinct atrophic phenotype in dif-
ferentiated C2C12 myotubes, which is the in vitro model of Dex-induced muscle 
atrophy [44]. miR-1, miR-322, miR-351, and miR-503-3p were found to be upregu-
lated in Dex-treated C2C12 cells compared to controls, while miR-708 and miR- 
147 were downregulated [44]. miR-18a expression is declined during C2C12 
myoblast differentiation [45]. And in vitro overexpression of miR-18a induces myo-
tube atrophy via the PI3K/AKT pathway through Igf1 [45]. miR-182 expression is 
dramatically decreased in C2C12 myotubes treated with Dex [46]. miR-182 was 
enriched in exosomes isolated from the media of C2C12 myotubes, and Dex treat-
ment could increase its abundance in exosomes [46].

In addition to the miRNA profiling studies, functional studies using cellular and 
animal models have disclosed multiple important miRNAs in muscle atrophy. 
Spinal and bulbar muscular atrophy (SBMA) is an inherited neurodegenerative dis-
order caused by the expansion of a polyglutamine repeat in the androgen receptor 
(AR-polyQ) [47, 48]. SBMA is characterized by proximal muscular atrophy, 
 weakness, contraction fasciculation, and bulbar involvement [49]. miRNA  
microarray analysis identified that miR-196a, miR-196b, miR-496, miR-323-3p, 
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and miR- 29b- 3p were upregulated more than twofold in the spinal cords of male 
SBMA mice expressing full-length human AR with 97 glutamine residues (AR-97Q) 
compared to the male mice expressing wild-type human AR [50]. Among them, 
miR-196a was found to enhance the decay of the AR mRNA by silencing CUGBP, 
Elav-like family member 2 (CELF2) [50]. Further studies demonstrated that adeno-
associated virus (AAV) vector-mediated delivery of miR-196a exhibited the strong 
and continuous inhibition of CELF2 expression and ameliorated the SBMA pheno-
types in a mouse model [50]. Importantly, miR-196a was upregulated and the 
CELF2 mRNA was downregulated in the thoracic spinal cord of patients with 
SBMA, and miR-196a treatment could downregulate both the AR and CELF2 
mRNAs and proteins in the fibroblasts obtained from patients with SBMA [50]. 
Thus, overexpression of miR- 196a can be considered as the potential strategy for 
treating SBMA. Another report found that miR-298 could ameliorate the phenotype 
of SBMA in mice [51]. In vitro studies demonstrated that miR-298 directly bound 
to the 3′-untranslated region (UTR) of the human AR transcripts and reduced AR 
mRNA and protein levels [51].

miR-1 is specifically expressed in muscles and plays important roles in myogen-
esis, muscle regeneration, as well as muscle atrophy. High doses of Dex or myo-
statin (Mstn) induce severe skeletal muscle atrophy [52]. miR-1 was found to be 
elevated in both C2C12 myotubes and mouse models of Dex-induced atrophy [52]. 
Both Dex and Mstn could induce miR-1 expression through glucocorticoid receptor 
(GR) [52]. And miR-1 elevation promotes skeletal muscle atrophy through targeting 
HSP70 and reducing its levels, which led to decreased phosphorylation of AKT, 
enhanced activation of FOXO3, and upregulation of MuRF1 and Atrogin-1 [52]. In 
addition, miR-1 was found to be unchanged in soleus muscle of rats with muscle 
atrophy induced by hindlimb suspension [53]. Similar to miR-1, miR-133 also has 
important roles in the myogenesis and muscle development [54, 55]. However, the 
functional study of miR-133 in muscle atrophy is much more less.

Denervation is a common cause of muscle atrophy, and miR-351, miR-21, and 
miR-206 have been identified as important regulators of denervation-induced mus-
cle atrophy. Following sciatic nerve transection, miR-351 was gradually reduced 
with time, and overexpression of miR-351 significantly repressed the decrease of 
the wet weight ratio and cross-sectional area of the tibialis anterior muscle in rats 
[56]. Mechanically, miR-351 is able to downregulate TRAF6 expression by directly 
targeting its 3’-UTR [56] and negatively regulate the two downstream signaling 
molecules of TRAF6, MuRF1 and MAFBx, in tibialis anterior muscles after sciatic 
nerve transection [56]. By miRNA profiling in mouse denervated muscles, miR-21 
and miR-206 were found to be strongly induced after denervation [31]. Induction of 
miR-206 and miR-21 in adult mouse muscle contributes to muscle atrophy induced 
by denervation, whereas repression of miR-206 and miR-21 partially protects 
against denervation-induced atrophy in  vivo [31]. More importantly, luciferase 
assays confirmed that YY1 was the target gene of miR-21, and eIF4E3 and Pdcd10 
were the target genes of both miR-21 and miR-206  in denervated muscles [31]. 
However, in rats, miR-206 was found to increase the number of differentiating 
(MyoD1+/Pax7+) satellite cells and counteract denervation-induced atrophy 
through TGF-β1/Smad3 signaling pathway [57]. Moreover, miR-206 is dramatically 
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increased in a mouse model of amyotrophic lateral sclerosis (ALS), which exhibited 
denervation and atrophy of targeted muscles [58]. miR-206-deficient mice form 
normal neuromuscular synapses during development, but loss of miR-206 acceler-
ated ALS progression in mouse model and induced severe skeletal muscle atrophy 
through targeting histone deacetylase 4 (HDAC4) [58].

A loss of muscle mass during muscle atrophy results from an imbalance of pro-
tein synthesis and degradation with a reduction in synthesis. miR-424-5p expression 
was increased in patients with conditions associated with muscle wasting (COPD 
patients, patients undergoing aortic surgery, and patients with ICU-acquired weak-
ness) [59]. In mice, overexpression of miR-322 (rodent miR-424 orthologue) pro-
moted muscle atrophy and reduced ribosome RNA levels [59]. Ago2 pull-down 
assays showed that miR-424-5p bound to mRNAs encoding proteins required for 
ribosomal RNA transcription and protein synthesis, PolR1A and upstream binding 
transcription factors [59].

A common clinical feature in patients with severe burns is skeletal muscle atro-
phy. miR-628 was increased in tibialis anterior muscle after burn injury in rats [9, 
10]. Overexpression of miR-628 in rat muscle activates the IRS1/Akt/FoxO3a sig-
naling pathway and promotes cell apoptosis [9]. IRS1 was identified as direct target 
of miR-628 [9].

Most of miRNAs mentioned above have been shown vital for only one model of 
muscle atrophy. A systematic study using different models of muscle atrophy identi-
fied that miR-29b was elevated in multiple in vivo atrophy models (denervation, 
Dex, fasting, cancer cachexia, and aging), as well as the in vitro atrophy models 
(primary myoblasts treated with Dex and myotubes differentiated from C2C12 
treated with Dex, TNF-α, or H2O2) [60]. miR-29b overexpression induces muscle 
atrophy, and its inhibition attenuates muscle atrophy induced by multiple stimuli 
both in vitro and in vivo [60]. IGF-1 and PI3K(p85α) were identified as the direct 
targets of miR-29b [60].

miR-23a has also been found to be important in multiple models of muscle atro-
phy. In patients with chronic kidney disease (CKD), a decline in muscle mass is 
associated with increased morbidity and mortality [4]. Exercise can ameliorate the 
phenotype of muscle atrophy induced by CKD [4]. miR-23a was decreased, while 
miR-27a was unchanged in CKD mice muscle, and resistance exercise elevated 
miR-23a and miR-27a expression in CKD mouse muscle [61]. Overexpression of 
miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, 
reduced caspase activity, and increased markers of muscle regeneration [61]. In 
primary satellite cells, PTEN and caspase-7 were identified as targets of miR-23a 
and FoxO1 was identified as a target of miR-27a [61]. Ectopic expression of miR- 
23a was sufficient to prevent Dex-induced muscle atrophy both in vitro and in vivo 
[62]. Furthermore, miR-23a transgenic mice showed resistance against Dex-induced 
skeletal muscle atrophy [62]. miR-23a repressed the translation of both MAFbx/
atrogin-1 and MuRF1 in a 3’ UTR-dependent manner, which were involved in pro-
moting atrophy-associated protein degradation [62]. miR-23a was also reduced 
both in the atrophying muscles of rats with acute streptozotocin-induced diabetes 
and the C2C12 myotubes treated with Dex [63]. In-depth study demonstrated that 
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the decrease of miR-23a was due to the attenuation of calcineurin signaling and the 
promotion of exosome-mediated export of miR-23a caused by atrophy-inducing 
conditions [63].

Collectively, in vivo studies demonstrated that miR-196a, miR-298, miR-351, 
miR-23a, and miR-27a suppressed, while miR-1, miR-21, miR-424-5p, miR-628, 
and miR-29b promoted the progression of muscle atrophy (Fig. 11.1). Particularly, 
miR-206 suppressed ALS-induced muscle atrophy in mice and denervation-induced 
muscle atrophy in rats and promoted the denervation-induced muscle atrophy in 
mice (Fig. 11.1). Future studies based on these results will provide the potential 
therapeutic targets for muscle atrophy.

11.5  lncRNAs in Muscle Atrophy

lncRNAs are characterized as noncoding RNA sequences >200 nucleotides [64]. 
lncRNAs have been regarded as critical epigenetic regulators of gene expression in 
multiple physiological and pathological conditions [65]. The number of lncRNAs in 
the human genome is estimated to be no less than protein-coding genes [66]. A 
substantial number, but not all of the lncRNAs, are transcribed by RNA polymerase 
II, 5′-capped, spliced, and polyadenylated at the 3′ end, undergoing similar 

Anti-atrophy miRNAs 
Pro-atrophy miRNAs 

Fig. 11.1 MicroRNAs in muscle atrophy. Dex dexamethasone, CKD chronic kidney diseases, ALS 
amyotrophic lateral sclerosis
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posttranscriptional processing as mRNAs [67]. Compared with miRNAs, little is 
known about the biological roles of lncRNAs, and even less about their mechanism 
of action. In mammalian cells, the wide variety of subcellular localizations, expres-
sion levels, and stabilities of lncRNAs have been observed and a broad array of 
diverse mechanisms has been suggested. Based on the examples of well-studied 
lncRNAs, lncRNAs can either repress or activate gene expression through regulat-
ing gene transcription, mRNA stability, pre-mRNA splicing, protein translation, and 
protein stability [64]. Additionally, lncRNAs can serve as “sponge” RNAs for miR-
NAs through pairing to miRNAs and titrating them away from their mRNA targets 
[68]. Similarly, lncRNAs have been reported as a decoy that titrate the protein away 
from its potential targets, such as lncRNA Gas5 and glucocorticoid receptor [69] 
and sno- lncRNAs and Fox2 [70]. To date, many studies mainly focused on the physi-
ological function of lncRNAs in muscles, and the number of lncRNAs identified as 
regulators of muscle atrophy so far is still exiguous. Therefore, our understanding 
of lncRNAs in muscle atrophy, especially in stress-induced muscle atrophy, is much 
more limited.

Myogenesis is a complex process required for regeneration and growth of myo-
fibers in adults and begins with the activation and differentiation of muscle stem 
cells. Multiple lncRNAs were reported to be associated with myogenesis and mus-
cle regeneration. lncRNA SRA [71, 72], H19 [73], MUNC [74], lncMyoD [75], 
lnc-MD1 [76], lnc-mg [77], MAR1 [78], lnc-YY1 [79], Myolinc [80], and Dum 
[81] are confirmed as important positive regulators of myogenesis. In contrast, 
recent studies have shown that certain lncRNAs negatively regulate myogenesis, 
including SINE-containing lncRNAs [82], Yam-1 [83], Lnc-31 [84], Malat1 [85], 
and Sirt1 AS lncRNAs [86]. During muscle atrophy, impaired myogenesis is a com-
mon underlying mechanism [87]. Thus, the aberrant expression of these myogenesis- 
related lncRNAs might contribute to muscle atrophy. So far, among the lncRNAs 
mentioned above, only the roles of lncRNA MAR1 and lnc-mg have been investi-
gated in cellular and animal models of muscle atrophy.

lncRNA MAR1 (muscle anabolic regulator 1) was significantly downregulated 
in the mouse gastrocnemius muscle during aging and unloading condition [78]. In 
C2C12 cells, MAR1 was found to promote the myogenic differentiation through 
serving as the sponges for miR-487b to regulate Wnt5a expression, which is an 
important factor during myogenesis [78]. Moreover, therapeutic enforced MAR1 
expression in skeletal muscle of mice could counteract either age-related muscle 
atrophy or hindlimb suspension-induced muscle atrophy mice [78].

A myogenesis-associated lncRNA named as lnc-mg is specifically enriched in 
skeletal muscle and was shown to be induced in muscle stem cell differentiation 
[77]. According to the in vitro analysis of primary skeletal muscle cells and in vivo 
analysis of conditional knockout mice, lnc-mg promotes myogenesis by serving as 
a sponge for miR-125b to elevate the protein abundance of insulin-like growth fac-
tor 2 [77]. Conditional knockout of lnc-mg in mouse skeletal muscle results in mus-
cle atrophy and the loss of muscular endurance during exercise [77]. However, 
muscle loss is not significantly improved after denervation in transgenic mice of 
lnc-mg [77]. Thus, the rescue effect of lnc-mg on stress-induced skeletal muscle 
atrophy needs to be carefully elucidated.
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Spinal muscular atrophy is an inherited neuromuscular disorder, caused by reces-
sive mutations of the survival motor neuron 1 (SMN1) gene and retention of vari-
able copy numbers of the highly homologous SMN2 gene [88, 89]. lncRNA 
SMN-AS1 arises from the antisense strand of SMN and is highly enriched in neu-
rons [90]. SMN-AS1 recruited PRC2 to the SMN promoter and transcriptionally 
repressed SMN expression [90]. Delivery of SMN-AS1 antisense oligonucleotides 
(ASOs) elevated the SMN expression in patient-derived fibroblast cells, cultured 
neurons, and a mouse model of severe SMA [90]. Combining SMN-AS1 ASOs with 
SMN2 splice-switching oligonucleotides additively increased SMN expression and 
ameliorated SMA in mouse model [90]. Similarly, another independent group also 
reported that selective disruption of SMN-AS1-mediated PRC2 recruitment could 
activate SMN and ameliorate SMA phenotypes in mice [91].

In addition to the myogenesis-related lncRNAs as potential candidates, lncRNA 
profiling has been performed to identify more important lncRNAs in the animal 
models of muscle atrophy. Severe thermal trauma covering more than 30% of the 
total body surface area triggers severe muscle atrophy. Microarray was used to 
determine the lncRNA expression levels in skeletal muscle tissues of three pairs of 
burned rats at the early flow phase, compared with sham rats [92]. An average of 
117 lncRNAs were significantly differentially expressed (1.5-fold) [92]. Recently, 
the expression patterns of lncRNAs were also detected using RNA sequencing in 
the mouse gastrocnemius muscle after nerve injury at different time points and com-
pared to that obtained in the control group [38]. There were 664 differentially 
expressed lncRNAs (75 upregulated and 87 downregulated at 1 week, 78 upregu-
lated and 80 downregulated at 2 weeks, 89 upregulated and 77 downregulated at 
4  weeks, and 76 upregulated and 102 downregulated at 8  weeks) in denervated 
muscle atrophy compared to control groups [38]. Two selected lncRNAs were vali-
dated using qRT-PCR and their changes were consistent with the RNA-seq data 
[38]. Another microarray analysis compares the differentially expressed lncRNAs 
in gastrocnemius muscle between adult (6-month-old) and aged mice (24-month- 
old) [78]. And 894 lncRNAs were identified to be downregulated, while 1051 
lncRNAs were upregulated more than twofold in aged muscle tissues compared 
with controls [78].

Collectively, very few lncRNAs including lnc-mg, MAR1, and SMN-AS1 are 
uncovered to regulate muscle atrophy (Fig. 11.2). And the studies of myogenesis- 
related lncRNAs and profiling of lncRNAs in muscle atrophy have shown the 
deserving hints for further investigation of lncRNAs in muscle atrophy.

11.6  Conclusions and Perspectives

Skeletal muscle atrophy undergoes remarkable adaptations in response to numerous 
conditions, which significantly diminished quality of life. As we reviewed here, 
studies published in the past couple years emphasized identifying the potential 
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miRNAs as biomarkers, profiling the changes of miRNAs and lncRNAs, and uncov-
ering the roles and mechanisms of miRNAs and lncRNAs in diverse muscle 
atrophy.

To date, numerous miRNAs have been found to be altered in the serum of patients 
with muscle atrophy compared with healthy controls. And several of them have 
been shown correlated with the different stages and severity of the diseases. 
However, the possible inconsistencies in the results and the specificity of this kind 
of biomarker remain the major critical challenges. One of the major reasons is the 
human subject variability, and therefore recruiting large cohorts of patients could 
greatly improve the future biomarker studies.

The quantity and variety of miRNAs and lncRNAs are very large, and many of 
them have been shown changed in atrophying muscles. However, at present, only a 
few miRNAs and exiguous lncRNAs were investigated in depth. Our current under-
standing about the mechanisms of miRNAs and especially the lncRNAs are  still 
very limited. Besides, other ncRNAs such as circular RNAs are emerging as the 
vital regulators of various diseases. One recent RNA sequencing has identified 236 
circular RNAs which were differentially expressed in the mouse gastrocnemius 
muscle after nerve injury at different time points [38] . Although this sequencing 
data provides a theoretical basis for studying circular RNAs in denervated muscle 
atrophy, the roles of circular RNAs in muscle atrophy are still unknown [38]. In the 
immediate future of ncRNA study, deciphering more important ncRNAs in muscle 
atrophy and uncovering their intrinsic mechanisms are highly needed, which will 
enhance our ability to gain a better understanding of muscle atrophy and provide 
novel diagnosis markers and therapeutic targets.

Fig. 11.2 lncRNAs in muscle atrophy
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Chapter 12
NF-kB and Inflammatory Cytokine  
Signalling: Role in Skeletal Muscle Atrophy

Anastasia Thoma and Adam P. Lightfoot

Abstract Atrophy is a classical hallmark of an array of disorders that affect skele-
tal muscle, ranging from inherited dystrophies, acquired inflammatory myopathies, 
ageing (sarcopenia) and critical illness (sepsis). The loss of muscle mass and func-
tion in these instances is associated with disability, poor quality of life and in some 
cases mortality. The mechanisms which underpin muscle atrophy are complex; 
however, significant research has demonstrated an important role for inflammatory 
cytokines such as tumour necrosis factor-alpha (TNF-α), mediated by the genera-
tion of reactive oxygen species (ROS) in muscle wasting. Moreover, activation of 
the transcription factor nuclear factor kappa B (NF-κB) is a key lynchpin in the 
overall processes that mediate muscle atrophy. The significance of NF-κB as a key 
regulator of muscle atrophy has been emphasised by several in vivo studies, which 
have demonstrated that NF-κB-targeted therapies can abrogate muscle atrophy. In 
this chapter, we will summarise current knowledge on the role of cytokines (TNF-α) 
and NF-κB in the loss of muscle mass and function and highlight perspectives 
towards future research and potential therapies to combat muscle atrophy.

Keywords TNF-α · Nuclear factor kappa B · Atrophy · Cytokines · Skeletal 
muscle

12.1  Introduction

Skeletal muscle is a robust and plastic organ; accounting for approximately 40% 
total body weight and 50% total protein and is responsible for ambulation, postural 
support, metabolic homeostasis and thermogenesis. Skeletal muscle is plastic in the 
sense of its capability of rapidly responding to load, in terms of training or disuse; 
and these features undoubtedly underpinned the success of our species in hunter- 
gather times [1]. However, in response to an array of pathological stimuli, it is 
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dysregulation in mechanisms of plasticity which gives rise to atrophy of muscle. 
Skeletal muscle atrophy is defined as loss of muscle mass, derived from imbalance 
between rates of protein synthesis and degradation [2]. We observe muscle atrophy 
in an array of pathogenic states, ranging from inherited (DMD) and acquired (myo-
sitis) myopathies to sepsis (hyper-inflammation and disuse) and age-related loss of 
muscle mass (sarcopenia) [2]. In these instances, we observe a reduction in muscle 
fibre cross-sectional area and thus a reduction in force output – which manifests as 
muscle weakness and reduced capacity to exercise  – collectively resulting in 
impaired quality of life. The cellular mechanisms, which are responsible for muscle 
atrophy, are indeed complex. However, significant research of the last ~20 years has 
indicated that nuclear factor kappa B (NF-κB) pathway activation and inflammatory 
cytokines such as TNF-α are key players in muscle atrophy. In this chapter, we dis-
cuss the basic biology of NF-κB signalling, the evidence demonstrating the role of 
NF-κB as a lynchpin in muscle atrophy – intertwined with the role of cytokines in 
atrophy  – and how pharmacologically targeting NF-κB may be an avenue for 
therapy.

12.2  NF-kB and Muscle Atrophy

12.2.1  The NF-kB Signalling Pathway

NF-κB is a pleiotropic, redox-sensitive, nuclear transcription factor, which regulates 
the expression of a vast array of genes, associated with a diverse range of biological 
processes  – ranging from innate and adaptive immune responses to cell growth, 
maturation and survival [3]. NF-κB plays a crucial role in allowing cells to adapt to 
a diverse array of environmental stimuli. In mammalian species NF-κB is com-
prised of the subunits p50, p52 p65 (RelA), c-Rel and RelB [4]. The individual 
protein subunits of NF-κB bind together to form heterodimers that are defined as the 
NF-κB complex. Dimerisation occurs at a region termed the rel-homology domain 
(RHD). The RHD is located on the N-terminus of each NF-κB unit and is approxi-
mately 300 amino acid bases in length [5]. There are 15 known dimers that have 
been identified to form NF-κB units. There is relative homology between the sub-
units, however key differences in p50 and p52 are apparent, whereby they lack a 
transactivational domain at their C-terminus; p50/52 homodimers do not activate 
transcription upon migration to the nucleus. One of the most characteristic dimers, 
which do activate transcription, is the p65/50 dimer [3].

NF-κB resides in the cytosol of cells in an inactive state, tightly bound to IκB, 
comprised of several subunits: IκBα, IκBβ, IκBγ and IκBε [3]. IκB forms covalent 
bonds with NF-κB that maintains it in a state of inactivity. Although inactive NF-κB 
is described as cytosolic, the NF-κB-IκB complex is constantly migrating in a cycli-
cal fashion to and from the nucleus [6]. IκB prevents any significant binding of 
NF-κB to DNA, and the net export from the nucleus is greater than that of the 

A. Thoma and A. P. Lightfoot



269

import – implying NF-κB to be cytosolic in origin [6]. NF-κB activation occurs by 
severing of covalent bonds with IκB via the action of the IκB kinase (IKK). IKK is 
a kinase, which phosphorylates IκB and initiates IκB degradation via the ubiquitin- 
proteasome pathway – leaving NF-κB free and active, which then translocates to the 
nucleus and binds to requisite promoter sequences at the κB domains [4].

NF-κB activation can occur in response to a variety of stimuli from viral and 
bacterial components to pro-inflammatory cytokines – however, one of the most 
well-characterised activators is TNF-α [6]. The canonical activation of NF-κB due 
to degradation of the inhibitor of kappa B alpha/beta (IKBα/β) by IκB kinase (IKK) 
is TNF-dependent [3]. The activation of IKKβ by TNF-α occurs due to translocation 
of IKKβ to the membrane by the chaperones CDC37 and HSP90; the activation of 
IKKβ is RIP-dependent. IKKβ phosphorylates the IKBα and IKBβ subunits which 
bind to and stabilise NF-κB in an inactivate state in the cytoplasm. TNF-α is pro-
duced by a variety of cell types, such as monocytes, macrophages, NK cells, endo-
thelial cells, smooth muscle cells [7] in skeletal muscle [8] and adipocytes [9].

12.2.2  NF-κB in Muscle Disease

There is an overwhelming body of evidence delineating the important role for 
NF-κB in muscle wasting – in part, derived from a pivotal study in 2000. Authors 
demonstrated a key role for NF-κB in the loss of MyoD in cachexia – mediated via 
TNF-α/IFN-γ gamma signalling [10]. Research in more recent years has expanded 
our understanding in this context, with in vitro, in vivo, and now strong clinical 
evidence – reporting NF-κB as a key lynchpin in muscle atrophy.

Sarcopenia is the age-related loss of muscle mass – which typically occurs from 
the fifth decade of life onwards – with upwards of 50% loss of muscle mass observed 
in the eighth decade [11]. Loss of muscle mass and function in ageing is associated 
with frailty and impaired quality of life – and is an overall significant socioeco-
nomic burden. During ageing we observed a loss of overall muscle fibre number and 
a reduction in cross-sectional area of those remaining fibres. Studies examining the 
role of NF-κB in the context of ageing have demonstrated elevated NF-κB content 
was fourfold higher in the medial vastus lateralis of elderly men (70 ± 1 years) when 
compared with young men (28 ± 1 years) [12]. In murine studies, anterior tibialis 
muscle of aged mice showed an aberrant persistent activation of NF-κB DNA bind-
ing activity [13]. Collectively, these studies illustrate a constitutive activation of 
NF-κB in aged muscle; however, the precise mechanism of action in the context of 
sarcopenia is poorly understood.

The idiopathic inflammatory myopathies, collectively termed myositis, are a 
group of heterogeneous acquired autoimmune disease, which primarily target skel-
etal muscle. Myositis can be subcategorised into polymyositis (PM), dermatomyo-
sitis (DM) and inclusion body myositis (IBM) characterised by profound muscle 
wasting, weakness and disability. Elevated circulating and muscle levels of 
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 cytokines, such as TNF-α and IFN-γ alongside deposition of CD4/CD8 T-cells in 
muscle, are all hallmarks of disease [14]. The NF-κB pathway has been investigated 
in the context of myositis, with both PM and DM biopsies showing NF-κB activa-
tion [15]. Moreover, immunohistochemical investigations of biopsies from IBM 
patients showed increased deposition of p50 and p65 subunits in diseased muscle 
fibres [16]. An intriguing hallmark of myositis is the overexpression of major histo-
compatibility complex (MHC) I on the muscle fibre surface [17]. Mechanistic 
in vitro and in vivo studies have demonstrated that MHC I overexpression can drive 
NF-κB activation in muscle [18].

In terms of inherited myopathies, the X-linked recessive disorder Duchenne 
muscular dystrophy (DMD) has received significant attention in the context of 
NF-κB. DMD is a chronic degenerative neuromuscular disease, characterised by 
muscle lacking functional dystrophin protein [19]. Consequently, profound damage 
to the muscle fibre membrane occurs, which is a key driver of the degeneration of 
muscle in DMD. The muscle of DMD patients undergoes cyclical bouts of damage 
(degeneration) and regeneration – with invasion of immune cells, a secondary fea-
ture of the disease. Analysis of biopsy tissue from patients with DMD showed 
enhanced NF-κB DNA binding activity, determined by electrophoretic mobility 
shift assay (EMSA) [15]. Furthermore, studies in the mdx model of DMD have fur-
ther highlighted NF-κB pathway activation in muscle using EMSA [20]. There is a 
prevailing theory that dysregulation of NF-κB signalling in DMD contributes the 
muscle inflammation and degradation. Thus, there is interest in pursuing novel 
NF-κB-targeted therapies to combat this process. Collectively, there is significant 
evidence to demonstrate a potential role for NF-κB in mediating the pathogenesis in 
a range of acquired and inherited myopathies.

12.2.3  Mechanisms of NF-κB-Mediated Muscle Atrophy

Here we highlight mechanisms researchers have identified, which muscle atrophy 
and wasting are mediated through, in the context of NF-κB pathway activation 
(Fig.  12.1). As a pleiotropic transcription factor, NF-κB regulates a plethora of 
genes, of which a proportion encode an array of cytokines and chemokines. Given 
the aforementioned myopathies in this chapter harbour significant inflammatory 
cell components (either as a primary in IIM or secondary pathogenic feature in 
DMD) to their pathogenesis, it is not surprising to see NF-κB as a lynchpin to some 
of those effects. Moreover, the notion that skeletal muscle is now considered an 
endocrine organ, capable of releasing an array of proteins and peptides – such as 
certain cytokines and chemokines – offers an interesting perspective. Studies have 
shown that treatment of C2C12 myotubes with TNF-α induces the upregulation of 
inflammatory cytokine gene expression and release [21, 22]. Moreover, cytokine 
and chemokine release is regulated by NF-κB activation, mediated by free radical 
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generation by the mitochondria [22]. The release of catabolic cytokines such as IL-6 
may have paracrine signalling effects on neighbouring fibres and may self- perpetuate 
atrophy. The perspective of muscle-derived cytokines (myokines) rather than solely 
derived from immune cells is an additional facet to disease pathogenesis in 
myopathologies.

In muscle atrophy, we typically observe an imbalance in protein synthetic and 
degradative pathways. Specifically, we see activation of the ubiquitin-proteasome 
network – which regulates protein degradation. Poly-ubiquitination of proteins by 
the E3 ubiquitin ligases muscle RING finger protein 1 (MuRF1) and atrogin-1 tar-
gets proteins for degradation via the proteasome [23, 24]. There is now elegant 
evidence which describes how NF-κB signalling and the ubiquitin-proteasome 
pathway are intertwined in the context of atrophy. Overexpression of IKKβ in a 
murine model was elevated MuRF1 expression – which was ablated in MuRF1- 
knockout cross strain [25]. Moreover, a study using a muscle-specific knockout of 
IKKβ in a mouse model, prevented NF-κB activation, and subsequent muscle wast-
ing in response to denervation [26]. Thus, there is elegant evidence which shows the 
interplay between protein degradation pathways and NF-κB activation in terms of 
muscle atrophy. Mechanistically, this evidence provides a strong justification in the 
pursuit of NF-κB-modifying therapies and agents in an effort to combat muscle- 
wasting disorders.

Fig. 12.1 NF-κB pathway
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12.2.4  Therapeutic Targeting of NF-κB Activation

There is now a bourgeoning array of both synthetic and natural compounds, which 
have been characterised to target different aspects of NF-κB signalling. Given the 
strong association with NF-κB and muscle atrophy, it is perhaps logical to pursue 
interventions in this context. Some focus has been on targeting in the activators of 
NF-κB activation, with the focus on TNF-α. There is an array of biologics, compris-
ing either monoclonal antibodies to TNF-α (e.g. infliximab) or decoy TNF receptors 
(e.g. etanercept) – which have been put to great use in the rheumatic diseases [27]. 
Both of these drugs have been tested and shown some beneficial effects in the mdx 
model of DMD – reducing myonecrosis and suppressing overall inflammation [28, 
29]. In contrast, in patients with myositis, who often have elevated expression of 
TNF-α in muscle, the effectiveness of anti-TNF therapies is not convincing [30]. If 
indeed NF-κB signalling has a role to play in muscle atrophy in myositis, then per-
haps more NF-κB-centric therapies may be worthy of pursuit. In terms of more 
NF-κB-centric/selective therapies, the NEMO-binding domain (NBD) peptide 
offers that opportunity. The NBD peptide disrupts the correct assembly of the IKK 
complex – which prevents canonical NF-κB pathway activation. Utilisation of NBD 
peptide in the mdx model of DMD significantly reduced macrophage invasion into 
muscle and reduced overall membrane damage/lysis [20] . The salicylates have also 
been shown to have the capacity to inhibit NF-κB activation [31]. Administration of 
sodium salicylate in aged mice results in downregulation in inflammatory gene 
expression and improved repair of muscle [32]. In terms of natural compounds to 
target NF-κB signalling, curcumin (the primary curcumoid component of turmeric) 
harbours anti-NF-κB properties [33]. Treatment of mdx mice with curcumin resulted 
in improved muscle strength, increased sarcolemmal integrity and a downregulation 
of inflammatory markers [34].

12.3  Cytokines in Muscle Atrophy

12.3.1  Tumour Necrosis Factor-Alpha

TNF-α is a 157-amino-acid-long peptide encoded on the short arm of chromosome 
6 in humans [35] and exists in both soluble and membrane-bound forms. TNF-α is 
initially produced as 26 kDa membrane-spanning protein, anchored in place due to 
a 79-amino acid precursor sequence. Subsequent proteolytic cleavage frees TNF-α 
from the membrane into a 17 kDa soluble form [36]. TNF-α exists in circulation as 
a homotrimer, approximately 52 kDa in size [37], which binds to approximately 25 
different receptors [7]; however, the most prevalent and well characterised are TNF 
receptors 1 and 2 (TNFR-1/2) [38]. TNFR-1 is fairly ubiquitously expressed across 
a range of cell types, whereas TNFR-2 seems to be more confined to cells of a hae-
matopoietic origin [39]. Moreover, the vast majority of biological functions of 
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TNF-α occur via TNFR-1 [40]. The signalling cascade initiated via TNF-α binding 
of TNFR-1 is very well characterised (Fig. 12.1). The TNF-α homotrimer binds the 
TNFR-1 forming the TNF-TNFR-1 complex, where the intracellular domain is rec-
ognised and recruits TNF-receptor-associated death domain (TRADD) to the com-
plex. Additional adaptor proteins are recruited to the complex, namely, 
receptor-interacting protein (RIP) and TNF-R-associated factor 2 (TRAF-2). The 
function of TRAF-2 is to recruit the protein cellular inhibitor of apoptosis 1 (cIAP- 
1) which also activates the mitogen-associated protein kinase pathway (MAPK) 
[40]. However, RIP is a key component of TNF-α signalling by the activation of 
nuclear factor kappa B (NF-κB).

12.3.2  TNF-α and Skeletal Muscle Wasting

The biological importance of TNF-α was demonstrated in several key studies 
throughout the 1970s and 1980s. TNF-α was originally discovered over 30 years 
ago as a serum soluble molecule, released by macrophages, which suppressed 
tumour growth significantly in mice [41]. TNF-α was characterised to be the hor-
mone termed cachectin, which induced profound cachexia in mice [42]. Treatment 
of rats with recombinant TNF-α was found to induce a state of septic shock [43]. 
Administration of anti-TNF-α antibodies during endotoxin-induced insult provided 
protection against septic shock-induced cachexia and reduced overall morbidity 
[44]. These important studies provided a key insight into the deleterious role of 
TNF-α during instances of profound bacterial infection and that TNF-α is likely to 
be a key mediator of cachexia (muscle atrophy). Sepsis patients characteristically 
present with profound elevations in circulating levels of TNF-α [45]. Elevated cir-
culating TNF-α is a key driver in the significant loss of total protein ~16%, which 
occurs over a 3-week period in patients with severe sepsis [46]. Moreover, experi-
mental rodent models of sepsis have shown that reduced protein synthesis is associ-
ated with disrupted ribosomal s6 kinase phosphorylation in a TNF-α-dependent 
manner [47].

The exposure of muscle to TNF-α results in a loss of total muscle protein, a pro-
cess that is reported to be regulated by NF-κB; additionally the loss of muscle pro-
tein demonstrated in this study was correlated with elevated ubiquitin conjugation 
and augmented by endogenous production of ROS [48]. Overexpression of the IκBα 
protein (which holds NF-κB in its inactive state) in muscle results in resistance to 
TNF-α-induced protein loss [49]. Studies examining the inhibition of NF-κB activa-
tion in vivo demonstrated improved skeletal muscle regeneration following trauma 
[50]. Thus, there is a clear association between TNF-α, NF-κB activation and mus-
cle atrophy.

Although the loss of muscle protein as a consequence of TNF-α exposure is pro-
found, it has been reported that the loss of muscle protein is superseded by a signifi-
cant fall in specific force generation by muscle [51]. Studies into muscle contractility 
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in the diaphragm consistently report a fall in specific force generation in response to 
elevated levels of TNF-α [52]. Moreover this occurrence has been reported in the 
absence of muscle wasting [53]. Further studies have demonstrated loss of muscle 
function in the absence of atrophy, via TNF-α-induced activation of caspase-3, 
which may be due to the loss of the actin and myosin contractile filaments [54]. 
Studies have reported that TNF-α-induced loss of muscle protein occurs via the 
ubiquitin-proteasome pathway [55]. The ubiquitin-proteasome controls cellular pro-
teolytic degradation of ubiquitinated proteins [56]. TNF-α administration induces 
elevation in ubiquitin expression and upregulation of markers associated with pro-
teolytic degradation [55]. Upregulation of ubiquitin-conjugating activity in skeletal 
muscle has been reported to occur in a TNF-α/NF-κB-dependent manner [57].

The loss of muscle mass and significant reduction in muscle force as a result of 
TNF-α exposure have been widely described to be associated with elevated produc-
tion of ROS [48]. Using a rodent model of TNF-α-induced cachexia, muscle loss 
was found to be ablated following pre-treatment with nitro-L-arginine, a known 
nitric oxide synthase (NOS) inhibitor [58]. The upregulation of NF-κB by TNF-α in 
skeletal muscle is reported to be controlled, in part, by the glutathione pathway; 
suppression of glutathione reductase activity reduced TNF-α-induced NF-κB acti-
vation [59]. More recently, treatment of muscle fibres with the antioxidant trolox (a 
vitamin E derivative) resulted in attenuation in the TNF-α-induced fall in specific 
force generation by muscle [51]. Moreover, the specific effect of ROS on muscle 
wasting has been investigated widely. Treatment of C2C12 myotubes with hydrogen 
peroxide (H2O2) resulted in the upregulation of the expression of ubiquitin ligases 
responsible for controlling protein degradation via the proteasome [60]. ROS- 
mediated muscle proteolysis has also been associated with Ca2+ calpain activity. 
Elevated formation of reactive aldehyde complexes by ROS causes accumulation of 
Ca2+ in the cytosol, due to disruption of Ca2+ transport across the plasma membrane 
[61], thus, inducing calpain-mediated cleavage of key proteins such as titin and 
nebulin, which are components of the contractile architecture [62]. Although the 
effect of ROS on skeletal muscle is profound, it is still unclear whether elevated 
ROS forms part of a downstream signalling cascade that mediates muscle atrophy.

12.3.3  Role of Other Cytokines in Muscle Atrophy

Although TNF-α is arguably one of the most well-studied cytokines in the context 
of muscle atrophy, there are other cytokines/chemokines which have an important 
role to play. Interleukin-6 (IL-6) is a classical pro-inflammatory cytokine, which 
harbours ancillary function in terms of influencing metabolism [63, 64]. A seminal 
study in the mid-1990s, whereby treatment of transgenic IL-6 overexpressor mice 
with an IL-6 receptor antibody, ameliorated muscle atrophy in this model [65]. 
Similarly, more recent evidence in the Apc (Min/+) murine model exhibit IL-6- 
dependent muscle atrophy  – mediated through activation of atrogin-1 [66]. In a 
further rodent study, IL-6 was reported to induce atrophy via downregulation of 
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ribosomal S6 kinase phosphorylation  – favouring a more catabolic state [67]. 
Moreover, in vitro studies in murine C2C12 cells have demonstrated IL-6 to inhibit 
myogenic differentiation [68]. There is also clinically relevant evidence for an 
important role for IL-6 in muscle atrophy. Patients with polymyositis and dermato-
myositis present with elevated circulating levels of Il-6, which correlate with dis-
ease severity [69]. Moreover, use of an anti-IL-6R monoclonal antibody ameliorated 
disease progression in a murine C-reactive protein-induced model of myositis [70]. 
In addition a small cohort of treatment refractory polymyositis patients treated with 
the commercial anti-IL-6R tocilizumab has showed beneficial clinical outcomes – 
evidenced by reduced circulating creatine kinase levels and suppressed myo-oedema 
[71]. Interestingly, there has been an observation of acquired inflammatory myopa-
thy developing in a patient treated with tocilizumab – however, this is an exception-
ally rare occurrence [30]. Overall, there is strong mechanistic evidence for the role 
of IL-6 in muscle atrophy – with significant interest from global pharma in pursuing 
trials of anti-IL-6 therapies in a range of myopathies.

12.4  Future Perspectives

Our understanding of the basic biology, which mediates the impact of NF-κB and 
inflammatory cytokines on muscle, has developed exponentially over the last 
decade. The potential to target NF-κB signalling to target muscle wasting in a range 
of myopathologies is an attractive proposition. Currently, however the vast majority 
of success has been in animal models – with limited evidence in humans. Thus, 
there is still a crucial need to better understand the precise impact and potential 
long-term effects of NF-κB-modulating therapies.
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Chapter 13
Redox Homeostasis in Age-Related  
Muscle Atrophy

Giorgos K. Sakellariou and Brian McDonagh

Abstract Muscle atrophy and weakness, characterized by loss of lean muscle mass 
and function, has a significant effect on the independence and quality of life of older 
people. The cellular mechanisms that drive the age-related decline in neuromuscu-
lar integrity and function are multifactorial. Quiescent and contracting skeletal mus-
cle can endogenously generate reactive oxygen and nitrogen species (RONS) from 
various cellular sites. Excessive RONS can potentially cause oxidative damage and 
disruption of cellular signaling pathways contributing to the initiation and progres-
sion of age-related muscle atrophy. Altered redox homeostasis and modulation of 
intracellular signal transduction processes have been proposed as an underlying 
mechanism of sarcopenia. This chapter summarizes the current evidence that has 
associated disrupted redox homeostasis and muscle atrophy as a result of skeletal 
muscle inactivity and aging.

Keywords Sarcopenia · Redox signaling · Antioxidants · Nerve · Superoxide

13.1  Background

Loss of skeletal muscle mass and function is among the most consistent and striking 
change associated with the advance of age [1]. Age-related muscle atrophy (sarco-
penia) is described as a progressive loss of lean muscle mass and muscle function, 
which has a significant effect on the quality of life of older people and overall mor-
bidity. A reduction in overall muscle function with age is linked to an increased 
mortality risk [2], which leads to instability, a subsequent increased risk of falls and 
consequently an increased demand for medical and social care. Deficits in skeletal 
muscle begin at a relatively young age and continue until the end of life [3]; human 
studies have reported that by the age of 70, there is a 25–30% reduction in the fiber 
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cross-sectional area of skeletal muscle and a subsequent reduction in muscle 
strength by 30–40% [4].

Reduced muscle mass and contractile force inherent with aging have been exten-
sively studied in both murine models and humans and are associated with various 
neurological impairments including loss of motor units [5, 6], structural alterations 
and degeneration of neuromuscular junctions (NMJ) [7–10], a decline in motor 
nerve function (partial denervation) [9, 11–13], impaired nerve redox signaling 
[14], and changes in fiber type related to continual cycles of denervation and rein-
nervation [15]. While physical activity can inhibit the decline of muscle functional 
deficits [16], even physically active older adults exhibit age-related deficits in mus-
cle mass and function [17]. Age-related muscle atrophy and weakness is a lifelong 
process with a multifactorial and complex etiology that involves both extrinsic and 
intrinsic factors [15]. However, elucidation of the primary molecular and biochemi-
cal mechanisms underlying the age-related decline in neuromuscular integrity and 
function has yet to be determined.

13.2  Reactive Oxygen and Nitrogen Species (RONS) 
Produced by Skeletal Muscle

The cellular damage induced by O2 toxicity was first reported more than 50 years ago 
and related to the increased generation of reactive species [18, 19], as a result of 
derivatives of O2 (Fig. 13.1). Studies in the 1980s reported that reactive species are 
endogenously generated in skeletal muscle [20–22]. It has since been determined 
that both resting and contracting myofibers can generate reactive oxygen and nitro-
gen species (RONS). Reactive oxygen species (ROS) refer to O2-derived molecules 
that are reactive species including O2-centered radicals but also non-radical species 
which are reactive derivatives of O2 [23]. Similarly, the term reactive nitrogen spe-
cies (RNS) refers to both nitrogen radicals along with other reactive molecules where 
the reactive center is nitrogen [24–26]. RONS generation by skeletal muscle has 
been detected and quantified by a variety of methods including fluorescence-based 

Fig. 13.1 Reactive oxygen derivatives produced by the sequential reduction of O2to H2O. 
Superoxide (O2

∙−), hydrogen peroxide (H2O2), hydroxyl radical (●OH). (Redrawn from Sakellariou 
et al. [88])
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microscopic assays [27, 28], spectrophotometry [29, 30], chemiluminescence [31, 
32], HPLC techniques [33, 34], electron spin resonance spectroscopy (also known as 
electron paramagnetic resonance, EPR) [35, 36], and transfection methods including 
in vivo [37, 38] and in vitro [39]. Using a combination of the above techniques, it has 
been determined that the primary radical species generated by skeletal muscle 
include superoxide and nitric oxide (NO) [26, 40, 41].

13.2.1  Superoxide

Superoxide is derived either from the incomplete reduction of O2 during metabo-
lism in the electron transport chain (ETC) or as a specific product of dedicated 
enzymatic systems [42]. The subcellular location of superoxide generation in skel-
etal muscle is dependent on whether the muscle is quiescent or contracting, as dif-
ferent pathways are involved. Figures 13.2 and 13.3 depict the different sites within 
skeletal muscle and proposed reactions for RONS generation. Superoxide genera-
tion is associated with electron leakage and incomplete O2 metabolism by mito-
chondrial ETC including complex I and complex III [43, 44] but also more recently 
complex II [45–47]. However, dedicated enzymes such as nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase enzymes including NOX2, NOX4, 
DUOX1, and DUOX2 [28, 29, 32, 48], xanthine oxidase (XO) [49, 50], and the 
lipoxygenases (LOXs) [51] which are linked to arachidonic acid (AA) release by 
the phospholipase A2 enzymes (PLA2) [52, 53] are also sources of superoxide; for a 
detailed review, see Ref. [54].

13.2.2  Nitric Oxide

Nitric oxide (NO) is endogenously generated within cells by the nitric oxide syn-
thases (NOS), through the conversion of L-arginine to citrulline utilizing NADPH 
as a cofactor [55]. NO is a primary radical, and its concentration has been demon-
strated to be regulated by NOS isoenzymes: the neuronal NOS (type I or nNOS), the 
inducible NOS (type II or iNOS), and the endothelial NOS isoenzyme (type III or 
eNOS) [54, 56]. nNOS was originally discovered in neuronal tissue but has also 
been shown to be expressed in the plasma membrane of skeletal muscle fibers where 
it interacts with the dystrophin-glycoprotein complex via a linkage to α1-syntrophin 
[57]. The eNOS isoenzyme was originally described in the endothelium where it is 
associated with caveolin-1; in skeletal muscle it is localized in the mitochondria and 
has been reported to be activated by heat shock protein 90 (HSP90) [58]. The 
expression of iNOS in skeletal muscle is increased in response to inflammatory 
conditions or following a septic challenge [59, 60]. NO has shown to interact with a 
number of different cytoskeletal proteins mainly through reactive cysteine residues 
and the formation of S-nitrosated residues [61]. The nNOS isoform is particularly 
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expressed in glycolytic or fast muscle fibers [62] and has been suggested to be the 
primary source of NO release from myocytes [63]. The close proximity of nNOS to 
the dystrophin-glycoprotein complex has a pivotal role in skeletal muscle physiol-
ogy as highlighted from studies utilizing the mdx mice [64] but also in humans 
suffering from muscle dystrophy [57, 65]. It has been suggested that NO has a direct 
functional signaling role via the formation of S-nitrosylated sites with effects on 
protein activity or indirectly by interactions with heme or nonheme Fe and Cu [66].

Fig. 13.2 Schematic representation of the non-mitochondrial sites for nitric oxide and super-
oxide production in skeletal muscle. Superoxide (O2

∙−) is produced by multicomponent NAD(P)
H oxidase 2 (NOX2), xanthine oxidase (XO), and the lipoxygenases (LOX) which activity is regu-
lated by the phospholipase A2 enzymes (PLA2). Arachidonic acid (AA) release by the membrane 
bound calcium-dependent PLA2 (sPLA2) facilitates extracellular O2

∙− release by the membrane 
bound LOX. It is uncertain whether the cytosolic LOX enzymes contribute to intracellular O2

∙− 
changes which substrate availability might be regulated by the cytosolic calcium-independent 
PLA2 (iPLA2). NAD(P)H oxidase 4 (NOX4) also contributes to ROS changes, though the primary 
ROS product, O2

∙− or hydrogen peroxide (H2O2) of NOX4 is uncertain. Cytosolic and extracellular 
O2

∙− is dismuted into H2O2 by superoxide dismutase (SOD), SOD1 and SOD3, respectively, or 
reacts rapidly with membrane permeant nitric oxide (NO) produced by the endothelial and neuro-
nal nitric oxide synthase (eNOs and nNOS) to form peroxynitrite (ONOO−). H2O2 formed within 
the extracellular space is reduced into H2O by the action of glutathione peroxidase 3 (GPX3) or 
peroxiredoxin IV (PRX4), while cytosolic H2O2 is reduced into H2O by glutathione peroxidase 1 
(GPX1), catalase (CAT), or peroxiredoxins (PRXs). Reduced glutathione (GSH) provides the elec-
trons to GPX to catalyze the reduction of H2O2; GSH is oxidized to glutathione disulfide (GSSG). 
Reduction of GSSG is catalyzed by glutathione reductase (GR), where NAD(P)H is used as the 
reducing agent. Cytosolic PRXs utilize thioredoxin 1 (Trx1Red) for their reducing action. Oxidized 
form of Trx1 (Trx1Ox) is reduced by thioredoxin reductase 1 (TR1), by utilizing electrons from 
NAD(P)H. ONOO− can be reduced predominantly into nitrite (NO2−) by peroxiredoxin V (PRX5). 
Sarcoplasmic reticulum (SR). (Redrawn from Sakellariou et al. [88])
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Fig. 13.3 Schematic representation of the mitochondrial sites for nitric oxide and superoxide 
production and the channels that mediate the release of superoxide to the cytosolic compart-
ment in skeletal muscle. Superoxide (O2

∙−) is produced by complex I, complex II, and complex III 
of the mitochondrial electron transport chain (ETC) of the inner mitochondrial membrane (IMM) 
and released into the matrix and the mitochondrial intermembrane space (MIS). NAD(P)H oxidase 
4 (NOX4) also contributes to ROS changes, though the primary ROS product, O2

∙− or hydrogen 
peroxide (H2O2) of NOX4 is uncertain. Arachidonic acid (AA) release by the calcium-dependent 
phospholipase A2 enzymes (sPLA2) interacts with complex I and enhances superoxide generation 
by this complex. O2

∙− released into the matrix, and the MIS is dismuted into H2O2 by superoxide 
dismutase (SOD), SOD2 and SOD1, respectively, or reacts rapidly with nitric oxide (NO) produced 
by the endothelial nitric oxide synthase (eNOS) to form peroxynitrite (ONOO−). H2O2 is reduced 
into H2O by the action of glutathione peroxidase 4 (GPX4) or peroxiredoxins (PRXs). Reduced 
glutathione (GSH) provides the electrons to GPX4 to catalyze the reduction of H2O2; GSH is oxi-
dized to glutathione disulfide (GSSG). Reduction of GSSG is catalyzed by glutathione reductase 
(GR), where NAD(P)H is used as the reducing agent. Mitochondrial PRXs utilize thioredoxin 2 
(Trx2Red) for their reducing action. Oxidized form of Trx2 (Trx2Ox) is reduced by thioredoxin reduc-
tase 2 (TR2), by utilizing electrons from NAD(P)H. ONOO− can be reduced predominantly into 
nitrite (NO2−) by peroxiredoxin V (PRX5). O2

∙− is essentially membrane impermeant, while H2O2 
is readily diffusible. Matrix O2

∙− can diffuse to the cytosol through the inner membrane anion chan-
nel (iMAC) that spans the IMM and the outer mitochondrial membrane (OMM) or via the mito-
chondrial permeability transition pore (mPTP) comprised of the voltage-dependent anion channels 
(VDAC) on the OMM, the adenine nucleotide translocator (ANT) located on the IMM, and 
cyclophilin D (Cyclo D) located in the matrix. Channels of the OMM including VDAC, BAX, and 
possibly the translocase of outer membrane 40 (TOM40) can also mediate the release of O2

∙− from 
the MIS to the cytosol. (Redrawn from Sakellariou et al. [88])
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13.2.3  Hydrogen Peroxide

Hydrogen peroxide (H2O2) is a relatively stable molecule in comparison with the 
other reactive species with a longer half-life; hence H2O2 been suggested as the most 
likely candidate for redox signaling pathways [67]. H2O2 can interact with redox- 
sensitive components or pathways typically via oxidation of sensitive Cys residues 
and has been demonstrated to regulate the activity of a variety of transcription fac-
tors in skeletal muscle [68]. In aqueous solutions, superoxide can be protonated to 
produce hydroperoxyl radical or reduced undergoing a dismutation reaction to pro-
duce H2O2 [69]. In addition, a number of enzyme systems have also been reported 
to generate H2O2 including NOX4 [70, 71], urate, and amino acid oxidases [72]. 
Moreover, recent evidence supports endoplasmic reticulum (ER) H2O2 generation 
in vivo [73] via thiol-disulfide exchange mechanisms [74]. The catalytic activity of 
a wide range of metabolic enzymes can be modulated by H2O2, typically by oxida-
tion of catalytic Cys residues or residues essential for disulfide bonds [75]. In addi-
tion there are a number of different enzymes that use H2O2 as a substrate including 
the peroxiredoxins, glutathione peroxidases, and catalase; isoforms of these 
enzymes are located in specific cellular locations which would suggest that it plays 
an important physiological signaling role.

13.2.4  Hydroxyl Radical

The hydroxyl radical is a highly reactive molecule due to its strong oxidizing poten-
tial and can rapidly react with biomolecules located close to its site of generation. In 
skeletal muscle fibers and other biological systems, hydroxyl radicals are typically 
generated as a result of the Fenton reaction that involves the reductive decomposi-
tion of H2O2 with reduced transition metal ions, copper (Cu) or iron (Fe) [76]. 
Oxidation of FeS cluster enzymes can result in an increase of “free iron” within the 
cell, allowing for the formation of hydroxyl radicals and altered redox homeostasis 
[77]. Similar to the Fenton reaction, the Haber-Weiss reaction can also generate 
hydroxyl radicals by Fenton chemistry, Fe or Cu is maintained in a reduced form by 
superoxide, which can result in the formation of hydroxyls from H2O2 [78]. There is 
some in vivo evidence to suggest that during skeletal muscle contractile activity, 
there is enhanced hydroxyl radical generation [79]. An increased intracellular con-
centration of highly reactive hydroxyl radicals can affect calcium dynamics and 
maximum force of skeletal myofibers [76]. There are a number of neuromuscular 
disorders such as including glucocorticoid-induced myopathy [80] and 
immobilization- induced skeletal muscle atrophy [81] that have reported an increase 
in hydroxyl radical formation.
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13.2.5  Peroxynitrite

Peroxynitrite is another endogenously generated reactive species that can act as an 
intracellular oxidant; it is primarily generated by the reaction between NO and 
superoxide, often as a result of the close proximity of NOX and NOS enzymes [82]. 
Further evidence to support endogenous generation of peroxynitrite in skeletal 
muscle is shown in studies using transgenic animals where the levels of NO and/or 
superoxide were elevated [34]. Similar to the some of the other reactive species, 
peroxynitrite can oxidize sensitive Cys residues involved in disulfides or catalytic 
sites [83]. The protonated form, peroxynitrous acid, is also highly reactive and can 
oxidize Cys residues resulting in protein oxidation, phospholipid and DNA damage 
[82, 84]. It has also been reported that peroxynitrite is involved in tyrosine nitration 
[85] as well as the formation of S-nitrosylated Cys residues [86]; mass spectrome-
try approaches have identified an increasing number of proteins being nitrosylated 
and nitrated in skeletal muscle. In conditions where there are high concentrations of 
peroxynitrite, it can result in reversible and irreversible oxidation of cellular com-
partments of myofibers [34, 87], affecting overall enzymatic activity through struc-
tural modifications, including altered cytoskeletal dynamics and an impair cell 
signal transduction [82].

13.3  Primary Antioxidant Enzymes Expressed in Skeletal 
Muscle

Skeletal muscle expresses a sophisticated system to control the production of oxi-
dants and protect the myofibers from oxidative damage. The system that functions 
to prevent oxidative damage consists of enzymatic and nonenzymatic antioxidants 
that work in a coordinated fashion to regulate redox disturbances in the muscle cell. 
An extended coverage of these goes beyond the scope of this chapter (for detailed 
review, see Ref. [88]. However, we summarize the most important enzymatic sys-
tems expressed in skeletal muscle including superoxide dismutases, catalase, gluta-
thione peroxidases, peroxiredoxins, and glutaredoxins.

Superoxide dismutase (SOD) was discovered in 1969 and represents a family of 
metalloenzymes that catalyze the one electron dismutation of superoxide into O2 
and H2O2 [26]. There are three SOD isoenzymes depending on the metal ion bound 
to the active site. Skeletal muscle expresses copper-zinc SOD (SOD1 or CuZnSOD), 
which is a highly stable enzyme present within the cytosol and the mitochondrial 
intermembrane space (MIS), and manganese-SOD (SOD2 or MnSOD) which is 
found in the mitochondrial matrix [89]. There is however an additional isoform of 
SOD, the extracellular SOD isoenzyme (SOD3 or EcSOD) [90] which is present in 
the interstitial spaces of tissues and extracellular fluids of many cell types and tis-
sues and its primary function is to reduce superoxide formed outside the cell mem-
brane [90].
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Catalase (CAT), a homotetramer with a molecular mass of 240kDa catalyzes the 
reduction of H2O2 into H2O and O2. CAT is mainly found in the cytosolic compart-
ment of the muscle fibers and requires heme (Fe3+) bound at the enzyme’s active site 
for its catalytic function [91]. CAT enzymatic activity increases with increased 
H2O2, and reports have shown that protein expression and activity is higher in highly 
oxidative myofibers [92]. CAT does not require reducing equivalents to function as 
a H2O2 reducer; thus CAT is considered an energy-efficient antioxidant [93].

Glutathione peroxidase (GPX), a homotetramer with each 22kDa subunit con-
taining a selenium atom in the form of a selenocysteine, also catalyzes the reduction 
of H2O2 to H2O or organic hydroperoxides (ROOH) to alcohol, using reduced gluta-
thione (GSH) or in some cases thioredoxin (TRX) or glutaredoxin (GRX) as an 
electron donor [94]. In addition, reports also suggest that GPX is also implicated in 
the reduction of hydroxyl radical by elimination of H2O2 [95]. Mammalian cells 
express five isoforms of GPX (GPX1-GPX5), which differ in cellular localization 
and substrate specificity [96] with GPX1 as the cytosolic form [97] and GPX4 as the 
most widely expressed. GPX4 is a membrane-associated enzyme, partly localized 
to the MIS.  GPX3 also known as plasma or extracellular GPX is present in the 
extracellular space [98, 99], whereas GPX2 is mainly expressed in the gastrointes-
tinal system [100]. GPX5 is expressed in the epididymis in the mammalian male 
reproductive tract and is the least studied isoenzyme [100, 101]. The expression of 
the GPX genes is controlled by different mechanisms including O2 tension, meta-
bolic rate, toxins, and xenobiotics [23] as well as growth and development [102]. 
Similarly, to CAT, oxidative muscle fibers express higher amounts of GPX com-
pared with glycolytic myofibers [100]. Though there is an overlap between the func-
tion of GPX and CAT, GPX has a higher affinity for H2O2 at low concentrations. 
However, under conditions where H2O2 is significantly increased, CAT becomes 
more significant in protecting biological systems, and its catalytic function prevails 
since it cannot be saturated under any H2O2 concentration since there is no apparent 
Vmax [103].

Peroxiredoxins (PRXs) initially described as thiol-specific antioxidants [104] 
were discovered in the late 1980s [105, 106] and are a family of cysteine-dependent 
thioredoxin peroxidases [107]. PRXs are capable of reducing both ROOH and H2O2 
[108] with the use of electrons provided by thioredoxins [108]. Skeletal muscles 
express six isoforms of PRXs, which are present in the cytosolic compartment (PRX 
I, II, VI), the mitochondrion (PRX III), the extracellular space, and endoplasmic 
reticulum (PRX IV) [42]. PRXV is expressed in the cytosol, mitochondria, nuclei, 
and perixosomes [108] and is considered a peroxynitrite reductase [109]. PRX pro-
teins have recently received much attention as they have shown to play a key role in 
transmitting redox signals into a dynamic biological response and to have subtle 
changes in both abundance and oxidative state with age [35, 110, 111].

Glutaredoxins (GRXs) are small ubiquitous disulfide oxidoreductases which 
share many of the functions of TRXs but are reduced by GSH rather than a specific 
reductase [122]. GRXs are small redox enzymes that exist in either a reduced or 
oxidized form and are involved in the protection and repair of protein and nonpro-
tein thiols during compromised redox homeostasis [112]. GRXs are divided into 
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monothiol (Cys-X-X-Ser) and dithiol (Cys-X-X-Cys) GRXs [113]. Dithiol GPXs 
participate in the regulation of H2O2 via PRX pathways [114], proliferation and dif-
ferentiation [115], transcription regulation via modulating the activity of nuclear 
factor κB (NFκB) [116], and apoptosis [117]. Monothiol GRXs are implicated in 
iron sulfur (FeS) cluster biosynthesis and Fe homeostasis [118]. GRX1 prevents 
oxidative damage and apoptosis and is found in the cytosol, and the MIS. GPX1 has 
also shown to translocate into the nucleus and exported from the cell [113]. GRX2 
is localized in the mitochondria [119] and GRX3 in the nuclear and cytosolic com-
partment. Monothiol GRX5 has a mitochondrial translocation signal and shares the 
active-site motif of GRX3 [120]. Reports have also revealed that the GRX system 
can also catalyze reversible protein glutathionylation [121] and regulate the redox 
state of thiol groups [122] during aberrant redox control.

In addition to the main antioxidant enzyme defense network, skeletal muscle 
also expresses glucose-6-phosphate dehydrogenase (G6PD) and isocitrate dehydro-
genase (IDH) which do not directly scavenge RONS but play a pivotal role in redox 
regulation by providing reducing power in the form of NADPH to the antioxidant 
enzymatic systems [123]. In addition, skeletal muscle also contains nonenzymatic 
antioxidants, which regulate reactive species and protect muscle cells from oxida-
tive injury. These are H2O soluble and fat soluble and are classified into two catego-
ries: (i) the endogenously produced and (ii) dietary antioxidants which cannot be 
synthesized or induced and must be taken from the diet. The main nonenzymatic 
antioxidants found in myofibers include GSH, uric acid, bilirubin, and coenzyme 
Q10 endogenously produced antioxidants but also dietary antioxidants including 
vitamin C, vitamin E, and carotenoids. An extended coverage of the nonenzymatic 
defense systems in skeletal muscle goes beyond the scope of this review; for a 
detailed review, see Refs. [124, 125].

13.4  Age-Related Muscle Atrophy Is Linked to Increased 
Oxidative Damage

The dual role of RONS to act as signaling molecules at low concentrations but also 
damage critical cellular compartment when produced at high concentrations is fun-
damental in skeletal muscle physiology/pathology. Reports in humans [126–128] 
and rodents [87, 129, 130] have provided evidence that age-related muscle atrophy 
is linked to an altered oxidative status of redox-responsive proteins [131], elevated 
concentration of oxidized macromolecules including an increase in DNA damage 
[126, 132], increased levels of lipid peroxidation [133, 134], and accumulation of 
oxidized proteins [127, 128]. Increased DNA damage has been shown to alter 
genetic stability which may induce the expression of genes that regulate cell prolif-
eration and/or block the expression of certain genes, thus permitting damage with 
increasing age [135]. RONS-induced DNA sequence changes or mutations have 
been suggested to affect the cellular state of differentiation [23, 136] and 
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accumulation of mitochondrial DNA damage [132] which may prevent the rejuve-
nation of the mitochondrial population and lead to bioenergetic decline and cellular 
death [137]. In addition, aged skeletal muscle exhibits an accumulation of catalyti-
cally inactive or less active forms of enzymes and the observed age-related changes 
in catalytic activity have been suggested to occur due to oxidative modifications 
induced by RONS [138, 139].

Recent reports have provided evidence that increased oxidative damage inherent 
with aging is linked to age-associated changes in RONS, with myofibers from old 
rodents exhibiting increased intracellular RONS levels compared to young/adult 
rodents [140, 141]. Oxidants can modulate various intracellular signal transduction 
pathways, and age-related disruption of these processes due to compromised redox 
homeostasis has been suggested as contributing factor to muscle atrophy inherent 
with aging. The role of redox homeostasis in age-related muscle atrophy and weak-
ness has been studied in various model organisms (reviewed in [88]) which have 
undergone genetic manipulations (transgenic and knockout models) and have pro-
vided insight into the function of RONS regulatory systems in neuromuscular aging.

13.5  Deletion of Cu-Zn Superoxide Dismutase in SOD1−/− 
Mice Leads to Accelerated Neuromuscular Aging 
and Functional Deficits

The association between redox regulation and age-related atrophy has been studied 
in several mammalian models which have undergone genetic manipulations 
(reviewed in [88]), to enable the study of disrupted redox signaling on the aging 
process. Deletion of CuZnSOD in mice (SOD1−/− mice) leads to a reduction in lifes-
pan and an accelerated aging phenotype associated with myofiber atrophy 
(Fig.  13.4), neurological impairments (Fig.  13.5), and functional deficits [142]. 
Elevated oxidative damage has also been observed in skeletal muscles from 

Fig. 13.4 Gross morphology of skinned hindlimb and forelimb muscles of SOD1−/−and WT 
mice at 12 months of age. Arrows indicate the phenotypic hindlimb muscle changes observed in 
SOD1−/− compared to WT mice. (Redrawn from Sakellariou et al. [14])
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SOD1−/− mice [34, 143–149], and many features of the muscles of SOD1−/− mice 
including loss of fibers, reduction in contractile force, a constitutive activation of 
redox-sensitive transcription factors [146], degeneration of neuromuscular junc-
tions (NMJ), and of loss of innervation resemble those observed in old wild-type 
mice [144, 145] and in older humans [13, 144]. Hence, it has been suggested that 
the SOD1−/− model may potentially provide a useful model to study the role of 
chronic oxidative stress in loss of skeletal muscle and to uncover potential targets 
for intervention for preventing age-related muscle wasting.

The prominent sarcopenic phenotype observed in the SOD1−/− model is associ-
ated with a number of neurological impairments (Fig.  13.5), including striking 
alterations in NMJ and peripheral nerve integrity/function (Fig. 13.5), motor axon 
degeneration, postsynaptic endplate fragmentation, terminal sprouting and axon 
thinning and irregular swelling, reduced occupancy of the motor endplates by axons, 
loss of innervation and motor function [143], impaired neurotransmitter release 
[150], and reduction in isometric force [145]. Collectively, these findings may sug-
gest that the muscle atrophy phenotype shown in the SOD1−/− model might be initi-
ated by disrupted redox signaling in motor neurons.

Fig. 13.5 Neuromuscular junction structure and peripheral nerve integrity in SOD1−/−mice. 
(a) Intravital immunofluorescence imaging of neuromuscular junctions (NMJ) of an AT muscle 
from a SOD1−/− mouse. Presynaptic motor neurons immunolabeled with neuronal class III 
β-tubulin monoclonal antibody (TUJ1), a neuronal marker (green), and postsynaptic motor end-
plate acetylcholine receptors (AChRs) stained with Alexa Fluor 594-conjugated α-bungarotoxin 
(red). Right panels show enlarged area marked by white box in the left panel. 10x original magni-
fication (left panel). Scale bar, 150μm. (b) Transverse section of a sciatic nerve (SN) from a WT 
(SOD1+/+) mouse (top panel). 20x original magnification. Scale bar, 100μm; Bottom left panel 
shows enlarged area marked by red box in the top panel to show the morphology and myelin thick-
ness of motor axons of the peripheral nerve. 60x original magnification. Scale bar, 10μm; 
Transverse section of a SN from a SOD1−/− mouse (bottom right panel). Note reduced myelin 
thickness of motor axons from peripheral nerve of the SOD1−/− model, indicated by arrowheads. 
60x original magnification. Scale bar, 10μm. (Redrawn from Sakellariou et al. [14])
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Disrupted redox signaling in motor neurons as a potential mechanism of sarco-
penia in SOD1−/− mice has recently been assessed in genetically engineered mouse 
models including models with targeted deletion of CuZnSOD specifically in skele-
tal muscle alone [149] or motor neurons [148] but also in a “nerve rescue” SOD1−/− 
mouse model with neuron-specific expression of CuZnSOD [147], using a transgenic 
SOD1−/− mouse model in which SOD1 was expressed under control of the synapsin 
1 promoter. The data from these studies provided evidence that CuZnSOD deficits 
in either the muscle or motor neuron alone are not sufficient to initiate a full sarco-
penic phenotype and that deficits in both tissues are required to recapitulate the loss 
of muscle and function observed in the SOD1−/− model. Moreover, the data further 
showed that neuron-specific insertion of SOD1 corrected the skeletal muscle aging 
phenotype observed in SOD1−/− mice indicating that deficits in redox homeostasis 
in motor nerves appear to be the underlying factor that initiates mitochondrial dys-
function and oxidative damage which triggers a retrograde response leading to fur-
ther NMJ degeneration and dysfunction. These reports have provided insight into 
the understanding of (i) the defective redox signaling events that underlie age- 
related atrophy and (ii) the redox-mediated cross talk between motor neurons and 
skeletal muscle.

13.6  Neuromuscular Aging Is Associated with Redox 
Proteomic Changes

In order to unravel the mechanisms responsible for the structural and functional 
changes associated with neuromuscular aging, many laboratories have begun to 
investigate both the proteome and site-specific redox modifications within skeletal 
muscle, to identify those proteins that change in abundance but also to identify those 
proteins that are particularly sensitive to redox changes.

Site-specific RONS-induced redox modifications of key regulatory enzymes can 
alter a wide variety of metabolic pathways related to cellular response to energy and 
stress. Modulation of the activity of downstream protein targets by redox modifica-
tions can also influence a variety of key regulators of distinct posttranslational mod-
ifications (PTMs) such as phosphorylation, ubiquitination, and acetylation, 
including components that control metabolic rate such as AMP-activated protein 
kinase (AMPK), protein kinase C (PKC), sirtuin 1, and mammalian target of 
rapamycin (mTOR) [131]. In skeletal muscle a number of redox-sensitive proteins 
are involved in excitation-contraction coupling; these modifications can specifically 
affect calcium homeostasis including calcium release, binding, and sequestration 
through site-specific redox modifications of specific cysteine (Cys), e.g., sarcoplas-
mic/endoplasmic reticulum Ca2+ ATPase (SERCA) and ryanodine receptor 1 (Ryr1) 
[151, 152]. The nature or type of RONS-induced redox modification is dependent 
on a number of factors including the residues modified (typically Cys), the species 
and concentration of RONS generated, and the properties of the amino acids 

G. K. Sakellariou and B. McDonagh



293

 surrounding the modified residue which can influence the sensitivity to modifica-
tions. One of the goals of redox proteomic approaches is to identify the RONS 
modification, the amino acid residue that has been modified, and the relative quan-
tification of the modified amino acid, including both reversible and irreversible 
modifications which have shown to influence contractile force [48, 111, 153]. The 
major reversible RONS-induced modifications of Cys residues include sulfenyl-
ation (-SOH), glutathionylation (-SSG), nitrosylation (-SNO), and inter-/intra-
disulfide bond formation (-S-S-) [131]. The largely irreversible modifications 
include sulfonic (-SO3H) or sulfinic (SO2H) acid formation [154].

Neuromuscular aging exhibits an altered redox proteome with subsequent bio-
chemical and physiological effects on the cytoskeleton, mitochondria, calcium sig-
naling and sequestration [155–157]. Redox proteomic approaches have demonstrated 
that skeletal muscle aging is correlated with altered catalytic activity of a number of 
regulatory enzymes and an overall reduction in the identification of redox-sensitive 
proteins particularly involved in the generation of precursor metabolites and energy 
metabolism [111, 131]. These results suggest that age-related redox changes have a 
significant role in the loss of skeletal muscle mass and function inherent with aging. 
Reversible redox modifications on specific proteins are essential for correct adap-
tive response to contractile activity with activation of specific pathways, and skele-
tal muscle has shown to develop a dysregulated redox response with aging [111, 
131]. However, irreversible oxidative modifications as a result of excessive RONS 
can lead to insoluble protein aggregates and protein degradation, which have been 
reported to increase in neurodegenerative diseases and aging [158]. Recent reports 
have demonstrated that reversible and irreversible redox modifications of myofila-
ment proteins can modify both structure and function [159]; several regulatory and 
cytoskeletal myofilament proteins including troponin C [160], actin, α-actinin [111, 
159], and myosin heavy chains [161–163] are susceptible to RONS-induced oxida-
tive modifications, thus affecting Ca2+ dynamics and Ca2+ sensitivity [164] and as a 
result cross-bridge cycling [160] which ultimately affects contractile function.

13.7  Causative Links Between Disrupted Redox Signaling 
and Muscle Atrophy

There are a number of studies that have demonstrated a link between increased 
intracellular RONS concentrations and an altered redox environment in skeletal 
muscle atrophy, as a result of either muscle disuse [165] or disease [166]. The caus-
ative links between redox homeostasis and skeletal muscle atrophy include signal-
ing pathways that regulate both protein synthesis and protein breakdown [167–169]. 
Regular exercise can help maintain skeletal muscle mass, yet contracting skeletal 
muscle generates RONS predominantly from NOX and NOS systems [28], which in 
turn are thought to acutely activate a variety of redox-regulated transcription factors 
(Nrf-2, NF-κB) required for adaptation to exercise [170]. In exercise studies it has 
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been reported that ingesting high doses of vitamin C and E can blunt the beneficial 
and adaptive responses induced by exercise in skeletal muscle presumably by dis-
rupting the RONS signaling cascade [71]. However, in skeletal muscle from older 
individuals, there is a higher basal level of RONS, and as a result, chronic activation 
of many redox-regulated transcription factors may blunt many of the beneficial 
adaptive responses following an acute RONS-dependent increase during exercise 
[172].

The IGF1-Akt pathway is one of the key global regulators of protein synthesis; a 
number of studies have demonstrated that activation of IGF1 receptor can promote 
muscle hypertrophy, while inactivation is related to an impairment of muscle 
growth. [173]. The role of oxidative damage in relation to IGF1 signaling is unclear 
with reports suggesting that it may result in the promotion and inhibition of Akt 
signaling [174]. Studies using C2C12 myotubes have shown that oxidative damage 
due to chronic exposure to low levels of H2O2 attenuates Akt phosphorylation which 
would be predicted to result in an overall decrease in protein synthesis, increased 
proteolysis, and as a result increased muscle atrophy [174]. In support of this find-
ing, a recent report demonstrated that administration of the mitochondrial targeted 
antioxidant peptide SS-31 resulted in an increase in the phosphorylated form of Akt 
and mTORC1 indicating that aberrant redox homeostasis can attenuate muscle pro-
tein synthesis by inhibiting the Akt/mTORC1 signaling pathway [175].

Growing evidence suggests that disrupted redox signaling due to enhanced 
RONS generation effects autophagy-mediated protein breakdown, a highly regu-
lated lysosomal pathway used for the degradation of non-myofibril cytosolic pro-
teins and organelles in skeletal muscle [167]. RONS can directly affect this process 
as oxidative damage induced by H2O2 treatment of fibroblasts can result in an 
increase in the expression of key autophagy components such as LC3, beclin1, and 
increased formation of autophagosomes [176]. RONS may also alter the activity of 
the regulators of autophagy; for example, the inactivation of ATG4 can prevent the 
cleavage of LC3 during the generation of the autophagosome, which is an essential 
step in the process of autophagy [167, 177].

Furthermore, the regulation of the proteasomal degradation pathway can also be 
regulated by intracellular RONS. In vivo studies have demonstrated that increased 
RONS can promote muscle protein breakdown via increased activity of the protea-
some system [178], [14] but also through the activation of calpains, specific prote-
ases that are involved in the selective cleavage of target proteins [179].

13.8  Perspectives

Muscle atrophy and weakness, in the context of neuromuscular aging and a wide 
range of myopathies, has a significant effect on individuals with respect to indepen-
dence and overall quality of life. There is ongoing research to develop both pharma-
cological and non-pharmacological therapeutic approaches to inhibit or prevent loss 
of skeletal muscle mass and function [180]. Age-related skeletal muscle atrophy is 
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a multifactorial process, involving a variety of metabolic processes and signaling 
pathways whose disruption ultimately result in skeletal muscle loss and functional 
deficits. The primary biochemical and molecular mechanisms responsible for mus-
cle atrophy have not been fully identified. Considerable evidence in both humans 
and various organisms has shown that the myofibrillar redox environment can influ-
ence the activity of crucial pathways involved in biogenesis and degradation but 
also the regulation of excitation contraction coupling, making it an attractive target 
for interventional approaches. There is a wealth of scientific research from both 
human and animal studies that have described an altered redox environment within 
skeletal muscle with age, in particular increased oxidation of redox-sensitive pro-
teins and macromolecules correlated with age-related atrophy. An altered redox 
environment has also been described in many age-related diseases including neuro-
degenerative disorders, neuromuscular diseases, and diabetes. However, whether 
disrupted redox signaling is the initial cause of disease, development or a conse-
quence leading to disease progression has yet to be fully determined. To elucidate 
the role of redox homeostasis in age-related disease, particularly in neuromuscular 
integrity and function, the generation of tissue-specific knockout models and the 
development of sensitive tools for measuring RONS generation and the subsequent 
redox modifications and signaling roles are warranted. Identification of the precise 
signaling roles of endogenously generated RONS and the balance between RONS 
signaling and oxidative damage will increase our understanding of the role of redox 
homeostasis in skeletal muscle adaptation to exercise and maintaining neuromuscu-
lar integrity. Increased understanding of the precise molecular pathways that regu-
late the balance between adaptation and muscle growth compared with disuse and 
atrophy may reveal potential therapeutic targets for intervention and ultimately pre-
vent sarcopenia in humans.
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Chapter 14
Disturbed Ca2+ Homeostasis  
in Muscle- Wasting Disorders

Guillermo Avila

Abstract Ca2+ is essential for proper structure and function of skeletal muscle. It 
not only activates contraction and force development but also participates in multi-
ple signaling pathways. Low levels of Ca2+ restrain muscle regeneration by limiting 
the fusion of satellite cells. Ironically, sustained elevations of Ca2+ also result in 
muscle degeneration as this ion promotes high rates of protein breakdown. Moreover, 
transforming growth factors (TGFs) which are well known for controlling muscle 
growth also regulate Ca2+ channels. Thus, therapies focused on changing levels of 
Ca2+ and TGFs are promising for treating muscle-wasting disorders. Three principal 
systems govern the homeostasis of Ca2+, namely, excitation-contraction (EC) cou-
pling, excitation-coupled Ca2+ entry (ECCE), and store-operated Ca2+ entry (SOCE). 
Accordingly, alterations in these systems can lead to weakness and atrophy in many 
hereditary diseases, such as Brody disease, central core disease (CCD), tubular 
aggregate myopathy (TAM), myotonic dystrophy type 1 (MD1), oculopharyngeal 
muscular dystrophy (OPMD), and Duchenne muscular dystrophy (DMD). Here, the 
interrelationship between all these molecules and processes is reviewed.

Keywords EC coupling · Ca2+ channel · Myogenesis · Intracellular Ca2+  · 
Atrophy

14.1  Introduction

Numerous biological processes depend on the levels of intracellular Ca2+. The neu-
romuscular transmission (NMT) is an emblematic example. It begins with the 
arrival of an action potential (AP) to the nerve terminal, with the ensued release and 
accumulation of acetylcholine (ACh) into the synaptic cleft. Subsequently, precise 
coordination of the gating of many types of ion channels (and transporters) results 
in a transitory increase in the levels of free myoplasmic Ca2+ ([Ca2+]i). More specifi-
cally, the influx of Na+ through skeletal muscle ACh receptors depolarizes the 
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membrane and thereby activates voltage-gated Na+ channels, an AP is fired, and a 
process known as excitation-contraction (EC) coupling begins. During EC cou-
pling, the voltage sensors of a voltage-gated Ca2+ channel (CaV1.1) activate the 
opening of ryanodine receptors (RyR1s, located in the sarcoplasmic reticulum or 
SR), which allows a massive release of Ca2+ to the cytosol. The resulting rise of 
[Ca2+]i activates, in turn, not only the contractile machinery but also the SR Ca2+ 
ATPase (SERCA) that pumps Ca2+ back into the SR (reviewed recently in [1]).

Many human diseases course with skeletal muscle weakness, which (not surpris-
ingly) can be explained by alterations in either NMT or EC coupling. Nevertheless, 
such modifications can also elicit a chronic loss of muscle mass. For example, by 
inhibiting the activity of the Ca2+-calmodulin-dependent protein kinase (CamK). 
This kinase is important to not only stimulate the differentiation of precursor cells 
(myoblasts) [2] but also to induce transactivation of genes involved in hypertrophy. 
Apparently, CamK stimulates hypertrophy by inactivating a protein named glyco-
gen synthase kinase 3 beta (GSK3β) [3], whose function is to limit the synthesis of 
proteins. Thus, by downregulating CamK, low levels of Ca2+ are well suited to gen-
erate atrophy. Paradoxically, a sustained rise of [Ca2+]i also results in muscle wast-
ing. This is because the amount of muscle mass depends on a balance between 
protein synthesis and degradation, and the elevated levels of Ca2+ can activate pro-
teases and thereby promote the breakdown of proteins (Fig. 14.1) [4]. Accordingly, 
both agonists of the CamK signaling pathway and inhibitors of Ca2+-dependent pro-
teases represent intriguing candidates for treating the pathological loss of skeletal 
muscle (reviewed in [4, 5]). Herein, the interrelationship between all these physio-
logical and pathological processes is reviewed. An emphasis is put on the role of 
Ca2+ as a critical node that manages the transition, from a healthy muscular structure 
to weakness and atrophy.

Fig. 14.1 The scheme depicts how pathological alterations of [Ca2+]i can lead to atrophy. Changes 
in the levels of Ca2+, in the up-and-down direction, activate two different signaling pathways that 
converge in promoting a significant loss of muscle mass. High: Sustained elevations of Ca2+ can 
activate a Ca2+-dependent protease (calpain) and thereby result in the breakdown of proteins and 
atrophy. Low: On the other hand, a decrease in resting Ca2+ levels leads to an impaired formation 
of myotubes, preventing the proper regeneration of muscle and thus promoting the development of 
atrophy. See the text for further details
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14.2  Dynamic Changes in Myoplasmic Ca2+

The following three major physiological processes contribute to regulating the 
homeostasis of Ca2+. They reflect the expression and activity of both Ca2+ channels 
and the SERCA pump.

14.2.1  Excitation-Contraction (EC) Coupling

EC coupling is the process by which an AP induces contraction and force develop-
ment. A transitory increase in [Ca2+]i (Ca2+ transient) is responsible for activating the 
contractile machinery, whose relaxation occurs as the Ca2+ levels return to normal 
values, thanks to the activity of SERCA. The source of Ca2+ for EC coupling is the 
SR, and it has been firmly established that extracellular Ca2+ is irrelevant for this 
process. For example, in the absence of extracellular Ca2+, the skeletal muscle fiber 
contracts vigorously, for several minutes [6]. Additionally, the maximum levels of 
both [Ca2+]i and contractile force can be elicited at membrane potentials where the 
influx of Ca2+ is practically null [7, 8]. Moreover, in 1973 Schneider and Chandler 
published what is known as the hypothesis of the physical link for EC coupling. It 
states that mobile particles embedded in the sarcolemma (voltage sensors) sense 
APs and mechanically activate the release of Ca2+ from the SR [9]. The molecular 
identity of voltage sensors was subsequently defined. They form part of a voltage- 
gated Ca2+ channel, also known as the dihydropyridine receptor (DHPR), or CaV1.1 
[10, 11]. The junctional gap between transverse tubes of the sarcolemma (T-tubes) 
and terminal cisterns of the SR contains electron dense structures, termed “feet.” 
They reflect the presence of the SR Ca2+ release channel, also known as RyR1 [12]. 
Indeed, mice knockout for the RyR1 gene lack feet [13]. Thus, CaV1.1 and RyR1 are 
both essential for EC coupling. Accordingly, they are also critical for survival 
[14–16].

14.2.2  Excitation-Coupled Ca2+ Entry (ECCE)

The Ca2+-conducting activity of CaV1.1 is irrelevant for EC coupling [17]. This fact 
indirectly reinforces the concept that the SR is the only source of Ca2+ for this pro-
cess (see Sect. 14.2.1). Nevertheless, it has been proposed that the entry of Ca2+ 
through CaV1.1 might participate in replenishing the SR during sustained depolar-
izations. A process known as excitation-coupled Ca2+ entry (ECCE, [18]) provides 
indirect support for this speculation. ECCE is a slow increase in the entry of Ca2+ in 
response to either sustained or repetitive depolarization (for review see [19]). A 
large amount of data suggests that in both, developing myotubes and adult muscle 
fibers, an entry of Ca2+ via CaV1.1 represents the underlying mechanism for ECCE 
[20–22].
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The following direct evidence supports the notion that ECCE effectively contrib-
utes to SR Ca2+ loading. Robin and Allard (2015) reported that the SR Ca2+ loading 
is potentiated in response to an increase in the magnitude of Ca2+ current associated 
to ECCE. Moreover, they also found that Mn2+ is not only able to permeate during 
ECCE but also produces quenching of the fluo-5 N trapped in the SR [22]. Although 
these findings could be interpreted to suggest that ECCE is physiologically relevant, 
neither the development nor performance of skeletal muscle is altered in response to 
the elimination of Ca2+ influx via CaV1.1 [23]. Thus, the possibility that a reduced 
magnitude of ECCE be of pathophysiological relevance is practically null. 
Nevertheless, future work may lead to the exciting discovery that, conversely, an 
increase in ECCE leads to pathological symptoms.

14.2.3  Store-Operated Ca2+ Entry (SOCE)

SOCE is the process in which a decrease in the load of SR Ca2+ induces a protein 
of the SR to oligomerize and directly activate a Ca2+ channel of the sarcolemma: 
STIM is the SR protein, whereas Orai is the Ca2+ channel. Three isoforms of Orai 
have been identified in human, namely, Orai1, Orai2, and Orai3. They conform the 
well- known calcium release-activated Ca2+ channels (CRAC) [24]. STIM, on the 
other hand, consists of two isoforms, which have been detected in vertebrates 
(STIM1 and STIM2). The principal isoforms that underlie SOCE in skeletal mus-
cle are STIM1 and Orai1 [25]. The C-terminal portion of STIM1 is cytosolic and 
presents domains critical for binding to—and activating—Orai1. On the other 
hand, the NH2-terminal segment of STIM1 is located in the lumen of the SR. It 
contains two regions that are critical for sensing the levels of luminal Ca2+. More 
specifically, the following domains, EF-hand and sterile alpha-motif (SAM), are 
thought to constitute the sensor of Ca2+ (EF-SAM). Under normal levels of SR Ca2+ 
loading, the binding of Ca2+ to EF-SAM keeps STIM1  in its monomeric form. 
However, the EF-SAM conforms dimers and oligomers in response to depletion 
and thus promotes both binding of STIM1 to Orai1 and the subsequent entry of 
Ca2+ [21, 24, 26, 27].

It has been proposed that SOCE participates in refilling the SR of Ca2+, but this 
idea is controversial. Evidently, an SR depletion is required for activating SOCE, 
but this condition is difficult to reach, not only physiologically but also experimen-
tally [28]. The following evidence supports the view that SOCE, in effect, contrib-
utes to refilling the SR of Ca2+. Mice knockout for myostatin (Sect. 14.3.3) develop 
a severe reduction in expression levels of STIM1 and Orai1, which correlates with 
an inhibition of SOCE and a faster SR depletion (induced by repetitive release of 
Ca2+) [29]. Indeed, this tendency to readily exhaust the SR might explain why those 
mice deficient in myostatin also exhibit a significant muscle weakness (low specific 
force), in the face of an excessive muscle mass [30].
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14.3  Myogenesis

14.3.1  Myogenesis Is Critical for Muscle Growth and Force 
Development

This is a brief explanation of how precursor cells contribute to the genesis and 
regeneration of skeletal muscle. The reader is encouraged to consult more extensive 
reviews on this topic [31–33]. During the embryonic development, precursor cells 
(termed myoblasts) fuse and form multinucleated cells, known as myotubes. The 
myoblasts withdraw from the cell cycle, adopt a spindle shape, and align with each 
other—forming a braid—and the fusion occurs. Subsequently, the myotubes are 
transformed into muscle fibers, through a maturation process that involves (among 
other things) the formation of T-tubes. The fusion of myoblasts is also known as 
“terminal differentiation” because it implies that DNA from the fused myoblasts 
will no longer replicate, and thereby the cell proliferation is arrested. In the adults, 
myotubes continually form. The corresponding precursor cells are known as satel-
lite cells (SCs). Although not fully differentiated, proliferating myoblasts and SCs 
are committed to the myogenic lineage (i.e., they already express transcription fac-
tors of the MyoD family). Depending on specific conditions, precursor cells can be 
either mitotically quiescent or induced to proliferate. For example, injury stimulates 
SCs to proliferate, and the resulting colony provides for generating both a stock of 
quiescent cells and a significant number of fusion-competent myoblasts. The latter 
eventually will either form a new fiber or fuse into injured fibers contributing to 
healing [31–33].

In vitro, the fusion of myoblasts is often quantified as the “fusion index”: that is, 
the number of nuclei per myotube, divided by the total number of nuclei per field of 
observation. The fusion index is crucial for in vivo conditions because the myofiber 
size and thereby the contractile strength depend on the number of nuclei in the fiber. 
Accordingly, it is well known that the number of nuclei in the myofiber declines 
during atrophy. Conversely, the restoration of muscle mass requires myonuclear 
accretion [34]. Remarkably, SCs also contribute to a robust neuromuscular junction 
(NMJ) [35, 36]. Indeed, the deterioration of NMJs, in aging, is more closely related 
to deficiencies in SCs and myogenesis rather than to denervation [36].

14.3.2  Role of Ca2+ in Skeletal Muscle Development

Myogenesis involves a dramatic change in phenotype which in turn depends on a 
coordinated activation of skeletal muscle-specific genes [37–39]. Apart from the 
expression of myogenic factors (e.g., MyoD, Myf5, Myf6, and myogenin), this pro-
cess requires Ca2+. More precisely, a Ca2+-dependent signaling pathway that involves 
calmodulin and the family of transcription factors known as NFAT leads to the 
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fusion of myoblasts (for review see [5, 39, 40]). The recent discovery of a feedback 
mechanism by which SOCE and NFATc3 control the fusion of myoblasts highlights 
the relevance of this Ca2+-dependent pathway [41].

Because myogenesis requires Ca2+, a reduced entry of this ion tends to inhibit the 
proper regeneration of muscle. Ironically, however, sustained elevations of [Ca2+]i 
also contribute to the degeneration of skeletal muscle (Fig. 14.1). This is because 
Ca2+-dependent proteases lead to protein degradation (i.e., calpains, which contain 
Ca2+-binding domains) [4]. Indeed, an increase in intracellular Ca2+ is frequently 
observed in both congenital myopathies and muscular dystrophies (see Sect. 14.4). 
Additionally, high rates of protein breakdown have been reported in many muscle- 
wasting diseases [42].

During myogenesis, the expression of several proteins involved in the homeosta-
sis of Ca2+ is induced. An intricate relationship exists because Ca2+, in turn, regulates 
the expression of at least two of these proteins (i.e., SERCA and CaV1.1) [43–45]. 
Therefore, dissecting the role of a specific protein in myogenesis is complicated. 
Nevertheless, the use of knockout animals has provided irrefutable proofs pointing 
to a leading role for CaV1.1 and RyR1. For example, it has been reported that dys-
pedic and dysgenic mice (i.e., RyR1 and CaV1.1 knockout) die both at birth. More 
interestingly, these two strains of mice also develop malformations, consisting in 
delayed development of skeletal muscle [14–16, 46]. Thus, RyR1 and CaV1.1 are 
both of paramount relevance for not only EC coupling (Sect. 14.2.1) but also myo-
genesis. On the other hand, a recent work elegantly showed that the Ca2+-conducting 
activity of CaV1.1 is irrelevant for skeletal muscle development and function [23]. 
Thus, most likely this protein exerts its regulatory actions via mechanical control of 
RyR1 (as opposed to regulating the entry of Ca2+, see Sect. 14.2).

In mice, the voltage-gated Ca2+ channel isoform CaV3.2 is expressed during 
embryonic development and then gradually disappears, after birth [47, 48]. In 2000, 
Biglenga et al. proposed that the entry of Ca2+ through this channel stimulates myo-
genesis [49]. More recently, this idea was tested and discarded because the fusion of 
myoblasts was unaltered by nickel (a CaV3.2 blocker) [50]. In addition to CaV3.2, 
both Orai1 (see Sect. 14.2.3) and a transient receptor potential channel (TRCP1) 
have also been proposed as necessary for myogenesis [51, 52].

14.3.3  Transforming Growth Factors Regulate Both 
Myogenesis and Ca2+ Channels

Several extracellular signaling factors participate in controlling distinct phases of 
myogenesis. For example, the hepatocyte growth factor (HGF) and fibroblast 
growth factor (FGF) are both considered of critical relevance for SCs activation 
[53]. Myostatin (growth differentiation factor 8, GDF-8) is a member of the trans-
forming growth factor-β (TGF-β) superfamily, and it has also proven essential to 
regulate myogenesis [54, 55]. The TGF-β superfamily includes many other types of 
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growth factors, which, similarly to myostatin, also inhibits the development of skel-
etal muscle. Specifically, in less than 24 h, the bone morphogenetic protein type 2 
(BMP-2) and transforming growth factor β1 (TGF-β1) decrease both the expression 
of MyoD and myogenin. The effect on these transcription factors precedes a drastic 
inhibition of myotube formation (Fig. 14.2) [56], which saturates at nanomolar con-
centrations [57].

Because myogenesis requires Ca2+ (Sect. 14.3.2), it is possible that BMP-2 and 
TGF-ß1 arrest this process by interfering with the activity of Ca2+ channels. In sup-
port of this view, both growth factors also inhibit the functional expression of CaV3 
channels (in semi-differentiated myotubes, see Fig. 14.2). Moreover, TGF-β1, but 
not BMP-2, also downregulates the activity of CaV1.1 [56]. Although these data 
suggest that CaV1.1 and CaV3 channels participate in myogenesis, a role for only 
CaV1.1 has been firmly established (see Sect. 14.3.2).

14.4  Role of Ca2+ in Diseases That Course with Skeletal 
Muscle Atrophy

The calcium ions are of paramount relevance in the context of muscle atrophy (Sect. 
14.3.2). Thus, not surprisingly, the list of diseases in which alterations in the homeo-
stasis of Ca2+ and skeletal muscle atrophy concur is vast. This section discusses 
examples where dysregulation of Ca2+ channels and SERCA has been observed. It 
also explains how such dysregulation contributes to understanding the correspond-
ing loss of muscle mass. It is highly recommended to consult the following excel-
lent reviews on these topics [58, 59].

14.4.1  Congenital Myopathies

14.4.1.1  Brody Disease

Brody disease is a congenital myopathy characterized by muscle cramping that usu-
ally manifests after exercise (especially in the cold) and is accompanied by impair-
ment of muscle relaxation. Muscles from the legs, arms, and eyelids are principally 
affected, and they slowly return to relaxation if maintained at rest (reviewed in 
[60]). This disease is linked to mutations in the gene encoding the skeletal muscle 
SERCA (i.e., SERCA1) [61]. A related myopathy has also been observed but in the 
absence of SERCA mutations (termed Brody syndrome). Thus, in more general 
terms, these disorders are just referred to as “Brody myopathy.” It has been reported 
that patients with advanced phases of this myopathy also show skeletal muscle 
weakness and atrophy (of both type I and type II fibers) [60, 62, 63].

A reduced SERCA activity is observed in muscle samples of Brody myopathy 
patients, and this alteration explains an increase in time needed for myoplasmic Ca2+ 
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Fig. 14.2 TGF-β1 and 
BMP-2 inhibit myotube 
formation. Light-field images 
of myoblasts that were 
obtained from newborn mice 
and then kept 6 days under 
control differentiation 
conditions (upper panel) and 
the presence of either BMP-2 
(5 nM, middle panel) or 
TGF-β1 (40 pM, lower 
panel). The scale bar 
represents 50 μm
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extrusion after repetitive stimulation. Although this mechanism underlies the dam-
aged muscle relaxation, stiffness, and cramping [64, 65], the primary functional 
defect responsible for the loss of SERCA activity remains unknown [60]. Likewise, 
the molecular basis underlying loss of muscle mass has yet to be elucidated. Because 
an increase in time needed for myoplasmic Ca2+ extrusion is ostensibly involved in 
this myopathy, it seems reasonable to speculate that an elevated level of [Ca2+]i 
recruits Ca2+-dependent proteases and thereby induces protein degradation 
(Fig. 14.1; see also Sect. 14.3.2). Dantrolene and verapamil, two inhibitors of EC 
coupling, are promising therapeutic agents for Brody myopathy. They limit the 
amount of Ca2+ released, and thereby the low Ca2+ pumping capacity readily restores 
the normal resting [Ca2+]i levels, preventing Ca2+ overload ([65], discussed in [60]). 
Thus, in the near future, it will be interesting to investigate if these compounds also 
prevent the development of atrophy.

14.4.1.2  Central Core Disease

The following congenital myopathies have been related to mutations in the gene 
encoding RyR1: central core disease (CCD), multiminicore disease (MmD), core 
myopathies with rods, centronuclear myopathy (CNM), and congenital fiber-type 
disproportion (CFTD). They conform the also known as “RyR1-related congenital 
myopathies” (RyR1-RCM) [66, 67]. CCD was the first one being linked to RyR1, 
and thus the corresponding mutations have been more thoroughly investigated.

CCD is of early onset and courses with proximal weakness, wasting, and skeletal 
deformities. These symptoms can range from very mild to extremely severe. The 
diagnosis is based on the identification of areas located within the center of the 
myofiber, depleted of mitochondria and with poor oxidative enzymatic activity (for 
recent reviews, see [68, 69]).

Several CCD RyR1 mutant proteins exhibit an overactive or “leaky” behavior 
that depletes the SR of Ca2+ and thereby decreases the magnitude of the Ca2+ tran-
sient [43, 45, 70]. Another set of mutations, located nearby the pore leaning segment 
of RyR1 (i.e., exon 102, within the C-terminus region), results in mutant proteins 
with poor Ca2+ permeability. Thus, rather than being leaky, these “pore mutations” 
result in a functional uncoupling of SR Ca2+ release from the electrical stimulus 
(termed “EC uncoupling”) [71–73]. A third mechanism indicates that certain CCD 
mutations induce a reduced expression level of RyR1 and thus also promote a lower 
magnitude of Ca2+ transients [74–77]. These three primary defects (i.e., leaky, Ca2+-
impermeable, and decreased expression) are not mutually exclusive. For example, it 
has been reported that the Y4864H mutation results in mutant RyR1 proteins that 
exhibit both, low expression level and altered functional properties (leaky behav-
ior). Remarkably, this mutation also elicits a reduced magnitude of Ca2+ transients, 
and this defect is attributed to a modified gating of the channel (as opposed to a 
reduced number of Ca2+ release units) [77].
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Although mutations located in many regions of the RyR1 result in leaky behav-
ior, evidence exists suggesting that this alteration ultimately depends on a structural 
modification of the protein portion facing the lumen of the SR. In particular, it has 
been reported that the leak depends on a reduced threshold for store overload- 
induced Ca2+ release (SOICR) [78].

As reviewed above (Sect. 14.3.2), mice knockout for RyR1 exhibit several mal-
formations, including a delayed development of skeletal muscle. Conceivably, these 
alterations could simply arise from the physical absence of RyR1. Nevertheless, the 
following evidence indicates that they are due to the inevitable loss of SR Ca2+ 
release. A point RyR1 mutation that renders Ca2+ impermeable channels (equivalent 
to I4897T in humans) also inhibits the fusion of C2C12 myoblasts [45]. Moreover, 
mice knock-in for the same mutation also exhibit a delayed development, which 
includes a reduced and amorphous skeletal muscle, and very small myotubes [72]. 
Thus, a reduced level of SR Ca2+ release is sufficient for disrupting myogenesis and 
thereby also contributes to explaining the atrophy seen in the corresponding CCD 
patients (Fig. 14.1).

On the contrary, in patients expressing leaky CCD mutations, the atrophy is 
likely due to a sustained increase in the levels of [Ca2+]i [43, 45, 70]. More specifi-
cally, Ca2+-dependent proteolysis [4] may result in increased rate of protein degra-
dation [42] and thereby promote the corresponding loss of muscle mass (Fig. 14.1).

In a mouse model of CCD, the I4897T mutation (see above) was found to induce 
the development of endoplasmic reticulum stress, unfolded protein response, mito-
chondrial reactive oxygen species (ROS) production, muscle weakness, and atro-
phy. Currently, it is unclear how this Ca2+-impermeable mutant protein results in all 
these alterations. Nevertheless, it is important to note that they were reverted by 
treatment with the chemical chaperone 4-phenylbutyrate (4-PBA) [79]. Similarly to 
4-PBA, agonists of the Gs subgroup of G-protein-coupled receptors have also been 
reported to be of therapeutic potential in CCD [45, 80]. These findings are encour-
aging since no effective treatment exists for CCD.

14.4.1.3  Tubular Aggregate Myopathy

Tubular aggregate myopathy (TAM) is a condition characterized by the presence of 
“tubular aggregates,” cramps, weakness, and myalgia. Such aggregates contain pro-
teins of the SR and thereby are thought to represent structural alterations of this 
organelle. A genetic cause of the disease was recently found. Specifically, in 2013 
Böhm and collaborators discovered a form of TAM that is inherited with an autoso-
mal dominant pattern and is associated with mutations in the gene encoding STIM1 
[81]. This finding was confirmed more recently [82–84]. Most of the naturally 
occurring mutations in STIM1 are punctual substitutions, and they are positioned 
within the NH2-terminal sequence, just where the EF-hand is located (Sect. 14.2.3). 
Accordingly, these mutations result in mutant proteins that exhibit an altered 
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capability to bind luminal Ca2+ and thereby also present constitutive oligomeriza-
tion [81, 83, 85]. The principal role of STIM1 is to activate the entry of Ca2+ via 
Orai1 channels (during SOCE, Sect. 14.2.3). Thus, prominent levels of SOCE may 
represent an important functional defect of this myopathy. Indeed, TAM has also 
been linked to mutations in Orai1, and the corresponding mutant proteins allow an 
exacerbated influx of Ca2+ [86–88].

A TAM STIM1 mutation that consists of an extension of amino acids 
(I484RfsX21) was reported recently. Remarkably, it resides in the cytosolic part of 
the protein (C-terminal portion) and, in contrast to mutations of the lumen, it inhib-
its the entry of Ca2+ [84]. In addition, TAM has been linked to three different muta-
tions in the gene encoding calsequestrin (CASQ1, which is responsible for Ca2+ 
storage in the SR). Interestingly, while all CASQ1 mutant proteins show a reduced 
ability to store Ca2+, only two appear to stimulate SOCE [89]. These findings sug-
gest that TAM, and the corresponding atrophy, can both arise from other patho-
physiological mechanisms, in addition to elevated levels of SOCE.

14.4.2  Muscular Dystrophies

14.4.2.1  Myotonic Dystrophy Type 1 (MD1)

This disease is caused by the expansion of a CTG repeat in the gene encoding a 
protein kinase termed MDPK. Increased excitability, delayed relaxation, atrophy, 
and weakness represent the most common symptoms. The CTG-repeat expansion 
results in both lower MDPK protein levels and trapping of the corresponding mRNA 
into nuclear foci. Interestingly, muscle degeneration has been related to increased 
rates of myofibrillar protein breakdown [42], which in turn could be explained by an 
exacerbated activity of Ca2+-dependent proteases [4]. Indeed, elevated levels of 
[Ca2+]i have been observed in myotubes derived from both MD1 patients and DMPK 
knockout mice [90–92]. Nevertheless, it is important to note that a deficiency in 
DMPK has functional effects in neither cardiac nor skeletal muscle. Thus, the MD1 
symptoms likely arise from toxic effects of the trapped transcripts, rather than to 
decreased levels of the protein [93]. Transcripts of at least both, transcription factors 
and alternative splicing factors can be trapped, which explains why in this myopa-
thy the expression of multiple genes is altered. Remarkably, the trapping of mRNAs 
modifies not only the function but also the structure of the nuclei [94].

MD1 has also been associated with misregulated alternative splicing; for exam-
ple, MD1 patients show repressed alternative splicing of exon 29 in CaV1.1. Of note, 
the degree of exon skipping correlates with the severity of muscle weakness, sug-
gesting that the corresponding functional alteration in CaV1.1 contributes to exacer-
bating symptoms [95]. Additionally, the alternative splicing of both RyR1 and 
SERCA (1 and 2) is misregulated. Thus, aberrant splicing of the corresponding tran-
scripts most likely also contribute (by affecting Ca2+-dependent pathways) [92, 96].
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14.4.2.2  OPMD

Oculopharyngeal muscular dystrophy, or OPMD, is a late-onset autosomal domi-
nant congenital myopathy. The first symptoms begin between the fifth and sixth 
decades of life. They consist of progressive drooping of eyelids (ptosis), swallowing 
difficulty (dysphagia), muscle atrophy, and proximal upper and lower weakness. 
OPMD is linked to mutations in the gene encoding poly(A)-binding protein nuclear 
1 (PABPN1). The OPMD mutations consist of an expansion of a tract that contains 
10 alanines (to 12–17). The pathological hallmark is that the nuclei of skeletal mus-
cle fibers develop aggregates or inclusions (termed intranuclear inclusions, INI), 
which contain a misfolded PABPN1 and sequester poly(A) RNA [97, 98]. This 
disease is also frequently accompanied by other severe symptoms, such as weak-
ness and atrophy of the tongue, dysphonia, limitation of upward gaze, and facial 
muscle weakness [99].

Although the precise underlying mechanism is not yet clear, it has been proposed 
that the INIs generate toxic effects, likely by interfering with the cellular traffic of 
poly(A) RNA, and thus affecting gene expression [97, 98]. The expression of at 
least 202 genes is misregulated, as shown by microarray assays performed in mus-
cle fibers from a mouse model of OPMD [100]. A recent study reported that an 
OPMD mutant protein (PABPN1-17A) promotes structural alterations of the 
nucleus, which contributes to explaining the wide range of genes whose expression 
is misregulated [101].

Interestingly, PABPN1 stimulates the fusion of myoblasts, and this property is 
missing in the PABPN1-17A mutant protein [101]. Thus, an altered capacity to 
regenerate muscle may explain the corresponding muscle atrophy and weakness in 
OPMD.  In C2C12 myotubes, PABPN1-17A also elicits many alterations in the 
homeostasis of Ca2+ [101]. For example, it promotes a ~50% reduction of the mag-
nitude of Ca2+ transients. This effect can be explained by parallel changes in the 
expression of RyR1 and SR Ca2+ content. In fibers from adult mice, however, this 
mutant protein is unable to modify the magnitude of Ca2+ transients [101]. This find-
ing indirectly supports the notion that atrophy, due to inability to stimulate myogen-
esis (Fig.  14.1), likely represents the most significant pathophysiological 
consequence of PABPN1 mutant proteins [101–104].

14.4.2.3  Duchenne Muscular Dystrophy

The absence of dystrophin, a cytosolic protein that is critical for proper structure of 
the muscle, results in a genetic disorder known as Duchenne muscular dystrophy 
(DMD). This disease is characterized by shorter lifespan, cardiac involvement, and 
skeletal muscle degeneration and weakness. An increased structural fragility of 
muscle fibers and altered homeostasis of Ca2+ represent two relevant pathophysio-
logical mechanisms. Indeed, an increased entry of Ca2+ (which promotes protein 
degradation and higher levels of ROS) has been proposed to explain the 
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corresponding atrophy [42, 105]. Accordingly, myotubes of mdx mice (a commonly 
used model of DMD) exhibit a higher activity of Ca2+ channels at resting membrane 
potentials, compared with controls. This hyperactivity is due to the presence of a 
mechano-transducing Ca2+ channel, which likely contributes to the high influx of 
Ca2+ [106, 107]. Although the identity of the corresponding stretch-activated Ca2+ 
channel(s) (SACs) has yet to be firmly established, members of the transient recep-
tor potential channel (TRPC) family may be involved. TRPCs participate in muscle 
differentiation, and thus changes in their function/expression might also contribute 
to generating the corresponding loss of muscle mass. For a recent and comprehen-
sive review, see [108].

An exacerbated SOCE has also been linked to DMD. For example, muscle fibers 
from mdx mice show not only increased levels of SOCE but also higher expression 
level of both Orai1 and STIM1 [109, 110]. Accordingly, it has been reported that the 
severity of this disease can be reduced by expressing a dominant negative Orai1, in 
two mouse models of DMD [111].

Like in many human myopathies, no effective treatment exists for DMD (other 
than palliatives focused on easing the symptoms). Thus, the search for a more effec-
tive treatment continues. With regard to “fixing” alterations in the homeostasis of 
Ca2+, pharmacological approaches have been investigated. More precisely, the 
efforts have focused on using blockers of Ca2+ channels, as well as on regulating the 
activity and expression of SERCA (reviewed in [112, 113]). Knocking down the 
expression and activity of myostatin (see Sect. 14.3.2) also represents a promising 
therapy. This intervention is particularly beneficial to counteract muscle weakness 
and wasting, in not only DMD [114, 115] but also many other disorders [116].

14.5  Conclusions

In skeletal muscle fibers, much work has evolved in acquiring a deep knowledge of 
the mechanisms that control the homeostasis of Ca2+, under both physiological and 
pathological conditions. Meanwhile, significant efforts have firmly established a 
pivotal role for Ca2+ in determining the amount of muscle mass. Accordingly, it is 
now generally accepted that this ion controls not only muscle mechanical properties 
but also the corresponding development, regeneration, atrophy, and hypertrophy. 
Therefore, treating wasting disorders with therapies based on a precise tune-up of 
the activity/expression of Ca2+ channels and transporters could eventually become a 
daily clinical practice.
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Chapter 15
Muscle Atrophy in Cancer

Jian Yang, Richard Y. Cao, Qing Li, and Fu Zhu

Abstract Cancer is a prevalent disease with high mortality and morbidity. Muscle 
atrophy is a severe and disabling clinical condition that frequently accompanies 
cancer development such as muscle atrophy in pancreatic cancer, lung cancer, and 
bladder cancer. The majority of cancer patients are accompanied with cachexia. 
Cancer-associated cachexia is characterized by weight loss and muscle atrophy. 
Muscle wasting is a pivotal feature of cancer cachexia. Muscle atrophy refers to the 
reduction of muscle mass caused by muscle itself or the dysfunction of nervous 
system. Muscle atrophy causes serious clinical consequences such as physical 
impairment, poor life quality, reduced tolerance to treatments, and short survival. 
Although many reports have studied cancer-related muscle atrophy, there is still no 
clear understanding of it. Here we will describe the prevalence, mechanisms, patho-
physiological effects, and current clinical treatments of muscle atrophy in cancer.

Keywords Muscle atrophy · Cancer · Cachexia

15.1  Introduction

Muscle atrophy is caused by muscle disease or neurological dysfunction. It refers to 
striated muscles dystrophy, which means that muscle fiber is thin and even disap-
pears. Muscle atrophy has posed a great threat to patient health and brought a lot of 
inconvenience to patient life. The main cause of muscle atrophy is the imbalance of 
anabolic and catabolic processes. When protein breakdown rate exceeds protein 
synthesis rate, muscle atrophy happens [1]. Muscular atrophy is a common neuro-
muscular disorder with an incidence of 1  in 6000–10,000 births [2, 3]. Although 
researchers have made many progresses on the treatment of muscle atrophy, until 
now no effective therapy is applied on muscle atrophy patients. Exploring effective 
methods for muscle atrophy prevention and cure is highly needed.
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Recently, several studies have focused on muscle atrophy in clinical oncology. It 
is reported that cancer cachexia is closely associated with cancer type, tumor size, 
stage, and the use of anticancer drugs [4, 5]. Muscle atrophy emerges frequently in 
pancreatic cancer, lung cancer, and bladder cancer patients [6]. Cancer-related mus-
cle atrophy is worsened by traditional treatment [7]. Many deleterious effects of 
drug treatment lead to worse outcomes [8–11]. Cancer cachexia is the major com-
plication for cancer patients, which happens in 80% of cancer patients. Despite its 
clinical significance, most cancer cachexia is underdiagnosed [12, 13]. Cancer 
cachexia is featured with marked body weight decrease and muscle mass diminish-
ment. Cachectic patients may lose up to 75% of skeletal muscle mass [14, 15]. 
Cancer cachexia-associated muscle atrophy is complex and multifactorial, the pro-
cess of which is mediated by the interplay of tumor factors and host factors [16]. 
Therefore, exploring the underlying mechanisms of cancer cachexia is important for 
patient treatment.

At present, the measures to treat muscular atrophy include muscle physical exer-
cise, nutritional interventions, and pharmacologic treatments. Muscle physical exer-
cise has the abilities to reduce autophagy and mitophagy, enhance the disposal of 
damaged mitochondria, and improve muscle energy balance [17]. Muscle physical 
exercise has been shown to improve muscle mass and strength in mice model [18]. 
Nutritional intervention can provide adequate energy and nutrient supplement, and 
it helps to increase or stabilize muscle mass and body weight. Pharmacologic treat-
ment, including appetite stimulants, agents targeting inflammation and agents tar-
geting muscle catabolic pathways, can improve the muscular strength and endurance. 
However, these treatments do not achieve desired therapeutic effects. Better treat-
ments are needed to be explored in future [19].

15.2  The Prevalence of Muscle Atrophy in Cancer

Cachexia is a prevalent symptom in hospital patients with cancer. Cachexia remains 
a great challenge in cancer treatment and causes up to 20% of cancer-related deaths 
[20]. In the United States, it has been estimated that cancer cachexia affects over 34 
million people. A substantial number of patients suffering from cachexia manifest 
high proportion of muscle atrophy [21, 22]. According to the latest survey, approxi-
mately 5–5.7 million patients are likely to suffer from muscle atrophy caused by 
cachexia [23–26]. Studies have reported that up to 50% of cancer patients suffer from 
progressive atrophy of adipose tissue and skeletal muscle [27–29]. Muscle atrophy is 
an important component of the pathophysiology of cancer cachexia [30, 31].

The degree of cachexia is determined by cancer type. Cachexia frequently hap-
pens in gastrointestinal cancer and lung cancer [32, 33]. In addition to gastrointesti-
nal and lung cancer, the mortality and morbidity of muscle atrophy are high in 
bladder cancer and pancreatic cancer [34, 35]. At present, there is not a certain treat-
ment for muscle atrophy in the whole world. Before we find a good treatment, we 
should try our best to prevent its happening. Sarcopenia, a kind of muscle atrophy, 

J. Yang et al.



331

is highly prevalent among older patients with early stage colorectal cancer. According 
to the latest random survey, sarcopenia patients have significantly lower body mass 
index and skeletal muscle index compared to non-sarcopenia patients [36, 37].

15.3  The Mechanisms of Muscle Atrophy in Cancer

In normal human body, protein synthesis and protein degradation are kept in a rela-
tive balance state. But cancer cachexia breaks the balance [38, 39]. A study from 
Emery and Lund Holm showed that cancer cachexia-associated muscle atrophy 
mainly affected protein synthesis process, and the change of protein degradation 
was secondary [38]. It is known to all, there are two types of muscle, namely, fast 
muscle and slow muscle. Fast muscles include tibialis anterior and gastrocnemius, 
and slow muscles include soleus. Due to the protein oxidation changes in cachexia, 
fast muscles have a faster loss than slow muscles [28, 40]. In addition, dystrophin 
glycoprotein complex, which is a membrane structure associated with muscular 
dystrophy, plays an important role in cachexia-induced muscle atrophy.

Clarifying the signaling pathways involving in muscular dystrophy is important 
for therapeutic interventions [41–43]. PI3K/Akt pathway plays important roles in 
promoting protein synthesis and blocking protein degradation [44–46]. In addition, 
Akt/mTOR pathway controls the protein synthesis in cytoplasm [47]. In mecha-
nism, Akt phosphorylates transcription factor FOXO which activates the transcrip-
tion of Atrogin-1, MuRF1 [46], or autophagy-related gene LC3 [48]. Akt 
overexpressing mice exhibit muscle hypertrophy [49, 50], whereas Akt knockdown 
mice exhibit severe skeletal muscle atrophy [51]. Moreover, IGF-1/Akt pathway is 
important for muscle maintenance [52]. Consistent with this conclusion, Akt signal-
ing defects related muscle atrophy is observed in different diseases or pathophysi-
ological conditions, which include ALS [53–55], CKD [56, 57], diabetes [58], 
chronic hypoxia [59], statin-induced myopathy [60], sepsis [61, 62], burn injury 
[63], and aging [64]. In particular, some molecules behave as pro-trophic factors by 
reducing Akt signaling, which includes TNFα [65], TNF-related weak inducer of 
apoptosis [66], glucocorticoids [67, 68], angiotensin [69], and chemotherapy agents 
[11]. Besides, myostatin can activate Smad2/3 pathway and increase the expression 
of MAFBX/MuRF1 [70, 71]. Other studies have showed that the activation of Akt 
in Duchenne’s muscular dystrophy promoted hypertrophy [72, 73], sarcolemma sta-
bility [74], and muscle fiber regeneration [75].

15.4  Control of Protein Synthesis in Cachexia

Protein synthesis in skeletal muscle is a conserved process which involves at least 
13 factors in the initial stage of protein transcription, many of which are assembled 
from different subunits [76, 77]. There are two check points in the process of protein 
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synthesis. The first process is the binding of initiator methionyl tRNA to the 40S 
ribosomal subunit. The second process is eIF4F recruits 40S ribosomal subunit to 
mRNA through 5-cap structure recognition [78]. In cancer cachexia patients, the 
phosphorylation levels of both PKR and eIF2 are significantly enhanced compared 
with healthy people. Furthermore, there is an inverse proportion relationship 
between myosin expression and eIF2 phosphorylation [79]. Leucine also causes a 
reduction in the phosphorylation of eIF2, possibly by stimulating mTOR pathway. 
So nutritional supplements containing leucine will improve the muscle atrophy in 
cachectic cancer patients [78, 80].

15.5  Protein Degradation in Cachexia

Previous reports show that there are three major proteolytic pathways that affect 
proteins degradation in skeletal muscle. The first one is ubiquitin-proteasome sys-
tem (UPS) which is composed of ubiquitin-activating enzyme (E1), ubiquitin- 
carrier protein (E2), and ubiquitin-conjugating enzymes (E3 or E3 protein ligase) 
[37]. The second one is lysosomal system which includes cysteine proteases cathep-
sins B, H, and L as well as aspartate protease cathepsin D. The last one is calcium- 
activated system [81–83]. Among them, ubiquitin-proteasome pathway plays a 
predominant role in the degradation of myofibrillar proteins, which is demonstrated 
not only in animal models with cancer cachexia but also in clinical cancer patients 
[84, 85].Transcription factor Foxo3 can affect both ubiquitin-proteasome pathway 
and lysosomal pathway in muscles through different mechanisms [86–88]. In some 
cases, patients showed an increased expression of cathepsin with no changes in the 
components of ubiquitin-proteasome pathway [89]. Myofibrillar protein is lost 
about 50% during atrophy, and myosin heavy chain is selectively targeted by the 
ubiquitin-proteasome pathway in cachectic state [90–92]. Furthermore, Atrogin-1 
and Murf-1 protein are highly expressed in cancer cachexia-related muscle atrophy 
[93, 94].

15.6  Apoptosis in Skeletal Muscle

In addition to protein degradation, muscle cell apoptosis also plays a role in muscle 
atrophy. Apoptosis includes two processes: apoptosis in the early stage and meta-
bolic abnormalities in the late stage [51–53]. The apoptosis-related proteins such as 
Bax, Bcl2, and Cleavd-caspase3 are increased in the process of skeletal muscle 
apoptosis.

During apoptosis, the cellular contents are enclosed as vesicles, which are finally 
eliminated by heterophagocytosis [95, 96]. In addition, the cell membrane fluidity 
and conformation are also changed in apoptosis cells. The morphological features 
are changed by proteolytic enzymes, which are also called caspases. These prote-
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ases are activated by intrinsic pathways or extrinsic pathways. Intrinsic signals acti-
vate caspase-9 and then the downstream effectors such as caspase-3 and caspase-7. 
Next, intracellular substrates are degraded rapidly. Extrinsic signals activate specific 
death receptors on the cell surface, such as TNFα and Fas ligand. And then, the 
expression of Bcl-2 family members (Bax and Bcl-2) is altered [97, 98, 23].

15.7  The Pathophysiological Effects of Muscle Atrophy 
in Cancer

The main pathophysiological mechanism of muscle atrophy in cancer cachexia is 
inflammation-mediated abnormal muscle anabolism and catabolism, which disturbs 
the metabolism balance and leads to muscle-specific protein degradation [99].

Skeletal muscle is the most abundant tissue in the body of vertebrates and is 
involved in many important functions. Skeletal muscle mass represents a determi-
nant of strength, endurance, and physical performance [99]. Skeletal muscle 
accounts for nearly half of whole-body protein mass [100]. In healthy individuals, 
skeletal muscle anabolic and catabolic processes are kept in a dynamic balance 
state, which means that muscle proteins are continuously synthesized; meanwhile 
the overall muscle mass is not changed [101, 102].The metabolic abnormalities in 
cancer cachexia are likely to be triggered by immune response and increased cyto-
kines secretion. Tumor necrosis factor (TNF)-α is a primary catabolic trigger for 
skeletal muscle loss [100, 103–105]. In addition, tumor necrosis factor (TNF)-α can 
also attenuate bulbar muscular atrophy [106]. Besides, it has been reported that 
muscle-specific expression of insulin-like growth factor-1 (IGF-1) can promote 
muscle hypertrophy, increase physiological muscle strength, and ameliorate dystro-
phic phenomenon [107, 108]. IGF-1 plays pivotal roles in regulating cell prolifera-
tion [109–111], cell differentiation [112], myofiber growth [113, 114], and myofiber 
regeneration [113]. IGF-1 mainly effects PI3K/AKT pathway, which slows protein 
degradation and promotes protein synthesis [115, 116, 41]. In clinical patients, pro-
tein synthesis reduction, protein degradation increase, or a combination of both con-
tributes to cancer cachexia-associated muscle wasting [101]. The phosphorylation 
of eukaryotic initiation factors leads to protein synthesis attenuation [117]. 
Adenosine triphosphate-dependent ubiquitin-proteasome proteolytic pathway plays 
a major role in muscle wasting and the breakdown of myofibrillar proteins.

Muscle atrophy in cancer leads to myofiber area reduction and muscle strength 
decrease. Through ordinary optical microscope or immunofluorescence staining, 
we can see that muscle tubular becomes smaller [118], which has also been observed 
in cancer patients with muscle atrophy. Muscle atrophy is a consequence of certain 
physiological processes such as aging; meanwhile, it is also a pathological process 
in cancer. Muscle atrophy represents a clinical feature of cachexia, which causes a 
lot of complications, like chronic heart failure, chronic obstructive pulmonary dis-
ease, chronic kidney disease, cancer, HIV, sepsis, immune disorders, and dystro-
phies [119, 120].
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A reduced cross-sectional myofiber area with subsequent impaired strength is 
the main characteristic of muscle atrophy [121, 122]. During muscle atrophy, the 
loss of contractile proteins mainly affects type II fast fibers [122, 123], whereas, 
chronic heart failure patients have an increasing loss in type IIX fiber and type I 
fiber [124–126].

15.8  The Current Clinical Treatments of Muscle Atrophy 
in Cancer

The best treatment for muscle atrophy is to attenuate muscle mass loss and improve 
muscles repair and regeneration [127].

15.8.1  Muscle Physical Exercise

Physical exercise has been proposed as an important treatment for cachexia patients, 
which is demonstrated to improve life quality and reduce fatigue [128–131]. Notably, 
there are substantial differences between physical exercise and exercise modality 
[132]. Endurance training stimulates oxidative metabolism but has slight effects on 
muscle mass, whereas resistance training improves muscle hypertrophy through 
stimulating anabolism [133]. Moreover, physical exercise regulates cellular homeo-
stasis and promotes muscle regeneration [134–136]. Experiments have proved that 
voluntary wheel running could prevent cachexia and increase the survival of tumor-
bearing mice [137]. Furthermore, it has been demonstrated that resistance exercise 
could modulate the inflammatory response in tumor-bearing rats [138, 139].

Regular exercise therapy can reduce or mitigate paralysis sequelae significantly. 
However, inappropriate strength training can increase spasm. For example, using 
the affected hand to grip repeatedly will strengthen the flexor muscle coordination 
of the affected upper limbs; nonetheless, it will make it harder for hand function 
recovery [140, 141]. Actually, muscle atrophy is not only the problem of muscle 
weakness; mismatch also accounts for movement dysfunction. Therefore, when 
muscle physical exercise is applied, rehabilitation training and strength training 
should be differentiated [142].

15.8.2  Nutritional Intervention

Nutritional intervention is a mean to slow the progression of muscle atrophy. 
Adequate energy and nutrient supply can increase or stabilize muscle mass and 
body weight. But it is not suitable for severely ill patients [143, 144]. It is important 
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to design a rational strategy for early nutritional interventions [145–147]. Several 
hormonal treatments including insulin-like growth factor-1, anabolic steroids, 
β-adrenoceptor agonists, growth hormone, testosterone, and selective androgenic 
receptor modulators have been proposed to enhance muscle growth and function 
[148, 149]. But the limitations of these hormones in clinical application are obvious. 
Hormone treatment has serious side effects, so it is urgent to identify non-hormonal 
treatments for those patients who are in devastating conditions [150–152]. Studies 
has reported that HSPs treatment conferred protection on affected muscles in DMD 
patients [153].

Lung cancer patients with muscle atrophy have obvious hyperaminoacidemia, so 
protein intake is necessary to induce whole-body anabolism [154]. Another study 
reported that a high-protein formula was able to stimulate muscle protein anabolism 
in advanced cancer patients. Different from conventional nutritional supplement, 
high-protein formula contains abundant leucine, specific oligosaccharides, and fish 
oil [154, 155]. Meanwhile, protein anabolism should be maintained in a stable state. 
Once the steady state is broken, it may go to another direction. For example, a mal-
adjustment was observed in cachectic pancreatic cancer patients. In cachectic 
patients only protein breakdown was reduced, while in control people, both protein 
breakdown and synthesis were modulated [156].

15.8.3  Pharmacologic Treatments

Pharmacologic treatment for cachexia-related muscle atrophy is still in the phase of 
assessment [157]. Several medicines have been tested to treat muscle atrophy [158]. 
Megestrol acetate can improve the appetites and body weights of cancer patients. 
Here, the weight gain is mostly due to fat and water increase rather than muscle 
increase [159]. Cannabinoids have also been used in muscle atrophy treatment. 
However, clinical trial showed that compared with placebo treatment, cannabinoids 
treatment did not have any better effects on cancer patients [160]. In addition, non-
steroidal anti-inflammatory drugs (NSAIDs) have been tested alone or in combina-
tion in muscle atrophy treatment. The study showed that NSAIDs could improve 
body weight or lean body mass [161]. Besides, multimodal cachexia intervention 
and thalidomide have been tested in cancer cachexia [162–164]. Further clinical 
investigation demonstrates that targeting cytokines may have some potential thera-
peutic effects on cancer cachexia [165–167, 143].

15.9  Perspective

Muscle atrophy in cancer is a prevalent symptom, which affects the physical health 
and spiritual health of patients. The prevalence of muscle atrophy in cancer is a 
worldwide tendency. Muscle atrophy in cancer has a high morbidity both in 
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newborn children and old man. In the last decade, we have acquired more under-
standing of the mechanisms in cancer-related skeletal muscle loss. However, there 
is still a long way to go in translating these knowledge into clinical therapy. What’s 
more, mechanism elucidation and experimental model establishment are urgently 
needed. Here, we described the prevalence, mechanisms, pathophysiological effects, 
and current clinical treatments of muscle atrophy in cancer. In summary, cancer-
related muscle atrophy is the result of abnormal metabolism. The pathophysiology 
of muscle atrophy in cancer is quite different from other diseases. At present, no 
effective therapies for cancer cachexia patients are available. For this reason, we 
need firstly implement strategies that are aimed to prevent or delay the disease. 
Another crucial point is the early diagnosis and treatment of muscle atrophy for 
cancer patients. We hope we can improve the survival rate of cancer patients and 
help them to live more independently in future.
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Chapter 16
The Molecular Mechanisms and Prevention 
Principles of Muscle Atrophy in Aging

Yu Zhang, Xiangbin Pan, Yi Sun, Yong-jian Geng, Xi-Yong Yu, 
and Yangxin Li

Abstract Muscle atrophy in aging is characterized by progressive loss of muscle 
mass and function. Muscle mass is determined by the balance of synthesis and deg-
radation of protein, which are regulated by several signaling pathways such as 
ubiquitin- proteasome system, autophagy-lysosome systems, oxidative stress, proin-
flammatory cytokines, hormones, and so on. Sufficient nutrition can enhance pro-
tein synthesis, while exercise can improve the quality of life in the elderly. This 
chapter will discuss the epidemiology, pathogenesis, as well as the current treatment 
for aging-induced muscular atrophy.

Keywords Muscle atrophy · Aging · Prevalence · Mechanisms · 
Pathophysiological effects · Treatments

16.1  Background

Muscle atrophy in aging, also known as sarcopenia, is a major public health prob-
lem, which can affect the quality of life and even shorten life span of the elderly 
[1–3]. To cure the disease, we have to know the mechanisms first. In adults, the 
normal muscle mass and function are maintained by activating signaling pathways 
that regulate protein synthesis and degradation. Despite the knowledge on 
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mechanisms of muscle atrophy, the treatment options are very limited. Decreased 
athletic ability is a major factor contributing to the loss of muscle mass and reduced 
muscle strength in old people. So exercise plays a positive role in maintaining mus-
cle mass and physiological functions. However, exercise is not the most suitable 
practice for all elderly people because they often have other chronic conditions such 
as kidney and heart failure, which limits their daily activity. Therefore, it is neces-
sary to develop clinical interventions to help patients with sarcopenia.

The social and economic burden caused by sarcopenia is enormous; therefore, it 
is important to develop interventions to prevent or delay muscle atrophy. This chap-
ter aims to discuss recent development in the prevalence, mechanisms, pathogenesis 
in sarcopenia, and the role of exercise and other interventions for preventing the 
development of muscle atrophy.

16.2  Prevalence of Aging-Related Muscle Atrophy

With continued growth of world population, aging occurs at an extraordinary speed, 
which causes a lot of problems on health care. Sarcopenia manifests as the loss of 
mass and strength of skeletal muscle associated with aging. About 40–50% of the 
population over the age of 80 suffers from sarcopenia, making it a major clinical 
disorder of the elderly and a main challenge for otherwise healthy aging population 
[4]. Among patients over 64, the prevalence of sarcopenia was 22.6% in women and 
26.8% in men and rose to 31.0% and 52.9%, respectively, in those elderly over 80 
[5]. Older age is associated with reduced mobility and can change body composi-
tion. Over time, old people tend to become more and more sedentary, leading to a 
vicious cycle of reduced mobility and physical activity levels [6]. Sarcopenia is 
associated with dyskinesia and muscular dysfunction in elderly over 60 [7]. In the 
FRAIL-HF study, 1-year survival rate was 89% in the non-weak group and 75% in 
infirm among patients with an average age of 80 ± 6 years [8].

The decrease in muscle strength is mainly due to the degradation of contractile 
protein, which can be detected by a reduction in muscle fibers’ cross-sectional area 
(CSA). For instance, between 65 and 75 years of age, the CSA of muscle is reduced 
by up to 30%, and muscle strength is reduced by about 30–40% [9]. Though the 
prevalence of muscle atrophy in aging population is pretty high, there are no regis-
tered effective treatments currently. In order to fully study the mechanism of this 
muscle atrophy and seek effective treatment to prevent muscle loss, animal models 
has been used for preclinical research. By now, the aged animals were used widely 
although the cost was very high [4]. In addition, newer models such as high-fat diet 
[10] and senescence-accelerated mouse P8 (SAMP8) [11], hind limp unloading, and 
immobilization have been used to study mechanisms of muscle atrophy [12]. An 
important contributor leading to sarcopenia is the mutations of mitochondrial DNA 
accumulated with age that cause mitochondrial dysfunction [13]. The purpose of all 
these models is to better understand the pathogens of sarcopenia and to develop 
strategies to prevent muscle loss.
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16.3  Mechanisms of Aging-Related Muscle Atrophy

This part discusses the latest research findings of mechanisms associated with mus-
cle atrophy in healthy aging conditions (Fig. 16.1 in this chapter).

16.3.1  The Ubiquitin-Proteasome Systems and Aging-Related 
Muscle Atrophy

The ubiquitin-proteasome plays a major role in the turnover of muscle protein and 
is activated in most catabolic processes contributing to muscle atrophy. UPS con-
sists of ubiquitin (Ub), ubiquitin-activating enzyme (E1), ubiquitin-conjugating 
enzyme (E2), ubiquitin-protein ligase (E3), and 26S proteasome. The proteins have 
to be ubiquitinized prior to degradation by the proteasome. E1 and Ub combine to 
form the Ub-E1 complex, which is a process that consumes ATP. The Ub-E1 com-
plex interacts with E2, which replaces El to form the Ub-E2 complex. Finally the 
proteins are transferred to E3. The procedure is repeated again until the target pro-
tein is connected with four to five ubiquitin molecules and then degraded in the 26S 
proteasome, resulting in degradation to polypeptides, and ubiquitin is released and 
is recycled for future use [14].

In general, muscle atrophy F-box (MAFbx) and muscle RING finger protein 1 
(MuRF-1) are two main types of E3 ligases in UPS that are specifically expressed 

Fig. 16.1 The major mechanisms leading to the muscle atrophy in aging
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in skeletal muscle. MAFbx participates in the formation of functional ligase com-
plexes, ubiquitinates and degrades muscle differentiation proteins and eukaryotic 
translation initiation factor 3, and therefore plays an important role in the suppres-
sion of muscle protein synthesis. MuRF-1 also ubiquitinates and degrades troponin 
1 [15] and myosin heavy chain [16]. Another E3 ubiquitin ligase is muscle RING 
finger protein 2 (MuRF-2). Like MuRF-1, MuRF-2 is also related to the ubiquitina-
tion of myofibrillar proteins, and MuRF-2 migrates to the nucleus and then causes 
ubiquitination [17, 18]. Serine/threonine kinase (AKT) [19, 20], extracellular 
signal- regulated kinase (ERK) [21, 22], inhibitor of κB kinases (IKKs) [23], and 
nuclear factor-κB (NF-κB) [24, 25] signaling pathways all regulate muscle degrada-
tion with UPS.

16.3.2  The Autophagy-Lysosome Systems and Aging-Related 
Muscle Atrophy

Autophagy is a process in which cells use lysosomes to degrade damaged organelles 
and excess or abnormal proteins in cells, which stabilizes the intracellular environ-
ment by balancing cell synthesis and catabolism. The autophagy lysosomal system 
is a key system for controlling muscle volume in catabolism [26]. However, the 
autophagy system also requires the most basic muscle fiber homeostasis, and its 
inhibition also leads to the degradation of muscle cells. Autophagy has maintained 
a low activity state in skeletal muscle tissue. Nevertheless, in pathological condi-
tions such as oxidative stress, denervation, and fasting, skeletal muscle autophagy is 
significantly enhanced, resulting in protein degradation [27, 28].

The molecular mechanism of autophagy is complex and highly conserved, and 
the mTOR signaling pathway plays a major regulatory role. However, mTOR sig-
naling pathway is not the main way to regulate the occurrence of autophagy in 
muscle tissue. Inhibition of mTOR in skeletal muscle cells can only slightly increase 
the degradation of proteins in myotubes [29]. In contrast, FoxO3, a transcriptional 
regulator, is a key gene that regulates autophagy in muscle. Some important autoph-
agy genes such as Bnip3, Gabarap, LG3, and Atgl2l have been regulated by FoxO3 
[30]. In particular, Bnip3 induces the formation of autophagosomea and contributes 
to FoxO3-induced autophagy. In addition, FoxO3 not only activates the autophagic/
lysosomal pathway and the ubiquitin-proteasomal system but also regulates the two 
pathways independently. In addition, the p38/MAPK pathway also regulates the 
autophagy-related genes expression under oxidative stress [31].

The ubiquitin-proteasome systems and the autophagy-lysosome systems are 
both regulated equal to maintain normal organelles and protein composition in atro-
phic cells [29]. Proteasomes degrade short-lived proteins and myofibril [32, 33]; 
however, autophagy-lysosomes are thought to be able to control long-lived proteins 
and organelles [34, 35]. Therefore, it is necessary to further control the signal 
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 transduction pathways which regulate the autophagy system and the related 
ubiquitin- proteasome system.

16.3.3  Oxidative Stress and Aging-Related Muscle Atrophy

Excessive accumulation of oxygen molecules of −1 valence state will form an oxi-
dative stress state in the body. Reactive oxygen species (ROS) includes monovalent 
oxygen, peroxides, superoxide, hydroxyl radicals, and hypochlorous acid. Almost 
all types of cells in the body, such as smooth muscle cells, vascular endothelial cells, 
monocytes, skeletal muscle cells, and cardiomyocytes, can produce ROS. Excessive 
ROS can directly damage tissue or stimulate the body to generate more ROS and 
thus form a vicious circle. CHF, atrophy of limbs, atherosclerosis, diabetes, and 
cancer can all occur under certain pathological conditions [36]. It seems to be 
acknowledged that the main cause of muscle atrophy caused by unbalanced protein 
synthesis and degradation is oxidative stress [37]. Oxidative stress is thought to be 
a pathological state of redox imbalance. Furthermore, the generation of oxidants 
exceeds the resistance of the antioxidant defense system, and the generation of high 
ROS increases [38]. Increased oxidative stress in skeletal muscle during aging can 
lead to decreased mitochondrial function and molecular inflammation. These fac-
tors interact to induce apoptosis of muscle fibers and interfere with protein metabo-
lism balance, which may be an important mechanism of senile muscular atrophy.

One view is that oxidative stress may lead to skeletal muscle atrophy in the fol-
lowing ways. First, Ca2+ overload and activation of calcium kinase; second, activa-
tion of cysteine protease and subsequent activation of the 20S proteasome system; 
and third, upregulation of gene expression of MAFbx and MuRF1 in mouse, fol-
lowed by proteasome activation. In addition, it has recently been discovered that 
p38MAP kinase acts as a bridge between the autophagy gene and the ubiquitin- 
proteasome in oxidative stress and atrophic skeletal muscle and can stimulate the 
upregulation of these genes [39]. Fourth, ROS activates FoxO and NF-κB in the 
absence of mammalian atrophy [40].

It is reported that there are two sets of oxidant system in atrophic skeletal muscle 
as the main source of ROS, namely, NADPH oxidase and mitochondria, the former 
being predominant. After infusion of mice with AngII for a period of time, the ROS 
levels in the muscle were increased in parallel with the level of the NADPH oxidase 
subunit gp91phox [41]. Wei et  al. [42] confirmed that AngII can significantly 
increase the activity of ROS production and NADPH oxidase in L6 myotubes, 
whereas these increasing effects can be interrupted by NADPH oxidase inhibitor 
apocynin and AT1 receptor blocker losartan. Recent studies have also found that 
mitochondrial-derived superoxide in skeletal muscle is also elevated in animal mod-
els of AngII perfusion [43], which demonstrates that AngII-induced oxidative stress 
may result in muscle atrophy in the mouse model, and the ROS originated from the 
two sets of oxidant systems (NADPH oxidase and mitochondrial system) mentioned 
in the previous paragraph all participate in AngII-induced oxidative stress.

16 The Molecular Mechanisms and Prevention Principles of Muscle Atrophy in Aging



352

Another view is that mice lacking mitochondrial superoxide dismutase in their 
muscles still have oxidative stress, but there is no obvious muscle loss, indicating 
that only oxidative stress is not enough to induce muscle atrophy [37]. Although the 
role of oxidative stress on disuse skeletal muscle atrophy could not be ignored, the 
causal relationship among them is not yet completely clear. Different research teams 
did similar experiments but got very different results. This shows that the research-
ers should focus on different species, different models of disuse, and different mus-
cles, such as experimental animal mechanical ventilation, limb braking, and upper 
limb suspension. The patient’s bed rest and unilateral lower extremity suspension 
are not the same as the muscle disuse atrophy caused by these conditions [44]. ROS 
exists in skeletal muscles and participates in the steady-state regulation of muscles 
as a major signal, which guarantees the normal physiological structure and function 
of skeletal muscle. However, the half-life of ROS in skeletal muscles is so short that 
it’s difficult to determine their target substances directly and deviations often occur 
[45].

Oxidative stress is not related to all types of disused muscle atrophy. The degree 
of redox in different muscles and species fluctuates greatly. For example, oxidative 
stress is likely to have a causal relationship with diaphragmatic atrophy in mice, but 
whether it has been related to the disuse of a soleus muscle in HU mice has not yet 
been established. Little is known about the gastrocnemius, and the role in humans is 
even more unconfirmed. Experimental studies have shown that patients have a 
strong and rapid oxidative stress due to diaphragmatic atrophy induced by mechani-
cal ventilation [46]. At this time, the extent of oxidative stress in the atrophic mus-
cles of the limbs is weak and slow [47].

Decreased mitochondrial function and inflammation-induced apoptosis of mus-
cle fibers and imbalanced protein metabolism may be the main mechanisms by 
which the number of muscle fibers decreases and existing muscle fibers shrink. 
Oxidative stress, decreased mitochondrial function, inflammatory response, and 
apoptosis have complex interrelationships at the cellular and molecular levels.

In brief, oxidative stress does have a certain responsibility for the occurrence of 
muscle atrophy, but it is still to be studied whether or not who is responsible for the 
relationship between the two. Because of the short duration of ROS, it may have 
different results because of the different timing, location, and nature of 
ROS. Moreover, different muscles, species, and models have different degrees of 
oxidative stress during disuse atrophy. There are too many variable factors in rele-
vant experimental studies, and there are limitations in the means of monitoring rel-
evant variables, so the original committee remains to be studied.
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16.3.4  Proinflammatory Cytokines, Hormones, and Aging- 
Related Muscle Atrophy

16.3.4.1  Il-6

IL-6 is a cytokine with multiple immunoregulatory functions and is mainly pro-
duced by adipocytes, cardiomyocytes, and leukocytes. However, several studies 
have shown that skeletal muscle is also an important tissue organ that secretes IL-6. 
IL-6 is characterized by gradual loss of skeletal muscle tissue and is associated with 
diseases such as cachexia, aging, and muscular dystrophy. In skeletal muscle, IL-6 
mainly activates the JAK/STAT3, ERK, and PI3K/Akt3 signaling pathways. Among 
them, STAT3 protein activation is the key to induce muscle degradation [48, 49].

16.3.4.2  TNF-α

TNF-α is a kind of multifunctional cytokine which plays an important role in 
immune, inflammation, and injury responses. The results of the study indicate that 
TNF-α can inhibit protein synthesis and accelerate its degradation [50]. In addition, 
elevated levels of TNF-α in the body are closely related to skeletal muscle protein 
degradation caused by aging or certain diseases like cancer, chronic obstructive 
pulmonary disease [51], and so on. TNF-α exerts multiple biological functions by 
binding two separate cell surface receptors, TNFR1 and TNFR2. The results show 
that TNF-α participates in the process of muscle protein degradation mainly through 
the TNFR1 receptor [52].

16.3.4.3  TWEAK

As a newcomer of the TNF superfamily, TWEAK is functionally similar to TNF-α, 
such as induction of apoptosis, promotion of inflammatory response, and regulation 
of immunity. TWEAK binds to its receptor Fn-14, which not only activates nuclear 
transcription factor NF-κB through TRAF6, upregulates MuRF-1 expression, 
induces muscle protein degradation [53, 54], but also enhances NADPH oxidase 
activity and promotes cell release of ROS [55]. TNF-α and TWEAK can also upreg-
ulate the expression of MAFbx and MuRF-1 by activating the p38MAPK and JAK/
STAT3 signaling pathways [56, 57]. The cachectic phenotype can be induced by 
overexpressed TWEAK partially via the induction of the E3 ligase MuRF1 in patho-
logical conditions [53].
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16.3.4.4  Glucocorticoid

The adverse effects of glucocorticoids widely used in clinical practice could not be 
underestimated. It can reduce synthesis of muscle protein and accelerate the decom-
position of protein and thus become the main hormone causing muscle atrophy. 
Atrophy may be related to its ability to induce the upregulation of MuRF-1 and 
MAFbx expression. Studies have shown that glucocorticoids and FOXO1 cooperate 
to induce MuRF-1 gene transcription [58]. Therefore, breakdown of muscle protein 
stimulated by glucocorticoid is mainly mediated by ubiquitin-proteasome- dependent 
proteolysis. In addition, the process may also involve calcium-dependent protein 
degradation.

16.3.4.5  Angiotensin II

In the renin-angiotensin system (RAS), angiotensin II is the one of the main effector 
molecules. It regulates the central nervous system, adrenal glands, blood vessels, 
and kidneys to maintain the body’s water-sodium balance. The skeletal muscle atro-
phy caused by AngII includes the following mechanisms: Atrogin1/MAFbx, upreg-
ulation of E3 ligase encoded by MuRF-1, increased decomposition protein in 
ubiquitin-proteasome system, and increased active oxygen content [39].

16.3.5  PGC-1α, Mitochondria, and Aging-Related Muscle 
Atrophy

Energy transduction and oxidative metabolism pathways of mitochondria are essen-
tial to the function of skeletal muscle. One major effect of long-term muscle atrophy 
is reduction of mitochondria. Peroxisome proliferator-activated receptor-γ co- 
activator- 1 (PGC-lα) can not only promote the formation of mitochondria but also 
participate in the formation of slow muscle fibers, muscle fiber phenotype conver-
sion, and other processes. PGC-1α and NFAT (activated T-cell nuclear factor) par-
ticipate jointly in regulating the formation of oxidized type I muscle fibers [59]. 
Studies have shown that normal levels of PGC-1α cannot prevent atrophy, whereas 
overexpression of PGC-1α can protect skeletal muscles during the process of mus-
cle atrophy, which may be related to inhibition of FOXO3 signaling [60]. As a 
highly conserved protein kinase, AMPK is related to the regulation of many physi-
ological processes. Activation of AMPK not only promotes mitochondrial produc-
tion via PGC-1α, activates TSC-2, or makes eEF-2 inactivated to inhibit 
mTOR- p70s6k pathway but also attenuates the translation of mRNA, which inevi-
tably leads to reduction of protein synthesis [61]. Therefore, there is an urgent need 
to determine whether activation of AMPK may regulate PGC-1α without affecting 
protein synthesis. As a lot of proteins lost during the process of muscle atrophy, 
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activation of the AMPK pathway to enhance the inhibition of protein synthesis does 
not serve the original purpose of protecting skeletal muscles.

16.4  Pathophysiological Effects of Aging-Related Muscle 
Atrophy

16.4.1  Clinical Symptoms of Muscle Atrophy in Aging

With aging, the regeneration ability of tissue cells decreases, and the body will 
experience muscle atrophy and decreased strength or skeletal muscle atrophy, 
resulting in degenerative changes in muscle and function [9]. Irwin Rosenberg, a 
professor at the University of Tufts in the United States, first proposed muscular 
decay syndrome. It is a progressive systemic hypofunction syndrome with a series 
of changes, such as reduction of volume, quantity, and mass of skeletal muscle fiber, 
a decrease of skeletal muscle strength, and an increase in connective tissue and 
adipose tissue. The main clinical manifestations of patients are muscle weakness, 
muscle relaxation, decreased mobility, increased folds, reduced body mass and 
defatted body mass, explosive power and grip strength, and even decreased balance, 
difficulty standing, and lowering. 

Epidemiological data show that the incidence of muscle attenuation in the elderly 
is high, which seriously affects the elderly’s quality of life. In 2010, a working group 
of the elderly people with sarcopenia in Germany put forward the diagnostic criteria 
and grading of muscle attenuation syndrome for the first time. They proposed that 
muscle attenuation syndrome can be diagnosed by reduction of skeletal muscle vol-
ume, a decrease of skeletal muscle strength, and a decrease of limb and trunk motor 
ability. Two of them can be diagnosed as muscle attenuation syndrome, and all three 
are met with severe muscle attenuation syndrome [62]. Current research and clinical 
instrumental diagnostics mainly use computer tomography (CT) [63], nuclear mag-
netic resonance imaging (MRI), ultrasound, dual-energy X-ray absorption (DEXA) 
[64], bioelectrical impedance analysis (BIA), and other methods to measure the 
mass of skeletal muscle. The measurement of muscle strength and function of skel-
etal muscle mainly includes determination of pace, lower limb muscle strength, and 
grip strength [65, 66]. The combination of grip strength and lower limb muscle 
strength is a method for evaluating strength and function of skeletal muscle.

16.4.2  Histological Symptoms of Muscle Atrophy in Aging

Skeletal muscle is a terminally differentiated cell composed of multinuclear muscle 
fibers. Adult muscle fibers lose the ability to undergo mitosis, so skeletal muscle 
damage is mostly irreversible. From a histological point of view, muscle tissue is 
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one of the most complex structures in the organism. At the same time, muscle cells 
are the largest cells in the organism. Therefore, the study of the physiology and 
pathology of muscle and the method of histology in the fields of biology and clinical 
medicine occupies a very important position. Especially in clinical medicine, the 
diagnosis and treatment of neuromuscular disease is mainly based on the results of 
histological studies. Understanding the histological changes in muscle cell aging 
can more intuitively understand the characteristics of muscle cell aging and also 
provide a reference for a more in-depth study of aging and muscle function decline 
in histological research methods.

16.4.2.1  Structure Changes of Muscle Atrophy in Aging

Under normal circumstances, two types of muscle fibers compose the body’s skel-
etal muscle, namely, fast muscle fibers (type II) and slow muscle fibers (type I).The 
proportion of the two fibers in different skeletal muscles of the body is different. For 
example, in the skeletal muscles that maintain the main body posture, the slow 
muscle fibers occupy a relatively high proportion, while in the exercise-oriented 
skeletal muscles, the proportion of fast muscle fibers is higher. During the process 
of human aging, muscle fiber structure will change which have been reported in 
detail. Autopsy analysis of human extraosseous muscles showed that type I and type 
II muscles were 50% less at the age of 90 than 20 [67]. In addition, at older ages, 
distribution of muscle fiber types to higher percentages converts type 1 muscle 
fibers more clearly than type II muscle fibers [68].

Studies have shown that sarcopenia is dominated by the reduction of fast myofi-
bers [69]. However, other studies did not find any significant change in the type of 
muscle fiber composition with age [70, 71]. Histochemical analysis of muscle biop-
sies suggested that with age, the size of type II muscle fibers became smaller, while 
type I remained relatively unchanged in size. Although type II muscle fiber atrophy 
seems to be consistent with the muscle strength reduction during the aging process, 
the major factor in the loss of muscle strength is the decrease in muscle cross section 
during aging [67].

16.4.2.2  Changes of Myocyte Nuclear of Muscle Atrophy in Aging

Muscle fibers contain hundreds and thousands of muscle nuclei, and each myocyte 
nucleus controls a certain number gene expression of cytoplasmic bases, which is 
called the myocyte nuclear domain. Assume that the size of the muscle fibers 
changes, such as muscle fiber atrophy or muscle fiber hyperplasia, can be accompa-
nied by changes in the number of muscle nuclei and myocyte nuclear domain [72]. 
Although animal models of changes in the number of muscle nuclei have been pro-
posed, human experimental data show that there is usually no change in the number 
of muscle nuclei when muscles are atrophied [73]. The latest research showed that 
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the number of myocyte nuclei changed only when the mass increased significantly 
and there was no change when the mass was below 15% [74]. This theory is consis-
tent with the notion that myocyte nuclei support cytoplasmic finite volume gene 
expression.

16.4.2.3  Changes of Muscle Satellite Cells of Muscle Atrophy in Aging

Skeletal satellite cell (SSCs) is a kind of adult stem cells distributed between the 
sarcolemma and basement membrane of muscle cells. Their location and arrange-
ment are similar to satellites of muscle cells, so they are called satellite cells [75]. 
Skeletal satellite cells are undifferentiated muscle progenitor cells (MPCs) retained 
in muscle tissue of adult individuals, located on the basement membrane and base-
ment membrane of muscle fibers. Among them, there is a potential for self-renewal 
such as differentiation and proliferation. The content of muscle satellite cells is rela-
tively small, accounting for approximately 1% to 4% in adult skeletal muscle. In 
resting state, SSC also has less cytoplasm and organelles and has a higher ratio of 
nucleoplasms; its cell nucleus is smaller than that of myotubes, and its heterochro-
matin content is higher than that of muscle nuclei [76]. As the age increases, the 
abundance of SSC gradually decreases, and the potential of SSC to differentiate 
myogenicity and self-renewal remains, but the renewability decreases.

Satellite cells are usually stay in hibernation. With the influence of many external 
stimuli, satellite cells in the body are activated to enter the cell cycle, producing 
MPCs that multiply, differentiate, and fuse to form new muscle cells. After activa-
tion, the division mode of satellite cells follows that of stem cells, that is, two types 
of daughter cells are produced after cell division. One of them will remain as the 
source of cell division in the future and remain in the original state, and the other 
can be further differentiated into mature muscle fibers. During activation of satellite 
cell, numerous factors and cytokines are involved in the regulation of this process 
(e.g., FGF-2, HGF [77, 78], FGF, LIF, IL-6 [79, 80], IGF-1 [81, 82], SCF, and NO). 
However, it is still unclear whether these different growth factors affect the re- 
formation of satellite cells, whether they affect the self-renewal of satellite cells, or 
whether they stimulate the expansion of the replicating myoblast bank alone. The 
self-renewing signaling pathways of muscle satellite cells are mainly Notch signal-
ing pathway [83, 84] and Wnt/β-catenin signaling pathway [85, 86].

16.5  Current Clinical Treatments of Muscle Atrophy 
in Aging

The treatments consist of the nutritional support, exercise, drug, gene therapy, and 
cell therapy (Fig. 16.2 in this chapter).
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16.5.1  Nutritional Support

Protein accounts for about 20% of the muscle mass. The balance of protein metabo-
lism determines the amount of muscle. Therefore, the reduction of protein intake 
has a direct impact on sarcopenia. Nutritional support can improve the quality of life 
of malnourished people, such as the elderly and chronic wasting diseases, to a cer-
tain extent. Therefore, many researchers believe that nutritional interventions, espe-
cially the intake of protein and amino acids in the body, can directly promote muscle 
protein synthesis and prevent sarcopenia [87]. The recommended intake of dietary 
protein is 1.0–1.2 g per kilogram of mass per day [88]. The body’s vitamin D is 
derived from the diet and the effect of UV on the skin, so strengthening protein 
intake and supplementation with vitamin D can improve strength and function of 
muscle in the elderly [89]. In addition, protein ingestion before sleep has been sug-
gested as an effective way for increasing the anabolic response and to efficiently 
stimulate protein synthesis of muscle in the elderly [90]. However, a number of 
studies have shown that nutritional support could not effectively increase the muscle 
mass and improve the functional status of patients with sarcopenia [91, 92]. 
Therefore, nutritional interventions for patients with sarcopenia need a further 
study.

16.5.2  Exercise Training

Exercise training plays a positive role in maintaining the physiological functions. 
Many researches have confirmed that exercise improves mass and function of muscle 
in patients with sarcopenia significantly. After giving the elderly some exercise 

Fig. 16.2 The main strategies for the treatment of muscle atrophy in aging
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training, their muscle mass and function have been significantly improved, and to a 
certain extent, the occurrence of falls and decreased mobility has been prevented [93].

16.5.2.1  Resistance Training

Resistance training is a kind of resistance exercise. The main purpose is to train the 
body’s muscles. The traditional resistance training includes push-ups, dumbbells, 
and barbells. Resistance exercise can lead to a series of beneficial functional changes 
by promoting skeletal muscle anabolism and inhibiting catabolism [94]. With the 
development of the aging process, the quality and strength of human skeletal mus-
cles will decline. Resistance training can convert type IIb muscle fibers into type IIa 
fibers, suggesting that resistance training may increase muscle aerobic capacity 
because type IIa muscle fibers have stronger aerobic oxidation properties than type 
IIb muscle fibers. It is reported that resistance exercise training can simultaneously 
increase satellite cell content [95] and extra strand and trapezius muscle fiber size 
[96], while some studies have reported that exercise induces a proportionate increase 
in myocyte nuclear content and induces muscle fiber hypertrophy [73]; however, 
there are still some studies that could not confirm these [97]. Horii [98] found that 
resistance training-induced changes in circulating C1q levels may be helpful to the 
prevention of fibrosis and atrophy of muscle via Wnt signaling in senescent mice. In 
short, resistance exercise is always a potent method to prevent the muscle mass loss 
during the aging process.

16.5.2.2  Endurance Training

Endurance exercise, also known as aerobic exercise, is the most important and basic 
exercise method for exercise prescription. Common aerobic sports include walking, 
jogging, walking, alternating stairs, swimming, cycling, power cycling, running, 
skipping, boating, water skiing, skiing, and ball sports. Endurance exercise produces 
good results mainly through improving cardiovascular health [99] and inhibiting 
proinflammatory cytokines [100]. However, recent studies shows that under various 
chronic conditions like cancer cachexia [101], cardiac cachexia [102], or diabetes 
[103], endurance exercise can also weaken atrophy of skeletal muscle. Besides that, 
endurance exercise can also enhance the mitochondrial function of skeletal muscle, 
which may be related to the enhancement of PGC-1α expression, but it has no sig-
nificant effect on the size of skeletal muscle [104]. Moderate- intensity endurance 
training has the effect of accelerating the synthesis of fast-twitch skeletal muscle 
proteins in the aging body, which may have important potential in preventing and 
delaying sarcopenia’s clinical approaches. Endurance training can not only reduce 
plasma-free amino acid levels but also increase the amount of protein in fast-twitch 
skeletal muscle and upregulate MHCII expression in skeletal muscle. This regula-
tion may be mediated by the mTOR/p70S6K pathway [105, 106]. However, the 
specific mechanism is still not clear, and further research is needed.
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16.5.2.3  Combination Training

Both resistance and endurance training can increase the contents of skeletal muscle, 
especially satellite cells of the type II muscle fiber. In addition, the active factors 
like MyoD, myogenin, Mrf4, and Myf5 that activate and proliferate the satellite 
cells also increase. More meaningfully, combining resistance and endurance train-
ing is more conducive to improve the body composition and fitness of the elderly 
than endurance or resistance exercise alone, but the mechanism remains to be stud-
ied. It is notable that performing strength and endurance training at the same time 
will bring a trading effect, which is called simultaneous training effect or interfer-
ence effect compared to the exercise of strength and endurance alone. As the genetic 
and molecular mechanisms involved in the induction of resistance training and 
endurance training are different, therefore optimizing the design of the exercise 
program is needed.

16.5.3  Drug Therapy

Many researchers have applied different measures to treat sarcopenia based on 
known factors and underlying mechanisms, which have achieved certain results, 
such as the application of sex hormones (testosterone, etc.), growth hormone, 
growth hormone receptor modulators, nonsteroidal anti-inflammatory drugs (cele-
coxib), and so on. Although studies have shown that testosterone can increase LBM 
and improve function of skeletal muscle, celecoxib can significantly increase LBM 
and TNF-α [107]. However, the current related research is still in the initial stage of 
exploration. There is insufficient research data, especially clinical research data to 
support the efficacy of these drugs. Therefore, drug treatment for sarcopenia requires 
further experimental and clinical studies.

16.5.4  Gene Therapy

In gene therapy, viral or nonviral vectors are widely used to transport the target 
genes to adult cells. Currently, the viral can infect the skeletal muscle system sys-
tematically, but it has been completed only in mouse models, not in human system. 
Whereas, there are limitations to nonviral vectors once delivered into the recipient 
cells due to vector instability. There are two methods of gene therapy. One is the 
indirect method of introduction. The therapeutic effect is exerted by the secretion of 
the exogenous gene expression product. The second is the direct introduction 
method. The target gene would be  combined with viral or nonviral vectors, or 
directly introduced into the target cells to express the desired functional protein 
in vivo and produce therapeutic effect. The direct method is easy to operate but 
lacks of specificity and targets during gene transfer. Rodgers [108], who created 
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AAVogen company, found that an adeno-associated virus can transport Smad7 into 
the muscle cells. As a signal protein, the Smad7 protein then obstructs another two 
signaling proteins named Smad2 and Smad3. Both proteins can be activated by 
myostatin and some other hormones causing muscle atrophy, and Smad7 can block 
muscle atrophy by blocking these signals.

16.5.5  Cell Therapy

Cell therapy meets a problem that peripheral environment does not continue to pro-
vide a sufficient number of cells when using committed cells or stem cells. The 
research of static satellite cell characterization is a promising study to improve the 
regeneration of muscle tissue. Skeletal muscle satellite cells serve as myogenic stem 
cells and play an important role in the repair and regeneration of skeletal muscle. 
Multiple signaling pathways are activated through the self-renewal of satellite cells. 
However, the self-renewal mechanism that skeletal muscle satellite cells proliferate 
and differentiate is still controversial and still needs further research to confirm. 
During quiescence, activation, and differentiation of satellite cells, miRNAs take 
part in the processes and thereby regulate the regeneration of muscle [109]. During 
the process of muscle regeneration, the expression change of several miRNAs seems 
similar to that observed in the processes of embryonic myogenesis and muscle 
regeneration, such as miR-1, miR-682, and miR-499 [110].

16.6  Perspective

Muscle atrophy is a common clinical syndrome characterized by skeletal muscle 
mass and its function decreasing. It often occurs in elderly people and not only 
increases the fall rate, disability rate, hospitalization rate, and even death rate but 
also increases the economic burden on individuals and society.

At present, the research on muscle atrophy in aging is still in an exploratory 
stage. The pathogenesis and even the diagnosis and treatment of the disease are still 
not very clear. It is of great significance to explore the effects of acute exercise and 
long-term exercise training on mitochondrial function, oxidative stress, apoptosis, 
and inflammation in the elderly. Except that, research on stem cells and gene ther-
apy has changed the traditional view of human treatment of diseases, and humans 
have hoped for stem cell treatment for diseases that were previously difficult to treat 
in recently years. With further research on its cell characteristics, biological charac-
teristics, differentiation potential, and differentiation mechanisms, there is a reason 
to believe that more incurable diseases will be treated with satellite cell 
transplantation.

It is essential to conduct further research using genetically manipulated animal 
models and animal models for sports, which helps further understanding the cellular 
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molecular mechanisms and prevention principles of muscle atrophy in aging, devel-
oping scientific exercise prescription interventions, improving skeletal muscle 
health of elderly people, and reducing the social and economic burden.
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Chapter 17
Muscular Atrophy in Cardiovascular  
Disease

Isadora Rebolho Sisto, Melina Hauck, and Rodrigo Della Méa Plentz

Abstract Currently, the number of chronic diseases has increased due to increas-
ing in life expectancy of population. Among them, cardiovascular diseases (CVD) 
are the most prevalent and responsible for the high mortality and morbidity rates. 
Patients with CVD have metabolic, hemodynamic, and musculoskeletal changes. 
There is a debate regarding the correct term for musculoskeletal changes that affect 
this group of patients; therefore, we found in literature myopia, muscular atrophy, 
cardiac cachexia, and sarcopenia. However, although there is no standardization in 
relation to correct term, these musculoskeletal consequences directly affect the 
quality of life and are associated with a poor prognosis. In this way, the importance 
of prevention of muscular atrophy, but also of treatment for those patients with pro-
gressive muscle decline, is proven. We also emphasize the importance of a multi- 
professional team, because therapeutic strategies are needed that are capable of 
delaying the onset or minimizing the consequences of skeletal muscle loss, from 
pharmacological management and nutrition to physical exercise.
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17.1  Background

The number of chronic diseases, currently, has increased due to an increase in the 
population’s life expectancy. Among them, cardiovascular diseases are disorders of 
the heart and blood vessels and include ischemic heart disease or coronary artery 
disease, cerebrovascular disease, and diseases of the aorta and arteries, such as 
hypertension and peripheral occlusive arterial disease [1]. Cardiovascular diseases 
account for 17.7 (31%) million deaths around the world [1]. Patients with cardiovas-
cular diseases have metabolic, hemodynamic, and musculoskeletal abnormalities, 
which can lead to muscular loss, sarcopenia, and/or cardiac cachexia [2]. The loss 
of muscle mass may be a consequence of pathological changes, in the case of mus-
cular dystrophies; due to the aging process, as in the case of sarcopenia; by simple 
disuse; or secondary to diseases inducing cardiac cachexia [3].

Sarcopenia is a progressive degradation of muscle mass originally observed dur-
ing aging, with a prevalence of 5–10% in people over 65 years of age [4]. It is asso-
ciated with an increased risk of fragility, worsening of quality of life, disability, 
falls, hospitalization, and even death [5]. The pathogenic loss of motoneurons dur-
ing aging also contributes to the development of the disease [4]. Sarcopenia has a 
multifactorial etiology determined by changes in endocrine function, immobiliza-
tion, impaired feeding, insulin resistance, denervation, and inflammation [6]. It can 
be classified into two forms, primary when it is related to age and the cause is aging 
and secondary when it is related to a disease [7]. When related to diseases, sarcope-
nia is associated with insufficiency of advanced organs, chronic inflammatory dis-
eases, malignancies, and endocrine diseases that affect protein synthesis, proteolysis, 
neuromuscular integrity, and muscle fat content [7] and is characterized by the pro-
gressive and generalized loss of skeletal muscle mass and strength, with the risk of 
fragility and poor quality of life [8].

Cachexia is a complex and prevalent pathological condition, characterized by the 
patient’s weight loss, as well as loss of body mass and adipose tissue [9]. It is usu-
ally related to chronic diseases, and its occurrence predicts the reduction of survival 
and poor prognosis. The pathophysiology of cardiac cachexia is multifactorial in 
nature. Several mechanisms, such as hormonal disorders, overexpression of proin-
flammatory cytokines, malabsorption, and reduction of food intake, are involved in 
the process of muscular atrophy [9].

Cardiovascular diseases are associated with a higher prevalence and increased 
risk of muscular atrophy and progression of these musculoskeletal disorders. 
Complementarily, to improve this symptomatology, and other variables, such as 
functional capacity and quality of life, the treatment encompasses a set of necessary 
and multi-professional actions to ensure a healthier lifestyle, which includes dietary 
change, pharmacological adherence, control of factors, as well as the use of physi-
cal therapy, psychosocial support, educational actions, and physical exercise, 
encompassing what we call rehabilitation [10–12].
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17.2  Muscular Atrophy in Stroke

Stroke is characterized as a clinical condition due to a rapid loss of brain function 
because of interruption or hemorrhage of cerebral blood [13]. Spontaneous intrace-
rebral hemorrhage occurs in 10–20% of all strokes, in-hospital mortality rate is 
quite high, and the main risk factor is chronic hypertension [14]. The ischemic 
stroke is characterized by an arterial occlusion that causes interruption of cerebral 
perfusion and oxygen and glucose supply, which generates a permanently infarcted 
tissue called the ischemic nucleus [15].

The size of ischemic nucleus will cause the greatest impact on the patient’s life 
outcomes [15]. The collateral blood flow through the leptomeningeal vasculature is 
primarily responsible for limiting the extent of perfusion deficit and slowing the rate 
of ischemic progression [15]. The ischemic nucleus may be defined as cell death sec-
ondary to reduced cerebral blood flow, whereas the penumbra area is the site of cells 
with impaired functions that have not gone beyond the threshold for cell death [15].

Cerebrovascular dysfunction and brain stroke injuries are extensively studied 
unlike the systemic alterations and peripheral organ dysfunction [16]. Brain injury 
and subsequent interruption of the superior motor neuron pathway lead to contralat-
eral upper limb paralysis [6]. Neurological deficits and restricted mobility are 
accompanied by muscular structural alterations [6]. There is a decrease in the num-
ber of motor units in hemiplegic musculature that persists in chronic phase of stroke 
[6]. There is loss and installation of a skeletal muscle remodeling process that can 
initiate significant physical but also metabolic consequences [16]. Thus, poststroke 
patients become susceptible to loss of muscle mass, a determinant factor for pro-
longed hospitalization, poor rehabilitation success, and long-term outcomes [16].

Stroke is the leading cause of disability in adults due to persistent neurological 
deficits that imbalance functional abilities and cause physical inactivity [17]. The 
World Health Organization (WHO) estimates that 15% of world population lives 
with some form of disability, of which 2–4% experience significant functional dif-
ficulties [18]. Current projections estimate an exponential increase in stroke impact 
on society over the next few years [15]. The progression and consequent reduction 
of poststroke muscle mass may be related to inactivity, reduced strength, and 
decreased aerobic capacity [16, 19]. However, it is likely that in addition to inactiv-
ity, other catabolic signals through neurohormonal overactivation, inflammatory 
cytokines, and free radical species further stimulate the conversion of muscle fibers 
and changes in body composition [16].

Risk factors for cardiovascular events can be grouped into three major groups: 
non-modifiable risk factors such as age, gender, and family history; modifiable 
risk factors with drugs, through drug therapy or surgical procedures; and modifi-
able behavioral risk factors, such as lifestyle changes, physical inactivity, and 
smoking [20]. Stand out among modifiable risk factors the hypertension, dyslipid-
emia, smoking, inactivity, obesity, and diabetes [13]. In addition, there are some 
factors that may influence the prognostic outcome, such as age, stroke severity, 
stroke  subtypes, depression and physical function [13]. Recent study demon-
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strated hyperglycemia is associated with length of stay and functional outcomes 
evaluated by Barthel [13].

17.2.1  Prevalence of Muscle Atrophy

Stroke is the leading cause of disability in adults; approximately 50% of poststroke 
patients have some degree of hemiparesis, making 30% incapable of walking with-
out help, often resulting in long-term disability [19]. Recent clinical study showed 
prevalence of sarcopenia among poststroke patients ranges from 14% to 18% and is 
expected to increase over the next two decades [19]. In addition, more than 50% of 
the patients remain with some motor deficit making that costs for rehabilitation and 
daily support grow continuously [16].

17.2.2  Mechanisms of Muscle Atrophy

Muscular atrophy is predominantly responsible for poststroke weakness and not 
only motor control deficit due to neurological injury [21]. Sarcopenia is age-related 
loss of muscle mass and function, and skeletal muscle adaptations in the hemipa-
retic muscle currently characterize stroke-related sarcopenia [21]. A stroke-related 
sarcopenia has distinct characteristics such as rapid decline in muscle mass, struc-
tural muscle changes (altered muscle fiber type), a brain injury that determines 
bilateral differences in physical performance, loss of muscle mass not related to 
aging, and a catabolic signal that unbalances neurovegetative status [6].

Muscle weakness and atrophy observed in the upper limbs may possibly be asso-
ciated with disuse and decreasing of contralateral and ipsilateral pathways [21]. 
Although weakness of paretic limb may be linked to impaired cortical activation, 
such deficit does not support the bilateral weakness often observed [21]. However, 
the mechanism that explains for such bilateral muscle weakness remains unclear. A 
combination of mechanisms, including immobilization, disuse, inflammation, and 
poststroke metabolic and neurovegetative imbalance, may result in loss of muscle 
mass and progress to stroke-related sarcopenia [4].

The acute ischemic event can induce a global stress response which generates 
local and systemic overstimulation of sympathetic nervous system, hypercorti-
solism, and activation of hypothalamic-pituitary-adrenal pathway [16, 22]. Damage 
in preganglionic inhibitory pathways of sympathetic nervous system can cause a 
sympathetic overflow and, consequently, a wide inflammatory and metabolic agita-
tion [16, 22]. Sympathetic signaling stimulates catecholamines that can lead to cata-
bolic stimulation, which triggers insulin resistance, protein degradation, and 
increased lipolysis [16]. There is also evidence of disturbances in the activation of 
cholinergic pathway of the vagus nerve and vagal reflexes, and reduction of heart 
rate variability is associated with negative functional outcomes [16].
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There is a relation between sympathetic tonus and secretion of inflammatory cyto-
kines, and catabolic cytokine TNF-alpha factor may be responsible for muscle mass 
reduction [16]. In the paretic lower limb were found increased levels of TNF- alpha 
mRNA in relation to the controls [19]. Sarcopenia may be also linked to increased 
skeletal muscle protein breakdown or reduced protein synthesis [19]. An increase of 
40% in myostatin mRNA, a growth factor that negatively regulates muscle growth, 
was observed in the vastus lateralis muscle suggesting an imbalance between protein 
synthesis/degradation [19]. Recent experimental study with mouse stroke models 
[22] found catabolic activation in skeletal muscle due to increased apoptotic activa-
tion, a proteolytic breakdown of muscle tissue, and high levels of myostatin. These 
mechanisms resulted in a severe reduction in weight due to reduction of tissue mass 
and fat, as well as reduction of skeletal and myocardial muscle mass [22].

Inflammatory cytokines and catabolic overstimulation propagate functional mus-
cle decline [16]. In addition to muscle atrophy, there are changes in capillarization, 
glucose use, proinflammatory cytokine activation, muscle fiber-type change, and 
endothelial dysfunction [22]. Many factors may contribute to reduction of fat 
(depletion of energetic reservoirs) and muscle (functional decline) mass and clinical 
manifestation of sarcopenia in poststroke patients [16]. Factors like physical and 
emotional stress, pain, spasms, and interruption of preganglionic inhibitory control 
in autonomic nervous system may explain all this sympathetic activation [22]. 
However, the complex process of metabolic and maladaptive adaptations that con-
tribute to loss of muscle mass and development of sarcopenia, as well as its impact 
on functional capacity and other outcomes, is still poorly understood [16].

17.2.3  Pathophysiological Effects of Muscle Atrophy

Disability is usually attributed to brain injury; however, the skeletal muscle is the 
primary effector organ of poststroke disability [23]. Consequently, less attention is 
still given to relevant systemic effects, such as secondary alterations in muscle atro-
phy, metabolic and contractile capacity, and inflammation [23]. Figure  17.1 
Synthesizes this effect. Muscle mass reduction is often observed in poststroke 
patients, and within 4 hours after brain damage, there is an initial reduction of motor 
neurons in the musculature of paretic limb that persists in chronic phase [4]. 
However, poststroke muscle dysfunction is a multifactorial phenomenon caused 
mainly by reduction of physical activity and achievement of compensatory motor 
patterns that lead to muscle weakness and atrophy [21]. It occurs also loss of muscle 
innervation which contributes to muscle weakness, inactivity, and immobilization 
resulting in muscular atrophy [4].

Hemiparesis causes muscular abnormalities with denervations, disuse, remodel-
ing, and spasticity that can trigger a complex pattern of alterations of phenotypes 
and muscular atrophy [24]. There is a change in muscle fiber type I (slow-twitch) to 
muscle fiber type II (fast-twitch) and, consequently, a greater dependence on 
 anaerobic metabolism [24]. This shift in muscle fibers is an important predictor of 
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imbalance in functional capacity, such as severe gait deficit [24]. The reduction of 
muscle mass and increased hemiparetic deficit during gait are independent factors 
for reduction of aerobic fitness, suggesting components of stroke-related sarcopenia 
directly influence functional capacity and fragility [19]. In a clinical study, Ryan 
et  al. [17] showed an overall reduction of muscle mass in paretic lower limb. It 
occurs a reduction of area, volume, and muscular quality together with a subcutane-
ous increasing of fat around and within the muscle [19]. However, not only affected 
limb but also non-paretic upper limb changes in size and strength. A reduction in 
muscle mass of non-paretic upper limb can be observed in third week poststroke 
and muscle weakness in fourth week [4]. Similarly, it occurs a similar reduction of 
muscle mass in lower limbs of patients who are not able to walk [4]. Malnutrition is 
also a common problem in 49% of poststroke patients because of limited nutritional 
intakes of macronutrients and calories, which also contribute to sarcopenia [23].

17.2.4  Current Clinical Treatments for Muscle Atrophy

Physical activity in form of rehabilitation is part of standard poststroke treatment, 
and the prevention or recovery of muscle metabolic abnormalities will contribute 
substantially to this treatment [24]. Recent systematic review showed important 
reduction in the size and muscular strength of paretic upper limb after stroke and in 
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non-paretic upper limb [21]. However, results support practice of interventions with 
exercise to reverse decreasing in muscle mass and size that occurs in both upper 
limbs, paretic and non-paretic [21].

There is potential for strength training interventions to improve gait speed and 
strength in addition to muscle strength generation [21]. Clinical study [4] which 
showed improvement in strength of the paretic upper limb handshake after rehabili-
tation training may cause reduction of C-terminal agrin fragment (CAF), a potential 
marker of sarcopenia caused by degeneration of neuromuscular junctions in addi-
tion to increasing of muscle mass [4]. Declining of muscle mass in non- paretic 
muscle may be partly reversible, and exercise will contribute to the process of mus-
cle mass restoration as well as recovery of structural and metabolic changes.

17.3  Muscular Atrophy in Peripheral Arterial Occlusive 
Disease

Peripheral arterial occlusive disease (PACD), or peripheral arterial disease, a sys-
temic manifestation of atherosclerosis [25], is an atherosclerotic disease character-
ized by occlusion (blockage) or stenosis (narrowing) of the lumen of peripheral 
arteries that cause reduction of blood flow in lower limbs [26]. Atherosclerosis is a 
heterogeneous disease initiated by various pathophysiological pathways in the vas-
cular wall and affects almost all blood vessels in the body [27]. The most affected 
arterial regions are the coronary vessels, carotid arteries, and arteries of lower 
limbs [27].

It is supposed that similarly to coronary atherosclerotic lesions, thrombus forma-
tion in peripheral vascular lumen is due to rupture or erosion of atheromatous plaque 
surface [27]. Inflammatory cells play an important role in the development of all 
stages of atherosclerosis. The cells accumulate in the intima layer of vascular wall 
in response to the presence of oxidized low-density lipoprotein (oxLDL) molecules 
[27]. Besides influencing foam cell formation, inflammatory cells are responsible 
for vulnerability and destabilization of atheromatous plaque due to release of metal-
loproteinases [27]. More severe clinical stages of PAOD are caused by more com-
plex and extensive lesions in the arterial tree of lower limbs, composed of 
atherosclerotic lesions and apposition of unstable and vulnerable plaques thrombi 
[27]. In addition, not only the inflammatory cells but neovascularization of athero-
sclerotic lesions is responsible for development and progression of plaque.

The clinical symptoms of PAOD includes intermittent claudication, pain at rest, 
and reduction of muscle mass, which are due to reduced blood flow [25]. Some 
studies suggest that blood flow and oxygen delivery are not the only factors limiting 
the patients’ function but a metabolic defect in the use of oxygen in skeletal muscle 
[25]. Thus, myopathy is present in skeletal muscles of patients with symptomatic 
PAOD and seems to be an important factor for pathophysiology of disease [25].
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Patients in symptomatic PAOD stages have a high risk of lower limb amputation 
and other vascular problems such as myocardial infarction and stroke [27]. The use 
of statins, however, besides causing a reduction in number of cardiovascular events, 
can interfere in the activation and consequent release of proteases and cytokines and 
not only in the quantity of inflammatory cells [27]. However, despite the poor prog-
nosis of patients with PAOD, cardiovascular risk management is still not desirable 
in most cases [26].

Cardiovascular risk reduction includes a variety of strategies such as control of 
blood lipids (statins), hypertension, diabetes, smoking cessation, weight reduction, 
and antiplatelet and antithrombotic therapy [26]. Medical treatment of intermittent 
claudication includes vasoactive drugs, such as phosphodiesterase inhibitors, which 
improve functional capacity [26]. Intravascular angioplasty improves blood supply 
and is generally indicated for patients with a more severe symptomatology and 
those who are not responsive to physical training or drug therapy [26]. One of the 
most effective treatments for improving exercise capacity and functional ability is 
supervised therapeutic exercise [26].

17.3.1  Prevalence of Muscle Atrophy

The prevalence of PAOD is growing around the world, with an estimated current 
prevalence of 200 million people [28]. In the United States, the vascular prevalence 
of the disease is 8.5 million people [29]. Risk factors include advanced age, smok-
ing, hypertension, dyslipidemia, and diabetes [26]. The incidence and severity of 
atherosclerotic lesions also accelerate with advancing age; more than 20% of indi-
viduals over 75 years of age have PAOD [27]. In addition, the increasing numbers are 
mainly due to increase in the rate of obesity, incidence of diabetes, and smoking [28].

Although disease is associated with a high risk of morbidity and mortality, there 
is a significant reduction in number of leg amputations in patients with symptoms of 
intermittent claudication. This reduction can be attributed to the early detection of 
disease, preventive medical treatments, and increased endovascular revasculariza-
tion [28]. Furthermore, possible change in genotype of iliofemoral atherosclerotic 
plaque, making it less destabilizing characteristics, due to treatment with statins, 
may be related to reduction of disease progression and improvement of vascular 
outcomes [28].

17.3.2  Mechanisms of Muscle Atrophy

Currently, it is suggested that myopathy is an important component of pathophysiol-
ogy of PAOD, mainly due to dysfunctional bioenergetic system of mitochondria, 
increased oxidative damage, myofibrillar degeneration, and fibrosis of affected skel-
etal muscle [25, 29]. Microscopic assessments demonstrated that the muscle of 
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patients with PAOD has extensive myopathic changes that appear to be correlated 
with the severity of occlusive disease [25]. These changes include necrosis, phago-
cytosis, central nucleus, and endomysial fibrosis, which are accompanied by neuro-
pathic alterations with evidence of significant myofibrillar denervation [25].

The structures of muscle fibers (myofibrils, mitochondria, nucleus, sarcolemma) 
and contractile elements are affected during myopathic process [25]. The sarcomere 
has extensive myofibrillar abnormalities, such as disorganization and fragmentation 
of Z-line and substantial disintegration of myofilaments [25]. There is a reduction in 
oxygen consumption by these myofibrils suggesting a defect in respiratory chain 
[25]. In addition, protein complexes (I, II, and IV), which compose respiratory 
chain, were significantly reduced in mitochondrial respiration together with enzy-
matic activities in patients with PAOD [25].

The mitochondria of muscles with occlusive disease demonstrated ultra- 
quantitative and qualitative abnormalities that make it primarily involved in myopa-
thy [25]. Dysfunction in mitochondrial oxidative metabolism in PAOD may 
contribute to muscle dysfunction and exercise intolerance. During exercise, phos-
phocreatine (PCr) donates its highly energetic phosphate to maintain stable levels of 
adenosine triphosphate (ATP) [30]. At the same time that, ATP is broken down into 
adenosine diphosphate (ADP) and inorganic phosphate, making energy flow unin-
terrupted for the performance of muscle contraction [30]. At the end of the exercise, 
PCr levels are low, and ADP levels are high. When the muscle contractile stimulus 
is finished, both molecules (PCr and ADP) are restored to their basal rates by ATP 
produced primarily through muscle oxidative phosphorylation [30]. The oxidative 
phosphorylation is an energetic process that occurs exclusively in the mitochondria 
(respiratory chain); thus basal rates of postexercise PCr and ADP may be good 
indexes of muscular mitochondrial function [30].

The increasing of oxidative damage is associated with deterioration of the size 
and shape of gastrocnemius myofibrils, preferably type II fibers, whereas type I 
fibers persist and are less injured [29]. The change of myofibrillar phenotype 
together with defective mitochondria and neuropathy demonstrates the possible 
mechanisms for deficits presented by patients with occlusive muscular disease [29]. 
The effects of neuropathy in patients with PAOD include reduced nerve conduction 
velocity and decreased amplitude and increased duration of motor unit action poten-
tial [29]. All these alterations suggest that it is the mitochondrial energetic impair-
ment, besides restriction of blood flow and oxygen, which compromises oxidative 
energetic production in the skeletal muscle, and consequently, it causes poor perfor-
mance in exercise performed by patient with PAOD [25].

The combination of factors related to intensity and frequency of muscular isch-
emic insult along with oxidative stress may be the primary mechanism responsible 
for mitochondrial energetic deficit in chronically ischemic muscle [25]. The cycles 
of ischemia and reperfusion generate a cascade of inflammatory changes that induce 
the production of reactive oxygen species (ROS) in the skeletal muscle [30]. These 
daily events in long term result in morphological changes of contractile elements 
and mitochondria. There is an even greater reduction in mitochondrial energy levels 
and increase in ROS production by mitochondria [30]. A vicious cycle is created 
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and causes deterioration of mitochondrial function and damage to all myocyte 
structures, leading to development of myopathy which affects function and perfor-
mance of patients’ lower limbs with PAOD [30].

17.3.3  Pathophysiological Effects of Muscle Atrophy

The majority of PAOD patients are asymptomatic, and prevalence of intermittent 
claudication in this population is around 25–30%, and prevalence of critical limb 
ischemia is 1–3% [27]. There is also a decrease in muscle strength, endurance, and 
cardiorespiratory capacity (PeakVO2), and maximum walking capacity is less than 
50% of that observed in subjects of the same age and without DAOP [26]. The func-
tional limitations associated with occlusive disease may be similar to those of severe 
heart failure [26]. These limitations have a major impact on quality of life, which 
makes disease associated with high levels of depression [26].

Intermittent claudication is the most commonly reported symptom and is typi-
cally described as a painful cramp, pain, or fatigue that affects the calf muscles and 
sometimes the thigh and gluteal muscles during walking or other forms of physical 
activity [26]. The symptom worsens with increased activity and is relieved only by 
the rest [26]. The metabolic demand of lower limbs during walking is exceeded at 
the limit of blood supply generating ischemia, exercise-induced discomfort, and 
pain in exercising leg [29]. Chronic ischemia-reperfusion of lower limbs causes 
biochemical and histological changes in the muscles of affected limb producing 
DAOP myopathy [29]. More severe symptoms are resting pain, non-healing skin 
ulcers, and tissue gangrene (necrosis), which are collectively referred to as critical 
ischemia of lower limbs [26].

The altered gait profile represents a decrease in the contribution of muscle 
strength in the ankle, knee, and hip joints [29]. There is a reduction of angular 
momentum curve (contraction) and maximum torque produced by plantar flexors 
which unbalance motor control strategies of patients with PAOD and may be related 
to neuropathy and myopathy [29].

17.3.4  Current Clinical Treatments for Muscle Atrophy

Currently, the importance of rehabilitation in treatment of PAOD patients is recog-
nized, and the American College of Cardiology and the American Heart Association 
presents training programs as the primary treatment option for intermittent claudi-
cation [31]. Supervised walking training programs have a more positive impact, and 
there may be a significant improvement in walking distance (approximately 150%) 
[31]. The meta-analysis of Lane et  al. (2014) showed that physical training pro-
grams with duration of 3–12 months improve in 5 min the average time of maxi-
mum treadmill walking [32]. Often there are changes in walking ability, together 
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with changes in the strength and endurance of the plantar flexors muscle group. 
Thus, training of plantar flexors has been shown to be an effective way of exercise 
to improve functional capacity of patients with PAOD [26].

The Exercise & Sports Science Australia presented an overview of exercise pre-
scription for patients with PAOD [26]. Patients should aim to complete at least 
6 months of physical training, starting with aerobic training, interval walking, or 
other aerobic exercises. The intensity should go up to moderate intermittent claudi-
cation and moderate intensity (effort perception rate in 3–4/10), with progression to 
vigorous intensity as tolerated (effort perception rate in 5–6/10). The duration 
should be as tolerated up to 40 min (excluding rest periods) with frequency of 3 ses-
sions per week. Resistance training should be progressively increased (1RM60–
80%, 6–8 exercise types), with 8–12 repetitions for 2–3 times with a frequency of 2 
sessions per week on nonconsecutive days [26].

A correlation between improved walking ability and PeakVO2 with supervised 
training was found, suggesting that benefits may be linked to an increase of oxygen 
supply to the muscle in motion and/or to an improvement in ability of muscle in 
movement to use oxygen [26]. However, physical training improves exercise toler-
ance in PAOD even without significant changes in blood flow possibly due to 
increase in muscle strength and various physiological adaptations, including 
changes in muscle metabolism and morphology [26, 31].

Myopathy had no therapies to prevent or reverse. In patients with severe symp-
tomatic PAOD, the effects of a strategic focus on mitochondrial energy defects, and 
ROS production should be investigated [30]. Clinically relevant therapeutic modali-
ties can prevent deterioration, as well as may generate a potential reversal of the 
already installed damage. In addition, medications in association with antioxidant 
agents capable of increasing mitochondrial metabolism may bring significant 
improvements in function of these patients [30].

17.4  Muscular Atrophy in Heart Failure

Heart failure (HF) is a major, highly prevalent public health problem characterized 
by the inability of the heart to meet the body’s metabolic demands. It may result 
from disorders of the pericardium, myocardium, endocardium, heart valves or large 
vessels, or certain metabolic abnormalities, but most HF patients have symptoms 
due to impaired left ventricular (LV) myocardial function. HF may be associated 
with a broad spectrum of functional LV abnormalities, ranging from patients with 
normal LV size and preserved ejection fraction (EF) to severe dilation and/or 
reduced EF [33]. The main causes are myocardial ischemia, systemic arterial hyper-
tension, dilated cardiomyopathy, Chagas’ disease, and valvular disease [34, 35].

The manifestations of HF include dyspnea and fatigue, which may limit exercise 
tolerance, and fluid retention, which may lead to pulmonary and/or splenic conges-
tion and/or peripheral edema. Some patients have exercise intolerance but little evi-
dence of fluid retention, while others complain mainly of edema, dyspnea, or fatigue 
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[35]. After cardiac injury, in some cases HF is accompanied by low cardiac output, 
and several mechanisms are activated to perform this compensation by increasing 
inotropism and chronotropism; consequently several ventricular, molecular, struc-
tural, and functional alterations, known as cardiac remodeling, occur. This process 
is accompanied by cardiac and systemic inflammatory and neurohormonal activa-
tion, which adversely affects the heart in a vicious cycle and compromises different 
organs and systems [34, 36]. Therefore, in addition to affecting the cardiovascular 
system, HF causes pathological changes involving the system renal, neuroendo-
crine, immunological, musculoskeletal, hematological, gastrointestinal, and nutri-
tional status [37].

HF has been characterized based on the classification proposed by the New York 
Heart Association composed of four classes with progression of symptoms. 
However, the symptomatology with the progression of the disease causes fatigue, 
dyspnea, and great limitation to the efforts. Although effort intolerance is associated 
with cardiovascular impairment, studies have shown that peripheral changes in skel-
etal muscle appear to have a stronger association with this condition [38]. In the 
terminal phase of HF, we can observe a series of consequences that affect the quality 
of life added to a poor prognosis, among them, muscular atrophy and/or cachexia. 
Cachexia is a prevalent pathological condition associated with chronic HF.  Its 
occurrence predicts the reduction of survival, regardless of relevant variables, such 
as age, functional class of HF, ejection fraction, and physical capacity. Cachexia 
induces pathological changes in skeletal muscle structure and function, resulting in 
muscle atrophy and exercise intolerance and promoting functional abnormalities 
and fatigue [39].

Despite advances in the disease, patients with HF have a poor quality of life due 
to the many consequences of this syndrome, including musculoskeletal disorders. 
Still, the mortality of patients hospitalized with this syndrome in Brazil and in the 
world is still high. Thus, new studies are needed that seek alternatives to improve 
the quality of life, symptomatology, and life expectancy.

17.4.1  Prevalence of Muscle Atrophy

The prevalence of HF has been increasing in recent years worldwide [40] and is the 
common final pathway of most heart diseases [41]. Approximately 23 million peo-
ple are carriers of HF in the world, and 2 million new cases are diagnosed each year 
[42]. It is the first cause of hospital admission in patients over 60 years of age in 
Brazil [41]. In the United States, about 550,000 new cases are diagnosed annually, 
being the fifth most frequent cause of hospitalization [42]. In Brazil, according to 
data from the Department of Informatics of the Unified Health System (DATASUS), 
approximately 238 thousand hospitalizations were performed per CI in 2012, with 
26 thousand deaths occurring, accounting for a 9.5% mortality during hospitaliza-
tion [43]. The Brazilian Registry of Acute Heart Failure (BREATHE) is the first 
national and multicenter registry of acute HF to include all regions of the country, 

I. R. Sisto et al.



381

involving 51 public and private hospitals in 21 Brazilian cities, and identified an in- 
hospital mortality of 12.6% [44].

Statistical data from the United States estimate that 5.7 million Americans over 
20 years of age have HF.  It is expected to increase approximately 46% between 
2012 and 2030, resulting in more than 8 million adults with HF [45]. Many comor-
bidities and consequences associated with HF worsen its prognosis, including mus-
culoskeletal disorders. In the case of muscular atrophy, it is present in up to 68% of 
patients, and sarcopenia affects approximately 20% of older adults with HF [46]. To 
further complicate the problem, 10–15% of HF patients develop cardiac cachexia, a 
condition characterized by loss of body weight due to muscle wasting and the disap-
pearance of adipose tissue [47].

17.4.2  Mechanisms of Muscle Atrophy

Patients with HF have a limitation in their ability to exercise. Although this intoler-
ance to exercise is due to low cardiac output, the effects of skeletal muscle loss 
should not be overlooked. This muscle loss may occur due to sarcopenia with loss 
of muscle mass and function, which is common in the aging of the elderly popula-
tion [48, 49] or in the form of cachexia which is associated with body weight loss 
[50]. Sarcopenia is associated with increased mortality regardless of age or other 
clinical and functional variables [51–53]. Similarly, the occurrence of cardiac 
cachexia predicts a reduction in survival, regardless of relevant variables, such as 
age, functional class of HF, ejection fraction, and physical capacity [50]. Sarcopenia 
in HF may ultimately progress to cardiac cachexia, associated with an extremely 
poor prognosis [50]. There is a debate regarding the terms sarcopenia and cachexia, 
suggesting that the term sarcopenia should be restricted only to healthy elderly. In 
this sense, recently the term “myopenia” has been suggested to describe muscle loss 
that meets the criteria of sarcopenia in patients with chronic disease; however, so far 
there is no standardized classification [54, 55].

It should be noted that there is also no standard definition of cardiac cachexia. In 
the past, low body weight was used to define cachexia, but low body weight would 
not classify a patient as cachectic. Already, in other studies, patients were classified 
according to body fat content, by lean tissue, or by anthropometric measurements 
[56]. Kotler [57] defined cachexia as “accelerated loss of skeletal muscle in the 
context of a chronic inflammatory response.” It is believed that the process of devel-
oping sarcopenia in the HF patient is due to its shared pathophysiological pathways 
(Fig. 17.2) including the process of altered ingestion and absorption, malnutrition, 
inflammation, humoral factors, ubiquitin-proteasome system, myostatin signaling, 
apoptosis, and oxidative stress. These combined processes result in muscle abnor-
malities, changes in mitochondrial structure and function, increased oxidative 
stress, and multiple histological abnormalities in the skeletal muscle, leading to 
reduced exercise capacity [58, 59].
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The etiology of cardiac cachexia associated with HF is multifactorial, and the 
underlying pathophysiological mechanisms are not well established. However, 
some studies have shown that malnutrition, malabsorption, metabolic dysfunction, 
anabolic/catabolic imbalance, inflammatory/neurohormonal activation, and cell 
death play an important role in the pathogenesis of cardiac cachexia [60]. Proposed 
mechanisms include an anabolic/catabolic imbalance with increased myofibril deg-
radation and myocyte apoptosis. Thus, the clinical effects include reduced muscle 
mass, strength, and consequently reduced exercise capacity [60].

Cachexia was recently defined as the loss of at least 5% of body weight over 
12 months (or a body mass index <20 kg/m2) in patients with chronic disease, such 
as HF, chronic obstructive pulmonary disease, chronic kidney disease or cancer, and 
at least three of the following clinical and laboratory criteria: decreased muscle 
strength, fatigue, anorexia, low fat-free mass index, and abnormal biochemistry, 
characterized by increased inflammatory markers [C-reactive protein, interleukin 
(IL-6)], anemia (Hb <12 g/dL), or low levels of serum albumin (<3.2 g/dL) [61]. 
While body weight loss defines cachexia, sarcopenia is not necessarily associated 
with changes in body weight because the decline in muscle mass may be masked by 
proportional increases in adipose tissue. Thus, imaging techniques, including dual- 
energy X-ray densitometry, computed tomography, or magnetic resonance imaging, 
are required to quantify muscle mass [62].

The skeletal muscle contains at least five proteolytic pathways that include the 
lysosomal, Ca2++-dependent channel, ubiquitin-proteasome system (UPS), caspase, 
and matrix metalloproteinase. Among these pathways, there is convincing evidence 
that only the activation of the ubiquitin-proteasome system plays a key role in mus-
cle loss. The adenosine triphosphate-dependent UPS pathway present in the nucleus 
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and cytosol is the major mechanism involved in the degradation of myofibril. The 
proteasome, a multi-subunit protein that degrades ubiquitin-conjugated proteins, is 
responsible for the degradation of intracellular compartment proteins [63].

The degradation of muscle protein in patients with HF has been attributed mainly 
to the overactivation of this pathway [64]. Since skeletal muscle structure is a matter 
of permanent changes, an anabolic/catabolic imbalance is needed to increase the 
degradation of myofibrils and apoptosis of myocytes. Looking at this imbalance, 
muscle wasting can be a consequence of reduced muscle anabolism, increased mus-
cle catabolism, or both. Maintenance of balance depends largely on the balance 
between anabolic hormones and the type 1 insulin-like growth factor and the cata-
bolic factors TNFα, interleukin-1β, interferon γ, myostatin, and glucocorticoids 
[65]. Therefore, muscle loss is a consequence of the imbalance of reduced protein 
synthesis and increased protein degradation, the latter associated mainly with an 
overactivation of the UPS system responsible for the elimination of damaged pro-
teins [58]. Several mechanisms are involved, including UPS system activity, apop-
tosis, and fiber type change (Fig. 17.3) [66].

The UPS pathway involves a multiple-subunit protease that degrades ubiquitin- 
conjugated proteins through the action of three enzymes, the ubiquitin-activating 
enzyme, the ubiquitin-conjugating enzyme, and the ubiquitin (atrogin-1 and MuRF- 
1) ligases. The inducers of MuRF-1 expression are proinflammatory cytokines, 
such as TNF-α, interleukin-6, and interleukin-1β [64]. TNF is one of the major 
cytokines important for the development of catabolism, along with IL-1, IL-6, and 
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the growth- transforming factor (TGF-β) [67]. Elevated levels of MuRF-1 were 
detected in the skeletal muscle of patients with CHF [68]. Similarly, elevation of 
TNF-α, IL-6, IL-1, norepinephrine, epinephrine, cortisol, angiotensin II, and aldo-
sterone were found in cachectic patients with HF [67, 69]. Finally, IL-1, IL-6, and 
TNF-α are linked to UPS activation and can induce anorexia and lipolysis, contrib-
uting to weight loss [70] (Fig. 17.4).

17.4.3  Pathophysiological Effects of Muscle Atrophy

Muscle atrophy is present in up to 68% of patients with HF [14] and is an indepen-
dent predictor of mortality [69]. Patients with advanced-stage HF exhibit multiple 
histological abnormalities in skeletal muscle and may be termed “cardiac skeletal 
myopathy” [71]. Thus, the clinical consequences of cachexia depend both on weight 
loss and systemic inflammation, which accompany the development of cachexia. 
Severe loss of body weight, even in the absence of systemic inflammation, is associ-
ated with deleterious effects in most organs and systems [37]. Systematically, loss 
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of three-compartment tissue, lean tissue, fat mass, and bone is found [67]. In skel-
etal muscles, an imbalance between synthesis and protein degradation leads to 
molecular changes and muscle atrophy, with decreased strength and impairment of 
daily activities [72, 73]. In healthy individuals there is a balanced distribution 
between type I (aerobic) fibers, type IIA fibers (both aerobic and anaerobic), and 
type IIB (mainly anaerobic) fibers [74]. In HF, a transition to type II fibers and 
reduced capillary density, as well as reduced cytochrome oxidase activity, are 
observed, but the mechanisms that lead to this change have not been clarified [75]. 
This modification, concomitant with reductions in the surface area of mitochondrial 
ridges, cytochrome C oxidase activity, and mitochondrial volume density, leads to a 
decrease in exercise tolerance [74, 76].

The aging process is accompanied by denervation and loss of fast motor units at 
a rate of 3% per year from the age of 60. Until the age of 80, it is estimated that 60% 
of the fibers are lost. In the sarcopenia process, type II fibers are more prone to atro-
phy than type I fibers [77]. Fatigue and muscle weakness are the two of the main 
symptoms experienced by patients with HF.  The loss of lean body mass, which 
results mainly from the skeletal muscle protein atrophy, is one of the characteristics 
of cardiac cachexia [78].

17.4.4  Current Clinical Treatments for Muscle Atrophy

Currently, there has been a better understanding of the pathophysiology of HF and 
its consequences, which allows a better understanding of the disease and the devel-
opment of therapeutic actions. However, to date no drug therapy has been effective 
in stopping skeletal myopathy. Thus, multi-professional therapeutic strategies are 
needed that are capable of delaying the onset or minimizing the consequences of 
skeletal muscle loss [79].

Skeletal muscle loss may precede cachexia; therefore preventive strategies have 
been mainly directed toward the preservation of muscle mass [80]. Cachexia has a 
multifactorial origin, so prevention and treatment should include several approaches, 
as shown in Table 17.1 [53]. The approach may include nutritional support, neuro-
hormonal blockade, reduction of intestinal bacterial translocation, treatment of ane-
mia and iron deficiency, appetite stimulants, immunomodulatory agents, anabolic 
hormones, and physical exercise Schemes [53].

Nutrition considerations include avoiding excessive consumption of salt and liq-
uids and restoring deficiencies in trace elements. The administration of omega-3 
polyunsaturated fatty acids could be beneficial in some patients. High-calorie nutri-
tional supplements may also be helpful. Drugs with potential benefit in the treat-
ment of muscle loss in patients with HF include testosterone, ghrelin, recombinant 
human growth hormone, essential amino acids, and β2-adrenergic receptor agonists 
[81]. Possible future interventions are being studied, such as anti-inflammatory 
agents, appetite stimulants, proteolysis and apoptosis inhibitors, and specific hor-
mone supplementation regimens being studied as possible future therapeutic options 
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[58]. The loss of muscle mass in patients with HF is a complex scenario, and no 
pharmacological treatment is effective in muscle loss. However, physical training is 
a non-pharmacological, effective, low-cost, and safe treatment that can help in this 
regard [81].

Aerobic exercise training is the therapeutic approach to neutralize skeletal mus-
cle myopathy [66] and has shown improvements in functional capacity. These 
improvements are probably driven predominantly by peripheral mechanisms such 
as improved endothelial function, oxygen extraction, and skeletal muscle function 
[82]. Other studies have shown that exercise training, including aerobic and resis-
tance exercises, improved strength, muscle mass, physical function, functional 
capacity, depression, and quality of life in patients with HF [68]. Another study 
evaluated the effects of regular physical exercise on local inflammatory parameters 
in skeletal muscle in patients with HF. Twenty patients were randomly assigned to 
a training group (n = 10) and control group (n = 10) submitted to 20 min of aerobic 
exercise. At baseline and after 6 months, serum samples and biopsies of the vastus 
lateralis muscle were collected. Serum TNFα, IL6, and I-1β levels were measured. 
It was observed that physical training was able to reduce local expression of TNFα, 
IL6, I-1β, and nitric oxide in the skeletal muscle. These local anti-inflammatory 
effects of aerobic exercise may attenuate the process of catabolic wear associated 
with the progression of HF [83].

A recent literature review evaluated the effects of aerobic training on skeletal 
myopathy induced by HF. It has been observed that the increase in the generation of 
reactive oxygen species, together with the deteriorated antioxidant defense, leads to 
an increase in protein degradation and reduction of protein synthesis in the skeletal 
muscle, and in this sense, aerobic exercise training neutralizes the mechanisms 
responsible by skeletal muscle atrophy in HF [79]. Patients with severe HF are intol-
erant to exercise; however, a promising alternative is the neuromuscular electrical 
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stimulation (NMES). According to the review by Saitoh [84], NMES is safe and 
beneficial in the outcomes of functional capacity, muscle strength, and quality of 
life compared to conventional aerobic exercise. In addition, NMES appears to have 
a beneficial effect on the proinflammatory cytokine, oxidative enzymatic activity, 
and anabolic and catabolic metabolism of proteins, which are the key molecular 
mechanism of muscle mass loss in HF patients.
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Chapter 18
Muscle Atrophy in Chronic Kidney Disease

Jociane Schardong, Miriam Allein Zago Marcolino, 
and Rodrigo Della Méa Plentz

Abstract The renal damage and loss of kidney function that characterize chronic 
kidney disease (CKD) cause several complex systemic alterations that affect mus-
cular homeostasis, leading to loss of muscle mass and, ultimately, to muscle atro-
phy. CKD-induced muscle atrophy is highly prevalent and, in association with 
common CKD comorbidities, is responsible for the reduction of physical capacity, 
functional independence, and an increase in the number of hospitalizations and 
mortality rates. Thus, this chapter summarizes current knowledge about the com-
plex interactions between CKD factors and the pathophysiological mechanisms that 
induce muscle atrophy that, despite growing interest, are not yet fully understood. 
The current treatments of CKD-induced muscle atrophy are multidisciplinary, 
including correction of metabolic acidosis, nutritional supplementation, reducing 
insulin resistance, administration of androgenic steroids, resisted and aerobic exer-
cise, neuromuscular electrical stimulation, and inspiratory muscle training. 
However, further studies are still needed to strengthen the comprehension of CKD-
induced muscle atrophy and the better treatment strategies.
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18.1  Background

Chronic kidney disease (CKD) consists of renal damage and progressive and irre-
versible loss of kidney function (glomerular, tubular, and endocrine) [1] or glomeru-
lar filtration rate less than 60 ml/min/1.73m2 for a period of 3 months or more [2]. 
Among the five stages of CKD, the last and most severe (terminal stage) is called 
chronic kidney failure (CKF), and the patients are extremely symptomatic, requir-
ing replacement renal therapy (RRT) or renal transplantation, since the kidneys lose 
control of the internal environment [1].

The muscle fibers of chronic kidney patients have many abnormalities, possibly 
due to the adaptation of these cells due to an altered internal environment. These 
abnormalities include changes in capillaries, enzymes, and contractile proteins [3]. 
Myopathy is due to multifactorial causes [4]; however, it frequently occurs in ure-
mic patients as a consequence of high serum calcium, urea, uric acid and creatinine 
levels, acidemia, carnitine low levels, and/or secondary hyperparathyroidism [5–7] 
and as result of disuse [4]. Still, patients with CKD in dialysis have a greater impair-
ment of muscle mass in relation to those who do not undergo dialysis, where atro-
phy, particularly of type II fibers, has been demonstrated [3]. In addition to the 
aforementioned mechanisms, other pathways are involved in the process of muscle 
atrophy and sarcopenia of this patient and will be addressed in the subsequent topics 
of this chapter.

Atrophy is the primary mechanism for muscle weakness, and this is an important 
cause of reduced functional capacity of patients with CKD [4, 8]. In addition to 
involvement of the lower limbs, muscle weakness is also present in the respiratory 
muscles, compromising pulmonary function [9, 10]. Thus, the reduction in physical 
conditioning as a whole leads to worsening of quality of life and increased mortality 
in this population [11].

Regarding the prevalence, the rates of sarcopenia (characterized by the decline of 
mass and strength/or muscle function) [12] range from 6% to 10% among non- 
dialysis CKD patients and 4% to 64% among patients undergoing dialysis treat-
ment. The wide variation is a direct consequence of the choice of the criteria that 
define sarcopenia, besides the demographic characteristics of the patients that are 
very variable [13, 14].

Still, Kim et al. (2014) performed a cross-sectional observational study evaluat-
ing 95 patients over the age of 50 in the final stage of CKD and found that sarcope-
nia was highly prevalent, being present in 37% of men and 29.3% of women [14].

Among the treatments available to attenuate and/or revert muscle atrophy are 
nutritional supplementation, correction of metabolic acidosis and reduction of insu-
lin, administration of androgenic steroids [15], resisted and aerobic exercise [16], 
neuromuscular electrical stimulation [17], and inspiratory muscle training [18].
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18.2  Pathophysiological Mechanisms of CKD–Induced 
Muscle Atrophy

CKD-induced muscle atrophy results from an imbalance between anabolic and cat-
abolic processes that controls muscle homeostasis [19]. The loss of muscle homeo-
stasis can result in impaired growth of new muscle fibers, suppression of protein 
synthesis, or stimulation of protein degradation [20]. Several factors that contribute 
to the loss of muscle homeostasis and consequent atrophy are altered in different 
degrees across the CKD phases until dialysis, caused by the loss of kidney function 
itself, comorbidities, complications, and treatments [21]. The factors include altered 
hormonal, immunological, and mitochondrial functions, alterations in progenitor 
cells and growth factors (insulin/insulin-like growth factor-1 (IGF-1), myostatin), 
metabolic acidosis, malnutrition, physical inactivity, and angiotensin II excess [19].

Figure 18.1 shows a summary of the relations between factors that affect muscle 
homeostasis and the pathophysiological mechanisms of muscle atrophy in 
CKD. These relations are explored next.

Fig. 18.1 Schematic representation of evidence-based relations between chronic kidney disease 
factors and muscle atrophy induction through activation of proteolytic pathways, suppression of 
protein synthesis, or muscle repair impairment
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18.2.1  Protein Degradation

18.2.1.1  Ubiquitin–Proteasome System (UPS)

The UPS was identified as the main pathway of muscle proteolysis and is activated 
in CKD patients as well as in other chronic diseases [20, 22]. This system is respon-
sible for the degradation of the majority of intracellular proteins [20]. Although 
there are other muscle degradation pathways, lysosomal and calcium-dependent, in 
catabolic conditions such as CKD, its contribution to muscle wasting is consider-
ably less significant than UPS [23].

UPS activity is regulated in several steps and begins by marking proteins to be 
degraded [20, 24]. Proteins are marked by a covalent linkage of a ubiquitin-chain to 
lysine residues in the protein substrate. This connection is mediated by a sequence 
of enzymes. Firstly, a ubiquitin molecule is activated by the enzyme E1, at the cost 
of ATP, and subsequently transferred to the ubiquitin-carrier enzyme E2. After that 
conjugation, the ubiquitin can be recognized by the ubiquitin-ligand enzyme E3, 
which catalyzes the conjugation of ubiquitin to the protein substrate. The process is 
repeated until a polyubiquitin chain is formed that will be recognized and degraded 
by the proteasome, the major proteolytic enzyme that converts proteins into small 
peptides and amino acids [22–24].

The proteolysis by UPS can be activated by inflammation, reactive oxygen spe-
cies, metabolic acidosis [20, 25], and insulin and/or IGF-1 signalization defects 
[26]. The forkhead transcription factors (FoxO) and the nuclear transcription factor 
kappa B (Nf-κB) were identified as the regulatory factors of the activation of two 
muscle-specific ubiquitin-ligand enzymes E3, namely, atrogin-1 – also known as 
muscle atrophy F-box (MAFbx) – and muscle-specific ring finger 1 (MuRF1) [22, 
26]. These E3 ligases specifically recognize and facilitate the protein degradation by 
UPS. FoxO1, FoxO3, and FoxO4 are present in the skeletal muscle, but FoxO1 was 
identified as the main mediator of muscle wasting in CKD [26, 27].

Myostatin and activin A, members of the family of transforming growth factor-β 
(TGF-β), are also associated with protein loss in catabolic conditions [24]. The liga-
tion of myostatin with its receptor involves the activation of the signaling pathway 
Smad2/Smad3 and phosphorylation of the protein kinase B (also called Akt) in the 
muscle, both finally leading to UPS activation. Low level of phosphorylated Akt is 
capable of reducing the phosphorylation of the family of transcription factors 
FoxO. It induces proteolysis, as FoxO transcription factors increase the expression 
of the ubiquitin-ligand E3 muscle-specific enzymes, MAFbx and MuRF1 [20, 28]. 
In the CKD model, pharmacological inhibition of myostatin prevents muscle atro-
phy, increasing the satellite cells function, improving the IGF-1 signalization, and 
suppressing the protein degradation [29].
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18.2.1.2  Caspase-3 Proteolytic Pathway

Caspase-3 is a protease that participates in apoptosis [22]. Caspase-3 and UPS work 
together in the muscle proteolysis. Caspase-3 is involved in two ways. First, it is 
activated by catabolic conditions, as CKD, and acts to cleave complex structures of 
muscle proteins, yielding substrates to UPS [20]. It cleaves actomyosin in myofi-
brillar complexes, generating the 14 kDa actin fragment, in the insoluble portion of 
muscle tissue [20, 22, 23], this being considered a muscle wasting marker, even in 
early stages, in patients with CKD [23, 30, 31]. This cleavage is necessary since 
UPS degrades complex muscle structures (actomyosin and myofibrils) slowly, while 
it fast degrades monomeric composts of myosin or actin [20].

Second, Caspase-3 can stimulate the muscle degradation via UPS, directly stim-
ulating the proteasome activity. Caspase-3 would act as cleaving-specific protea-
some protein subunits, altering its conformation and increasing the number of 
proteins inserted in the proteolysis site of the proteasome [30].

18.2.1.3  Autophagy by Lysosome

The macro-autophagy system (here referred to as autophagy by lysosome) is acti-
vated in catabolic conditions as denervation, starvation, disuse, sepsis, and cancer 
[24, 26]. Autophagy is a homeostatic mechanism, used for degradation and recy-
cling by the lysosome machinery of bulk cytoplasm, abnormal proteins or protein 
aggregates, and organelles, including mitochondria [20, 24]. The autophagy path-
way begins with the formation of a phagophore around the targets of degradation in 
the cytoplasm. Autophagosome formation is stimulated by the reduction of phos-
phatidylinositol 3-kinase (PI3K) levels with the activation of the autophagy-related 
gene BECN1 [20].

Transcription factors FoxO, besides UPS activation, can also activate autophagy, 
with evidence showing stimulation of the production of a variety of autophagy- 
related genes [32]. It is therefore reasonable to consider that the activation of this 
system can, theoretically, cause cellular and protein loss in catabolic conditions as 
CKD, since CKD causes insulin resistance and suppresses the IGF-1/PI3K/Akt sig-
naling, which could stimulate the autophagy system by lysosome [20, 33]. However, 
the lysosomal autophagy proteolytic pathway has not yet been rigorously investi-
gated in CKD patients. A recent study points out that muscle loss in rat models of 
CKD is associated with autophagy activation. The uremic toxicity, but not acidifica-
tion, induces the formation of autophagosomes in muscle culture. However, the 
increase of autophagy does not directly relate to myofibrillar protein cleavage. It is 
also perceived that the increase of autophagy leads to deterioration of mitochondrial 
function and reduction of ATP production [26].
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18.2.2  Altered Muscle Growth and Repair

Besides proteolysis stimulation, CKD can modify the satellite cell (also known as 
muscle precursor cells) function, reducing the capacity of muscle growth and repair 
[15]. So far there is little evidence of this topic, but results from experimental stud-
ies show that CKD affects the proliferation and differentiation of satellite muscle 
cells, measured by the reduction of the myoblast determination protein 1 (MyoD) 
and myogenin levels [34, 35]. These myogenic cellular factors are released by satel-
lite cells in response to muscle injury or growth factor changes (e.g., IGF-1) [35]. 
CKD can impair the release of these growth factors by the reduction of IGF-1 recep-
tors signaling in satellite cells [20, 35]. Wang et  al. (2009) showed that strength 
training in CKD models was capable of reversing the MyoD and myogenin suppres-
sion, possibly because physical exercise stimulates the local release of growth fac-
tors such as IGF-1 [34].

18.2.3  Suppression of Protein Synthesis

The suppression of protein synthesis can be considered a potential mechanism of 
CKD-induced muscle atrophy, as experimental models and patients with CKD show 
reduction of protein synthesis markers [36] and contractile muscle and mitochon-
drial proteins [37]. Attenuation of protein synthesis in CKD can be caused by mal-
nutrition as a result of anorexia, as well as metabolic acidosis, uremia, and 
pro-inflammatory cytokines expression that can suppress the insulin/IGF-1 signal-
ing to Akt through several mechanisms [38]. However, all these factors are also 
related to proteolysis stimuli, which seems to have a considerably bigger participa-
tion in CKD-induced muscle atrophy than the reduction of protein synthesis [20].

18.3  CKD Factors Related to Muscle Atrophy

18.3.1  Metabolic Acidosis

Metabolic acidosis is a common and prevalent complication among CKD patients, 
particularly in later stages [39, 40]. Chronic metabolic acidosis can cause several 
adverse effects in CKD patients including alteration in muscle metabolism, insulin 
resistance, protein-energy wasting, and hastening CKD progression [39]. It pro-
motes muscle atrophy by stimulating UPS and reducing protein synthesis [15, 40], 
affecting the insulin/IGF-1 signaling pathway [20, 22].
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18.3.2  Inflammation

Inflammation is an essential part of CKD and is linked to cardiovascular disease, 
muscle atrophy, and mortality [41]. Many factors can contribute to immune deregu-
lation and inflammatory activation in CKD and are related to CKD itself, uremia, 
genetic and environmental factors, lifestyle, and diet. Clearly, the reduction of renal 
clearance contributes to the rise in cytokine levels and production [42]. With CKD 
progression, there is an increase in the reactive oxygen species production, mainly 
because of uremia, extracellular fluid volume fluctuations, and bio-incompatible 
dialysis devices [43]. The increased oxidative stress, in turn, increases the synthesis 
and release of pro-inflammatory cytokines, with deregulation of the immune system 
[44]. Metabolic acidosis is another cause of inflammation in CKD [45].

CKD presents high circulating levels of inflammatory markers, including 
C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor alpha 
(TNF-α). The inflammatory state of CKD has a connection with muscle atrophy 
since inflammatory cytokines act in the activation of the NFkβ pathway that stimu-
lates MuRF-1, with consequent proteolysis by UPS.  They also raise myostatin 
expression, which causes the inhibition of protein synthesis induced by insulin and 
alteration of IGF-1/Akt signaling [15, 20, 38, 46]. Furthermore CKD-related sys-
temic inflammation impairs the hypothalamic responses to appetite-regulating hor-
mones, leptin, ghrelin, and melanocortin, resulting in persistent activation of 
anorexigenic neural pathways. The resulting anorexia limits the nutritional inges-
tion of amino acids, possibly reducing IGF-1 concentrations with consequent pro-
tein synthesis impairment [38].

18.3.3  Angiotensin II Alteration

The renin-angiotensin system is activated in many catabolic conditions, including 
CKD. Despite the poor expression of angiotensin II receptors in adult muscle fibers, 
angiotensin II contributes directly and indirectly to muscle atrophy. The increase of 
angiotensin II reduces the pool of satellite cells and the regenerative muscle capacity, 
besides increasing proteolysis by Caspase-3 and UPS pathway activation. Angiotensin 
II also affects intermediary molecules such as IL-6 that impairs the insulin/IGF-1 sig-
naling and reduces Akt phosphorylation and activates the TGF-β pathway [15, 19, 40].

18.3.4  Vitamin D Impairment

Besides the well-known effect of vitamin D as a bone regulator, recent studies show 
that it can be also important for muscle maintenance and regeneration [47]. Vitamin 
D deficiency can induce muscle wasting, acting primarily via UPS [48] reducing the 
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muscle strength in CKD patients [49]. Both deficiency and insufficiency of vitamin 
D are common, with a frequency higher than 80% in CKD and end-stage renal dis-
ease (ESRD) patients [50, 51]. Vitamin D deficiency seems to increase with the 
CKD progression [52]. Among factors associated with vitamin D deficiency/insuf-
ficiency in CKD patients are age, female sex, proteinuria, low level of physical 
activity, diabetes, body adiposity, low vitamin D synthesis in the skin, and low tubu-
lar reabsorption of vitamin D, in addition to the need for peritoneal dialysis or 
hemodialysis [47].

18.3.5  Hormonal Alterations

18.3.5.1  Sexual Hormones

Reduction of production/availability of anabolic hormones is another factor related to 
muscle atrophy [19]. Testosterone is an anabolic hormone that plays an essential role 
in muscle hypertrophy. This hormone facilitates the muscle anabolism, promoting 
nitrogen retention, stimulating fractioned protein synthesis, inhibiting muscle degrada-
tion, and enhancing the efficiency of amino acid reuse by the muscles [53]. 
Hypogonadism in men, with consequent testosterone deficiency, is a common altera-
tion in CKD, with prevalence varying between 30% in mild and moderate levels of 
CKD, until more than 50% in ESRD [53, 54]. Reduced testosterone levels in CKD 
patients’ serum were associated with muscle mass and strength reduction [53, 55]. 
This condition arises mainly because of the lack of clearance of prolactin and uremic 
inhibition of luteinizing hormone signaling [53, 55] and can be aggravated by common 
CKD comorbidities, such as obesity, hypertension, and diabetes mellitus [19]. The 
potential mechanisms by which the testosterone reduction can cause muscle catabo-
lism include alteration in IGF-1 signaling and increased myostatin levels [15, 22].

Little is known about differences between men and women about CKD-induced 
muscle atrophy; however, women can present higher levels of muscle wasting than 
men. CKD women exhibit estrogen deficiency even in the earliest stages of the dis-
ease [15], and reduced estrogen levels are associated with a reduction in muscle 
strength and function [54].

18.3.5.2  Growth Hormone

Growth hormone (GH), IGF-1, and insulin are important factors for muscle mass 
gain. GH is the main promoter of body growth in children and exerts anabolic 
effects in adults, acting in protein synthesis stimuli, protein degradation reduction, 
improvement of fatty acid mobilization, and increased gluconeogenesis, IGF-1 
being the main mediator of these actions [56]. Both uremia and inflammatory status 
seem to contribute to GH resistance in CKD [57]. Also, abnormalities in the GH/
IGF-1 physiological axis have been described as potential causes of increased pro-
tein catabolism and CKD-induced muscle atrophy [15, 56].
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18.3.6  Physical Inactivity

CKD and dialysis patients present a reduced level of physical activity [15, 58], with 
higher inactivity in advanced stages of the disease [58]. Physical inactivity is con-
sidered an important factor that impairs exercise capacity, functional independence, 
and muscle atrophy [59]. Moreover, there is a positive association between the 
physical activity level and muscle mass in hemodialysis patients [60]. The physical 
activity reduction, with consequent muscle wasting, is a crucial factor in the prog-
nosis of hemodialysis patients [61].

18.3.7  Hemodialysis

Hemodialysis consists in an RRT capable of ensuring the survival of ESRD patients. 
Although the life of this patient is maintained with acceptable quality, hemodialysis 
for long periods contributes to a series of complications, including cardiovascular 
diseases, a tendency to bleeding, gonadal dystrophy, malnutrition, insulin resis-
tance, immunological deficiency, chronic inflammation, anemia, and muscle atro-
phy [62]. Considering these complications it can be observed that most of them 
were already independently approached in this chapter because of their relation 
with proteolysis increase or protein synthesis reduction in CKD patients, explaining 
why ESRD patients in hemodialysis show more severe muscle atrophy than pre- 
dialytic CKD patients [4, 22].

18.4  Clinical Implications of CKD-Induced Muscle Wasting

Previously to approaching the clinical implications of CKD-induced muscle atro-
phy, it is necessary to introduce the concept of sarcopenia. The term sarcopenia was 
initially used to describe the age-related muscle mass decline [63]; however, strength 
and function impairment is frequently associated with muscle wasting. Thus, nowa-
days, sarcopenia refers to loss of muscle mass and strength or function reduction 
[64] and is considered a powerful morbidity and mortality predictor in dialysis 
patients [40].

Muscle atrophy is responsible for an important reduction in physical function of 
CKD patients [8], and among the most frequent muscle atrophy-related clinical 
implications are peripheral [8] and respiratory [9, 10] muscle strength reduction, 
increasing muscle weakness and fatigue [40, 65], reduction of functional capacity 
[10] and functional independence of this patient [66] leading to a sedentary lifestyle 
[67], impairment of quality of life [68], and increased episodes of hospitalization 
and elevated mortality [69].
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Johansen et al. (2003) assessed the cross-sectional area and muscle strength of 
ankle dorsiflexors, as well as the walk speed of 38 patients with CKD in dialysis, 
and compared with healthy controls, paired by age and sex [8]. Among the findings, 
this study identified that CKD patients showed less contractile muscle area, although 
the total cross-sectional area showed no difference between groups. Also, muscle 
strength and walk speed were lower in CKD patients than in controls. Thus, the cor-
relations between contractile muscle area, strength, and walk speed support the 
argument that muscle atrophy and resultant weakness are important causes of physi-
cal function impairment in this population.

Respiratory muscles are also compromised by CKD, and this is probably associ-
ated with peripheral muscle strength reduction [70]. Schardong et al. (2008) verified 
in a cross-sectional study with 30 CKD patients in dialysis that the inspiratory and 
expiratory muscle strength was below the predicted levels. Equally, the forced vital 
capacity (FVC) and the forced expiratory volume in the first second (FEV1) were 
altered, pointing to an impairment of lung function [9].

Muscle weakness, defined as the failure to produce strength [71], is a prevalent 
clinical manifestation in patients with CKD, as many studies showed that muscle 
strength is found to be reduced in these patients [8, 72].

Fatigue, in its turn, defined as the failure to sustain muscle strength or power 
[71], is also considered a common finding in dialysis patients. Although still little 
understood, many mechanisms are listed as causes of perceived fatigue during exer-
cise [40], including muscle wasting and weakness [73].

On the other hand, Fahal (1997) showed that dialysis patients and healthy indi-
viduals have similar fatigability. However, in a sub-analysis by nutritional status, 
undernourished patients have higher fatigue in comparison with the well-nourished 
group. Despite these findings, current evidence showed that muscle abnormalities in 
uremic patients happen even with an adequate nutritional intake [40]; thus, further 
research is needed to highlight the mechanisms of muscle fatigue in CKD patients 
[74].

Concerning functional capacity, Dipp et al. (2010) evaluated 30 ESRD and veri-
fied through the 6-minute walking test (6MWT) that they walked a distance shorter 
than that stipulated by the prediction equations [10]. The distance covered in the 
6MWT is an independent predictor or mortality for CKD, since every 100 meters 
covered, there is a protective factor of 5.3% in survival [75]. Also, Dipp et al. (2010) 
verified that these patients have expiratory muscle weakness, with a positive correla-
tion between functional capacity reduction and maximum expiratory pressure [10].

Moreover, Martinson et al. (2014), in a longitudinal study with 105 CKD patients 
in dialysis, showed through magnetic resonance imaging of thigh muscles and 
6MWT that an elevated percentage of body fat is associated with low functional 
capacity [68]. In the other hand, a higher percentage of muscle mass is associated 
with better physical function and quality of life [68].

About mortality, Ysoyama et  al. (2014) assessed the relation between muscle 
mass, strength, and mortality in a cohort of 330 CKD patients [69]. According to the 
authors, even though the muscle mass and strength reduction are prevalent condi-
tions among CKD patients, they are not congruent, that is, they are not always 
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associated. Among the individuals evaluated only 20% were sarcopenic. A quarter 
(24%) has reduced muscle mass and appropriate muscle strength, 15% have reduced 
muscle strength and adequate muscle mass, and 41% were within normal range in 
both. Also, the same study points out that these two measures (muscle mass and 
strength) are strong predictors of mortality when considered independently; how-
ever, muscle strength showed a stronger association with mortality [69].

18.5  Current Clinical Treatments

In order to attenuate or even revert the process of muscle atrophy, nutritional supple-
mentation and correction of metabolic acidosis are necessary. Other strategies such 
as reducing insulin resistance, administration of androgenic steroids, resisted and 
aerobic exercise, neuromuscular electrical stimulation, and inspiratory muscle train-
ing should also be considered to avoid progression of sarcopenia.

18.5.1  Nutritional Supplementation

Low protein diets (0.6–0.8 g/kg/day) have been recommended for patients with glo-
merular filtration rate < 45 ml/min/1,73m2, since they seem to delay the progression 
of CKD to CKF, because they attenuate uremia [76].

On the other hand, patients in RRT require a higher protein intake (> 1.2 g /kg/ 
day), because there it is not necessary to protect renal function after the initiation of 
dialysis and the dialysis treatment itself is responsible for stimulating protein catab-
olism [77].

18.5.2  Correction of Metabolic Acidosis Through Alkaline 
Therapy

Metabolic acidosis induces muscle loss by stimulating glucocorticoid adrenal secre-
tion [78]. Evidence indicates that the correction of this disorder has beneficial 
effects on nutritional parameters in patients with CKD [77] besides preventing the 
progression of the disease [79].

Oral bicarbonate supplementation has been suggested to maintain serum levels 
within the normal range [80], since low concentrations are associated with high 
mortality in patients with CKF [81]. The consensus is that alkaline therapy should 
be administered to achieve a plasma concentration of HCO3 > 22 mmol/L, indepen-
dently of the cause of metabolic acidosis [82].
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18.5.3  Reduction of Insulin Resistance

There is a close relationship between the altered signaling of insulin/IGF-1 ratio and 
catabolic conditions that stimulate muscle protein degradation according to experimen-
tal studies in animal models [83]. Activation of Caspase-3 and UPS is probably involved 
in this process and stimulates protein muscle catabolism; however, to date, there are no 
studies in humans identifying sensitizers of insulin as a treatment strategy [23].

18.5.4  Administration of Androgenic Steroids

Low plasma concentrations of testosterone may contribute to muscle loss [84] since 
they modify IGF-1 signaling and increase the concentration of myostatin (protein 
that suppresses muscle growth) [85].

Androgenic steroids such as nandrolone decanoate, a synthetic derivative of tes-
tosterone increase muscle mass in healthy adults and in patients with 
CKD. Macdonald et al. (2007) in a clinical trial (II phase) with 54 patients in stage 
5 of CKD observed that nandrolone when given once a week (100 mg for 24 weeks) 
induced an increase in appendiceal mass without any fluid overload. However, this 
dose was not tolerated by women as a result of side effects (virilization) [86].

18.5.5  Aerobic and Resisted Exercise

Studies regarding physical training in patients with CKD confirm substantial 
improvement in leg muscle size [87] and muscle power. These, in turn, correspond 
to the morphological changes in capillary density [88], in the improvement of oxi-
dative metabolism [89], in muscle mitochondrial biogenesis [90], and in the reduc-
tion of systemic inflammation [91].

Kouidi et al. (1998) performed a combined exercise program for 6 months in 
patients with end-stage CKD and, through a muscle biopsy of vastus lateralis, found 
that training significantly improved muscle atrophy (increase of 51% in type II 
fibers), thus reflecting an overall increase in physical performance (increase of 48% 
in VO2 peak) [92].

Regarding the functional variables, systematic reviews [16, 93–95] that evalu-
ated the effect of aerobic and resisted exercise in patients with CKD show benefits 
in muscle strength, functional capacity, cardiac dimensions, and also in patients’ 
quality of life.

The exercise prescription should be individualized and according to the assess-
ment of the patient’s physical capacity. Aerobic and resisted exercises are recom-
mended, but flexibility exercises and those aimed at improving balance can be 
included in the training program according to need [66].
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Aerobic exercise can be performed using a cycle ergometer (even during dialysis), 
walking, or swimming. A weekly frequency of 1–2 times/week, with intensity between 
55% and 70% of maximal heart rate or 11–13 points on the Borg effort scale (6–20-
point scale), is recommended. The progression of training should be made according 
to the patient’s response to 3–5 times/week, with intensity between 55% and 90% of 
maximal heart rate or 11–16 points on the Borg effort scale. The ideal exercise time is 
at least 20 min/day or shots of 3–5 min when interval exercise [96, 97].

Regarding resistance exercise, it is advised that it be performed in several muscle 
groups, contemplating agonist and antagonistic muscles. The weekly frequency 
indicated is 2 times/week, and exercises should be performed at 60–70% of the 
maximum repetition one test (1RM), or 5RMs of each movement may be performed. 
Initially, 1 set of 10–15 repetitions is recommended, but progression of training 
should be done until 2–4 sets are achieved. Also, 8–10 different exercises for the 
main muscle groups are indicated, respecting intervals of 2–3  minutes of rest 
between the sets [96, 97].

Finally, when choosing to perform the exercises during hemodialysis, these 
should be performed until the second hour of the dialysis session to ensure hemody-
namic stability of the patient [93].

18.5.6  Neuromuscular Electrical Stimulation

Neuromuscular electrical stimulation (NMES) is an alternative to conventional 
physical exercise, and it should be encouraged especially for those patients who are 
more debilitated, where voluntary exercise is not feasible. Vigorous and involuntary 
muscle contractions were applied by Schardong et al. (2017) in a randomized clini-
cal trial using an 8-week (3 times/week) protocol in patients with CKF and during 
hemodialysis [17]. The exercise through NMES was performed in isometric form 
on the quadriceps muscle and with the following stimulation parameters: 80 Hz, 
400 μs, 10s contraction time, rest time ranging from 50 to 20s, application time of 
20–34 min, and intensity at motor threshold level tolerated by the patient. Among 
the findings, the authors observed a protective effect for quadriceps muscle atrophy 
when assessed by ultrasonography in the intervention group. The same did not 
occur with the control group, who did not perform any type of exercise. In addition, 
the group that received the NMES had an increase in the muscle strength of the 
lower limbs and in the number of repetitions in the sit-and-stand test [17].

18.5.7  Inspiratory Muscle Training

Inspiratory muscle training (IMT) is among the treatment resources for patients with 
CKD that aim to improve the performance of respiratory muscles [98], since they 
have significant weakness when compared to normal values for healthy individuals 

18 Muscle Atrophy in Chronic Kidney Disease



406

[10]. In this way, it can be a useful tool, since the strengthening of the respiratory 
muscles slows down complications resulting in the loss of muscle mass [99].

The IMT should be applied with a fixed load to ensure a strong activation of the 
inspiratory muscles [100]. This may result in effects such as modification of respira-
tory muscle phenotype, in addition to increasing strength and endurance [101].

Medeiros et al. (2017) through a systematic review and meta-analysis of random-
ized clinical trials found that IMT improved the inspiratory muscle strength of CKD 
in hemodialysis when compared to sham training or control, with a significant effect 
of 22 cmH2O (95% CI 16–29) [18]. In addition, the authors found benefits in pul-
monary function, functional capacity, and quality of life of these patients. The stud-
ies included in this review used the following training parameters: adjusted load 
between 15% and 60% of maximal inspiratory pressure for 20–60 min or 3 sets of 
10–15 breaths, 3 times/week, for 6–12 weeks [18]. Despite the positive results, we 
emphasize that the reviewed studies are heterogeneous and present important meth-
odological limitations.

18.6  Perspective

The pathways leading to muscle atrophy and therefore sarcopenia in CKD are com-
plex and involve several mechanisms and associated factors. In addition, the loss of 
muscle mass is progressive, leading to a sedentary lifestyle and worsening quality 
of life. Associated with other comorbidities and cardiovascular complications that 
are frequent in this population, muscle atrophy is responsible for the reduction of 
physical capacity, functional independence, and an increase in the number of hospi-
talizations and mortality rates.

In this sense, preventive measures are necessary, aiming at the individualized 
evaluation of these patients, still in the early stages of the disease, addressing an 
early identification of functional alterations that may precede the muscular atrophy 
process. Identifying these individuals, the clinical treatment and rehabilitation strat-
egies discussed in this chapter should be traced and performed by a multiprofes-
sional team in order to mitigate, delay, or even revert these manifestations, thus 
providing a better quality of life and survival for this population.
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Chapter 19
Sarcopenia in Liver Disease: Current 
Evidence and Issues to Be Resolved

Meiyi Song, Lu Xia, Qi Liu, Mengxue Sun, Fei Wang, and Changqing Yang

Abstract Sarcopenia is a common clinical symptom in aging and patients with 
wasting diseases, characterized by a decreased skeletal muscle mass. As a conse-
quence of lifestyle change, the nonalcoholic fatty liver disease (NAFLD) presents a 
rising trend. In the past three decades, increasing evidence has proved that sarcope-
nia is related to NAFLD. In this chapter, we will summarize the emerging evidence 
of the predictive role of sarcopenia in NAFLD and review the diagnosis value, fea-
sible mechanism, and therapy strategies of sarcopenia in NAFLD. Sarcopenia is a 
potential risk factor for NAFLD, and targeting sarcopenia can benefit NAFLD to 
some extent.

Keywords Sarcopenia · Nonalcoholic fatty liver disease · Liver fibrosis

19.1  Background

Skeletal muscle is the major component of the mammalian motor system, with the 
function of secretory, mechanical, and supporting activities [1]. Similar to bone, the 
weight of muscle peaks at about 45–50 years old and then gradually decreases at a 
rate of 1–2% per year [2–4]. This kind of typical changes in human body composi-
tion related to aging is a progressive loss of muscle mass and strength, called sarco-
penia [5, 6]. Sarcopenia is one of the most common types of muscle atrophy in 
aging population, strongly associated with senescence and malnutrition [7–12].

Sarcopenia is defined as reduced skeletal muscle mass, which is a common com-
plication of most liver disease patients. It is observed in up to 60% of patients with 
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end-stage liver disease (ESLD) [13, 14]. Nonalcoholic fatty liver disease (NAFLD) 
is a common cause of chronic liver disease, which refers to hepatic steatosis that is 
not caused by significant alcohol consumption or other causes of liver disease. In 
Western Europe and the United States, about 64 and 52 million people suffered 
from NAFLD, respectively [15, 16]. NAFLD is classified into different degrees, 
from the “benign” called simple steatosis (overall 20–30% prevalence) to steato-
hepatitis (NASH, 2–5% prevalence) and fibrosis [17]. Regarded as a metabolism 
disease, NAFLD shares amounts of pathophysiology process with sarcopenia. For 
example, both the liver and muscle are target organs for insulin action, and insulin 
resistance is known as a key factor in the pathophysiology for both NAFLD and 
sarcopenia.

During the last four decades, researchers have made a lot of efforts to investigate 
the relationship between sarcopenia and NAFLD [18–22]. In this chapter, we will 
give an introduction of involvement of sarcopenia in liver disease, including the 
pathology, diagnosis, and management of NAFLD associated with sarcopenia [23].

19.2  Current Proof in the Relationship Between Sarcopenia 
and Chronic Liver Disease

19.2.1  Sarcopenia as an Independent Predictor of NAFLD

Compelling evidence have shown the connection of sarcopenia and NAFLD [24]. 
To confirm the relationship between sarcopenia and NAFLD, the Korean Sarcopenic 
Obesity Study (KSOS) was conducted. The researchers built a cohort including 452 
apparently healthy adults to perform a prospective observational cohort study and 
explore the correlation of sarcopenia and NAFLD with cardiometabolic risk factors. 
They found that after adjusting for confounding factors (insulin resistance and 
inflammation), the risk of NAFLD increased in patients with low muscle weight 
[25]. The next study showed that all these relationships happened among people of 
different sexes, although age group and menopausal status have an effect on it; and 
further confirmation of this relationship was required [26].

Another research group carried out a cross-sectional study in representative sam-
ples of the Korean population in 2015. In addition, based on the existence of liver 
fibrosis in patients with NAFLD, further stratification was carried out to preliminar-
ily study the connection between sarcopenia and the progression of NAFLD. The 
data showed that regardless of condition of obesity or metabolic control, sarcopenia 
was associated with increased risks of NAFLD and advanced fibrosis [27]. They 
further stratified the sample according to the grade of liver fibrosis and continuously 
studied the relationship between sarcopenia and NAFLD-related cirrhosis. 
Interestingly, they found that sarcopenia was associated with significant liver fibro-
sis in subjects with NAFLD, and the association is independent of obesity and insu-
lin resistance when comparing patients with fibrosis and NAFLD patients without 
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fibrosis [28]. A rough analysis based on another NAFLD cohort showed that sarco-
penia was related to NAFLD, with an OR of 3.82 (95% CI, 1.58–9.25), which was 
confirmed by biological systems.

In practice, NAFLD patients are often associated with other metabolic diseases. 
Yoshitaka Hashimoto et al. focused on the patient with type 2 diabetes mellitus and 
assessed the correlation between skeletal muscle mass index and hepatic steatosis. 
They draw a conclusion that mass of skeletal muscle was negatively related to 
hepatic steatosis in patient with type 2 diabetes mellitus which was consistent with 
previous results [29]. Similarly, worsening fibrosis was found related to increased 
prevalence of sarcopenia, independent of IR and obesity. Furthermore, the presence 
of fibrosis was 22% in nonsarcopenic patients compared to 60% in those with 
sarcopenia.

19.2.2  Sarcopenia in Prediction of Chronic Liver Disease 
and Its Complication

Liver cirrhosis is the end stage of liver disease characterized by the destruction of 
hepatic lobules. Among the multitudinous etiologies of cirrhosis, nonalcoholic ste-
atohepatitis (NASH) is the most familiar one with increasing incidence year by year. 
Liver cirrhosis accompanied with sarcopenia is very common; the estimated preva-
lence of sarcopenia in subject with liver fibrosis is 40–70% [30]. The incidence is 
50–70% in men slightly higher than that in women [31, 32]. A Canadian study 
showed that sarcopenia was associated with both visceral obesity and IR [33]. The 
median survival time of the patients with sarcopenia (19 ± 6 months) was shorter 
than that of nonsarcopenia patients (34 ± 11 months) (P = 0.005). They also observed 
L3 skeletal muscle index was not relative to Child–Pugh scores (r = −0.14; P = 0.1) 
and Model for End-Stage Liver Disease (MELD) (r = −0.07; P = 0.5) [33]. Another 
study revealed the median survival was 16 ± 6 months and 28 ± 3 months, respec-
tively, in patients suffering from concurrent cirrhosis and HCC with or without sar-
copenia [34]. The 1-year probability of survival in patients with sarcopenia was 
significantly lower compared to that of patients without sarcopenia as a conclusion 
of multiple results from different groups (85% vs 97%, P = 0.01 [35]; 52% vs 82%, 
P = 0.003 [34]; 53% vs 83%, P = 0.005 [33]; 63% vs 79%, P = 0.04) [36].

Sarcopenia is not only associated with the survival of patients with cirrhosis but 
also has a suggestive role on the complications of cirrhosis. Sepsis is one of the 
leading causes of death in cirrhosis patients. In patients with sarcopenia, the death 
rate associated with sepsis is 22%, higher than that of nonsarcopenia (P = 0.02). In 
earlier studies, however, no difference was found in the frequency of sepsis-related 
deaths in patients with or without sarcopenia. Hormones and biochemical changes 
and circulating endotoxins and other factors leading to sarcopenia in patients also 
impaired immune function and increased the risk of infection [37, 38]. In addition, 
patients with refractory ascites are particularly prone to malnutrition and  sarcopenia, 
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as increased ascites increases the static energy consumption, while the food intake 
is reduced by increased abdominal pressure. The treatment of refractory ascites by 
transjugular intrahepatic portosystemic shunt (TIPS) has been proven to improve 
refractory ascites of patients with dystrophic liver cirrhosis, which will ameliorate 
the sepsis recurrence. Other complications including hepatic encephalopathy are 
also related to sarcopenia. Previous study has confirmed a higher incidence of 
hepatic encephalopathy in patients with reduced muscle mass and muscle contrac-
tion force [39]. The increase of ammonia content in peripheral blood of patients 
with sarcopenia may be one of the reasons [40]. Therefore, it is recommended to 
include sarcopenia into the evaluation system for prediction and prognosis of the 
patients with cirrhosis. Sarcopenia alone or in combination with conventional prog-
nostic systems has shown promise for cirrhosis prognosis. How to include an objec-
tive assessment of sarcopenia with conventional scores to optimize the prediction 
outcome for patients with cirrhosis requires further researches [41, 42].

Liver transplantation (LT) is considered as the only cure for current end-stage 
liver disease, and the occurrence of sarcopenia is also closely related to its therapeu-
tic effect [43–45]. By observing a cohort from the United States, researchers found 
that 59% patients have sarcopenia during LT evaluation. CT scan was performed on 
59 patients with pre-transplant sarcopenia at 6 months posttransplant, and 56 (95%) 
remained sarcopenic, and a large proportion of patients would continue to remain 
sarcopenic in 1 year. Meanwhile they found that obesity was an independent predic-
tor of pre-transplant sarcopenia (P = 0.00001, odds ratio [OR] 0.22) in cirrhotic 
patients [43, 46, 47].

19.3  Emerging Mechanism in Sarcopenia with NAFLD

Finding the common pathological process between sarcopenia and NAFLD is a key 
strategy to analyze their correlation in the mechanism. The current study mostly 
focuses on the insulin resistance, inflammation response, vitamin D, oxidative 
stress, decreased physical activity, and other possible mechanisms.

Insulin Resistance Insulin resistance (IR) is a common pathophysiological mech-
anism between sarcopenia and NAFLD [48–50]. In NAFLD patients with insulin 
resistance, the liver and adipose tissue are less sensitive to insulin. When adipose 
tissue becomes resistant to the antilipolytic effect of insulin, fat decomposition 
increases and free fatty acids (FFA) are released [23, 51]. The increased levels of 
triglycerides in the liver caused by IR are the main factors leading to liver steatosis. 
First, insulin cannot inhibit the lipolysis of adipose tissue by hormone-sensitive 
lipase, leading to FFA influx and subsequent absorption by the liver. Second, 
IR-associated hyperinsulinemia and hyperglycemia are upregulated by membrane- 
associated transcription factors sterol regulatory element-binding protein-1c 
(SREBP-1c) and carbohydrate response element-binding protein (ChREBP). Third, 
hyperinsulinemia directly inhibits β-oxidation. These phenomena together promote 
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the FFA accumulation in the liver and the hepatic triglyceride accumulation and 
steatosis through esterification [52, 53].

Study showed that even NAFLD patients without obesity have increased concen-
tration of FFA and Adipo-IR compared to the control group [54, 55]. FFA enriched 
in the liver inhibits growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis, 
which has protective effect in age-related muscle loss and muscle regeneration [56]. 
In addition, IR is accompanied with compensatory hyperinsulinemia, which leads to 
glucose production disruption, decreased glycogen synthesis, increased lipolysis, 
and/or increased fat intake. Triglyceride (TG) transfer changes and inhibits 
β-oxidation, which caused TG accumulation in muscle tissue.

The gluconeogenesis is caused by IR-aggravated muscle protein loss and muscle 
degradation. IR itself can be a contributing factor to age-related muscle mass loss 
and leads to sarcopenia directly [57]. As an important mean of maintaining muscle 
mass and muscle metabolism, autophagy or lysosomal degradation is inactivated by 
IR through mammalian target of rapamycin (mTOR) pathway [53]. Collectively, 
these are how IR reduces muscle mass and leads to sarcopenia. Interestingly, the 
study found a negative correlation between IR and muscle mass, while IR was 
directly related to hepatic fat accumulation. These results support the common 
understanding of pathophysiological basis underlying the IR-mediated pathogene-
sis. Consistent with this view, the metabolic syndrome (MS) associated with IR 
should also be associated with NAFLD and sarcopenia [25].

Sarcopenia is associated with adverse glucose metabolism disorder, and the evi-
dences indicate that low muscle mass can predict diabetes susceptibility. Given the 
increase in the prevalence of obesity, there is an urgent need for further research in 
developing control strategy of obesity and metabolic effects of sarcopenic disorders. 
Similarly, myosteatosis has also been shown to be related to IR. Synergistic effects 
of sarcopenia and obesity can lead to severer IR and metabolic disorders. In this 
regard, sarcopenia is also a factor that contributes to the onset of NAFLD by pro-
moting IR.

Inflammation Chronic inflammation and oxidative stress are essential processes 
in the development of and liver fibrosis followed directly. NASH is accompanied 
with an inflammatory reaction that occurs in the absence of pathogens or external 
antigens belonging to sterile inflammation. Lipid-induced hepatocyte stress, dam-
age, and cell death could be the reason of sterile inflammation. Fatty acid oxidation 
(FAO) in the liver enhances the production of oxygen free radicals, causing lipid 
peroxidation and inducing pro-inflammatory cytokine synthesis. For example, 
transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) are the 
most common factors of NAFLD. Furthermore, these cytokines stimulate protein 
degradation and metabolism, resulting in muscle mass loss and sarcopenia. These 
cytokines support both the recruitment of T cells and development of specific 
immune response against antigens. They activate synthesis of each other and stimu-
late IL-6 secretion. Although these cytokines show highest levels and activities in 
acute diseases like sepsis and are upregulated in trauma or after surgery, they also 
play key roles in NAFLD and infections which lead to loss of muscle cells and 

19 Sarcopenia in Liver Disease: Current Evidence and Issues to Be Resolved



418

acceleration of muscle protein breakdown, contributing to sarcopenia. Inflammation 
markers in circulation, including CRP, TNF-α, and interleukins (IL-6 in particular), 
are closely related to the occurrence of sarcopenia.

Vitamin D Low vitamin D levels have been reported to be involved in the patho-
genesis of both sarcopenia and NAFLD [58]. NAFLD and vitamin D deficiency are 
associated with insulin resistance, obesity, type 2 diabetes mellitus, and cardiovas-
cular disease. Many studies exploring the relationship have emerged over the past 
few years. Recent animal studies have shown that vitamin D is of critical impor-
tance in the production of pro-inflammatory cytokines and consequently regulates 
oxidative stress, hepatocyte apoptosis, and even hepatic fibrosis, although the mech-
anism of the association between vitamin D and NAFLD is not fully understood. 
The insulin receptor in pancreatic β-cells and in peripheral target organ (including 
the liver) is induced by vitamin D by activating vitamin D response elements 
(VDREs) in the human insulin receptor (hIR) gene promoter [59]. VDR is a recep-
tor for 1α, 25-dihydroxy-vitamin D3 (1α, 25-(OH)2-VD3), activated from vitamin 
D3, and has a significant effect on calcium–phosphate homeostasis and bone metab-
olism but also on other physiological functions, including immunomodulation, cell 
growth, and differentiation. The effect of vitamin D on insulin sensitivity changes 
was mediated by vitamin D receptor (VDR) by improving systemic inflammation 
[60–62]. VDR in skeletal muscle can also be activated by vitamin D, which medi-
ates muscle genesis, skeletal muscle growth, and inflammation. Results from animal 
studies prove vitamin D deficiency myofibrinolysis is increased with vitamin D 
deficiency. Lower levels of vitamin D were associated with lower muscle strength, 
poor muscle function, and increased muscle loss. People with muscular dystrophy 
have significantly lower levels of vitamin D. Vitamin D supplements may improve 
muscle strength and function in muscular dystrophy patients.

Decreased Physical Activity The decrease in physical activity and the atrophy of 
muscles cross-promote each other. In addition, the decrease of physical activity is 
one of the main reasons which lead to IR and metabolic diseases. Patients with 
muscle atrophy, due to limited mobility, tend to live sedentary lifestyles and lack 
exercise [63, 64]. A sedentary lifestyle can increase the risks of obesity, metabolism 
diseases, and NAFLD, which has been well proven. It is speculated that this seden-
tary lifestyle will lead to a decrease in energy expenditure, which consequently 
leads to obesity and liver fat. In fact, studies have shown that in patients with sarco-
penia, the amount of fat increases, as well as the body composition and the level of 
CRP, which further increased the risk of NAFLD [65].

Myokines and Myostatins Skeletal muscle is considered as an endocrine organ. 
Myokines are defined as the peptides that are produced, expressed, and released by 
muscle fibers, including cytokines and other peptides with autocrine, paracrine, or 
endocrine effects. Muscle-derived hormones provide a new thought to build the 
communication between skeletal muscle and other organs, such as the adipose tis-
sue, liver, pancreas, bones, and brain [66]. IL-6, one of the many myokines, appears 
to have systemic effects on the liver mediating crosstalk between intestinal L cells 

M. Song et al.



419

and pancreatic islets. Activation of IL-6/STAT3 pathway subsequently downregu-
lates lipogenic genes but upregulates fatty acid oxidation-associated genes in the 
liver of interleukin-10-deficient mice [67]. Moreover, increased muscle peroxisome 
proliferator-activated receptor (PPAR) gamma coactivator-1 alpha (PGC-1α) 
expression protects mice from sarcopenia and metabolic disease and prolongs their 
lifespan [68]. The PGC-1α-dependent myokine irisin drives brown-fat-like develop-
ment and causes a significant increase in total body energy expenditure whereby 
reducing body weight and thus obesity and IR [69]. Serum irisin concentrations 
were downregulated in the patient with NAFLD and inversely associated with the 
triglyceride contents in the liver and liver enzymes in obese adult [70]. The down-
stream signal transduction pathway activated by irisin involves the peroxisome 
proliferator-activated receptors α (PPARα), which are of vital importance in fatty 
acid β-oxidation in the liver [71]. FGF21 regulated by PPARα reduces hepatic ste-
atosis and leads to reduced lipogenic gene expression and possibly the rate of fatty 
acid and triglyceride synthesis [72]. Myokines also significantly blunt insulin- 
stimulated glucose uptake and may participate in the occurrence of IR in the liver 
[73]. Therefore, it is determined that the protective effect of muscle on NAFLD will 
disappear mediated by hormone secretion when sarcopenia occurred.

Myostatin (also known as growth differentiation factor 8, GDF-8) is a member of 
TGF-β superfamily, with an inhibiting effect in protein synthesis and regeneration 
[74, 75]. In skeletal muscle, myostatin can activate mediated autophagy proteolysis 
and ubiquitin proteasome pathway which are two main pathways of skeletal muscle 
protein hydrolysis [76]. Myostatin also increases the quality of adipose tissue, lead-
ing to decreased adiponectin production [77–79]. The receptor of myostatin 
expressed on hepatic stellate cells. In hepatocytes, myostatin inhibits hepatocyte 
proliferation and insulin-stimulated glucose uptake [73]. Increased serum myostatin 
level is related to poor prognosis in liver cirrhosis patients [80]. This may be a 
potential link between sarcopenia and liver disease. But there is still doubt about 
which one is the consequence.

Other Daniel Cabrera et  al. found that the American Lifestyle-Induced Obesity 
Syndrome (ALIOS) diet-induced NAFLD mouse showed decreased muscle fiber 
diameter and myosin heavy chain (MHC) protein levels. Serum insulin-like growth 
factor-1 (IGF-1) was detected decreased, which is an anabolic hormone essential for 
muscle homeostasis without increase of inflammatory mediators. Since leptin in the 
brain can stimulate the production of IGF-1 in the liver, a later study explored the rela-
tionship between sarcopenia and NAFLD based on this regulatory mechanism [81].

Metabolic disturbances, inadequate dietary intake, and malabsorption are also 
involved in the pathogenesis in the end stage of NAFLD. After entering the stage of 
cirrhosis of the liver, because of glycogen synthesis and storage damage in the cir-
rhotic liver tissue, fat and muscle catabolism glycosylation of noncarbohydrate 
sources are promoted [82]. About 15% to 30% of patients with cirrhosis are in a 
highly catabolic state. Only if ensured adequate protein intake, it usually causes 
muscle atrophy [83]. The cause of highly catabolic state is unknown. The cause may 
include the activation of the sympathetic nervous system through the hypermeta-
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bolic pathway, the displacement of the gut bacteria, or systemic inflammation. At 
the same time, sepsis will exacerbate energy consumption in patients with cirrhosis 
and accelerate protein degradation. As a consequence of portosystemic shunt, the 
lack of cholestasis, and intestinal bacterial overgrowth, malabsorption of nutrients 
is a possible cause of muscle loss [36].

19.4  Diagnosis and Management of Sarcopenia in Liver 
Disease

The Asian Working Group for Sarcopenia (AWGS) (AWGS/grip criteria) and 
European Working Group on Sarcopenia in Older People (EWGSOP) (EWGSOP/
grip criteria) are always used in the diagnosis of sarcopenia in patient with chronic 
liver disease [84–87]. EWGSOP/grip criteria found that age-related muscle volume 
reduction is related to low muscle strength and/or physical performance [88–90]. 
Low muscle mass and decreased muscle function (muscle strength or properties) 
are used as a screening test, according to the diagnostic criteria of EWGSOP in 
2010, it means establishing a diagnosis requires meeting criteria 1 and criteria 2 or 
criteria 3 at the same time [91, 92]. Different from EWGSOP/grip criteria, the 
patients are also diagnosed as sarcopenic by both muscle strength (handgrip 
strength) and physical performance (usual gait speed) as the instruction of AWGS/
grip criteria [85]. Due to differences in body size, lifestyles, ethnicities, and cultural 
backgrounds, each criterion describes the cutoff value used for Asian and European 
populations by detail. The cutoff threshold for calf circumference is 33 cm, and that 
of hand grip strength in male and female are 32 kg and 22 kg, respectively [87]. 
Psoas muscle thickness and total muscle and adipose tissue cross-sectional area at 
the level of the third lumbar vertebra (L3) transverse processes are always com-
monly used for measuring muscle mass imaging with computed tomography (CT) 
or magnetic resonance imaging [93–95]. In the diagnosis and screening of sarcope-
nia in patients with chronic liver disease (CHD), scientists have made many attempts 
and explorations. Some scholars have found that serum BCAA and albumin levels 
are significantly associated with handgrip strength and PSI (psoas index) in patients 
without BCAA granule supplement, though the contact strength is weak [96, 97]. 
The reduction of BCAA level as a manifestation of CHL progress may play a role 
in the muscle atrophy associated with primary disease. Researchers are still looking 
for highly sensitive and noninvasive markers to improve diagnostic efficiency.

19.5  Method of Reversing Sarcopenia of Cirrhosis

Because muscle reduction is associated with adverse outcomes of liver cirrhosis, 
limited data has shown that increased muscle mass can improve survival of patients 
with liver cirrhosis after transplantation. Therefore, reversing muscle mass 
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reduction is a key measure for patients with cirrhosis [98]. According to the physio-
pathological mechanism of sarcopenia, the method of managing sarcopenia was 
built by considering nutritional status, physical activity, ammonia, and hormones 
[99]. Guidelines and consensus statement put forward basic concept. The present 
therapeutic strategies for sarcopenia in cirrhosis include exercise and nutrition ther-
apy, supplemental hormone therapy, and mechanistic targeted treatments.

19.5.1  Exercise and Nutrition Therapy

Vast solid evidences have identified the positive effects of exercise, whereas, unfor-
tunately, this “panacea” has not been applied properly. Smart selection of exercise 
type is important to ensure maximum benefit to the patients [100]. Resistance exer-
cise (RE) can stimulate muscle protein synthesis (MPS) which has the potential to 
modulate muscle mass gain [101]. Different from RE, endurance exercise (EE) may 
improve the exercise capacity and muscle strength. Only few studies have been 
conducted to assess the benefit of patients undergoing exercise training in combina-
tion with RE and EE by far, so the benefits still remain unclarified. It is still not 
possible to predict whether a synthetic metabolic nutrient resistance will be observed 
during exercise. The mechanical stimuli activate mTOR signaling in muscle through 
a PLD-dependent increase of phosphatidic acid (PA) [102]. The current exercise 
guidelines for patients with chronic diseases recommend that individuals perform 
150 min of moderate physical activity per week, and two times a week for endur-
ance and flexibility training. Due to the limitations of exercise capacity, these guide-
lines may not be feasible in most patients with cirrhosis. It is still advocated that the 
exercise experts should assess the patient’s motor ability and clinical status and 
formulate the individualized exercise prescription [64, 103, 104]. But all the studies 
were carried out in the patients or animal models without cirrhosis, and it was not 
clear whether the responses were tested in patients with cirrhosis or not. For exam-
ple, studies have shown that hyperammonemia leads to decreased muscle function 
without affecting the muscle mass and that hyperammonemia impairs skeletal mus-
cle strength and increases muscle fatigue. These suggest that blood ammonia may 
also affect the therapeutic value of exercise for muscle atrophy in the liver disease 
model, different from that in the simple sarcopenia model [105].

Because the lack of nutrition in patients is an important cause of sarcopenia, 
which is mainly due to insufficient intake of total calories and protein, thus guide-
lines and consensus statements recommend frequent feeding. Oral rehydration is 
the best way to supplement, and enteral or parenteral nutrition is applied if  necessary 
[106–108]. There are numerous strategies for extra nutrition through high- calorie 
feeding and/or enteral feeding provided by different studies [109–111].

In terms of nutrition, the two main problems are the plan and time of nutrition 
supply. Study indicated that giving patients late-night food is a feasible intervention 
to reverse the reduction of synthetic metabolism and muscle atrophy in patients with 
cirrhosis and can improve the life quality of patients with cirrhosis. The long-term 
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benefits and the value on lifespan were critically evaluated. The subsequent meta- 
analysis was disappointing, and nutritional supplements for patients with alcoholic 
hepatitis and liver cirrhosis demonstrated no improvement in survival rate. The 
exact mechanism of the protective effect of supplemental nutrition on muscle loss is 
unclear, which allows us to consider other factors that contribute to such uncer-
tainty. As a form of resistance to synthetic metabolism, the nutritional problem of 
cirrhosis may not be compromised by supplementing energy alone. We need to 
consider the effects of impaired mitochondrial function on nutrition management. 
Other clinical symptoms, including encephalopathy and septicemia, and how to 
improve the life quality are also needed to be considered in future studies.

Protein supplementation is another way to improve the supply of essential amino 
acids. However, liver cirrhosis and high blood ammonia may accelerate the decom-
position of amino acid. This results in ammonia accumulated in skeletal muscle, 
which damages the protein synthesis and further increases the autophagy. These are 
not benefits to reverse sarcopenia. In the selection of protein sources, plant proteins 
have an advantage over animal protein, which are rich in branched-chain amino acid 
(BCAA) rather than aromatic amino acids [112–114]. For example, leucine is par-
ticularly an important activator of mTORC1 via the Rag small GTPases and a pleth-
ora of regulatory proteins, leading to decreased autophagy and protein synthesis, 
which is the protection mechanism against loss of muscle. Confirmed results have 
provided direct evidence on interference of the molecules in skeletal muscle during 
cirrhosis [115, 116]. A single oral BCAA mixture enriched with leucine (BCAA/
LEU) can impair mTOR1 signaling, autophagy, and GCN2 activation in cirrhotic 
patients without altering myostatin expression [117]. Combined with in vivo and 
in vitro data of, hyperammonemia is considered as the mediator of hepato-muscular 
axis and BCAA supplement is beneficial for cirrhosis [118, 119].

19.5.2  Supplemental Hormone Therapy

Both sarcopenia and low testosterone have been found associated with poor progno-
sis in men with cirrhosis, independent of the Model for End-Stage Liver Disease 
(MELD) score. Testosterone and growth hormones are used to improve nutritional 
status and muscle mass in cirrhosis patients, but the clinical benefits remain to be 
verified [120–123]. Anabolic androgenic steroid oxandrolone shows an improve-
ment in nutritional status, body composition, and muscle function, as well as the 
non-muscle beneficial effects such as the ameliorating condition of the original dis-
ease in men with cirrhosis. But unfortunately, testosterone treatment can signifi-
cantly reduce the mortality of patients (16% vs. 25.5%, p = 0.352). Even though 
research suggests that low testosterone has its advantages in predicting mortality in 
men with advanced liver disease than sarcopenia [124], it still needs to be addressed 
whether testosterone is continuously effective in improving the prognosis in liver 
cirrhosis patients with sarcopenia.
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19.5.3  Other Potential Strategies

According to the documented mechanism mentioned above, the scientists propose 
treatment strategies for the corresponding targets, which require preclinical trials to 
clarify the effect. Myostatin antagonists, antioxidants, mitochondrial protectants, 
and direct mTORC1 activators may benefit skeletal muscle protein turnover but are 
not adequately evaluated [117, 118, 125].

Hyperammonemia could be another common concern in both sarcopenia and 
end-stage liver disease. Current methods for decreasing plasma ammonia include 
nonabsorbable disaccharides and antibiotics by preventing the production of ammo-
nia. In the treatment of patients with liver cirrhosis, the main purpose of lowering 
blood ammonia originally is to cure hepatic encephalopathy; however, the latest 
views suggest that blood concentration of ammonia is completely not associated 
with the severity of hepatic encephalopathy [126]. Since it takes a long time for 
serum ammonia to affect the muscles, lowering blood ammonia in the short term 
does not reduce muscle blood ammonia concentration. The changes of high blood 
ammonia on signal pathway activation and metabolism cannot be reversed. Loss of 
muscle mass and function can be saved only by long-term, continuous ammonia- 
lowering therapies, or by targeting lower levels of ammonia in the skeletal muscle. 
Supplemental BCAA are used as a therapy in patients with cirrhosis, especially in 
the patients with hepatic encephalopathy (HE) [127–129]. The oral dosage of 
BCAA can enhance the metabolism of muscle ammonia, reducing the ammonia 
content in muscle. However, this method may also temporarily increase the concen-
tration of arterial ammonia, which may be due to the external metabolism of gluta-
mine (GLN). The contents of GLN in skeletal muscle can be maintained by 
parenteral α-KG supplemental after surgery. GLN synthesis may exert adverse 
effects of catabolism stimulation by BCAA in skeletal muscle. Thus, reducing the 
use of α-KG and other drugs that promote GLN synthesis should be considered 
[130–132].

19.6  Challenges in Study on Sarcopenia in Liver Disease

Sarcopenia is a common manifestation of chronic liver diseases. On one hand liver 
disease accompanied with sarcopenia adds the burden of the disease; on the other 
hand, sarcopenia can become a potential monitor of liver diseases and its complica-
tions. Although the researches have drawn a similar conclusion of correlation 
between sarcopenia and NAFLD and put forward the possible mechanism, there 
remain questions to be addressed. Firstly, some researchers have pointed out that it 
needs to pay attention to the diagnostic criteria of NAFLD used in studies. Skeletal 
muscle index (SMI) is the most commonly used index for assessing sarcopenia 
(SMI =  total appendicular skeletal muscle mass [kg]/body mass index [kg/m2]). 
NAFLD is diagnosed by noninvasive evaluation methods, such as NAFLD liver fat 
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score and liver attenuation index (LAI). NAFLD patients are likely to be more 
obese, which affects the score of SMI. Moreover, there is no uniform standard to the 
choice of cutoff point in NAFLD diagnosis [133]. Hence, it is indispensable to build 
a research based on biopsy-proven or imaging-defined fatty liver. Secondly, the 
analysis results of the above data used adjustment variable in the logistic model. 
Some exposed factors such as IR, obesity, and low vitamin D, which will affect the 
results, are not included, though the researchers adjusted for other variables. The 
effect of these moderators should be considered deliberately. Meanwhile it is clear 
that lifestyles, ethnicities, and cultural background have a great influence on IR, 
which is the important component in the formation of either NAFLD or sarcopenia. 
Multicenter large-scale trials need to put into practice for formulating feasible and 
effective primary intervention strategies. Thirdly, the evidence shows a significant 
correlation between sex and the occurrence of sarcopenia in patient with NAFLD, 
which maybe a consequence of sex hormone. But there are no individualized treat-
ment options for male and female. Lastly, we are still not certain about whether 
NAFLD is a cause or a consequence of IR. In conclusion, sarcopenia is a promising 
early warning factor for chronic liver disease, especially NAFLD, whereas lots of 
issues will need to be discussed in future studies.
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Chapter 20
Muscle Atrophy Measurement 
as Assessment Method for Low Back  
Pain Patients

Elżbieta Skorupska

Abstract Low back pain is one of the most common pain disorders defined as pain, 
muscle tension, or stiffness localized below the costal margin and above the inferior 
gluteal folds, sometimes with accompanying leg pain. The meaning of the symp-
tomatic atrophy of paraspinal muscles and some pelvic muscles has been proved. 
Nowadays, a need for new diagnostic tools for specific examination of low back 
pain patients is posited, and it has been proposed that magnetic resonance imaging 
assessment toward muscle atrophy may provide some additional information 
enabling the subclassification of that group of patients.

Keywords Low back-related leg pain · Multifidus · Muscle atrophy · Gluteus 
muscles

20.1  Background

Low back pain (LBP) is one of the most common pain disorders that may concern 
around 54–90% of people throughout their lives [1]. It is commonly defined as 
pain, muscle tension, or stiffness localized below the costal margin and above the 
inferior gluteal folds, with around 25–57% of cases suffering additionally from 
accompanying leg pain [2]. Most of the LBP cases are classified as non-specific 
type, namely, pain unattributed to a recognizable pathology (e.g., infection, tumor, 
osteoporosis, rheumatoid arthritis, fracture, or inflammation). Currently, the multi-
dimensional nature of LBP has been underlined and indicated as a possible expla-
nation for the discrepancies in study results. Different classifications and ways of 
subgrouping LBP patients are available, and they can be organized into five catego-
ries: (i) clinical features, (ii) pathoanatomical source of pain, (iii) treatment-based 
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approach, (iv) screening tools and clinical prediction rules, and (v) pain mechanism 
[3]. The last – mechanism-based – classification is thought to be the most promis-
ing for the classification of LBP cases toward effective pain treatment. Nevertheless, 
it is impossible to classify LBP by any system objectively based on the routinely 
used clinical examination, radiographic and laboratory data, or questionnaires. 
Nowadays, a need for new diagnostic procedures has been posited. While some 
authors propose the utility of different nonstandard procedures (such as small inva-
sive, high-tech imaging under control, or guided injection procedures) to confirm 
some LBP subtypes, others indicate simply the MRI assessment toward muscle 
atrophy to be of great use [4, 5].

Evidence from epidemiologic studies suggests that the lumbar spine structures 
are associated with the development and progression of LBP, and the atrophy of 
specific muscles has been assumed as an unheralded symptom of LBP. Until the end 
of the previous century, only a few authors detailed the role of muscle atrophy in the 
etiology of LBP [6–10]. During the last decade, however, more and more authors 
assumed the interaction between the atrophy of specific muscles, LBP, and spinal 
pathology to be well documented [4, 9–25]. Moreover, deficits in trunk and hip 
muscle strength [26, 27], endurance [28, 29], and motor control [30–32] have been 
identified in LBP individuals. Still, it is unknown if these deficits are the cause or 
the effect of LBP, and it has been suggested that LBP develops as a result of inactiv-
ity [33], denervation [34], inflammation [35], or injury [36]. What is important, the 
disturbed patterns of muscle fiber activation and histopathological changes indicate 
the atrophy independent of aging [37].

Generally, inactivity atrophy is usually associated with short-term or long-term 
immobilization, either of whole or part of the body, or with a limited use of muscles 
owing to a decreased physical activity. More precisely, if the LBP patient is sparing 
the symptomatic side or any improper functioning of the muscles responsible for 
trunk and pelvis stability develops, then muscle atrophy can be observed. Such situ-
ations are considered to be one of the main contributors to chronic low back pain 
[38–42]. Another possibility of muscle atrophy development among LBP cases is 
atrophy secondary to a direct muscle injury, infection, congenital myopathy, or 
inflammatory disease. Among histopathological changes, the following have been 
distinguished: muscle fiber degeneration, scattered chronic inflammatory cells, 
fibrosis, and focal areas of fatty tissue between degenerated fibers [43]. The next 
type of atrophy, which seems quite common among LBP patients, is neurogenic 
atrophy. It may occur as a result of an indirect muscle damage due to nerve injury 
(e.g., nerve root compression), which can provoke some metabolic changes in the 
sympathetic nervous system, then the metabolic activity of the musculoskeletal sys-
tem, vasoconstriction, and – finally – atrophy [44].
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20.2  Imaging Techniques Used to Assess Signs of Muscle 
Structure Degeneration

To assess muscle structure characteristics, different evaluation techniques are used, 
but the most frequently applied ones include computed tomography (CT) [14, 45, 
46], ultrasound imaging (US) [47–50], and magnetic resonance imaging (MRI) [51, 
52]. US images can show strong artefacts that may be inadequately handled by 
automatic segmentation software. As for computed tomography and magnetic reso-
nance imaging, MRI is indicated superior to CT for soft-tissue segmentation for two 
reasons: (i) problematic radiation exposure, especially if multiple sessions are nec-
essary, and (ii) the fact that CT provides only an indirect assessment of muscle qual-
ity (muscle density) [53]. Moreover, MRI shows the adipose tissue directly, which 
allows to detect even subtle variations in both muscle morphometry and tissue com-
position [54]. However, tissue morphometric analyses require image segmentation, 
and – depending on the localization – manual assessment can be necessary. It seems 
that for soft-tissue segmentation, the MRI assessment can give the most reliable 
results. Among the newest techniques, chemical shift-based water-fat separation 
methods, like the multipoint Dixon fat mapping MRI technique, are recommended 
for quantitative evaluation of fatty degeneration in patients with lumbar disc pathol-
ogy [55–57].

All available data for LBP cases mainly concern the MRI assessment toward 
three major signs of muscle degeneration detected on imaging: (i) a decrease in the 
size of cross-sectional area of a muscle, (ii) a decrease in radiographic density, and 
(iii) an increase in the amount of fat deposits.

Cross-sectional area (CSA) of a muscle can be measured either by computer 
tomography, magnetic resonance imaging, or ultrasound. It has been proposed that 
the CSA measurement by means of MRI can be directly correlated with the clinical 
measure of muscle strength [58, 59]. The CSA can be measured either as total CSA 
or functional CSA.  These two can be further used to calculate the atrophy ratio 
(functional CSA/total CSA) serving as an indicator of muscle composition. Side-to- 
side difference in atrophy ratio, CSA asymmetry (as a percentage), and fat CSA to 
total CSA ratio can be additionally measured [60]. It is difficult to point out the most 
appropriate spinal level for lumbar spine examinations because data vary signifi-
cantly among studies. For a single-level CSA measurement, the L4–L5 vertebral 
space is recommended because it has been proved to be affected 6–9 times more 
frequently than any other spinal level [61]. Within a single level, the CSA should be 
measured at the center of the intervertebral disc, at the middle of the lamina, at the 
superior/inferior endplate, or at the center of the vertebral body. More precise but 
time-consuming is the cross section of up to 11 levels between L1 and S1 [48, 51, 
60, 62, 63].
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The second characteristic of muscle degeneration, namely, muscle density (MD), 
has been described either as a mean attenuation coefficient or as muscle fat infiltra-
tion (fat between muscle fibers and within muscle cells) [64–66]. Muscle density is 
associated with poor metabolic function and may be indicative of muscle function 
impairment [67, 68]. Additionally, MD measurement may also reflect the compact-
ness of muscle fibers or the amount of protein within muscle and other potential 
soft-tissue elements not segmented from muscle such as tendons, blood vessels, 
aponeuroses, and fascia.

The third sign of muscle degeneration, namely, fatty infiltration and accumula-
tion, may vary depending on the patient’s state. It may also reflect the aging process 
or a late stage of muscular degeneration. Thus, for LBP cases relevant data should 
be interpreted separately for the lean tissue and fat. The most commonly recom-
mended methods of fatty infiltration measurement in a noninvasive manner are 
MRI, MR spectroscopy, or US [51]. The methods used to assess fatty infiltration can 
be classified as either visual semiquantitative or quantitative measurement tech-
niques [69]. The visual semiquantitative assessment of fatty infiltration can be sim-
ply graded by standard criteria used in adults – 0 (no fat), 1 (slight infiltration), and 
2 (severe infiltration) – if present at one or more lumbar levels proposed in a com-
monly used five-point semiquantitative scale: (grade 0) normal, (grade 1) some fatty 
streaks, (grade 2) less than 50% fatty muscle, (grade 3) as much fat as muscle, and 
(grade 4) more fat than muscle [70, 71]. However, Kalichman et al. [72] adapted 
that scale and proposed a more quantitative assessment: grade 1, a normal muscle 
condition, fatty infiltration up to 10% of the muscle’s CSA; grade 2, moderate mus-
cle degeneration, 10–50% of fatty infiltration; and grade 3, severe muscle degenera-
tion, >50% of fatty infiltration. Both methods provide a numerical scale for fat 
content, which favors MRI over CT for both acute and chronic LBP [69].

The fourth sign of muscle degeneration considered for the purpose of muscle 
atrophy assessment is muscle volume (MV). It has been claimed that the accuracy 
of the CSA measurement depends on the body area and does not always reflect 
MV.  Although the CSA measurement is faster  – and thus more widely used in 
research studies – its results are not always representative for bigger muscles [73, 
74]. What is more, it is difficult to define and then reproduce the optimal level to 
carry out the measurement [75–78]. Thus, the CSA assessment seems quite good for 
erector spinae but not for pelvic muscles [75–78]. However, normative MV values 
for pelvic muscles are lacking. Moreover, similar MV of dominant and non- 
dominant side (pelvis and lower extremity muscles) in healthy humans and symp-
tomatic pelvic muscle atrophy for LBP +/– leg pain have been confirmed [4, 79–82]. 
The MV measurement can be based on the MRI [73, 83], CT [74, 84], US [85, 86], 
or bioelectrical impedance analysis [87, 88]. However, once again MRI is the most 
commonly recommended. The MV measurement necessitates manual segmentation 
because of the pelvic muscle anatomy [89]. The manual MV measurement requires 
both more time to outline several CSAs and some practical training of raters to get 
reliable results. Currently, different methods are used, but the most commonly rec-
ommended for LBP cases is the method based on interpolation and deformation of 
a parametric-specific object [73, 83, 90–92]. It requires fewer axial images to assess 
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muscle geometry, thanks to parametric ellipses using basic dimension of muscle 
contours. The method has been used for gluteal, tensor fascia lata, and sartorius 
muscles, and its satisfactory accuracy using approximately 5–6 slices (average vol-
ume error of 2.4%) has been reported [89].

Fatty infiltration can be also measured by quantitative methods, and once again 
some proposals are available. The first one is the ratio of fat CSA to total CSA as an 
indicator of muscle composition (or fatty infiltration), and the second one is the 
signal intensity used as an indicator of fatty infiltration, where a higher mean signal 
intensity value reflects more fat content in the muscle [93–98].

For musculoskeletal applications, automated methods are commonly used [99–
101]. However, automated methods are desirable if the contrast of the evaluated 
tissue is high or if the border between the two muscles is clear. Otherwise, the 
manual segmentation – which is susceptible to human error to a higher degree than 
automated or semiautomated methods  – is required [102, 103]. Moreover, each 
measurement has to be conducted at least twice (repeated analysis) by the same 
rater (intra-rater reliability) or different raters (inter-rater reliability) [100]. The 
high-quality and reliable results of muscle atrophy assessment require anatomical 
preknowledge, appropriate muscle segmentation algorithm, and specific imaging 
modality, namely, two-dimensional or three-dimensional data sets with high con-
trast between the tissue classes and high spatial resolution to avoid partial volume 
effects with the low image noise [104, 105].

20.3  Current State of Knowledge About Muscle Atrophy 
and Low Back Pain Correlation

20.3.1  Paraspinal Extensors

The first muscles to be examined toward atrophic changes due to or leading to LBP 
were lumbar extensors. They are considered to be dynamic stabilizers, thanks to 
providing stability to the motion of spinal units. Muscle force imbalance may lead 
to kinetic instability of the spine or, e.g., changes in the orientation of the facet joint 
structures. Multifidus muscle (MF) has been an obvious choice for first observations 
of the link between muscle atrophy, lumbar spine degenerations, and LBP symp-
toms due to its unique feature – unilateral and segmental innervation pattern [106, 
48]. It is known that the CSA of paraspinal muscles is symmetrical for the right and 
left side in normal (without LBP) individuals [107–109].

Additionally, it has been confirmed that all paraspinal muscles (except multifi-
dus) with multisegmental innervation presented the maximum relative atrophy at 
the level below the pathology due to disuse or inflammation process [110, 111]. 
Quite uniquely, the subjects with disc pathology presented unilateral multifidus 
atrophy above the pathological disc [112]. Histological studies confirmed that disc 
herniation provoked MF changes of both sides. However, they were more severe on 

20 Muscle Atrophy Measurement as Assessment Method for Low Back Pain Patients



442

the symptomatic side than on the opposite one. Both Type I (slow-twitch oxidative) 
and Type II (Type IIX/MHC-2X fibers, “fast-twitch glycolytic”) fibers presented a 
symptomatic decrease in the size together with structural changes. Generally, a vari-
ety of pathological findings, such as fiber-type grouping, small angulated fibers, 
group atrophy, moth-eaten appearance, intermyofibrillar network irregularity on 
nicotinamide adenine dinucleotide tetrazolium reductase-stained biopsy specimens, 
and internal nuclei, has been confirmed [113, 114]. An assumption that multifidus 
atrophy appears to be level- and side-specific led to the development of studies 
focused on paraspinal atrophy measurement in relation to LBP and radiculopathy 
symptoms [4, 10, 22, 47, 115–117]. Additionally, localized spinal trauma, disc her-
niation, or spinal nerve lesion confirmed by electromyographic, histological, or 
radiographic measurements and their correlation with muscle atrophy coexistence 
have been examined [21, 34, 55, 112, 115, 118, 119].

The atrophic changes of MF have been confirmed in around 77–80% of LBP 
cases, especially at the L5–S1 level [4, 18, 47]. Next, different subtypes of LBP 
were investigated, and it has been confirmed that the facet joint osteoarthritis or 
spondylolisthesis can provoke muscle density changes on a specific level [69]. 
Some authors stated that the muscle atrophic changes depend on the duration of 
neural compression after disc herniation, which can influence segment-specific 
degenerative changes in lumbar multifidus and erector spinae [120]. That assump-
tion was supported by some studies where the experimentally inflicted disc, nerve 
root lesions, and nerve root avulsion were followed by muscle atrophy [34, 121]. 
Then, it has been confirmed that both specific and non-specific LBP equally pre-
sented a decrease in both multifidus and paraspinal muscles in chronic LBP com-
pared to healthy controls [122]. Additionally, it has been indicated that CSA among 
non-specific chronic LBP differs depending on a muscle and MF gets decreased, 
whereas erector spinae (ES) remains unaltered [14, 45–49]. Then, the meaning of 
the symptoms duration was checked, and muscle atrophy has been confirmed for 
acute, chronic, and recurrent LBP [22, 123, 24]. As it was expected, different CSA 
results were observed. The muscle size reduction in the acute phase was explained 
by disuse caused by pain or an inhibition along a long-loop reflex to protect 
impaired muscles at the symptomatic level [10]. For the chronic phase, there is 
generally a moderate evidence of MF decrease at different levels, but the CSA 
results of paraspinal muscles and the erector spinae muscle were less conclusive 
[14, 45–50]. It has been proposed that symptomatic muscle atrophy for chronic 
LBP is either caused by pain inhibition together with compensatory hypertrophy of 
the non- painful side or related to degenerative changes of the lumbar disc [124]. 
However, when the subjects were divided into chronic and recurrent LBP sub-
groups, the chronic one presented atrophy of the erector spinae, whereas the recur-
rent one did not. This allows to hypothesize that atrophy develops over some 
prolonged period of time or that muscle size recovery can be taking place during 
symptom remission [46, 51]. To summarize all the available data on the atrophy of 
paraspinal muscles for acute, chronic, and recurrent LBP, it seems that the results 
are conflicting and there is little evidence of the paraspinal lumbar muscle size and 
composition changes [23, 22].
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It has been also proposed to check the utility of more precise observations of the 
relationship between specific vertebral levels and MF muscle atrophy, which con-
firmed lowered CSA mainly more caudally [14, 47–50]. Moreover, L5 atrophy was 
larger compared to L4, and it was explained by an anatomically bigger size of MF 
at the L5 level [14]. Thus, the atrophy of a bigger muscular mass is more visible and 
less questionable. What is more, the atrophy at one level may lead to local muscle 
weakness and spine instability, which can provoke further instability of the adjacent 
vertebral levels resulting in atrophy development.

Additionally, it has been indicated that the results can be influenced by the fact 
that some cases presented MF muscle CSA reduction and increased fatty infiltration 
on multiple levels, but side-specific in relation to chronic LBP symptoms [98]. 
Moreover, the situation is complicated owing to the fact that paraspinal muscle 
asymmetry can be observed among asymptomatic subjects. Thus, the idea that the 
level- and side-specific MF atrophy can be used as a marker for localizing the site 
of painful lumbar pathology has been questioned [10, 121, 125–128].

The next proposition for possible diagnostic utility of MF atrophy [47] consid-
ered a 10% or greater asymmetry in multifidus CSA as an indicator of potential 
spinal abnormality. Unfortunately, the fact that paraspinal muscle asymmetry 
greater than 10% is quite common in adults without LBP history limited the idea of 
a simple link between the results of muscle CSA asymmetry and pain or specific 
lumbar pathology [95]. Next proposal considered fatty infiltration. Some authors 
thought the following to be worth considering, namely, that conflicting or confusing 
study results can be related to common fatty infiltration at the lower part of the lum-
bar spine [18] or the occurrence of muscle pseudoatrophy observed within weeks 
after denervation. Moreover, fatty infiltration in the lumbar multifidus is common in 
adults and strongly associated with LBP [18]. However, the mechanisms of intra-
muscular fatty infiltration are not clear. Some meaning of the altered differentiation 
of fibroblasts after paraspinal muscle inflammation has been suggested [129]. 
Additionally, it has been confirmed that some fat replacement of erector spinae was 
associated with reduced intervertebral disc height [130].

Battie et al. [131] stated that MF atrophy measurement in patients with symp-
tom duration of less than 6 weeks to localize specific lumbar disc or nerve root 
pathology should be focused on the MF composition, i.e., fatty infiltration, rather 
than CSA measurement. A similar observation was confirmed by Goubert et al. 
[132], who examined the influence of continued pain complaints on muscle 
structure and function. They confirmed a smaller fat CSA and a lower amount of 
fatty infiltration in recurrent LBP and noncontinuous chronic LBP compared to 
continuous chronic LBP without any differences in total CSA or muscle CSA. The 
authors stated that recurrent LBP, noncontinuous chronic LBP, and continuous 
chronic LBP are part of a complete spectrum of LBP complaints in which each 
subgroup is marked by different muscle characteristics [132]. Moreover, it has 
been posited that multifidus fatty infiltration should be associated with neural 
injury rather than lumbar stenosis and can be used as a prognostic factor of func-
tional performance in spinal stenosis [48].

20 Muscle Atrophy Measurement as Assessment Method for Low Back Pain Patients



444

Currently, there are no studies reporting fatty infiltration of lumbar paraspinal 
muscles in acute non-specific LBP, and the data from chronic LBP remains conflict-
ing. Some authors confirmed an increased fatty infiltration in MF [48] or ES [46], 
whereas others did not find it in any paraspinal muscles [14]. The same was con-
firmed for recurrent non-specific LBP, where for the subjects in remission, no fatty 
infiltration was revealed despite  – interestingly  – an increased muscle fat index, 
which can reflect an increased relative amount of intramuscular lipids in the lean 
muscle tissue [51].

Moreover, some authors underlined the need to consider age differences, which 
can lead to the misinterpretation of study results of fatty infiltration among 
LBP. Based on the comparison between younger and older LBP subject in reference 
to healthy controls, the authors stated that fat content increases with age [14, 45, 52, 
93, 133].

Generally, it can be summarized that fat content is supposed to be a result of 
aging, long-lasting inactivity, or long-lasting LBP.  Moreover, fatty infiltration is 
thought to be a sign of muscle atrophy [18, 20], but it should be underlined that the 
replacement of muscle with fat may not significantly alter muscle CSA [51].

20.3.2  Psoas Muscle

The multifidus muscle together with other paraspinal and trunk muscles plays an 
important role in lumbar segmental stability, for which the strengthening of deep 
and superficial stabilizer muscles and their co-coordination are necessary [134]. In 
lumbar segmental stability, hip muscles are also thought to be crucial. Among them, 
the psoas muscle as a significant hip flexor is of a particular interest. However, simi-
lar to MF atrophy measurement, contradictory results of psoas CSA in LBP patients 
are reported in the literature [23, 14, 9, 135]. It has been confirmed that any decrease 
in CSA can lead to a loss of proper biomechanics and thereby to LBP [110, 118, 
136–138]. Interestingly, an association between facet orientation and tropism and 
the asymmetric parameters of paraspinal and psoas muscles in patients with chronic 
low back pain have been confirmed [139]. Next findings were that the psoas size is 
changeable and depends on the age and sex. Fatty infiltration and psoas CSA 
decrease for older patients, and a larger psoas relative CSA and a lower multifidus 
fatty infiltration among stenosis patients with high functional performance have 
been confirmed. Moreover, selective atrophy of multifidus and an increase in the 
CSA of psoas and abdominal muscles for patients with prolonged bed rest have 
been observed [140]. However, the nature of psoas atrophy as regards LBP is not 
clear, and longitudinal studies are needed to understand this relationship.

E. Skorupska



445

20.3.3  Gluteal Muscles

The gluteal muscles are three buttock muscles, namely, gluteus maximus, gluteus 
medius, and gluteus minimus, and the link between the atrophy of these muscles 
and LBP has been made by only a few authors [141]. The currently available results 
allow to hypothesize that muscle atrophy needs some specific conditions for devel-
opment independent of the LBP occurrence. Firstly, the idea of a possible utility of 
gluteal muscle atrophy measurement among LBP cases was based on the studies 
which confirmed the weakness of these muscles, asymmetry in strength [26, 142, 
143], as well as a different recruitment pattern of gluteal muscles during, e.g., pro-
longed sitting or standing [42, 141]. Additionally, the biomechanical studies showed 
that gluteal muscle impairment depends on its specific role and a certain type of 
activity can influence each specific gluteal muscle separately, e.g., gluteus medius is 
involved in pelvis stability, as well as trunk stability during running [143]. 
Interestingly, that muscle has been indicated among other gluteal muscles as the one 
of the most interest for the possible atrophy measurement among LBP cases. Some 
authors suggested that the gluteus medius muscle probably plays a diagnostic role 
due to its common atrophy in chronic LBP and thus that it could serve as a predictor 
of chronic non-specific LBP presence when compared to the controls. Moreover, 
gluteus medius weakness was noted among LBP pregnant women [144, 145]. 
However, it is unclear whether the initial gluteus medius muscle weakness is the 
cause or the consequence of LBP and how this observed dysfunction should be 
managed [146, 42].

The connection between the gluteus maximus muscle and LBP is based on the 
muscle’s importance for load lifting from a fully flexed position [147–149]. Thus, this 
fact is commonly associated with LBP, where lifting is thought to be one of the impor-
tant factors causing LBP, especially due to disc herniation [150–154]. Another hypo-
thetical explanation is the connection of gluteus maximus via proximal attachment 
with thoracolumbar fascia, whose meaning for LBP development is widely known and 
both structures (muscle and fascia) are activated during spinal extension. Moreover, it 
has been confirmed that gluteus maximus has a tendency to fatigue among LBP 
patients compared to healthy subjects and alterations in gluteus maximus strength 
symmetry have been observed for women with LBP history [155]. The first studies 
concerning muscle atrophy measurement denied the occurrence of gluteus maximus 
atrophy among chronic LBP women [45]. However, the most recent data indicate that 
the atrophy of gluteal muscles is characteristic for more than 50% of LBP with leg 
pain cases and a certain variability of gluteus maximus CSA among LBP women 
depending on age and number of back pain-related medical visits has been confirmed 
[82, 81]. Although these studies indicate some meaning of gluteal muscles for LBP, it 
is unclear what proportion of LBP population as compared to healthy controls is 
involved, as well as which muscles are subject to atrophy. There is no data on gluteus 
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minimus atrophy among LBP cases, except for one study concerning LBLP cases 
[81]. Further research on gluteal muscle atrophy and its link with LBP, with subgroup-
ing the sample into age, sex, and LBP subtypes, is recommended.

20.4  Current State of Knowledge About Muscle Atrophy 
Among Low Back-Related Leg Pain Subjects

Low back-related leg pain (LBLP) is considered among 23–57% of cases suffering 
from LBP. There are a few subtypes of LBLP given in the literature, e.g., lumbosa-
cral radicular syndrome defined as sciatic neuralgia and atypical leg pain (also 
called pseudoradicular), motion segment, sacroiliac joint syndrome, or facet joint 
pain [156, 157]. However, all of LBLP subtypes have a very similar clinical picture 
but completely different pain mechanisms, which requires a different treatment 
approach. This situation causes lots of controversy and leads to failed therapies 
because the widely used diagnostic procedures such as neurological bedside exami-
nation, MRI, and Lasègue sign interpretation do not allow to objectively subclassify 
LBLP patients [158–162]. It has been posited that the MRI assessment toward mus-
cle atrophy would have some diagnostic utility [4]. However, only a few studies 
concerning symptomatic muscle atrophy in patients with LBLP are available. Apart 
from Skorupska et al. [81], who were first to prove symptomatic pelvic muscle atro-
phy among LBLP cases, most of them were focused on the multifidus muscle [4, 
163, 117, 34, 115].

The occurrence of MF atrophy related to nerve root denervation or dorsal ramus 
injury among LBLP cases has been confirmed and observed in 20–60% of cases [4, 
23, 163–165]. More recently, when a particular spine level (L4–L5 and L5–S1) was 
considered, the atrophy has been confirmed in around 80% of subjects [4]. Although 
a significant correlation between lumbar MF muscle atrophy and leg pain (radicular 
and non-radicular) has been proved, the authors stated that there is no significant 
dependency between muscle atrophy and radiculopathy symptoms, nerve root com-
pression, herniated nucleus pulposus, and a number of degenerated discs. Moreover, 
muscle degeneration was usually bilateral and multilevel, even in patients with a 
single nerve root irritation. Additionally, fatty infiltration and fibrous tissue replace-
ment of multifidus were also shown to be associated with leg pain [4].

It seems that MF atrophy has little importance when it comes to diagnosing 
LBLP subjects. Firstly, it would be difficult to assess whether MF atrophy is due to 
LBP or LBLP. Secondly, asymmetric MF atrophy and bilateral and multilevel MF 
degeneration have been confirmed even in patients with a single nerve root irrita-
tion. This gives too much variance which could lead to questionable diagnostic con-
clusions. Thus, the confirmation of atrophy in other muscles related to different 
subtypes of LBLP could have a possible differential diagnostic value [10, 166, 14, 
167, 22, 118, 47]. Similar to LBP, some links can be found between LBLP and 
 pelvic muscles. The symptomatic side weakness of the gluteus and piriformis mus-

E. Skorupska



447

cles has been confirmed for pregnant women with pseudoradicular leg pain [144], 
as well in subjects with sciatic or sciatic-like pain [38, 80]. Interestingly, Skorupska 
et al. [81] confirmed that more than 50% of LBLP patients presented a smaller vol-
ume of the symptomatic side for gluteus maximus, gluteus minimus, and piriformis, 
but not for gluteus medius, which seems to be important for LBP. The results are 
quite valid due to a big sample, manual measurement, and muscle volume calcula-
tion not limited to CSA measurement only.

One of the possible explanations for symptomatic pelvic muscle atrophy can be 
the neurogenic type of atrophy due to nerve compression, which provokes meta-
bolic changes in the sympathetic nervous system, then the metabolic activity of the 
musculoskeletal system, vasoconstriction, and – finally – atrophy [44]. That kind of 
muscle atrophy was confirmed for rats with neuropathic pain, which can develop in 
some chronic state cases of every neurogenic pain [168]. If the same can be con-
firmed for humans, it would be of great help because – due to a completely different 
treatment approach in LBLP  – an objective tool for distinguishing neuropathic 
LBLP is nowadays indicated as the most important. The proportion of patients with 
neuropathic pain as a component ranges from 8% in patients with pain restricted to 
the lumbar area to 15% in patients with pain radiating proximally, 39% in patients 
with pain radiating below the knee without neurological signs, and 80% in patients 
with pain radiating toward the foot in a dermatomal distribution with neurological 
signs corresponding to typical radiculopathy [169].

Another possible explanation for pelvic muscle atrophy among LBLP patients 
can be inactivity due to changes in balance between muscle fiber apoptosis and 
regeneration [170, 171]. This type of muscle atrophy can be observed as a result of 
the patient sparing the symptomatic leg or due to an improper functioning of the 
muscles responsible for trunk and pelvis stability. With high probability, it can be 
observed among patients with lumbosacral radiculopathy, who commonly develop 
analgesic posture, or sacroiliac joint syndrome cases, where the gluteus maximus 
together with the quadratus lumborum has a crucial meaning for lumbopelvic stabi-
lization [172, 142].

The results of healthy subjects suggest some diagnostic utility of muscle atrophy 
measurement among LBLP cases. The side-to-side comparison performed for glu-
teus group and piriformis muscles revealed nonsignificant differences under 1.24%, 
except for gluteus medius (3% and 2.61%; p<0.05) [81]. Additionally, it has been 
confirmed that the normative value of gluteus medius and gluteus minimus muscle 
volume has no age, gender, and dominant leg dependency [173]. It is not known 
what could possibly influence the gluteus medius results of the control group. 
Further studies concerning the reliability of MV measurement for gluteus medius 
and gluteus minimus of healthy subjects are necessary [81].

The meaning of the piriformis muscle for LBLP symptoms has been posited in 
two ways: firstly, due to the widely known and described piriformis syndrome, 
which is a pain state due to sciatic nerve entrapment, and – secondly – because of 
the importance of piriformis hyperactivity in the sacroiliac joint syndrome or myo-
fascial pain involved in LBLP symptoms. There is no available data concerning the 
meaning of piriformis atrophy in LBP cases apart from the study by Skorupska et al. 
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concerning low back-related leg pain subjects, which confirmed piriformis atrophy 
for more than 50% of cases. However, neither the possible mechanism nor the clini-
cal meaning of the observed atrophy is clear. The anatomical variation, changes of 
the sciatic nerve position relative to the piriformis muscle, as well as the muscle 
hypertrophy in MRI studies have been also presented [174–178]. Interestingly, the 
confirmation of the asymmetry in the size of the piriformis muscle has been sug-
gested as a predictor of good surgery outcome for piriformis syndrome patients 
[179]. However, some authors reported symptomatic piriformis muscle atrophy and 
fatty infiltration dependent on the botulin toxin (BT) treatment, which correlated 
with both the number of BT injections and the timescale between the start of the 
treatment and the MRI examination. It has been suggested that the MRI measure-
ment of piriformis atrophy and fatty infiltration may enable the prediction of a pos-
sible BT effect for piriformis syndrome symptoms and allow the assessment of the 
remaining muscle mass with a view to additional injections [180].

20.5  Summary

Generally, it should be remembered that the choice of applied techniques (US, CT, 
and MRI) to investigate CSA and fatty infiltration can influence the results of a 
study, e.g., magnetic resonance spectroscopy could reveal increased metabolic fat 
content, whereas conventional MRI using a semiquantitative visual grading system 
might not reveal such differences. Every technique has its disadvantages which 
should be considered when planning a study. Computed tomography is not good for 
muscle investigation due to its poor ability to differentiate soft-tissue types. The 
type of the applied MRI sequence is important for appropriate sensitivity of muscle 
measurement. Additionally, new techniques such as opposed-phase magnetic reso-
nance, Dixon, and proton magnetic resonance spectroscopy should be considered 
because they allow to quantify fat fraction in tissues. The possible utility of the 
lumbar and pelvic muscle size measurement for LBP cases is concerned in three 
ways. First is for the diagnostic purpose as a new direction which would allow to 
subgroup LBP sample objectively. This is the most important thing that has been 
underlined by many authors involved in the LBP studies. The second aim of muscle 
atrophy measurement is to use it as a predictor of LBP occurrence. However, the 
data are conflicting, and some authors argue that neither muscle CSA nor fatty infil-
tration in the paraspinal musculature can be used as a predictor of future LBP, thus 
leaving a number of questions unanswered [60, 122, 181–183]. The third way to use 
muscle atrophy measurement is to complete the LBP treatment strategy and to 
observe therapy results.

However, there are no simple and reliable measurement methods, as well as 
high-quality research studies focused on the association between paraspinal and 
pelvic muscle degeneration, spinal pathology, and LBP. It is necessary to establish 
the norm with respect to sex, age, and perhaps some specific LBP subtypes. Then, 
it could be easier to identify pathological deviation in muscle degeneration param-

E. Skorupska



449

eters. Additionally, when study methodology is planned and study results are inter-
preted, all mentioned suggestions should be considered:

Suggestions for future studies:

 1. There is a strong need to establish uniform methods for evaluating degenerative 
changes of paraspinal muscles.

 2. It is important to check the role of paraspinal muscles in the development of 
LBP over different time periods and in different LBP and LBLP subtypes.

 3. The relationship of the psoas and possibly quadratus lumborum muscles with 
LBP should be checked in case-control or longitudinal studies.

 4. There has been limited investigation into the role of the size and fatty infiltra-
tion of all four paraspinal muscles.

 5. Uniformly used MRI parameters are worth establishing by specifying the 
weighting or magnetic field strength.

 6. The quantitative measurements providing greater precision and reliability than 
qualitative assessments should be favored in future studies.

 7. The age should be taken into account as a confounding factor when investigat-
ing fat content.

 8. Age should be used as a covariate in studies evaluating the association between 
paraspinal muscles, spinal degeneration, and LBP.

 9. The patient population included in the study should be clearly defined as acute, 
chronic, or recurrent LBP and specific and non-specific types. Due to many dif-
ferent definitions, it should be clearly included every time in the group 
description.

 10. The information about unilateral or bilateral LBP symptom occurrence should 
be provided. Hence, it is recommended that for unilateral complaints each side 
should be examined separately, and if pain occurred bilaterally, mean values of 
both sides should be averaged only if no significant side differences occur, 
which should be also reported.

 11. For LBLP studies, the information about symptoms duration, level of leg pain, 
and possible pain mechanisms, especially neuropathic, is recommended.

 12. In every study on unilateral pain, both symptomatic and asymptomatic sides 
should be considered.

Important facts for low back pain muscle measurement to be considered during 
result analysis:

 1. Men have a larger CSA and higher density of paraspinal muscles than women.
 2. Men show lower fatty infiltration in paraspinal muscles than women.
 3. Paraspinal muscle CSA and density are higher in men than in women.
 4. Younger individuals have a higher density than older ones.
 5. Individuals with less weight have a higher density of paraspinal muscles than 

those who are overweight.
 6. Women show greater fatty infiltration, regardless of weight or body mass index.
 7. For adolescents, the visual assessment of fatty infiltration is unsatisfactory and 

should be interpreted with caution.
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 8. The amount of intramuscular fat significantly increases in the lower lumbar 
segments for the multifidus and erector spinae muscles compared with the 
upper lumbar segments.

 9. Paraspinal muscle asymmetry >10% is commonly found in men without LBP 
history.

 10. The subjects in a supine position (the most common for MRI) can present mus-
cles with small amounts of flattening because of the body weight. In an upright 
position, the human body needs a minimum of muscular activity to stabilize the 
spine, which might affect the lumbar muscle size. Comparing study results 
where different examination positions are applied could lead to bias.

 11. Both CSA and quality of paraspinal muscles decrease with age.
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Chapter 21
Drugs of Muscle Wasting and Their 
Therapeutic Targets

Kunihiro Sakuma and Akihiko Yamaguchi

Abstract Muscle wasting and weakness such as cachexia, atrophy, and sarcopenia 
are characterized by marked decreases in the protein content, myonuclear number, 
muscle fiber size, and muscle strength. This chapter focuses on the recent advances 
of pharmacological approach for attenuating muscle wasting.

A myostatin-inhibiting approach is very intriguing to prevent sarcopenia but not 
muscular dystrophy in humans. Supplementation with ghrelin is also an important 
candidate to combat sarcopenia as well as cachexia. Treatment with soy isoflavone, 
trichostatin A (TSA), and cyclooxygenase 2 (Cox2) inhibitors seems to be effective 
modulators attenuating muscle wasting, although further systematic research is 
needed on this treatment in particular concerning side effects.

Keywords Muscle wasting · Sarcopenia · Myostatin · Ghrelin · Soy isoflavone

21.1  Introduction

Skeletal muscle tissue accounts for almost half of the human body mass. Muscle 
contractions of the skeletal muscle enable to move the body and maintain homeo-
stasis. Any deterioration in the contractile, material, and metabolic properties of the 
skeletal muscle has a marked effect on human health. Muscle wasting and weakness 
such as cachexia, atrophy, and sarcopenia are characterized by marked decreases in 
the protein content, myonuclear number, muscle fiber size, and muscle strength 
[1–3]. In addition, it is also associated with an increased risk of death. Muscle wast-
ing elicits a poor functional status and reduces quality of life. Up to one-third of all 
cancer patients directly die because of cachexia and not from cancer. Different types 
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of molecular triggers/catabolic factors such as pro-inflammatory cytokines and 
myostatin seem to involve muscle wasting [4, 5]. In contrast, several studies recently 
suggested a functional defect in autophagy-dependent signaling in sarcopenic mice 
and humans [6–8]. Such a condition accumulates the denaturing protein, and non-
functional mitochondria eventually results in the atrophy of sarcopenic muscle 
fibers because of the deterioration of homeostasis.

To attenuate various forms of muscle wasting, many researchers have investi-
gated exercise-based, supplemental, and pharmacological approaches. For example, 
the combination of resistance training and amino acid-containing supplements is 
thought to effectively prevent sarcopenia [9, 10]. In addition, myostatin inhibition 
for sarcopenic patients was successful in phase II trials [11], but the effect on mus-
cular dystrophy is unclear [12]. The administrations of ghrelin and acetate meges-
tate have shown good results against cancer cachexia [13]. The trial of an 
angiotensin-converting enzyme (ACE) inhibitor for chronic heart failure (CHF) 
patients is recommended [14]. Furthermore, recent studies [15, 16] indicated the 
possible application of novel supplements such as soy isoflavone and ursolic acid to 
prevent muscle atrophy in rodents. More recently, pharmacological treatment with 
fibroblast growth factor 19 markedly ameliorated two different types of muscle 
atrophy after aging and glucocorticoid treatment, probably via an obligate co- 
receptor for fibroblast growth factor 15/19, β-Klotho [17]. This chapter outlines 
several recent pharmacological approaches to inhibit muscle wasting.

21.2  Myostatin Inhibition

Myostatin, a potent negative regulator of muscle growth [18], was a novel member 
of the transforming growth factor-β superfamily. Mutations of myostatin can lead to 
marked hypertrophy and/or hyperplasia in developing animals. Severe muscle wast-
ing in HIV patients and muscle unloading in mice and humans increase the amount 
of myostatin [19]. Muscle wasting also exhibits the increased level of myostatin [4]. 
Studies on sarcopenic muscles have yielded conflicting results [19–21], although 
many researchers consider myostatin levels to increase with age. Intriguingly, sar-
copenic muscles of mice exhibit abundant Smad3 (possible myostatin-downstream 
regulator) protein but not myostatin [20]. More recently, muscle loading has been 
shown to elicit more abundant existence of myostatin in satellite cells of type II 
fibers in older than in younger males in spite of no difference in myostatin in satel-
lite cells at the baseline [22]. Therefore, myostatin-dependent signaling may be acti-
vated in sarcopenic mammalian muscles. Although the adaptive changes in 
myostatin have yet to be clearly elucidated in the sarcopenic muscle, pharmacologi-
cal myostatin inhibition is an intriguing strategy to attenuate sarcopenia. Treatment 
with a myostatin inhibitor (PF-354) seems to positively affect aged mice [23]. 
PF-354-treated mice for 4 weeks exhibited a significantly greater muscle mass and 
increased performance, such as habitual activity, distance to exhaustion, and tread-
mill time. Intriguingly, the PF-354-treated aged mice exhibited the decreased 
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amount of muscle ring finger 1 (MuRF1) and phosphorylated Smad3 in the muscle. 
In addition, their group [24] showed that a lower dose of PF-354 increased fiber size 
and force of the hind limb muscle. More recently, a randomized, phase two trial of 
a myostatin antibody (LY2495655: LY) was conducted using multinational indi-
viduals (e.g., Australia, Germany, the USA) aged 75 years or older [11]. This study 
investigated whether the subcutaneous injection of LY (315 mg) improves physical 
performance and increases the appendicular lean body mass (LBM). Becker et al. 
[11] demonstrated that treatment with LY for 24 weeks significantly improved sev-
eral parameters of muscle power (fast gait speed, chair rise with arms, and stair 
climbing time) from the baseline in frail elderly subjects. Therefore, there is thera-
peutic potential of the antibody-directed inhibition of myostatin for treating 
sarcopenia.

Myostatin-inhibiting approaches have conducted in a variety models of muscle 
disorders such as cancer cachexia, amyotrophic lateral sclerosis, and Duchenne 
muscular dystrophy [25–27]. The approach of pharmacological myostatin inhibi-
tion was earnestly applied to attenuate muscle atrophy associated with DMD. Three 
months of weekly injections increased the muscle mass (~35%) and decreased 
serum creatine kinases to near normal levels [28]. Propeptide-mediated myostatin 
inhibition also significantly improved tetanic force production [29]. The success of 
myostatin inhibition in the mdx mouse model led to multiple clinical trials. Initial 
therapeutic strategies were aimed at systematically abrogating myostatin/ActRIIB 
signaling to ensure a widespread effect on the musculature. However, there are a lot 
of problems such as the efficacy, potential adverse side effects, and interference to 
non-muscle tissues of ActRIIB signaling. Clinical studies of Becker muscular dys-
trophy, limb-girdle muscular dystrophy, and facioscapulohumeral muscular dystro-
phy patients treated with a high-affinity myostatin binding antibody (MYO-029), 
intravenously every 2  weeks for 6  months, were discontinued after they did not 
improve the function or strength despite being well-tolerated [30]. Efforts to develop 
ACE-031, a recombinant pseudo ActRIIB receptor that improved muscle mass and 
whole-body strength in mdx mice [31], were finished because of dilated blood ves-
sels, nosebleeds, and gum bleeding in boys with DMD.  Subcutaneous ACE-031 
dose trial every 2–4 weeks to ambulatory boys with DMD was not associated with 
serious or severe adverse events and demonstrated trends in pharmacodynamic 
effects on the body mass density and LBM [32]. However, this study was also dis-
continued due to safety concerns involving telangiectasis and epistaxis [32]. To 
minimize negative side effects, the uses of more highly specific antibodies to myo-
statin and a more direct approach (intramuscular injection) have recently been 
employed, with some positive effects [33, 34]. However, a therapeutic approach 
based on pharmacological myostatin inhibition may be very difficult for DMD 
patients particularly young boys, having a more active metabolism and being prone 
to the influences of the drug that are different to those in elderly people.
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21.3  Testosterone

Testosterone increases muscle protein synthesis, and its effects on muscle are mod-
ulated by exercise and nutrition [35]. Application with testosterone improves sarco-
penic characteristics such as decreases in the grip strength [37] and muscle mass 
[36]. A study of long-term treatment with supraphysiological amount of testoster-
one showed increased leg and arm strength and leg LBM [38]. Although testoster-
one supplementation has been shown to consistently increase whole-body and 
appendicular LBM [36, 38–40], the effects on physical function and muscle perfor-
mance were contradictory in previous trials [39, 41, 42]. Storer et al. [43] hypothe-
sized that such contradictory data from many previous trials are attributable to their 
relatively short duration, small sample size, and the heterogeneity of testosterone 
doses, regimens, and on-treatment testosterone levels. They recently demonstrated 
that testosterone replacement (7.5 g of 1% testosterone) in older men (> 60 years 
old) for 3 years significantly improved these parameters of stair-climbing power, 
muscle strength, power, and fatigability on conducting leg press and chest press 
exercise. Testosterone has been shown to positively regulate insulin-like growth fac-
tor I (IGF-I) [44], Wnt [45], and myostatin [46]. In addition, a 600-mg testosterone 
treatment of the elderly leads to an increase in the number of proliferating satellite 
cells possessing proliferating cell nuclear antigen and active Notch-1. The potential 
risks may outweigh the benefits, although high doses of testosterone significantly 
increase the strength among elderly males. Risks associated with testosterone ther-
apy in older men include thrombotic complications, sleep apnea, an increased risk 
of prostate cancer, and increased hematocrit [47]. Novel, nonsteroidal compounds, 
called selective androgen receptor modulator (SARM), bind to the androgen recep-
tor with differing levels of sensitivity compared with testosterone [48]. SARM has 
shown tissue-selective activity and improved pharmacokinetic properties and may 
be, theoretically, markedly safer than testosterone. The potential clinical utility of 
enobosarm (GTx-024), an orally bioavailable nonsteroidal SARM, was demon-
strated at low doses in preclinical trials [49]. In a 12-week study, a 3-mg enobosarm 
dose-group showed increased total LBM and stair climb power in 120 healthy 
elderly men and postmenopausal women [50], with a similar frequency of adverse 
events such as headache, diarrhea, and pharyngolaryngeal pain between placebo- 
and enobosarm-treated patients. Dobs et al. [51] conducted a randomized, double- 
blind, phase II trial to assess the safety and efficacy of enobosarm using more than 
150 male and postmenopausal female patients with cancer. After study termination 
(up to 113 days), significant increases in total LBM were noted from the baseline in 
both enobosarm-treated groups (1 or 3 mg once daily) [51]. However, in female 
patients with cancer, enobosarm did lead to a similar gain in LBM compared with a 
placebo [51]. Phase I trials using another SARM, LGD-4033, led to an increase in 
the muscle mass, but there was no effect on the fat mass in a 21-day short-term trial 
[52]. The POWER phase III trials of enobosarm (multicenter and multination) are 
ongoing involving subjects receiving first-line chemotherapy for non-small cell 
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lung cancer [53]. These full results will soon be published and will provide the clue 
of future anabolic trials.

21.4  Ghrelin

Ghrelin is mainly produced by cells in the stomach, hypothalamus, and intestines 
[54]. Ghrelin is a natural ligand for the growth hormone (GH)-secretagogue recep-
tor that possesses a unique fatty acid modification. Ghrelin enables to enhance food 
intake and promote adiposity and to stimulate GH secretion. In contrast, ghrelin 
makes T lymphocytes and monocytes to suppress their production of tumor necrosis 
factor (TNF)-α, interleukin (IL)-6, and IL-1β [55]. Attractive candidates for the 
treatment of cachexia are ghrelin and the agonists of the ghrelin receptor [56] 
because of their combined anabolic effects on skeletal muscle and the appetite. 
Three weeks of intravenous ghrelin (2 μg/Kg) to patients with chronic obstructive 
pulmonary disease elicits to significant increases in the handgrip strength, LBM, 
and Karnofsky performance score [57]. In addition, treatment with ghrelin (2 μg/
Kg, twice daily) significantly improved LBM and the left ventricular ejection frac-
tion in patients with chronic heart failure [58]. In a long-term (1 year) study partici-
pated by older healthy adults, an oral ghrelin mimetic (MK-677) significantly 
increased in appetite [57]. However, the study failed to increase the function or 
strength in the ghrelin-mimetic treatment group than those of the placebo group 
[58]. More recently, Pietra et al. [60] demonstrated that the oral treatment of rats 
with anamorelin HCL (ONO-7643), a potent and selective novel ghrelin receptor 
agonist [59], significantly increased body weight and food intake at all dose levels 
(3–30 mg/Kg) compared with the control. In addition, patients with non-small cell 
lung cancer and cachexia were conducted to phase 3 stages using two types of ana-
morelin [13]. Twelve weeks of treatment with both anamorelin for cachectic patients 
induced significant increases in LBM but not handgrip strength with negligible 
adverse effects (hyperglycemia <1%). However, the heterogeneity in the clinical 
effects of anamorelin is recently pointed out [61]. Therefore, further validation of 
this trial is necessary by varying the range of doses during treatment, increasing the 
sample size, and observing other outcomes.

21.5  Soy Isoflavone

Isoflavone is a flavonoid abundantly including in soybeans. Since the structure of 
isoflavone and estrogen is considerably similar, isoflavone exerts a physiological 
function similar to estrogen [62]. For example, muscle mass in ovariectomized mice 
increased by the supplementation of a high-fat diet with isoflavone [63]. Since long- 
term (120 days) supplementation with isoflavone for male mice inhibited fat accu-
mulation in the skeletal muscle [64], isoflavone may also affect the skeletal muscle 
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in male mice. Unfortunately, many researchers have investigated the effect of isofla-
vone supplementation solely by evaluating the muscle mass and not myofiber size 
[65, 66]. Such a method would include some shortcomings because of a greater 
accumulation of fat and/or connective tissue in the atrophied tissue [67, 68]. It is 
possible that isoflavone’s positive effect for maintaining muscle mass does not 
reflect maintenance of the myofiber size. In contrast, Abe et al. [69] investigated the 
effect of isoflavone treatment on muscular atrophy by evaluating the size of muscle 
fibers. In their study, higher amount (20% of diet) of supplementation with isofla-
vone has been shown markedly to inhibit fiber size of the tibialis anterior muscle but 
not the other fast-twitch lower limb muscles after denervation at 4 days. In addition, 
they indicated a significant increase of p-Akt and insulin receptor substrate 1 protein 
in the denervated muscle of mice after isoflavone supplementation. However, it is 
standard for in vivo supplementation with isoflavone to utilize amounts of >1% of 
the diet [63, 64]. The data of Abe et al. [69] is not of practical, since humans can’t 
eat such high levels of isoflavone with each meal. More recently, our group [15] 
demonstrated that treatment with AglyMax (isoflavone aglycones) at lower amount 
(0.6%) attenuates the denervation-induced muscle fiber atrophy in mice. AglyMax 
seems to be absorbed faster and in larger amounts than those of glucoside in humans. 
This influence would be due to the decrease in apoptotic-dependent signaling.

21.6  Trichostatin A (TSA)

TSA is a popular inhibitor of class I and II histone deacetylase (HDAC). Acetylation/
deacetylation of cellular proteins such as histone acetyltransferases and/or HDACs 
regulates muscle mass. Under atrophic conditions, this process becomes perturbed 
and causes the degradation of muscle-specific proteins [70, 71]. At first, Lezzi et al. 
[72] investigated TSA’s functional role in in vitro myogenesis and the in vivo regen-
eration process. Analysis of the gene expression of myoblasts with exposed TSA 
indicated the marked elevation of myogenesis-linked molecules such as pRb, myo-
sin heavy chain, follistatin, and muscle glycogen synthase. Intriguingly, such a 
TSA-dependent induction of follistatin is limited in C2C12 muscle cells but not 
C3H10T1/2 and NIH3T3 mouse myoblasts, osteogenic MC3T3-E1, and adipogenic 
3 T3-L1 cell lines. Furthermore, muscles from animals treated with TSA show the 
increased production of follistatin and enhanced mRNA expression of regenerating 
markers (embryonic and neonatal myosin heavy chain) following muscle injury. In 
the denervated muscle, abundant HDAC4 proteins increase the atrogin1 and MuRF1 
mRNA by downregulating the Dach2 level. Under this condition, HDAC4 protein 
accelerates the expression of myogenin, which creates a positive feedback loop and 
regulates HDAC4 expression [73, 74]. Bricceno et al. [75] demonstrated that under 
a denervation condition, TSA decreases atrogene’s expression and controls the mus-
cle mass by reducing the myogenin level and HDAC4 activity and promoting the 
Dach2 expression level [75]. TSA treatment improves the body weight and number 
and size of muscle fibers [76]. Forkhead box O (FOXO) is directly regulated by 
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acetylation and deacetylation processes. TSA may inhibit HDAC activity and inac-
tivate FOXO, which attenuates contractile dysfunction and skeletal muscle atrophy 
[71]. In addition, TSA treatments of C2C12 myotubes under nutrient-deprived con-
dition repress the FOXO target genes [microtubule-associated protein light chain 3 
(LC3), MuRF1, and atrogin1] [71]. Similarly, TSA application of dexamethasone- 
induced atrophic mice significantly attenuates muscle atrophy [75]. More recently, 
treatment with TSA resulted in the downregulation of MuRF1 but not atrogin1 pro-
tein and markedly reduced the fiber size in the unloaded soleus muscle [77]. This 
atrophy-attenuating effect on muscle of TSA was not attributable to the changes of 
FOXO3a, although the data of FOXO3a protein was obtained using only crude 
homogenates of whole muscle. TSA’s attenuating effect on muscle atrophy would 
be via MuRF1 irrespective of the upstream modulator (FOXO). Treatment with 
TSA increases the morphological and physiological potential in normal and dystro-
phic mice by induction of the follistatin. Indeed, the TSA-induced promotion of 
myoblast recruitment and fusion is blocked by treatment with recombinant myo-
statin [72]. However, unloading or TSA treatment for the soleus muscle seems not 
to induce myostatin gene expression or follistatin protein irrespective of markedly 
attenuating unloading-induced atrophy by TSA treatment [77]. In addition, treat-
ment with TSA for tumor-bearing mice increased the follistatin expression without 
modulating the skeletal muscle mass [78]. These studies show that alteration of the 
myostatin/follistatin axis has no association or is not sufficient to protect the muscle 
mass specifically under unloading conditions or cancer-induced cachexia, respec-
tively. Therefore, TSA treatment is not the same under diverse clinical settings.

21.7  Ursolic Acid

Ursolic acid is the major waxy component in apple peel. Since ursolic acid exerts 
beneficial effects in animal models of diabetes and hyperlipidemia, it is the active 
component of antidiabetic herbal medicines [79]. Kunkel et al. [80] demonstrated 
that ursolic acid reduced two different skeletal muscle atrophy-inducing stresses 
(muscle denervation and fasting). Intriguingly, the acute treatment of fasted mice 
with ursolic acid seems to reduce two atrogene mRNAs [80]. Chronic treatment of 
ursolic acid to unstressed normal mice induced muscle hypertrophy by reducing 
atrogin1 and MuRF1 mRNA. Supplementation with ursolic acid further activates 
the phosphorylating status of Akt in skeletal muscle in vivo [80, 81], but it is not still 
elucidated whether it directly influences skeletal muscle or not. Using serum-starved 
skeletal myotube model, Kunkel et al. [80] found that ursolic acid rapidly stimu-
lated IGF-I receptor and insulin receptor activity. Importantly, ursolic acid alone 
was not sufficient to increase activation of the insulin or IGF-I receptor. Intriguingly, 
the augmented phosphorylation of p70S6 kinase by acute resistance training was 
maintained even after 6 h only when ursolic acid was injected immediately after 
exercise and not with placebo treatment [81]. Therefore, ursolic acid may enhance 
another pathway regulating muscle mass and not directly act on muscle fibers. On 
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administering a high-fat diet for 6  weeks, the continuous intake of ursolic acid 
(0.14% of total food) increased the skeletal muscle mass, muscle fiber size, distance 
run, and grip strength in mice [82]. More recent study conducted 3 weeks of admin-
istration with ursolic acid (100 mg/Kg) for a mouse model of chronic kidney disease 
(CKD) [16]. Ursolic acid markedly attenuated muscle atrophy induced by CKD by 
decreasing the expression of inflammatory cytokines and myostatin. Intriguingly, 
ursolic acid for CKD-induced atrophic muscle significantly suppressed the levels of 
phosphorylation of nuclear factor-kappaB (NF-κB, p65) and p38. These results 
clearly indicate anti-inflammatory property of ursolic acid. Since some researchers 
only investigated the possibility of supplementation with ursolic acid, further 
research is needed to more descriptively elucidate the effect of supplementation 
with ursolic acid on skeletal muscle and the attenuation of muscle wasting. 
Figure 21.1 summarizes the therapeutic action of both TSA and ursolic acid in mus-
cle wasting.

Fig. 21.1 Schematic representation of TSA and ursolic acid therapeutic action in muscle wasting. 
ALK activin receptor-like kinase, ActRIIB activin receptor IIB, IGF-I insulin-like growth factor I, 
TSC tuberous sclerosis complex, TORC1 component of TOR signaling complex 1, Rheb Ras 
homolog enriched in brain, mTORC1 mammalian target of rapamycin complex 1, eIF4E eukary-
otic initiation factor 4E, FOXO Forkhead box O, LC3 microtubule-associated protein light chain 3, 
atrogin1 atrophy gene-1, MuRF1 muscle ring finger 1, TNF-α tumor necrosis factor-α, NF-κB 
nuclear factor-kappaB
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21.8  Angiotensin-Converting Enzyme (ACE) Inhibitor

Angiotensin II (Ang II) was firstly demonstrated in rats which caused a significant 
loss of body weight through increased proteolysis in the skeletal muscle and a 
reduction of food intake [83]. Ang II infusion decreases in IGF-I signaling and 
increases the rate of protein breakdown [84]. In Ang II-induced muscle wasting, 
levels of ubiquitin-conjugated proteins, expression of atrogenes, and 20S protea-
some activity are robustly increased [85, 86]. ACE inhibitors have been used as a 
treatment for cardiovascular disease as well as secondary stroke prevention. ACE 
inhibitors would improve the muscle function through modulations in the metabolic 
and endothelial function, angiogenesis, and anti-inflammatory effects [87]. ACE 
inhibitors can increase IGF-I levels and mitochondrial numbers, thereby helping to 
counter many forms of muscle wasting [88]. Mechanisms of sarcopenia and 
cachexia are undoubtedly complex, and these processes are regulated by similar 
molecules but involve markedly different systems (TNF-α-NF-κB- and autophagy- 
dependent signaling are clearly different) [4, 5]. ACE inhibitors reduce the risk of 
weight loss in patients with cardiac heart failure [89]. The patients with CHF and 
CKD exhibit a two- to fivefold increase in plasma Ang II levels, in many cases, even 
in the presence of ACE inhibitory therapy [90, 91]. Circulating aldosterone and Ang 
II levels were elevated in despite clinically satisfactory ACE inhibition [91]. Ang II 
may act to reduce muscle mass in the elderly [92, 93]. The long-term utilization of 
ACE inhibitors may attenuate the decline in walking speed and muscle strength in 
older hypertensive individuals. This enlarges significantly lower limb muscle mass 
than users of other antihypertensive agents [92]. In both younger and older people 
with heart failure, ACE inhibitors improve the exercise capacity [92, 94], but they 
usually fail to improve the grip strength [95]. In functionally impaired older people, 
treatment with ACE inhibitors has been shown to improve some muscle perfor-
mance test (6-min walking distance). However, nifedipine with ACE inhibitors in 
older people found no difference between treatments in terms of the muscle strength, 
functional performance, or walking distance [96]. Further evidence would be 
required before recommending ACE inhibitors to attenuate further atrophy in sarco-
penia by using directly sarcopenic patients, not simple older people. Now, the effect 
of leucine and ACE inhibitors in sarcopenia (defined by European Working Group 
on Sarcopenia) is being investigated in a multicenter, masked, placebo-controlled, 
2*2 factorial randomized trial [97]. The trial has recruited 440 patients from pri-
mary and secondary care services across the UK. Therefore, it is not clear whether 
ACE inhibitors improve sarcopenic symptoms. In general, frail subjects exhibit a 
tendency to have more cardiovascular problems and slower walking speeds. These 
agents are already commonly prescribed [98, 99], since ACE inhibitors are associ-
ated with cardiovascular benefits and, as older people frequently have underlying 
cardiovascular problems.

21 Drugs of Muscle Wasting and Their Therapeutic Targets



472

21.9  Cox2 Inhibitors

Cyclooxygenase (Cox) exists Cox1, Cox2, and Cox3. Cox2 exhibits pro- 
inflammatory actions and is induced by mitogens and cytokines in the skeletal mus-
cle as well as in immune cells. Cox2 has both cyclooxygenase and peroxidase 
activities. Cox1 and Cox2 proteins would be affected differentially in the skeletal 
muscle after exercise. After acute resistance exercise (3 sets of 10 repetitions at 70% 
of maximum), the homogenates of young men (25 ± 1 year old) indicated that Cox1 
protein levels were not altered at 4 and 24 h postexercise [100]. In contrast, this 
study showed that Cox2 protein levels were nearly threefold higher at 4 h and five-
fold higher at 24 h postexercise, compared with pre-exercise. PGE2 and Cox2 are 
downstream effectors of cytokine activity [101, 102]. Preclinical and clinical trials 
strongly support the effective role of Cox2 inhibitors for the cancer cachexia [103]. 
Although many researchers use a variety of Cox2 inhibitors to inhibit PGE2  in 
diverse tumor-bearing mouse models, meloxicam and celecoxib have been widely 
used to study of Cox-2 induced muscle loss [101, 102]. Interestingly, celecoxib- 
treated cachectic patients with either neck and head or gastrointestinal cancer 
showed a marked improvement in the body mass index and quality of life [104]. To 
understand the safety and efficacy of celecoxib, a nonrandomized phase II study on 
cancer cachectic patients has been performed [105]. The treatment group showed a 
decrease in TNF-α and a significant increase in LBM along with improvement of 
the grip strength. The treatment with celecoxib for rheumatoid arthritis in cachectic 
rabbits showed reductions in the weight loss and levels of inflammatory IL-6 and 
NFκB [105]. Celecoxib may positively affect other types of cachexia, such as 
chronic obstructive pulmonary disease (COPD). In a cigarette-smoking rat model, 
celecoxib reduced the pulmonary inflammation and interalveolar wall distance by 
inhibiting serum nitric oxide production and inducible nitric oxide synthase in lung 
tissues [106]. A more recent study showed that significantly increased expressions 
of Cox2 existed in the lungs of patients with COPD and smoking controls compared 
with nonsmoking controls [107]. Interestingly, celecoxib (50.0 μmol/L) completely 
blocked Cox2 expression and apoptosis in vascular endothelial cells in vitro induced 
by cigarette smoke extracts [107]. Celecoxib has been utilized for other types of 
muscle wasting, with contradictory results. For example, celecoxib fails to slow the 
decline in the muscle strength, vital capacity, or ALS Functional Rating Scale- 
Revised, or motor unit number estimates, although it was well-tolerated and exhib-
ited no apparent adverse effects [108]. Participants who received celecoxib-creatine 
twice daily for 6 months exhibited a more mild decline in ALS Functional Rating 
Scale-Revised than historical controls [109].

Meloxicam also inhibits the growth of murine adenocarcinoma tumors (MAC13, 
MAC16). Treatment with meloxicam has shown to inhibit the lipopolysaccharide- 
induced expression of Cox2 and atrogenes and markedly reduces the loss in muscle 
mass of rats [100, 111]. Cox2 pathway also regulates muscle wasting of chronic 
arthritis. This pathway has been shown to increase the TNF-α mRNA expression as 
well as inhibit the GH-IGF-I axis contributing to protein degradation. The  application 
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with meloxicam attenuated muscle loss by preventing arthritis-induced atrogene 
upregulation in arthritic rats [113]. Figure 21.2 summarizes the therapeutic action of 
Cox2 inhibitors in cachectic muscle wasting.

21.10  Epigalocatechin-3-Gallate (EGCG)

Green tea is a popular beverage which can have benefits in endothelial cell lines 
[114] and cancer [115], as well as the skeletal muscle [115, 116]. The compound 
EGCG is occupied about 41% of the total catechins (flavonoid polyphenol) soluble 
in hot water [117]. EGCG has strong anti-inflammatory and antioxidant potentials, 
and it seems responsible for most of the health benefits linked to green tea. Using 
senescent rats (34 months old), Alway et al. [115] investigated to the effect of EGCG 
administration on atrophy and recovery processes of skeletal muscle after hind limb 
suspension. Although EGCG administration did not inhibit the fiber atrophy of 
muscles, this treatment selectively enhanced recovery of plantaris muscle fibers 
(EGCG, 2715.2 ± 113.8 μm2 vs. placebo, 1953.0 ± 41.9 μm2) but not soleus fibers. 
This enhanced recovery of the plantaris muscle is in part ascribed to the lower rate 
of apoptosis in the myonucleus by treatment with EGCG.  In addition, treatment 
with EGCG may also suppress autophagy signaling by downregulating Beclin1 and 
LC3-II/LC-I protein abundance and promoting recovery of the plantaris muscle 
after unloading [118]. In contrast, based on monitoring nucleocytoplasmic move-
ment of FOXO1-green fluorescent protein (GFP) in live skeletal muscle fibers, 
Wimmer et al. [119] demonstrated that the addition of EGCG causes a more moder-
ate loss of nuclear FOXO1-GFP than those of IGF-I or insulin. These data indicate 
the role of EGCGs in the anti-atrophy of skeletal muscle fibers by blocking the 
ubiquitin-proteasome system. Although treatment with EGCG may be applicable 

Fig. 21.2 Schematic 
representation of 
therapeutic action of Cox2 
inhibitors in cachectic 
muscle wasting. PGE2 
prostaglandin 2, Cox2 
cyclooxygenase 2, GH 
growth hormone, IGF-I 
insulin-like growth factor I, 
atrogin1 atrophy gene-1, 
MuRF1 muscle ring finger 
1, TNF-α tumor necrosis 
factor-α, NF-κB nuclear 
factor-kappaB
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against muscle wasting in humans, almost all experiments using animals utilized 
gavage but not normal eating to evaluate of EGCG’s effect. Since it is unusual for 
gavage to be applied to humans, an EGCG supplemental approach is needed. In 
fact, dietary EGCG and β-alanine in aged mice failed to show synergistic effects on 
several gene expressions (IL-6, superoxide dismutase 1, peroxisome proliferator- 
activated receptor gamma coactivator 1-alpha, sirtuin1, and IGF-I) on voluntary 
wheel running [120]. Therefore, the supplemental effect of EGCG should be further 
investigated based on normal ingestion and not gavage.

21.11  Conclusion

The recent advances in our understanding of muscle biology have led to new hopes 
for pharmacological, hormonal, and nutritional treatment of muscle wasting.

Supplementation with proteins (amino acids) only did not influence sarcopenic 
symptoms, although resistance training combined with amino acid-containing sup-
plementation is usually recommended to prevent age-related muscle wasting and 
weakness [9, 10]. A myostatin-inhibiting approach is the most intriguing manner to 
prevent sarcopenia but not muscular dystrophy in humans.

Supplementation with ghrelin is also an intriguing candidate to combat sarcope-
nia as well as cachexia. Treatment with soy isoflavone, TSA, and Cox2 inhibitors 
seems to be effective modulators attenuating muscle wasting, although further sys-
tematic research is needed on this treatment in particular concerning side effects.
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Chapter 22
Nutritional Support to Counteract Muscle 
Atrophy

Daniel John Owens

Abstract Malnutrition is an important factor contributing to muscle atrophy. Both 
underfeeding and obesity have negative consequences for the preservation of mus-
cle mass and function. In addition, adequate nutrition on an exercise background is 
an efficacious strategy to counteract the severity of muscle loss associated with 
numerous clinical muscle wasting conditions. As such, significant research efforts 
have been dedicated to identifying optimal calorie control and the requirements of 
particular macro- and micronutrients in attenuating muscle atrophy. This chapter 
will explore current nutrition strategies with robust evidence to counteract muscle 
atrophy with a particular focus on protein, as well presenting evidence for other 
promising emergent strategies.

Keywords Protein · Amino acids · Food · Calories · Antioxidants · Vitamins

22.1  Background

In normal skeletal muscle, mass is maintained by a constant turnover of myofibrillar 
proteins through simultaneous synthesis and degradation. When synthesis rates 
decline or degradation increases such that muscle proteins are being degraded 
quicker than they are synthesized for a sustained period, muscle mass is lost. Many 
clinical strategies have aimed to alleviate the elevated degradation rates observed in 
pathological states; however, nutritional strategies are likely to be more effective in 
elevating muscle protein synthesis (MPS) than attenuating degradation rates.

Nutrition plays a crucial role in stimulating MPS, highlighted by the fact that the 
master regulator of protein synthesis, the mammalian target of rapamycin (mTOR) 
complex, can sense amino acids to increase its activity. The mTOR complex is a key 
regulator of cell growth in eukaryotic cells, promoting cellular anabolic processes 
including protein, pyrimidine, and lipid biosynthesis and inhibiting catabolic 
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 processes such as autophagy. Numerous upstream signals including amino acids 
converge at mTOR to stimulate protein synthesis. Crucially, resistance exercise 
appears to sensitize the muscle to amino acid feeding, and thus unsurprisingly, pro-
tein nutrition on a background of resistance exercise offers a potent stimulus for 
muscle anabolism. Dietary protein provides the building blocks, i.e. the essential 
(EAAs) and non-essential amino acids (NEAAs), necessary to sustain such increases 
in the production of new proteins mediated through mTOR signalling.

Despite the crucial role of dietary protein in maintaining muscle mass and per-
mitting muscle growth (hypertrophy), reports suggest that just 33% of women and 
50% of men meet the RDA (0.8 g/kg body mass/day) for protein [1]. Moreover, 
appetite, digestion and absorption of food is impaired in certain disease states; up to 
50% of cancer patients report changes in eating behaviour at the time of diagnosis, 
leading to weight loss [2, 3]. This raises concerns for individuals suffering from 
muscle wasting conditions, whom are already rapidly losing muscle mass. In addi-
tion to protein intake, maintenance of an overall calorie balance through energy 
intake matched to energy expenditure is also important in maintaining muscle mass, 
and as such, this also directly implicates nutrition. The following sections of this 
chapter will describe current strategies for dietary protein intake to counteract mus-
cle atrophy and will highlight the importance of energy balance with a smaller focus 
on emerging nutritional strategies that support muscle mass.

22.2  Dietary Protein and Amino Acids

Studies conducted over the past 30 years have demonstrated that amino acids stimu-
late MPS in healthy humans [4–6]. Importantly, it is the EAAs that appear to be 
critical for the amino acid-induced stimulation of MPS [5, 7]. In particular, the 
branched chain amino acid leucine acts as a potent ‘anabolic trigger’ capable of 
activating the mTOR complex [8, 9], which coordinates downstream signals to initi-
ate the translation machinery and inhibits catabolic process, such as autophagy. At 
present, it is thought that leucine is sensed by mTOR via its ability to dissociate the 
negative mTOR regulator Sestrin2 from the positive mTOR regulator, GATOR [10]. 
Sestrin2 binds leucine with an affinity of ~20 μM in vitro, and Sestrin mutants lack-
ing leucine-binding affinity are incapable of altering the concentration of leucine 
sensed by mTOR [10, 11]. It has been demonstrated that in certain populations with 
muscle atrophy, a leucine-enriched diet is necessary to stimulate the amino acid- 
induced MPS response [8]. Taken together, leucine is a highly important amino acid 
for maintaining and building muscle mass.

However effective leucine may be for stimulating MPS, isolated amino acids are 
unable to sustain increased rates of MPS. To achieve this, all of the amino acids are 
required implying that high-quality whole protein intake is necessary [12]. 
Moreover, in certain muscle wasting states such as bed rest or joint immobilization, 
anabolic resistance has been observed, i.e. the MPS response to amino acid admin-
istration is reduced. Although uncharacterized for a range of muscle wasting 
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 conditions, it is likely that increased high-quality protein intake is necessary to off-
set increased rates of proteolysis, decreased rates of MPS and anabolic resistance to 
feeding seen in different pathological conditions.

22.2.1  Sarcopenia

From an ageing perspective, additional dietary protein may be warranted. In a large- 
scale study (n = 2066), dietary protein intake was assessed by using an interviewer- 
administered food-frequency questionnaire in men and women aged 70–79 years 
old [13]. Changes in total lean mass (LM) and non-bone appendicular lean mass 
(aLM) over 3  years were measured by dual-energy X-ray absorptiometry. 
Participants in the highest quintile of protein intake (1.1 g/kg/day) lost ~40% less 
LM and aLM than did those in the lowest quintile of protein intake (0.7 g/kg/day). 
Similarly, in a study of a heterogeneous group of 20 housebound elderly people 
(70–85 years) with chronic diseases, nitrogen balance was only achieved with pro-
tein intakes of 0.97 g/kg/day, whereas individuals with lower intakes (0.67 g/kg/
day) were in a negative nitrogen balance [14]. To complicate matters, when protein 
is consumed as part of a mixed meal containing carbohydrates, the stimulation of 
protein synthesis is reduced in elderly people [15, 16]. The precise mechanisms for 
this are not known; however, it may be that digestion and absorption of amino acids 
are impaired in elders due to the presence of carbohydrates. Interestingly, this is not 
observed when protein is consumed with fats [17, 18].

Taken together, it is apparent that the RDA of 0.8 g/kg/day may indeed be insuf-
ficient to support the maintenance of lean mass in sarcopenic elders; however, a 
higher reference value is yet to be established.

22.2.2  Immobilization and Bed Rest

In situations of joint immobilization and bed rest, muscle protein is lost due to 
decreased rates of MPS, whereas degradation rates remain unchanged [19]. As such, 
increased protein intake may also offer some protection against muscle wasting by 
rescuing MPS rates. Stuart et al. show that higher amounts of dietary protein (1.0 g/
kg bod mass) were effective in preventing muscle loss due to bed rest, whereas 
lower doses (0.6 g/kg) were insufficient to prevent such atrophy [20]. In other sce-
narios, leucine has been investigated as a potential supplemental strategy to offset 
atrophy during bed rest. In healthy middle-aged adults, 3–4  g leucine per meal 
partly protected leg lean mass during the first week of 14 days of bed rest [21]. 
Further evidence to support increased protein intake during bed rest is provided by 
studies showing anabolic resistance to amino acid feeding during disuse and immo-
bilization [22, 23]. Simply reducing physical activity for 2 weeks has been demon-
strated to reduce MPS in response to amino acids in elderly individuals [24].
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22.2.3  Severe Cachectic States

In more severe cachectic states such as cancer, increasing dietary protein alone is 
not likely to outweigh the marked increase in muscle protein breakdown and main-
tain protein balance. In the few studies performed, total parenteral nutrition (feeding 
of a person intravenously, bypassing the usual process of eating and digestion) has 
typically resulted in increases in fat mass with inconclusive effects on lean mass 
[25]. However, some studies do suggest whey protein supplementation enriched 
with leucine can stimulate MPS in cancer patients. In a randomized placebo con-
trolled trial, whey protein (40 g) enriched with leucine was capable of stimulating 
MPS in cancer patients compared to a conventionally used medical food, which was 
ineffective [26]. Notwithstanding such evidence, a more potent stimulus such as 
combining both resistance training and optimal protein nutrition is most likely to 
offer the best benefits to maintaining muscle mass as well as benefitting multiple 
other organ systems. Resistance-type exercise (RE) can increase rates of MPS for 
up to 48 h in healthy humans [27]. A number of studies demonstrate that RE is a 
positive treatment to support muscle mass in severe wasting conditions (where exer-
cise is still possible) such as HIV. For example, structured resistance training results 
in marked improvements in both muscle strength (60% improvement in 1 repetition 
maximum strength) and size (5.3% increase in lean body mass) in patients with 
muscle wasting AIDS [28]. In healthy individuals, combining RE with high-quality 
protein intake stimulates and sustains MPS to a greater extent than either alone [29, 
30]. Such evidence for a combined protein and RE treatment is lacking in severe 
cachectic states; however in one study, the effects of 14  weeks of whey protein 
supplementation vs RE vs combined whey and RE were examined in HIV patients 
[31]. Similar to earlier studies in healthy individuals, RE had a positive effect, but 
surprisingly there was no added benefit of whey. This finding could be explained by 
the fact that the whey group were advised to consume the supplement ad libitum and 
thus compliance cannot be certain.

22.2.3.1  Protein Timing and Distribution

It has been suggested that simply targeting a specific daily intake of protein may not 
be the optimal strategy to ensure individuals are maximizing the benefits of protein 
nutrition. Paddon-Jones and Rasmussen argue that a strong emphasis should also be 
placed on protein timing and distribution [32]. For example, when 20 g of whey pro-
tein is consumed every 3 h, this appears to be superior than pulsed (10 g every hour) 
or bolus (40 g twice a day) feeding patterns for stimulating MPS throughout the day. 
This suggests that the optimal distribution of protein intake on anabolic responses in 
skeletal muscle has the potential to maximize peak muscle mass [33, 34].

Overnight MPS rates are also understood to be limited by the level of amino acid 
availability. In combination with a progressive resistance training programme, 
 protein provision prior to sleep can enhance gains in muscle mass and strength. 
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Recent studies investigating the impact of presleep protein ingestion suggest that at 
least 30–40 g of protein is required to display a robust increase in muscle protein 
synthesis rates during overnight sleep [35]. When combined with resistance exer-
cise, 27.5 g of protein prior to sleep has been demonstrated to significantly improve 
the overnight MPS response and subsequently lead to increased lean mass and 
strength [36]. Taken together, pre-sleep protein can be an effective dietary interven-
tion to improve overnight MPS.

A schematic representation of a suggested ‘optimal’ protein feeding strategy is 
highlighted in Fig. 22.1.

It should be considered that protein and amino acid supplements to counteract 
muscle atrophy are only effective if they also preserve or improve muscle function, 
i.e. there is little rationale for maintaining non-functional muscle mass. To this end, 
the efficacy of amino acid and protein supplementation alone for preservation of 
muscle function as well as mass is lacking. A number of studies have shown no 
change in muscle function in response to protein supplementation despite improve-
ments in lean mass [37–40]. However, on a background of contractile activity (i.e. 
muscle contractions such as those experienced during resistance training (RT)), there 
is substantially better evidence in support of the efficacy of amino acid and protein 
supplements suggesting RT sensitizes the muscle to protein and promotes positive 
changes in muscle performance [29, 30]. This is a crucially important  message, 
because stronger individuals are at lower risk of all-cause and cancer-caused mortal-

Fig. 22.1 An example meal plan for a 75 kg male aiming to meet a daily protein intake of approxi-
mately 1.2–1.4 g/kg. High-quality protein feeds that are rich in leucine should be evenly distrib-
uted throughout the day (approximately every 3 h) and in close proximity to resistance exercise (or 
electromyostimulation (EMS) where exercise is not feasible). A pre-bed feed of supplemental 
protein such as casein provides a source of slowly digested amino acids that may sustain amino 
acid uptake into circulation during sleep and enhance the MPS response to contractile activity
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ity [41, 42]. Therefore, nutritionally strategies aimed to increase muscle mass should 
be considered in the context of exercise to yield the greatest health benefits.

22.3  Calorie Control

Both underfeeding and overfeeding are important considerations in muscle wasting 
conditions. During short-term immobilization due to injury, energy intake typically 
exceeds expenditure; however during longer periods of immobilization, there is an 
apparent energy balance [43]. Individuals who are calorie restricted during bed rest 
have an exacerbated muscle loss, highlighting the importance of energy availability 
in the maintenance of muscle mass. Unfortunately, there are less data characterizing 
metabolic rate and free-living energy balance in other muscle wasting conditions. 
Intuitively, it could be suggested that like bed rest conditions, other clinical condi-
tions causing muscle atrophy would also be exacerbated in a prolonged calorie- 
restricted state.

On the other hand, by advising increased protein intake to support lean mass 
without reductions in other macronutrients, such as carbohydrates, overall calorie 
intake may exceed expenditure. Over time, this will lead to gains in fat mass, par-
ticularly if physical activity is reduced [44]. Therefore, careful consideration of the 
macronutrient composition in persons with muscle wasting conditions is crucial. It 
may be postulated that if minimal exercise can be performed and physical activity 
energy expenditure is low, the need for carbohydrates is largely reduced. This 
approach is yet to be investigated in clinical settings but may offer multiple benefits 
in more complex diseases such as cancer [45] and certainly in obese individuals as 
carbohydrate restriction can improve insulin sensitivity [46]. Similarly, oversupply 
of dietary fats leads to insulin resistance and impairs the MPS response to amino 
acid ingestion [47]. Energy balance should be the aim of macronutrient manipula-
tion in individuals with accelerated muscle loss, with a larger portion of daily energy 
intake derived from proteins.

22.4  Dietary Antioxidants

Oxidative stress is thought to be a contributor to muscle loss with age and the pro-
duction reactive oxygen species is well known to be elevated during prolonged 
immobilization and bed rest [48]. High levels of reactive oxygen species may inhibit 
protein synthesis and increase proteolysis [49, 50]. Consequently, researchers have 
aimed to establish whether targeted antioxidant treatments can scavenge the 
increased ROS produced in aged and immobilized muscle. There is both evidence 
in support and against the use of antioxidants as an effective treatment for disuse 
atrophy in humans.
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Both vitamin E and vitamin E analogues have been widely investigated as anti-
oxidant interventions to protect against disuse muscle atrophy. Vitamin E is a highly 
abundant, naturally occurring antioxidant. Vitamin E actually refers to eight struc-
tural isomers of tocopherols and tocotrienols, of which α-tocopherol is the best 
known and possesses the highest antioxidant capacity [51]. The majority of evi-
dence that suggests vitamin E can reduce the severity of disuse atrophy has been 
derived from animal models. Several studies report that vitamin E either completely 
or partially protects immobilized rodent hind limb muscle from atrophy [52–56]. 
Despite the aforementioned findings that imply vitamin E can attenuate disuse mus-
cle atrophy, the precise mechanisms underlying this are poorly understood. Many of 
the studies that have aimed to identify how vitamin E exerts these effects have 
shown changes in proteolytic gene expression and selected muscle proteins [56, 57]. 
In addition, it is not known whether vitamin E accumulates in appreciable amounts 
at the key sites of ROS production to be able to scavenge ROS to an appreciable 
degree. Therefore, it could be postulated that vitamin E exerts its effect through 
modulation of gene expression as opposed to through its scavenging capacity, 
although this is speculative at present.

The purpose of this chapter is to explore nutritional interventions, and therefore 
pharmaceuticals and nutraceuticals are not discussed. However, it is worth mention-
ing that numerous vitamin E analogues have been explored for their potential to 
ameliorate elevated ROS and exert beneficial effect on skeletal muscle. One such 
analogue that has received considerable research attention is Trolox (6-hydroxy- 
2,5,7,8-tetramethylchromane-2-carboxylic acid), a water soluble vitamin E ana-
logue with direct ROS scavenging activity. Trolox appears to offer favourable effects 
in different models of atrophy and recently in models of sarcopenia [58–62].

To summarize, several studies have suggested that some naturally occurring anti-
oxidants and their analogues have the potential to decrease inactivity-induced mus-
cle atrophy of both limb and respiratory muscles. The use of antioxidants as a 
therapeutic intervention to protect against disuse muscle atrophy is still a prelimi-
nary idea. It is accepted that more research is required to uncover whether antioxi-
dant treatments are safe and efficacious to help prevent inactivity-induced muscle 
atrophy. At the very least, individuals with muscle atrophy conditions should aim to 
increase their intake of antioxidant rich foods.

22.5  n3–PUFA

Omega-3 polyunsaturated fatty acids (n-3 PUFA), specifically n-3 PUFA eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA), are a group of nutrients that 
are known for their anti-inflammatory properties. The n-3 PUFA may also possess 
anabolic properties. Intake of 4 g/day of long-chain n-3 PUFA augments the MPS 
response to amino acids and insulin via mTOR-mediated mechanisms [63]. Moreover, 
in animal models of cancer, n-3 PUFA supplementation amounting to approximately 
1–2% of total daily caloric intake has been shown to support whole-body protein 
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synthesis, whole-body protein net balance and muscle mass [64, 65]. These fatty 
acids occur naturally in nuts and oily fish like salmon, mackerel and tuna. However, 
the most comprehensive study to data suggests a minimum of 2-weeks supplementa-
tion with 5 g/day of fish oil capsules (providing 3500 mg EPA and 900 mg DHA) is 
necessary to permit detectable increases in muscle n-3 PUFA lipid composition. 
Taken collectively, these studies support the efficacy of n-3 PUFA as a promising 
adjunct to help support muscle mass in situations of muscle wasting.

22.6  Vitamin D

Vitamin D is a secosteroid hormone predominantly obtained in humans by exposure 
to ultraviolet B radiation (UVB; sunlight). Lack of sunlight exposure and predomi-
nantly indoor lifestyles have led to a large number of vitamin D deficiency cases 
worldwide (defined as <30 nmol/L 25-hydroxyvitamin D or 25[OH]D) [reviewed 
recently in 66]. The classical function of vitamin D is its role in Ca2+ homeostasis 
and thus bone mineralization [67]. It is now understood that the biological effects of 
vitamin D are much wider than Ca2+ homeostasis. As skeletal muscle expresses the 
vitamin D receptor [68], and following generation of a vitamin D receptor knockout 
mouse that harbours muscle abnormalities [69], great attention has been drawn to 
the potential for vitamin D to influence muscle health. Research has shown that 
vitamin D deficiency is associated with sarcopenia in some populations [70] and 
associates with increased fall risk in frail elders [71]. Meta-analyses suggest that 
individuals with vitamin D concentrations <25 nmol/L may show improved proxi-
mal strength when supplemented with vitamin D3 to correct their vitamin D status. 
In young healthy populations, improving vitamin D status with a supplemental form 
of vitamin D3 also augments resistance training adaptations [72].

Given that vitamin D plays numerous roles in tissues other than muscle and that 
deficiency is highly prevalent, it is important that individuals with muscle wasting 
conditions are screened for their 25[OH]D status, which can be easily corrected 
with moderate daily doses of vitamin D3 (2000 IU/day) [reviewed in 73]. Current 
guidelines set by the US Institute of Medicine suggest that 25[OH]D concentrations 
<30 nmol/L are considered deficient and concentrations <50 nmol/L are inadequate 
[74]. Therefore, best practice should currently be considered to maintain serum 
25[OH]D concentrations >50 nmol/L.

22.7  Summary

In summary, nutrition plays a pivotal role in the preservation of muscle mass in nor-
mal and pathological conditions. In the simplest sense, total caloric intake will largely 
determine weight loss or gain. More specifically, the protein contribution to overall 
caloric intake appears to be a key factor affecting muscle protein balance. When cou-
pled with exercise, protein intake is a potent stimulus for muscle growth. It is likely 
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that a resistance exercise and nutrition strategy will yield the greatest benefits since 
dietary interventions alone may preserve muscle mass but not function, whereas a 
combination of the two may confer benefits to both. Where possible (i.e. depending 
on the severity and the cause of the muscle atrophy), a regime of evenly distributed 
high-quality protein intake (of approximately 20–30 g servings of protein) that is rich 
in leucine and separated by approximately 3–4 h throughout the day is a good starting 
point. Consuming protein close to RT or stimulated contractile activity and ingested 
also before sleep will stimulate the greatest MPS response. Additionally, a diet rich in 
antioxidants (particularly vitamin E) and oily fish will at worst confer benefits to 
global health and at best may also contribute to attenuating muscle atrophy.
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Chapter 23
Nutritional Considerations in Preventing 
Muscle Atrophy

Sanda Maria Cretoiu and Corina Aurelia Zugravu

Abstract Muscle atrophy may occur under different circumstances throughout a 
person’s life. These conditions include periods of immobilization of a limb or of the 
whole body and aging accompanied by the onset of sarcopenia. Muscle mass is 
reduced as a result of decreased protein synthesis or increased protein degradation. 
Most studies aim to prevent the degradation of muscle proteins, but the way in 
which protein synthesis can be stimulated is often neglected. This study will provide 
an up-to-date review regarding nutritional considerations and resistance exercise 
countermeasures in the prevention of muscle mass loss and recovery of muscle mass 
in muscle atrophy secondary to immobilization or in sarcopenic obesity. We do not 
address muscle atrophy in disease states associated with inflammation (rheumatoid 
arthritis, COPD, cancer cachexia, AIDS, burns, sepsis, and uremia) which are gov-
erned by particular mechanisms of muscle loss.

Keywords Muscular atrophy · Muscle disuse · Sarcopenic obesity · Nutrition · 
Protein turnover

23.1  Short Overview

There is more and more talk about the concept of quality of life. However, nutrition 
is an overseen factor because diet quality and dietary strategies for health promotion 
could greatly influence the quality of life. Skeletal muscle mass is of great impor-
tance for health status and its critical for a healthy life.

Muscle atrophy is defined as a weakening, shrinking, decrease, and loss of mus-
cle mass. The most used synonyms to describe muscular atrophy are muscle waste, 
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muscle loss, muscle catabolism, and muscle withering. There are several causes of 
muscle atrophy, from short periods of muscle disuse to neurogenic atrophy.

In general, muscle atrophy has negative health consequences such as low strength 
[1]; compromised metabolic health, due to a decline in basal metabolic rate [2]; the 
development of insulin resistance [3]; and accumulation of body fat [4]. Around the 
age of 40, human muscles undergo continuous transformation, the most relevant 
being muscular atrophy [5]. Accentuated muscle mass and strength/performance 
loss is known as geriatric sarcopenia which unfortunately remains frequently over-
looked and undertreated, contributing to a poor quality of life [6].

This chapter focuses on the role of nutrition in promoting a healthy recovery of 
the impaired functional capacity of skeletal muscle atrophy in young and older 
adults. It also highlights the necessary tools for nutritional screening and nutritional 
assessment which underpin recommendations for improving this condition.

23.2  Disuse Muscle Atrophy

23.2.1  Introduction

Changes in muscle mass and quality, besides altering the muscle strength and its 
functional capacity, have repercussions in the metabolism of the macronutrients 
carbohydrate, fat, and protein [7]. During lifetime, one experiences situations which 
require short or long periods of physical inactivity (e.g., rehabilitation after injury, 
mobility limitations of limbs, recovery from illness) even in previously healthy and 
young individuals [8]. It was demonstrated that even short periods of muscle disuse 
(5–14 days) could cause substantial loss of skeletal muscle mass and strength [9]. 
Muscle atrophy in young, mature, and aging individuals derives from a loss in mus-
cle protein resulting from increased protein degradation and decreased protein syn-
thesis when patients are immobilized for a certain period, due to reduced respiratory 
muscle activity during mechanical ventilation, or is found in the absence of gravita-
tional load during space missions (unloading) [10, 11]. Also, the loss of skeletal 
muscle mass and the fiber cross-sectional area is frequently seen in patients with 
limb and joint immobilization due to fractures or arthritis, in patients with spinal 
cord injury, or in patients requiring prolonged bed rest or admitted in ICU (intensive 
care unit) [12]. To study the causes that can lead to muscle atrophy in humans, ani-
mal models are used as depicted in Fig. 23.1. Usually, the volume and cross- sectional 
area changes during disuse atrophy are determined in humans by magnetic reso-
nance imaging (MRI) [13].
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23.2.2  Nutritional Strategies During Muscle Disuse

Skeletal muscles represent a source of amino acids that are mobilized in stressful 
situations, and if muscle protein breakdown exceeds muscle protein synthesis, mus-
cle wasting occurs. Hence, muscle protein turnover is essential for the maintenance 
of muscle mass during prolonged inactivity or unloading. It is believed that proper 
protein synthesis could prevent loss of muscle mass. Maintaining the muscle mass 
during immobilization and restoring it after disuse involve processes dependent 
upon protein and cellular turnover. To ensure ideal protein synthesis, a proper 
caloric intake may be a useful strategy for mitigating muscle loss during muscle 
disuse [14]. A deficient diet which does not preserve energy balance has been shown 
to decrease protein synthesis by ~20% [15], and therefore an adequate protein intake 
must be provided during muscle immobilization. Muscle waste cannot be com-
pletely abolished, but a protein intake must be maintained at a high level (1.0–1.2 g 
per kilogram per day) [16] to attenuate as much as possible the disuse atrophy [17]. 
Moreover, it was shown that protein or essential amino acid ingestion stimulates 
rates of muscle protein synthesis in a dose-dependent manner [18]. However, a 
study by Dirks et al. concluded that “dietary protein supplementation (∼20 g twice 
daily) does not attenuate muscle loss during short-term muscle disuse in healthy 
older men” [19].

Fig. 23.1 Diagram depicting the most frequent causes of muscle atrophy in relation to the animal 
models used to study them
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23.2.2.1  Amino Acid/Protein Supplementation

Protein and/or amino acid supplementation is considered to be effective in increas-
ing muscle anabolism during extended periods of immobilization and preventing 
muscle atrophy [20]. Stuart et al. evaluated if a diet with high protein content might 
have a positive impact on bed-rest-related protein catabolism and concluded that 
“bed rest does not cause an increase in whole-body-protein breakdown, but 
decreased whole-body-protein synthesis is demonstrable when dietary protein is 
low.” They suggested that increasing dietary protein will prevent a decrease in mus-
cle atrophy during disuse [21].

23.2.2.2  Essential Amino Acid Supplementations

Availability of essential amino acids (EAA) has been shown to stimulate muscle 
protein anabolic response [22], partly through activation of mTORC1 (rapamycin 
complex 1) signaling [23]. Downstream of the mTORC1 signaling pathway, the 
expression of several transporters (LAT1, CD98, SNAT2, and PAT1) was shown to 
be rapid and transiently upregulated following EAA ingestion in humans [24]. 
Among EAA, extra leucine might regulate and stimulate specific intracellular path-
ways associated with muscle protein synthesis [25, 26]. Paddon-Jones et al. reported 
that a total dose of 49.5 g of EAA per day (divided into three intakes of 16.5 g of 
EAA each containing 3.1 g of leucine) might prevent a quantifying decline in mus-
cle mass during 28 days of bed rest in healthy subjects [27].

A study comparing muscle protein metabolism in elderly and young individuals 
found that the elderly are less responsive than the young individuals to the ingestion 
of EAA [28]. In vivo, evidence that in elderly humans small boluses of leucine 
improve muscle protein retention was brought by Katsanos et al., who showed that 
26% Leu in a mixture of EAA could reverse an attenuated response of muscle pro-
tein synthesis [29]. Their study also demonstrated that young individuals’ muscle 
protein synthesis was improved following the EAA ingestion independent of the 
leucine concentration in their blood [29]. Brooks et al. demonstrated the efficacy of 
combined resistance training with EAA supplementation, which attenuated the 
losses in muscle mass, and strength as a countermeasure against muscle wasting 
during 28 days of bed rest and energy deficit [4]. Two years later, a study by the 
same team, regarding dietary manipulation alone (EAA) or in combination with 
resistance exercise, showed that muscle atrophy was less influenced among partici-
pants who received only EAA, compared with those who received EAA and exer-
cises [30]. Furthermore, Dreyer at al. found that resistance exercise and ingestion of 
EAA with carbohydrates enhance muscle protein synthesis to a greater degree than 
either stimulus alone, by enhanced activation of the mTOR signaling pathway [31]. 
Supplementary attention must be given in the future to unravel the molecular mech-
anisms responsible for how EAA enhances muscle protein synthesis and their 
importance in muscle protein anabolism.
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23.2.2.3  Branched-Chain Amino Acids (BCAAs)

Leucine, valine, and isoleucine are known to have a unique capacity to stimulate 
muscle protein synthesis, and they are frequently used as nutritional supplements. 
Louard et al. showed that BCAA intravenous infusion not only fails to increase the 
rate of muscle protein synthesis in human subjects but actually reduces the rate of 
muscle protein synthesis and muscle protein turnover [32], while a very recent review 
of the literature concluded that dietary BCAA supplements alone do not promote 
muscle anabolism [33]. However, it seems that amino acids from the diet are more 
effective in preventing disuse atrophy than those in food supplements [34]. Sundström 
recently demonstrated the improvement in whole-body net protein balance from a 
supplemental intravenous amino acid infusion to ICU patients [35]. Martin et  al. 
have shown that whey diet promoted a faster recovery of muscle functional proper-
ties as compared to the casein diet during immobilization [36]. In rat animal models, 
it is accepted that BCAA stimulates muscle protein synthesis rate [37]. Oral BCAA 
administration (600 mg/kg/day, 22.9% L-isoleucine, 45.8% L-leucine, and 27.6% 
L-valine) in Sprague-Dawley rats protects against microgravity- and immobilization-
induced muscle atrophy via the inhibition of the Ub-proteasome pathway responsible 
for the expression of atrophy-related genes [38].

23.2.2.4  Other Amino Acids

Taurine, a natural amino acid, is a known potent antioxidant due to its contents of 
sulfonic acid and for its claimed effects as an energizer. Frequently used as supple-
ment cocktails for athletes, taurine has the ability to control muscle metabolism and 
gene expression, and it was proposed to improve resistance and recovery by an 
effect which increases the amino acid levels in skeletal muscle [39]. Ghandforoush- 
Sattari et al. studied the pharmacokinetics and effects of oral administration of tau-
rine in healthy volunteers, using a daily dose of taurine of 4 g [40]. Although there 
are few studies on humans, the findings about the importance of taurine in animal 
models of skeletal muscle atrophy cannot be overlooked. Khalil et al. concluded in 
their study that “taurine may be helpful to counteract apoptosis and up-regulated 
MuRF1 gene expression related to muscle atrophy” [41].

In the literature, there is a limited number of studies that relate to the beneficial 
effects of cysteine supplementation on muscle atrophy. An in vitro study on cultured 
myotubes was recently performed by Dutt et al. and suggested the positive effects 
of S-allyl cysteine (SAC), an active component of garlic (Allium sativum), on altera-
tions which appear in protein metabolism during muscle atrophy [42]. Another 
study showed the beneficial effects of a cocktail of amino acids (cysteine, threonine, 
serine, aspartate, asparagine, and arginine), which spared muscle protein catabolism 
and muscle wasting during infection in rats [43].
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23.2.2.5  Oral Creatine Supplementation

Therapeutical applications of creatine as a popular “ergogenic” supplement were 
analyzed by Derave et al., who concluded that a short-term (less than 2 months) and 
discontinuous creatine supplementation might have a positive effect on muscle 
function [44]. Although there are numerous speculations that creatine supplementa-
tion could lead to an increase of lean body mass in active individuals, during short 
muscle disuse (7 days leg immobilization), type I and type II muscle fiber showed 
no net changes during and after creatine loading, as demonstrated by Backx et al. 
[45]. However, creatine supplementation during resistance training of older adults 
enhances energy stores, including phosphorylcreatine and glycogen. This allows a 
better buffering of ATP during high-intensity exercise as showed by Chilibeck et al. 
in their meta-analysis [46]. A study by Hespel et al. investigated the effect of oral 
creatine supplementation (20 g down to 5 g daily) on muscle volume and function 
during leg immobilization and rehabilitation and concluded that it stimulates mus-
cle hypertrophy during rehabilitative strength training. The effect seemed to be 
mediated by a creatine-induced change in MRF4 and myogenin expression [47]. 
However, despite some promising results, there is a long way until we can assert 
with certainty that oral creatine supplementation represents a good nutritional inter-
vention strategy to prevent muscle atrophy during disuse.

23.2.2.6  Antioxidant and Anti-inflammatory Supplementation

Muscle protein synthesis is influenced, among other factors, by oxidative stress and 
inflammation, which are associated with immobilization [48, 49]. Since both factors 
are leading to increased proteolysis and muscle atrophy during periods of prolonged 
disuse, it was considered that antioxidant supplementation might represent an effec-
tive countermeasure for this condition [48, 50]. More than 25 years ago, muscle 
inactivity was correlated with increased muscle lipid peroxidation [51], and particu-
lar attention has been given to its prevention with the antioxidant vitamin E [52, 53]. 
The first study using vitamin E, selenium, ascorbic acid, β-carotene, coenzyme Q10, 
N-acetyl-L-cysteine, and catechin as antioxidants concluded that antioxidant sup-
plementation did not attenuate the disuse atrophy [54].

There are findings which indicate that the protective effect of vitamin E is due to 
a non-antioxidant mechanism, which involves the modulation of muscle proteolysis- 
related genes such as μ-calpain; caspase-3, caspase-9, caspase-12; and two atrophy- 
related ubiquitin ligases (MuRF1 and MAFbx) found to be upregulated by vitamin 
E. The same study of Servais et al. showed that vitamin E failed to modify markers 
of oxidative stress (GSH/GSSG, SOD, GPx, CAT, UCPs) and partly prevented the 
decrease in type I and IIa fiber size, thus relatively preventing muscle atrophy dur-
ing unloading [53].

Reactive oxygen species (ROS) are major signals involved in muscle homeosta-
sis and play an important role in muscle atrophy associated with decreased levels of 
neuromuscular activity [49]. Astaxanthin is an antioxidant belonging to a group of 
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chemicals called carotenoids, which might ameliorate muscle atrophy in combina-
tion with intermittent loading, by preventing the overexpression of ROS [55]. From 
the same group of antioxidants, orally administered micelle with β-carotene, a 
dietary source of vitamin A (0.5 mg once daily), for 2 weeks, to mice, were reported 
to have chemopreventive effects in an early stage of muscle atrophy by repressing 
the expressions of Atrogin-1, MuRF1, USP14, and USP19 [56].

These results evidently exemplify the antagonistic findings related to the role of 
antioxidant treatments in preventing disuse muscle atrophy.

Resveratrol (3,5,4′-trihydroxystilbene) is a natural polyphenolic phytoalexin 
which has been shown to reduce oxidative stress, restore mitochondrial function, 
and promote myogenesis and hypertrophy in vitro [57]. A study on experimental rat 
models demonstrated that although resveratrol appears to have modest therapeutic 
benefits, it increased the fiber cross-sectional area of type IIA and IIB fibers in 
response to reloading after hind limb suspension [58]. In another study, rats affected 
by mechanical unloading were treated with resveratrol supplements, in a dose 
equivalent to 400 mg/kg, for 6 weeks (4 weeks before unloading and during the 
2 weeks of unloading). Resveratrol was shown to maintain a net protein balance and 
preserve muscle mass and muscle maximal force contraction by acting as an exer-
cise mimetic [59].

Green tea polyphenols have been regarded as substances with antioxidants, anti-
mutagenics, antidiabetics, anti-inflammatory, and anti-obesity properties [60, 61]. 
Under this generic name, several active substances, extracted from the leaves of the 
Camellia sinensis plant, are pooled: epigallocatechin gallate, epicatechin gallate, 
gallocatechin, and epigallocatechin [62]. It was shown that tea catechins prevent 
contractile dysfunction in skeletal muscle and muscle atrophy in unloaded muscle 
due to the lower oxidative modification of myofibrillar protein through the antioxi-
dant activity [63]. Alway et al. recently suggested that green tea extract attenuates 
muscle loss and improves muscle function during disuse and appears to be most 
effective for muscles that have a high percentage of fast (type II) fibers. This study, 
performed on rats, provides a rationale for conducting a clinical study on the effects 
of green tea extract on muscle atrophy [64].

23.3  Sarcopenic Obesity

23.3.1  Introduction

The global population, although having a higher life expectancy, is struggling with 
obesity more and more. At the confluence of these two global trends, one can find 
the serious problem of sarcopenic obesity. It has been assessed that its prevalence is 
of 20% in seniors, though difficulties in defining the disease and incorrectly evaluat-
ing it might distort the figures [65]. Though sarcopenic obesity is usually a problem 
of old age, it might also affect younger obese adults. However, its identification is 
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limited due to the availability of low but affordable accurate body composition eval-
uation techniques but also due to heterogeneity in diagnostic criteria [66]. A high 
number of body composition indices and cutoffs were used to define sarcopenia and 
obesity. This leads to conflicting results regarding its prevalence and risk prediction 
[66]. The majority of studies have focused on sarcopenic obesity in older adults, and 
the prevalence in younger obese adults is yet to be defined. However, we might 
expect more studies in the future in this area, since the prevalence of class 3 obesity 
and of sarcopenia are on the rise [67].

23.3.2  Definition and Evaluation of Sarcopenic Obesity

The term “sarcopenia” originates from two Greek words, “sarco” which means 
flesh and “penia” which means loss [68, 69]. In the beginning, “sarcopenia” was the 
term used to explain for the loss of muscle mass accompanying aging and being 
regarded as a physiological process [70], but older adults tend also to gain fat, 
sometimes developing obesity as they age. National survey data from the USA, 
published in 2014, showed that more than one-third (35%) of American older adults 
are obese [71]. In the meantime, we witness a steady growth of the lifespan, hence 
a rapid augmentation of the elderly population, resulting in a sum of potential 
health hazards related closely to the simultaneous rise of the fat tissue and the loss 
of muscle mass. Natural body composition consists in both fat mass and muscle 
mass, which are combined in different percentages, varying from one individual to 
another. But high fat will generally signify obesity and low muscle mass, sarcope-
nia. If the two are combined, we have sarcopenic obesity, frequently encountered in 
elderly, due to changes in the body composition linked to the natural process of 
senescence. The need for an accurate definition is as important as the need to prop-
erly evaluate the presence and the extent of the problem. When the concept of sar-
copenic obesity started to be used, it was believed that age-associated decline of 
muscle strength was caused mainly by the simultaneous decline of muscle mass 
[72, 73]. Thus, the study of muscle mass could somehow be the succedaneum to the 
study of muscle function. In consequence, several scientists proposed better ways 
to define and measure “sarcopenia.” In 1998, Baumgartner et al. defined sarcopenia 
being the lower muscle mass index with two or more standard deviation than the 
reference values measured in young healthy individuals by the DXA (X-ray absorp-
tion) method [74]. Also, in 2002, Janssen et al. proposed the definition for sarcope-
nia in the form of a calculated percentage of muscle mass/body mass  ×  100, 
measured by the bioelectrical impedance, considering the occurrence of sarcopenia 
by recording a standard deviation below the reference values [75]. The criteria by 
which the occurrence of sarcopenia is most recently defined refer to a calculation 
made between muscle mass and fat when using residues from linear regression 
models [76].
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However, studies have shown that the decline in muscle function cannot be 
explained mainly by the parallel decline in muscle mass. It is true that decreased 
muscle mass and contractile force is accentuated with the advent of aging, but the 
expectations are always overtaken by the drop in mass [77–79].

The occurrence of a discrepancy between mass and strength is due to progressive 
deterioration of fiber counts and size, increased collagen volume, reduced contrac-
tility of intact fibers, motor unit modification through neurological disorders and 
micro-infiltration of fat [80–82], etc.

We have evidence that muscle strength is more important than muscle mass 
when it comes to determining the poor health and the functional limitation in old 
age individuals [77, 83]. Thus, scientists arrived at a complex choice between mus-
cle mass and muscle strength as valid markers of age-related muscle impairment. In 
this context, for the apparition of osteoporosis, bone mineral density measurement 
was originally used as a diagnostic marker because it reflects morphometric bone 
changes that occurred over the lifetime and was accelerated by menopause [84]. 
Further studies have shown that not only bone structure but also other factors such 
as bone quality, weight loss, and fragility may contribute to the risk of fracture.

The authors suggest that age-related changes in muscle tissue should be the cen-
tral point of interest, due to their functional consequences. Research has confirmed 
that muscle macro-architecture is a poor witness of the amount of actively contract-
ing proteins. In cross-sectional and longitudinal studies, muscle mass correlated 
purely with physical function [77, 85]. More recent definitions are based on strength. 
Usually, a normalization of strength by body size or by fat mass is done, sending to 
the discrepancy between the “engine” and the “mass to be moved,” which is the cru-
cial aspect in sarcopenic obesity. Older adults are particularly susceptible to the del-
eterious effects of excess body fat on physical function because of the lowered muscle 
mass and strength that occurs with aging (sarcopenia) and of the need to carry greater 
body mass (obesity) [84]. Thus, definitions based on non-“normalized” strength have 
been proposed [86]. There are no generally accepted criteria to define low muscle 
strength; however in practice, it is easier and cheaper to try to measure it than to 
evaluate muscle mass. More sophisticated and expansive methods (DXA, CT) should 
be kept for situations where there is a need for thorough clinical examination and for 
the evaluation of the efficacy of an intervention. The European Working Group on 
Sarcopenia in Older People (EWGSOP) defines now sarcopenia as being the pres-
ence of both low muscle mass and low muscle strength or performance [87]. Recently, 
the Foundation for the National Institutes of Health (FNIH) sarcopenia project did 
suggest that a practical way to define sarcopenia is by using ALM (appendicular lean 
mass) with adjustment for BMI to define low muscle mass [88]. In this project, large 
datasets from 9 large observational studies with over 25,000 participants have been 
used, and the resultant ALM/BMI ratio cutoff values were of < 0.789 for men and < 
0.512 for women [88, 89]. Kim et al. compared indices of somatic muscle mass and 
described their clinical implications [90]. In the future, studies comprising the defini-
tions of sarcopenia in relation with its consequences on disability, cardio-metabolic 
risk profiles, and mortality will be needed [91].
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23.3.3  Causes and Consequences

The increasingly prevalent phenotype of high fat and low muscle functioning has 
led to an entire population of older adults which is at an increased risk for disability 
[92], hence institutionalization [93] and mortality [94]. The combination of sarco-
penia and obesity poses even more significant risks for ill health-related outcomes 
and disability than either one of the two alone [95, 96]. The current trend is to iden-
tify the main promoters of healthy aging leading to increased healthy active years 
of life by influencing the factors that positively and negatively impact nutritional 
health (Fig. 23.2).

But understanding the pathways leading to these discouraging outcomes 
might result, in future, in finding practical solutions even after the wrong has 
been already done [97]. Some other factors playing a part in sarcopenic obesity 
are the following:

23.3.3.1  The Role Played by Age and Body Composition

As people age, essential changes of main body compartments are noticed. Fat body 
mass increases especially in the late decades of life and peaks at about age 
60–75 years [98, 99]. Muscle strength and mass, on the other side, decline progres-
sively starting around 30 and accelerating after the age of 60 [100, 101]. Subcutaneous 
fat declines also, but this change is accompanied by the tendency of growth of vis-
ceral and intramuscular fat [102, 103]. Fat muscle infiltration is a driver to lower 

Fig. 23.2 Healthy aging is impaired by several factors which have a positive or negative impact 
on nutritional behavior
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functioning and performance. These changes are due to the progressive decline in 
energy expenses, both because, with age, the basal metabolic rate is slowing and 
because the level of physical activity is also decreasing, while food intake remains 
stable or sometimes increases. Stenholm et al. noticed that “Aging is also associated 
with a decline in a variety of neural, hormonal and environmental trophic signals to 
muscle” [84]. Physical inactivity, hormonal changes, pro-inflammatory state, mal-
nutrition, loss of alpha-motor units in the central nervous system, and altered gene 
expression accelerate the loss of muscle mass and mass-specific strength [68, 104].

23.3.3.2  The Deficit of Physical Activity

It is well known that changes in our level of physical activity are significant risk 
factors for obesity. Once a person becomes obese, vicious cycles are set, where 
physical activity becomes even less accessible, because of their weight. This may 
contribute to decreased muscle strength [105]. Sarcopenia reduces metabolic rates 
both during rest and active periods, which leads to further weight gain, accompa-
nied by an even stricter sedentary lifestyle, etc. Several studies show that if resis-
tance exercise is combined with diet in weight loss intervention, an improvement of 
muscle strength and muscle quality is noticed, thus confirming the hypothesis about 
the link between adiposity and impaired muscle functioning [106–108].

23.3.3.3  Involvement of Insulin Resistance and Inflammation

Older concepts regarding fat tissue, as being a slow metabolic compartment of the 
human body, have proven to be wrong. Now we know that adipose tissues are very 
active, synthesizing proteins and hormones that interfere at a large scale with the 
human metabolism. Their action is obvious on muscles, where, by means of cyto-
kines (interleukin-6 and tumor necrosis factor -α) [109] and/or by means of adipo-
kines, they produce upregulating inflammation responses (leptin and adiponectin) 
[110, 111] and they contribute to strength and mass decline [112–114].

Sarcopenic obesity seems to be also modulated by an age-related upregulation of 
myostatin. Sakuma (2013) found that the inhibition of myostatin induced by gene 
manipulation or neutralizing antibody ameliorates sarcopenic obesity via increased 
skeletal muscle mass and improved glucose homeostasis [115]. In the Taichung 
Community Health Study-Elderly, it is shown that obesity and sarcopenic obesity 
are associated with increased levels of serum hs-CRP (high sensitivity CRP) among 
males [116]. Results from the Trial of Angiotensin Converting Enzyme Inhibition 
and Novel Cardiovascular Risk Factors study [112] show that “C-reactive protein 
and IL-6 are positively associated with fat mass, but negatively related to lean mass,” 
thus suggesting “that obesity-related inflammation may lead to sarcopenia and sar-
copenic obesity.” Another interesting study [86] found that older obese persons with 
low muscle strength had higher levels of IL-6 and CRP than their peers. One of the 
doubtless obesity consequences is insulin resistance, which is mediated by inflam-
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matory molecules that interfere insulin receptor signaling pathways [117]. Muscle 
fat infiltration might be one of the causes of insulin resistance in obese persons [118, 
119]. Insulin resistance might also promote muscle catabolism, and studies have 
proven that it correlates with reduced muscle strength [120, 121]. Old diabetics lose 
both muscle strength and quality swiftly [122]. However, it has been shown that 
resistance training improves insulin sensibility and glycemic control [123, 124].

23.3.3.4  The Influence of Hormones

Testosterone is a hormone that increases muscle protein synthesis. In men, the lev-
els of testosterone decrease by approximately 1% per year of age [125]. In women, 
testosterone levels also lower rapidly, from 20 to 45 [126]. Another anabolic hor-
mone is the growth hormone (GH), a peptide of 191 amino acids produced mainly 
by the anterior pituitary gland. It controls the postnatal growth of multiple tissues, 
including skeletal muscle [127]. The secretion of GH is maximal at puberty when it 
is accompanied by high levels of insulin-like growth factor-I (IGF-I) [128] followed 
by a gradual decline during the next years of life. Circulating GH levels decline 
progressively after 30 [129]. In senior men, daily GH secretion is 5- to 20-fold 
lower than that in young ones [130]. Many types of research have indicated an age- 
related decrease in anabolic hormones. Hormonal supplementation has been con-
ducted on a large scale, but it was not highly effective against sarcopenia 
[130–132].

The other factor in sarcopenic obesity, obesity, is associated with high levels of 
free fatty acids in circulation [133] which lower GH synthesis and the plasmatic 
level of IGF-I [134]. Several hypotheses can link sarcopenia to muscle impairment, 
like depressed growth hormone secretions [135] or a lower testosterone level in 
obesity [136]. It is well known that a low level of anabolic hormones is associated 
with low muscle strength [137, 138].

23.3.3.5  Malnutrition/Weight Loss

It is well known that, for different reasons, from economic ones, to lower appetite 
or edentation, older adults have the tendency to eat meals lower in protein [139]. 
This impairs the protein muscle turnover. Even more, obese elderly might try to lose 
weight, lowering even more of their protein intake. It has been observed that periods 
of weight loss [140, 141] often coincide with accelerated sarcopenia. Even though 
acute stable-isotope-based methodologies have demonstrated that the anabolic mus-
cle response to a given amount of protein may decline with age (anabolic resis-
tance), protein supplementation or a higher level of intake of protein-rich food 
might be an effective approach to delay the age-related loss of muscle [142].
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23.3.3.6  Association Between Obesity and Muscle Impairment

Stenholm et al. (2008) examined the hypothesis that obesity (BMI ≥ 30 kg/m2) and 
low muscle strength (lowest sex-specific hand grip strength tertile) are connected, in 
four epidemiological studies that included persons aged 65 years and older: BLSA 
(Baltimore Longitudinal Study of Aging, USA; 1959–2007; Shock 1984); Health 
2000 Survey, Finland (2000–2001; Aromaa 2004); InCHIANTI, Italy (1998–2000; 
Ferrucci 2000); and LASA (Longitudinal Aging Study Amsterdam, Netherlands; 
2001–2002; Sonnenberg 2008; Deeg 2002) [84]. Following the four studies, it was 
concluded that, depending on sex, age, and body weight, individuals with reduced 
muscle strength were more likely to develop obesity twice as much as those with 
normal resistance, but obesity decreasing muscle strength are not necessarily 
correlated.

23.3.4  Consequences

As the name states, sarcopenic obesity combines sarcopenia and obesity, both being 
associated with different metabolic disorders, hence being able to raise morbidity 
and mortality [143]. Sarcopenic obesity might have a greater impact on metabolic 
diseases and cardiovascular morbidity and mortality than any of its two components 
alone [144, 145]. Several cross-sectional studies in senior Koreans have shown that 
persons with sarcopenic obesity have the worst cardiovascular risk profiles, with 
hyperglycemia, hypertension, dyslipidemia, insulin resistance, and lower cardiore-
spiratory fitness [146–148]. A similar Taiwanese study showed the association 
between sarcopenic obesity and the highest risk of metabolic syndrome [149]. In a 
cross-sectional study from the National Health and Nutrition Examination Survey 
III (NHANES III), sarcopenia enhanced dysglycemia and insulin resistance associ-
ated with obesity [150].

There are studies that have investigated the consequences of sarcopenic obesity 
on cardiovascular disease (CVD) and mortality. Stephen and Janssen (2009) found 
that sarcopenic obesity is associated with increased CVD risk [151]. As expected, in 
the British Regional Heart Study, patients with sarcopenic obesity had a higher risk 
of mortality compared to normally weighted subjects without sarcopenia [152]. A 
meta-analysis that took into consideration several prospective cohort studies showed 
that sarcopenic obesity is associated with a 24% increase in the risk of all-cause 
mortality, particularly in men [153]. On the other hand, sarcopenic participants with 
obesity from the New Mexico Elder Health Survey were more likely to be disabled 
than participants who were either obese or sarcopenic [154]. In the 8-year follow-up 
of the New Mexico Aging Process Study, it has been demonstrated (Baumgartner 
1998) that older participants with sarcopenic obesity at baseline had over twofold 
higher risk of developing IADL (instrumental activities of daily living) disability 
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than those without initial sarcopenic obesity. However, two other cross-sectional 
studies based on NHANES III [155] and a sample of older women in Verona [156] 
did not find an association between sarcopenic obesity and poor physical function-
ing. Muscle mass was used as an indication for sarcopenia, a fact that might explain 
the lack of an association with physical functioning [155, 156].

An interesting question for research remains the link between sarcopenia and 
gender. Women have a higher fat mass, as well as lower, absolute, and relative mus-
cle strength than men [157, 158] due to hormonal characteristics. It is foreseeable 
that they are more prone to develop obesity and lower strength. Some recent studies 
show that obesity consequences may be more severe in women than in men [159, 
160], because even a small decline in muscle strength can lead to high problems 
in  locomotion and efficiently bearing the excess weight. A cross-sectional study 
from Brazil [161] showed that sarcopenic obesity was present in 7% of this popula-
tion of middle-aged women, and it was associated with poor physical performance, 
limitations being beyond those driven by pure sarcopenia or obesity alone.

23.3.5  Treatment

The pathogenesis of sarcopenic obesity is multifactorial, so choosing the best treat-
ment might be a challenge. Aging, with a decrease in all compartments of energy 
expenditure and a reduction of physical activity, can lead to excess adiposity. 
Meanwhile, through the same pathways, chances for sarcopenia rise, being further 
exacerbated by other changes linked to aging: lower protein intake, increased skel-
etal muscle fatty infiltration, altered skeletal muscle substrate metabolism, increased 
expression of myostatin, impaired sensitivity to the anabolic effects of insulin with 
associated mitochondrial dysfunction, and age-related reductions in growth hor-
mone and testosterone secretion [162]. In consequence, optimal management has to 
address the different facets that determine the onset of the disease. Lifestyle inter-
ventions have to combine weight loss, exercise, and nutritional changes. Recent 
research shows that a combination of exercise, nutritional intervention, and pharma-
ceutical treatment (hormones) might offer the best results [163, 164].

23.3.5.1  Weight Loss

Even though weight loss seems to address the main pathways that have led to sarco-
penic obesity, for older adults, it remains rather problematic, due to the associated 
loss in lean body mass and the consequent worsening of sarcopenia [165]. However, 
weight loss is feasible in frail, obese elderly [166], subjects being sometimes more 
compliant than younger individuals [167]. Bouchonville and Villareal investigated 
the effects of diet in lowering body weight (~10%) in obese older adults and found 
that, apart from some minor loss in lean body mass, a greater reduction in fat was 
noticed [162]. In the end, researchers found an improvement in relative sarcopenia 
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(percent body weight as lean body mass) and an improvement of frailty [168]. An 
adequate protein intake combined with a proper exercise program can have repara-
tory effects on muscular protein synthesis that resulted from previous hypo- energetic 
diets [169]. Muscariello et al. showed that a diet moderately rich in proteins was 
able to preserve muscle mass in sarcopenic women [170]. Thus, adequate protein 
intake could contribute to the prevention of lean-mass loss associated with weight 
reduction in obese older people.

23.3.5.2  Exercise

Sarcopenic obesity has been attributed in part to the decline in physical activity, 
noticed as people get old [171]. Studies have shown that exercise has excellent 
effects in sarcopenic obesity, by means of the increase of synthesis of protein in 
somatic muscles [168], the reduction of the expression of myostatin [172], the 
increase in IGF-1 in muscle [173], the recovering of skeletal muscle sensitivity to 
insulin, a hormone with anabolic effect [174], the improvement of the nutrient 
delivery to muscle [175], the enhancement of mitochondrial function [176], and the 
activation of skeletal muscle satellite cells [177]. Even more, Lambert et al. demon-
strated that exercise-induced weight loss lowered skeletal muscle inflammatory 
gene expression in frail, obese older adults, an effect that has not been seen in diet- 
induced weight loss [178]. Complex programs have to be designed, combining pro-
gressive resistance training (PRT), flexibility, aerobic exercise, and balance training 
[179]. Resistance training seems to be crucial for sarcopenic obesity prevention and 
treatment. PRT was associated with improvements in muscle strength, waist cir-
cumference, and multiple metabolic outcomes. Its effects were positive also for 
senior women with sarcopenic obesity [180, 181], and planning specially designed 
programs has proven to have even greater effects [182].

23.3.5.3  Combined Weight Loss and Exercise

Naturally, the combination of diet and exercise are presumed to give best effects. 
These interventions act synergistically to improve sarcopenia and ameliorate frailty 
more than either diet or exercise alone [107].

23.3.5.4  Nutritional Modifications

Many efficient modifications have been suggested, and usually, they target the quan-
tity and the timing of protein/amino acid ingestion. As stated before, aging is associ-
ated with a reduction in protein consumption and in the use of the amino acids in 
muscle protein synthesis [183]. Recent recommended dietary allowance for protein 
intake underline higher necessities for the elderly [184, 185], since the previous was 
judged as not adequate in older adults [169, 186]. It has been demonstrated that a 
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higher intake of essential amino acids restores the synthesis of muscle protein simi-
larly to what has been noticed in younger adults, suggesting that there might be a 
threshold effect that can be overcome with a higher protein intake [187]. Research 
advises that in order to prevent sarcopenia in older adults, an intake of 25–30 g of 
high-quality protein should be ingested at each main meal [188]. Lower ingestion 
has been associated with suboptimal muscle protein synthesis in seniors [189]. If 
the intake is higher than 30 g of protein per meal, no positive effect has been reported 
in muscle synthesis and repair [190]. Some researchers proposed supplementation 
with leucine since it is a branched-chain amino acid with high potency in stimula-
tion of protein synthesis [191–193]. In a recent study of Sammarco et al., sarcopenic 
obese patients with high-protein diet showed an improvement in muscle strength 
[194]. Furthermore, dietary protein enrichment might represent a protection from 
the risk of sarcopenia enhancement following a hypocaloric diet.

23.3.5.5  Pharmacologic Therapy

Lifestyle interventions remain the corner key for the sarcopenic obesity treatment. 
However, due to practical reasons, pharmacologic therapies might be useful. Some 
alternatives, though limitative, are the use of myostatin inhibitors and the use of 
some anabolic agents, like testosterone and mediators of the IGF-1 system.

23.3.5.6  Inhibitors of Myostatin

There is a growing body of evidence that inhibition of myostatin in sarcopenic obe-
sity can lead to positive modifications of adiposity and lean body mass. Myostatin 
is a member of the TGF-β superfamily of secreted growth factors, being synthesized 
both by skeletal muscle and adipose tissue, and it plays a role of negative regulator 
of muscle mass [195]. Research suggests that skeletal muscle may be considered an 
endocrine organ that contributes to the regulation of body composition. Myostatin 
seems to be a biomarker of sarcopenia in the elderly. There is an inverse correlation 
between the myostatin level and muscle mass, the highest levels being observed in 
frail older adults [196]. On the contrary, animal models show that myostatin defi-
ciency is associated with excessive muscularity and a low level of fat tissue in myo-
statin-deficient cattle [197]. A similar fact has been observed in children with a 
mutation in the myostatin gene [198]. As a consequence, one might raise the idea of 
myostatin inhibition, as a suitable strategy for the treatment of sarcopenic obesity. 
Data on animal models are promising: in mice, it led to the lowering of adipose tis-
sue [199], reduced the markers of inflammation [200], increased muscle mass [201], 
and protected against age-related sarcopenia [202]. It was proved on animal models 
that muscle mass and function can be improved through therapy of inhibitory pro-
peptides or by myostatin antibodies and also was observed that the inhibition of 
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myostatin induced an upregulated intramuscular satellite cell function and IGF-1 
signaling increased thermogenesis and endurance to obesity [162]. However, trials 
in humans had disappointing results. One study found that myostatin inhibition in 
patients with muscular disorders, respectively, muscular dystrophy was correlated 
only with ameliorations in muscle function, but not in muscle strength [203].

Further uncertainties are linked with observations in individuals with the K153R 
polymorphism in the myostatin gene (this is a variant that reduces the capacity of 
myostatin to influence muscular strength and mass) [204].

The variant may contribute to exceptional longevity [205], but there were reports 
that it is also associated with a diminished muscle force in some but not all [206] 
affected individuals. Other questions regarding myostatin are linked to the safety of 
long-term administration, especially in relation with the cardiovascular system, 
since there is proof that myostatin expression is correlated with heart disease [207].

We can conclude that for now, more long-term studies are needed before using 
myostatin inhibitors in protocols of treatment of sarcopenic obesity.

23.3.5.7  Testosterone

Aging is accompanied by a decline in testosterone, paralleling the loss in lean body 
mass and the gain in fat, which are the paramount components of sarcopenic obe-
sity. The testosterone therapy might be an answer in sarcopenic obesity prevention 
and treatment. Most studies carried out on healthy subjects reported positive changes 
in fat mass and lean body mass but were mixed regarding muscle strength. One 
research work studied the effects of twelve months of testosterone administration in 
a double-blind trial in healthy older individuals unsystematized to progressive resis-
tance training versus no exercise [208]. The results, for the exercising subjects, were 
positive for the improvement in fat mass and fat-free mass, but the physical function 
and muscular strength were not modified. Some positive changes in upper body 
strength were noticed in the non-exercise subjects treated with testosterone but none 
in physical function. Researches on healthy older male persons reported beneficial 
effects of testosterone administration on human body composition [209].

However, higher concentrations of testosterone therapy are associated with 
adverse events.

The conclusion for the moment is that testosterone treatment in healthy older 
male individuals has favorable results on human body composition, which provides 
protection against sarcopenic obesity, but is necessary to supervise the potential 
adverse effects (growth of subclinical prostate cancer, erythrocytosis, aggravating 
of obstructive sleep apnea, fluid retention, etc.).

The 2010 Endocrine Society Guidelines submit that therapy in older persons has 
to be limited to cases where there is proof of hypogonadism and the patients should 
know the benefits and risks of treatment [210].
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23.3.5.8  Other Therapies

Aging is correlated with other hormonal and mediator changes, like the progressive 
decline in growth hormone (GH) secretion and IGF-1 production [211], which are 
connected with the lowering of lean body mass and increase in fat mass [212]. GH 
substitution was studied already for a long time, as an ameliorator of the changes in 
body composition [213]. However adverse effects were important: arthralgias, 
edema, and glucose intolerance. A research paper published in 2007 suggested that 
GH should not be used as antiaging therapy [214].

More recently, advanced techniques have been employed, like the augmentation 
of endogenous pulsatile GH, aiming to shunt the adverse effects connected with 
exogenous GH.

Capromorelin is a growth hormone secretagogue which has positive effects for 
physical condition and body composition in healthy older persons but, unfortu-
nately, has negative properties for glucose homeostasis [215].

Makimura et al. observed that GHRH (growth hormone-releasing hormone) ana-
log is associated with enhanced lean body mass and decreased fat mass. They sug-
gested that there is no correlation between GHRH analog and disturbances in 
glucose metabolism or other adverse events [216].

The results might be promising, and future studies are needed to determine 
whether tesamorelin, a synthetic form of GHRH, may be helpful for the cure of 
sarcopenic obesity in older individuals.

Some other androgenic therapies have been tested. There are conflicting data 
regarding the use of dehydroepiandrosterone (DHEA) on muscle mass and strength. 
DHEA administration amplifies the anabolic events of heavy resistance exercise in 
aged persons [217].

A recent meta-analysis of studies in senior men revealed that DHEA administra-
tion can be associated with a minor but important positive effect on human body 
composition [218].

Another interesting topic refers to treatment with anabolic steroids and their 
effects in older human body. In this category is included oxandrolone, a synthetic 
anabolic androgen. Treatment with this compound had advantages like improve-
ments in lean body mass and fat mass and also in muscle strength [219] but had 
significant disadvantageous consequences on plasmatic lipid profiles.

Another study, carried on patients with cancer cachexia, suggested that a non-
steroidal selective androgen receptor modulator, enobosarm, might ameliorate the 
lean body mass without the toxic effects associated with androgens [220]. There 
are also other modern treatments developed and tested, like using inhibitors of 
transcription factor nuclear factor kappa B (NF-κB) for protection against cancer-
related cachexia, with promising results that might be transferred in elderly with 
sarcopenic cachexia [221].
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23.3.6  Conclusions

Taking into consideration the worldwide rise in the incidence of obesity especially 
at older ages, in relation with the age decline of muscle mass, sarcopenic obesity 
will gain momentum, with negative consequences in maximizing disability, mor-
bidity, and mortality. These will lead to a lowering of the quality of life of seniors 
and will also negatively impact the public health systems. Weight loss and exercise 
can bring their own and separate contribution. However, strategies combining espe-
cially tailored resistance training and bespoke high-quality protein intake in older 
adults show the strongest effects. While promising, pharmacological therapies are 
yet riddled with numerous adverse effects, so for the moment, the impact of their 
use in long-term interventions has yet to be evaluated.
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Chapter 24
Physical Exercise for Muscle Atrophy

Liang Shen, Xiangmin Meng, Zhongrong Zhang, and Tianhui Wang

Abstract The most direct characteristic of muscle atrophy is reduction in muscle 
mass, which is due to increased protein degradation or reduced protein synthesis in 
skeletal muscle. The loss of muscle mass can directly affect the quality of daily life, 
prolong the recovery period, and become the main risk factor for chronic diseases. 
However, there is currently no effective way to prevent and treat this disease, and 
therefore it is imperative to explore effective therapeutic approaches for muscle 
atrophy. It is well known that physical exercise is important for maintaining good 
health and long-term adherence to exercise can reduce the risk of cardiovascular 
diseases, obesity, and diabetes. It is also well established that exercise training can 
promote the synthesis of muscle protein and activate signaling pathways that regu-
late the metabolism and function of muscle fibers. Therefore, exercise can be used 
as a method to treat muscle atrophy in many of these conditions. Mitochondria play 
an important role in skeletal muscle homeostasis and bioenergy metabolism. 
Mitochondria are sensitive to contractile signals, and hence exercise can improve 
mitochondrial function and promote biosynthesis, which ultimately maintains the 
healthy state of cells and the whole body. On the other hand, frequent unaccustomed 
exercise will change the structure and function of skeletal muscle fibers, which is 
called exercise-induced muscle damage. When the exercise-induced muscle dam-
age happens, it can cause temporary muscle damage and soreness, giving a negative 
effect on the muscle function.
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24.1  Introduction

The skeletal muscle mass is about 40% of body weight, and it is important for exer-
cise and metabolic balance [1]. Skeletal muscle is the largest reservoir of protein in 
the body [2]. Skeletal muscle is not only the foundation of physical exercise but also 
the major glucose metabolism organ in the human body. It is also the energy storage 
tissue of the body in pathological state of energy deficiency [3]. Muscle atrophy is 
mainly manifested as a significant reduction in muscle mass, which is due to the 
increased protein degradation or reduced protein synthesis in skeletal muscle [4]. 
According to different pathogeneses, muscle atrophy can be classified into three 
types: the primary disorders of skeletal muscle, the secondary disorders of skeletal 
muscle, and the aging-induced sarcopenia [5]. The occurrence of various kinds of 
muscle diseases can directly cause the primary muscle atrophy, and the muscle atro-
phy often appears concomitant with muscle diseases, such as Duchenne muscular 
dystrophy (DMD). On the other hand, secondary muscle atrophy is caused by exter-
nal factors including diseases and weightlessness. The increased protein degrada-
tion or the reduced protein synthesis in skeletal muscle always happen to be 
associated with many terrible diseases like cancers [6], heart failure [7], muscle 
genetic diseases [8], and neurodegenerative disorders [9]. The last one is age-related 
decline in skeletal muscle mass and function. The loss of muscle mass and motor 
ability that accompanies aging always occurs in old people; it is usually manifested 
as muscle weakness and muscle atrophy. Moreover, muscle atrophy is also found in 
healthy people: during leg fractures [10], immobilization, bed rest, and age- 
associated [11] spinal injury [12]; for those who need prolonged bed rest because of 
injury, stay in a weightless environment or simply live a sedentary lifestyle. Finally, 
muscle wasting signaling starts due to lack of muscle contraction and stimuli, sub-
sequently increasing the protein degradation and cell apoptosis. Muscle atrophy 
occurs when protein degradation exceeds protein synthesis [13].

24.2  Exercise: Skeletal Muscle Protection

The loss of muscle mass can affect people’s daily life, reduce their ability of daily 
living activity, prolong the recovery period of illness, and become the most impor-
tant risk factor for chronic diseases. Therefore, it is critical to develop novel 
approaches for quick and effective treatment of muscle atrophy. When muscle atro-
phy occurs, the decrease in muscle protein synthesis and the increase in protein 
degradation happen simultaneously, which results in a rapid decrease in muscle size 
[14]. It is well known that proper physical exercise is beneficial to the health of the 
human body; meanwhile physical exercise can also improve cardiopulmonary func-
tion, reduce the risk of cardiovascular disease, and prevent obesity and diabetes 
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[15]. Exercise can activate the signaling pathway that stimulates the metabolism of 
skeletal muscle fibers and enhances contraction and physiological function of the 
muscle. Many health guidelines recommend that adults should do at least 30 min 
aerobic exercises five times a week to keep in good health [16]. Regular and appro-
priate physical activity is beneficial for the health of the body and can improve the 
body’s resistance to diseases [17]. It is well known that the exercise training can 
increase muscle protein synthesis and muscle weight, so in many cases, exercise 
training can be used as an important method for the treatment and prevention of 
muscle atrophy [18].

On the other hand, exercise training can improve muscle metabolism and amelio-
rate the abnormalities in muscle function without changing the functional perfor-
mance of the heart [19]. It has been reported that exercise training can increase the 
volume of mitochondria by up to 40% [20]. During the physical exercise, the factors 
regulating mitochondrial biogenesis are elevated, which directly enhance the syn-
thesis of mitochondrial protein. In aging skeletal muscle, the mitochondria are 
found smaller, with slow metabolism, and reduced biosynthesis, resulting in a rapid 
decline in muscle mass and muscle performance parameters. Moderate exercise 
training can protect the mitochondria from volume and biogenesis reduction caused 
by aging and hence relieve the age-related skeletal muscle mass decrease [21]. 
Although the aging-driven skeletal muscle atrophy is only one type of muscle atro-
phy, the results still indicate that exercise can resist the adverse consequences caused 
by muscle atrophy through the induction of mitochondrial biogenesis.

24.2.1  Physical Exercise Types

Physical exercise can be roughly divided into endurance training and resistance 
training. Endurance training is based on aerobic exercise that improves muscular 
endurance, while resistance training is based on strength exercise. Marathon, swim-
ming, and cycling are common endurance trainings, which are characterized by 
high-frequency, longtime, and low-power consumption. On the other hand, resis-
tance training such as fitness and throwing is characterized by low frequency, high 
resistance, high strength, and short duration. For different kinds of exercise, the 
parameters such as duration, frequency, intensity of exercise, and the effects on the 
muscles will be different [22]. Specific functional adaptability of skeletal muscle 
will be developed according to distinct exercise patterns [23]. Skeletal muscle mass 
and strength will increase response to resistance exercise [24], while endurance 
exercise can stimulate the mitochondrial biogenesis and improve the respiratory 
function of mitochondria for adaption to higher intensity of metabolic activity [25]. 
In general, exercise has many beneficial effects on skeletal muscle, which is good 
for the health.

Though both endurance training and resistance training are good for human health, 
the endurance exercise is considered more effective in preventing cardiovascular dis-
ease, whereas resistance training is more effective in maintaining muscle mass and 
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protecting age-related muscle atrophy [26]. Benefits of endurance exercise in cardio-
vascular diseases such as hypertension and coronary heart disease are because of 
increased angiogenesis and promoted capillarity and, more importantly, due to 
enhanced resistant to inflammation. Combination of these two types of exercise can 
increase the bone density and insulin sensitivity as well, thus preventing the occur-
rence of type 2 diabetes. In addition, exercise training is also the main preventive 
method against obesity, glucose intolerance, and many metabolic diseases [27–30].

24.2.2  Endurance Exercise Preconditioning Prevents Disuse 
Muscle Atrophy

Muscle atrophy is caused by reduced protein synthesis and increased protein degra-
dation. The loss of contractile proteins, cytoplasm, organelles, and nuclei in muscle 
cells will eventually lead to a decrease in the size of muscle fibers [31]. Previous 
results based on animal studies have shown that increased protein degradation and 
reduced protein synthesis can cause disuse atrophy [32]. The relative stability of 
total skeletal muscle mass is achieved by balance of protein synthesis and degrada-
tion. Nutrients and nutrient-derived hormones play a key role in keeping muscle 
mass stabilization by regulation of the synthesis and degradation of muscle protein. 
Proteins are made up of essential amino acids, and the protein intake through diet is 
essential for the synthesis of muscle proteins [33].

24.2.3  Muscle Protein Breakdown

As for protein degradation, skeletal muscle can remove misinterpreted, damaged, 
misfolded, or unnecessary proteins through four special complementary pathways, 
including calpain, caspase-3, autophagy, and ubiquitin proteasome pathway [34].

 1. Calpain

The calpain protein family is calcium-dependent proteases, which play an impor-
tant role in the breakdown of myosin, actin, and other structural proteins. In fact, 
targeted inhibition of calpain can effectively prevent muscle wasting in various dis-
ease states [35–39].

 2. Caspase–3

Caspase-3 is a member of the cysteine-aspartic acid protease family, which is 
generally believed as the most important terminal shear enzyme in the process of 
apoptosis. Recent studies have shown that caspase-3 can be combined with calpain 
to participate in the hydrolysis of myofibrillar proteins [40, 41]. Moreover, when 
caspase-3 protein is suppressed or the gene is knocked out, the occurrence of disuse 
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muscle atrophy can be effectively suppressed [38, 39, 42, 43]. Therefore, it is 
believed that calpain and caspase-3 together play a crucial role in inhibiting muscle 
atrophy as they begin the initial breakdown of the muscle contractions [34].

 3. Autophagy

Early studies suggested that there is not much direct correlation between cell 
autophagy and muscle atrophy [35]. However, recent studies have shown that 
autophagy may play a crucial role in the disuse atrophy, by selective degradation of 
organelles such as mitochondria and removal of apoptotic cells [44].

 4. Ubiquitin Proteasome Pathway

Previous report has showed that these protein degradations are also accomplished 
through the ubiquitin proteasome pathway. Small peptides, misfolded proteins, and 
unnecessary proteins can be degraded via ubiquitin proteasome pathway [45].

24.2.4  Muscle Protein Synthesis

Protein synthesis in cells is a complex process regulated by a complex network 
composed of multiple regulatory factors. Amino acids are combined to various pro-
teins according to the genetic information on messenger RNA (mRNA). Within 
hours of disuse, muscle protein synthesis is reduced by about 25–50% and will 
remain inactive throughout the period [46–49]. The Akt/mTOR signaling pathway 
plays an important regulatory role in controlling the change of muscle mass [50]. In 
disuse atrophy, the Akt/mTOR pathway is suppressed by reducing the phosphoryla-
tion of Akt and subsequently inhibiting the expression of downstream target gene 
mTOR. When the signaling pathway is attenuated, the formation of the translation 
initiation complex will be greatly reduced, resulting in declined muscle protein syn-
thesis. To sum up, it is believed that increase of protein degradation and decrease of 
protein synthesis can induce the occurrence of disuse atrophy [14].

24.2.5  Reactive Oxygen Species (ROS)

It has been reported that the expression of reactive oxygen species (ROS) in skeletal 
muscle is increased in disuse atrophy [51–53]. The amount of mitochondrial protein 
in skeletal muscle and respiration of mitochondria will significantly decrease along 
with the increase of ROS.  ROS regulate the redox signaling pathway in muscle 
fibers, and hence increase of ROS can reduce the synthesis of skeletal muscle pro-
tein and enhance protein hydrolysis [54]. Combined with above conclusions, we 
believe that the disuse atrophy is closely related to the decrease of the antioxidant 
capacity of skeletal muscle [53, 55–58]. It is found that the root cause of decreased 
antioxidant scavenging ability of skeletal muscle is the reduction of antioxidant 
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clearance ability, which is not necessarily concomitant with reduced antioxidant 
enzyme content [55, 58]. It has been proved that ROS are vital in the upstream 
events that lead to disuse atrophy, and increased synthesis of ROS can effectively 
activate the associated signaling pathways. Furthermore, increased ROS can acti-
vate the activity of transcription factor, which further elevate the expression of 
endogenous antioxidant proteins [59].

24.2.6  Heat Shock Protein 70

The heat shock proteins are a group of highly conserved protein known as molecular 
chaperone proteins. Heat shock protein plays a role in cell protection by combining 
with the denatured proteins to assist the recovery or transport of the proteins for 
lysosomal degradation. It has been found that the expression of heat shock protein 
in the body is increased after exercise. Generally, the heat shock protein has three 
functions: (1) to promote the folding of newly synthesized proteins, (2) to help fold 
back the denatured protein, and (3) to transfer the synthesized protein to the specific 
organelle [60]. Heat shock protein 70 (HSP70), as a member of the family, is the 
most popular research object at present. HSP70 (also known as HSP72) has a highly 
conservative peptide structure, which facilitates its repair and functional restoration 
of the denatured protein in cell. Temperature, oxidative stress response, mechanical 
action, metabolic reaction, and cytokine stimulation all have influence on the 
expression of HSP70. More importantly, physical exercise can cause a series of 
stress reactions in the body that can directly promote the expression of HSP70 
protein.

24.2.7  PGC-1α

PGC-1 is an important regulatory factor for mitochondrial proliferation and there-
fore mainly expresses in tissues that require a large amount of energy, such as the 
heart, skeletal muscle, and liver. PGC-1α is a transcription co-activator, which 
involved in many physiological functions, such as mitochondrial biosynthesis, pro-
moting blood vessel formation, glucose metabolism, and fatty acid oxidation [61, 
62]. It has been reported that after 18 h of endurance exercise, the expression level 
of PGC-1α is markedly increased in rat soleus muscle [63]. Kang’s study found that 
the expression of PGC-1α in female Sprague-Dawley rats subjected to anaerobic 
sprinting exercise is increased by 5.6 times compared to the control group [64]. 
Another group of rats were given 20 min of aerobic treadmill running for 6 weeks, 
and the level of PGC-1α mRNA was found to increase by 25% in rat soleus muscle 
[65]. Other studies have also verified that exercise training and prolonged physical 
activity can effectively promote the expression of PGC-1α in skeletal muscle [66–
70]. Although very little is known about the molecular mechanisms involved in the 
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exercise-induced adaptive response, PGC-1α is currently accepted as the main regu-
latory factor. In brown fat cells, PGC-1α is found to be a transcriptional activator of 
peroxisome proliferator-activated receptor γ (PPAR γ) [71]. Studies have also 
shown that PGC-1α plays a key role in mitochondrial development. The expression 
level of PGC-1α is the rate-limiting factor of mitochondrial gene expression in skel-
etal muscle, and overexpression of PGC-1α can promote the synthesis of mitochon-
dria. An acute exercise or prolonged endurance exercise can both stimulate the 
deacetylation of PGC-1α in skeletal muscle; the exercise activates the signaling 
pathway associated with energy metabolism, thus inducing the expression of 
PGC-1α, whereas PGC-1α is expressed higher in slow muscle fibers which are more 
suitable for endurance exercise [72, 73]. Phosphorylation and deacetylation of 
PGC-1 can induce the expression of ag group of mitochondrial genes [74, 75]. On 
the other hand, prolonged disuse muscle atrophy is accompanied with damage of 
cellular oxidative metabolism and increase of glycolysis. This process involves the 
disruption of electron transport chains in mitochondria and the reduction of mito-
chondrial content [64, 76]. When the mitochondrial function is manifested, it causes 
the increase of ROS and glycolysis, elevation of metabolic stress, reduction of fat 
oxidation, and accumulation of substrate, which eventually leads to low efficiency 
of ATP production [77]. In summary, physical exercise can induce the upregulation 
of PGC-1α expression by activating multiple metabolic process and eventually pre-
vent metabolic defects and protect against the disuse atrophy.

24.3  Mitochondria

Mitochondria are the cell organelles responsible for aerobic respiration. It plays an 
important role in metabolism and maintenance of homeostasis [78]. There are a lot 
of mitochondria in muscle tissue, which provides enough energy for muscle contrac-
tion. Therefore, the number and function of mitochondria are the key factors affect-
ing the health of skeletal muscle [79–81]. Exercise training can improve the functional 
activity of mitochondria and promote the biosynthesis of mitochondria, which help 
maintain the stability of muscle cells. Some chronic diseases, such as obesity and 
diabetes, can reduce the number or function of skeletal muscle mitochondria [82–
84]. Mitochondria play an active role in maintaining environmental balance and bio-
energetics in skeletal muscle [85]. In skeletal muscle, the content of mitochondria is 
dynamically balanced, and muscle cells can regulate the number of mitochondria 
according to the energy required by tissue metabolism [86] whereas long periods of 
inactivity, chronic disease, and aging can reduce the number and function of mito-
chondria [87–89]. Although some diseases do not directly harm mitochondria, mito-
chondrial function abnormalities are often noticed being involved in the development 
of diseases; and the change of mitochondrial genome usually leads to change of 
physiological functions as well [13]. In skeletal muscle, the conversion from type I 
to type II is documented. In humans with mitochondrial myopathy, oxidative muscle 
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fibers can be transformed to glycolysis ones. Mitochondrial dysfunction changes the 
form and reduces the function of skeletal muscle, and the changes in the energy 
source further reduce muscle strength, ultimately affecting the health of the muscle 
[90]. It has been reported that increased mitochondrial DNA mutation and decreased 
mitochondrial DNA total content are observed in the aging in the skeletal muscles, 
which is related to the decreases of muscle mass and function in elders [91]. 
Additionally, when the synthesis of mitochondrial and oxidative phosphorylation 
(OXPHOS) proteins is interrupted, ATP synthesis and production of ROS will 
decrease [92]. ROS is associated with many diseases, including muscle diseases [93]. 
Excessive ROS can activate cell apoptosis and protein degradation through caspase 
and ubiquitin proteasome pathways [94]. A growing body of research has been 
focusing on improvement of the mitochondrial function, and at present many treat-
ments for mitochondrial dysfunction, such as exercise therapy, nutritional therapy, 
and drug therapy, have been developed. The principles of these therapies are to coun-
teract the effects of mitochondrial dysfunction by regulating some signaling path-
ways involved in mitochondrial biosynthesis [93, 95].

24.4  The Damage of Excessive Exercise

For people who do not exercise regularly, the body will have discomforts, such as 
muscle pain and muscle stiffness, after an acute strenuous exercise. This kind of 
phenomenon is the most common cause of muscle incommensurate reaction, which 
is called exercise-induced muscle damage [96]. Once the muscle is subjected to a 
long unaccustomed exercise, the structure and function of myofibrils will be 
changed [97, 98]. Destruction of the muscle fiber structure, inflammation, and mus-
cle protein degradation will directly lead to the reduced muscle strength, decreased 
athletic ability, edema, and delayed the pain of exercise [99, 100]. Exercise-induced 
muscle damage can be divided into two stages, the initial injury stage and the sec-
ondary injury stage; the former is the injury during the movement; the latter is 
because of the delayed inflammatory response [101, 102]. The mechanism on mus-
cle injury caused by training especially by strength training is relatively clear now 
[103], and more researches have been focused on the relationship between the 
degree of muscle microlesion and concentricity or eccentric contraction [104].

24.4.1  Muscle Damage Markers

Until now, there are only few definitive studies on muscle damage caused by strength 
training. Although muscle response and exercise intensity have been documented, 
there are still no clear results on other aspects. There are many definite markers for 
muscle injury; the most common are muscle strength, delayed onset muscle 
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soreness, blood creatine kinase activity, indirect markers of collagen breakdown, 
median frequency of EMG signal, and ultrastructural damage.

Muscle strength: the most common approach is measurement of post-training 
muscle strength, which has been used in many studies [105–107]. By comparison 
between the muscle strength before and after exercise, the results showed that the 
average level of muscle strength in the exercise group is lower than the value 
detected before a 2-day exercise. Decreased muscle strength is associated with 
excessive muscle contraction, and the intensity exercise can lead to a change in the 
process of overlaying and excitation contraction of the filaments.

Delayed onset muscle soreness: delayed onset muscle soreness (DOMS) is a mus-
cle maladaptive response that occurs 24–48 h after strenuous exercise [108]. Muscle 
tendinous junctions are the most vulnerable part in the muscle structure and can be 
easily damaged in mechanical stress [109]. Multiple studies have found that damage 
of muscle tendinous junctions are the root cause of muscle soreness [108, 110].

Blood creatine kinase activity: as is known to all, proteins are generally not able 
to pass through the sarcoplasmic reticulum. Therefore, when the intramuscular pro-
teins are detected in the blood, the muscle fibers and sarcolemma are determined as 
damaged [111]. Creatine kinase (CK) is found specific expressed in skeletal muscle 
and myocardial tissue, which is thought to be the most obvious marker for the 
breakdown of muscle cell structure [112, 113]. Some studies have found a rise in 
CK levels between 48 and 72 h after exercise [113].

Indirect markers of collagen breakdown, hydroxyprolin (HP), hydroxylysine 
(HL), and pyridinoline (PYD), are markers of collagen breakdown. Many articles 
have reported that the content of these markers is abundant when muscle damage 
does occur [112, 114].

Median frequency of electromyography (EMG) signal: the changing in EMG 
signal median frequency is one of the evidences to evaluate the muscle injury espe-
cially for the eccentric exercise [115, 116].

Ultrastructural damage: muscle ultrastructural damage is also a direct marker of 
muscle injury, and muscle fiber damage is usually caused by the disorder of muscle 
fiber structure [117–119]. At the same time, muscle fiber injury, T-tube injury, Z-line 
injury, and cytoskeleton injury can also be detected in muscle injury [120].

24.4.2  The Prevention and Treatment of Exercise-Induced 
Muscle Damage

When the exercise-induced muscle damage happens, it can cause temporary muscle 
damage and soreness, which has a negative effect on the muscle function of the later 
exercise. Nowadays many interventions can be adopted to treat exercise-induced 
muscle damage or to eliminate resulting adverse reactions, such as pharmacology 
[121], nutritional [122], electrotherapies [123, 124], exercise [125, 126], and artifi-
cial therapy [127]. Further studies are required to elucidate the underlying 
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mechanism for the treatment for muscle damage and to determine the most appro-
priate dosage, frequency, and intensity for optimum treatment efficiency.
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Chapter 25
To Contrast and Reverse Skeletal Muscle 
Atrophy by Full-Body In-Bed Gym, 
a Mandatory Lifestyle for Older Olds 
and Borderline Mobility-Impaired Persons
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Abstract Older olds, that is octogenarians, spend small amounts of time for daily 
physical activity, contributing to aggravate their independence limitations up to 
force them to bed and to more and more frequent hospitalizations. All progressive 
muscle contractile impairments, including advanced age-related muscle power 
decline, need permanent management. Inspired by the proven capability to recover 
skeletal muscle contractility and strength by home-based functional electrical stim-
ulation and guided by common sense, we suggested to older olds a 15–30 min daily 
routine of 12 easy and safe physical exercises. Since persons can do many of them 
in bed (full-body in-bed gym), hospitalized elderly can continue this kind of light 
training that is an extension of the well-established cardiovascular-ventilation reha-
bilitation before and after admission. Monitoring arterial blood pressure before and 
after the daily routine demonstrates that peripheral resistance decreases in a few 
minutes by the functional hyperemia of the trained body muscles. Continued regu-
larly, full-body in-bed gym helps to maintain the independence of frail older people 
and may reduce the risks of serious consequences of accidental falls.
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25.1  Background

There are about 700 named skeletal muscles in the human body, including 400 that 
only specialists care. Better known are the roughly 300 skeletal muscles that are 
serious bone movers, plus another 100 little muscles of the hands, feet, and face. 
The aim of this short report is to convince older persons to counteract muscle 
atrophy- sarcopenia-cachexia to maintain at their best function and shape of the 
majority of their body muscles, though they will inexorably decay decade after 
decade [1].

Older olds, due to advanced age or associated diseases, spend only a small 
amount of time for daily physical activity. The consequent muscle atrophy contrib-
utes to limit their independence up to force them to bed and to hospitalization for 
long periods. Immobility-related muscle atrophy is associated with neuromuscular 
weakness, functional limitations, thromboembolism, and high costs [2–4]. All pro-
gressive muscle contractile impairments, muscle atrophy included, need permanent 
managements. Besides eventual pharmacological treatment, a home-based physical 
exercise approach is helpful in counteracting muscle atrophy. Awaiting the develop-
ment of implantable devices for muscle stimulation, as effective as pacemakers for 
cardiac arrhythmias or cochlear implants for hearing loss, education of sedentary 
patients to home physical exercises during and after hospitalization could be an 
effective, low-cost alternative.

Cardiovascular and ventilation rehabilitation of surgical patients are well estab-
lished. A major component of them is to reverse muscle atrophy and weakness [5, 
6]. Furthermore we demonstrated that a home-based functional electrical stimula-
tion (h-bFES) strategy recovers skeletal muscle contractility and strength by even in 
the worse cases of muscle atrophy and degeneration after severe neuromuscular 
traumatic injuries [7–16]. Thus, we suggested to sedentary elderly a daily short 
(15–20 min) sequence of 12 easy and safe physical exercises that they could per-
form in bed (full-body in-bed gym) to improve their muscle function and mass and, 
thus, mobility [17, 18]. Full-body in-bed gym is, indeed, an extension of the in-bed 
approaches for cardiocirculatory and ventilation physiotherapy rehabilitation that 
improves mobility of octogenarians and of younger mobility-impaired persons 
counteracting decay of the neuromuscular and osteoarticular systems.

25.2  Suggested Exercises

Active persons, able to make 25 consecutive push-ups in 3 min (Fig. 25.1A), need 
the following exercises as a seasonal warm-up to be able to perform very demand-
ing physical activities.

On the other hand, extreme sedentary people, after asking advice to their family 
physician, may gradually start with five repetitions of each of the following sug-
gested exercises. After the first or second training week, they may add groups of 5 
additional repetitions, up to 30, every 1 or 2 weeks. If compliant, older olds will 
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Fig. 25.1 Full-body in-bed gym, the 12 exercises. (Pictures are from the figure of Chap. 6 of the 
Springer – Nature Book: “Rehabilitation Medicine for Elderly Patients”, Stefano Masiero, Ugo 
Carraro Editors). (A) Twelfth exercise: Push-up (for active person) usually performed as the last 
exercise of the routine. To increase its effectiveness, at the end of the series, maintain the flexion 
position breathing open mouth up to reach an evident face perspiration. (B) First exercise: (a, b) 
flexion and extension of the ankles. (C) Second exercise: (a, b) arms up and arms down. Notice the 
raised hands full open and then closed. (D) Third exercise: (a, b) cycling movements. (E) Fourth 
exercise: deep breathings, raising the open arms during inspiration. (F) Fifth exercise: to raise the 
pelvis, maintaining the up position for 2 s. (G) Sixth exercise: (a, b) forward bending. Notice the 
extended arms. (H) Seventh exercise: (a–d) neck torsions: a and b, up and down; c and d, right and 
left. Rotating the head (not shown). (I) Eighth exercise: sit and raise the body on your hands. (J) 
Ninth exercise: (a, b) lift the legs when in sitting position. (K) Tenth exercise: stand up. (L) 
Eleventh exercise: get up on toes
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Fig. 25.1 (continued)
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Fig. 25.1 (continued)
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Fig. 25.1 (continued)
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Fig. 25.1 (continued)
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progressively increase their muscle mass and strength even reaching and maintain-
ing only 15 or 20 daily repetitions. At the beginning, it will be safer to perform the 
routine at very slow speed. When their maximum number of each exercise is 
reached, improved effects will be obtained by speeding up the exercises. The daily 
routine may last from 10 (in the beginning) to 30  min (for complete session in 
accustomed persons).

Figure 25.1B–L show each exercise, but see also captions of figures for more 
details. For an educational video, see at the link: http://www.bio.unipd.it/bam/
video/InterviewCarraro-tutorial.mp4.

If sedentary persons, without major comorbidities but with rest-related muscle 
weakness, challenge themselves and avoiding stress, in a few days of full-body in- 
bed gym, they may increase their muscle strength, fatigue resistance, and 
 independence in daily life activities. Cautious in-bed gym may help patient’s recov-
ery after the acute phase of hospitalization, prevent the risk of thromboembolism 
after surgical interventions, and concur to reduce arterial hypertension [19].

Figure 25.2 shows that after a routine that ends with slight muscle fatigue, 
increased heart and ventilation frequencies, and sweat at the forehead, the maximal 
arterial pressure is increased immediately after the routine, but it decreases, together 
with the minimal arterial pressure, after a few minutes. This behavior is strong evi-
dence that peripheral resistance decreased and thus functional hyperemia of the 
body skeletal muscles occurred.

Fig. 25.1 (continued)

U. Carraro et al.
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Furthermore, full-body in-bed gym could mitigate the bad mood that is usually 
associated to mobility limitations, strengthening confidence of patient in recovering 
partial or total independence, thus reducing the risk of accidental falls [20].

However, if elderly persons cannot, or are reluctant to, perform volitional physi-
cal exercises, functional electrical stimulation (FES) may mimic them and be almost 
equally useful [7–16].

Stimulators for neuromuscular electrical stimulation (ES) that are especially suited 
for elderly people requirements were designed and implemented in Vienna, Austria 
[21]. As detailed in Kern et al., 2014 [13], older persons may be exposed to regular 
neuromuscular ES training. These constant voltage stimulation devices can be safely 
applied during home use. Starting 2 times a week, for a total amount of 24 training 
sessions (3 × 10 min for each session), ES is safe and effective. The subjects are ought 
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to be instructed to increase the stimulation intensity until their maximal tolerance is 
reached. Using this approach a full knee extension is achieved in all subjects. The 
outcome is a significant increase in muscle strength, associated with an increase of fast 
muscle fibers, which are the first to respond to ES and are well related to the power of 
skeletal muscle; ES significantly increased the size (diameter) of fast-type muscle 
fibers and the number of Pax7- and NCAM-positive satellite cells. Moreover, analyzed 
muscle biopsies did not present signs of muscle damage and/or inflammation [13, 22].

Altogether, these results demonstrate that physical exercise, either voluntary or 
induced by ES, improves the functional performance of aging muscles. Of course, 
physical training can’t stop the aging process [1], but we showed that ES is a safe 
home-based method that can counteract atrophy of fast-twitch muscle fibers [12, 
13]. Age-related muscle power strength is partially attributable to a loss of 
 innervation followed by reinnervation and muscle type groupings [23]. Furthermore 
these events are delayed by a lifestyle of high-level amateur sport activities [24, 25]. 
Diseases involving permanent denervation show a premature functional aging pro-
cess but much more severe muscle deterioration. Despite doubts and criticisms [26, 
27], we have shown that h-bFES with appropriate protocols can inhibit degeneration 
of denervated muscle and even reverse it [7, 8, 28]. Furthermore with appropriate 
protocols, ES may also enhance reinnervation after nerve injury [29–32].

Therefore, FES should be extended from critical care units to rehabilitation cen-
ters, nursing facilities, and at home of the elderly population if volitional muscle 
activity is impaired or elderly are reluctant to perform volitional physical exercises.

In conclusion, it is never too early and it is never too late to increase daily levels 
of volitional or FES-induced muscle contractions!
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Chapter 26
Overview of FES-Assisted Cycling 
Approaches and Their Benefits 
on Functional Rehabilitation  
and Muscle Atrophy

Michelle Rabelo, Renata Viana Brigido de Moura Jucá, 
Lidiane Andréa Oliveira Lima, Henrique Resende-Martins, 
Antônio Padilha Lanari Bó, Charles Fattal, Christine Azevedo-Coste, 
and Emerson Fachin-Martins

Abstract Central nervous system diseases include brain or spinal cord impair-
ments and may result in movement disorders almost always manifested by para-
lyzed muscles with preserved innervations and therefore susceptible to be activated 
by electrical stimulation. Functional electrical stimulation (FES)-assisted cycling is 
an approach mainly used for rehabilitation purposes contributing, among other 
effects, to restore muscle trophism. FES-assisted cycling has also been adapted for 
mobile devices adding a leisure and recreational benefit to the physical training. In 
October 2016, our teams (Freewheels and EMA-trike) took part in FES-bike disci-
pline at the Cybathlon competition, presenting technologies that allow pilots with 
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spinal cord injury to use their paralyzed lower limb muscles to propel a tricycle. 
Among the many benefits observed and reported in our study cases for the pilots 
during preparation period, we achieved a muscle remodeling in response to FES- 
assisted cycling that is discussed in this chapter. Then, we have organized some 
sections to explore how FES-assisted cycling could contribute to functional reha-
bilitation by means of changes in the skeletal muscle disuse atrophy.

Keywords Cell plasticity · Electric stimulation · Managed competition · Central 
nervous system diseases

26.1  Background

As discussed in all chapters of this book, a great variety of pathological states lead 
people to muscle atrophy requiring different therapeutic strategies to restore adequate 
muscle trophism once several intra- and extracellular factors may influence cellular 
homeostasis [1, 2]. Among the more current pathological states, such as immobiliza-
tion [3], denervated conditions [4, 5], neuromuscular joint disease [6–10], central 
nervous system diseases [11], aging [12], and others, which could conduct to muscle 
atrophy, in this chapter, we discuss muscle atrophy following the absence of volun-
tary muscular recruitment – specially determined by upper or lower motor neuron 
impairment – resulting from cerebrovascular events or spinal cord injury.

Muscle trophism1 has remarkable adaptive properties in response to contractile 
activity (muscular plasticity); central nervous system (CNS) diseases lead to para-
lyzed muscles – resulting in skeletal muscle disuse atrophy – and trigger a reaction to 
atrophy by changes in the energy metabolism that interfere in the muscle fiber com-
position and in the balance between protein synthesis and degradation [2, 5, 7, 13].

Exercise represents an extrinsic stimulus that initiates many intracellular regula-
tions that trigger pleiotropic2 responses in skeletal muscle fibers, revealing that the 
physical activity-dependent muscle fiber plasticity is responsible for muscular 
remodeling coming from a large variety of training programs [14–16]. Several stud-
ies [12, 16–18] reported that muscular contraction is affected by neuronal, hor-
monal, mechanical, and metabolic parameters which can trigger adaptations by 

1 The fundamental nutrition involving the actual metabolic exchanges of the tissues.
2 Pleiotropy is the phenomenon by which one gene influences two or more seemingly unrelated 
phenotypic traits, i.e., the capacity of a gene having multiple phenotypic expressions.
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means of events occurring before, during, and after physical activity. Therefore, a 
voluntary or forced physical inactivity has a great potential to promote atrophy 
compromising quality of life and life expectancy. Hypertrophy and restoration of 
atrophic states of the skeletal muscle fibers (muscle mass) are often associated with 
a prerequisite for strength that is a determinant of success in daily life activities and 
even in sport events [19].

The muscles of the body compose of a relatively large mass of alive tissue 
(around 50% of the human body weight) with high metabolic rate, so their adaptive 
properties by modifications in terms of number, size, and structural/functional prop-
erties in response to a large variety of stimuli make this tissue a great contributor to 
whole-body health and human functional movements [19, 20]. The two main kinds 
of training exercises able to promote muscle adaptations are called endurance3 and 
resistance4 training in which the training-induced adaptations in skeletal muscle fol-
low specific sequences of cellular and molecular events based on the parameters of 
each training program [21].

For the purpose of this chapter, where we discuss benefits coming from FES- 
assisted cycling, the adaptations arising from endurance trainings are particularly 
relevant, since technological devices trigger active contraction in paralyzed muscles 
by electrical stimulation resulting in aerobic exercise artificially performed by 
cycling movements of the lower limbs. In this way, we can consider that FES- 
assisted cycling promotes a stress that can substantially modulate cellular signaling 
mechanisms inside paralyzed muscles resulting in adaptations to restore suitable 
muscle trophism, avoiding drastic and everlasting atrophy [21–23].

Although muscle hypertrophy is mainly related to resistance exercise training 
that results in increased muscle mass and muscle fiber cross-sectional area, endur-
ance exercise trainings also promote muscular plasticity, mainly characterized by 
metabolic adaptations designed to enhance generation/utilization of metabolic 
energy and ultimately resist fatigue [13, 24].

For able-bodied people weighing around 70 kg, the protein turnover results in a 
rate of 300 g/day, and the metabolic changes influenced by endurance training mod-
ify this rate depending on mode, intensity, and duration of the exercises determined 
in the training program, possibly duplicating the protein synthesis compared with 
rested levels [22]. Apparently, the appropriate levels of exercise to promote the 
optimum muscular hypertrophy or restoration of atrophic states have the challenge 
to increase the basal level in values of work until reaching a reference point in the 
boundary of the maximum energy metabolism enabling to interfere in the muscle 
fiber composition and enhancing protein synthesis but a secure zone enable to avoid 
degradation and injuries coming from overtraining [1]. It is a particularly complex 
task to be accomplished, especially when preparing for competitions [25].

Despite the acute inflammatory response to exercise seeming to favor muscular 
hypertrophy and regeneration, a more persistent inflammatory response may damage 

3 Endurance training refers to aerobic exercise normally involving cyclic movements of a large 
number of muscles as observed in walking on a treadmill, swimming in a pool, or cycling a bike.
4 Resistance training refers to exercises by which muscular strength is improved as observed during 
pumping iron gym.
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the muscular tissue. Currently, little is known about compensatory and anti- 
inflammatory mechanisms by which a precise intensity of exercise could promote a 
safe reaction timely and enable to trigger hypertrophic mechanisms and restore tissue 
homeostasis, without risk of lesion. If it is complex to exercise precise safe intensity, 
duration, and frequency to able-bodied people, could you image how difficult it is to 
determine exercise parameters to disabled people?

Based on in vitro and in vivo animal models in the past, nowadays in vivo human 
studies have suggested that satellite cells play a crucial role in skeletal muscle fiber 
repair and remodeling in response to exercise [13, 21]. Satellite cells are skeletal 
muscle stem cells which provide the main source of new myonuclei in postnatal 
skeletal muscle tissue and are still present in adult muscles between the sarcolemma 
and basal lamina of their associated muscle fibers, even if in a quiescent state. 
Hypertrophy stimuli or damage conditions activate satellite cells to proliferate and 
differentiate in a remodeling or repair process, respectively.

The weakness exhibited by poststroke hemiparesis [11] and postspinal cord 
injury people [26, 27] – who have to perform tasks coordinating muscles that still 
respond to voluntary control in the midst of paralyzed muscles – is due to a multi-
factorial cause justified by both intracellular junction of the muscular fibers and the 
neuromuscular junction of an innervated paralyzed muscle. In these cases, the dis-
turbed muscle activation generating muscle atrophy may be related to the reduction 
of descending inputs, which affect both the paretic and non-paretic limbs with dif-
ferent magnitudes.

Carraro and collaborators [12] described the atrophy found in paralyzed muscles 
by chronic diseases as a premature or accelerated aging of muscle health condition 
in which the chronic disease causes an irreversible and permanent damage, interfer-
ing with nervous system control. Although the cited researchers have addressed 
their comparison for extreme cases of irreversible conus and cauda equina syn-
drome and there are differences between atrophy coming from denervated and 
innervated muscles [4], the similarity with a premature or accelerated aging of mus-
cle seems also suitable to the disuse of the paralyzed muscles with preserved 
innervation that we discuss in this chapter.

26.2  Health Conditions Dealing with Muscular Atrophy 
in Response to Disuse Unsolved by Voluntary Muscle 
Recruitment Approaches

Even in a body with intact nervous system, muscular atrophy could represent an 
impairment to be tackled with resistance or endurance exercise training if, for some 
reason, muscle groups were not constantly recruited in a basal activity level due to 
a lack of use according to the lifestyle habits of each person. Then, muscle disuse 
conditions induced by immobilization, aging, and/or hospitalization also represent 
health conditions in which the atrophy could be solved by strategies promoting 
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training, involving approaches, and triggering voluntary muscle recruitment to 
restore the basal activity level.

Nevertheless, health conditions determined by structural or functional impair-
ments in the descending projection pathways of the central nervous system coming 
from the cortex are responsible to drive movements of the limbs and trunk by regu-
lation of the skeletal muscles and may generate a kind of atrophy unsolved by vol-
untary muscle recruitment strategies, once the common final pathway in any 
voluntary muscle recruited in the body has to trigger the motor neurons on the 
ventral horns of the spinal cord.

Figure 26.1 illustrates three health conditions (stroke, Parkinson’s disease, and 
spinal cord injury) in which the parallel and hierarchical organizations of the central 
nervous system are affected and may prevent the adequate triggering to the common 
final pathway responsible for promoting voluntary recruitment (natural coordina-
tion). In these cases, other non-volitional strategies must be employed in order to 

Fig. 26.1 General parallel and hierarchical organization of the descending projection pathways 
from the central nervous system responsible to drive movements through the common final path-
way to the skeletal muscle. The drawings (available on the Internet) around the scheme. (Modified 
from the Martin’s book [93]) represent health conditions determined by stroke (A), Parkinson’s 
disease (B), and spinal cord injury (C) placed, respectively, nearby their affected nervous system 
components. In the illustrated cases (A, B, and C), the common final pathway (motor neuron) is 
intact, but not adequately triggering by the descending pathways (voluntary recruitment)

26 Overview of FES-Assisted Cycling Approaches and Their Benefits on Functional…
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activate the final common pathway (lower motor neurons). One of the available 
strategies is to activate muscle fibers by the electrical stimulation: a kind of artificial 
coordination coming from external devices.

In this section, we discuss notably the health conditions dealing with muscular 
atrophy in response to disuse [28] unsolved by voluntary muscle recruitment 
approaches (natural coordination). They are usually caused by stroke [29–31] and 
spinal cord injury [32], and in both conditions, when the lower motor neuron (com-
mon final pathway) is not affected, a manifestation – historically described as pyra-
midal tract syndrome [33] – takes place and increases muscle tone (spasticity), with 
involuntary responses (spasms), hyperreflexia, and positive Babinski signal. Despite 
dysfunctional muscle activation remaining present in the muscles, it is insufficient 
to promote an adequate muscular trophism in order to prevent or attenuate atrophy.

Researchers seem to have reached a consensus around the hypothesis that the 
process responsible for initiating skeletal muscle atrophy are unique, despite similar 
upstream signals and downstream phenotypical adaptations [34]. If this hypothesis 
is validated then, countermeasures to attenuate atrophy may be more effective when 
designed to accommodate molecular process related to the atrophic stimulus, no 
matter the nature of the approaches being employed since they provide a basal mus-
cular trophism.

Urso [34] has proposed a schematic explanation of how health conditions such 
as distraining, spinal cord injury, immobilization, and unloading may initiate a set 
of steps to install atrophy. All of them seem to interfere in the gene expression 
(exception to unloading pathway that seems also to interfere through a pathway 
initiated by increased collagen and metalloprotease levels), and no matter by which 
metabolic pathway each one follows, the final result is an imbalanced skeletal mus-
cle protein turnover leading to atrophy. In spite of the not confirmed step in the 
Urso’s scheme (Fig. 26.2), the schematic explanation can help us to envision FES- 
assisted cycling strategies.

Although in Urso’s scheme [34], atrophy followed by poststroke hemiparesis 
conditions is not mentioned; it comes from the same pathway of the postspinal cord 
injury conditions, resulting in an innervated paralyzed muscle with partial volun-
tary recruitment. Ideally, if we could fix the muscle activation – by means of electri-
cal stimulation, for instance – we would be preventing the cause of the atrophic 
process. However, as simple as it may seems, evidences have shown that a combina-
tion of unloading and reduced neural activity are jointly referred as “disuse” result-
ing in muscle atrophy [28]. So, in the approach discussed in this chapter, the 
activation powered by electrical stimulation must be accompanied by a minimal 
continuous load applied in the trained limbs, which hinders therapeutic strategies to 
the point of researchers stating that no good therapies are available to prevent or 
mitigate atrophy.

By means of animal models in rodents under disuse conditions with intact nerves, 
a rapid loss of muscular mass can be observed within 1 or 2 weeks, followed by a 
slowing of the rate of muscle loss until the muscle reaches a plateau represented by 
a new lower steady state, i.e., a new trophic state [28, 34–36]. Bodine [28] showed 
the effect of hind limb unloading and reloading on muscle mass on soleus (Sol), 
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medial gastrocnemius (MG), tibialis anterior (TA), and extensor digitorum longus 
(EDL) of female Sprague Dawley rats during 21 days unloading time course fol-
lowed by 14 days reloading (Fig. 26.3).

Even if we have to consider the differences between the rodents’ and humans’ 
metabolisms and the respective time courses to make conjectures, the pattern of 
muscle tissue loss may give us insights to analyze benefits on functional rehabilita-
tion and muscle atrophy coming from stimuli triggered by FES-assisted strategies 
which are discussed in Sect. 26.4 of this chapter.

In humans, we can find evidences of a differential atrophy across muscle and 
fiber types in response to disuse, even if not all human studies have detected it [28, 
34]. The lack of success to detect differential atrophy in human studies could be due 
to the small biopsy samples taken from single site in periphery of the muscle belly, 
usually from the vastus lateralis: a knee extensor. Seemly, if the ankle extensors 
(soleus and gastrocnemius muscles) were assessed, the soleus could be found more 
vulnerable to atrophy than gastrocnemius muscle and type I fibers and more 
promptly susceptible to the loss than type II, as reported by studies that utilized 

Fig. 26.2 Signaling pathways affected by various atrophy models [34]. Pathways influenced by 
detraining (orange), SCI (red), immobilization (blue), and unloading (purple). Common pathways 
affected by SCI, immobilization, and unloading are outlined in green. Pathways that are not well 
defined at this point are outlined in gray. Solid arrows indicate confirmed alterations. Hashed 
arrows indicate alterations that are less well characterized and in need of future research to ascer-
tain their role in skeletal muscle atrophy
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magnetic resonance imaging (MRI) to examine volume and cross-sectional area 
changes during disuse atrophy [37].

If not all human studies have detected a differential atrophy due to methodologi-
cal difficulties, to identify it in paralyzed muscles is an additional challenge. Motor 
weakness due to partial paralysis (paresis) or total paralysis (plegia) is commonly, 
but differentially, manifested in poststroke hemiparesis/hemiplegia [38] and post- 
SCI paraplegia/tetraplegia [39] conditions. Even under available therapy, patients 
with these health conditions present an increased tendency to reach muscle atrophic 
states leading to a permanent disability and requiring institutional care even after 
discharged from the rehabilitation programs.

Fig. 26.3 Bodine’s figure [28] presenting a 21 days’ unloading time course followed by 14 days 
reloading in animal model of atrophy. Muscle wet weight of the tibialis anterior (TA), medial gas-
trocnemius (MG), extensor digitorum longus (EDL), and soleus (Sol) of female Sprague Dawley 
rats (n  =  10/time point) following hind limb unloading (A  – unweighting) and reloading (B  – 
reweighting). Data points are mean ± standard deviation (SD). A separate cohort of controls was 
taken at the start (y axis) and the end (green-shaded area) of the experiment to assess normal 
growth over the experiment

M. Rabelo et al.



569

For example, to realize how fast atrophic states take place in paralyzed muscles, 
Fig. 26.4 shows the results obtained from a computer tomography after 2 days and 
3 months’ immobilization due to the bedridden state which caused disuse muscle 
atrophy in the paretic leg as well as the non-paretic leg of a poststroke elderly sub-
ject (64-year-old). Even in healthy young subjects, the disuse atrophy of lower limb 
muscles was confirmed to occur following 35 days of bed rest [35].

In spite of the acquired health condition, in most of cases, the atrophic state of 
the muscles may be partially reversible if the activation through the motor unit5 has 
been restored. Presumably, what determines atrophic states is a close relationship 
between oxidative stress6 and disuse muscle atrophy that is better explored in 
Sect. 26.1 when we discuss about training protocols.

Additionally, evidences have presented that, in neurologic diseases, the paresis 
and the altered mobility due to central nervous system impairments are conducted 
to different and specific patterns of muscle loss (not suitably named by the term, 

5 The lower motor neuron and the skeletal muscle fibers innervated by that motor neuron’s axonal 
terminals.
6 Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen 
species and a biological system’s ability to readily detoxify the reactive intermediates or to repair 
the resulting damage.

Fig. 26.4 Femoral muscle volume changes observed from a computed tomography image took 
from a 64-year-old elderly person. Images were made after 2 days and 3 months of immobilization 
due to the bedridden state from paretic (affected) and non-paretic legs [35]
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sarcopenia) described as muscle changes coming from disuse atrophy, spasticity, 
and myosteatosis. Since sarcopenia of the elderly and muscle atrophy and modifica-
tions coming from central nervous system diseases have different mechanisms, they 
do not probably respond equally to the same treatments [36]. The different responses 
to treatments are a strong reason for why we discuss alternative approaches to treat 
atrophic states for poststroke hemiparesis and postspinal cord injury conditions in 
this chapter.

26.3  Choices to Face Muscle Atrophy Resulting 
from Paralyzed Muscle with Preserved Innervation

The health conditions discussed in the present chapter (poststroke hemiparesis and 
postspinal cord injuries) – in which the common final pathway responsible to pro-
mote voluntary recruitment is not impaired but without corticospinal modulation 
arriving from descending pathways  – are potentially responsible for the atrophy 
resulting from the paresis. However, muscle atrophy never is the primary debilitat-
ing loss followed by the event which generated such health conditions.

Systematic reviews published in the final of the last century [40, 41] had already 
described paresis, paralysis, spasticity, and sensory-perceptual dysfunction as pri-
mary effects leading to contractures and disuse muscle atrophy in association with 
metabolic and endocrine changes that result in a cyclic process that if not inter-
rupted quickly will enhance the activity limitations and participation restrictions 
[42]. So disuse muscle atrophy is a secondary effect to be avoided.

This simple conclusion is crucial to define intervention choices, once according 
to the disease attributes – specially defined by the worsening of the health condition 
over time – we have to propose an intervention to avoid atrophy or restore the mus-
cular trophism. The recent review [7] seems to agree that initiating exercise during 
a critical early period may optimize clinical outcomes, specially to prevent atrophy 
of sublesional skeletal muscles taking place within the first 6–12  weeks 
post-injury.

In spite of the apparent advantages of acute interventions, the clinical usage var-
ies largely, especially because early exercise may trigger autonomic dysreflexia, 
unregulated hyperthermia or effects of neurogenic shock, and other side effects that 
are not precisely known to favor recommendations regarding exercising early after 
central nervous injuries [7]. For this reason, disuse muscle atrophy is an expected 
outcome to be fought in chronic health conditions followed by poststroke hemipa-
resis or postspinal cord injuries.

A common residual defect after upper motor neuron impairments coming from 
stroke or spinal cord injuries is the reduced number of recruitable motor units  during 
activities which thereby limit endurance capacity. In both cases, as parts of their 
bodies are partially ready to exercise, training programs of aerobic exercise pro-
pelled by the non-paralyzed limbs are the first option to be considered by therapists 
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around the world. For poststroke hemiparesis condition, a kind of asymmetrical 
cycling propelled by the non-paretic hemibody is performed [43], whereas for post-
spinal cord injury condition, upper limb aerobic exercises combined or not with 
passive lower limb exercises are commonly recommended [44]. Despite training 
programs focused on the residual non-paralyzed muscles which had reached signifi-
cant results to break the cyclic process mentioned above, they do not avoid muscle 
atrophy in the paralyzed part of the body.

The scientific evidences had already revealed [41] that the paretic muscles of 
poststroke hemiparesis people performing asymmetrical exercises presented 
reduced muscle blood flow, a greater lactate production, a higher utilization of mus-
cle glycogen, and a diminished capacity to oxidize free fatty acids when compared 
to the non-paretic muscles, not avoiding muscle atrophy in the paralyzed muscles.

Fortunately, a great variety of interventions have been investigated to improve 
the muscles and bones of paralyzed limbs, with the aim of reducing secondary con-
ditions such as fragility fractures and endocrine/metabolic diseases. Some of these 
methods include early exercises [7, 45], functional electrical stimulation (FES) [7, 
45–47], body weight-supported treadmill training [7, 45], cycling ergometry [48–
54], and robot-assisted ambulation [55–57] which are available to be explored.

In individuals with paralyzed muscles and with preserved innervation, functional 
electrical stimulation (FES) can be used to produce isometric contractions, to facili-
tate gait, or to produce contractions against resistance during cycling or leg exten-
sions [7, 58]. The results from a recent review appear to indicate that paralyzed 
muscle tissue can promote hypertrophy with FES within a 3-month time frame [7]. 
The magnitude of muscle hypertrophy may be related to either the amount of resis-
tance or the length of intervention, but given the diversity of outcome measures, 
such comparisons remain speculative.

The most common therapy for both health conditions discussed in this chapter 
has been primarily directed at activities focused on compensatory strategies to pro-
mote independence in preparing for discharge, teaching new ways to move in bed, 
get dressed, transfer in and out of a wheelchair, as well as provision of assistive 
devices [59–61].

26.4  Neuromuscular Electrical Stimulation (NMES), 
Functional Electrical Stimulation (FES), and FES- 
Assisted Cycling: Devices, Protocols, Thresholds, 
and Cautions to Be Taken

The most familiar terms to define the clinical use of electrical stimulation are neu-
romuscular electrical stimulation (NMES) and functional electrical stimulation 
(FES). As precisely defined by Sheffler and Chae [62], NMES refers to the electrical 
stimulation of an intact lower motor neuron – described as the final common path-
way – to activate paralyzed or paretic muscles. In turn, the clinical applications of 
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NMES provide either a functional or therapeutic benefit; then, Moe and Post [63] 
introduced, for the first time, the term FES to describe the use of NMES to activate 
paralyzed muscles in precise sequence and magnitude to accomplish functional 
tasks. In their study, they used electrical stimulation to assist the ambulation in the 
poststroke hemiplegic condition.

FES can induce the synchronized contraction of paralyzed yet innervated mus-
cles of the corresponding intact alpha motoneurons. A stimulating current applied to 
electrodes placed over sensory-motor structures creates a potential field along the 
axons. This gradient induces a transmembrane current through an ionic flow, which 
may generate an action potential. The action potential then propagates along the 
nerve causing the contraction of the muscle.

Classically, a series of rectangular biphasic (symmetrical or asymmetrical) elec-
trical pulses are delivered by the electrical stimulators. The stimulation pattern can 
be described by its global envelope and the pulse parameters: amplitude or intensity 
of pulses (current or voltage), frequency or pulse repetition rate, and duration of 
single pulses [64]. Controlling the injected charge and stimulation frequency allows 
modulation of the muscle force.

Nowadays, there are several applications based on FES, which include control of 
respiration [65] and bladder function [66], upper limb performance of activities of 
daily living [67, 68], and tasks involving upper [69, 70] and lower limbs, such as 
standing and ambulation, associated or not with another assistive technology [25, 
47, 49, 51, 71–75]. In a simplified manner, when FES is used within an assistive 
device or system, the ensemble becomes a neuroprosthesis that is able to enhance 
functional activity as a result of the interface between the machine and the nervous 
system [62, 76].

FES-assisted cycling consists in a neuroprosthesis applying sequential stimula-
tion, typically to the quadriceps, hamstrings, and glutei, to induce bilateral flexion 
and extension of the legs to generate a cycling motion.

Ergometers using FES-assisted cycling has been utilized during the last decades 
for rehabilitation purposes in order to improve the general condition and to prevent 
deterioration in subjects with central neurological impairments [77]. The benefits 
range from cardiopulmonary fitness to tissue changes due to adaptations in the tro-
phic states influenced by the demanding effort to propel a system for stationary 
exercise or mobile cycling.

Some studies support findings for the potential clinical efficacy of FES cycling 
for reducing the risk of secondary medical complications in subjects with paralysis. 
The potential therapeutic benefits include conditioning the cardiopulmonary, mus-
cular, and skeletal systems and improving other physiological and psychological 
performances [78]. Among the many benefits reported, the muscle remodeling in 
response to FES-assisted cycling seems to promote adaptations to restore suitable 
trophism, avoiding drastic and everlasting atrophy.

For decades, FES has been used to elicit rhythmic cycling exercise in order to 
promote central and peripheral hemodynamic responses [79]. Previous studies have 
shown that activating lower limb skeletal muscle pump augments venous return, 
improves ventricular filling, and increases oxygen uptake. FES leg exercise has 

M. Rabelo et al.



573

been shown to promote central and peripheral hemodynamic. However, FES leg 
exercise alone has often resulted in significantly lower submaximal oxygen uptakes 
compared with arm crank ergometry.

FES-assisted cycling has been proposed as an option to provide active lower 
limb involvement in alternative therapies and locomotion solutions, once that active 
muscle contraction of paralyzed muscles can be evocated to develop locomotion 
devices in a combination of artificial (FES-device system) and natural (nervous sys-
tem) controls. Not only FES-assisted cycling is an example of applying the concept 
of propelling devices by paralyzed muscles and by electrical stimulation, but a 
range of FES-assisted devices could also be thought of based on the same concept 
[80]. As an example, in our group we have a special interest in investigating FES- 
assisted cycling [25, 51, 53, 54] and FES-assisted transfer [50, 81].

Several FES-assisted cycling ergometers are commercialized, such as the 
MOTOmed (Reck, Betzenweiler, Germany) or the BerkelBike (BerkelBike BV, 
AV’s-Hertogenbosch, Netherlands). We developed an FES-assisted tricycle system 
over the structure of a commercial recumbent trike with adjustable crankset position 
and 24-speed system with adapted chain tensioner (Fig. 26.5). All mechanical com-
ponents were instrumented with a wireless inertial sensor that enables to estimate 
the crank position and angular speed for each crank spin. Crank position and angu-
lar speed were the inputs to the artificial control system activating cyclically in 
specific sequences of quadriceps, hamstring, and gluteus muscular groups. In addi-
tion to the sensor readings, the artificial controller is modulated directly by the user 

Fig. 26.5 FES-assisted cycling system developed by our group to compete in the Cybathlon 2016 
whose development detail was published in the IEEE Robotics and Automation Magazine [94]
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through an interface based on buttons and display. While the display features infor-
mation such as speed and stimulation intensity, the buttons may be used to update 
FES parameters and trigger alternative stimulation sequences.

The first reported FES-cycling event was organized in Cardiff (United Kingdom) 
in 2006. Organizers aimed at advertising FES as a recreational activity and not 
only a hospital-based therapy. According to them, muscle training should be an 
enjoyable activity in order to be attractive. In 2004, two FES-rowing athletes par-
ticipated into the British Indoor Rowing Championships (BIRC) and completed 
the Olympic 2000 meters’ distance in open competition with able-bodied athletes. 
In 2016, an international competition, Cybathlon, was held in Zurich (Switzerland) 
to promote assistive technologies, including FES cycling. Twelve international 
teams participated [82–85].

Although significant advantages have been reported about FES-cycling devices, 
little or no attention has been paid to cushioning systems for tricycles – an issue 
already discussed for wheelchairs and demonstrably important to avoid pressure 
ulcer and lesions. Trike cushions must promote safe impact and do not enhance risk 
coming from the tissue changes including weight and fat mass gain, skeletal muscle 
atrophy, and fat infiltration into the muscles, bone loss, and bone shape adaptations 
at the pelvis, vascular perfusion changes, and microstructural changes in the skin 
and muscle that are associated with disuse and affect the biomechanical behavior of 
these tissues [39]. In the wheelchair, cushioning systems represent support surfaces 
designed to accommodate on one side; the microchanges that occur for a seated 
person throughout the day, expecting compressive strength generated by posture 
and position or muscle tone modified by spasticity; and on the other, the macrochan-
ges in the anatomy, tissue composition, and long-term tissue (patho)physiological 
changes.

Among the methods to minimize the structural and functional body impairments 
secondarily caused by poststroke hemiparesis and postspinal cord injury, including 
restoration of muscle trophism avoiding disuse atrophy, FES-assisted cycling seems 
to be an adequate recommendation, especially after 2  years of injury, when few 
attractive options are available to motivate disabled people who had already com-
pleted the rehabilitation process. Despite the benefits of remodeling muscular tro-
phism of the paralyzed muscles in the midst of a lack of choices, FES-assisted cycling 
allows to change the handicap condition to a locomotion condition improved by 
technologies, in which people remain engaged in a social structure, paving the way 
for activity-based therapies to promote physical, mental, and social recovery [25].

Regarding preparation to FES-assisted cycling, no matter what the purpose 
(locomotion, leisure, or sports), before training, we have to investigate the respon-
siveness of paralyzed muscles to electrical stimulation. By anatomical reasons, the 
most responsive to FES are the people facing poststroke hemiparesis, once their 
lesions are addressed in the brain, preserving totally the common final pathway to 
muscle recruitment (lower motor neuron). For people with postspinal cord injuries, 
the nature (infectious) and the level (at the medullary cone and bellow) of the injury 
represent an obstacle to FES-assisted cycling, once the final pathway to muscle 
recruitment was impaired by the primary lesion. Figure 26.6 shows an image that 

M. Rabelo et al.



575

allows identifying the anatomical relations mentioned above. Among 14 Brazilian 
participants who attended a public call to be prepared for FES-assisted cycling, 8 
volunteers (57%) responded to the NMES. All of them had traumatic injury above 
the T12 level [25].

In our experience, being responsive to NMES do not ensure ability to perform 
FES, mainly if the task involves generating force by lower limb paralyzed muscles 
to overcome the gravitational action or to push stationary objects (as a bike pedal). 
Only one of the eight responsive participants had sufficient bone quality, tolerance 
to efforts, and minimum muscular response to achieve all the steps to initiate the 
FES-assisted cycling protocol [25].

Although low-energy fractures have been reported as common for individuals 
with spinal cord injury occurring during events that would not normally cause frac-
ture, such as a transferring from bed to wheelchair or being turned in bed, fractures 
for this population who partake in training programs including FES, standing 
frames, and treadmill walking have not been studied extensively [46].

Our protocol was divided in two phases separated by the minimum performance 
thought by us as recommended to start FES-assisted cycling: 30 min of cycling at a 
cadence of 35 rpm (details of the protocol can be found in our previous publications 
already cited along the chapter). Although we did not record any measure directly 
related to changes in muscular trophism, muscle strength generated in the first 
assessment by NMES and rated by the Medical Research Council increased from 
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2/5 contractions performed by trials lasting less than 10 min and only involving 
quadriceps muscular group to 5/5 contractions performed by trials lasting 30 min 
involving quadriceps, hamstring, and gluteus muscular groups repeated three times 
per week at the end of 18 weeks. Certainly, this first phase of the protocol modified 
the atrophic state of the paralyzed muscles.

During the second phase of the protocol, all electrical stimulation was performed 
in the FES-assisted tricycle system developed by us. Surface electrical stimulation 
was conducted on the quadriceps (two channels), hamstrings (one channel), and 
glutei (one channel) muscles, starting with stationary training provided by a resis-
tance roll to prevent free spin of the wheel. Following the first week performing the 
stationary mode, the participant was able to pedal during 20 min (outdoor training) 
by means of a closed-loop stimulation at a frequency of 20–30 Hz, maximum pulse 
width of 300 μs, and current intensity varying from 20 mA to 96 mA.

Inspired by the Cybathlon experience and motivated to provide benefits to other 
health conditions, we decided to explore the effects of the FES-assisted cycling to 
improve health-related states for poststroke hemiparesis people. According to 
Ferrante and colleagues [86], rehabilitation programs including FES-assisted 
cycling demonstrated a significant increase of the power output (the product between 
the torque and the speed) over each semi-revolution in which the paretic and non- 
paretic legs were pushing at the end of the 20  days of treatment, analyzing a 
20-patient sample. The protocol was performed every day for 4 weeks by trials last-
ing 35 min, merging passive (5 min) and FES-assisted cycling (10 min) phases in a 
total of five phases beginning and finishing by passive cycling.

As highlighted in Sect. 26.2 of this chapter, the mentioned protocol combines 
activation powered by electrical stimulation and accompanied by a minimal con-
tinuous load applied in the pedal, generating a power output that triggers molecular 
events to prevent or mitigate atrophy. Only the electrical stimulation could not 
enable to restore effectively the muscle trophism.

Also in the investigation of FES-assisted cycling for poststroke hemiparesis peo-
ple (Fig. 26.7), however, compared to a control group by a randomized clinical trial, 
Bauer et al. [87] evidenced that the potential changes in the muscular trophism were 
accompanied by improved ambulation and mobility.

To better explore the effects of the FES-assisted cycling for hemiparesis condi-
tion, we are developing a cycling system (Fig. 26.8) equipped with a multichannel 
stimulator able to trigger paralyzed muscles in the paretic leg coordinated by an 
artificial control work together with the voluntary control of the cadence generated 
by the non-paretic leg. The system will be developed to generate biphasic stimulus 
until 140 mA, with pulse width setting until 1000 μs, reaching 100 Hz of frequency. 
All the control will be performed by means of a graphic interface for mobile devices, 
allowing to explore a great variety of protocols.
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Fig. 26.7 FES-assisted cycling used by Bauer and colleagues [87] to investigate the effects in the 
ambulation and mobility of patients with poststroke hemiparesis from 7 days to 6 months after the 
cerebrovascular event in a randomized controlled pilot study

Fig. 26.8 Stationary cycle ergometer system in process of developing by our research team to 
explore protocols of FES-assisted cycling for poststroke hemiparesis people
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26.5  Conclusion

Skeletal muscle atrophy as observed after a spinal cord injury is associated with 
cardiometabolic health consequences with increased risks of developing chronic 
secondary conditions and impacts the quality of life. Functional electrical 
stimulation- assisted cycling allows to activate several muscle groups in one exercise 
and has been seen as an interesting training strategy [88]. Some studies have already 
shown some interesting results in chronic SCI and poststroke individuals as a solu-
tion able to provide physical integrity benefits, increased muscle mass, and reduced 
spasticity accompanied with an improved quality of life [89–91].

FES can be used to propel tricycle and ergometer cycles, adding a recreational 
facet to the activity with interesting outcomes as observed in some rehabilitation 
centers. Motivation is indeed a central aspect in training programs. We have mainly 
discussed about surface FES in this chapter, but implanted neuroprosthetics can be 
considered as well with enhanced performances [85, 92].
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Chapter 27
To Reverse Atrophy of Human Muscles 
in Complete SCI Lower Motor Neuron 
Denervation by Home-Based Functional 
Electrical Stimulation

Helmut Kern, Paolo Gargiulo, Amber Pond, Giovanna Albertin, 
Andrea Marcante, and Ugo Carraro

Abstract After spinal cord injury (SCI), patients spend daily several hours in 
wheelchairs, sitting on their hamstring muscles. SCI causes muscle atrophy and 
wasting, which is especially severe after complete and permanent damage to lower 
motor neurons. A European Union (EU)-supported work demonstrates that electri-
cal fields produced by large electrodes and purpose-developed electrical stimulators 
recover both quadriceps and hamstring muscles, producing a cushioning effect 
capable of benefitting SCI patients, even in the worst case of complete and long- 
term lower motor neuron denervation of leg muscles. We reported that 20 out of 25 
patients completed a 2-year h-bFES program, which resulted in (1) a 35% increase 
in cross-sectional area of the quadriceps muscles (P < 0.001), (2) a 75% increase in 
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mean diameter of quadriceps muscle fibers (P < 0.001), and (3) improvement of the 
ultrastructural organization of contractile machinery and of the Ca2+-handling sys-
tem. Though not expected, after 2 years during which the 20 subjects performed 5 
days per week h-bFES of the atrophic quadriceps muscles, the CT cross-sectional 
area of the hamstring muscles also augmented, increasing from 26.9+/−8.4 (cm2) to 
30.7+/−9.8 (cm2), representing a significant (p ≤ 0.05) 15% increase. Here we show 
by quantitative muscle color computed tomography (QMC-CT) that h-bFES- 
induced tissue improvements are present also in the hamstring muscles: a once sup-
posed drawback (lack of specificity of muscle activation by large surface electrodes) 
is responsible for a major positive clinical effect. Interestingly, 2 years of home- 
based FES by large surface electrodes reversed also the denervation-induced skin 
atrophy, increasing epidermis thickness. Finally, we would like to attract attention 
of the readers to quantitative muscle color computed tomography (QMC-CT), a 
sensitive quantitative imaging analysis of anatomically defined skeletal muscles 
introduced by our group to monitor atrophy/degeneration of skeletal muscle tissue. 
Worldwide acceptance of QMC-CT will provide physicians an improved tool to 
quantitate skeletal muscle atrophy/degeneration before and during rehabilitation 
strategies so that therapy for mobility-impaired persons can be better prescribed, 
evaluated, and altered where needed.

Keywords Muscle atrophy · Home-based functional electrical stimulation · 
Quantitative muscle color computed tomography

27.1  Background

All skeletal muscle atrophy is the loss of muscle size and strength, which occurs 
with neural and skeletal muscle injuries, prolonged bed rest, space flight, normal 
aging, and diseases such as sepsis cachexia, diabetes, etc. If unabated, skeletal mus-
cle atrophy can be extremely debilitating, increasing morbidity and mortality in 
affected people [1, 2]. After spinal cord injury (SCI), patients spend daily several 
hours in wheelchairs, sitting on their hamstring muscles. Spinal cord injury causes 
muscle wasting, which is especially severe after complete and permanent damage to 
lower motor neurons [3–6]. In previous studies, we have shown that denervated, 
atrophying muscles were rescued by 2 years of home-based functional electrical 
stimulation (h-bFES) when a purpose-developed electrical stimulator (now com-
mercially available, “Stimulette den2x” of the Schuhfried Medizintechnik GmbH, 
Vienna, Austria) provided the needed high currents to large surface electrodes cov-
ering the quadriceps muscles [7–13]. Interestingly, we recently demonstrated that 
the skin exposed to 2 years of electrical stimulation (to induce contractions of the 
atrophic Quadriceps muscles) shows an improvement in epidermis thickness [14]. 
Here we report that the electrical fields also produce clinically relevant recovery in 
atrophic hamstrings muscles not in direct contact with the very large electrodes of 
the Vienna protocol of h-bFES for denervated, atrophying muscles. A once sup-
posed drawback is, indeed, responsible for a major positive clinical result.
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27.2  Methods

Patients of the EU Program: RISE [Use of electrical stimulation to restore standing 
in paraplegics with long-term denervated degenerated muscles 
(QLG5-CT-2001-02191)] with complete conus and cauda equina lesions were 
enrolled and gave appropriate informed consent. Using a custom-designed stimula-
tor and large surface electrodes designed and implemented in Vienna (Austria), we 
stimulated denervated atrophic leg muscles according to the h-bFES strategy. 
Muscle mass, force, and structure of the stimulated quadriceps muscle were deter-
mined before and after 2 years of h-bFES, using the quantitative muscle color com-
puted tomography (QMC-CT) [14–17], measurements of knee torque during 
stimulation, and muscle biopsies analyzed by light and electron microscopy [6, 
10–12]. QMC-CT is a highly sensitive quantitative imaging analysis of one muscle 
or group of anatomically defined skeletal muscles introduced by ourselves to moni-
tor skeletal muscle tissue. QMC-CT is based on acquisition of high-resolution CT 
scans and the use of special image processing tools allowing evaluation of soft tis-
sues and skeletal muscle segmentation [15–18]. We developed QMC-CT as a by- 
product of the EU RISE project to complement follow-up in extreme cases of 
muscle degeneration, i.e., complete conus and cauda equina syndrome, a SCI 
sequelae in which leg muscles are completely disconnected from the nervous sys-
tem. QMC-CT uses CT numbers, i.e., Hounsfield units (HU), for tissue character-
ization. In the process of assessing muscle quality, soft tissues were discriminated 
as follows: subcutaneous fat, intramuscular fat, low-density muscle, normal muscle, 
and fibrous-dense connective tissue (Fig. 27.1). To further evaluate the data, pixels 
within the defined interval of HU values (or, more generally, gray values when these 
data are not from CT scans) are selected and highlighted in colors (red for normal 
muscle tissue, yellow for intramuscular adipose tissue, green and blue for fibrous 

Fig. 27.1 Muscle color computed tomography of thigh muscles at 20 cm from femur head. Both 
the quadriceps and the hamstring muscles increased in size and tissue density (improved content 
of the red healthy muscle fibers) after 2 years of training using the Vienna protocol for h-bFES of 
permanently denervated human muscles. Comparison of the left and right left panels provides 
strong evidence of the deterioration that occurred in the long-term denervated muscles between the 
first and the third year post SCI. However, it is worth noting that, even starting 3 years post SCI, 
h-bFES is able to recover substantially the hamstring muscles
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connective tissue), while other tissues with HU values outside the threshold ranges 
remain black, including the extra-muscle adipose tissue [15–18].

27.3  Results

We reported that 20 out of 25 patients of the EU Program: RISE [Use of electrical 
stimulation to restore standing in paraplegics with long-term denervated degener-
ated muscles (QLG5-CT-2001-02191)] completed a 2-year h-bFES program, which 
resulted in (1) a 35% increase in cross-sectional area of the quadriceps muscles 
(P  <  0.001), (2) a 75% increase in mean diameter of quadriceps muscle fibers 
(P < 0.001), and (3) improvement of the ultrastructural organization of contractile 
material and of the Ca2+-handling system [12]. Furthermore, a truly impressive 
1187% increase in force output during electrical stimulation occurred (P < 0.001) 
which was sufficient to allow 25% of the end-point subjects to perform FES-assisted 
stand-up exercises [12]. Though not expected, after the 2 years during which the 20 
SCI subjects performed h-bFES 5 days per week by large electrodes covering the 
quadriceps muscles, the CT cross-sectional area of the hamstring muscles also aug-
mented, increasing from 26.9+/−8.4 (cm2) to 30.7+/−9.8 (cm2), representing a sig-
nificant 15% increase (p ≤ 0.05) [12].

QMC-CT analyses confirm that h-bFES-induced muscle improvements (noted in 
CT of quadriceps muscle) are present also in hamstring muscles [15–21]. Figure 27.1 
shows, by computed tomography of thigh muscles at 20 cm from femur head, that 
the quadriceps and the hamstring muscles increased in size and tissue density 
(improved content of healthy muscle fibers) after 2  years of training using the 
Vienna protocol for h-bFES for permanently denervated human muscles. 
Comparison of the right panels provides strong evidence of the deterioration of the 
long-term denervated, atrophying muscles among 1 and 3 years post SCI. However, 
it is worth noting that, even starting 3 years post SCI, h-bFES is able to recover 
substantially the hamstring muscles.

27.4  Discussion and Perspective

Persons suffering with SCI must use wheelchairs to gain some mobility indepen-
dence, this resulting in them sitting several hours each day on their hamstring and 
gluteal muscles. The prolonged seating contributes to severe atrophy of the muscles 
and edema of the legs, with increased risks of decubitus ulcers and deep thrombo-
phlebitis. Of particular importance in SCI is whether the connection between the 
muscle and the nerve is preserved or the muscle is denervated due to complete 
peripheral nerve lesion. In the latter cases, the denervated muscle becomes unexcit-
able with commercial electrical stimulators and undergoes ultrastructural disorgani-
zation within a few months, while severe atrophy with nuclear clumping and 
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fibro-fatty degeneration appears later on within 3 and 6 years [4, 6–9]. Our work 
with h-bFES is important because it leads to muscle recovery, specifically in the 
worst case of complete, permanent lower motor neuron muscle denervation. Indeed, 
we have documented the recovery of the quadriceps muscles when directly stimu-
lated. Interestingly, here we show that our h-bFES of quadriceps muscles by large 
electrodes is not selective but that co-contractions of the hamstring muscles occurred 
and resulted in increased size and quality of this muscle group. This was not 
expected. Indeed, biomedical engineers may be unhappy with this result because it 
shows that the stimulation is not precisely focused on one muscle and, indeed, co- 
contraction of the antagonistic muscle group (hamstring) interfered with the analy-
sis of the quadriceps muscle strength during FES-activated contraction [12]. 
Nonetheless, the improved hamstring muscles contribute to the cushioning provided 
by the recovered muscle tissue, and this is a major clinical benefit of the Vienna 
protocol, validated by the EU Project RISE (Use of electrical stimulation to restore 
standing in paraplegics with long-term denervated degenerated muscles 
(QLG5-CT-2001-02191)) [12]. The h-bFES sustained increase in muscle mass is 
also important because of the increase in leg perfusion that preliminary analyses are 
demonstrating that they are extended to the skin [14]. The improvement will be even 
more if patients add h-bFES of gluteal muscles to their training workout.

We suspect that the concept of minimal FES (i.e., producing external work) is not 
well understood or even known and needs further explanation to professionals (e.g., 
medical practitioners, family doctors, physiatrists, and physiotherapists) who have 
contact with persons in need. We believe that this is particularly true in the USA 
because we receive many inquiries from citizens of this country about the applica-
tion of h-bFES. We have done our best to attract attention to valuable results by 
publishing in high impact journals. The continued dissemination of our results is 
now in the good hands of the editors of top medical journals and of the advisors of 
Granting Agencies. We are confident that they will share our desire to offer to peo-
ple in need the chance to live a better life, as they deserve.
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Chapter 28
Preventing Muscle Atrophy Following  
Strokes: A Reappraisal

Sunil Munakomi

Abstract Muscle atrophy leading to muscle weakness accounts for major cause of 
disabilities among stroke survivors. It amounts to compromised gait and prevails to 
viscous cycle of diminished physical capacities and compromised participation in 
rehabilitative tasks. There is predisposition to recurrent strokes due to added risk of 
developing metabolic syndrome. Therefore, beyond the shadow of doubt, there is 
ripple effect of rehabilitation and thereby muscle protection in these subsets of 
patients. Herein, we highlight upon the newer insights with regard to preventing 
muscle atrophy following strokes.

Keywords Stroke · Muscle atrophy · Rehabilitation

28.1  Introduction

Stroke accounts to major proportion for embarking disabilities in the global front 
[1]. Its long-term consequences are lauded on the facts that more than 30 % of sur-
vivors from strokes ultimately require some assistance during walking [2]. 
Paradoxically a survey carried out in 2005 in the United States revealed that only 
31% of such patients opted for any rehabilitative facilities [3]. Moreover, rehabilita-
tion strategies seldom extend beyond one year of initiation among these groups [4]. 
This is alarming because there is uprise in the number of stroke survivors owing to 
the advancement in clinical medicine [5]. In the context of low-income nations, it 
can have ripple effects hampering the patients in multispectral fashion as well as 
jeopardizing the proper allocation of available limited resources allocated in the 
health sectors [6].
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28.2  Pathophysiology

There have been various explanations for the genesis of the muscle weakness fol-
lowing strokes such as de-innervation, fiber-type shifts, disuse atrophy, as well as 
associated activation of inflammatory cascade [7, 8]. Findings have demonstrated 
increased tumor necrosis factor (TNF-alpha) expression in paretic leg muscle, 
thereby governing upon the fact that inflammatory pathways are accelerated in 
stroke muscle [9]. There is also tropism toward anaerobic metabolism in such 
affected muscles [7, 10]. Stroke patients invariably have low endurance to exercise 
due to various factors. Foremost being the added burden of energy lost for coun-
teracting the reduced efficiency of motion as well as associated spasticity. A study 
by Landin and colleagues found evidence of reduced blood flow, excessive lactic 
acid production, and a diminished fatty acids oxidizing capacity in these paretic 
muscles [11, 12].

From the physiological point of view, there is super-excitability of stretch reflex, 
under firing of the motor units in the agonist group whereas simultaneous co- 
activation of the motor units in the antagonist group [13]. There is sarcopenia along 
with deposition of noncontractile tissues like fat rendering them comparatively 
weaker than their healthy counterparts [7]. This has also been implicated for the 
coexistence of insulin resistance which increases the odds of metabolic syndromes 
and thereby risk of recurrent strokes in these patients [14, 15]. This can exacerbate 
the vicious cycle of reduced tolerance to physical activity with further deteriora-
tion in their independent functionality [16]. The synergistic ill effects of increased 
energy needs and low aerobic capacity compel these patients to execute even basic 
activities of their daily livings at the peak of their physiological limits. This pre-
vails to viscous cycle of diminished physical capacities and thereby compromised 
participation [17].

Laboratory models of cerebral ischemia have implicated for the role of ubiquitin- 
proteasome pathway in muscle atrophy [18]. Myostatin, also known as growth dif-
ferentiation factor 8 (GDF8), activates ubiquitin-proteasome system, thereby 
accelerating proteolysis, and inhibits the activity of myogenic factors like MyoD 
[19]. The surge in TNF-α reduces the expression of MyoD, thereby downregulating 
slow-twitch protein synthesis in the hemiparetic leg. It also accelerates oxidative 
stress via activating nuclear factor (NF-κB) transcriptional factor, thereby promot-
ing formation of reactive oxygen species [20]. This is further aggravated with pre-
vailing confounders like impaired feeding, sympathetic surge, and the prolonged 
immobility among such patients. Bulks of the affected muscle group were shown to 
be reduced by 6% and their strength by 16% in just 10 days of immobilization [20]. 
Difficulty in walking on a weakened limb amounts to increased oxygen consump-
tion for any activities. There is also diminished physiological fitness reserve in these 
subgroups [15]. This leads to early fatigability and thereby prevailed tendency 
among such patients in avoiding performing any tasks [21]. This also encroaches 
upon their perceived involvement in rehabilitative processes [22].
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28.3  Early Diagnosis

There have been major advances in this regard. Quantitative muscle ultrasound 
(QMUS) has been shown to be reliable in early detection of the architectural 
changes in the hemiparetic muscles as evident by the presence of fatty infiltration 
and muscle atrophy [23]. Recent studies have shown positive correlation between 
low serum insulin-like growth factor and its binding protein (IGF-1 and IGFBP-3) 
co-relating to ensuing muscle atrophy and diminished work performance in the 
hemiparetic side [24]. Likewise, C-terminal agrin fragment (CAF 22) has also been 
proven as a noble marker in predicting sarcopenia and the subsequent weakened 
muscular performance [25].

28.4  Management

First and the foremost, it is prudent to minimize neuronal damage following strokes. 
In cases of ischemic strokes, endovascular thrombectomy has shown potential to 
rejuvenate the penumbra zone [26]. Similarly, surgical removal of hematomas in 
hemorrhagic subtypes compressing upon the internal capsule has shown to acceler-
ate motor improvement [27]. This can be facilitated by the application of diffusion 
tensor imagings like magnetic resonance (MR) tractography [28].

Exercise should be supervised with regard to frequency, intensity, duration, as 
well as proper transition for achieving its desired goal. Resistance training enhances 
neuronal cross talk and improves muscle bulk. Exercise also reduces TNF-α and 
thereby minimizes prevailing insulin resistance [29]. It also promotes aerobic capac-
ity of the muscles, thereby facilitating endurance, balance, and mobility [30]. There 
is paradigm shift in attention paid to myo-protective therapy as it is more efficacious 
than the neuroprotective approaches in terms of functional outcome [31]. Targeted 
physiotherapy has been the workhorse in achieving this goal. The main determi-
nants that govern the optimal functional recovery include motor relearning, repeti-
tion, positive feedback, and motivation. All current strategies on physical 
rehabilitation prevail on basically two theories [32]. Bobath theory focuses on con-
current facilitation as well as inhibition among the agonist and the antagonist groups 
of muscles, respectively. Brunnstrom theory, on the other hand, opts for encourage-
ment for upright stance and maximizing mobilization.

Rehabilitation process should also focus on various aspects of muscle architec-
ture such as its fiber length, pennation angle, tendon compliance, etc. so as to 
amplify recovery process [33].

Endurance exercise training has now become an integral component in rehabili-
tation process. This halts the relentless cycle of prevailing physical deconditioning 
and worsening disability as well as motivates participants in their task participation 
[34]. Exercise capacity is mostly limited owing to the generalized fatigue, thereby 
supporting the rationale for endurance training in this population [35, 36]. The 
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 cornerstone in both these approaches is muscle reeducation wherein we are empow-
ering the weakened agonist groups of muscles and minimizing the increased tone in 
the corresponding antagonist groups. Ideally this should be carried out in the posi-
tion of slight muscle stretch and in a graded fashion depending on the stages of 
muscle recovery. In the acute phase, most rehabilitation strategies are individually 
tailored. In the later stages, focus is shifted in promoting group participation in 
supervised sessions among similar cohorts of participants.

During the acute phase, neurodevelopmental reflexes such as tonic neck and 
withdrawal reflexes can be utilized for facilitating muscle movements. Tactile stim-
ulation, tapping, and stretch methods can be used as adjuncts for the same. 
Associated reactions can also be utilized and slowly tapered as the patients relearn 
and regain normal adaptive mechanisms. Gravity-eliminated positioning can further 
boost on the recovery. Gradual shift toward gravity-dependent positioning to facili-
tate weight bearing can then be undertaken followed by the implementation of nor-
mal resistance training. Sit to stand, bicycling, and forward stepping are few options 
available for promoting weight transfer and balancing gait. Studies have docu-
mented improvements in knee muscles with positive effects on gait performance 
and perceived participation. The sit-to-stand (STS) movement has significant impact 
on joint torque and range of movement, thereby promoting upright mobility and 
facilitating independent living [37]. Maneuvers to enhance loading on paretic limb 
also augment the same. It has been proven that single-leg stance in the affected limb 
augments gait function via improvement in weight bearing during the stance phase 
[38]. Weight-bearing exercise for better balance (WEBB), overground walking with 
balance training, and body weight-supported treadmill training are also being uti-
lized for gait control and bodily balance [39]. Bridging exercises (BE) are therapeu-
tically used for lumbo-pelvic stabilization [40]. Treadmill training improves exercise 
capacity by maximizing oxygen uptake (VO2max), lowers the energy cost, and 
increases peak ambulatory workload capacity [41]. Task-oriented aerobic exercise 
improves cardiovascular performance profile [42].

Motor rehabilitation focuses in facilitating motor learning by virtue of change in 
behavior through continuous practice. This adaptive process of relearning is facili-
tated by neuroplasticity. This involves myriad of processes such as sprouting of 
dendritic collaterals to pruning of neural circuits. It has been shown that aerobic 
exercises promote activity-dependent secretion of brain-derived neurotrophic factor 
(BDNF) [43]. This helps in facilitating long-term potentiation by promoting inter-
neural cross talk. It is also postulated that aerobic exercises in close temporal prox-
imity to behavioral training prime the central nervous system (CNS) adaptive 
learning. As per current consensus, 30 min of aerobic and resistive exercises with 
targeted intensities of approximately 70% heart rate for 4 days per week is recom-
mended. Furthermore, to harness the benefits of BDNF in facilitating motor relearn-
ing, bouts of aerobic exercises segregated within 1-h time frame in between the 
resistive exercises are justified [44].

There are various armamentariums to facilitate above processes. Electrical stim-
ulation in conjunction with biofeedback has shown to increase the strength and 
range of motion, thereby minimizing disability. It also improves posture well as 
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weight bearing abilities. It helps gaining voluntary movement provided patient 
attempts for the same at the surge of electrical input. It also improves sensory feed-
back [45]. Similarly, intrathecal baclofen (ITB) therapy can augment walking speed 
[46]. Pharmacotherapy can also aid in motor rehabilitation [47]. Mirror therapy has 
shown to improve motor function as well as promote activities of daily living [48]. 
It is a way of puzzling the brain circuit in perceiving the movement of normal arm 
as that of the paretic arm [49]. Likewise, virtual reality intervention and interactive 
video gaming focusing on movement visualization via immersion in an artificial 
man-machine interface have added new paradigm in rehabilitative strategies. It is 
also capable of rewarding the performer as well as capable of analyzing their per-
formance [50]. Similarly, robots can be mobilized in the labor-intensive phases of 
physical rehabilitation, thereby allowing ample time for the physiotherapist to focus 
and supervise on the functional aspects of the sessions. Such guided-force training 
increases the efficacy as well as efficiency of such programs [51]. Branched-chain 
amino acids have been used in conjunction to resistance aerobic exercise to improve 
the muscle capabilities [52]. Long-term use of edaravone, a free radical scavenger, 
has shown to minimize atrophy in the femoral muscle atrophy, thereby ameliorating 
movement. From functional outlook, myo-protective therapy seems to have the 
upper hand compared to neuroprotective approaches [31]. Recently SB623, a mes-
enchymal stem cell, restored motor function in selected patients providing newer 
therapeutic avenues in managing strokes. It seems to rejuvenate the damaged brain 
circuits. Furthermore, there is no need for immunosuppressive therapy [53]. An 
anti-myostatin approach has also emerged as a novel approach in combating skele-
tal muscle loss and weakness in stroke patients [54]. Repetitive transcranial mag-
netic or direct current stimulation can also modify cortical excitability [55]. 
Similarly, repetitive transcranial magnetic inhibition can minimize spasticity [56].

28.5  Monitoring and Novel Future Perspectives

Isokinetic knee muscle strength and gait performance tests are reliable and sensitive 
methods in detecting clinical improvements in stroke survivors. Simple bathroom 
scales can be a simple feedback tool in determining objective progress. Reduced 
compound motor action potentials (CMAPs) in the acute phase normalize in the 
chronic phase following collateral sprouting from the neighboring normal motor 
axons. Muscle ultrasound is a simple and noninvasive method to assess muscular 
integrity and thereby monitor recovery and effects of therapy. A key-form recovery 
map can also be a helpful tool for monitoring the rehabilitative process [57].

In the context of low-income nations, people with disabilities are socially dis-
criminated. They are invariably marginalized and therefore bound to become 
socially aloof. So considerations need to be made upon the prevalent cultural com-
petence with reinforcement on capacity building through cost-effective, appropri-
ate, and sustainable approaches [58]. The geographical barriers can be minimized 
by teletherapy so that there is maximum inclusion of such affected cohorts [59]. 
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There has been major success seen through the application of compact robot gym 
system [60]. The key highlights were its transportability, cost-effectiveness, and 
sustainability as well as its high safety profile. Moreover, the haptic and regular 
feedback ensures adaptive control as well as constant monitoring of the progress. 
The application of gaming motivates participation, whereas facility of multi- stations 
ensures therapist to monitor many patients simultaneously. Therefore, focus needs 
to be on promoting community-based fitness programs [61, 62]. The risks of long- 
term consequences of cardiovascular comorbidities and the increased odds of recur-
rent strokes in stroke survivors can be minimized by their indulgence in active 
physical activities [63]. A water-based exercise program can be a cheaper alterna-
tive as it has shown to improve VO2max by 22% in chronic stroke survivors [64]. 
Group participation promotes self-respect [65]. It may be the missing link in the 
puzzle amidst care and resurrection of stroke survivors and thereby provide newer 
insights to strategies aimed for the same [30].
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Chapter 29
Muscle Atrophy: Present and Future

Richard Y. Cao, Jin Li, Qiying Dai, Qing Li, and Jian Yang

Abstract Muscle atrophy is the loss of muscle mass and strength, and it occurs in 
many diseases, such as cancer, AIDS (acquired immunodeficiency syndrome), con-
gestive heart failure, COPD (chronic obstructive pulmonary disease), renal failure, 
and severe burns. Muscle atrophy accompanied by cachexia worsens patient’s life 
quality and increases morbidity and mortality. To date there is no effective treatment 
on that. Here we summarize the diagnosis methods and cellular mechanisms of 
muscle atrophy. We also discuss the current strategies in muscle atrophy treatment 
and highlight the potential treatment strategies to resist muscle atrophy.

Keywords Muscle atrophy · Present · Future

29.1  Introduction

Muscle atrophy results from a variety of common diseases, including cancer, AIDS 
(acquired immunodeficiency syndrome), congestive heart failure, COPD (chronic 
obstructive pulmonary disease), renal failure, and severe burns [1, 2]. Muscle atro-
phy is a complex and highly regulated phenomenon. It is characterized by a decrease 
in muscle fiber cross-sectional area, myonuclear number, protein content, muscle 
strength, an increase in fatigability, and resistance to insulin [3, 4]. It is also associ-
ated with an increased risk of morbidity and mortality.
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Despite decades of research, no effective treatments have been proven to prevent 
muscle mass loss. Here we will provide a brief overview of researches in the field of 
muscle atrophy. We will discuss about the new progress in the field as well as its 
limitations and highlight the future direction of muscle atrophy therapy.

29.2  Diagnosis Methods

Diagnosis is important for clinical management of muscle atrophy. Skeletal muscle 
mass index (SMI) is the most common indicator to diagnose muscle atrophy. It can 
be measured by image or laboratory functional test. Dual-energy X-ray absorptiom-
etry (DXA), magnetic resonance imaging (MRI), and computerized tomography 
(CT) are used in SMI detection. Also, anthropometry (which means by directly 
measuring the muscle mass) and bioelectrical impedance analysis (BIA) are useful 
tools in muscle atrophy diagnosis [5, 6]. Lab tests mainly focus on detecting creati-
nine and urea. Levels of these two chemicals correlate with muscle injury and mus-
cle loss [7, 8]. Strength of handgrip and exercise capacity reveal muscular function. 
Finally, muscle biopsies could directly show evidence of muscle atrophy but are 
seldom used due to its invasiveness.

Several technical improvements have been made in lab testing for muscle atro-
phy. Transcript profiling showed a subset of universal upregulated genes in rat mus-
cle atrophy model, such as muscle RING finger 1 (MuRF1) and muscle atrophy 
F-box (MAFbx). Especially the latter one could be potential therapeutic target for 
muscle atrophy [2].

Current tests to evaluate muscle atrophy are time-consuming, invasive (as biopsy 
is the only confirmatory test), and complicated. However, the biggest disadvantage 
is that no tests could detect atrophy at the early stage.

Noncoding RNAs (ncRNAs) are a group of RNAs that is not translated into pro-
teins. They function as gene regulators and are widely detected in tissue or in 
peripheral blood. Noncoding RNAs include microRNAs (miRNAs), long noncod-
ing RNAs (lncRNAs), circular RNAs (circRNAs), etc. Previous studies have found 
several miRNAs could be candidate serum markers for muscle atrophy. Muscle- 
specific miRNAs have been proven to regulate muscle metabolism under different 
conditions [9]. In aging-related muscle atrophy, Let-7 family members including 
Let-7b and Let-7e were found to be increased compared to young individuals. 
Meanwhile the expression of cell cycle regulators was significantly downregulated 
[10]. A study discovered that miR-431 influenced muscle mass through promoting 
myoblast differentiation and modulating TGF-β downstream effectors [11]. miR-
NAs are also reported to involve in other muscle wasting conditions, such as regular 
catabolism, dexamethasone-induced atrophy, denervation injury, and even cancer 
[12]. Functional miRNAs in muscle atrophy mainly include miR-23a/206/499, 
miR-1, miR-133, miR-23a, miR-206, miR-27, miR-628, and miR-21 [13–15]. 
Among them, miR-29b was found to be commonly upregulated in different muscle 
wasting conditions, including denervation-induced, dexamethasone-induced, 
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fasting- induced, cancer cachexia-induced, aging-induced, and immobilization- 
induced muscle atrophy. Moreover, the expression of miR-29b is positively corre-
lated with the degree of denervation-muscle atrophy [16]. Thus, ncRNAs might also 
be used to diagnose muscle atrophy.

Exosome was also shown to play important roles in muscle atrophy. Exosomes 
are vesicles measuring from 30 to 100 μm and able to carry many factors (RNA and 
protein) in the blood. They mediate cell–cell and tissue–tissue communication in an 
autocrine, paracrine, or endocrine manner [17]. Exosomes are nature reservoirs for 
signal factors, and they are detectable in the peripheral blood, which makes them 
ideal disease markers. In dexamethasone-induced muscle atrophy model, miR-23a 
is reported to participate in muscle atrophy through calcineurin/NFAT pathway. 
Dexamethasone increases concentration of miR-23a in the exosomes while it does 
not affect the number of exosomes [18]. Other studies showed a connection between 
exosomes secretion and malignancy-related muscle loss. Exosomes secreted by 
cancer cells carried miRNAs that function as apoptosis factors. miRNAs like miR- 
21, miR-182, and some other miRNAs from heart shock family were found to 
induce apoptosis in myocytes [19, 20]. Other noncoding RNAs, such as lncRNAs 
and circRNAs, were also reported to be contained in exosomes and contribute to 
various processes [21].

29.3  Pathways Regulating Muscle Atrophy

The major process during muscle atrophy is myofiber reduction, which is the result 
of excessive protein degradation. Current theory for these degradation pathways 
was the ubiquitin–proteasome system and the autophagy–lysosome pathway. 
Studies have been carried out to explore the regulating factors of these two path-
ways. Both of them could be triggered by stimulation like chronic inflammation and 
acute metabolic changes.

Ubiquitin–proteasome system (UPS) could degrade sarcomeric proteins in 
response to catabolic stimulate. UPS works through a series of enzymatic reactions 
involving activating (E1), conjugating (E2), and ligating (E3) enzymes [22]. Among 
them, atrogin-1/MAFbx (muscle atrophy F-box) and muscle RING finger 1 
(MuRF1) are the main E3 ubiquitin ligases that play important roles in muscle atro-
phy. Genetic deficiency of either of these two genes showed a significant resistance 
to atrophy [2]. Likewise, their expressions were elevated in almost all types of mus-
cle atrophy [23]. Other E3 ligating enzymes, such as Trim32 [24], TRAF6, ZNF216, 
USP14, and USP19 [25], were identified to function in muscle atrophy.

IGF1-PI3K-AKT pathway is the dominant pathway that mediates protein degra-
dation. Catabolic signals inhibit this pathway by reducing the protein phosphoryla-
tion levels and then promote the proteolysis and depress protein synthesis. In 
addition, IGF1–PI3K–AKT–mTOR pathway and IGF1–PI3K–AKT–FoxO path-
way also regulate the autophagy–lysosome systems [26–29].
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Chronic inflammation influences myocyte metabolism through the interactions 
between different cytokines. Studies have found that interleukin 6 (IL-6) deficiency 
is associated with muscle atrophy [30, 31]. On the other hand, IL-6 induces myocyte 
proliferation through STAT3 signaling pathway, which occurs exclusively in the 
nuclei of satellite cells [32]. Other inflammatory pathway like IKKbeta/NF-kappaB/
MuRF1 pathway was also found to regulate muscle atrophy [33].

Another way to disturb muscle volume is to inhibit muscle growth. Myostatin is 
the major autocrine inhibitor of muscle growth. It binds to the activin A receptor 
type IIB (ActRIIB) in skeletal muscle cells and activates transcription factors 
SMAD2 and SMAD3, thus suppressing muscle growth [34–37].

Catecholamine axis also contributes to the balance of muscle atrophy and growth. 
Deficiency of β2-adrenoceptors worsens skeletal muscle atrophy in patients with 
heart failure [38]. In cardiac muscle, sympathetic neurons control cardiomyocyte 
size by a β2-AR-dependent mechanism [39]. Further study showed this could be a 
result of its suppression effects on atrogin-1/MAFbx, which has been known as a 
muscle-specific ubiquitin ligase [40, 41].

Noncoding RNAs like miR-1, miR-1331a/b, miR-206, miR-146a, miR-221, 
miR-499, miR-208b, miR-486, and miR-29b, several long noncoding RNAs, and 
circRNAs are reported to contribute to muscle atrophy as well [42–44]. The fruitful 
achievements in the nucleic acid studies have led us to understand disease in a new 
way.

Even with these accomplishments, challenges still exist in the muscle atrophy 
field. First, functional noncoding RNAs are still to be studied. Second, epigenetic 
genes involving a serious of histone and DNA modifying enzymes have emerged as 
novel targets for the therapeutics purpose. They are widely studied in various fields, 
but little is known in muscle atrophy [45]. Third, current studies are mainly focused 
on the muscle cell itself, neglecting the cross talk between muscle cells and other 
factors, such as extracellular matrix, stem cells, and immune cells. Muscle atrophy 
always represents as a complication, which means it happens along with other dis-
eases. For example, in cancer-induced muscle atrophy, cancer cells release exo-
somes which specifically interfere muscle cell growth. While under the condition of 
inflammation, muscle cells are influenced by inflammatory factors. Also, the bio-
logical process of muscle atrophy varies in different external conditions. For exam-
ple, autophagy was considered as defense mechanism in fasting-induced muscle 
atrophy, but it causes damages in other scenarios [25, 46, 47]. Understanding this 
difference may be important for treatment of muscle atrophy. Finally, almost all 
previous study has stayed at the animal level. Translational research and clinical 
research need to be carried out in the future.
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29.4  Therapeutic Approaches and Limits

Although a lot of basic research has been invested to treat muscle atrophy, there are 
no efficient drugs for neither prevention nor treatment of muscle atrophy [5]. Current 
standard treatments for muscle atrophy are nutritional supplement, physiologic 
therapy, and drug treatment.

29.4.1  Nutrition Treatment

Nutrition supplement provides energy for muscle activity directly and helps to 
maintain muscle mass. Increased consumption of calorie and protein could bring 
beneficial effects. In severely ill patients or those who suffer from muscle atrophy, 
some trials have shown that nutrition treatment improved life quality and long-term 
survival [48, 49]. In fact, many nutritional components were found to be beneficial 
to muscle atrophy (Table 29.1). But the effects might be only limited within patients 
who have primary muscle wasting [50].

29.4.2  Exercise Training

Physical therapy has been well studied to be effective in maintaining muscle strength 
[64, 65]. Exercise has also been considered as an effective way to promote muscle 
hypertrophy and muscle regeneration [66, 67]. In heart failure-induced muscle atro-
phy, aerobic exercise alleviates the process by reducing inflammatory reactions and 
decreasing ubiquitin-proteasome activities [68, 69]. Malignancy-related muscle 

Table 29.1 Nutrition treatment used in muscle atrophy

Component Muscle atrophy type References

Protein Sarcopenia [51]
Heart failure [52]

Essential amino acid Sarcopenia [53]
Heart failure [52]

β-Hydroxy β-methylbutyrate (HMB) Cancer [54]
AIDS [55]
Chronic obstructive pulmonary disease [56, 57]
Sarcopenia [58]
Immobilization [59]

Vitamin D Sarcopenia [60]
Cancer cachexia [61]

Allopurinol Sarcopenia [62]
Unloading [63]
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atrophy could also benefit from exercise therapy. Apart from suppressing inflamma-
tion, exercise promotes the mitochondrial biogenesis via peroxisome proliferator- 
activated receptor (PPAR)-γ coactivator-1α (PGC-1α) pathway [70–74]. In addition, 
exercise training inhibits myocyte autophagy [73]. Unfortunately, exercise therapy 
cannot be applied to everybody. It has limited effects on patients who are immobi-
lized on the bed or patients who have nerve injury. Moreover, certain patients with 
severe muscle atrophy cannot tolerate exercise therapy.

29.4.3  Drug Treatment

Based on the prior studies, current drug treatment for muscle wasting mainly 
focused on improving appetite, modulating inflammation, and interfering with ana-
bolic and catabolic reactions. Table 29.2 summarized the candidate medications and 
its therapeutic targets. However, no medications have been approved to be effective 
in clinical trials so far.

29.5  New Therapeutic Strategy

Due to the advance of new technologies and theories, novel treatment strategies 
have sprung up.

29.5.1  Noncoding RNAs

With the development of next-generation deep sequencing, the research on gene 
regulation transfers from genome to transcriptome. Researches on RNA field have 
been developed unprecedentedly. Unlike protein-coding genes, noncoding RNAs 
are the ones which lack the ability to code protein. They were once considered as 
“evolutionary junk,” until later on it was discovered that these group of RNAs had 
tremendous effects on regulating gene expression. Current well-defined noncod-
ing RNAs include ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), long non-
coding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), and 
other small RNA-related molecules. Great achievements have been made in 
exploring the functions of these RNAs. Some of the noncoding RNAs have already 
been studied in clinical trials. For instance, liposomal miR-34 mimic was used to 
repress oncogene expression, and its ability to shrink tumor size has been proved 
[102]. On the other hand, miRNA antagomirs, such as anti-microRNA oligonucle-
otides (AMOs) and N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine 
(“ZEN”), are used to downregulate certain miRNAs [103, 104]. The use of anti-
sense RNA in long noncoding RNA interference has showed a significant value in 
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treating myocardial hypertrophy and fibrosis [105–107]. Besides, miR-1, miR-
133, miR-23a, miR-206, miR-27, miR-628, miR-431, miR-21, and miR-29b are 
considered to be the therapeutic target for muscle atrophy. miR-29b was an 
increased miRNA in multiple types of muscle atrophy, and miR-29b inhibition 
could relieve muscle atrophy [11, 108–113].

Table 29.2 Studies of agents with potential efficacy in muscle atrophy

Disease process Drug/compound Target References

Cancer cachexia Thalidomide TNF-α [75]
ALD-518 IL-6 [76]
RC-1291 Ghrelin mimetic [77]
RC-1291 Ghrelin receptor agonist [78, 77]
Celecoxib COX-2 [79]
BYM338 Myostatin and the activin 

type II B receptor 
(ActRIIB)

[26]

MG132 Ubiquitin–proteasome 
system

[80]

Myostatin-specific 
antibody

Myostatin [81, 82]

Heart failure JA-16 Myostatin [83]
Salbutamol β2-Agonists [84]
Clenbuterol β2-Agonists [85]
Testosterone Testosterone [86, 87]
Selective androgen 
receptor modulators 
(SARMs)

Hormonal [88]

Ghrelin agonist Ghrelin [89] [90]
Sarcopenia Metformin / Clinical Trials 

NCT01804049
Incretins Enzyme dipeptidyl 

peptidase IV
[91]

Statins Glucose oxidation [92]
Allopurinol Xanthine oxidase (XO) [62]
Formoterol β2-adrenoceptor [93]
Myostatin-specific 
antibody

Myostatin [94]

Chronic obstructive 
pulmonary disease 
(COPD)

Ghrelin/GH/IGF-axis 
Ghrelin

Stimulates GH secretion [95]

SUN11031 Synthetic ghrelin [96, 97]
NAC ROS scavenger [98]
α-lipoic acid ROS scavenger [99]

Renal failure Myostatin-specific 
peptibody

Myostatin [100]

C188-9 STAT3 [101]
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29.5.2  Gene Therapy

In the last few years, targeted genome-editing technology has developed. Among 
them, clustered regularly interspaced short palindromic repeats (CRISPR) are well 
studied and applied in clinical trials. This is a highly versatile system, which is 
derived from a prokaryotic adaptive immune system. In bacteria, CRISPR/Cas sys-
tem captures and avoids the invasion of foreign DNA via RNA-guided DNA cleav-
age [114]. The recently developed CRISPR–Cas9 system has two biological 
components: the RNA-guided DNA endonuclease Cas9 and a chimeric single guide 
RNA (sgRNA) [115–119]. The guide RNA binds Cas9 with one end, and the other 
end recognizes the target DNA sequence by base pairing. This system has been 
applied to modify endogenous genes in a wide range of organisms, including bacte-
ria, yeast, plants, fruit flies, zebrafish, frogs, rabbits, mice, rats, pigs, dog, sheep, 
goat, monkeys, and human cells [120].

This technique can be applied to various research fields. In cancer, CRISPR/cas9 
was used to produce the next-generation chimeric antigen receptor T cells (CAR-Ts), 
which have potential effects in cancer treatment [121, 122]. CRISPR/Cas9 was also 
used to disturb HIV duplication by targeting LTR sequence [123]. Additionally, 
CRISPR/Cas9 disrupts rs1421085 of FTO region and thus restores thermogenesis 
and opposes obesity [124].

CRISPR is widely used in muscle atrophy studies as well. CRISPR was used to 
knock out myostatin in dog, goat, pig, sheet, and rabbit and thus induce typical 
muscle hyperplasia or hypertrophy in vivo [125–132]. This highlights the hope in 
muscle atrophy treatment. Interestingly, CRISPR/Cas9 was used to target myostatin 
in cancer-related cachexia [133]. Insulin-like growth factor-1 (IGF1) and FGF5 are 
also potential targets for muscle atrophy treatment [134, 135].

Another strategy used in gene therapy is gene transfer vectors. Vectors transport 
genes to target cells. They are usually adeno-associated virus (AAV) – a group of 
viruses that cause low risk of genotoxicity [136]. Plus, they have long-term stable 
transgene expression [137]. Preclinical and clinical studies have been carried out 
using AAV as tools to deliver therapeutic genes [138–140]. In muscle atrophy, 
AAVs like rAAV6 and AAV2/9 have been used to deliver microutrophin to improve 
muscle function [141, 142]. In neurogenic muscle atrophy, AAVs containing neuro-
trophin3 were injected in the mouse model. Reevaluation showed an increased mus-
cle fiber size as well as a change in oxidative state [143]. In malignancy-related 
striated muscle wasting, Smad7 gene delivery by rAAV6 was able to inhibit the 
expression of atrophy-related ubiquitin ligase MuRF1 and MAFbx through ActR2b 
pathway [144, 145]. Similarly, other studies with therapeutic genetic molecules car-
ried by AAVs validated their efficacy by checking downstream factors like vascular 
endothelial growth factor (VEGF), sarcoplasmic reticulum Ca2+ ATPase 1 (SERCA), 
and β2-adrenoceptor or associated Gα proteins [146–148].

Lack of clinical trials is the main disadvantage of gene therapy. Safety issues 
with these therapies remain unknown since current studies mainly focus on the 
positive effects on muscle atrophy. More studies need to be carried out for safety 
and capability.
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29.5.3  Stem Cell Therapy

Stem cell therapy (also called cellular therapy or cytotherapy) refers to a process 
during which cellular material is injected to treat disease. The effectiveness of stem 
cell therapy has been studied in a variety of diseases [149–155].

Satellite cell is the original stem cell in muscle tissue. These cells are usually 
located between muscle fiber or in basal lamina. Under normal conditions, they are 
naturally quiescent. They start to actively proliferate and differentiate to compen-
sate muscle fibers loss in response to stimuli. In a healthy individual, the compensa-
tion is usually adequate. However, in patients with muscle atrophy, the self-renewal 
capacity of satellite cell was significantly decreased [156, 157]. Hence, increasing 
satellite cells or enhancing the functions of them could potentially solve the prob-
lem of atrophy. Studies have been conducted to transplant myogenic stem cells into 
atrophied muscle. Promising results have been observed in some studies, showing 
the tremendous capacity of regenerating new muscle fibers and fusion with the host 
myofibers after transplantation [158–161]. Unlike skin or adipose tissue transplan-
tation, technical difficulty complicates muscle fiber grafting and makes it difficult to 
apply in clinical practice. Other stem cells, such as mesenchymal stem cells [162, 
163], iPSCs [164], pericytes [165], and endothelial cells [166], could also be used 
as stem cell therapy.

29.6  Conclusions and Remarks

Muscle atrophy is one of the most common and devastating events in chronic dis-
eases. Unlike the diseases that cause muscle atrophy, muscle atrophy itself is not 
life-threatening. But it can lead to devastating consequences including but not lim-
ited to osteoporosis, blood clot, pressure ulcer, and, more importantly, psychologi-
cal effects. Preventing muscle atrophy can prolong the patient’s life span and 
improve life quality. However, studies exploring the biology nature and molecular 
mechanisms of muscle atrophy only started in the recent two decades. Our knowl-
edge in this field is way lag behind compared to other diseases.

We have made a great number of achievements in learning this disease in the 
recent years. Challenges still exist. Lacking appropriate markers make it hard to 
monitor muscle atrophy. As we have discussed in this chapter, either proteins or 
noncoding RNAs could be a candidate to indicate muscle atrophy, but more clinical 
trials need to be conducted. The causes of muscle atrophy are multifactorial which 
makes the treatment more complex. In the future, gene therapy and stem cell ther-
apy will be applied in muscle atrophy treatment.
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