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Abstract It has become essential to develop machine learning techniques due to
the automation of various tasks. At present, several tasks need manual intervention
for better reliability of the system. In this work, fuzzy-based approach has been
proposed where systems are trained based on initial data sets. In several data sets,
the data is either partially available or unavailable. When data sets need to be used
on real time systems, the non-availability of data may lead to catastrophe. In this
approach, a fuzzy-based rule set is formulated. The rule strength is used to deter-
mine the effectiveness. Rules with similar strengths are clustered together. The
learning is carried out by determining a threshold for the formulated rule set. Based
on the threshold computed, a modified rule set is formulated with rule strengths
greater than the computed threshold. A semi-supervised learning approach that uses
an activation function is employed. The fuzzy learning approach proposed in this
work reduces the error by 20% compared to conventional approaches.

Keywords Threshold - Activation function - Learning rule matrix
Machine learning - Rule strength - Smart systems - Semi-supervised learning

1 Introduction

In today’s world, there is a need to design gadgets and systems with automation. To
enable automation of gadgets, it is essential that systems handle decisions inde-
pendently based on the environmental conditions.

Systems should adapt to the external environment and handle tasks based on the
underlying behaviour. Systems should also handle exceptional tasks. To fulfil the
same, the system needs to be intelligent to take decisions in the absence of manual
intervention.
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Machine learning is one way of implementing these features of Artificial
Intelligence where systems are trained based on an initial data set.

The system forms the initial dataset by collecting the information from the
external environment through sensors and actuators. System is trained to learn
information and take decisions based on iteration of datasets. The time needed by
the system to learn information and take decisions from the datasets should be finite
and small so as to avoid failures that can lead to catastrophe.

In this work, a fuzzy rule matrix is constructed and the threshold of the entire
rule set is also computed. The modified rule set is constructed by selecting rules
whose rule strength is greater than the threshold. These are the rules used by the
system to learn the data. Other rules are not considered.

The paper is organised as follows: Sect. 2 discusses the literature on machine
learning algorithms. Section 3 explains the fuzzy model proposed, illustrates the
same with an example and gives the algorithm. Section 4 explains the simulation
environment and the results. Section 5 concludes the work and highlights the scope
for the future work.

The block diagram of the entire procedure is shown in Fig. 1.
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Fig. 1 Block diagram of fuzzy learning model
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2 Literature Review

The most conventional machine learning strategy is the Naive Bayes classifier.
Several literatures report the inaccuracies in Bayes’ conditional independence. This
is due to the suboptimal nature of the probability estimates as reported in [1-3].
Even when multidimensional tables are used to compute probabilities in real-time
scenarios, many errors are observed as discussed in [2]. Support Vector method
uses a hyperplane to classify the data. Based on the classification a number of
support vectors are generated as explained in [4]. But when data sets are widely
spread and have a large range of deviation, this method does not yield accurate
results. The choice of the hyperplane is the key factor associated with the data
classification as discussed in [5, 6]. Artificial neural networks give reliability but
again this depends on the choice of the activation function used to train the data set
as explained in [7, 8]. Linear and Logistic regression as explained in [9—-11] uses a
cost function and estimates the gradient. The reduction in the gradient is used to
learn the datasets. The regression analysis depends on the effectiveness of the cost
function.

Several deep learning neural network algorithms model a data set as a function
using a mathematical model and train the same to interpolate or extrapolate the data
value for a particular value. The Stochastic Gradient Descent technique as
explained in [12] attempts to minimise the loss of the model by incorporating
additional parameters and increments these proportional to the gradient estimated.
But this makes the data noisy due and filters needs to be used to eliminate the noise
associated. The method of steepest descent as discussed on [13] which when used
on a very large data set requires an infinite number of iterations to get an optimum
solution. It may so happen that an optimum solution may not exist also. Another
approach which works in a different dimension is Reinforcement learning as
explained in [14]. This method arrives at an optimal solution by trial and error in
infinite time. But the time of training in an unsupervised scenario would be infinite
and the optimal solution cannot be guaranteed. The drawbacks highlighted in the
above techniques are overcome in the fuzzy-based analysis. In the fuzzy-based
analysis a precise value for the rule strength are arrived and the optimal solution is
arrived by training the same with an activation function in a finite period of time. It
does not require any mathematical model and infinite number of trials to arrive at an
optimal solution.

3 Proposed Work

In this work a fuzzy-based learning approach using Mamdani’s engine as discussed
by Venkat and Pradheep in [15] has been used. For each rule, a rule strength is
computed. The rule strength is computed based on a set of sub-factors and their
corresponding weights. For each linguistic variable used in the rule, the mid-value
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of the range is computed. The weighted average of each variable of the rule gives
the rule strength. A typical rule is given as follows:
The Rule Strength is computed using the expression

RS — > (Weight M]dValue) (1)
> Weight

The rule strengths have been computed for all rules in the fuzzy rule set using the
above expression. The threshold of the fuzzy rule set is computed using the fol-
lowing expression

n

(Rulenumber * RuleStrength)
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where 7 is the total number of rules.

The threshold computed is a measure of the upper bound till completion of the
training of the system. The modified rule set is constructed by selecting rules, which
have a rule strength greater than the computed threshold. After this a matrix is
constructed in the form (RS — mT, RS, RS + mT), where m = 1 to n and n is the
number of rules in the original rule set. The matrix is formulated for different values
of m in such a manner that RS — T is positive. This criterion decides the number of
columns of the matrix.

The matrix now is non-symmetrical as the number of rows would be greater than
the number of columns. The matrix is split into a number of sub-symmetrical
matrices by matching the number of rows with the columns.

The procedure has been illustrated with an example where RS — T is positive
and RS — 2T, RS — 3T, etc. are negative. With only RS — T, RS and RS + T, the
matrix has been formulated. Hence, the modified rule set should be split into 3 X 3
matrices based on the modified rule set. The actual output matrix is accepted as
input. The error, which is the difference between the output and modified rule
matrix, is computed. An activation function is used to iteratively train the modified
rule set till the error is non-negative. The final value is the optimal rule set.

For computing the trained matrix for antivirus check, the different sub-factors
and their corresponding weights are shown in Table 1.

The different Linguistic variables with their ranges and corresponding
mid-values are indicated in Table 2.

A typical rule is shown below.

If (Phishing Check is Excellent) and (Spyware Check is Good) and (Malware
check is Average) and (Trojan Check is Fair) and (Rootkit scan is Poor) Then
(Antivirus software is Average).

The entire rule set comprises of 125 rules. Few sample rules from the entire rule
set is shown below in Table 3.
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Table 1 Weight for each S.No.

Sub-factor Weight

sub-factor 1. Phishing check 5

2. Spyware check 4

3. Malware check 3

4. Trojan check 2

5. Rootkit scan 1
Table 2 Linguistic variable g N, Linguistic variable Range Mid-value
with range and mid-value L Excellent 0-19 95

2. Good 20-39 29.5

3. Average 40-59 49.5

4. Fair 60-79 69.5

5. Poor 80-100 90

The rule strength of the rule If (Phishing Check is Excellent) and (Spyware
Check is Good) and (Malware check is Average) and (Trojan Check is Fair) and
(Rootkit scan is Poor), then (Antivirus software is Average) is 36.2. The Rule
strengths of the above rule base would be computed as indicated in Table 4.

Using the expression, the threshold has been computed as 62.02. Based on this
threshold modified rule set is shown in Table 5.

Hence RS — T is only non-negative and the rest of RS — mT is negative. From
the above discussion 14 (3 X 3 Symmetrical) sub-matrices have been formulated.
The last row of the 14th matrix would be zeroes. The modified rule set is trained
using the activation function E = (;~L) as shown in Table 6.

The modified rule matrix is LRM. The iteration matrix is LRM1. Given Output
matrix is OM. The error is (OM — LRMI1). The iteration is carried out till all
elements of OM — LRMI1 becomes negative.

The algorithm has been discussed below

Form the fuzzy rule set

Compute the rule strength and Threshold

Form the Learning rule matrix (LRM) with selected rules (RS > T)
Form modified rule matrix (RS — mT, RS, RS + mT)

Accept the output matrix (OM)

Start the iteration by computing Error £ = (OM — LRM)

Use activation function E = (—.=) to minimise the error.

LRM1 =LRM + E

o If (LRMI <= OM) then

e Final output O1 = LRM1
Else
e LI: LRMI1 =LRM + E
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Table 3 Sample rule set
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S.No. | Malware Spyware Rootkit Trojan Phishing Antivirus
check check check check check software

1. Excellent Excellent Excellent Excellent | Excellent Excellent

2. Good Good Good Good Excellent Good

3. Average Average Average Average Excellent Average

4. Fair Fair Fair Fair Excellent Fair

5. Poor Poor Poor Poor Excellent Poor

6. Excellent Excellent Excellent Excellent Good Excellent

7. Good Good Good Good Good Good

8. Average Average Average Average Good Average

9. Fair Fair Fair Fair Good Fair

10. Poor Poor Poor Poor Good Poor

11. Excellent Excellent Excellent Excellent | Average Excellent

12. Good Good Good Good Average Good

13. Average Average Average Average Average Average

14. Fair Fair Fair Fair Average Fair

15. Poor Poor Poor Poor Average Poor

16. Excellent Excellent Excellent Excellent | Fair Excellent

17. Good Good Good Good Fair Good

18. Average Average Average Average Fair Average

19. Fair Fair Fair Fair Fair Fair

20. Poor Poor Poor Poor Fair Poor

21. Excellent Excellent Excellent Excellent Poor Excellent

22. Good Good Good Good Poor Good

23. Average Average Average Average Poor Average

24. Fair Fair Fair Fair Poor Fair

25. Poor Poor Poor Poor Poor Poor

26. Excellent Excellent Excellent Excellent Excellent Excellent

27. Good Good Good Excellent | Good Good

28. Average Average Average Excellent | Average Average

29. Fair Fair Fair Excellent Fair Fair

30. Poor Poor Poor Excellent | Poor Poor

31. Excellent Excellent Excellent Good Excellent Excellent

32. Good Good Good Good Good Good

33. Average Average Average Good Average Average

34, Fair Fair Fair Good Fair Fair

35. Poor Poor Poor Good Poor Poor
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If (LRM1 > OM)

e Ol =LRM1
Else
e (LRM1 =LRMI1 + E)

Repeat iteration until LRM1 value is > OM.

Goto L1.

Compute RMSE, RRSE, RAE and MAE for final value of O1.
End the procedure.

4 Simulation Results

The algorithm was simulated on Java platform with several IT-related issues like
Antivirus, Data backup strategies, hardware maintenance. Simulations were carried
out on fuzzy rule sets with about 500 rules.

Root Mean Square Error (RMSE)
Root Relative Square Error (RRSE)
Relative Absolute Error (RAE)
Mean Absolute Error (MAE).

4.1 Root Mean Square Error (RMSE)

It is the square root of the mean of the squared difference between the Output
Matrix (OM) and Trained Learning Rule Matrix (LRM1). It is given by the
equation

RMSE = %i (OM(i) — LRM1(i))* (3)

i=1

where n is the number of sample values of the data set under consideration.

4.2 Root Relative Square Error (RRSE)

It is defined as the normalised version of the total squared error to the total squared
error of the prediction made.
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=n

S~ (LRMI (i) — OM(i))?

RRSE = |=— “)
> (OM(i) —A~)?
i=1
where A~ is the average of the n sample values.
A~ = L i OM(i) (5)
= l

4.3 Relative Absolute Error (RAE)

It is defined as the total absolute error normalised to the total absolute error of the
prediction made.

§|(LRM1(1') — OM(i))]

RAE ="=— (6)
; (OM(i) — A~)|
where A ~ is the average of the n sample values.
1 i=n
A~ == OM(i 7
22 OM(D ™)
4.4 Mean Absolute Error (MAE)
It is defined as the error difference for the n samples considered.
3 (OM(i) — LRMI (i)
MAE = =! (8)

n

The results of the fuzzy-based approach proposed in this work have been
compared with the four conventional machine learning algorithms listed below:

1. Naive Bayes Classifier
2. Support Vector Method (SVM)
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3. Regression Analysis
4. Artificial Neural Networks (ANN).

4.5 Comparison with Naive Bayes Classifier

The results of the proposed fuzzy-based approach are compared with Naive Bayes
Classifier. The reduction in Error for the parameters RMSE, RRSE, RAE and MAE
when compared with the Naives Classifier method are 21, 17, 18 and 27%
respectively as indicated in Table 7.

4.6 Comparison with Support Vector Method (SVM)

The reduction in Error for the parameters RMSE, RRSE, RAE and MAE for the
proposed work when compared with the Support Vector Method are 32, 10, 17 and
17% respectively as indicated in Table 8.

4.7 Comparison with Regression Analysis

The reduction in Error for the parameters RMSE, RRSE, RAE and MAE for the
proposed fuzzy-based approach when compared with the Regression Analysis
Method are 13, 4, 7 and 23% respectively as indicated in Table 9.

4.8 Comparison with Artificial Neural Networks (ANN)

The reduction in Error for the parameters RMSE, RRSE, RAE and MAE for the
proposed fuzzy-based approach when compared with the Artificial Neural
Networks method are 34, 21, 17 and 32% respectively as indicated in Table 10.

4.9 Summary

The reduction in error for the proposed work compared to conventional approaches
is shown in Table 11.

The average reduction by using the fuzzy learning method for RMSE, RRSE,
RAE and MAE are 25, 13, 15 and 25% respectively as indicated in Table 11.
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Table 11 Summarisation of results of comparison for error reduction

S.No. Conventional approach Reduction in error (%) for Fuzzy
based approach
RMSE |RRSE |RAE MAE
1 Fuzzy approach versus Naive 21 17 18 27
Fuzzy approach versus SVM 32 10 17 17
3 Fuzzy approach versus Regression 13 4 7 23
analysis
4 Fuzzy approach versus Artificial neural 34 21 17 32
networks
Average 25 13 14.75 | 24.75

The average of these values would be 20%. Hence, the fuzzy learning method
reduces error compared to conventional approaches by 20%.

5 Conclusion

A fuzzy-based learning approach has been proposed in this work. The fuzzy
learning approach reduces the error by 20%. This approach computes the rule
strength and chooses rules with rule strengths greater than the threshold limit for
effective learning. The learning approach uses a predictive range for the linguistic
variable, which is chosen before commencing the training process.

6 Future Work

The work can be extended by making this training process fully unsupervised by
generating rule strengths using random function and then completing the entire
process. The random unsupervised learning approach could later be implemented
using Raspberry Pi as hardware for several applications like healthcare analytics,
stock market, etc.
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