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Abstract High-dimensional data clustering is gaining attention in recent years due
to its widespread applications in many domains like social networking, biology, etc.
As a result of the advances in the data gathering and data storage technologies,
many a times a single data object is often represented by many attributes. Although
more data may provide new insights, it may also hinder the knowledge discovery
process by cluttering the interesting relations with redundant information. The
traditional definition of similarity becomes meaningless in high-dimensional data.
Hence, clustering methods based on similarity between objects fail to cope with
increased dimensionality of data. A dataset with large dimensionality can be better
described in its subspaces than as a whole. Subspace clustering algorithms identify
clusters existing in multiple, overlapping subspaces. Subspace clustering methods
are further classified as top-down and bottom-up algorithms depending on strategy
applied to identify subspaces. Initial clustering in case of top-down algorithms is
based on full set of dimensions and it then iterates to identify subset of dimensions
which can better represent the subspaces by removing irrelevant dimensions.
Bottom-up algorithms start with low dimensional space and merge dense regions by
using Apriori-based hierarchical clustering methods. It has been observed that, the
performance and quality of results of a subspace clustering algorithm is highly
dependent on the parameter values input to the algorithm. This paper gives an
overview of work done in the field of subspace clustering.
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1 Introduction

Clustering is an essential data mining task for summarization, learning, and seg-
mentation of data. It has been applied for target marketing, machine learning,
pattern recognition, and statistics. Clustering is an exploratory data analysis task
and aims to discover groups of similar objects called as clusters from input data set.
The objects belonging to the same cluster must be highly similar whereas objects
from different clusters must be highly dissimilar. Desired properties of the clus-
tering algorithm are completeness, stability, homogeneous and significant results
and efficiency.

1.1 The Curse of Dimensionality

Data analytics and machine learning is an evolving area. The grand challenge in this
research lies in dealing with ever-increasing amounts of high-dimensional data
gathered from multiple sources and different modalities. Bellman [1] refers to the
combinatorial explosion that is observed in a data mining task implied due to
processing of large number of dimensions as curse of dimensionality. This is due to
the fact that, high dimensionality increases the computational complexity and
memory requirements. It can adversely degrade underlying algorithm’s perfor-
mance. Clustering is usually done based on distance notations like the Euclidean
distance and due to increased dimensionality distance between data points become
meaningless. Additional dimensions spread the data points further apart as shown in
Fig. la. With one dimension, half of the points were in a unit bin. If second
dimension is added, data gets stretched as shown in Fig. 1b and the points get
spread out further, pulling them apart, resulting in only about a one fourth of the
points into a unit bin. Further addition of a third dimension again spreads the data
and a unit bin holds only a few points as shown in Fig. 1c. When the dimensionality
of the data becomes too large, the points then are all almost equidistant [2, 3] and
distance between the points tend to zero as shown in Fig. 2. Hence large amount of

Dimension b
Dimension ¢

\
Dimension b

= - e A Dimension a
Dimension a

(a) 11 Objects in One Unit Bin (b) 6 Objects in One Unit Bin (c) 4 Objects in One Unit Bin

Dimens_iona

Fig. 1 The curse of dimensionality [l]—data becomes extremely sparse with increasing
dimensions
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data objects are required to satisfy a given density threshold. This fact badly affects
performance of clustering algorithms as cluster membership is mainly determined
based on distance between and density of data points.

The curse of dimensionality has many aspects. First, in a dataset, all attributes
may not contribute to define a certain cluster. Rather the clusters may be present in
subspaces. Second, a different subset of attributes may be involved in defining
different subspace clusters. Hence a global feature selection procedure may not be
applicable to identify attributes contributing to subspace clusters. Third, two sub-
space clusters might be overlapping, i.e., data point belonging to one subspace
cluster C1 can be member of another subspace cluster C2. Hence subspace clus-
tering requires appropriate feature selection methods which are different from the
methods for traditional clustering based on density or partitioning of data.

In high-dimensional data, not all of the attributes are important for good clusters.
Some of the attributes may be simply “noise”. The problem is further worsened by
the fact that, objects may be related in different subsets of dimensions in different
ways and also due to fact that, some of the attributes might also be correlated.
Keeping these facts in view, approaches like feature transformation and feature
selection have been suggested. Feature transformation methods uncover latent
structure in datasets to create combinations of the original attributes and summarize
given dataset in fewer dimensions. When the number of irrelevant attributes is
large, these methods are rendered irrelevant as they preserve the distance between
the objects. As the new features are combination of original features, it is difficult to
interpret them. Feature selection is one of the dimensionality reduction techniques
and is often applied as a preprocessing step to remove noisy features. It identifies
most relevant attributes for the data mining task at hand. This is achieved by
evaluating various feature subsets using some criterion. These methods are further
classified as: (i) global versus local where global methods find features from
complete dataset whereas local methods find features relevant for each individual
cluster. (ii) wrapper (with feedback) versus filter (blind-without feedback) where
the filter approach selects features based on criteria such as pair wise constraints,
mutual information, Laplacian score, chi-square test, etc. then evaluate the attri-
butes, rank them before applying selection criteria. Wrapper methods formulate the
problem as a search problem. Different combinations of the features are prepared.
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These combinations are evaluated and a comparison with other combinations is
done. Combinations of features are scored based on model accuracy using a pre-
dictive model. Embedded methods like regularization methods for feature selection
are based on learning which features best contribute to the accuracy of the model.
The learning is done while the model is being created. However the feature
selection methods have a critical limitation that, they cannot uncover relations
between objects in multiple, overlapping sub-dimensional spaces.

2 Subspace Clustering

In subspace clustering, clusters are identified in subset of attributes. Subspace
clustering algorithms can be considered as an extension to feature selection
methods which identify most relevant attributes by evaluating various feature
subsets using some criterion. The clustering process first identifies the projections in
which clusters may reside and then applies a clustering algorithm in identified
subspace. A search method is required to identify subsets of attributes and then they
are evaluated based on certain criteria. In subspace clustering object similarity is
measured based on the selected attribute subset. For given a database DB with a set
Dim of dimensions, clustering result can be denoted as a set C = {(Cy, Ay), ..., (Cy,
Ap)} where C; C DB and A; C Dim. Figure 3 illustrates an example of subspace
clustering.
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Fig. 3 Example for subspace clustering
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3 C(lassification of Basic Subspace Clustering Approaches

The desirable property of any subspace clustering algorithm is that, it should
identify all possible sets of subspace clusters. Also it must be ensured that, the
outcome of clustering process must produce the same set of clusters during every
run. Efficiency is another aspect of subspace clustering algorithms. The algorithms
can be made to handle large data by applying proper heuristics to prune
non-significant results. The results of subspace clustering should be easily inter-
pretable. There are three major variants of subspace clustering, viz. the grid-based,
window-based, and density-based. The homogeneity of attributes can be identified
based on similarity between objects, density of objects, etc., depending on the
criteria applied by clustering method.

3.1 Grid-Based Subspace Clustering

In this approach, data space is divided into axis-parallel cells [4]. Then the cells
containing objects above a predefined threshold value given as a parameter are
merged to form subspace clusters. Number of intervals is another input parameter
which defines range of values in each grid. Apriori property is used to prune
non-promising cells and to improve efficiency. If a unit is found to be dense in
k — 1 dimension, then it is considered for finding dense unit in k dimensions. If grid
boundaries are strictly followed to separate objects, accuracy of clustering result is
hampered as it may miss neighboring objects which get separated by string grid
boundary. Clustering quality is highly dependent on input parameters.

3.2 Window-Based Subspace Clustering

Window-based subspace clustering [5] overcomes drawbacks of cell-based sub-
space clustering that it may omit significant results. Here a window slides across
attribute values and obtains overlapping intervals to be used to form subspace
clusters. The size of the sliding window is one of the parameters. These algorithms
generate axis-parallel subspace clusters.

3.3 Density-Based Subspace Clustering

A density-based subspace clustering approach—SUBCLU is proposed by Kailing
et al. (2004). It drops use of grids to overcome drawbacks of grid based subspace
clustering algorithms. A cluster is defined as a collection of objects forming a chain
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which fall within a given distance and exceed predefined threshold of object count.
Then adjacent dense regions are merged to form bigger clusters. As no grids are
used, these algorithms can find arbitrarily shaped subspace clusters. Clusters are
built by joining together the objects from adjacent dense regions. These approaches
are prone to values of distance parameters. The effect curse of dimensionality is
overcome in density-based algorithms by utilizing a density measure which is
adaptive to subspace size.

3.4 Other Prominent Approaches

Overlapping cluster algorithms like CLIQUE [4], ENCLUS (ENtropy based sub-
space CLUStering) [6], MAFIA [7], SUBCLU [8], FIRES [9] try to enumerate all
possible subspace clusters. When a data object belongs to many subspace clusters,
the clustering is called overlapping. When each data object is member of a unique
cluster or marked as outlier, the clustering is non-overlapping. Some of the
non-overlapping approaches are PROCLUS [10], DOC [11], PreDeCon [12], etc.
Lance et al. [13] classify subspace clustering as top-down- and bottom-up algo-
rithms based on the strategy used to identify cluster subspaces. In bottom-up
approach cluster discovery starts from individual attributes and then the subspaces
grow to higher dimensional space. For pruning the search space APRIORI property
of density is used. Candidate subspaces for the next higher level of dimension sets
is formed only from the lower level dense regions. CLIQUE, OPTIGRID [14],
DENCOS [5], MAFIA, SUBCLU, FIRES are some of the bottom-up approaches.

In top-down subspace clustering approach, all dimensions are initially part of a
cluster and are assumed to equally contribute to clustering. In the subsequent
iterations, importance of each dimension is recalculated and clusters are regener-
ated. This requires multiple iterations over full set of dimensions. The performance
can be improved by making use of sampling technique. Due to top-down parti-
tioning of the data, each data object can be member of a unique cluster. Some of the
algorithms additionally identify outliers as a separate group. For meaningful results,
parameter tuning is necessary. Further classification of this approach is per cluster
weighting methods and per instance weighting methods. Few of the Top-down
Algorithms are FIND-IT, ORCLUS [15], PROCLUS [10], COSA [16],
O-CLUSTERS [17]. Figure 4 presents a hierarchy of these two prominent classes of
subspace clustering algorithms. Clustering oriented subspace clustering relies on
predefined parameters such as the expected number of clusters, average dimen-
sionality of clusters, etc. These algorithms try to optimize the solution and hence
each data point is assigned to a cluster which results in assigning noise objects to
some clusters.

In a dataset, when an object belongs to a cluster, the variance of the occurring
values is less compared range of all other attributes. This geometrical intuition lead
to identification of a cluster which contains data points which are densely clustered
along relevant attributes. The resulting cluster is an axis-parallel subspace cluster.
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Fig. 4 Hierarchy of subspace clustering algorithms based on search strategy

Basic subspace clustering algorithms like CLIQUE, projected clustering algorithms
fall under this category. The algorithms which result in arbitrary oriented subspaces,
e.g., ORCLUS use the knowledge that, members of a subspace cluster are always
close to the plane in which the subspace resides and use this information for cluster
interpretation. Hard subspace clustering algorithms assume that all features have
equal importance in forming a subspace whereas soft subspace clustering algo-
rithms proceed by assigning a weight to each dimension based on its contribution to
clustering.

4 Enhancements to Traditional Subspace Clustering

Although basic subspace clustering approaches look efficient in solving the clus-
tering problem, they have certain major drawbacks. These algorithms can tackle
quantitative 2-D data in format of object X attributes, but they are not customized to
handle the data in 3-D format, i.e., having dimensions—objects, attributes and time
stamp. Similarly, most of them cannot handle complex data such as categorical or
streaming data. When the data is in 3-D format, it is rare that clusters can be found
in every timestamp of the dataset when the data contains large number of times-
tamps and there is a need to develop efficient algorithms for mining 3D data.
Distance measures applicable to numeric data cannot be applied directly to cate-
gorical data as they do not have natural order. Hence devising subspace clustering
algorithms for categorical data is another challenge. Many real world data sets
contain missing or erroneous values. Therefore, any subspace clustering algorithm
working on real-world dataset must handle these datasets properly without affecting
accuracy of the results.
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Mostly all of the available subspace clustering algorithms work based on
parameters values given by user at run time. It has been observed that, clustering
output is very much sensitive to the input parameters and outcome varies drastically
with minor changes in parameter values. Intuitively setting right values of
parameters that will result in good clustering is very much difficult. Hence there is a
need to overcome this parameter-sensitivity of subspace clustering algorithms.
Domain knowledge or knowing data distribution can help for setting parameters.
Sometimes, semi-supervised subspace clustering algorithms can be used to guide
parameter setting process. When subspace clusters are overlapping, i.e., when an
object may belong to multiple subspace clusters, it may result into explosion of
clusters, i.e., too many subspace clusters may be enumerated. This is an undesirable
solution as it may lead to too many interpretations of the same data. Hence it is
desirable that, only significant subspace clusters which represent true and mean-
ingful information of out the data should be enumerated. This can be achieved in
two ways. First as a preprocessing step all significant subspaces can be mined, and
then subspace clusters can be identified from these subspaces as in filter approach of
feature selection [18]. In the second approach, what is significant in terms of
subspace clusters is first defined and then the clustering algorithm mines these
clusters directly.

5 Evaluation of Subspace Clustering

Evaluation of clustering output is a complex work. A clustering algorithm is
evaluated in terms of execution time and quality of clustering results. Quality of
clustering is defined in terms of compactness of a cluster and separation between
different clusters and the same is true for subspace clusters. The motivation behind
any clustering is to disclose the hidden information in the data as accurately as
possible. Hence it is desirable to detect a minimum number of meaningful subspace
clusters. There are various clustering quality indexes proposed in literature [19].
However there is lack of standardized guidelines for evaluation of clustering out-
come. For a novice researcher, it is a dilemma which clustering quality index is to
be used use for a particular dataset. Silhouette index, Simplified Silhouette index,
Dunn index, Davies—Bouldin index, Isolation index, PBM index, Point-biserial
index, RS index, Rand index are some of the indexes which can be used for the
evaluation. In [2], the authors have analyzed some of the standard clustering quality
measures and it reveals that, with increasing dimensionality different clustering
quality indexes are affected in different ways and conclude that selecting a clus-
tering quality index for high-dimensional data is nontrivial.

Liu et al. (2010) identify major criteria for evaluation of the clustering algo-
rithms based on quality of the results produced namely, the results should be
non-monotonous, the algorithm should be robust to noise, it should properly handle
varying cluster density and skewed distributions of the data. Compactness of
clusters and separation between the clusters are termed as internal clustering quality
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indexes. How well the data is partitioned is measured by external quality indexes.
Miiller et al. [20] present a common framework for evaluating major subspace
clustering paradigms. Entropy, Fl-measure and accuracy are some of the object
based measures which mainly relate to (i) purity of clusters identified, (ii) an
algorithm’s power to discover hidden clusters and (iii) correctness of the algorithm
in assigning objects to a cluster respectively. Relative non intersecting area (RNIA)
is an object and subspace based measure to find the extent to which found
sub-objects cover true sub-objects. Drawback of RNIA measure is that it cannot
find if a true cluster is correctly covered by several found clusters or exactly one
found cluster covers the true cluster. On the contrary, the clustering error (CE) is
advancement over RNIA measure that maps each found cluster to at most one
ground truth cluster and also each ground truth cluster to at most one found cluster.
Intersection of sub-objects is determined for each such mapping of two clusters.
After summing up the individual values give value I' which when substituted in
place of 7 in the RNIA formula will give the CE-value. Thus CE-value penalizes the
clustering results producing many smaller clusters. WEKA [21] is an open source
framework containing various well known algorithms in clustering, classification,
feature selection and association rule mining. It provides facility for visualization of
the results. An open source framework OpenSubspace [22] can be used for eval-
uation of projected and subspace clustering algorithms in WEKA.

5.1 Results Obtained from Earlier Work

Miiller et al. have systematically evaluated major paradigms of subspace clustering
using OpenSubspace. The study highlights that, SUBCLU and CLIQUE have
comparable F1 and Accuracy, but have to pay penalty in terms of RNIA and CE as
they try to detect many clusters even more than the count of objects in the dataset as
it tries to cover all of the data including noise. This also results into increased
runtimes. SUBCLU does not even finish for the biggest real world data set,
pendigits. The recent cell-based paradigms show best results with low runtimes.
The distance-based approaches also face the problems of high runtimes. Clustering
oriented approaches have easy parameterization as these settings decide on clus-
tering output and they show reasonable runtimes. Cell-based approaches like
CLIQUE and SUBCLU produce many more clusters in an attempt to achieve good
results whereas clustering oriented approaches tend to produce comparatively few
clusters.

Generally, high-quality results are paid with high runtime. But even in some
algorithms meaningful results are not obtained within tolerable timeframe due to
high runtimes even up to several days (for dimensionality >25). Hence practical
application of such an algorithm with such high runtimes on high dimensionalities
is infeasible. Hence a subspace clustering algorithm must have to find the trade-off
between output quality and runtime. Also it is observed that cluster detection time
increases with the number of objects. Several heuristics must be applied for having
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an efficient computation with acceptable accurate results. For neighborhood density
computation, the density-based approaches have expensive database scans and
hence they do not scale as dimensionality increases. DOC and MINCLUS are found
to be good in handling noisy data. There are certain open issues in subspace
clustering. Tuning parameter setting is a nontrivial task and usually guesswork is
involved. Hence there is a need to have parameter-insensitive algorithms for sub-
space clustering. For time series data, there is need to identify proper search space
pruning strategy. Appropriate post-processing methods for limiting output clusters,
organizing the output clusters and formulating models to represent the output are
necessary to uncover the information extracted from subspace clusters to useful
knowledge.

6 Conclusion

High-dimensional data clustering is a challenging task which first requires formu-
lating how a cluster needs to be represented. Many a times even though a dataset
has lots of dimensions, only few of them are of importance for extracting knowl-
edge and rest are noise. Subspace clustering algorithms solve this problem by
finding clusters on subsets of attributes and objects. This has the advantage that,
those patterns which may be missed by full dimensional clustering are also
uncovered. A subspace clustering algorithm must ensure that the subspace pro-
jections must be dissimilar and at the same time must not be redundant.
Performance of a subspace clustering algorithm is highly dependent on tuning
parameters. It has been observed that, when dimensionality of the data increases,
accuracy subspace clustering decreases with tremendous increase in runtime. Proper
validation techniques must be applied to avoid spurious clusters. The quality
evaluation of results obtained from subspace clustering algorithms is challenging as
different subspace clustering approaches lead to different cluster characteristics and
topologies. Fair and comparable evaluation based on objective evaluation measure
of detected subspace clusters is of major importance. In synthetic datasets the best
clustering is already known. But such a data might miss variations present in
real-world data. Review of recent approaches for subspace clustering highlight that,
cell-based approaches outperform in terms of efficiency and quality for low to
medium dimensionality. It is also shown that instead of enumerating all subspace
clusters which may contain many redundant clusters, outputting a few relevant
clusters achieves best results. Further research direction in this field can be reducing
database scans, automatic detection of clustering parameters based on data distri-
bution, improving execution time and enhancements in existing algorithms to
handle complex data.
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