
Optimizing Deep Convolutional Neural
Network for Facial Expression
Recognitions

Umesh Chavan and Dinesh Kulkarni

Abstract Facial expression recognition (FER) systems have attracted much
research interest in the area of Machine Learning. We designed a large, deep
convolutional neural network to classify 40,000 images in the dataset into one of
seven categories (disgust, fear, happy, angry, sad, neutral, surprise). In this project,
we have designed deep learning Convolution Neural Network (CNN) for facial
expression recognition and developed model in Theano and Caffe for training
process. The proposed architecture achieves 61% accuracy. This work presents
results of accelerated implementation of the CNN with graphic processing units
(GPUs). Optimizing Deep CNN is to reduce training time for system.

Keywords Convolutional neural network � Deep learning � Graphical processing
unit (GPU)

1 Introduction

1.1 Background

Facial expression recognition have found applications in technical fields such as
Human–computer Interaction (HCI) which detect people’s emotions using their
facial expressions and security monitoring [1]. Use of Machine learning is powerful
approach to detect and classify images. To improve their performance, it is nec-
essary to collect larger datasets, as well as need to build powerful models. The
weakest point of machine learning is that it cannot do feature engineering. The
limitations of machine learning in many cases learned model does not generalize
well. An algorithm can only work well on data with assumption of the training data.
The biggest drawback is it is time consuming for learning with large datasets with
powerful model. Deep Learning (DL) is a new advancement in area of machine

U. Chavan (&) � D. Kulkarni
Walchand College of Engineering, Sangli, Maharashtra, India
e-mail: umesh.chavan@walchandsangli.ac.in

© Springer Nature Singapore Pte Ltd. 2019
V. E. Balas et al. (eds.), Data Management, Analytics and Innovation,
Advances in Intelligent Systems and Computing 808,
https://doi.org/10.1007/978-981-13-1402-5_14

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1402-5_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1402-5_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1402-5_14&domain=pdf

learning research whose motivation is moving closer to the objective of Artificial
Intelligence (AI). Convolutional neural networks (CNNs) are a special kind of DL
method. CNNs are useful in the area of computer vision. Facial expression
recognition (FER) techniques detect people’s emotions using their facial expres-
sions. We build a model for FER using deep CNN. CNNs have much fewer
parameters as compared to neural networks. So they are easier to train. More
training time in CNN with large dataset is major bottleneck. We designed model in
Theano framework [2] and exploited Graphics Processing unit (GPU) computation.
The result shows that it is achieving 2–5 times speedup with training on GPU. Also
shows that it achieves 61% accuracy. Our intention is to exhibit the performance
and scalability improvement for FER using deep CNN.

2 Convolution Neural Network (CNN)

A CNN [3] is an advance in neural network evolution. It consists of sequences of
one or more convolutional layers (CLs). CL’s are mostly with pooling layers (PLs).
PLs are succeeding by one or more fully connected layers (FCs), FCs are just as
standard neural network. Accurate and correct feature extraction is necessary. This
is the base for CNN. Input to a neural network is fed from output of feature
extractor. It is challenging work to select a “suitable” feature extractor. It cannot
adapt to network configuration. It is not part of learning procedure. These layers
arranged in feed-forward structure as shown in Fig. 1. In a CNN only a small
region/subset of input layer connects neurons in hidden layer. These regions are
referred as Local receptive fields. The local receptive field is translated across an
image to create a feature map. It can use convolution to implement this operation
efficiently. So it’s called as a CNN. The typical neural network has parameters—
weights and biases [4]. The model learns these values during the training process
and it’s continuously updates with each new training examples. However, in the
case of CNN, weights and bias values are the same for all hidden neurons in a given
layer. This means that all hidden neurons detect the same feature such as an edge or

Fig. 1 A typical CNN model

186 U. Chavan and D. Kulkarni

blobs in different regions of the input image. This makes network tolerant to
translation of object in an image. Activation step applies the transformation to the
output of each neuron by using activation functions Rectified Linear Unit com-
monly known as a ReLUs [5]. Most DL network use ReLU for hidden layers. The
power of ReLU is it trains much faster is more expressive than other alternatives—
logistic function. Also ReLU prevents the gradient vanishing problem. It takes
output of neurons and maps it the highest positive value or if the output is negative
the function maps it to zero. We can further transform the activation step by
applying a pooling step. Pooling reduced the dimensionality of the feature map by
condensing the output of small regions of neurons into a single output. The CNN
with its layer(s) is briefly explored in [6].

3 GPU (Graphics Processor Units) Programming

GPUs are massively parallel numeric processors. It is programmed in C with
extensions for GPU programmers. It has application programming interfaces for
programmers. It takes advantages of heterogeneous computing systems that contain
both CPUs and massively parallel GPU’s. For a GPU developer, the computing
environment consists of a host that is traditional CPU and one or more devices that
are processors with massive number of arithmetic units. GPU is a typically known
as device in CUDA. Use of GPUs together with a CPU is GPU-accelerated com-
puting. It accelerates deep learning applications. This work presents results of
accelerated implementation of the deep CNN in graphic processing units (GPUs)
for FER.

3.1 CUDA Programming Architecture

CUDA architecture allows the programmer to write one code that will run on both
CPU and GPU. In CUDA GPU is referred as a device and CPU is referred as Host.
CUDA assumes that the device and the host have their own separate memories
where they store data. The function that executes on GPU is known as a Kernel.
The kernel is invoked and executed by 100 s or even 1000 s of threads at a time.
The CPU launches the kernels with a specific syntax to let GPU know how many
threads should be used. The kernel function reserves memory in the device on board
global memory. It takes one of the device’s pointers as the first argument and the
second argument is how many bytes to reserve. This function copies data from the
host and device memories. CUDA provides a scalable approach to express paral-
lelism. The CUDA is suitable for large amount of data and having lots of com-
putations like image convolution. It achieves high throughput. CUDA uses
thousands of threads executing in parallel, all these threads are executing the same
function which is known as a kernel. Programmer can organize threads into blocks.

Optimizing Deep Convolutional Neural Network … 187

These thread blocks are again arranged into grids of multiple thread blocks. All
thread blocks at the same time work together through shared memory. A thread
block has its own ID for its grid. Streaming microprocessors (SMs) are the part of
GPU that actually runs this kernel. SMs are the heart of the architecture. They
perform computations which have their own control units, execution pipelines,
caches and registers. A typical CUDA architecture is shown in Fig. 2.

3.2 System Design

We built a CNN that has two convolution layers and two fully connected
(FC) layers. In the first convolution layer, have 20, 5 � 5 filters with pooling. In the
second convolution layer, we had 20, 5 � 5 filters and also pooling. In all con-
volution layers ReLU activation function is used. In the first FC layer it have 500
neurons and in second FC layer have 300 neurons. In both FC layers same as in the
convolution layer we used ReLU activation function. Also we used softmax as loss
function. We trained the network for varying number of epochs on each run (for 2,
10, 30, 50, 70 epochs) and with batch size of 30 samples. We cross-validated the
hyper-parameters.

Fig. 2 CUDA programming model

188 U. Chavan and D. Kulkarni

3.3 CNN Model

For an image with a size M � N of and kernels with a size of m� n, the convo-
lution is represented as

zðkÞij ¼
Xm�1

s¼0

Xn�1

t¼0

wðkÞ
st xðiþ sÞðjþ tÞ ð1Þ

Here w is the weight of the kernel, which is the model parameter. Above Eq. (1)
is for one kernel. For multi-convolution layers, the equation is

zðkÞij ¼
X

c

Xm�1

s¼0

Xn�1

t¼0

wðk;cÞ
st xðcÞðiþ sÞðjþ tÞðiþ sÞðjþ tÞ ð2Þ

Here, c denotes the channel of the image. If the number of kernels is k and the
number of channels is c, we have w 2 Rk�c�m�n. Then we see from the Eq. (2) that
the size of convolved image is (M − m + 1) � (N − n + 1). After the convolution,
all the convolved values will be activated by the activation function. We will
implement CNN with the ReLU (rectified Linear Unit) function. With the activation
we have

aðkÞij ¼ hðzðkÞij þ bðkÞ ¼ maxðo; zðkÞij þ bðkÞÞÞ ð3Þ

where b 2 Rk, a one-dimensional array. Next is the max-pooling layer. The prop-
agation can simply be expressed as

yðkÞij ¼ maxðzðkÞðl1iþ sÞðl2jþ tÞÞ ð4Þ

Here l1 and l2 are the size of pooling layers and s 2 ½0; l1�; t 2 ½0; l2�.
Usually l1 and l2 are set to same sizes (2 or 4). The simple Multilayer Perceptron

Network (MLP) follows after sequences of convolutional layers and pooling layers
to classify data. MLP can accept one-dimensional data. Output of CLs and PLs are
two-dimensional, we need to flatten the down sampled/pooled data as preprocessing
to adapt it to input to input layer of MLP. The error from input layer of MLP is
back-propagated to the max-pooling layer, and this time it is un-flattened to two
dimensions to be adapted properly to the model. Max-pooling layer simply
back-propagates error to its previous layer as max-pooling layer does not have
parameters. The equation can be expressed as

@E

@
ðkÞ
ðl1iþ sÞðl2jþ tÞ

¼
@E
@yðkÞij

0

(
if; yðkÞij ¼ aðkÞðl1iþ sÞðl2jþ tÞ ð5Þ

Optimizing Deep Convolutional Neural Network … 189

Here E denotes the evaluation function, the error is then back-propagated to the
CL, and with it can calculate the gradient of the weight and bias. Gradient of bias is
represented as

@E
@bðkÞ

¼
XM�m

i¼0

XN�m

j¼0

@E

@aðkÞij

@aðkÞij

@bðkÞ
ð6Þ

@
ðkÞ
ij ¼ @E

@aðkÞij

ð7Þ

cðkÞij ¼ zðkÞij þ bðkÞ ð8Þ

Then we get,

@E
@bðkÞ

¼
XM�m

i¼0

XN�m

j¼0

dðkÞij @
ðkÞ
ij

@aðkÞij

@cðkÞij

@cðkÞij

@bðkÞij

¼
XM�m

i¼0

XN�m

j¼0

dðkÞij h0ðcðkÞy Þ ð9Þ

In the same way the gradient for weight (kernel) is

@E

@wðk;cÞ
st

¼
XM�m

i¼0

XN�m

j¼0

dðkÞij h0ðcðkÞy ÞxðcÞðiþ sÞðjþ tÞ ð10Þ

When we think for multi-convolutional layers it is necessary to calculate the
error of convolutional layers.

@E

@wðcÞ
st

¼
X

k

XM�m

s¼0

XN�m

t¼0

@E

@zðkÞiði�sÞðj�tÞ

@zðkÞiði�sÞðj�tÞ
@xðcÞij

¼ @E

@zðkÞiði�sÞðj�tÞ
wðk;cÞ
st ð11Þ

so, the error can be expressed as

@E

@xðcÞijst

¼
X

k

XM�m

s¼0

XN�m

t¼0

@
ðkÞ
ði�sÞðj�tÞh

0ðcðk;cÞði�s;j�tÞÞ ð12Þ

4 Experiments and Results

All benchmark in this paper were performed in machine having computation
platform with (1) CPU: AMD Phenom II X4 B97—processor; (2) GPU is GeForce
GTX520, compute capability 2.1, 48 cores. The software platform is composed of:
Ubuntu 14.04 Operating system, CUDA 7.5, Python with Theano. All training and
testing are in single precisions.

190 U. Chavan and D. Kulkarni

4.1 Program Code

In the part of code snippet; the model is created in Python having two convolutional
layers and one FC layer. The first CL has 32 filters of size 32 � 32. Second CL has
64 filters of 3 � 3 sizes. The object CNN is instantiated with parameters for CNN
layers.

def main():

X, Y = getImageData()

model = CNN(convpool_layer_sizes=[(32, 3,3), (64, 3, 3),(96,3,3),

(128,3,3)], hidden_layer_sizes=[200],

)

model.fit(X, Y,epochs=3,batch_sz=30)

if __name__ == ‘__main__’:

main()

4.2 Dataset

The experiment was conducted on the dataset provided by Kaggle [7] website for
Facial Expression Recognition Challenge [8]. This dataset consists of 37,000—
48 � 48 pixel gray-scale images of faces. Each image is labeled with one of seven
expression categories: Fear, Happy, Sad, Angry, Disgusts, Surprise, and Neutral.
We used a training set of 36,000 samples, a validation set of thousand examples.

The emotions are labeled in each image. Network is trained on the dataset, which
comprises 48-by-48-pixel gray-scale images of human faces each labeled with one
of seven expressions. Some samples images with labeled expression are shown in
Fig. 3. There are variations in the dataset considerably in scale, rotation, and
illumination.

4.3 Experiment

We built a CNN that had two convolution layers and two fully connected
(FC) layers. In the first convolution layer, we had 20, 5 � 5 filters with pooling. In
the second convolution layer, we had 20, 5 � 5 filters and also pooling. In all
convolution layers ReLU activation function is used. In the first FC layer we had 500
neurons and in second FC layer we had 300 neurons. In both FC layers same as in the
convolution layer we used ReLU activation function. Also we used softmax as our
loss function. Figure 4 shows the architecture of this deep network. We trained the
network for varying number of epochs on each run (for 2, 10, 30, 50, 70 epochs) and

Optimizing Deep Convolutional Neural Network … 191

with batch size of 30 samples. We cross-validated the hyper-parameters (Learning
rate, regularization, decay, epsilon, Batch size) as shown in Table 1. To make the
model training faster, we exploited GPU-accelerated deep learning facilities on
Theano [2] library in using Python.

Fig. 3 Example images from Kaggle dataset [7]

192 U. Chavan and D. Kulkarni

4.4 Results and Evaluation

The final validation accuracy we obtained is 61% for training with epochs =10.
Training loss plot is shown in Fig. 5. The confusion matrix for classification is
shown in Fig. 7. The performance in GPU speedup over Kaggle [7] FER 2013
dataset is shown in Table 2. We can see the performance improvement in speed of
execution time of CPU and GPU training with different number of epochs which is
shown in Table 2. The average speedup gain is approximately five times (Figs. 6
and 7).

5 Future Scope

The proposed work can be further extended by increasing the number of different
expressions other than the six universal expressions (anger, fear, disgust, joy,
surprise, sadness). The classification of other facial expressions may require the

Fig. 4 FER CNN architecture

Table 1 The
hyper-parameters for model

Parameters Value

Learning rate 0.00001

Regularization 0.0000001

Decay 0.9999

Epsilon 0.001

Batch size 30

Optimizing Deep Convolutional Neural Network … 193

extraction and tracing of additional facial points and corresponding features. The
system can be improved by using a wider training set so as to cover a wider range of
poses and cases of low quality of images.

6 Conclusions

Although topology structure of convolution neural network is simple, it still needs a
huge amount of work in calculation. NVIDIA GPU based on hardware architecture
of stream processor has significant improvement in face expression recognition
based on convolution neural network in support of programming model in CUDA.
Compared with CPU, it has amazing advantages. Experiments show that stream

Fig. 5 Execution time (in h) and speedup with GPU

Table 2 Performance:
execution time and accuracy

Epochs Execution time
(in minutes)

Speedup Accuracy (%)

CPU GPU

2 28 5 6 39

10 141 27 6 55

30 427 141 4 59

50 706 141 6 61

194 U. Chavan and D. Kulkarni

processor is suitable for convolution neural network. The results in this work show
that GPUs are just as fast and efficient for deep learning. In this work, we evaluated
their performance using different performance measurement and visualization
techniques. Some of the difficulties with improving this is that images are very
small and some cases it is difficult to distinguish which emotion is on each image.

Fig. 6 Training loss

Fig. 7 Confusion matrix

Optimizing Deep Convolutional Neural Network … 195

Bibliography

1. Pantic, M., & Rothkrantz, L. J. M. (2004). Facial action recognition for facial expression
analysis from static face images. IEEE Transactions on Systems, 34(3).

2. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., et al. (2010).
Theano: A CPU and GPU math compiler in Python. In Proceedings 9th Python in Science
Conference (pp. 1–7).

3. Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief
nets. Neural Computation, 18(7), 1527–1554.

4. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional. In Advances in Neural Information Processing Systems.

5. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann
machines. In ICML, 2010.

6. Chavan, U., & Kulkarni, D. (2016). Accelerating learning performance of facial expression
recognition using convolution neural network. International Journal of Control Theory and
Applications, 9(43).

7. www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-
challenge.

8. LeCun, Y., Cortes, C., & Burges, C. J. C. (1998). The MNIST database of handwritten digits.

196 U. Chavan and D. Kulkarni

http://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge
http://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge

	14 Optimizing Deep Convolutional Neural Network for Facial Expression Recognitions
	Abstract
	1 Introduction
	1.1 Background

	2 Convolution Neural Network (CNN)
	3 GPU (Graphics Processor Units) Programming
	3.1 CUDA Programming Architecture
	3.2 System Design
	3.3 CNN Model

	4 Experiments and Results
	4.1 Program Code
	4.2 Dataset
	4.3 Experiment
	4.4 Results and Evaluation

	5 Future Scope
	6 Conclusions
	Bibliography

