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Abstract Most of the current-day applications are data centric and involves lot of
data processing. Technologies like hadoop enable data processing with automatic
parallelism. Current-day applications which are more data intensive and compute
intensive can take advantage of this automatic parallelism and the methodology of
moving computation to data. In addition to it the Cloud computing technology
enables users to establish the required clusters with required number of nodes
instantly. Cloud computing has made easy for the users to execute large data
applications without any requirement to establish/maintain the infrastructure. As
cloud gives readily installed infrastructures, using hadoop on cloud has become
common. The existing schedulers are very effective in static cluster environments
but lack performance in virtual environments. The purpose of this work is to design
an effective capacity scheduler for MapReduce applications for virtualized envi-
ronments like public clouds by making scheduling decisions more intelligent using
the characteristics of job and virtual machines.
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1 Introduction

Hadoop [1] uses MapReduce framework where the given application executes in
parallel on multiple nodes. The data of application is divided into multiple chunks of
equal size and distributed to multiple nodes for processing. Map task perform the map
function of the application on a split of data and generates the key value pairs which
are further hashed and shuffled to an appropriate reduce task. Reduce task performs
reduce logic on the output (Key/Value pairs) received from different mappers.

There aredifferent schedulersprovided inhadooppackagewhicharepluggable.The
schedulers provided in hadoop package are FIFO, Capacity scheduler, Fair scheduler.
The default scheduler used in hadoop 2.0 is capacity scheduler. Our papers [2] can be
referred for description of schedulers provided in hadoop package. All the schedulers
provided in hadoop are optimal in fixed cluster environment. When executed in cloud
environments it does not give optimized performance as the cloud is completely vir-
tualized and each physical machine is shared by multiple virtual machines. Our paper
[3] gives the study of performance of virtual machines for MapReduce applications in
public cloud environment Amazon EMR. The execution time for hadoopMapReduce
jobs can be further optimized by making scheduling decision more intelligent. If
scheduling of MapReduce tasks considers the characteristics of virtual machine along
with the job characteristics, we can make optimal scheduling.

Capacity Scheduler [4] in hadoop works in the form of hierarchy of queues and jobs
are always placed in leaf queues. The available resources can be shared by multiple
queues according to the configuration given in capapcityscheduler.xml file. In this
paper we have improved the capacity scheduler by embedding the knowledge of
virtual machine state and the resource requirements of the job. The proposed work is
done in 3 modules: 1. Job resource requirements classification 2. Virtual machine state
classification 3. Scheduling based on the above two classifications. Our experiments
show that there is an improvement of 18–25% in the execution time of the hadoop jobs
on virtualized environments. Less execution time is a major factor in cloud environ-
ments as users pay as use for the infrastructures. Reducing the execution time when
executed on public clouds would reduce the costs incurred for cloud resources usage.

2 Background and Related Work

Capacity Scheduler is the default scheduler in Hadoop 2.0 [5]. One of the biggest
advantages ofHadoop ismulti-tenancy featurewhich enablesmultiple tenants to share
the cluster in such a way that resources are allocated to their applications in a timely
manner with respect to capacities allocated. Capacity scheduler enables sharing of
large cluster amongmultiple users givingminimum capacity guarantee. It ensures that
a single job/user/queue does not monopoly the resources available in the cluster.

Capacity scheduler mainly uses the concept of job queues and ensures capacity
guarantees for queues. It uses hierarchy of queues where jobs are submitted to leaf
queue. Certain capacity of resources is allocated to queues which can be used by the
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jobs submitted in the child leaf queues under it. The capacity guaranteed for the
queues is configurable. Free resources can be allocated beyond the capacity of the
queue also if not utilized by the other queues in the cluster. When an underutilized
queue needs resources, the resources released by the over utilized queue are allo-
cated to them. Hence elasticity is provided so that underutilized capacity of a queue
can be provided to queues that need more resources beyond its allocated capacity.

Once thefirst job is submitted to the queue all the resources are given to it.When the
job of other queue is submitted then further released resources are allocated to both the
queues in accordance to the capacities guaranteed to the queues. Capacity scheduler
does a static way to scheduling based on the resource requirements of the job and
resources available in the cluster. Though it gives best run times in cluster environ-
ments. It needs some improvements when executed in virtualized environments.

Otherworks done in the direction of schedulers have done optimizations in different
directions to decrease the execution time of the MapReduce applications. The authors
of [6] designed a context aware scheduler for Hadoop1.x which improves the overall
throughput of the system by leveraging the cluster heterogeneity. It schedules the tasks
by context, i.e., job characteristics and resource characteristics of the nodes in the
cluster.Theauthors neglected the IObound shufflephasewheremapoutputs aremoved
to the reducer. Their work mainly classifies the node statically to determine whether a
node is fast or slow. SAMR [7] self adaptive MapReduce scheduling algorithm in
heterogeneous environment adapts to the continuously varying environment auto-
matically by calculating the progress of tasks dynamically. It splits the given job into
many fine grained tasks and while executing these fine-grained maps and reduce tasks
stores the historical information on every node. Based on the historical information
SAMR will adjust the time weight of each stage of the map and reduce tasks.

The authors of [8] designed a fine-grained and dynamic MapReduce task
scheduling scheme for the heterogeneous cloud environment. Their work is also
based on collecting historical and real time online information from each node in
the cluster and selects the appropriate parameters in order to identify slow running
tasks. Nodes are statically classified as high performance and low performance
irrespective of the load on peer virtual machines running on the same physical node.

Research Work in [9] has a scheduling framework that takes into account the
actual resource requirements of the job. Their scheduler classifies tasks into
schedulable and non-schedulable classes based on whether a job will overload a
node. They used only CPU utilization but other job features need to be considered
relatively. Scheduling related works by different researchers [10–19] in the direc-
tion of dynamic resource allocation try to optimize the execution times in different
directions like cost, IO time, Network IO, reduce operation time, etc.

3 Proposed Work

In virtual environments each physical machine has multiple virtual machines hosted
on it and shares the resources in the physical machine and accesses them through
hypervisor. When a Hadoop cluster is created in a virtualized environment the
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performance is not similar to that of dedicated cluster environment. An optimized
scheduler is required for virtualized environments to schedule the Hadoop
MapReduce applications. A better performance can be obtained by including the
information related to job characteristics and VM characteristics in scheduling
decisions. When a job is scheduled to a VM its performance is very much affected
by the other virtual machines running on the same physical host. This is more
effective in the case of disk performance as every read/write operation done by a
VM goes through hypervisor and the disk I/O is shared by multiple VMs. This has
more effect in Hadoop jobs as the map/reduce application input/output are done to
disk. The amount of CPU and IO required by every job has different performance in
different VMs depending on the current CPU and IO usage of the VM and the other
VMs existing in the physical machine.

If job characteristics is understood to be whether it is CPU-intensive or
IO-intensive then a proper VM can be chosen to give better performance of the
MapReduce application execution. Scheduling can be made dynamic which includes
the features of job, current VM characteristics. Our proposed work is to design a
dynamic capacity scheduler which schedules MapReduce applications considering
the job and VM characteristics. As the amount of data processed except the last map
task is same and the map function applied is same, understanding the job charac-
teristics is easy after execution of few map tasks, which can be used in scheduling the
future map tasks of that job. Similarly if the current state/characteristics of every
virtual machine is regularly monitored and a tag is set regularly based on the amount
of CPU utilization and IO Utilization of each VM. If a VM is tagged to be using
more IO then that VM is more appropriate for a map task which is less IO-intensive.

To simulate our work, we used CloudSimEx [20] which is a MapReduce sim-
ulator and an extension of CloudSim simulator [21]. CloudSimEx has simulation
for both cloud environment and MapReduce execution. But as our scheduler is an
improvement over current capacity scheduler, we built the existing scheduling
model of capacity scheduler on CloudSimEx. To model capacity scheduler the
following changes are made to the CloudSimEx tool.

1. Limited number of virtual machines, the number of virtual machines required by
user is taken as parameter through cloud.yaml file as the cloud is usually rented
by specifying the number and type of machines required.

2. In cloudSimEx a scheduling plan is built for all cloudlets considering the virtual
machines available in the data centres and all cloudlets are submitted at a time.
Cloudlets are mapped to VMs initially itself. As number of VMs is restricted
based on user request, initial binding of cloudlets VM’s is removed. It is being
modelled in an incremental fashion. Cloudlets are submitted initially to VMs
based on the capacity guaranteed (Algorithm 1).

3. Job submissions are made through queues where each queue is associated with
capacity guarantee (queue_capacity). If queue_capacity is [60, 40] then 60% of
resources are assigned to queue1 and 40% of resources to queue2. If nVMs = 5
then 3 VMs are allocated to queue1 and 2 VMs for queue2. Cloudlets are
modelled to assign to nVMs as per the user provided queue_capacity.
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4. Submit cloudlet method is overridden to submit cloudlet to a specified VM so that
once the task assigned to slave node running on thatVMis completed it can assign a
new task to it within the constraints of capacity Scheduler (Algorithm 2).

5. Cloudlet return is being modified in order to invoke submitCloudlet(VM vm) to
submit a cloudlet to the VM according to queue capacity allotment.

6. Job_submitted_count[] array is used to maintain the number of cloudlets sub-
mitted for each queue to enable the capacity allocation constraints. No of
resources allocated to job in queue 0 is indicated in job_submitted_count[0].

7. job_index[] array to hold the index of each job submitted to cloudletList. This is
being used to enable to move to next job in the queue easily instead of com-
paring with every task in the cloudletList. As every job is divided into tasks
executed in cloudlets, when a task tag does not match with VM tag, the
remaining tasks of the same job need not be compared with the VM tag, and we
can directly compare with the cloudlet of next job. job_index[0] = 0 which is
the index of cloudlet of the first job submitted and job_index [1] is assigned with
the index of the first cloudlet of the second job submitted.

submitCloudlets() is invoked only once during the initial scheduling to VMs.
First cloudlet is submitted and job_submitted_count is updated to reflect the current
allocation done to the queue to which the job request belongs. If that request
allocated resource (VM) count is less than the guaranteed queue capacity the next
index also belongs to the same job request otherwise the index is made to point to
next job request to fulfil its guaranteed queue capacity.

___________________________________________________________________________
Algorithm1 submitCloudlets()
___________________________________________________________________________
1 q_c = Queue_Capacity; 
2 count, index, q= 0;  lastindex = job_index[q] – 1; 
3 for each vm in VmsCreatedList

3.1 cloudlet = get cloudlet at index
3.2 if (cloudlet instanceof ReduceTask && 

!isAllMapTaskFinished(cloudlet.getCloudletId())) then continue; 
3.3 r = request to which cloudlet belongs  
3.4 set vmid of cloudlet to vm 
3.5 put(cloudletid,vmid) into scheduling plan
3.6 send CLOUDLETSUBMIT event;
3.7 cloudletsSubmitted++;  count++; 
3.8 job_submitted_count[q] = count; 
3.9 for i = q to job_index.length 

3.9.1 job_index[i] = job_index[i] – 1; 
3.10 lastindex = job_index[q];
3.11 if (!((count < q_c[q]) & (index < lastindex))) then

3.11.1 index = lastindex  
3.12 count = 0; q++; 
3.13 lastindex = job_index[q];
3.14 endif 
3.15 add cloudlet to CloudletSubmittedList 
3.16 remove cloudlet from CloudletList 

4 end for 
___________________________________________________________________________
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SubmitCloudlets(int Vmid) is invoked for submission of cloudlets as each VM is
ready to accept a new task on finishing the previously allocated task. Index is made
to point to the queue which has less allocated resources than the guaranteed
capacity. If the task is a reduce task and its corresponding map tasks are not
completed then cloudlet from next queue is considered. If the queue is last queue
tried and no more cloudlets next to it in the cloudletlist we simply return as in step
4.4.2, otherwise point to the next queue. But if the selected task is a map task and
within the capacity guaranteed for the corresponding queue then that task is sub-
mitted to the VM.

___________________________________________________________________________
Algorithm2 submitCloudlets(int vmid) 
___________________________________________________________________________
1 if (getCloudletList().size() > 0) then 
2 done = false;
3 index = 0; 
4 for  each vm in VmsCreatedList

4.1 if (vm.getId() == vmid) then
4.1.1 q = 0; 
4.1.2 if ((job_submitted_count[q] < q_c[q]) & (job_index[q] > 0)) then break;
4.1.3 else q++;
4.1.4 break; 
4.1.5 endif 

4.2 if (q != 0) then vindex = job_index[q – 1];
4.3 cloudlet = get cloudlet at index
4.4 if (cloudlet instanceof ReduceTask  && 

!isAllMapTaskFinished(cloudlet.getCloudletId())) then 
4.4.1 if (q == q_c.length – 1)  index = job_index[q –  1];
4.4.2 if (index = = 0)  return;
4.4.3 endif 
4.4.4 else

4.4.4.1 index = job_index[q];   q = q + 1; 
4.4.5 endif 
4.4.6 cloudlet = get cloudlet at index
4.4.7 endif 
4.4.8 r = request to which cloudlet belongs 
4.4.9 set vmid of cloudlet to vm 
4.4.10put(cloudletid,vmid) into scheduling plan 
4.4.11send CLOUDLETSUBMIT event
4.4.12cloudletsSubmitted++;
4.4.13job_submitted_count[q]++; 
4.4.14if (q == job_submitted_count.length – 1) then  job_index[q] – = 1; 
4.4.15if (q > 0)  
4.4.16if (job_index[q] == job_index[q –  1]) 

4.4.16.1 t = job_index[q]; 
4.4.16.2 job_index[q] = 0;  job_index[q – 1] = 0; 
4.4.16.3 for (int i = q + 1; i < job_index.length; i++) 
4.4.16.3.1 job_index[i]= job_index[i]–  t;
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4.4.17endif 
4.4.18endif 
4.4.19else
4.4.20for (int i = q; i < job_index.length; i++)

4.4.20.1 job_index[i]= job_index[i]– 1; 
4.4.21endif 
4.4.22getCloudletSubmittedList().add(cloudlet);
4.4.23getCloudletList().remove(cloudlet);

4.5 endif 
4.6 endfor 

5 endif 
___________________________________________________________________________

Our work is a contribution to CloudSimEx with the scheduling techniques of
Hadoop. We implemented the scheduling algorithms FIFO, Capacity Scheduler of
Hadoop MapReduce applications in CloudSimEx. This contribution enables people
working in the area of scheduling, load balancing of Hadoop jobs for virtualized
environments to simulate their work. Our proposed work of designing a dynamic
capacity scheduler is simulated in CloudSimEx by including the job characteristics
and VM characteristics in scheduling decisions. When a cloudlet is returned, submit
cloudlet decides about which job is to be given to the VM based on the job tag and
VM tag within the constraints of queue capacity.

Jobs are categorized to be CPU-intensive, IO-intensive and every job is asso-
ciated with a 2-digit tag which indicates the intensiveness of the job. MSB indicates
the CPU-intensiveness and LSB denotes IO-intensiveness. Tag with value 01
indicates a job which is IO-intensive and value 10 indicates a job which is
CPU-intensive. Similarly every VM is associated with 2-bit tag to indicate the
current load of CPU and IO of the host on which the virtual machine is deployed.
Cloudlets can be submitted with reference to the tag of jobs and virtual machines.
Jobs can be assigned a tag by user if the intensiveness of the job is known or can be
calculated after few map tasks get executed. When a virtual machine tag indicates
as IO heavy then a task which is more CPU-intensive and less IO-intensive would
be appropriate choice.
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___________________________________________________________________________
Algorithm submitCloudlets()

// CapacitySchedulerLoadAware
___________________________________________________________________________

1. q_c = QueueCapacity; 
2. index,q= 0;  lastindex = job_index[q] – 1; 
3. for each vm in VmsCreatedList
4. cloudlet = first cloudlet in cloudletList; 

5.1 done = false;
5.2 for idx=0 to job_index.length
5.3 q = idx; 
5.4 if (idx == 0) then  index = idx
5.5 else index = job_index[idx – 1] 
5.6 if (job_submitted_count[q] < q_c[q]) then 

5.6.1 cloudlet = Cloudlet at index
5.7 if (cloudlet instanceof ReduceTask && 

!isAllMapTaskFinished(cloudlet.getCloudletId())) then  continue; 
5.8 r= request to which cloudlet belongs 
5.9 if (((int) r.job.getTag() & (int) vm.getTag()) == 0) then

5.9.1 set vmid of cloudlet to vm 
5.9.2 put(cloudletid,vmid) into scheduling plan 
5.9.3 send CLOUDLETSUBMIT event
5.9.4 cloudletsSubmitted++;
5.9.5 done=true; 
5.9.6 break; 

5.10 end if 
5.11 end if 

6 end for 
7 if(!done) 

7.1 cloudlet= first cloudlet in cloudletList;
7.2 r = request to which cloudlet belongs 
7.3 q = 0; 
7.4 set vmid of cloudlet to vm 
7.5 put(cloudletid,vmid) into scheduling plan 
7.6 send CLOUDLETSUBMIT event,   
7.7 cloudletsSubmitted++;

8 end if 
9 job_submitted_count[q] = job_submitted_count[q]+1; 
10 for (int i = q; i < job_index.length; i++)

10.1 job_index[i] – = 1; 
11 lastindex = job_index[q];
12 if (!((job_submitted_count[q] < q_c[q]) & (index < lastindex)) ) then 

12.1 index = lastindex;  q++;  lastindex = job_index[q];
13 end if 
14 add cloudlet to CloudletSubmittedList 
15 remove cloudlet from CloudletList 
16 end for 
 __________________________________________________________________________ 
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4 Evaluation and Results

Simulation.properties:
cloud.file = Cloud.yaml
experiment.files = test3.yaml
machines = �4,5,6,7,8�
mtype = large-aws-us-east-1

MapReduce jobs used: MapReduce_9_2.yaml, MapReduce_15_2.yaml,
MapReduce_30_2.yaml, MapReduce_50_1.yaml, MapReduce_100_3.yaml

Experiment file is specified as yaml file in which jobs are considered as part of
queues in the order of submission. Different combinations of MapReduce appli-
cations are being submitted and the execution times of CapacityScheduler and
CapacitySchedulerLoadAware by varying number of virtual machines. One of the
sample of experiment file is as below (Fig. 1).

Expertiment:test3.yaml 
!!org.cloudbus.cloudsim.ex.mapreduce.Experiment 
workloads: 
 - !!org.cloudbus.cloudsim.ex.mapreduce.Workload 
   [ 
    CapacitySchedulerLoadAware, Public, 
      { 
        GOLD: 100.0, 
        SILVER: 60.0, 

BRONZE: 0.0
      }, 
    [ 
     #[Submission Time, Deadline, Budget, Job, user class] 
     !!org.cloudbus.cloudsim.ex.mapreduce.models.request.Request 
     [200000, 120, 2.5, MapReduce_50_1.yaml, GOLD], 
 !!org.cloudbus.cloudsim.ex.mapreduce.models.request.Request 
     [200000, 120, 2.5, MapReduce_100_3.yaml, GOLD], 
!!org.cloudbus.cloudsim.ex.mapreduce.models.request.Reques 
     [200000, 120, 2.5, MapReduce_15_2.yaml, GOLD], 
]]

Test case nVMs (N = 4) nVMs (N = 5) nVMs (N = 6) nVMs (N = 7)

CS CSLA CS CSLA CS CSLA CS CSLA

MR-30-2,
MR-9-2

101.88 87.05 81.78 68.47 68.52 58.272 59.094 57.67

MR-50-1,
MR-30-2

313.57 240.57 255.82 187.52 224.89 157.9 201.369 137.49

MR-50-1,
MR-100-3

504.17 444.42 398.1 353.18 316.19 192.6 212.959 198

MR-100-3,
MR-50-1

530.75 488.97 439.21 347.13 371.79 319.91 325.07 305.14
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The above results Figs. 2, 3, 4 and 5 indicate an improvement in execution time
of the MapReduce jobs on an average of 20%. In few cases there is no major
difference in the execution times as the jobs submitted are appropriate to the VM
characteristics. There is an improvement brought in the job exection time where
MapReduce applications are scheduled in appropriate to VM characteristics
(Fig. 6).

Fig. 1 CapacitySchedulerLoadAware execution

Fig. 2 MapReduce 30-2,
MapReduce 9-2

Fig. 3 MapReduce 50-1,
MapReduce 30-2
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5 Conclusion

The MapReduce applications which automatically use the advantage of availability
of multiple nodes by executing map and reduce in parallel can further be optimized
if the scheduler logic includes a concept of learning of jobs and machine

Fig. 4 MapReduce 50-1, MapReduce 100-3

Fig. 6 CapacityScheduler versus CapacitySchedulerLoadAware

Fig. 5 MapReduce 100-3, MapReduce 50-1
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characteristics. If a virtual machine is loaded with CPU-intensive task then
scheduler can schedule an IO-intensive task so that there could be an appropriate
usage of resources available on the virtual machine. Our work was to design an
optimal scheduler for MapReduce applications which can schedule balanced set of
workloads to all nodes in the cluster. It not only enables fast execution of the tasks
but can also be used to make users understand about the characteristics of the job
submitted to the cluster. Job characteristics enable user to use proper configuration
of Hadoop cluster for further executions of the same job. Our primary goal is to
reduce the execution time of the Hadoop map tasks by including the behaviour of
map task and virtual machine in scheduling decisions.
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