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Abstract

This chapter addresses the problem of seg-
mentation of proximal femur in 3D MR im-
ages. We propose a deeply supervised 3D U-
net-like fully convolutional network for seg-
mentation of proximal femur in 3D MR im-
ages. After training, our network can directly
map a whole volumetric data to its volume-
wise labels. Inspired by previous work, multi-
level deep supervision is designed to allevi-
ate the potential gradient vanishing problem
during training. It is also used together with
partial transfer learning to boost the training
efficiency when only small set of labeled train-
ing data are available. The present method was
validated on 20 3D MR images of femoroac-
etabular impingement patients. The experi-
mental results demonstrate the efficacy of the
present method.
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6.1 Introduction
Femoroacetabular Impingement (FAI) is a cause
of hip pain in adults and has been recognized
recently as one of the key risk factors that may
lead to the development of early cartilage and
labral damage [1] and a possible precursor of
hip osteoarthritis [2]. Several studies [2, 3] have
shown that the prevalence of FAI in young pop-
ulations with hip complaints is high. Although
there exist a number of imaging modalities that
can be used to diagnose and assess FAI, MR
imaging does not induce any dosage of radiation
at all and is regarded as the standard tool for
FAI diagnosis [4]. While manual analysis of a
series of 2D MR images is feasible, automated
segmentation of proximal femur in MR images
will greatly facilitate the applications of MR
images for FAI surgical planning and simulation.
The topic of automated MR image segmenta-
tion of the hip joint has been addressed by a few
studies which relied on atlas-based segmentation
[5], graph cut [6], active model [7,8], or statistical
shape models [9]. While these methods reported
encouraging results for bone segmentation, fur-
ther improvements are needed. For example, Are-
zoomand et al. [8] recently developed a 3D active
model framework for segmentation of proximal
femur in MR images, and they reported an aver-
age recall of 0.88.
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Recently, machine learning-based methods,
especially those based on convolutional neural
networks (CNNs), have witnessed successful ap-
plications in natural image processing [10, 11] as
well as in medical image analysis [12—15]. For
example, Prasoon et al. [12] developed a method
to use a triplanar CNN that can autonomously
learn features from images for knee cartilage seg-
mentation. More recently, 3D volume-to-volume
segmentation networks were introduced, includ-
ing 3D U-Net [13], 3D V-Net [14], and a 3D
deeply supervised network [15].

In this chapter, we propose a deeply super-
vised 3D U-net-like fully convolutional network
(FCN) for segmentation of proximal femur in 3D
MR images. After training, our network can di-
rectly map a whole volumetric data to its volume-
wise label. Inspired by previous work [13, 15],
multi-level deep supervision is designed to allevi-
ate the potential gradient vanishing problem dur-
ing training. It is also used together with partial
transfer learning to boost the training efficiency
when only small set of labeled training data are
available.
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6.2 Method

Figure 6.1 illustrates the architecture of our pro-
posed deeply supervised 3D U-net-like network.
Our proposed neural network is inspired by the
3D U-net [13]. Similar to 3D U-net, our network
also consists of two parts, i.e., the encoder part
(contracting path) and the decoder part (expan-
sive path). The encoder part focuses on analysis
and feature representation learning from the input
data, while the decoder part generates segmen-
tation results, relying on the learned features
from the encoder part. Shortcut connections are
established between layers of equal resolution in
the encoder and decoder paths. The difference
between our network and the 3D U-net is the in-
troduction of multi-level deep supervision, which
gives more feedback to help training during back
propagation process.

Previous studies show small convolutional
kernels are more beneficial for training and
performance. In our deeply supervised network,
all convolutional layers use kernel size of 3x3x3
and strides of 1, and all max pooling layers use
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Fig. 6.1 Illustration of our proposed network architecture
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kernel size of 2 x 2 x 2 and strides of 2. In
the convolutional and deconvolutional blocks of
our network, batch normalization (BN) [16] and
rectified linear unit (ReLU) are adopted to speed
up the training and to enhance the gradient back
propagation.

6.2.1 Multi-level Deep Supervision

Training a deep neural network is challenging.
As the matter of gradient vanishing, final loss
cannot be efficiently back propagated to shallow
layers, which is more difficult for 3D cases when
only a small set of annotated data is available.
To address this issue, we inject two branch clas-
sifiers into network in addition to the classifier
of the main network. Specifically, we divide the
decoder path of our network into three different
levels: lower layers, middle layers, and upper
layers. Deconvolutional blocks are injected into
lower and middle layers such that the low-level
and middle-level features are upscaled to gener-
ate segmentation predictions with the same reso-
lution as the input data. As a result, besides the

Loc W w w) = Y e Wow) + W)+ D Yr(w)

ce{l,m,u}

classifier from the upper final layer (“UpperCls”
in Fig. 6.1), we also have two branch classifiers in
lower and middle layers (“LowerCls” and “Mid-
Cls” in Fig. 6.1, respectively). With the losses
calculated by the predictions from classifiers of
different layers, more effective gradient back
propagation can be achieved by direct supervi-
sion on the hidden layers.

Let W be the weights of main network and
wh, w™, w" be the weights of the three classifiers
“LowerCls,” “MidCls,” and “UpperCls,” respec-
tively. Then the cross-entropy loss function of a
classifier is:

Lo WowS) = Y —log plyi = 1(x;)lxis W, w))

Xi€X
6.1)

where ¢ € {[, m, u} represents the index of the
classifiers; x represents the training samples; and
p(yi = t(x;)|x;; W, w¢) is the probability of
target class label 7(x;) corresponding to sample
X;i € X.

The total loss function of our deep-supervised
3D network is:

(6.2)

ce{l,m,u}

where () is the regularization term (L, norm
in our experiment) with hyper-parameter A;
o, o, o, are the weights of the associated
classifiers.

By doing this, classifiers in different layers
can also take advantages of multi-scale context,
which has been demonstrated in previous work
on segmentation of 3D liver CT and 3D heart
MR images [15]. This is based on the observation
that lower layers have smaller receptive fields,
while upper layers have larger receptive fields. As
a result, multi-scale context information can be
learned by our network which will then facilitate
the target segmentation in the test stage.

6.2.2 Partial Transfer Learning

It is difficult to train a deep neural network
from scratch because of limited annotated
data. Training deep neural network requires
large amount of annotated data, which are not
always available, although data augmentation
can partially address the problem. Furthermore,
randomly initialized parameters make it more
difficult to search for an optimal solution in high-
dimensional space. Transfer learning from an
existing network, which has been trained on a
large set of data, is a common way to alleviate
the difficulty. Usually the new dataset should be
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similar or related to the dataset and tasks used
in the pre-training stage. But for medical image
applications, it is difficult to find an off-the-shelf
3D model trained on a large set of related data of
related tasks.

Previous studies [17] demonstrated that
weights of lower layers in deep neural network
are generic, while higher layers are more related
to specific tasks. Thus, the encoder path of our
neural network can be transferred from models
pre-trained on a totally different dataset. In the
field of computer vision, lots of models are
trained on very large dataset, e.g., ImageNet [18],
VGG16 [19], GoogleNet [20], etc. Unfortunately,
most of these models were trained on 2D images.
3D pre-trained models that can be freely accessed
are rare in both computer vision and medical
image analysis fields.

C3D [21] is one of the few 3D models that
has been trained on a very large dataset in the
field of computer vision. More specifically, C3D
is trained on the Sports-1M dataset to learn spa-
tiotemporal features for action recognition. The
Sports-1M dataset consists of 1.1 million sports
videos, and each video belongs to one of 487
sports categories.

In our experiment, C3D pre-trained model was
adopted as the pre-trained model for the encoder
part of our neural network. For the decoder parts
of our neural network, they were randomly ini-
tialized.

6.2.3 Implementation Details

The proposed network was implemented in
Python using TensorFlow framework and trained
on a desktop with a 3.6 GHz Intel(R) i7 CPU and
a GTX 1080 Ti graphics card with 11GB GPU
memory.

6.3 Experiments and Results

6.3.1 Dataset and Preprocessing

We evaluated our method on a set of unilateral
hip joint data containing 20 T1-weighted MR
images of FAI patients. We randomly split the
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dataset into two parts, ten images are for train-
ing and the other ten images are for testing.
Data augmentation was used to enlarge the train-
ing samples by rotating each image (90, 180,
270) degrees around the z-axis of the image and
flipped horizontally (y-axis). After that, we got in
total 80 images for training.

6.3.2 Training Patches Preparation

All sub-volume patches to our neural network are
in the size of 64 x 64 x 64. We randomly cropped
sub-volume patches from training samples whose
size are about 300 x 200 x 100. In the phase
of training, during every epoch, 80 training volu-
metric images were randomly shuffled. We then
randomly sampled patches with batch size 2 from
each volumetric image for n times (n = 5). Each
sampled patch was normalized as zero mean and
unit variance before fed into network.

6.3.3 Training

We trained two different models, one with partial
transfer learning and the other without. More
specifically, to train the model with partial trans-
fer learning, we initialized the weights of the
encoder part of the network from the pre-trained
C3D [21] model and the weights of other parts
from a Gaussian distribution(x = 0, 0 = 0.01).
In contrast, for the model without partial transfer
learning, all weights were initialized from Gaus-
sian distribution(x = 0, o = 0.01).

Each time, the model was trained for 14,000
iterations, and the weights were updated by the
stochastic gradient descent (SGD) algorithm
(momentum=0.9, weight decay=0.005). The
initial learning rate was 1 x 1073 and halved
by 3000 every training iterations. The hyper-
parameters were chosen as follows: A = 0.005,
a; =0.33, a0, =0.67, and or, = 1.0.

6.3.4 Test and Evaluation

Our trained models can estimate labels of an
arbitrary-sized volumetric image. Given a test
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Table 6.1 Quantitative
evaluation results on

Surface distance (mm)

testing datasets ID Mean | STD
PatO1 0.17 10.31
Pat02 0.27 |0.46
Pat03 0.19 |0.35
Pat04 0.23 1 0.67
Pat05 0.12 0.21
Pat06 0.14 |0.26
Pat07 0.41 10.95
Pat08 0.39 10.93
Pat09 0.12 | 0.17
Pat10 0.15 10.28
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Volume overlap measurement

Average | 0.22 -

volumetric image, we extracted overlapped sub-
volume patches with the size of 64 x 64 x 64 and
fed them to the trained network to get prediction
probability maps. For the overlapped voxels, the
final probability maps would be the average of
the probability maps of the overlapped patches,
which were then used to derive the final segmen-
tation results. After that, we conducted morpho-
logical operations to remove isolated small vol-
umes and internal holes as there is only one femur
in each test data. When implemented with Python
using TensorFlow framework, our network took
about 2 min to process one volume with size of
300 x 200 x 100.

The segmented results were compared with
the associated ground truth segmentation which
was obtained via a semiautomatic segmentation
using the commercial software package called
Amira.! Amira was also used to extract surface
models from the automatic segmentation results
and the ground truth segmentation. For each test
image, we then evaluated the distance between
the surface models extracted from different seg-
mentation as well as the volume overlap measure-
ments including Dice overlap coefficient [22],
Jaccard coefficient [22], precision, and recall.

Uhttp://www.amira.com/

Hausdorff distance | DICE | Jaccard | Precision | Recall
3.8 0.989 1 0.978 |0.992 0.985
5.3 0.986 1 0.973 | 0.985 0.987
4.1 0.987 1 0.975 |0.995 0.979
13.0 0.987 1 0.974 |0.992 0.982
4.3 0.989 1 0.979 |0.991 0.988
4.5 0.990 | 0.980 |0.995 0.985
7.0 0.978 | 0.958 |0.984 0.973
5.2 0.981 1 0.963 |0.994 0.968
11.0 0.990 1 0.981 |0.990 0.990
5.3 0.988 1 0.976 | 0.991 0.984
6.4 0.987 1 0.974 | 0.991 0.982

6.3.5 Results

Table 6.1 shows the segmentation results using
the model trained with partial transfer learning.
In comparison with manually annotated ground
truth data, our model achieved an average surface
distance of 0.22 mm, an average Dice coefficient
of 0.987, an average Jaccard index of 0.974,
an average precision of 0.991, and an average
recall of 0.982. Figure 6.2 shows a segmentation
example and the color-coded error distribution of
the segmented surface model.

We also compared the results achieved by
using the model with partial transfer learning
with the one without partial transfer learning. The
results are presented in Table 6.2, which clearly
demonstrate the effectiveness of the partial trans-
fer learning.

6.4  Conclusion

We have introduced a 3D U-net-like fully convo-
lutional network with multi-level deep supervi-
sion and successfully applied it to the challenging
task of automatic segmentation of proximal fe-
mur in MR images. Multi-level deep supervision
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Fig. 6.2 A segmentation example (left) and the color-coded error distribution of the surface errors (right)

Table 6.2 Comparison of the average results of the proposed network on the same test dataset when trained with and

without transfer learning

Surface distance (mm)

Volume overlap measurement

Learning method Mean STD Hausdorff distance DICE Jaccard Precision Recall
Without transfer learning | 0.67 - 12.4 0.975 0.950 0.985 0.964
With transfer learning 0.22 - 6.4 0.987 0.974 0.991 0.982

and partial transfer learning were used in our
network to boost the training efficiency when
only small set of labeled 3D training data were
available. The experimental results demonstrated
the efficacy of the proposed network.
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