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Abstract

In this chapter, we present a multi-object
model-based multi-atlas segmentation
constrained grid cut method for automatic
segmentation of lumbar vertebrae from
a given lumbar spinal CT image. More
specifically, our automatic lumbar vertebrae
segmentation method consists of two steps:
affine atlas-target registration-based label
fusion and bone-sheetness assisted multi-label
grid cut which has the inherent advantage
of automatic separation of the five lumbar
vertebrae from each other. We evaluate
our method on 21 clinical lumbar spinal
CT images with the associated manual
segmentation and conduct a leave-one-out
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study. Our method achieved an average
Dice coefficient of 93.9 ± 1.0% and an
average symmetric surface distance of
0.41 ± 0.08 mm.
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5.1 Introduction

The field of medical image computing and
computer-assisted interventions has been playing
an increasingly important role in diagnosis and
treatment of spinal diseases during the past 20
years. An accurate segmentation of individual
vertebrae from CT images are important for
many clinical applications. After segmentation, it
is possible to determine the shape and condition
of individual vertebrae. Segmentation can also
assist early diagnosis, surgical planning, and
locating spinal pathologies like degenerative
disorders, deformations, trauma, tumors, and
fractures. Most computer-assisted diagnosis
and planning systems are based on manual
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segmentation performed by physicians. The
disadvantage of manual segmentation is that
it is time-consuming and the results are not really
reproducible because the image interpretations
by humans may vary significantly across
interpreters.

Vertebra segmentation is challenging because
the overall morphology of the vertebral column.
Although the shape of the individual vertebrae
changes significantly along the spine, most
neighboring vertebrae look very similar and
are difficult to distinguish. In recent years, a
number of spine segmentation algorithms for
CT images have been proposed. The proposed
methods range from unsupervised image
processing approaches, such as level set [14] and
graph cut methods [1], to geometrical model-
based methods such as statistical anatomical
models or probabilistic atlas-based methods
[8, 10, 12, 16, 17] and to more recently machine
learning and deep learning-based methods
[4, 5, 15].

In this chapter, we proposed a two-stage
method which consists of the localization stage
and the segmentation stage. The localization
stage aims to identify each lumbar vertebra,
while the segmentation stage handles the
problem of labeling each lumbar vertebra from a
given 3D image. Previously, we have developed a
method to fully automatically localize landmarks
for each lumbar vertebra in CT images with
context features and reported a mean localization
error of 3.2 mm [6]. In this paper, we focus on the
segmentation stage where the detected landmarks
in the localization stage are used to initialize our
segmentation method.

To this end, we propose to use affinely reg-
istered multi-object model-based multi-atlases as
shape prior for grid cut segmentation of lumbar
vertebrae from a given target CT image. More
specifically, our segmentation method consists of
two steps: affine atlas-target registration-based
label fusion and bone-sheetness assisted multi-
label grid cut. The initial segmentation obtained
from the first step will be used as the shape prior
for the second step.

The chapter is organized as follows. In the
next section, we will describe the method.

Section 5.3 will present the experimental results,
followed by discussions and conclusions in
Sect. 5.4.

5.2 Method

Figure 5.1 presents a schematic overview of the
complete workflow of our proposed approach.
Without loss of generality, we assume that for
the lth (l ∈ {1, 2, 3, 4, 5}) lumbar vertebra, there
exists a set of Nl atlases with manually labeled
segmentation and manually extracted landmarks.
In the following, details of each step will be
presented.

5.2.1 Affine Atlas-Target
Registration-Based Label
Fusion

Given the unseen lumbar spinal CT image, we
assume that a set of landmarks have been already
detected for each lumbar vertebra. The following
steps are conducted separately for each lumbar
vertebra.

Using the detected anatomical landmarks,
paired-point scaled rigid registration are
performed to align all Nl atlases of the lth lumbar
vertebra to the target image space. We then select
Nl,s � Nl atlases with the least paired-point
registration errors for the atlas affine registration
step as described below.

Each selected atlas consists of a CT
volume and a manual segmentation of the
corresponding lumbar vertebra. For every
selected atlas, we perform a pair-wise atlas-
target affine registration using the intensity-
based registration toolbox “Elastix” [11]. Using
the obtained 3D affine transformation, we can
align the associated manual segmentation of
the selected atlas to the target image space.
Then the probability of labeling a voxel x

in the target image space as part of the lth
lumbar vertebra is computed with average
voting:

pl,x = 1

Nl,s

∑Nl,s

i=1
Ai(x) (5.1)
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Fig. 5.1 The flowchart of our proposed segmentation method. See text for details

where Ai(x) ∈ {0, 1} is the label of the ith
atlas at voxel x after aligned to the target image
space.

A simple thresholding is then conducted to get
an initial binary segmentation of the lth lumbar
vertebra:

Ll(x) =
{

0; pl,x < T

1; pl,x � T
(5.2)

where T is the threshold and is empirically se-
lected as 0.35.

Above steps are conducted for all five lumbar
vertebrae.

5.2.2 Bone-Sheetness Assisted Grid
Cut

The initial segmentation obtained in the last step
is usually not accurate enough as only affine
atlas-target registrations are used. To further im-
prove the segmentation accuracy, we proposed to
use bone-sheetness assisted multi-label grid cut
taking the initial segmentation as the shape prior.

Grid cut is a fast multi-core max-flowmin-
cut solver optimized for grid-like graphs [9].
The task of multi-label grid cut is to assign an

appropriate label L(x) to every voxel x in the
image space Ω of the target image I . In our case,
labels L(x) ∈ {0, 1, 2, 3, 4, 5} are employed for
the purpose of labeling the target image into
six different regions including background region
(BK, L(x) = 0) and the five lumbar vertebral
regions (for the lth lumbar vertebra Ll , L(x) =
l). After segmentation, the target image will be
partitioned into six sub-image regions, i.e., Ω =
{ΩBK ∪ Ωl1 ∪ Ωl2 ∪ Ωl3 ∪ Ωl4 ∪ Ωl5}.

Grid cut, similar to graph cut [3], is an energy
minimization segmentation framework based on
combinatorial graph theory. The typical energy
function of a multi-label grid cut E(L) is de-
fined as

E(L) =
∑

x∈Ω

Rx(L(x))

+ λ
∑

(x,y)∈N
Bx,y(L(x), L(y))

(5.3)

where Rx(L(x)) is the pixel-wised term which
gives the cost of assigning label L(x) ∈
{0, 1, 2, 3, 4, 5} to voxel x, Bx,y(L(x), L(y))

is the pair-wised term which gives the cost of
assigning labels to voxel x and y in a user-defined
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neighborhood system N , and λ adjusts the
balance between the pixel-wised term and pair-
wised term.

In general, grid cut methods define the energy
based on intensity information. However, weak
bone boundaries, narrow inter-bone space, and
low intensities in the trabecular bone make image
intensity alone a relatively poor feature to dis-
criminate adjacent joint structures [13]. This can
be addressed by applying image enhancement
using sheetness filter to generate a new feature
image (sheetness score map) [7]. For each voxel
in the target image space Ω , a sheetness score BS

is computed from the eigenvalues |λ1| ≤ |λ2| ≤
|λ3| of local Hessian matrix with scale σ as

BSx(σ ) =
(

exp

(−R2
sheet

2α2

)) (
1−exp

(−R2
blob

2γ 2

))

(
1 − exp

(−R2
noise

2ξ 2

))
(5.4)

where α, γ, ξ are the parameters [7].
Rsheet = |λ2|

|λ3| , Rblob = |2λ3−λ2−λ1|
|λ3| , Rnoise =√

λ2
1 + λ2

2 + λ2
3.

For every pixel x, we have the computed
sheetness score BSx ∈ [0, 1], where larger score
associates with higher possibility that this pixel
belongs to a bone region. With the computed
sheetness score map and the initial segmentation,
we define each term of the energy function as
described below:

Pixel-wised term Based on the initial segmen-
tation obtained in the last step, the target image
space Ω can be separated into six sub-image
regions, i.e., Ω = {Ω ′

BK ∪Ω ′
l1
∪Ω ′

l2
∪Ω ′

l3
∪Ω ′

l4
∪

Ω ′
l5
}, where each sub-image region is obtained

from the corresponding initial segmentation. By
further employing the computed sheetness score
map and the Hounsfield units (HU) of different
tissues, the exclusion regions for each structure
can be defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E¬L1 = {v /∈ Ω ′
L1

andI(x) ≤ −50HU}
E¬L2 = {v /∈ Ω ′

L2
andI(x) ≤ −50HU}

E¬L3 = {v /∈ Ω ′
L3

andI(x) ≤ −50HU}
E¬L4 = {v /∈ Ω ′

L4
andI(x) ≤ −50HU}

E¬L5 = {v /∈ Ω ′
L5

andI(x) ≤ −50HU}
E¬BK = {v /∈ Ω ′

BKandI(x) ≥ 200HU ∧ BSv >0}

(5.5)

where −50HU and 200HU are selected following
[13]. The Rx(L(x)) is then defined as

Rx(L(x)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ifL(x) = 0andx ∈ E¬BK

1 ifL(x) = 1andv ∈ E¬L1

1 ifL(x) = 2andv ∈ E¬L2

1 ifL(x) = 3andv ∈ E¬L3

1 ifL(x) = 4andv ∈ E¬L4

1 ifL(x) = 5andv ∈ E¬L5

0 otherwise

(5.6)

Pair-wised term As the sheetness filter
enhances the bone boundaries, we employ the

computed sheetness score map to define the pair-
wised term:

Bx,y(L(x), L(y)) ∝

exp{−|BSx − BSy |
σs

} · δ(L(x), L(y))

(5.7)

where σs is a constant scaling parameter and

δ(L(x), L(y)) =
{

1 ifL(x) 
= L(y)

0 otherwise
(5.8)
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5.3 Experimental Results

We evaluated our method on 21 clinical lum-
bar spinal CT data with the associated manual
segmentation. The size of the data ranges from
512 × 512 × 318 voxels to 512 × 512 × 433
voxels. The voxel spacing of the data ranges
from 0.43 × 0.43 × 0.7 mm3 to 0.29 × 0.29 ×
0.7 mm3. In this paper, we conducted a leave-
one-out (LOO) cross-validation study to evaluate
the performance of the present method. More
specifically, each time we took 1 out of the 21
CT data as the test data and the remaining 20
CT data as the atlases, and we chose Nl,s to be
5. The process was repeated for 21 times, with
each CT data used exactly once as the test data.

In each time, the segmented results of the test
data were compared with the associated ground
truth manual segmentation. For each vertebra in
a test CT data, we evaluate the average symmetric
surface distance (ASSD), the Dice coefficient
(DC), precision, and recall.

Table 5.1 presents the segmentation results
of the cross-validation study, where the results
on each individual vertebra as well as on the
entire lumbar region are presented. Our approach
achieves a mean DC of 93.9 ± 1.0% and a mean
ASSD of 0.41 ± 0.08 mm on the entire lumbar
region. In each fold, it took about 12 min to
finish segmentation of all five lumbar vertebrae of
one test image. Figure 5.2 shows a segmentation
example.

Table 5.1 Segmentation
results of the leave-one-out
cross validation on 21
clinical spinal CT data

DC (%) ASSD (mm) Precision (%) Recall (%)

L1 94.2 ± 0.8 0.39 ± 0.06 91.9 ± 1.7 96.7 ± 1.6

L2 94.1 ± 0.8 0.39 ± 0.05 91.6 ± 1.9 96.7 ± 1.6

L3 93.8 ± 1.0 0.42 ± 0.07 91.0 ± 2.3 96.8 ± 1.7

L4 94.0 ± 0.9 0.40 ± 0.06 91.4 ± 2.0 96.9 ± 1.6

L5 93.7 ± 1.1 0.45 ± 0.11 91.2 ± 2.6 96.3 ± 2.1

Lumbar 93.9 ± 1.0 0.41 ± 0.08 91.4 ± 2.1 96.7 ± 1.8

Fig. 5.2 A lumbar vertebrae segmentation example. Top
row: sagittal view. Bottom row: axial view. For both rows,
from left to right: the input image, the probability map, the

initial segmentation obtained from the affine atlas-target
registration-based label fusion, and the final results
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Fig. 5.3 Color-coded error distributions of two
segmented lumbar vertebral segments in com-
parison to the corresponding ground truth. In
each row, the left column shows the error bar;

the middle column shows the segmented lumbar
vertebral segment with color-coded error distribu-
tions; and the right column shows the ground truth
model

Figure 5.3 shows color-coded error distribu-
tions of two cases. Our automatic segmentation
when applied to the case shown in the top row
achieved a mean error of 0.47 mm and a 95
percentile error of 1.25 mm. For the case shown
in the bottom row, the achieved mean segmenta-
tion error was found to be 0.42 mm and the 95
percentile error was 1.13 mm.

5.4 Discussions and Conclusions

Previous atlas-based methods [17] where
nonrigid registration between atlases and
the target image is required, may not work

here considering the weak bone boundaries
and narrow inter-bone space of neighbor-
ing vertebrae. In this paper, we only need
to affinely register atlases with the tar-
get image, and the accurate segmentation
is then obtained by the bone-sheetness-
assisted multi-label grid cut which has ad-
ditional advantage of automatic separation
of the five lumbar vertebrae from each
other.

In conclusion, we proposed a method for au-
tomatic segmentation of lumbar vertebrae from
clinical CT images. The results obtained from the
LOO experiment demonstrated the efficacy of the
proposed approach.
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