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Chapter 5
Plants Response and Tolerance to  
Arsenic- Induced Oxidative Stress

Anindita Mitra, Soumya Chatterjee, and Dharmendra K. Gupta

Abstract Arsenic (As) is a toxic metalloid of global concern derived from natural, 
geothermal, and anthropogenic sources. Arsenic has deleterious effects in all forms 
of life including plants. Between the two inorganic forms, the highly oxidized pen-
tavalent arsenate (AsV) is prevalent in the aerobic environment, while the highly 
reduced trivalent arsenite (AsIII) is the predominant form in an anaerobic environ-
ment. The main route of AsV uptake in plants is through the phosphate transporters, 
while AsIII and methylated As species enter through nodulin 26–like intrinsic protein 
(NIP) or aquaglyceroporins. After entering into the plant cell As can severely impede 
plant metabolism which leads to various physiological disorder. Subsequently, growth 
of the plants is subdued, and it results in delaying or restraining accrual of biomass 
and induces loss of fertility, yield, and fruit production. Exposure to inorganic As in 
plants promotes oxidative stress by generating reactive oxygen species (ROS) dur-
ing their conversion from AsV to AsIII. Plants have a well- organized antioxidant 
defense system to combat As stress. In plants, As intoxication triggers the activation 
of enzymatic antioxidants like superoxide dismutase (SOD), ascorbate peroxidase 
(APX), catalase (CAT), glutathione reductase (GR), glutathione S-transferase 
(GST), and glutathione peroxidase (GPX); synthesis of nonenzymatic antioxidants, 
such as ascorbate and γ-Glu-Cys-Gly-tripeptide glutathione (GSH); and accumula-
tion of anthocyanin in the leaves. As tolerance in plants is achieved by the produc-
tion of phytochelatin following As exposure which is derived from GSH.  This 
chapter aims to provide current updates about the molecular mechanism involved in 
uptake of the inorganic and organic species of As, their translocation, and the 
As-induced stress in plants with a special emphasis on oxidative stress.
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5.1  Introduction

Arsenic (As) is a toxic metalloid. Naturally, it exists in four oxidation states (-III), 
(0), (+III), and (+V) (Rathinasabapathi et  al. 2006). Mostly available chemical 
forms of As having diverse physicochemical properties are: arsenite (AsIII), arsenate 
(AsV), trimethylarsine (TMA), dimethylarsinic acid (DMA), monomethylarsonic 
acid (MMA), arsenosugars, arsenocholine (AsC), arsenobetaine (AsB) (Panda et al. 
2010). Due to various factors including dumping of industrial wastes and dust from 
smelters, As contamination in soils is indiscriminate in many parts of the world 
(Chatterjee et al. 2017a). Depending on the redox status, inorganic arsenite or arse-
nate is primarily present in soil solution, which is the most phytoavailable form 
(Meharg and Hartley-Whitaker 2002). Among the inorganic As species, trivalent 
state of As is most toxic in comparison to the pentavalent state (Gupta and Chatterjee 
2017), whereas the organic As has less toxicity than inorganic species (Chung et al. 
2014). AsV is present in aqueous solution in the form of H3AsO4, H2AsO4

−, HAsO4
2−, 

and AsO4
3, whereas AsIII exists in reducing form, for example, H3AsO3 in anaerobic 

groundwater (Panda et al. 2010). Arsenic may also associate in nature with several 
other metals like copper, cobalt, nickel, silver, and lead (Gupta et al. 2017).

Arsenic concentration usually varies from noncontaminated soil to contaminated 
soils from 10  mg  kg−1 to 30,000  mg  kg−1, respectively (Adriano 1986; Vaughan 
1993). Terrestrial plants grown in noncontaminated soil show less than 10 mg As 
kg−1 in tissues, but a typical threshold of 40 mg kg−1 of As has been reported from 
different tissues of crop plants (Matschullat 2000). High-affinity phosphate trans-
porters help plants to readily take up arsenate (being an analogue of phosphate) 
from the soil (Meharg and Macnair 1992). Incorporation of As to the food chain via 
the groundwater-soil-plant system due to the use of high As contaminated ground-
water in agriculture and bioaccumulation of As in crop plants are potentially hazard-
ous to public health (Rahman et al. 2008; Patra et al. 2004).

Arsenic has no known biological function in plants. The exposure of plants to a 
higher level of AsIII and AsV induces the production of reactive oxygen species 
(ROS) (Gupta et al. 2013a). Transformation of arsenate to arsenite within plant cell 
produces ROS directly through Haber–Weiss reactions (Mascher et  al. 2002, 
Mithöfer et al. 2004). Heavy metal interaction with the antioxidant system gener-
ates oxidative stress in plants (Srivastava et al. 2004), either indirectly through dis-
ruption of electron transport chain (Qadir et  al. 2004), creating disorders in the 
essential elemental metabolisms, or directly through ROS-mediated cellular dam-
ages, enhanced lipid peroxidation, and membrane leakage (Dong et  al. 2006). 
Arsenic-induced negative effect in plant development is a well-known fact (Islam 
et al. 2015), where significant interspecific variation and also among cultivars within 
the same species (like, Oryza sativa) are reported (Lei et al. 2013; Lemos Batista 
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et al. 2014; Begum et al. 2016). Shorter length and lower biomass, mainly in roots, 
accompanied by oxidative stress of a plant, signify arsenic triggered stress symp-
toms (Abercrombie et al. 2008; Shri et al. 2009; Talukdar 2011; Upadhyay 2014).

Plants have evolved several mechanisms to combat As-induced stress such as 
suppression of high-affinity phosphate/arsenate transporter and to bind the metal to 
extracellular exudates and cell wall constituents thereby reducing uptake, sequestra-
tion of metals in the vacuole, complexation of metalloids by different substances, 
activation or modification of plant metabolism, and synthesis of antioxidant enzymes 
(Duquesnoy et al. 2010). Antioxidative defense is achieved either by nonenzymatic 
antioxidants with low molecular mass (like GSH, glutathione, and ascorbate (AsA)) 
and enzymatic antioxidants like ascorbate peroxidase (APX), superoxide dismutase 
(SOD), glutathione reductase (GR), and catalase (CAT) (Finnegan and Chen 2012; 
Sharma 2012; Talukdar 2013a).

Although a number of reports are available on the morphological and physiologi-
cal mechanism of As uptake and accumulation in plants, however, oxidative infor-
mation on stress induced by As and related defense mechanisms are still poorly 
recognized. The present chapter is an attempt to focus on oxidative stress in plants 
induced by As and antioxidant defense mechanisms relating to As uptake, transloca-
tion, and phytochelatin (PC)-mediated As detoxification mechanism.

5.2  Uptake of Different Arsenic Species by Plant

5.2.1  Arsenate Uptake

The pathways of As uptake in plants have been extensively investigated by several 
authors (Tripathi et al. 2007; Zhao et al. 2009, 2010; Mitra et al. 2017a). Physiological 
and electrophysiological studies revealed that as the oxyanion structure of arsenate 
(AsV) is analogous to inorganic phosphate (Pi), both are transported through shared 
transporter in higher plants (Meharg et al. 1994; Gupta et al. 2011). During uptake 
of each phosphate (H2PO4

−)/arsenate (H2AsO4
−) molecule, two protons (2H+) are 

co-transported across the membrane (Ullrich-Eberius et al. 1989). Although hun-
dreds of phosphate transporters are recognized in higher plants, the PHT1 family of 
Pi transporter present in the roots is likely to be involved in AsV transport (Ullrich- 
Eberius et al. 1989; Wu et al. 2011). Studies reported that Pht protein transports AsV 
in As hyperaccumulators (Wang et al. 2002; Tu and Ma 2003; Cesaro et al. 2015), 
As-tolerant non-hyperaccumulators (Meharg and Macnair 1992; Bleeker et  al. 
2003), and also in As-sensitive non-accumulators (Esteban et al. 2003). However, 
different phosphate transporters present in hyperaccumulator plants show greater 
affinity for AsV than non-accumulator species of plants (Wang et al. 2002; Poynton 
et al. 2004). Double mutant Arabidopsis thaliana, for two high-affinity Pht1 iso-
form Pht 1;1 and Pht 1;4, was found to be resistant for arsenate than wild-type 
plants, which strongly supports the role of Pht 1;1 and Pht 1;4 in arsenate transport 
(Shin et  al. 2004). Magnitude of phytotoxicity was greater following increasing 
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uptake in soil with low levels of Pi as PHT transporters have higher affinity for 
phosphate than arsenate; therefore, AsV may outcompete Pi for entry through the 
root (Meharg et  al. 1994). This can be overcome by applying larger amounts of 
phosphates that compete with arsenate at root surfaces to decrease uptake and phy-
totoxicity (Tu and Ma 2003; Titah et al. 2013). Some of the As-tolerant plants spe-
cies such as Holcus lanatus and Cytisus striatus can grow in soil with higher As 
concentration without exhibiting any toxicity, which can be achieved by restricting 
the inflow of As by constitutive suppression of high-affinity phosphate/AsV trans-
porter (Meharg and Macnair 1992; Bleeker et al. 2003).

5.2.2  Arsenite Uptake

In reducing environment, like swampy areas, arsenite (AsIII) is the predominant As 
species (Marin et al. 1993; Chatterjee et al. 2017b). In plants, members of nodulin 
26–like intrinsic proteins (NIPs) commonly known as aquaporins are known to 
involve in AsIII transport through the root cells (Isayenkov and Maathuis 2008; Ma 
et  al. 2008; Mitra et  al. 2014). Additionally, NIPs also facilitate the transport of 
multiple uncharged solutes including glycerol, urea, ammonia, boric acid, and silicic 
acid, hence called aquaglyceroporins (Wallace et al. 2006) but impermeable to water 
(Bienert et al. 2008). The other three plant aquaporins comprise tonoplast intrinsic 
protein (TIPs), plasma membrane intrinsic protein PIP), and small basic intrinsic 
protein (SIPs) (Chaumont et al. 2005; Maurel et al. 2008). In contrast to arsenate, 
arsenite uptake is repressed by glycerol and antimonite instead of phosphate (Zhao 
et al. 2009). Aquatic macrophytes take up As either through phosphate transporter 
by active transport or passively through aquaglyceroporins and/or physicochemi-
cally adsorb in the root (Rahman and Hasegawa 2011; Mitra and Chatterjee 2016).

Ma et al. (2008) have isolated an arsenite transporter OsNIP 2;1, also known as 
Lsi1 in the rice root, which primarily transports silicon. Efflux of arsenite directed 
from the root toward xylem is mediated by another arsenite transporter Lsi2 also 
described by Ma et al. (2008). Role of Lsi2 gene was confirmed from the observa-
tion of Lsi2 mutant rice species in which AsIII accumulation was found much lower 
in the shoots or xylem sap in comparison to those xylem sap of wild species (Ma 
et al. 2008). Recently, two transporters OSNIP 3;3 and HvNIP1;2 have been reported 
to involve in AsIII transport in the yeast cell (Katsuhara et al. 2014).

5.2.3  Uptake of Organic Species of Arsenic

Organic forms of As such as MMAV and DMAV are in very small proportion in soil 
and may derive from the previous application of arsenical pesticides and herbicides 
or may be synthesized by the microorganism. The organic As compounds are less 
efficiently taken up by plants than that of inorganic As species (Carbonell-Barrachina 
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et al. 1998; Raab et al. 2007). Very little information is available about the mecha-
nism involved in the uptake and transport of methylated As species by plants. In 
aquatic plants, AsIII is transported passively through aquaglyceroporin channel in 
the form of dimethylarsinic acid (DMAA) and monomethyl arsinic acid (MMAA) 
(Rahman and Hasegawa 2011). The aquaporin OsLsi1 is involved in the uptake of 
MMAV, and the loss of function in rice OsLsi1led to an 80% reduction in MMAV 
uptake and 50% for DMAV compared to wild species (Li et al. 2009). Although rate 
of uptake of MMAV and DMAV by plant roots occurs very slowly than that of arse-
nate or arsenite (Abbas and Meharg 2008; Li et al. 2016), greater mobility of MMAV 
and DMAV was found within the plant tissue than that of inorganic As species (Li 
et al. 2009; Carey et al. 2010,2011). Involvement of OsLsi1 was confirmed in the 
uptake of organic As species, but no role is played by OsLsi2 in plants in the efflux 
of the MMAV and DMAV (Li et al. 2009).

5.3  Translocation of Arsenic

Arsenic hyperaccumulators have greater mobility of As relating to translocation 
from roots toward shoots in comparison to non-hyperaccumulator. The less efficient 
translocation of As directing toward shoot from root tissue in non- hyperaccumulators 
is indicative of the low ratios of shoot As to root As concentrations (Burlo et al. 
1999) and thereby justifying the phenomenon that the reduction of arsenate to arse-
nite occurs rapidly in roots, following complexation with thiols and insulation 
within the root vacuoles. In A. thaliana knocked out AtACR2 gene (arsenate reduc-
tase) using RNAi leads to increased accumulation of As in the shoots (Dhankher 
et al. 2006). Blocking AtACR2 leads to more arsenate available for xylem transport 
to the shoots from root via the phosphate transport pathway. Among all As species, 
DMA is translocated more proficiently from roots to shoots, although root uptake is 
less efficient compared to other As species (Raab et al. 2007). The inorganic form in 
which As is transported from root to shoot is questionable. Some authors reported 
that arsenite prevalently exists in the xylem sap, accounting for 60–100% of the 
total As (Zhao et al. 2009). A. thaliana mutant for phosphate transporter, defective 
in xylem loading of phosphate but showed no effect on As distribution to the shoots 
(Quaghebeur and Rengel 2004), suggests that As is not loaded into the xylem as 
phosphate analogue arsenate. Duan et al. (2005) also support that majority of the 
transported As is in arsenite form as AR activity was solely confined within the 
roots. In contrary, a number of reports showed that arsenate is present in the xylem 
as it is being loaded by PHT protein, into the xylem vessels (Catarecha et al. 2007; 
Zhao et al. 2010; Mendoza-Cózat et al. 2011; Wu et al. 2011). However, methylated 
As is detected very meager amount in xylem sap as DMA was found in xylem sap 
of cucumber (Cucumis sativus) and tomato plants only at <4% of the total As 
(Mihucz et al. 2005; Xu et al. 2007).
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5.4  Arsenic-Induced Oxidative Stress in Plants

Arsenic exposure leads to abiotic stress which emanates to oxidative stress at cel-
lular level by producing reactive oxygen species (ROS) (i.e., singlet oxygen, 1O2; 
superoxide, O2

•−; hydrogen peroxide, H2O2; hydroxyl radical, OH•) that surpass the 
pace of their metabolism (Gill and Tuteja 2010; Mallick et al. 2011). Arsenic induces 
ROS production by blocking the activity of key enzyme system along with electron 
drainage during AsV to AsIII conversion (Sharma 2012). The reduction of AsV is suc-
ceeded by methylation of inorganic As, a redox-directed process that may also give 
rise to ROS (Zaman and Pardini 1996). Methylated As species such as dimethylar-
sinic acid (DMA) causes iron-dependent oxidative stress which is based on iron 
released from ferritin. DNA damage takes place by reactive oxygen species which 
are generated directly from DMA3+ (Shi et al. 2004). ROS induces chain like peroxi-
dation of polyunsaturated fatty acid in membrane lipids, damaging the proteins, 
amino acids, nucleotides, and nucleic acids (Noctor et al. 2016; Moller et al. 2007). 
Malondialdehyde (MDA), a product of lipid peroxidation resulting from membrane 
damage, is considered as an indicator of oxidative stress (Shri et al. 2009). Lipid 
peroxidation also increases thiobarbituric acid-reacting substances (TBARS) and 
H2O2 content in H. lanatus (Hartley-Whitaker et al. 2001), Trifolium pratense (red 
clover) (Mascher et al. 2002), Vigna radiata (mung bean) (Singh et al. 2007), and 
Oryza sativa (rice) (Shri et al. 2009). In Pteris vittata and Sphagnum nemoreum, As 
exposure leads to alteration of chloroplast membrane structure and subsequent rup-
ture and enlargement of thylakoid membranes (Simola 1997; Li et  al. 2006). 
Elevated and nonmetabolized cellular H2O2 is responsible for severe damages to 
biomolecules such as cellular lipids and proteins and consequent interruption of key 
cellular functions (Gill and Tuteja 2010; del Río 2015).

Differential modulation in the antioxidant system occurs in the plant under As 
stress as reported from several studies (Dwivedi et al. 2010; Tripathi et al. 2012). 
Activated antioxidant system and increased levels of PC production in different 
plants like Hydrilla verticillata and C. demersum suggest that specific proteins are 
responsive to As stress (Srivastava et al. 2007; Mishra et al. 2008; Dave et al. 2013a). 
Similarly, enhanced activities of antioxidative enzymes such as superoxide dis-
mutase, APX, peroxidase (POD), and GR indicate As exposure generates oxidative 
stress (Shri et al. 2009; Dave et al. 2013b). The first line of defense in higher plants 
includes activation of CAT, SOD isozymes, and the AsA-GSH cycle in response to 
As stress. To mitigate the negative effects of excess ROS, the plant defense system 
functions in a coordinated manner under adverse environmental circumstances in 
the different cell compartments and organs (Airaki et al. 2015). However, following 
exposure to higher As level, ROS production reaches too high that the antioxidant 
defense mechanisms may be devastated, leading to cellular damage which ulti-
mately leads to cell death (Van Breusegem and Dat 2006).
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5.5  Arsenic-Induced Metabolic Alterations in Plants

The potential of AsV to substitute for Pi and the aptness to bind and alter the activi-
ties of fundamental enzymes and hazardous effects of ROS have a direct and signifi-
cant effect on plant metabolism. Arsenic vulnerability leads to changes in the levels 
of various compounds like starch and sugars and modulates the activities of the key 
enzymes of interrelated metabolic pathways like RNase, protease, and leucine ami-
nopeptidase in plants (Mishra and Dubey 2006; Choudhury et al. 2010). Productivity 
was severely hindered due to significant disruption of carbohydrate metabolism in 
plants growing in As-contaminated soil and may be due to the rise in the level of 
soluble sugars in the tissues, especially sucrose and hexoses, the end products of the 
photosynthesis (Mishra and Dubey 2013). A comparative transcriptomic analysis 
revealed variation in the lipid metabolism and phytohormone signaling in plants 
under As(III) stress (Yu et al. 2012).

To encounter the ROS generated by the As exposure, plants need to produce suf-
ficient metabolites, and such response predominantly impacts on carbon, nitrogen, 
and sulfur metabolism of plants (Finnegan and Chen 2012). Promoting accumula-
tion of AsA is the main effect of AsV on plant carbon metabolism to reinforce protec-
tion against ROS (Srivastava et  al. 2005; Singh et  al. 2006; Khan et  al. 2009). 
However, genomic analysis on carbon metabolism proved no changes in transcrip-
tional profiles as observed both in Arabidopsis and Oryza sativa (Abercrombie et al. 
2008; Norton et  al. 2008; Chakrabarty et  al. 2009). Exposure to AsV, AsIII, and 
MMAIII are able to interfere the photosynthetic process in different ways like 
decrease in chlorophyll content (Duman et  al. 2010; Gupta et  al. 2013b) or 
Photosystem II activity (Stoeva and Bineva 2003) which may perturb photosynthetic 
electron flow across the membrane of thylakoid sinking the efficiency to produce 
ATP and NADPH, both of which are essential to fuel the carbon fixation reactions.

Arsenic exposure has the potential to strongly reduce the nitrogen fixation in 
alfalfa roots as observed when alfalfa growing in As-contaminated soil had less than 
half of the total number of root nodules formed in the absence of As (Carrasco et al. 
2005; Pajuelo et al. 2008). Transcriptomic analysis by Lafuente et al. (2010) reported 
that AsIII exposure prevents the gene expression required for early nodule develop-
ment. As a result, soil contaminated with As shows lower potential for N2 fixation in 
ecosystem involving legume-rhizobium symbiosis as evidenced from alfalfa. 
Considerable changes in the amino acid pool have been reported to occur after As 
exposure (Dwivedi et al. 2010; Pavlík et al. 2010). A number of the study reported 
that the RuBisCo, an abundant protein having the capacity to store nitrogen, can be 
a target for disruption in AsV treated plants (Duquesnoy et al. 2009; Ahsan et al. 
2010; Bona et al. 2010). Thus, As exposure that accompanies lower protein content 
in plants may be due to As-induced diminution in carbohydrate metabolism that 
would deter the biosynthesis of amino acids (Finnegan and Chen 2012).
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The major As detoxification pathway, that is, binding of As with the thiol group 
of GSH and PC, indicates the crucial importance of sulfur metabolism regulating 
plant survival in As-contaminated soils. Adequate supplies of the GSH building 
blocks Glu, Cys, and Gly are required immediately after As exposure. According to 
Munoz-Bertomeu et al. (2009), cysteine is the limiting substrate for GSH biosyn-
thesis in Arabidopsis. Decreasing cysteine pool following As exposure (Sung et al. 
2009) signifies that higher Cys biosynthesis is needed to support GSH and PC gen-
eration that  is  also steered  from sulfur metabolism (Finnegan and Chen 2012). 
Plants that overproduce the enzymes mediating GSH and PC biosynthesis were 
found to maintain higher levels of nonprotein thiols than wild species (Guo et al. 
2008). Sulfur is acquired from the soil in the form of sulfate to sustain biosynthesis 
of GSH and PC at high rate. Both species of As induces the expression of sulfur 
transporter genes. Norton et al. (2008) observed that in rice subsequent to AsV treat-
ment upregulation of five sulfate transporter genes, but Sung et al. (2009) reported 
that in Arabidopsis at least one gene is upregulated. Similarly, AsIII treatment in B. 
juncea and rice seedlings at least one sulfate transporter gene was found to be 
upregulated (Chakrabarty et al. 2009; Srivastava et al. 2009). However, Takahashi 
et al. (2011) suggested that small number of transporters may be adequate to direct 
the mobility of sulfate from the soil toward the plants root.

5.6  Enzymatic Antioxidative System

5.6.1  Superoxide Dismutase

Superoxide dismutases or SODs are metalloenzymes that play key roles in protect-
ing cells from oxidative stress by catalyzing the dismutation of O2•− to H2O2 (Li 
et al. 2017). Superoxide dismutase enzyme requires metals as cofactors. SOD asso-
ciated with Cu/Zn is found in the cytosol, plastid, peroxisomes, and root nodules. 
Mn-SOD is confined in the mitochondria, and Fe-SOD is localized in the plastids. 
In maize root, the proteomic analysis reveals Cu/Zn SOD as one of the highly 
responsive enzymes to As which is involved in cellular homeostasis during redox 
disturbance (Requejo and Tena 2005). SOD activity was found to significantly 
increase in response to As toxicity as evidenced from As hyperaccumulator and 
sensitive fern species (Srivastava et al. 2005), in maize (Mylona et al. 1998) and in 
the grass H. lanatus (Hartley-Whitaker et al. 2001); in contrast, high concentration 
of As inhibits the accumulation of SOD mRNA, thus reducing its activity (Gong 
et al. 2005; Gunes et al. 2009). The inhibition of SOD activity in response to high 
As exposure could be attributed to inactivation of the enzyme by H2O2 produced in 
different cellular compartments where SOD neutralizes O2

•- (Khan et  al.  2009). 
ROS- detoxifying enzymes are induced during abiotic stress but are also susceptible 
to oxidative damage (Dietz et al. 1999). Hydrogen peroxide itself is a highly reac-
tive oxidizing agent that undergoes detoxification by CAT and the AsA–GSH cycle, 
both regulates H2O2 level (Shigeoka et al. 2002; Fig. 5.1). The equilibrium between 
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the activity level of SOD and enzymes involved in AsA–GSH cycle and sequestra-
tion of metal ions promotes to maintain the steady-state level of O2 and H2O2 and 
play crucial role by inhibiting formation of the ROS via the metal-dependent Haber–
Weiss or Fenton reactions (Mittler 2002).

5.6.2  Catalase

Catalase is another H2O2 scavenger, located mainly in peroxisomes, glyoxisome, 
cytosol, mitochondria, and root nodules (Shugaev et al. 2011; Sharma et al. 2012; Su 
et al. 2014). This tetrameric, heme-containing enzyme degrades hydrogen peroxide 
promptly into water and molecular oxygen without utilizing cellular reducing supple-
ments, thereby, protecting the cell by removing hydrogen peroxide by saving energy 
(Sharma 2012). Following As exposure, an upsurge of CAT activities was found in 
Zea mays (Mylona et al. 1998). As-tolerant Chinese brake fern (P. vittata) displays 
higher degree of CAT activity than As-susceptible slender brake fern (P. ensiformis) 
and Boston fern (Nephrolepis exaltata) (Srivastava et al. 2005). In contrast, As-induced 

Fig. 5.1 Antioxidant defense system in plants after As exposure including enzymatic and nonen-
zymatic antioxidants (modified from Hasanuzzaman et al. 2012). As, arsenic; SOD, superoxide 
dismutase (in peroxisomes and plastids); CAT catalase (in mitochondria, peroxisomes, cytosol), 
APX peroxidase (in mitochondria, peroxisomes, cytosol, chloroplast), MDHA monodehydroascor-
bate, DHA dehydroascorbate, DHAR DHA reductase, GSH glutathione, GSSG glutathione disul-
fide, GR glutathione reductase (in chloroplast, mitochondria, cytosol), GPX glutathione peroxidase 
(in cytosol, chloroplasts, mitochondria, peroxisome, apoplast), GST glutathione sulfo-transferases 
(in cytosol)
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deterioration of CAT has also been reported by Singh et al. (2007) in Vigna radiata 
(mung bean) and in moss, Taxithelium nepalense. The association of a heme pros-
thetic group with CAT has been established by the irreversible inhibition of CAT by 
cyanide, azide, and hydroxylamine, all of which are hemeprotein inhibitors (Anjum 
et al. 2016). In addition, existence of a thiol group close to the active center of CAT 
contributing in the CAT-mediated reactions has been proven from the inhibition of 
CAT by thiol inhibitors like aminotriazole and mercaptoethanol.

5.6.3  Ascorbate Peroxidase

An alternative mechanism to detoxify H2O2 by peroxidase through AsA-GSH path-
way is found in higher plants that require AsA as a reductant to reduce hydrogen 
peroxide into water (Fig. 5.1; Mehlhorn 1990). APX are class I heme-peroxidases, 
which function as active scavengers of H2O2 in higher plants and prevail as cAPX or 
cytosolic isoforms, mit APX or mitochondrial isoforms, and also in microbodies as 
mAPX, including peroxisomal and glyoxysomal isoforms, and ch APX or chloro-
plastic isoforms (Miyake and Asada 1996; Yadav et al. 2014; Anjum et al. 2016). 
Isoforms are unlike in their molecular weight, stability, and substrate specificity 
optimal pH and have been refined and characterized from several plant species 
including Pisum sativum (Caverzan et al. 2012), Camellia sinensis (Chen and Asada 
1989), Gossypium hirsutum (Bunkelmann and Trelease 1996), Cucumis sativus 
(Battistuzzi et  al. 2001), Nicotiana tabacum (Madhusudhan et  al. 2003), Oryza 
sativa (Sharma and Dubey 2004), Olea europaea (Lopez-Huertas and del Rio 
2014), and Ziziphus mauritiana (Yadav et al. 2014). APX catalyzes the reduction of 
hydrogen peroxide into water and two molecules of monodehydroascorbate 
(MDHA; Noctor and Foyer 1998). APX activity has been upregulated after As 
exposure as observed in maize (Miteva and Peycheva 1999), beans (Stoeva et al. 
2005), mung bean (Singh et al. 2007), and rice seedling (Shri et al. 2009).

5.6.4  Glutathione Reductase

Glutathione reductase (GR, NADPH: oxidized glutathione oxidoreductase) is 
another key component of ROS scavenging system, located predominantly in chlo-
roplast but also in mitochondria and cytosol in a small amount (Gill and Tuteja 2010). 
Glutathione reductase reduces glutathione disulfide (GSSG) to GSH using NADPH 
as reducing equivalent (Fig.  5.1), and thus conserves the cellular redox levels by 
retaining a high ratio of intracellular GSH/GSSG and AsA/dehydroascorbate (AsA/
DHA) during oxidative stress (Anjum et  al. 2012). Two genes, namely GR1 and 
GR2, have been distinguished to encode GR in plants; both are expressed in plastids 
and mitochondria (Jozefczak et al. 2012). A range of biotic and abiotic stress factors 
such as heavy metals and metalloids affect the activity of GR in plants (Anjum et al. 
2010, 2011a, b; Gill and Tuteja 2010). Unfortunately, there is paucity of reports 
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about the active role of GR in higher plants during oxidative stress induced by As. It 
is found in rice seedlings that higher level of GSH required during As-induced oxida-
tive stress is achieved by the activation of GR (Shri et al. 2009). Similar reports, that 
is, elevated level of GR activity has been observed in roots of P. vittata, P. ensiformis, 
and Nephrolepis exaltata after As exposure (Srivastava et al. 2005).

5.6.5  Glutathione Peroxidases

Glutathione peroxidase (GPX) belongs to large peroxidase family with broad sub-
strate specificity, localized in cytosol, chloroplasts, mitochondria, peroxisome, and 
apoplast of plant cell, and catalyzes the reduction of H2O2, organic and lipid hydro-
peroxides consuming GSH pool as a reducing substrate, thereby protecting the cells 
from ROS (Anjum et al. 2010, 2011b). Some authors opined that, plant GPXs are 
actually peroxiredoxins (Prx) as they can use both GSH and thioredoxin (Trx) as 
electron donor, but Trxs act as more efficient reductants (Herbette et al. 2002; Iqbal 
et al. 2006; Navrot et al. 2006; Noctor et al. 2011). Millar et al. (2003) identified a 
family of protein isoforms called AtGPX1–AtGPX7 in Arabidopsis among which 
AtGPX1and AtGPX7 are present in chloroplast providing antioxidant protection 
and synchronizes salicylate, and ROS triggered plant immune responses (Chang 
et al. 2009). The other GPXs isoforms are found in the cytosol, mitochondria, and 
the endoplasmatic reticulum (Milla et al. 2003). Arsenate stress induced to increase 
the GPX activity in dose-dependent manner as observed in mung bean and in rice 
(Singh et al. 2007; Singh et al. 2015). A study carried out in P. vittata reported that 
a rise in GPX activity has occurred up to 20 mg kg−1 As and then declined with the 
increasing As concentration (Cao et al. 2004).

5.6.6  Glutathione S-transferase

Glutathione S-transferases (GSTs) found in plant cytosol are major phase II, ROS- 
detoxifying enzymes (Sheehan et al. 2001) and dependent on GSH for catalyzing 
the conjugation of GSH via the sulfhydryl group to diversified electrophilic centers 
of hydrophobic compounds (Marrs 1996; Fig. 5.1). This reaction renders the com-
pound more polar and facilitates its transport to vacuole or apoplast (Mylona et al. 
1998). GSTs perform versatile roles where GSH serves as a co-substrate or coen-
zyme (Ghelfi et al. 2011). Like other antioxidant enzyme GST activity increases in 
plants after As exposure (Mylona et al. 1998; Srivastava et al. 2005; Norton et al. 
2008; Mokgalaka-Matlala et  al. 2009; Chakrabarty et  al. 2009). As for example, 
upregulation of at least 10 GST genes has been observed in rice in response to AsV 
exposure, while not more than two GST genes are downregulated (Norton et  al. 
2008; Chakrabarty et al. 2009). However, no noticeable changes in GST transcript 
were found in response to AsIII (Chakrabarty et al. 2009), focusing that two inor-
ganic As forms have differential effects on cellular metabolism.
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5.7  Nonenzymatic Antioxidants

5.7.1  Ascorbate

Ascorbate (AsA) is the most abundant antioxidant in plants, present in cytosol, apo-
plast, and in the stroma of chloroplast. Synthesis of AsA occurs in the cytosolic 
region chiefly from the transformation of d-glucose (Hasanuzzaman et al. 2012). 
AsA reacts with a range of ROS such as H2O2, O2• −, and 1O2 and is the most impor-
tant reducing substrate for the removal of H2O2 (Singh et  al. 2006) and restore 
membrane- bound carotenoids and α-tocopherol via the AsA-GSH cycle in plant 
cells (Sharma 2012). In the AsA-GSH cycle, two molecules of AsA (reduced) are 
utilized by APX to reduce H2O2 to water with the concomitant generation of oxi-
dized form MDHA that immediately disproportionates into DHA and AsA (Gapper 
and Dolan 2006) by MDHAR or ferredoxin with the electron donor NADPH in the 
chloroplasts (Gapper and Dolan 2006). Recycling of AsA (reduced) from dehydro-
ascorbate (DHA) is a GSH-dependent pathway catalyzed by dehydroascorbate 
reductase (DHAR) that consumes NADPH as a reducing agent. A report from the 
study by Singh et al. (2006) showed that following As exposure an upsurge of AsA 
(reduced) concentration and the ratio of AsA/DHA occurs in the fronds of 
As-hyperaccumulator P. vittata and As-sensitive P. ensiformis.

5.7.2  Glutathione

The potential detoxification mechanism found in plants for combating heavy metal 
induced phytotoxicity is by synthesizing low molecular weight thiols having high 
affinity for the toxic metals (Bricker et al. 2001). GSH is one of the vital low molec-
ular weight tripeptide thiol associated with sulfur and found as reduced (GSH) and 
oxidized (GSSG) forms. GSH takes part in a slew of cellular processes including 
defense against ROS, sequestration and complexation of heavy metals, control of 
cell division, in budding, and in transport and storage of reduced sulfur (Vernoux 
et al. 2000; Cobbett and Goldsbrough 2002; Freeman et al. 2004; Ogawa et al. 2004; 
Foyer and Noctor 2005; Mullineaux and Rausch 2005). Formation of GSH involves 
two ATP-dependent enzymes namely γ-glutamylcysteine synthetase (GSH1) and 
GSH synthetase (GSH2). In the first reaction, synthesis of γ-glutamylcysteine 
(γ-EC) occurs through a peptide bonding between the carboxyl group of glutamate 
and the amino group of cysteine by the catalytic action of GSH1. In the second reac-
tion, ligation between glycine residue and γ-EC is catalyzed by GSH2 to form 
GSH. GSH1 plays major role in the regulation of GSH biosynthesis (Yadav 2010).

During As detoxification, coupling of the reduction of arsenate to arsenite and 
NADPH oxidation occurs where GSH (reduced) is serving as the electron donor for 
arsenate reductase (Ellis et al. 2006). In plants, As is transported as oxyanion arse-
nate which is reduced to arsenite and sequestered as thiol–peptide complexes in 
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vacuoles. Transgenic A. thaliana overexpressing both arsenate reductase (arsC) and 
GSH1 together showed substantially greater As tolerance than GSH1 transgenic and 
wild-type plants (Dhankher et al. 2002). One protective role of GSH in plants to As 
exposure is relieving from ROS. Supplementation of exogenous GSH and cysteine 
to plants under As stress reduced oxidative stress was observed, and the growth of 
rice seedlings was restored (Shri et al. 2009). Another important role of GSH is to 
serve as a precursor for the synthesis of phytochelatins a set of novel heavy metal- 
binding peptides.

5.8  Role of Phytochelatin in Detoxification and Arsenic 
Tolerance

The most common method of detoxification of heavy metal/metalloid in plants is by 
synthesis of PC. PC is synthesized by the catalytic action of PC synthase (PCS) from 
GSH by transpeptidation of (γ-glutamyl-cysteinyl) n-glycine (Gasic and Korban 
2007). PC has the capability of binding via sulfhydryl and carboxyl residues to a 
range of metals like Zn, Cu, Cd, as well as As (Gupta et al. 2013c). Studies support 
the occurrence of PCs throughout the plant kingdom, in gymnosperms, angiosperms, 
and bryophytes (Clemens 2006). As tolerance in As-non-hyperaccumulating plants 
is achieved through considerable increase in the production and procurement of 
GSH and phytochelatins (PC) following exposure (Schat et  al. 2002; Grill et  al. 
2006). The presence of heavy metal ions and metalloid such as Pb, Cd, Hg, Ag, Cu, 
Zn, As, etc. is required for the constitutively expression of PCS gene (Vatamaniuk 
et al. 2004). The presence of AsIII-GSH or AsIII-PC complexes has been recognized 
in various plants such as Indian snakeroot (Rauvolfia serpentina), in perennial grass 
commonly known as Yorkshire fog (H. lanatus), sunflower (Helianthus annuus), 
Indian mustard (B. juncea), and in Cretan brake fern (Pteris cretica) (Pickering et al. 
2000; Schmoger et al. 2000; Montes-Bayon et al. 2004; Raab et al. 2004). In sun-
flower plants (H. annuus), following As exposure, synthesis of 14 different As com-
plexes have been reported including GS-AsIII-PC2, AsIII-PC3, AsIII-(PC2)2, AsIII-GS3, 
and MMA-PC2 (Raab et al. 2005). Schulz et al. (2008) reported that short chains of 
PCs instead of long chain dominate in As-tolerant plants. Study of cad1-3 mutant A. 
thaliana, lacking the functional enzyme for PC synthesis, ascertained the predict-
able role of PCs in As detoxification; the mutant was unable to produce functional 
PCs and was found to be more sensitive (10–20 fold) to arsenate than the wild-type 
plants (Ha et al. 1999). Finally, As is detoxified within root and shoot tissue vacuoles 
by sequestrating AsIII-PC complexes (Tripathi et al. 2007) thus unable to interfere 
with the cellular metabolism (Mitra et al. 2017a). In rice leaves, PC-arsenite com-
plexation restricts the mobility of As from leaves to grains (Mitra et al. 2017b). In 
Arabidopsis, ABC transporter MRP1/ABCC1 and MRP2/ABCC2 are involved in 
the transport of AsIII-PC conjugates (Song et al. 2010). In rice, transcription- level 
upregulation of homologous ABCC2 transporter gene was found after As exposure 
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(Chakrabarty et al. 2009). A report of Mendoza-Cózat et al. (2011) has proven the 
presence of ABCC transporter in different plant species sharing homology with 
Arabidopsis ABCC1 and ABCC2 transporter. In non- hyperaccumulator plants, phy-
totoxicity is reduced by rapid formation of As-PC complexes and sequestration 
within vacuoles of root cells where acidic pH (5.5) is favorable to stabilize the com-
plex following As uptake, thereby restricting the As transport from the root to shoot 
(Liu et al. 2010; Mendoza-Cózat et al. 2011). The predominating form in which As 
is transported from root to shoot is controversial. In sporophytes of P. vittata, As is 
directed to the shoot mainly as AsV form and accumulated in the fronds as AsIII as 
reported by Zhao et al. (2003). In contrast, Duan et al. (2005) suggested that As is 
translocated mostly in reduced form (AsIII) and thus supporting the restriction of AR 
activity within the roots. Dissimilar with non- hyperaccumulators, where most of As 
is detoxified by the formation of As-PC complexes, hyperaccumulators like P. vit-
tata and P. cretica were found to store 60–90% of arsenic as arsenite (AsIII) form in 
the vacuole of fronds (Pickering et al. 2006; Su et al. 2008) with little complexation 
with PC in the roots and fronds (Zhao et al. 2009).

5.9  Conclusion

In recent years, researchers are trying to decipher the As uptake and transport in 
plants through studying molecular and physiological mechanisms. In plant tissue, 
oxidative stress produced due to ROS production and disorders of antioxidant 
defenses have been considered a significant matter in As toxicity. In this chapter, an 
attempt has been made to compile the updated information about As toxicity specifi-
cally on oxidative stress and the antioxidant defense system in plants. Although As is 
a non-redox active metalloid, excessive ROS is produced during valency conversion 
and methylation in plant. Common manifestations of As-induced phytotoxicity are 
growth inhibition, shortening of roots (than shoots), and severe effects on anatomical 
structures, photosynthetic apparatus, and antioxidant defense activities are found. As 
a result, agricultural productivity worldwide is hugely affected by As. Therefore, an 
urgent need is to find As-tolerant plant variety to increase agriculture productivity in 
affected areas. ROS scavenging are vital for plant defenses, and overexpression of 
gene coding for ROS-detoxifying enzymes helps to increase tolerance against envi-
ronmental abiotic stresses. Transgenic plants that overexpress gene coding for ROS-
detoxifying enzymes may be a prospective item to grow plants with improved 
tolerance against As. Another way is to apply exogenous chemical protectants like 
glycinebetaine, proline, Se, and signaling molecules like NO to alleviate oxidative 
stress (Hasanuzzaman et al. 2011a, b; Hasanuzzaman and Fujita 2011). Meharg and 
Meharg (2015) reported that adequate silicon fertilization greatly boosts rice yield by 
alleviating biotic and abiotic stresses and improving grain quality through lowering 
the content of inorganic As. Nitric oxide (NO), the gaseous free radical, is a wide-
spread intracellular messenger and has regulatory roles in plant physiological pro-
cesses (Neill et al. 2002). Though the NO-mediated amelioration against As-induced 
oxidative stress appeared to be synchronized by modulating antioxidant enzyme 
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activities, NO itself has the capacity to detoxify ROS directly (Talukdar 2013b). 
Therefore, an integrated approach by producing transgenic plants overexpressing 
genes related with antioxidant along with exogenous protectants may be imple-
mented in order to achieve greater tolerance to As stress.
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