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Abstract Photonic mesh lattices provide a versatile experimental platform for
studying light propagation in a discrete environment. By using standard telecom-
munication equipment it is possible to influence the evolution of light by actively
modulating its amplitude and phase. Fiber components thus offer a ready to use
solution for creating a PT -symmetric optical network. Here, we analyze two classes
of PT -symmetric networks: those with local PT symmetry fulfilling the conditions
of PT symmetry in each time step but not globally and those with global PT
symmetry providing completely real eigenvalues. We investigate light propagation
in these dissipative media in the linear and nonlinear regime and discuss nonlinear
localization as well as the formation of soliton. Furthermore, Bloch oscillations are
induced by an external phase modulation and are found to restore pseudo-Hermitian
propagation.

1 Introduction

In this chapter, we discuss light propagation through a fiber optical network, which
shares the same working principle as the Galton board [1] (see Fig. 1a). Originally
proposed as a machine, where particles fall through multiple layers of scatterers,
each deflecting the particles either to the left or to the right, it is a prime example for
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Fig. 1 Schematics of the classical and optical Galton board. (a) In case of the classical Galton
board, a mechanical walker falls through multiple layers of scatterers, each deflecting the particle
either to the left or to the right. (b) In the optical analogue, a laser beam is inserted into a pyramid of
beam splitters. At each row of beam splitter cubes, the laser beam is divided up into one part going
to the left and another going to the right. Photodetectors record the final intensity distribution. (c)
The output of a standard 50/50 beam splitter is given by the superposition of both input fields,
where the reflected path is phase shifted

Random Walks [2]. This stochastic process applied to classical particles reveals a
diffusive motion, which is not time reversible. By replacing the mechanic particles
by photons and the scatterers by beam splitters, a so-called optical Galton board
is realized [3] (see Fig. 1b). Although the idea is the same, interestingly the
optical version features a fast ballistic spreading [4] and a reversible evolution [5],
providing an interesting ansatz for quantum mechanical search algorithms [6]. In the
following, we present an implementation of the optical Galton board, which relies
on fiber amplifiers for compensating losses. Therefore, the optical Galton board is
discussed in terms of classical optics based on the propagation of coherent wave
packets and their mutual interference [7]. At each beam splitter cube (see Fig. 1c),
the incoming field amplitudes A and B transform into the fields A

′
and B

′
at the

output according to

(
A′
B ′

)
= 1√

2

(
1 i

i 1

) (
A

B

)
, (1)

where in this notation the reflected parts acquire a phase shift of π /2. As amplifiers
and classical optical states are used in this project, the optical Galton board is called
a Light Walk in order to distinguish it from Quantum Walks based on e.g. single
photon states [8, 9] or atoms [5].

The main challenges of implementing the spatial Galton board are the growing
number of components with increasing system size and the need for an active
stabilization in order to observe a coherent propagation. A clever solution to both
problems was demonstrated in [8], where time-multiplexing schemes are adapted
to the challenge of realizing an optical Galton board. The working principle is
not limited to a single spatial dimension, but even 2D Quantum walks could be
realized based on this method [10]. In the following, we first want to discuss the
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basics behind time multiplexing of Light Walks and afterwards we explain the
experimental setup in detail. Finally, we present results on linear and nonlinear light
evolution, even in presence of PT -symmetrical potentials.

2 Light Walks via Time Multiplexing

The Galton board is a typical 1 + 1 dimensional system, the rows of which can
be interpreted as discrete time steps and the horizontal deflection of the walker as
the position, which is discretized as well. For a time-multiplexed implementation
of the optical Galton board, pulses are used instead of cw-signals. While in the
standard arrangement all beam splitters of a single row are passed at the same time,
in [8, 11] a time delay between each beam splitters is introduced by shortening
all paths going the left compared to the paths going to the right (compare red and
blue paths in Fig. 2a). The system now evolves on two time scales: firstly, each row
is separated from the next by the path length L = (L1 + L2) /2 and secondly the
length difference �L = L1 − L2, with L1 > L2, separates two adjacent beam splitters
of the same row. Instead of labelling every beam splitter by its individual row m and
column n, it is now possible to identify each beam splitter by a single parameter,
which is the arrival time

Tarrival = T m + �T

2
n. (2)

Fig. 2 Time multiplexing used to realize the optical Galton board. (a) Coding the spatial
distribution of light pulses (yellow circles) by their arrival time: By shortening paths to the left
(red), an artificial length difference is introduced, which attributes to each beam splitter in row m
and column n a unique arrival time given by Eq. (2). Large time steps separate different rows, while
small time steps separate pulses of the same row, but of different columns. (b) The pyramid is then
reduced to two fiber loops of different length and a 50/50 fiber coupler. Each roundtrip in the short
(long) loop equals a step to the left (right). The introduction of the length difference is not altering
the dynamics through the pyramid. (c) Equivalent mesh lattice consisting of 50/50 fiber couplers.
For a better visualization, the length difference between red and blue paths is ignored, since it does
not influence the evolution
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Here, we introduced the average propagation time T and the time difference �T
between both optical paths. By creating the length imbalance between the short
paths to the left and the long paths to the right, a dimensional reduction from
1 + 1D to a single temporal dimension is carried out, which has a crucial impact
on the experiment: Not only the coordinate system of the optical Galton board is
conflated, but instead also the experiment can be simplified to a short and a long
piece of optical fibers connecting the input and output of a 50/50 fiber coupler
(see Fig. 2b). A pulse starting in the longer loop is split up at the fiber coupler
into two smaller pulses, which propagate in the short and long loop, akin to pulses
propagating to the left or right in the pyramid of beam splitters. After each roundtrip
they reach the central coupler, where they split up again. While a path through the
spatial implementation of the optical Galton board is given by a combination of
steps to the left or right, this translates into a specific sequence of short and long
loop roundtrips in the temporal implementation. In this sense, each roundtrip of the
pulses corresponds to a time step m, and the difference in number of round trips
through the long and short loop define the position n.

Obviously, based on time multiplexing only the two fiber loops and the beam
splitter are needed, which is the first main advantage. In case of the Galton board
[1] the accessible propagation length is limited by the rapidly growing size of the
required apparatus. In contrast, the maximum number of round trips realized in the
temporal version is restricted to the ratio N = T /�T between the average roundtrip
time and the time difference. If this limit is exceeded pulses start mixing with those
of the previous round trip. In our experimental setup, an average loop length of 4 km
is chosen and a length difference of about 45 m. In this case, the spatial size of the
optical Galton board extends over approximately 90 positions.

A second advantage of the time multiplexing principle is the intrinsic stability
of the setup. Due to the reduction to only three components, the same parts are
passed again and again. As a necessary condition for interference, two pulses have
to meet at the 50/50 coupler at the same time, which is only possible, if they
propagate for the same number of roundtrips through the long and short loop, but
do not necessarily pass the loops in the same order. In practice this means, that any
fluctuations with a larger time scale than a single measurement, do not influence the
evolution as all possible paths are affected in the same way.

3 Experimental Setup

However, in reality more than three components are needed for realizing a time-
multiplexed version of the Galton board (see Fig. 3). In the supplementary material
of [11–13] detailed descriptions of the experiment are provided. For each measure-
ment, a seed pulse with a length of 25 ns is cut out of the signal of a DFB laser diode
(λsignal = 1555 nm) by a Mach-Zehnder modulator (MZM). For achieving high peak
powers, the pulse is amplified by two erbium-doped fiber amplifiers (EDFA) and
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Fig. 3 Experimental setup consisting of the signal generation and the two optical fiber loops. The
signal of a DFB laser diode is transformed into pulses by a Mach-Zehnder modulator (MZM)
and amplified twice by erbium-doped fiber amplifiers (EDFA). Afterwards, the background is
suppressed by another MZM and cleaned by a bandpass filter. The peak power is adjusted via a
variable optical screw attenuator and an acousto-optical modulator (AOM). After inserting the seed
pulse into the long loop via a 50/50 coupler, it passes a wavelength-division multiplexing coupler
(WDM), which adds a pilot signal to each loop. All losses during one roundtrip are compensated
by an EDFA followed by a tunable bandpass filter. 4 km of dispersion compensating fibers (DCF)
provide a significant nonlinear phase shift already at low power levels. A polarizing beam splitter
(PBS) and a phase modulator (PM) with an integrated polarizer in the short loop filter out a single
polarization state. This state is adjusted via polarization controllers (denoted by three circles) at
numerous positions. At the end of the loops, isolators block back reflections of the AOMs, which
are used for a dynamic gain and loss modulation

afterwards reshaped again by a MZM in order to further suppress the dark signal.
Before being injected into the long loop through a 50/50 coupler, the spectrum of
the pulse is cleaned by a tunable bandpass filter and the peak power is adjusted
by a variable optical attenuator and an acousto-optical modulator (AOM). Both
fiber loops are built up in a nearly symmetric way, starting with an amplification
stage. This consists of an EDFA in each loop, which is adjusted in such a way that
any losses during one roundtrip are compensated. For avoiding transients and for
adjusting the amplification rate, a continuous pilot signal at λpilot = 1536 nm is
added via wavelength-division-multiplexing couplers (WDM). After the amplifiers,
the pilot signal is filtered out by tunable bandpass filters before the pulses enter
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4 km of dispersion compensating fibers (DCF). A DCF has a comparable small
core size and thus a higher nonlinear coefficient compared to standard single mode
fibers (SSMF) [14]. In combination with the long propagation distance of 4 km,
this leads to nonlinear effects already at comparable low peak powers of 100 mW.
The dominant nonlinear effect, which is observed in the experiment is self-phase
modulation based on the Kerr effect. Based on fiber parameters provided in [14],
it is estimated that a nonlinear phase shift of 2π is accumulated at a power level
of about 300 mW within a single roundtrip [12]. Besides the two DCFs, a third
spool of SSMF fiber is needed for balancing the length difference up to a remaining
imbalance of 45 m. For monitoring the pulses, a 90/10 coupler is placed in the short
loop after the fiber spools. In the longer loop, the injection coupler is also used for
pulse monitoring. For adjusting the polarization in each fiber loop, the signal at the
second output port of a polarizing beam splitter in the longer loop is minimized via
manual polarization controllers. A phase modulator in the short loop determines the
polarization state in the respective loop via an integrated polarizer. Optical isolators
prevent any back reflections and the built up of stimulated Brillouin scattering.
At the end of each loop, acousto-optical modulators (AOM) in zeroth order are
used as intensity modulators. The transmission ratio of the AOM depends on the
applied voltage, which is adjusted so, that only 50% of the pulse intensity passes,
while the EDFA compensates for this additional loss. In this way, it is possible to
either attenuate pulses by lowering the transmission ratio, or amplifying them by
increasing the transmission.

4 Mathematical Description of the Evolution

As pulses are much too long to be influenced by the group velocity dispersion of the
fiber they are completely characterized by complex amplitudes um

n and the pulses
vm
n in the long loop and short loop, respectively [11]. Each roundtrip the time step

m of the system advances to m + 1, while the position n is either decreased for
pulses in the short loop (going to the left) or increased for pulses in the long loop
(propagating to the right). In combination with the matrix of a single 50/50 beam
splitter in Eq. (1), this leads to the evolution equations [11]

um+1
n = 1√

2

(
um

n+1 + ivm
n+1

)
and (3.1)

vm+1
n = 1√

2

(
vm
n−1 + ium

n−1

)
. (3.2)

The periodic arrangement of beam splitters in the optical Galton board reveals
a unit cell, which covers two positions and two time steps. The periodicity itself is
reflected in a band structure (see Fig. 4), which is derived by inserting a Floquet-
Bloch ansatz [15].
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Fig. 4 Unit cell of the mesh lattice and the band structure. (a) The mesh lattice consists of unit
cells covering two positions and two time steps. (b) The two-atom unit cell leads to a splitting of
the band structure into two bands [15]. Due to the spatial and temporal discretization, the band
structure is not only periodic in the Bloch momentum Q, but also in the propagation constant θ . (c)
The group velocity vanishes at the center of the Brillouin zone and has maximum absolute values
at the edges. (d) In the linear regime the second derivative of the dispersion relation determines the
dispersive spreading of the wave packets [12, 16]

(
um

n

vm
n

)
=

(
U

V

)
e

iQn
2 e− iθm

2 (4)

into a double step of the evolution equations (3.1 and 3.2). The resulting dispersion
relation

cos θ = 1

2
(cos Q − 1) (5)

connects the propagation constant θ with the Bloch momentum Q. As the evolution
proceeds in discrete round trips, the band structure is not only periodic in the Bloch
momentum Q but also in the propagation constant θ .

A specific point of the dispersion relation is excited by starting with a train
of pulses with a Gaussian envelope in one of the loops. In the next round trip
when pulses have distributed over both loops amplitudes and phases are tuned
according to the desired eigenstate (U, V)t [12]. However, the task of creating a
Gaussian distribution is non-trivial, as the system loses its intrinsic stabilization,
if an externally generated pulse sequence is inserted into one of the loops. In this
case, pulses may interfere, which did not pass the same number of components. As
a consequence, the phase relation between different pulses is no longer fixed and
unpredictable fluctuations from one realization to the next may occur. However, it is
possible to create internally a Gaussian distribution by blocking every second time
step one of the two fiber loops [11]. The resulting evolution equations

um+2
n = 1

2

(
um

n+2 + ivm
n+2 + ivm

n − um
n

)
and (6.1)

vm+2
n = 1

2

(
vm
n−2 + ium

n−2 + ium
n − vm

n

)
. (6.2)
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then simplify to a discretized diffusion equation (e.g. if vm
n is blocked):

um+2
n = 1

2

(
um

n+2 − um
n

)
and (7.1)

vm+2
n = i

2

(
um

n−2 + um
n

)
, (7.2)

the solution of which is known to be Gaussian for an initial single site excitation.
Additional accumulations of phases and drifts of the center-of-mass can be avoided
by blocking long and short loop in an alternating way every second time step. At the
end, a wave packet is produced in each loop with a Gaussian envelope, where in a
final step the phase and amplitude is adjusted through the modulators.

5 Creation of a PT -Symmetric Potential

In their seminal work [17] on PT -symmetric Hamiltonians, Bender and Boettcher
considered a one-dimensional Schrödinger equation

i�
∂

∂t
ψ (x, t) = − �

2∂2

2m∂x2 ψ (x, t) + V (x)ψ (x, t) , (8)

which is invariant under simultaneous time reversal T and inversion of space P ,
setting up a symmetry condition for the potential

V (x) = V ∗ (−x) . (9)

Ten years later, the criterion above in Eq. (9) was transferred to the optical
regime, where the refractive index distribution n(x) = nR(x) + inI(x) replaces the
potential V(x) [18]. Consequently, a system fulfills PT symmetry, if the refractive
index obeys the two conditions

nR(x) = nR (−x) and nI (x) = −nI (−x) (10)

simultaneously. The first successful realization of these symmetry conditions via
two coupled waveguides was reported in [19]. While the sign of nI(x) distinguishes
between an amplifying active medium (nI(x) < 0) and a lossy medium (nI(x) > 0),
it is also possible to avoid any amplification by symmetrically distributing minor
and major losses, e.g. by introducing bending losses in waveguide arrays [20, 21]
or by adding absorbing layers [19, 22]. In such systems a global loss can be scaled
out, leaving regions of amplification and attenuation [23]. However, the presence
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Fig. 5 Creation of an antisymmetric gain and loss distribution. (a) At odd time steps the long loop
is amplified and the short loop attenuated, a situation, which is reversed for even time steps. (b)
This alternating amplitude modulation corresponds to a mesh lattice with gain and loss waveguides,
which are coupled at discrete time steps. (c) Exceptional points (EP) separate the complex part of
the band structure from the real valued central part. At the EPs, the eigenvalues and eigenvectors
of the system merge. The dash-dotted lines denote the imaginary part of the band structure

of a global loss limits the applicability, since the propagation length of optical
signals is reduced. It also renders nonlinear experiments virtually impossible as
the action of optical nonlinearities soon becomes negligible. Active systems like
doped micro-ring cavities [24, 25] require a more stringent choice of materials,
which is traded in for an avoidance of unnecessary losses. In optical fiber networks,
commercially available amplifiers provide a convenient solution to this problem. We
use a combination of amplitude modulators for dynamical gain and loss regulation
and EDFAs for a static compensation of any damping [26–28]. The required
symmetric real part of the refractive index distribution is on the other side realized
by an appropriate phase modulation.

Starting with the imaginary part of the refractive index, an antisymmetric
distribution is achieved by amplifying one loop by G and attenuating the other in
a balanced way by 1/G, which results in the evolution equations

um+1
n =

√
G±1
√

2

(
um

n+1 + ivm
n+1

)
and (11.1)

vm+1
n =

√
G∓1
√

2

(
vm
n−1 + ium

n−1

)
. (11.2)

After each time step, the gain and loss distribution is inverted (denoted by ±),
corresponding to the creation of temporally discretized coupled waveguides with
gain and loss [26] as depicted in Fig. 5. A reflection of space requires at the same
time an exchange of amplification and attenuation in order to restore the original
lattice. In this sense, PT symmetry is already fulfilled by the sole imaginary part of
the potential, however the resulting dispersion relation

cos θ = 1

2
(cos Q − cosh γ ) , (12)
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Fig. 6 Symmetry operations of the PT symmetric mesh lattice including the phase modulation.
Parity symmetry leads to a reflection of space, which is equal to mirroring the lattice about
a vertical line. Time inversion flips the lattice about the horizontal axis and adds complex
conjugation, which is equal to an exchange of gain and loss. To demonstrate that those symmetries
are still present in the case of phase modulation we have assumed the operation of a phase
modulator in one of the loops. The phase modulation is denoted by blue (−ϕ0) and yellow circles
(+ϕ0)

with γ = (lnG)/2, shows complex eigenvalues at the edge of the Brillouin zone
(see Fig. 5c). These zones are separated from a completely real valued region by
exceptional points at

QEP = ± arccos (2 + cosh γ ) , (13)

where not only the eigenvalues but even the eigenstates merge [29]. The resulting
propagation is dominated by the exponential increase of power due to the complex
eigenstates (see Fig. 9 third column).

In order to establish full PT symmetry in the whole Brillouin zone, it is
mandatory to include also a phase modulation, which is equivalent to a symmetric
real part of the refractive index. Since the gain and loss alternates with each lattice
site thus realizing an antisymmetric potential, a symmetric phase modulation

ϕ(n) =
{ +ϕ0, mod (n + 3, 4) < 2

− ϕ0, else
(14)

is needed with a periodicity of four spatial positions [26] (see Fig. 6). Eq. (14) is
experimentally implemented via a phase modulator in the short loop

um+1
n =

√
G±1
√

2

(
um

n+1 + ivm
n+1

)
eiϕ(n), (15.1)

vm+1
n =

√
G∓1
√

2

(
vm
n−1 + ium

n−1

)
. (15.2)
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Fig. 7 Band structure of the PT -symmetric lattice. In the case of a passive lattice as shown in the
first column, the band structure is completely real valued. Applying a phase modulation increases
the size of the unit cell, which leads to a splitting of the dispersion relation into four bands in total
(second column). When complex valued (imaginary part is shown in red) and features exceptional
points. In the case of a combined amplitude and phase modulation, the band structure is completely
real valued again (fourth column). Compared to Figs. 4 and 5, the Floquet-Bloch ansatz in Eq. (16)
is used, which leads to a backfolding of the band structure about the horizontal axis

For deriving the band structure (see Fig. 7) [15]

cos 2θ = −1

2
cos ϕ0 cosh 2γ

± 1

2

√
cos2 ϕ0cosh22γ + 1

2

[
cos 4Q − cosh 4γ − 4cos2ϕ0 + 4

]

of this lattice, a Floquet-Bloch ansatz

(
um

n

vm
n

)
=

(
U

V

)
e

iQn
4 e− iθm

2 (16)

with an increased spatial periodicity of four lattice sites is chosen. Due to the
increased size of the unit cell, the original two bands split up in four. In absence
of gain and loss (G = 1), the pulse spreads while maintaining a constant power
level. However, for gain/loss values exceeding the PT threshold, the band structure
is complex again (see Fig. 8). The increase and decrease of the phase for pairs of
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Fig. 8 PT threshold of the
mesh lattice. Even when
combining amplitude and
phase modulation, PT
symmetry does not guarantee
a real-valued dispersion
relation. Only below a critical
value of the amplification G,
the band structure is real,
while above it has complex
parts. The figure is adapted
from the supplementary
material accompanying [26]

waveguides leads to an effective decoupling to neighboring pairs and a reduced
spreading compared to the passive lattice (see Fig. 9 second column).

6 PT Bloch Oscillations

Besides the real space propagation in Fig. 9, which illustrated the effects of a
complex, but also proves the existence of a completely real valued band structure,
further details about the shape of the dispersion relation are revealed by studying
Bloch oscillations [11, 22, 28, 31]. The original idea of Bloch [32, 33] goes back
to the motion of charge carriers in a crystalline material. In contrast to electrons
in free space, charge carriers in a crystalline material cannot propagate freely, but
instead their motion is dictated by the underlying band structure [34]. Therefore, by
applying an electric field, charge carriers perform Bloch oscillations, which are a
mirror image of the periodic band structure. In our optical system, electrical fields
can be mimicked by linearly increasing phase gradients [11, 28] reminiscent to a
refractive index gradient in waveguide arrays [35, 36].

For convenience we increase the induced phase in one of the loops in each time
step

um+1
n =

√
G±1
√

2

(
um

n+1 + ivm
n+1

)
eiαm and (17.1)

vm+1
n =

√
G∓1
√

2

(
vm
n−1 + ium

n−1

)
, (17.2)

by a fixed amount α , a scheme, which is equivalent to a transverse modulation
as demonstrated in [37]. Compared with a modulation in each transverse step n
requiring a temporal resolution of �T ≈ 200 ns, the necessary band width of the
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Fig. 9 Experimental and numerical propagation dynamics through the PT lattice. In absence of
any modulation, the pulse distributions in both loops exhibit a classical Light Walk pattern [11] (see
first column). By applying the phase potential in Eq. (14), waveguides are pairwise decoupled from
each other, which reduces the spreading of a single lattice site excitation (second column). In the
presence of a pure amplitude modulation, the complex band structure is reflected in an exponential
increase in power (third column). The combination of both modulations restores PT symmetry for
the whole band structure, and as a result power stays on average constant (fourth column). In a)-p)
the intensities in the short or long loop are depicted. In q)-t) the total power is shown. This figure
is motivated by [26] and depicts results from [28]

electrical signal generator for controlling the phase modulator is much lower in case
of a modulation along the evolution direction m amounting to T ≈ 20 μs only. It is
also possible to transform the temporal gradient into a spatial gradient
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Fig. 10 Bloch oscillations in the passive lattice. By applying a phase gradient ϕ(m) = mα, the
Bloch momentum Q = Q0 + mα/2 of a spectrally narrow initial state is shifted for each time step.
When reaching the edge of the Brillouin zone, the state performs a transition from one band to
the other mediated by the Floquet-Bloch nature of the band structure. In real space, the continuous
shift of the Bloch momentum is reflected in a periodic oscillation of the wave packet. The figure is
adapted from [28] and shows experimental results

um+1
n = 1√

2

(
um

n+1 + ivm
n+1

)
e

iϕ0n

2 , (18.1)

vm+1
n = 1√

2

(
vm
n−1 + ium

n−1

)
e

iϕ0n

2 , (18.2)

by choosing the ansatz

um
n = ũm

n e− iϕ
2 nme

im2ϕ
4 e− imϕ

4 , (19.1)

vm
n = ṽm

n e− iϕ
2 nme

im2ϕ
4 e− imϕ

4 , (19.2)

which however requires a spatial phase gradient in each loop.
Starting with a Gaussian distribution and in absence of gain and loss (G = 1), the

wave packet performs classical Bloch oscillations (see Fig. 10b). This behavior can
be explained by analyzing the evolution of the Bloch wave amplitudes of the system
based on the ansatz um

n = ũm exp(iQn) and vm
n = ṽm exp(iQn).

If we assume that these amplitudes evolve from step m to step m + 1 by
accumulating a phase ũm+1 = ũm exp (iθ(m)) and ṽm+1 = ṽm exp (iθ(m)), the
dispersion relation

cos

(
θ

2
+ αm

2

)
= 1√

2
cos

(
Q

2
+ αm

2

)
(20)

is formally identical to that of a homogenous lattice (see Eq. 5) except for an
m-dependent shift in absolute phase, and more importantly in the position in the
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Brillouin zone. Each time step, the effective Bloch momentum Q is increased by
αm/2. When starting at the center of the Brillouin zone Q0 = 0, the edge is reached
at αm/2 = π . At this point, the Floquet-Bloch nature of the system mediates a
transition from one band to the other, since the upper left (right) and lower right (left)
points of the dispersion relation are pairwise degenerate (see Fig. 10). As a result,
the wave packet reenters the Brillouin zone from the opposite site. However, at the
same time it changes to the other band and continues there the Bloch oscillation
until it reaches again the edge of the Brillouin zone.

For sampling the Brillouin zone via Bloch oscillations we expect the most
interesting effects to occur for a band structure consisting of real and complex
valued sections being connected by exceptional points at ±QEP. This is already
realized for pure amplitude modulation (G �= 1,ϕ0=0), which we will consider
in the following. On its way through the Brillouin zone the wave packet has to
pass not only the region of complex eigenvalues but also two exceptional points.
In higher dimensions, instead of passing the EP it is also possible to encircle it,
which leads to a non-adiabatic transition of the excitation from one band to the
other as theoretically discussed in [38] and experimentally demonstrated in [39].
At each exceptional point the two bands merge and respective eigenstates are
coupled. In 1D, when crossing such pair of EPs confining a complex section of
the band structure the wave packet is not only amplified, but a part of its energy
is also transferred to the other band. In real space (see Fig. 11) this splitting is

Fig. 11 PT Bloch oscillations. In presence of PT amplitude modulation (G ≈ 1.1), the band
structure is partially complex valued and features two exceptional points. The complex propagation
constants lead to an increase in power during each Bloch oscillation, while at the exceptional
points, a secondary branch is emitted into the opposite direction. However, for a set of magic
gradients (here at α ≈ π /31.2), the propagation is pseudo-Hermitian and any emission of a second
branch is strongly suppressed. These measurements support the theoretical results from [31] and
are shown in [28]
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Fig. 12 Detailed numerical analysis of a single PT Bloch oscillation. (a) Real space propagation
of a Bloch oscillation in presence of the PT amplitude modulation (G = 1.1). During the first
half of the Bloch oscillation, the total energy shown in (b) increases, when the wave packet passes
the complex region of the band structure. During the second half, the intensity drops again to the
original value. (c) Dispersion relation with states of the wave packet (orange circles) for specific
points during the propagation. Interestingly, even when passing the EPs, not all information is lost
but instead the wave packet moves to the other band. The real part of the dispersion relation is
shown in blue and the imaginary part in red. The imaginary part is stretched by a factor of five for
better visibility

accompanied by the emission of a secondary branch, which counter propagates to
the original one. As the wavenumber shift is the same for both bands, the two wave
packets meet again at the exceptional points and power is redistributed between the
bands. In some cases one of the branches is completely cancelled by destructive
interference (see Fig. 12). By performing experimental and numerical sweeps over
different Bloch gradients α this fascinating phenomenon is further investigated (see
Fig. 11). As theoretically predicted in [31] the emission of the secondary branch is
suppressed and the amplification and attenuation during the complex regions of the
band structure is exactly balanced for some magic gradients. In simulations an even
wider interval of Bloch gradients are accessible, which show a set of such magic
gradients, for which the propagation is pseudo Hermitian (see Fig. 13).

7 Bloch Oscillations in the Local PT -Symmetric Lattice

In the previous sections, two different approaches were described for achieving
a pseudo-Hermitian propagation, where the total power is on average constant.
First a spatial phase modulation was introduced, which completes the amplitude
modulation in terms of the symmetry requirements of PT symmetry in Eq. (10).
In the previous section another method based on Bloch oscillations was discussed,
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Fig. 13 Numerical parameter sweep of the Bloch gradient. For each Bloch gradient α, a single
Bloch oscillation over ≈4π /α time steps is simulated. The initial energy at the first time step is
normalized to one, which is marked by the horizontal dashed line as a guide to the eyes. The solid
curve depicts the energy after a full Bloch oscillation, which takes the initial value for the magic
gradients (intersection points of the dashed and solid curve). By scaling the horizontal axis with the
reciprocal value π /α, reveals a nearly equidistant spacing of the magic gradients. The amplification
and attenuation rate is set to G = 1.1

where special gradients also lead to a pseudo-Hermitian propagation even in absence
of the PT phase modulation. Therefore, the question remains, whether there are
simpler ways of realizing a dissipative system with real eigenvalues. In the previous
sections, the distribution of amplification and attenuation between the two fiber
loops was alternating after each round trip for creating coupled waveguides with
gain and loss. However, with respect to experiments, a static distribution of gain
and loss is more relevant: A small maladjustment of the amplification rates of the
EDFAs either leads to an exponential increase or decrease in power. While in reality,
the EDFAs are precisely enough adjusted, so that hardly a change in the total power
is visible, in the following a provoked imbalance is discussed. In this case, the long
loop is amplified by G and the short loop is attenuated by G−1 according to

um+1
n = 1√

2G

(
um

n+1 + ivm
n+1

)
and (21.1)
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√
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2

(
vm
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n−1

)
. (21.2)

As a result, pulses moving to the right on the lattice are amplified, while pulses
to the left are attenuated.

Also this lattice formally fulfills the requirements of PT symmetry in Eq. (9) for
each time step (see Fig. 14), the dispersion relation

cos θ = 1

2
[cos (Q + iγ ) − 1] (22)
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Fig. 14 Symmetry operations of the local PT -symmetric lattice. Similar to Fig. 6, symmetries
are analyzed in the local PT -symmetric lattice: The parity operation requires a left-right flip of
the lattice and time reversal complex conjugation. However, here the lattice is not symmetric with
respect to an additional vertical flip (m → − m) as for time reversal symmetry in the global PT -
symmetric case (see Fig. 6). Therefore, the lattice preserves PT symmetry for each instantaneous
time step, but not globally

Fig. 15 Band structure of the local PT symmetric system and real space motion during a full
Bloch oscillation. (a) The band structure consists of two bands, where only for Q = 0, the
imaginary part of θ (dash-dotted lines) vanishes. The real part is shown as solid lines. (b) During
one Bloch oscillation (α = π /30), the wave packet is amplified (G = 1.1), while it propagates
along the gain direction. At the edge of the Brillouin zone, it reenters the band structure from the
opposite site and changes to the other band. Due to the symmetric imaginary part, the amplitude
decays again, when the wave packet returns to its initial position. Figure is adapted from [28]

of this lattice shows complex eigenvalues over the complete Brillouin zone except
at Q = 0 (see Fig. 15). Even by including the PT phase modulation, it is not
possible to restore real eigenvalues. This highlights the circumstance that fulfilling
PT symmetry does not guarantee completely real eigenvalues. Here, PT symmetry
is fulfilled for each time step, however not for the global lattice when performing
the combined operations for time reversal T : m → − m and G → 1/G and parity
P: n → − n. Therefore, this lattice is referred to as local PT -symmetric [27].

Although the band structure of the lattice shows complex eigenvalues, it is pos-
sible to transform the system into a Hermitian counterpart by introducing reflecting
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Fig. 16 Reconstruction of a complex band structure based on experimental results on Bloch
oscillations. The center-of-mass motion and the evolution of the peak power is extracted by fitting
a Gaussian distribution according to Eq. (23) to each row of the propagation in Fig. 15. (a) The
derivative of the center-of-mass motion follows the group velocity of the system, which is in
turn determined by the derivative of the dispersion relation (see Eq. (25)). (b) The increase of
the amplitude each time step is determined by the imaginary part of θ (see Eq. (28)). (c) By
evaluating both parameters, the real (violet) and imaginary part (red) of the dispersion relation
is reconstructed. The amplification and attenuation rate is set to G = 1.1 and the Bloch gradient to
α = π /30. Figure is adapted from [28]

boundaries. In this case, any propagation in the amplified loop is limited by the finite
system size, where at the edge the pulses are reflected from the gain direction into
the loss one. Despite an initial amplification, no path can be constructed with an
unbounded increase in power. Besides this illustrative explanation, also numerical
calculations of the finite system indicate real eigenvalues.

In combination with Bloch oscillations an interesting question arises: On the
one hand, the amplitude modulation leads to an amplification of pulses tending
always into the same direction. On the other hand, applying the Bloch gradient
forces wave packets to perform an oscillatory motion. In order to shed light on the
question, which mechanism dominates, the temporal phase gradient ϕ(m) = αm
is combined with a static amplitude modulation. The propagation of the wave
packet starts as expected: The wave propagates analogously to the passive Bloch
oscillation depicted in Fig. 15. However at the same time, the wave is amplified as
it propagates into the direction of the gain loop. After half of the Bloch period, the
Bloch oscillation forces the wave packet to propagate along the lossy direction back
to its initial position, where it arrives without a change in the amplitude.

It is even possible to analyze systematically the position n0(m) and amplitude
A(m) of the wave packet at each time step for reconstructing the dispersion relation
(see Fig. 16). For this purpose, a Gaussian curve

f (n) = Ae
− (n−n0)

2

σ2 (23)
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is fitted to the pulse distribution in each time step. In a semi-classical picture of wave
packet propagation, the center-of-mass of the wave packet estimated by n0 moves at
the group velocity

vG = ∂θ(Q)

∂Q
≈ ∂n0(m)

∂m
, (24)

where Q = Q0 + mα/2. Consequently, the real part of the dispersion relation is given
by the discrete summation over the center-of-mass motion

θR(Q) =
∫ 2π

0
dQvG(Q) ≈

∑M

m=0

n0 (m + 2) − n0 (m − 2)

4
. (25)

within M time steps of a complete Bloch oscillation. The finite difference in Eq.
(25) is evaluated at ±2 due to the natural size of the unit cell covering two time
steps. Complementary to the center of mass motion, the imaginary part of the
propagation constant determines the evolution of the amplitude. After M time steps,
the amplitude of an eigenstate

ψ =
(

U

V

)
eiQme−iθRmeiθIm (26)

is given by

|A(m)| = |A(0)|
∏M

m=0
eθI (Q(m)) = |A(0)| exp

(∑m

m=0
θI (Q(m))

)
. (27)

In the measurement, the intensity of the wave packet is extracted by fitting the
Gaussian distribution in Eq. (23). Therefore, the finite difference of the logarithm of
the amplitude reveals the imaginary part of the propagation constant

θI = ln I (m + 2) − ln I (m − 2)

8
. (28)

8 Nonlinear Light Propagation in the Fiber Network

On the one hand, linear light evolution through the lattice is already capable of
depicting numerous phenomena like Bloch oscillations [22, 28, 31], unidirectional
invisibility [26, 40–42] and the existence of trivial and topological PT defect states
[20, 43–45]. On the other hand, the use of dispersion compensated fibers in the
optical fiber network provides easy access to the nonlinear regime [12, 27]. For
the optical Galton board, nonlinear effects were first theoretically studied in [46].
In experiments, the dominant nonlinear effect is the self-phase modulation (SPM)
through each fiber loop. Already at comparable low peak powers of 300 mW a
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Fig. 17 Experimental observation of a Hermitian soliton in the double discrete mesh lattice. By
increasing the initial power of the seed pulse, a soliton is formed, which is discretized in space and
position. Figure is adapted from [27]

nonlinear phase shift of 2π is expected to accumulate within a single round trip, an
effect which can be easily included in the evolution equations
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In these measurements, the initial peak amplitude is varied via a screw attenuator
and an AOM is used for an automatic parameter sweep.

We first discuss nonlinear evolution of the passive optical Galton board (G = 1)
and ϕ(n) = 0. By increasing the power level of the initial seed pulse, the formation
of a nonlinear wave is observed, which is bent towards the center of the Light Walk
distribution (see Fig. 17). Compared to the initial propagation angle, the nonlinear
wave propagates at a lower velocity as it is hindered by an increasing Peierls-
Navarro potential [47, 48]. Light, which was originally located at the center of the
Light Walk, is simultaneously repelled and shifted away from of the nonlinear wave.

This redistribution of intensities is mediated by the two band system: By
starting with a single pulse, the complete Brillouin zone including both bands is
excited. The effect of self-phase modulation now depends on the curvature of the
respective band, which either leads to self-focusing (upper band) or defocusing
(lower band) [16]. Between both bands, a diametric interaction takes place, which
leads to a simultaneous attraction and repulsion [12]. At even higher peak powers,
which correspond to a nonlinear phase shift of approximately 0.8π , the nonlinear
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Fig. 18 Numerically determined soliton solutions. (a) Comparison between experimentally
(crosses and circles) and numerically (bars) determined soliton profiles. The experimental data
are extracted from time step m = 25. (b) Phase distribution across the soliton profile for the short
and long loop. (d, e) Dependency of the soliton energy and width on the propagation constant.
Figure is adapted from [27]

wave forms a soliton, propagating stable for approximately 45 time steps in the
experiment. The soliton is not only discretized in space but even in time. As a result
of the discretization, the main soliton pulse at the center cyclically splits up and
reunites during two time steps.

Besides the experimental and simulated soliton formation and propagation, also
numerical soliton solutions are found see (Fig. 18). The soliton solver is initialized
with a Gaussian distribution for Un and Vn with a 1/e width of 5 positions and an
amplitude of 0.2. For a specific propagation constant θ0 of the soliton within the
band gap, the residual error

δf =
∥∥∥f

(−→v ) − −→v e−iθ
∥∥∥ (30)

after one time step is calculated. Here, −→v = (U1, V1, U2, V2, . . . , UN, VN)t denotes
a vector, which is constructed out of the soliton profile and f denotes the nonlinear
evolution equations. The residual error is then minimized based on Newton’s
algorithm. For a propagation constant of θ = − 0.2π , the soliton solver initially
converges within numerically precision. The complete branch of solitons is then
calculated by choosing the last soliton solution as an initial guess for the soliton
with a different propagation constant θ . For each solution, the width

w2 =
∑Nmax

n=−Nmax
(n − n0)

2 [|Un|2 + |Vn|2
]

∑Nmax

n=−Nmax

[|Un|2 + |Vn|2
] (31)

with
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[|Un|2 + |Vn|2
]
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[|Un|2 + |Vn|2
] (32)
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and energy

E =
∑Nmax

n=−Nmax

[
|Un|2 + |Vn|2

]
(33)

of the soliton are determined.
The stability of the soliton is numerically investigated by perturbing the solution

Un → Une
iδn and Vn → Vne

iδn with an equally distributed phase noise δn. Below
the center of the band gap θ0 < 0 solitons propagate stable, while above the band
gap, even in absence of an initial noise the soliton decays into a stable solution
[27]. Besides solitons with a maximum, which is maximum localized on a single
lattice site, a second class of solitons is also found with symmetrically distributed
maximum on two sites.

9 Solitons in the Local PT Symmetric Lattice

An interesting situation arises when nonlinearity is combined with a static ampli-
fication to the right and the attenuation of pulses propagating to the left, which
was discussed before in terms of local PT symmetry. When injecting a low power
pulse, an asymmetric Light Walk arises due to the gain/loss imbalance (see Fig. 19).
However, the continuous amplification of the pulses travelling through the long loop
(to the right in the optical Galton board) leads to an accumulation of nonlinear

Fig. 19 Dissipative Light Walk in the local PT -symmetric system. At low power levels, the Light
Walk shows an asymmetric distribution due to the amplification in the long loop and the attenuation
in the short loop (G = 1.1). For medium power levels, the initial amplification to the right is
sufficient to form the double discrete soliton. The soliton maintains a constant power by equally
propagating through the long and short loop. This figure is adapted from [27]
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effects even in spite of the initial linear power level. As a consequence of the
increase in power, a nonlinear wave is formed, which loses mobility due to its
increasing peak power. It bends towards the center of the light walk distribution,
where it finally forms a soliton, which manages to propagate in a balanced way
through the gain and loss loops, so that no increase or decrease in power takes place.
As this soliton on average experiences neither gain nor loss, it closely reproduces the
features of its Hermitian counterpart thus forming a one-parameter family, a finding
which could be confirmed by numerical simulations. This is different from localized
solutions in other dissipative systems, which tend to form fixed point solutions
[49], albeit exceptions like e.g. the cubic-quintic Ginzburg-Landau equation that
are known to exist (see e.g [49–52].). In fact the directional distribution of gain and
loss tends to stabilize the system, as any perturbation of the soliton is radiated away
along the gain direction (see Fig. 20).

This internal power management of the soliton also provides the possibility of
steering it through an additional global loss L in the evolution equations,
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In the experiment, typically small gain/loss imbalances of γ = (ln G)
2 	 1 are

investigated, where e.g. G = 1.1 and thus γ ≈ 0.05. In this case, the real and
imaginary parts of the dispersion relation (� = 0) are expanded in Taylor series

Re {θ} = θ(Q)|γ=0 + O
(
γ 2

)
and (35.1)

Im {θ} = ∂θ

∂Q

∣∣∣∣
γ=0

γ + O
(
γ 3

)
. (35.2)

For a positive imaginary part of θ , the amplitude A(m) of an eigenstate
increases by

∣∣∣∣A (m + 1)

A(m)

∣∣∣∣ = eθim (36)

according to the Floquet-Bloch ansatz in Eq. (4). The increase in amplitude then has
to overcome the global loss L per roundtrip, which yields with Eq. (35.2) the critical
velocity

vcrit = ln L

ln G
, (37)
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Fig. 20 Numerical test of the stability of dissipative solitons. The stability of the various
solitons (different columns) of the local PT -symmetric lattice (G = 1.1) is probed by different
perturbations of the initial distribution U ′

n = Un exp (iδn) and Vn
′ = Vn exp (iδn) with a random

phase noise δn (different rows of the figure), which is equally distributed between 0 and δ. The
upper row displays the propagation constant of the soliton and its location in the band structure.
For propagation constants θ0 < 0 (left three columns) the soliton is stable. In this case, noise is
radiated into the direction of amplification, until it is absorbed at the boundary of the simulation
domain. For θ0 > 0 (two columns on the right), the soliton either decays into a stable solution or
vanishes completely. This figure is adapted from the supplementary material of [27]
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Fig. 21 Simulation of linear and nonlinear Light propagation through the local PT -symmetric
lattice with a global loss. In the linear regime, the critical velocity in Eqs. (34.1 and 34.2) separates
the attenuated from the amplified parts. In the nonlinear regime (� ≈ 0.67π ), the same velocity is
a good measurement for the soliton velocity. However, for large losses as L = 0.93 compared to
the gain and loss imbalance of G = 1.1, the decreased mobility of the soliton impedes the soliton
to propagate at the critical velocity, which is necessary to maintain a constant power

at which a wave packet is neither amplified nor attenuated. In the linear regime, this
velocity separates the attenuated parts of the Light Walk from the amplified (see
Fig. 21), while in the nonlinear regime this velocity is a good approximation of the
propagation angle of the dissipative soliton.

10 Solitons in the Global PT -Symmetric Lattice

Already before the first study on linear beam dynamics in PT -symmetrical systems
[18], the first manuscript on PT solitons was published [53]. However, as the
stringent requirements of PT symmetry on the used materials is even more
restricted when including materials with a significant nonlinear response, PT
solitons remained an exclusively theoretical topic for a long time1 [53–66]. In this
sense, the fiber network provides a versatile experimental platform for studying PT
solitons [27].

In fact we could demonstrate nonlinearly induced localization and the formation
of various solitons in the global PT -symmetric fiber network (see Figs. 22 and
23). However, for a single side excitation as demonstrated in Fig. 22 solitons show
a tendency of destabilization often resulting in a slight exponential power increase

1The list of references here does by far not provide a complete overview about the theoretical
framework of PT solitons.
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Fig. 22 Localization on the global PT -symmetric lattice. By increasing the initial power, the
spreading of a single lattice site excitation is strongly reduced until the wave packet clearly
localizes. Due to the intrinsic instability of the PT lattice (G = 2, ϕ = 0.4π ), nonlinear waves
exponentially grow during propagation. By adding a global loss of 5% per round trip, the linear
propagation is strongly damped, while only nonlinear waves survive, which acts like a saturable
absorber. This figure is adapted from [27]

during propagation [26]. This is in stark contrast to an expected stabilizing effect of a
focusing nonlinearity as predicted for continuous PT -symmetric systems [66]. This
instability seems to be an artifact of the discretization of the propagation in the mesh
lattice. In the fiber network, phase and amplitude modulation as well as nonlinear
propagation are strictly separated and thus seemingly more vulnerable with respect
to perturbations. We utilized this idiosyncrasy in order to implement a saturable
absorber. By adding global loss to the system, all linear waves are damped, but the
soliton does not only pass the lossy system, but can be even additionally amplified
during the propagation (see Fig. 22).

Besides the discrete localization, it is also possible to excite broad solitons in the
global PT -symmetric lattice with a Gaussian distribution. For these broad nonlinear
waves, no intrinsic instability is visible. When increasing the amplitude of the
Gaussian distribution, it self-focuses during the propagation and forms a soliton. As
the input field is symmetric with respect to the real valued potential a sign change
of the phase modulation ϕ0 → − ϕ0 has a considerable impact on the propagation
resulting in a transition from a single to a double hump soliton as shown in Fig. 23.
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Fig. 23 Excitation of broad PT solitons in the experiment and simulation. In presence of gain
and loss (G = 1.4) and a global phase modulation, broad solitons are excited, which show a stable
propagation over 100 time steps in the experiment. By inverting the sign of the phase modulation,
it is possible to change from a single to a double hump soliton. This figure is adapted from [27]

11 Conclusion

In the previous chapter we discussed linear and nonlinear light evolution in a
synthetic photonic mesh lattice, where phase and amplitude modulators are used
to establish PT symmetry. Based on the coupling of two fiber loops with a slight
length imbalance, we showed how a double discrete 1 + 1dimensional temporal
system is created. Fiber amplifiers compensate for any losses and even allow, in
combination with acousto-optical modulators, for dynamical variations of gain and
loss in the network. By meticulously balancing the amplification and a suitable
phase modulation, a PT -symmetric lattice is synthesized. Although gain and loss
are present, the band structure is completely real valued below the PT threshold.
Furthermore, when combining the amplitude modulation with a phase gradient,
Bloch oscillations are induced, which depict the dynamical wave propagation
close to exceptional points as well as the existence of Bloch gradients featuring
a pseudo-Hermitian propagation. In the local PT -symmetric environment, we
showed how to analyze the trajectories and amplitudes of wave packets performing
Bloch oscillations in order to reconstruct real and imaginary part of the band
structure.

In the limit of high power levels, we observe a clear localization of waves in the
mesh lattice. While in the Hermitian system, a double discrete soliton forms, which
is locked to a single lattice site, this soliton can be steered in the local PT -symmetric
environment via a global loss factor. The directionality of the gain/loss distribution
leads to an effective cleaning of the soliton from perturbations as in convectively
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stable nonlinear systems [49]. In the global PT -symmetric mesh lattice, broad
solitons are found, which propagate in a stable manner for over 100 time steps in
the experiment. However, the PT symmetric mesh lattice seems to be intrinsically
unstable with respect to nonlinear perturbations, which is demonstrated for single
side excitations. In this case, the amplitudes of nonlinear waves drastically grow,
which we in turn suppress by a global loss. In this case, a saturable absorber
is formed, where linear waves are damped due to the global attenuation, while
nonlinear waves propagate lossless or even with a net gain.

In the future, central topics in this research area will be the expansion to two
spatial dimensions, as demonstrated in [10] for Quantum Walks, in combination
with PT symmetry, as well as the merging of geometrical and topological effects
with PT symmetry. For Bloch oscillations in PT -symmetric systems precise
measurements of the band structure were demonstrated. In combination with geo-
metrical nontrivial systems [13], the same approach could provide useful insights
into a non-Hermitian expansion of the concept of geometric phases. Additionally,
higher dimensional systems provide direct access to the physics of exceptional
rings [67].

Finally, by combining the phase and amplitude modulations, which both fulfill
the requirements of PT symmetry, a pseudo-Hermitian propagation is established
(see Fig. 9 fourth column), where even in the presence of gain and loss the total
power stays constant on average. This is also highlighted by the dispersion relation,
which is real valued for the entire Brillouin zone and free of any exceptional points
[26] (see Fig. 7, fourth column). However, PT symmetry does not guarantee a real-
valued dispersion relation as shown in Fig. 8. The band structure is only real for the
gain parameter G below a critical threshold value, which depends on the amplitude
ϕ0 of the phase modulation. By either decreasing the phase potential ϕ0 or by
increasing the gain/loss imbalance above a critical value, it is possible to perform
a transition across the PT threshold [26]. While parity and time symmetry are
graphically illustrated in Fig. 6, an explicit and rigorous analysis of PT symmetry
in the fiber network is provided in [30].
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