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Abstract
Freezing stress is accompanied by a state 
change from water to ice and has multiple 
facets causing dehydration; consequently, 
hyperosmotic and mechanical stresses coupled 
with unfavorable chilling stress act in a 
parallel way. Freezing tolerance varies widely 
among plant species, and, for example, most 
temperate plants can overcome deleterious 
effects caused by freezing temperatures in 
winter. Destabilization and dysfunction of the 
plasma membrane are tightly linked to 
freezing injury of plant cells. Plant freezing 
tolerance increases upon exposure to 
nonfreezing low temperatures (cold 
acclimation). Recent studies have unveiled 
pleiotropic responses of plasma membrane 

lipids and proteins to cold acclimation. In 
addition, advanced techniques have given new 
insights into plasma membrane structural non-
homogeneity, namely, microdomains. This 
chapter describes physiological implications 
of plasma membrane responses enhancing 
freezing tolerance during cold acclimation, 
with a focus on microdomains.
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CPK	 Calcium-dependent protein kinase
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GIPC	� Glycosyl inositol phosphoryl 
ceramide

GPDL	� Glycerophosphoryl diester 
phosphodiesterase-like protein

GPI	 Glycosylphosphatidylinositol
HII	 Hexagonal II
HIR	 Hypersensitive-induced reaction
LCB	 Long-chain base
LCBK	 LCB kinase
LTP	 Lipid transfer protein
PDCB	� Plasmodesmata callose-binding 

protein
PHS-P	 4-Hydroxy-sphinganine-phosphate
PLD	 Phospholipase D
PTM	 Posttranslational modification
SG	 Sterylglycoside
SGT	 Sterol glycosyltransferase
SLAH	 Slow anion channel 1 homolog
SLD	 Sphingolipid Δ8 LCB desaturase
SYP	 Syntaxin of plants
SYT	 Synaptotagmin

4.1	 �Introduction

As immovable organisms, plants must continu-
ally monitor ambient conditions and properly 
respond to environmental changes. In spite of this 
limitation, plants have adapted to extreme envi-
ronments ranging from aquatic habitats to alpine 
areas and constitute one of the most successful 
groups of organisms worldwide. In various envi-
ronments, plants suffer from different abiotic 
stresses that homogenously, extensively, and spe-
cies-nonspecifically influence plant growth and 
survival. Abiotic stresses include unfavorable 
temperatures, water unavailability, high salinity, 
inadequate light, and physical pressures. Among 
these stresses, freezing stress has the most critical 
effect on plant survival. Freezing stress is accom-
panied by a state change from water to ice and 
has multiple facets causing dehydration; conse-
quently, hyperosmotic and mechanical stresses 
coupled with unfavorable chilling stress act in a 
parallel way (Steponkus 1984). While most tem-
perate plants can overcome deleterious effects 
caused by freezing temperatures in winter, tropi-
cal and some temperate species cannot withstand 

such temperatures. Freezing tolerance thus varies 
widely among plant species and sometimes even 
within natural accessions of a single species.

One obvious question is what the key factor is 
for understanding freezing tolerance in plants. The 
most crucial component of plant cells under freez-
ing conditions is the plasma membrane (Steponkus 
1984). The disruption of the plasma membrane, 
which delineates extra- and intracellular environ-
ments, leads directly to cell death. Plasma mem-
brane stability and flexibility are therefore deduced 
to be directly related to plant survival under freez-
ing temperatures (Steponkus 1984). In addition, 
freezing stress is multifactorial: cold temperatures 
disrupt enzymatic activities and the physicochemi-
cal behavior of the plasma membrane, while extra-
cellular freezing induces water migration from 
within the cell to extracellular space, increases 
osmotic concentration in unfrozen water, and puts 
mechanical pressure on the plant cell surface. 
Taken together, freezing stress is accompanied by 
cold, dehydration, osmotic, and mechanical 
stresses, all of which are more or less associated 
with plasma membrane function (Takahashi et al. 
2013c). The plasma membrane is thus a key factor 
for overcoming complex freezing injury.

Because freezing tolerance is enhanced by 
cold acclimation using nonfreezing low tempera-
tures such as 4  °C, the mechanisms of freezing 
tolerance have traditionally been studied by com-
paring plant samples before and after cold accli-
mation. In addition, comparisons between 
strongly and weakly freezing-tolerant plants, such 
as rye (Secale cereale) and oat (Avena sativa), 
have yielded a better understanding of plant freez-
ing tolerance (Uemura and Yoshida 1984; Uemura 
and Steponkus 1989; Webb et al. 1994; Takahashi 
et al. 2013a). Recent advancements in proteomic 
and lipidomic technologies and the development 
of the lipid raft model, a new modification of the 
fluid mosaic model, have provided important 
information on complex changes of the plasma 
membrane caused by physiological shifts under 
stressed conditions. Genetic and physiological 
approaches using model plants have also unveiled 
sophisticated and subtle strategies used by plants 
to adapt to severe freezing.

In this review, general features of cold accli-
mation and freezing tolerance in plants are first 
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summarized. After describing advances in plasma 
membrane studies, various aspects raised by 
these studies and future perspectives in plant low-
temperature biology are then discussed.

4.2	 �General Features of Cold 
Acclimation and Freezing 
Tolerance

Freezing stress is accompanied by several stress 
factors, all of which must be overcome by plants. 
Plant cells will otherwise be disrupted, leading in 
turn to death of the cell and eventually the 
individual organism. Detailed mechanisms of 
cold acclimation and freezing tolerance as 
survival strategies against severe freezing are 
discussed in this section.

4.2.1	 �Cold Acclimation as a Process 
Toward Adaptation 
to Freezing

To withstand severe freezing stress, temperate 
plants have developed a set of adaptation 
mechanisms referred to as cold acclimation. Cold 
acclimation is principally achieved via 
nonfreezing low temperatures and short-day 
conditions. The maximum freezing tolerance and 
optimal duration of cold acclimation vary with 
plant species. For example, oat and rye achieve 
their maximum freezing tolerances under cold 
acclimation treatment for 4  weeks, but their 
tolerances are different (−10  °C for winter oat 
and −15 °C for winter rye) (Webb et al. 1994). 
The model plant Arabidopsis also has the capacity 
for cold acclimation. The maximum freezing 
tolerance of Arabidopsis, −10 °C, is attained by 
cold acclimation treatment for 7  days (Uemura 
et al. 1995). Among natural accessions, however, 
the maximum freezing tolerance varies 
considerably, ranging from −8 to −14  °C 
(Hannah et al. 2006).

During cold acclimation, solutes, including 
sugars, amino acids, and specific proteins (e.g., 

dehydrin), accumulate to prevent membranes 
from undergoing freezing-induced denatur-
ation and disruption (Koster and Lynch 1992; 
Welin et al. 1994; Danyluk et al. 1998; Wanner 
and Junttila 1999; Kosová et  al. 2008). This 
process is regulated by the expression of spe-
cific genes such as C-repeat-binding factors 
(CBFs), which quickly increase in the first step 
of cold acclimation (Thomashow 1998, 1999). 
For instance, rye, a monocot plant, accumu-
lates a variety of solutes, including proline, 
soluble sugars, and glycine betaine, during 
cold acclimation (Koster and Lynch 1992), and 
repartitions fructans and simple sugars within 
lower and upper crown tissues during freezing 
at −3  °C (Livingston et  al. 2006). In 
Arabidopsis, several sugars, such as glucose, 
fructose, and sucrose, clearly increase during 
cold acclimation and decrease rapidly during 
de-acclimation (Zuther et  al. 2015). Contents 
of these sugars as well as transcript abundances 
of CBF1 and CBF2 under cold acclimation 
have been found to be correlated with freezing 
tolerance in each natural accession of 
Arabidopsis (Zuther et al. 2015).

Remodeling of cell wall composition and 
structure has also been observed during the cold 
acclimation process in several species. Studies 
based on cryo-scanning electron microscopy 
(Cryo-SEM) have provided information on the 
cell wall as a barrier against extracellular freezing 
(Pearce 1988; Yamada et  al. 2002). Changes in 
cell wall components such as crude cell wall, 
pectin, hemicellulose, and lignin are actually 
induced by cold acclimation treatment (Zabotin 
et  al. 1998; Kubacka-Zębalska and Kacperska 
1999; Solecka et  al. 2008; Amid et  al. 2012; 
Domon et  al. 2013; Livingston et  al. 2013; 
Baldwin et al. 2014; Ji et al. 2015). In winter oat, 
concentrations of apoplastic fructan, glucose, 
fructose, and sucrose increase during cold 
acclimation and sub-zero temperature acclimation 
immediately after cold acclimation (Livingston 
and Henson 1998). This response may also 
contribute to the prevention of ice crystal growth 
and propagation during freezing.

4  Freezing Tolerance of Plant Cells: From the Aspect of Plasma Membrane and Microdomain



64

4.2.2	 �The Plasma Membrane 
as a Primary Site of Freezing 
Injury

In addition to the effects of chilling stress induced 
by low temperatures, freezing stress caused by 
sub-zero temperatures (<0  °C) has diverse 
impacts on plant cell survival (Levitt 1980; 
Steponkus 1984). For example, exposure to 
freezing temperatures is attended by a risk of an 
intracellular state change from water to ice, a 
lethal event. In plant cells that survive under 
freezing, this intracellular freezing does not 
generally take place, and ice nucleation occurs 
preferentially in extracellular space. Nevertheless, 
a difference in chemical potential is established 
between the extracellular ice and the intracellular 
solution, consequently leading to cellular 
dehydration. Plants must therefore overcome 
extracellular freezing-induced cellular 
dehydration. Because ice crystals exclude solutes, 
this extracellular ice formation additionally leads 
to increased concentrations of solutes in unfrozen 
portions of extracellular and/or intracellular 
solutions. Greatly concentrated solutes may 
cause osmotic (and/or salinity) stress in plant 
cells. Furthermore, physical pressure from 
enlarged extracellular ice crystals is deleterious 
to plant cells (Levitt 1980; Steponkus 1984). 
Freezing stress therefore has multiple aspects, 
including cold, dehydration, osmotic, and 
mechanical stresses (Fig. 4.1).

In any of the freezing-induced stresses, the 
plasma membrane is the most important factor 
determining plant cell survival. In particular, the 
plasma membrane acts as a barrier against 
invasion of extracellular ice into intracellular 
space during extracellular freezing-induced 
dehydration and mechanical stress. Intracellular 
freezing would otherwise occur and lead to cell 
death. Furthermore, the plasma membrane 
defines cell shape, surface area regulation, and 
trafficking between intracellular and extracellular 
spaces. Plasma membrane behavior and function 
may be very important for dealing with freezing-
induced dehydration and hyperosmotic stresses 
in plant cells. Extended dehydration and osmotic 
stresses can prevent proper functioning of the 

plasma membrane through their harmful effects 
on physicochemical characteristics of plasma 
membrane components (Steponkus 1984). In 
addition, dehydration results in interbilayer 
fusion between the plasma membrane and other 
intracellular membranes, leading to injuries 
referred to as fracture-jump lesions and lamellar-
to-hexagonal-II (HII) phase transitions (Steponkus 
1984; Gordon-Kamm and Steponkus 1984a; 
Webb and Steponkus 1993; Webb et  al. 1993, 
1994). When endomembranes are in close 
apposition to the plasma membrane, fracture-
jump lesions or HII phase transitions are thought 
to arise by structuration between lipid bilayers of 
both membranes. HII phase transitions, in 
particular, are accompanied by the formation of a 
long cylinder-like structure with circularly 
arranged polar head groups of the membrane. 
These freezing-induced membrane structures are 
considered to trigger demixing and lateral 
segregation of principal membrane components 
such as lipids and proteins, thereby disrupting 
normal functions of the plasma membrane.

4.2.3	 �Significance of the Plasma 
Membrane in the Enhanced 
Freezing Tolerance After Cold 
Acclimation

Most of the cold acclimation-related events men-
tioned above are strongly associated with the 
enhancement of plasma membrane stability. For 
example, accumulations of sugars and dehydrins 
are important events that prevent interbilayer 
fusion of the plasma membrane with other endo-
membranes (Gordon-Kamm and Steponkus 
1984a, b; Steponkus et  al. 1988; Uemura and 
Steponkus 1989; Webb and Steponkus 1993; 
Webb et  al. 1993, 1994, 1995; Danyluk et  al. 
1998; Ashraf and Foolad 2007; Eriksson et  al. 
2011; Rahman et  al. 2013; Thalhammer et  al. 
2014). These solutes can interact with the plasma 
membrane under freezing-induced dehydration 
conditions and maintain a certain distance 
between the plasma membrane and intracellular 
organelle membranes. Alternatively, sugars and 
amino acids such as prolines contribute to 
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scavenging of free radicals, osmotic adjustment, 
and buffering of cellular redox potentials. 
Although the extracellular matrix is not critical 
to plant survival under freezing conditions, since 
protoplast has a substantial freezing tolerance 
(Gordon-Kamm and Steponkus 1984a, b; 
Steponkus et  al. 1988; Uemura and Steponkus 
1989), extracellular responses such as modifica-
tion of cell walls and accumulation of apoplastic 
solutes may help prevent penetration of ice from 

extracellular space through the plasma mem-
brane into the cell (Yamada et al. 2002). On the 
basis of all this evidence, the plasma membrane 
is inferred to be the principal site affected by 
changes in intracellular and extracellular com-
partments in response to cold acclimation. In 
other words, protection of the plasma membrane 
takes highest priority under freezing conditions, 
and the stability of the plasma membrane deter-
mines plant freezing tolerance.

Dehydration

Physical  
pressure

High 
osmolality

Plasma 
membrane

Cell wallEndomembrane Extracellular 
ice crystal

Membrane-
membrane 
interaction 

e.g. fracture-jump 
lesion, HII phase

Microdomain

Low 
temperature 

Fig. 4.1  Schematic illustration of freezing injury. Low 
temperatures influence the functions of plasma membrane-
associated proteins. Extracellular ice formation induces 
water absorption from intracellular space. Expanded ice 
crystals impose physical pressure on the plasma membrane 

surface. Eventually, the plasma membrane can be fused 
with closely positioned endomembranes. Condensed 
solutes in extracellular unfrozen water lead to osmotic 
stress and dysfunction of the plasma membrane
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4.3	 �Changes of the Plasma 
Membrane in Response 
to Cold Acclimation

As mentioned above, the plasma membrane is the 
most crucial component for plant survival under 
freezing temperatures. The plasma membrane is 
composed of lipids and proteins, both of which 
should be affected both quantitatively and 
qualitatively to enhance freezing tolerance. In 
other words, cold acclimation alters lipid and 
protein compositions and functions to enhance 
plasma membrane integrity and stability under 
freezing temperatures. Modifications that take 
place after translation, such as glycosylation, 
may also be important factors that change plasma 
membrane properties. In addition, the structural 
model of the plasma membrane has been updated 
as the result of new findings. Along with 
technological developments, changes of the 
plasma membrane in response to cold acclimation 
have thus been studied from various angles.

4.3.1	 �Components and Structure 
of the Plasma Membrane

The two major components of the plasma mem-
brane are lipids and proteins. Plasma membrane 
lipids are mainly composed of phospholipids, 
sphingolipids, and sterols. Each lipid class con-
tains a wide range of members. For instance, 
more than 300 different types of sphingolipids 
have been estimated in various kinds of organ-
isms (Hannun and Luberto 2000). Basically, the 
predominant structure of the plasma membrane is 
the lipid bilayer. Most plasma membrane lipids 
have both a hydrophilic head and a hydrophobic 
tail in one molecule; the exception is sterol lipids, 
which contain a very hydrophobic ring structure 
and, in some cases, sugar and acyl moieties. Head 
groups are always oriented to the outside of the 
bilayer, while tails face each other toward the 
center of the two-layered sheets. Head groups 
have specific structures and diverse properties. 
Because it can determine physical and chemical 
properties of the plasma membrane surface, the 
molecular assembly of head groups plays an 

important role in overall cell functionalities and 
characteristics.

In addition to lipids, the plasma membrane 
contains a remarkably diverse population of 
proteins. Tanz et  al. (2013) confirmed at least 
4000 proteins in Arabidopsis as plasma 
membrane-localized proteins by GFP tagging 
and mass spectrometry. There are several 
categories of plasma membrane proteins. For 
example, some plasma membrane proteins are 
integrated into the lipid bilayer, while others are 
weakly attached to the surface. These proteins 
play important roles in transportation of ions and 
small molecules, signal transduction, synthesis of 
extracellular components, secretions of proteins 
and other molecules, and intracellular and/or 
intercellular vesicle trafficking.

Some of these membrane proteins are dynam-
ically modified after translation (i.e., posttransla-
tional modification or PTM). More than 300 
different PTM mechanisms have been reported 
(Zhao and Jensen 2009; Kline-Jonakin et  al. 
2011), with the ones most highly emphasized in 
plasma membrane studies being phosphoryla-
tion, acetylation, glycosylation, and oxidation. 
These PTMs possibly regulate protein activity, 
stability, localization, and interactions with other 
molecules (Yadeta et  al. 2013). Furthermore, 
lipid-anchored proteins, such as glycosylphos-
phatidylinositol (GPI)-anchored, myristoylated, 
palmitoylated, and prenylated proteins, are cova-
lently bound to plasma membrane lipids. Some 
PTMs such as glycosylation and lipid modifica-
tion can be further diversified by various bonding 
partners.

Modern biochemical and cell biological tech-
niques have yielded new insights into plasma 
membrane structure. In the past, the structure of 
the plasma membrane was described in terms of 
the fluid mosaic model proposed by Singer and 
Nicolson (1972). In the fluid mosaic model, 
components of the plasma membrane such as 
proteins and lipids are considered to be laterally 
diffused at random. This model is still widely 
supported by many studies based on animal, 
plant, yeast, and artificial liposome systems. 
More recently, however, several studies have 
uncovered the existence of microdomains formed 
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in the plasma membrane by lateral segregation of 
specific components such as sphingolipids, 
sterols, and certain proteins (Simons and Ikonen 
1997). These microdomains are of various sizes 
(Kusumi et al. 2005) and have been implicated in 
many plant cell physiological processes, such as 
pollen tube tip growth, intercellular virus 
movement, responses to iron deficiency, and 
regulation of various membrane proteins 
including brassinosteroid insensitive1 (BRI1), 
hypersensitive-induced reaction (HIR) proteins, 
Rac/ROP small GTPase (Rac1), and respiratory 
burst oxidase homologs (Raffaele et al. 2009; Liu 
et  al. 2009; Hao et  al. 2014; Wang et  al. 2015; 
Nagano et  al. 2016; Gutierrez-Carbonell et  al. 
2016; Lv et al. 2017).

Along with the current consensus that micro-
domain components are mainly composed of 
hydrophobic molecules, microdomains are 
thought to be obtainable as nonionic detergent-
resistant membrane (DRM) fractions at chilling 
temperatures. This latter postulation, however, is 
still debatable. On the one hand, DRMs do not 
always reflect the structure and nature of 
membrane microdomains (Tanner et  al. 2011; 
Malinsky et al. 2013). On the other hand, remorin, 
a major DRM protein, is becoming recognized as 
a microdomain marker because it organizes 
patch-like structures in the plasma membrane 
that can be disrupted by treatment with a sterol 
chelator (methyl-β-cyclodextrin) (Kierszniowska 
et al. 2009; Raffaele et al. 2009). At a minimum, 
however, analysis of DRM fractions on a large 
scale seems to be a suitable first step to uncover 
the association between specific nanostructures 
of the plasma membrane and various physiological 
processes.

4.3.2	 �Lipidomic Changes 
of the Plasma Membrane 
During Cold Acclimation

As mentioned above, lipids are a principal com-
ponent of the plasma membrane. The molecular 
composition of plasma membrane lipids and their 
molecular changes during cold acclimation have 
been investigated in many studies of various plant 

species. In early studies, both compositional 
analysis of lipids and comparative analysis before 
and after cold acclimation were performed using 
plasma membrane fractions (Steponkus 1984; 
Yoshida and Uemura 1984; Uemura and Yoshida 
1984; Ishikawa and Yoshida 1985; Palta et  al. 
1993; Uemura and Steponkus 1994; Uemura 
et  al. 1995). Following the incorporation of the 
microdomain or lipid raft model into the fluid 
mosaic model of the plasma membrane, several 
reports emerged of changes to microdomain lipid 
composition during cold acclimation (Örvar et al. 
2000; Minami et  al. 2009; Degenkolbe et  al. 
2012; Takahashi et  al. 2016a). More recently, 
improvements to lipidomic analysis techniques 
(mainly driven by advances in mass spectrometric 
methods) have allowed more in-depth analysis of 
membrane lipids (Degenkolbe et  al. 2012; Vu 
et al. 2014; Tarazona et al. 2015; Takahashi et al. 
2016a).

4.3.2.1	 �Phospholipids
Early studies dealing with plasma membrane lip-
ids and cold acclimation focused on lipid class 
composition and the degree of unsaturation of 
plasma membrane lipids. For example, Uemura 
and Steponkus (1994) initially revealed that 
proportions of phospholipids and of unsaturated 
ones (mainly phosphatidylcholine and 
phosphatidylethanolamine) significantly 
increased in the plasma membrane over 4 weeks 
of cold acclimation in both rye and oat. These 
trends were also observed in Arabidopsis leaves 
(Uemura et al. 1995). Increases in the proportion 
of highly hydrated lipids such as phospholipids 
and the degree of unsaturation decrease 
hydrophobicity at the membrane surface and 
increase membrane fluidity, respectively. Even if 
plant cells are extremely dehydrated by freezing, 
the plasma membrane can consequently be kept 
spatially separate from intracellular membranes 
because of water molecules bound to the surface 
of the plasma membrane. The most significant 
impact of these changes is thus considered to be 
a decrease in the freezing-induced formation of 
the HII phase; this is because the lamellar-to-HII 
transition is an interbilayer event that occurs at 
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the site of closely apposed membranes derived 
from freezing-induced dehydration.

In DRM fractions, however, the propensity 
toward cold acclimation-induced changes 
observed in the plasma membrane is not 
applicable (Minami et al. 2009; Takahashi et al. 
2016a). For example, phospholipid proportions 
in DRMs are slightly decreased by cold 
acclimation treatment in Arabidopsis (Minami 
et al. 2009) and are relatively steady during cold 
acclimation in rye (Takahashi et al. 2016a). These 
results indicate that microdomains have different 
properties than other plasma membrane areas and 
function as a scaffold for various physiological 
responses during cold acclimation.

4.3.2.2	 �Sphingolipids
Sphingolipids, which are a putative major com-
ponent of plant microdomains, are also affected 
by cold acclimation treatment. Glucocerebrosides, 
one of the major sphingolipid classes, generally 
decrease in both monocot and dicot plants to pre-
vent undesirable phase transitions under freezing 
temperatures (Lynch and Steponkus 1987; 
Uemura and Steponkus 1994; Uemura et  al. 
1995). In DRM fractions, however, similar to 
phospholipids, few changes take place in gluco-
cerebroside proportions during cold acclimation 
(Minami et al. 2009; Takahashi et al. 2016a); this 
suggests that the structure of the sphingolipid-
enriched microdomain is preserved, with its 
function consequently partially maintained and/
or fulfilled even during cold acclimation when 
the total sphingolipid proportion in the plasma 
membrane decreases. Glycosyl inositol phospho-
ryl ceramide (GIPC) is another predominant 
sphingolipid class (Markham et al. 2006) in addi-
tion to glucocerebrosides but still remains poorly 
characterized (Buré et al. 2014). No information 
therefore exists about the changing patterns of 
GIPC and its significance in the plasma membrane 
and microdomains during cold acclimation.

Long-chain base (LCB), a major component of 
sphingolipid molecules, plays an important role in 
plant cold response. Cold treatment induces tran-
sient formation of 4-hydroxy-sphinganine-
phosphate (PHS-P), a phosphorylated LCB, via 
enhanced activity of LCB kinase 2 (LCBK2) 

(Dutilleul et  al. 2012). LCBK1 also potentially 
determines plant freezing tolerance through regu-
lation of reactive oxygen species homeostasis 
(Huang et al. 2017). Sphingolipid Δ8 LCB desatu-
rase 1 (SLD1) is associated with response to cold 
temperatures together with Bax inhibitor-1 (BI-1) 
(Nagano et  al. 2014). Interestingly, BI-1 deter-
mines the abundance of representative DRM pro-
teins, flotillin homolog (FLOT), and 
hypersensitive-induced reaction protein 3 (HIR3) 
in Arabidopsis DRM fractions (Ishikawa et  al. 
2015). Recent studies have also demonstrated that 
SLD is a protein associated with chilling injury of 
chloroplasts in tomato (Zhou et al. 2016). Although 
many studies have revealed that the metabolism of 
sphingolipid and its derivatives is important for 
cold response, the involvement of the sphingo-
lipid-enriched microdomain itself in freezing tol-
erance and cold acclimation has not yet been fully 
characterized.

4.3.2.3	 �Sterols
Sterols are another component of the plasma 
membrane and microdomains. Previous studies 
of Arabidopsis, oat, and rye (Uemura and 
Steponkus 1994; Uemura et al. 1995) have noted 
a decrease in glycosylated sterols such as 
sterylglycosides (SGs) and acylated 
sterylglycosides (ASGs) and an increase in free 
sterols (FSs). Because of the hydrophobicity of 
sterol and acyl moieties in the ASG molecule, 
lowering of the proportion of ASGs would be 
expected to help prevent dehydration-induced 
formation of the HII phase under freezing-induced 
dehydration conditions (Webb et al. 1995).

Sterol compositions of DRM fractions of dif-
ferent plant species show specific responses to 
cold acclimation (Minami et al. 2009; Takahashi 
et  al. 2016a), which suggests that sterols 
embedded in the lipid bilayer of microdomains 
have physiological significance related to 
modulation of activities of microdomain-
recruited proteins in association with freezing 
tolerance. Interestingly, transfer of the sterol 
glycosyltransferase (SGT) gene isolated from 
Withania somnifera to Arabidopsis confers salt, 
heat, and cold stress tolerance (Mishra et  al. 
2013, 2015). Analysis of knockout lines of the 
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Arabidopsis SGT gene, TTG15/UGT80B1, has 
revealed that cold-acclimated plants, but not non-
acclimated ones, have a decreased survival rate 
after freeze-thawing (Mishra et  al. 2015). A 
decrease in ASGs and an increase in FSs may 
therefore improve membrane stability under 
freezing conditions; at the same time, these 
glycosylated sterols are important for freezing 
tolerance acquisition and potentially contribute 
to microdomain functions such as assisting 
cellulose production during cold acclimation 
(Endler and Persson 2011).

4.3.3	 �Proteomic Changes 
of the Plasma Membrane 
During Cold Acclimation

Changes in the proteomic profile of the plasma 
membrane during cold acclimation have been 
characterized in Arabidopsis, orchard grass, oat, 
and rye. Two pioneer studies (Uemura and 
Yoshida 1984; Yoshida and Uemura 1984) 
reported compositional changes of plasma 
membrane proteins during cold acclimation by 
SDS-PAGE analysis. Mass spectrometric 
approaches have contributed to the identification 
of plasma membrane proteins isolated from 
Arabidopsis (Kawamura and Uemura 2003; 
Minami et al. 2009). Shotgun proteomic analysis 
has allowed high-throughput identification and 
quantification of plasma membrane proteins 
isolated from several plant species (Li et  al. 
2012a; Takahashi et al. 2012, 2013a, 2016b). In 
addition, advances in proteomic technologies, 
including increased mass spectrometer sensitivity, 
have allowed the detection of less abundant 
proteins in plant cells. DRM proteins are 
generally extracted in small amounts (only 
roughly 10–20% of total plasma membrane 
proteins in tobacco, Arabidopsis, oat, and rye) 
(Mongrand et  al. 2004; Minami et  al. 2009; 
Takahashi et  al. 2012). Several early studies 
relying on classical gel-based proteomics have 
characterized the compositions of DRM proteins 
in various plant species (Mongrand et al. 2004; 
Borner et al. 2005; Morel et al. 2006; Laloi et al. 
2006; Lefebvre et  al. 2007; Krügel et  al. 2008; 

Minami et al. 2009; Fujiwara et al. 2009). Taken 
together, these results suggest that plant DRM 
fractions typically accumulate various functional 
proteins, such as P-type ATPase, aquaporin, 
remorin, tubulin, leucine-rich repeat receptor like 
kinase, NADPH oxidase, hypersensitive-induced 
reaction proteins (Band 7 family proteins), and 
glucan synthase (reviewed in Takahashi et  al. 
(2013b)). Recent studies using Orbitrap 
technologies have revealed an even greater 
diversity of plasma membrane proteins 
accumulating in DRM fractions; these proteins 
include several GPI-anchored proteins, 
arabinogalactan proteins, and heat shock proteins 
(Kierszniowska et al. 2009; Takahashi et al. 2012, 
2013a, 2016b; Gutierrez-Carbonell et al. 2016).

Some DRM proteins have been characterized 
with a focus on the effects of sterol depletion on 
their distribution into DRM fractions. As studied 
by Kierszniowska et al. (2009) and reviewed by 
Tapken and Murphy (2015), proteomes of typical 
DRM proteins, such as fasciclin-like 
arabinogalactan proteins, FLOTs, and glycosyl 
hydrolases, show responses to sterol depletion 
treatments, consistent with the concept of 
microdomains. Not all DRM-enriched proteins, 
however, are affected by sterol depletion 
treatments, which suggest that various kinds of 
microdomains exist in the plasma membrane. On 
the other hand, some DRM proteins have been 
identified as actual microdomain components of 
the plasma membrane in plant cells. Remorin, the 
best-characterized DRM protein, is recognized as 
a lipid raft marker because it localizes as a patch-
like structure on the plasma membrane (Raffaele 
et al. 2009; Furt et al. 2010; Jarsch et al. 2014; 
Bozkurt et  al. 2014; Konrad et  al. 2014; 
Frescatada-Rosa et al. 2014). Slow anion channel 
1 homolog 3 (SLAH3) co-localizes with calcium-
dependent protein kinase 21 (CPK21) and 
remorin 1.3 on the plasma membrane (Demir 
et al. 2013). FLOTs, KAT1 (K+ channel), plasma 
membrane intrinsic protein2;1 (PIP2;1), and 
syntaxin of plants 21 (SYP21) also exhibit patch-
like distributions on the plasma membrane (Bhat 
et  al. 2005; Li et  al. 2011, 2012b; Jarsch et  al. 
2014). The auxin transporter PIN1 interacts with 
ABCB19  in the microdomain compartment on 

4  Freezing Tolerance of Plant Cells: From the Aspect of Plasma Membrane and Microdomain



70

the plasma membrane, and sphingolipid and 
sterol biosynthesis is correlated with abcb9 
phenotypes, which suggests that sphingolipid- 
and sterol-enriched microdomains have 
significant roles in fundamental physiological 
processes (Titapiwatanakun et  al. 2009; Yang 
et  al. 2013). Consequently, lipid remodeling in 
the plasma membrane during cold acclimation is 
deduced to be closely related to microdomain 
dynamics and lateral distribution of plasma 
membrane proteins.

Taking into consideration all the results of pro-
teomic studies of cold acclimation, the following 
events can be hypothesized to occur during cold 
acclimation in DRM proteins: (1) an increase in 
P-type H+-ATPases, (2) disassembly of cytoskel-
etal components (such as tubulin) in the juxta-
membrane region, (3) rearrangement of vesicle 
trafficking proteins, and (4) accumulation of 
membrane protection proteins on the plasma 
membrane surface. Furthermore, the DRM pro-
teins synaptotagmin 1 (SYT1), dynamin-related 
protein 1E (DRP1E), and phospholipase D (PLD), 
all of which increase during cold acclimation, 
have been functionally studied in detail.

SYT1 has been identified as a cold acclimation-
induced protein in DRM fractions (Kawamura 
and Uemura 2003; Minami et al. 2009; Li et al. 
2012a). SYTs were originally identified as 
exocytosis-related proteins in animal cells 
(Südhof 2002). SYTVII in animals is related to 
membrane resealing, which takes place via 
calcium-dependent exocytosis following 
mechanical disruption of the plasma membrane 
(Reddy et  al. 2001; McNeil and Kirchhausen 
2005). Both immunological and genetic 
approaches have demonstrated that plant SYT1 is 
also involved in the resealing of plasma 
membranes damaged by freezing-induced 
mechanical stress (Yamazaki et al. 2008). During 
injury, for example, the following series of events 
takes place: (1) ice crystals spread into the 
extracellular space and (2) physically press 
against the plasma membrane; (3) the plasma 
membrane is eventually mechanically punctured; 
(4) calcium influx occurs from the extracellular 
space into the cytoplasm through the damaged 
sites; and (5) endomembranes are fused at the site 

of the damaged plasma membrane via calcium-
binding SYT1. These events eventually seal the 
damaged site and decrease the occurrence of 
freezing injury.

Cold acclimation induces an increase in endo-
cytosis-related proteins of the DRP family and 
clathrin heavy chains in DRM fractions (Minami 
et  al. 2009, 2010). In these proteins, DRP1E is 
also transcriptionally regulated by low tempera-
ture, whereas other DRP genes are not greatly 
induced by cold treatment (Minami et al. 2015). A 
genetic approach using drp1e mutants has dem-
onstrated that DRP1E does not affect freezing tol-
erance before cold acclimation but is needed for 
full development of freezing tolerance afterwards. 
According to microscopic analysis, DRP1E local-
izes nonuniformly in specific areas of the plasma 
membrane; furthermore, dot-like GFP–DRP1E 
signals are observed that do not move horizontally 
but instead appear and disappear from the cell sur-
face. These results support the hypothesis that 
DRP1E functions to accelerate endocytotic events 
on the plasma membrane, rearranges plasma 
membrane components during cold acclimation 
via the clathrin-dependent endocytosis pathway, 
and eventually enhances freezing tolerance 
(Minami et al. 2015).

PLDδ, a lipid modification enzyme, increases 
in DRM fractions during cold acclimation 
(Kawamura and Uemura 2003; Minami et  al. 
2009). Several recent studies mainly using 
genetic approaches have revealed that PLDs are 
also strongly associated with plasma membrane 
stability and freezing tolerance during cold 
acclimation. The regulation of phospholipid 
metabolism during cold acclimation is one of the 
most well-studied mechanisms of plasma 
membrane lipids. PLD produces phosphatidic 
acid via hydrolysis of membrane phospholipids. 
Experimental evidence exists that PLDδ acts as a 
positive regulator of plant freezing tolerance. 
Although cold-induced PLDδ seems to be 
involved in neither the expression of various 
cold-regulated proteins nor an increase in sugars, 
which are known to be important components in 
freezing tolerance acquisition in plants, 
experimental evidence exists that PLDδ acts as a 
positive regulator of plant freezing tolerance (Li 
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et al. 2004). Cytosolic acyl-coenzyme A-binding 
protein 6 (ACBP6) enhances freezing tolerance 
in conjunction with the accumulation of some 
phosphatidic acid species and an increase in 
PLDδ expression, which suggests that ACBP6 is 
involved in the induction of the PLDδ gene (Chen 
et al. 2008). The pldα1 mutant, however, increases 
freezing tolerance, most likely as the result of 
higher accumulation of COR47, COR78, and 
osmolytes during cold acclimation (Rajashekar 
et al. 2006). These observations may reflect the 
potential roles of PLDs in cold acclimation 
processes, including phosphatidic acid signaling.

4.3.4	 �GPI-Anchored Proteins 
Responded to Cold 
Acclimation

GPI-anchored proteins are a group of lipid-
modified plasma membrane proteins that are 
anchored to the membrane via glycolipids. 
Changes in plasma membrane lipids during cold 
acclimation should thus directly influence the 
behavior and function of GPI-anchored proteins. 
GPI-anchored proteins are synthesized in the ER 
lumen and are always transferred to the extracel-
lular leaflet of the plasma membrane via the vesic-
ular transport system (Udenfriend and Kodukula 
1995; Eisenhaber et  al. 1999; Ferguson 1999). 
Diverse responses of GPI-anchored proteins in 
the juxtamembrane have recently been elucidated 
(Takahashi et al. 2016b). The abundances of 44 of 
163 GPI-anchored proteins are significantly 
increased in the plasma membrane but are quite 
stable in DRMs, which suggests that a GPI-
anchored protein–microdomain interaction exists 
in the plasma membrane and that the contact 
dynamics of these two factors can be changed by 
cold acclimation treatment.

In regard to the functions of cold acclimation-
responsive GPI-anchored proteins, these proteins 
are more or less associated with cell wall 
organization and remodeling (Takahashi et  al. 
2016b). The importance of cell wall characteristics 
during cold acclimation and freezing stress, 
especially compositions and pore sizes, has been 
discussed earlier, as ice nucleation starts in 

intercellular space (Pearce 1988; Pearce and 
Fuller 2001; Yamada et al. 2002; Rajashekar et al. 
2006). Increases in pectin content and the degree 
of methyl esterification have been observed in 
cell walls of oilseed rape and pea (Kubacka-
Zębalska and Kacperska 1999; Solecka et  al. 
2008; Baldwin et  al. 2014). Associations of 
hemicellulose and cuticular wax with cold 
acclimation and freezing tolerance have also 
been reported (Zabotin et  al. 1998; Amid et  al. 
2012; Domon et al. 2013). Blue-copper-binding 
protein (BCB), another cold acclimation-
inducible GPI-anchored protein (Takahashi et al. 
2016b), has been demonstrated to regulate 
freezing tolerance via modulation of lignin 
biosynthesis (Ji et al. 2015). New candidate GPI-
anchored proteins identified as cold acclimation-
induced plasma membrane proteins (e.g., lipid 
transfer proteins, LTPs; fasciclin-like 
arabinogalactan proteins, FLAs; 
glycerophosphoryl diester phosphodiesterase-
like proteins, GPDLs; and O-glycosyl hydrolase 
family 17 proteins, GH17s) may therefore 
connect compositional changes of plasma 
membrane proteomes/lipidomes and cell wall 
remodeling during cold acclimation via 
microdomain-dependent or microdomain-
independent regulation.

These GPI-anchored cell wall-related proteins 
are associated with cuticle layer formation 
(LTPs), cell wall organization and biomechanics 
(FLAs), cellulose deposition and pectin network 
formation (GPDLs), and callose turnover (GH17) 
(Johnson et al. 2003; Levy et al. 2007; Hayashi 
et al. 2008; DeBono et al. 2009; MacMillan et al. 
2010; Kim et al. 2012). As mentioned above, the 
microdomain component sitosterol-β-glucoside 
is considered to be a primer of cellulose synthesis 
on the plasma membrane or a regulating factor of 
cellulose synthase and its activity, as these 
activities are enriched in DRM fractions (Peng 
2002; Schrick et  al. 2004; Endler and Persson 
2011). These GPI-anchored cell wall-related 
proteins may therefore regulate cell wall 
dynamics via remodeling of the plasma 
membrane environment and/or microdomains 
during cold acclimation, an idea based on studies 
of cellulose synthase. Yeast PER1, required for 
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lipid remodeling of GPI, is, in fact, important for 
appropriate targeting of GPI-anchored proteins to 
microdomains, which suggests that the membrane 
environment in which GPI is anchored may play 
significant roles in the function of GPI-anchored 
proteins (Fujita et al. 2006).

We have identified several GH17s potentially 
GPI-anchored to the plasma membrane that are 
induced during cold acclimation in several plant 
species (Li et al. 2012a; Takahashi et al. 2013a, 
2016b). One of these GH17 proteins, AtBG_ppap, 
is essential for callose turnover and is a key com-
ponent for regulation of plasmodesmal movement 
and cell-to-cell communication (Levy et al. 2007). 
Grison et al. (2015) have recently reported that the 
plasmodesmata membrane is enriched in sterols 
and sphingolipids, reminiscent of lipid profiles of 
DRM fractions. Although not all plasmodesmata-
localizing proteins are fractioned to DRM pro-
teins, at least one, namely, plasmodesmata callose 
binding 1 (PDCB1), is partitioned to DRMs, and 
its localization is influenced by sterol depletion. 
Specific partitioning of GPI-anchored proteins to 
DRMs has not been confirmed (Takahashi et al. 
2016b), but these proteins may be connecting 

with microdomain-enriched plasmodesmata at 
appropriate times. Interestingly, GH17s in poplar 
degrade plasmodesmal neck callose to release 
cell-to-cell communications toward bud dor-
mancy release after winter freezing (Rinne et al. 
2001, 2011). Callose-dependent regulation of 
intercellular communication via plasmodesmata 
might be coordinated with lipid remodeling of the 
plasma membrane and/or microdomains during 
cold acclimation and freezing stress.

4.4	 �Future Perspectives

Technical advances in omics research should 
help facilitate the discovery of new aspects of 
compositional changes of the plasma membrane 
during cold acclimation. Careful observations 
and refined analyses of physiological and genetic 
studies of plasma membrane-associated proteins 
using their mutants have unveiled the impact of 
lipidomic and proteomic changes and the impor-
tance of the plasma membrane during cold accli-
mation and freezing (Table 4.1).

Table 4.1  Representative plasma membrane-associated proteins characterized by previous studies

Name
Changea Function Phenotypeb

ReferencesLoss of function Gain of function
LCB kinase 1 
(LCBK1)

→ Kinase activity of 
sphingolipid LCB

↓ freezing 
tolerance

Huang et al. 
(2017)

↓ sugar and 
proline content

↑ freezing tolerance

↑ ROS level ↑ sugar and proline 
content

↓ ROS-associated 
genes

LCB kinase 2 
(LCBK2)

→ Kinase activity of 
sphingolipid LCB

↓ cold-induced 
PHP-P synthesis

N/A Dutilleul et al. 
(2012)

↑ root growth at 
12 °C
↓ DELLA and 
RGL3 genes

Sphingolipid Δ8 
LCB desaturase 
(SLD1)

↑ CA3d Desaturase 
activity of 
sphingolipid LCB

↓ Δ8 unsaturation 
of LCB

N/A Chen et al. 
(2012)

↓ tolerance 
against prolonged 
chilling stress

Nagano et al. 
(2014)

↓ total 
sphingolipid and 
root growth under 
cold temperature 
(sld1sld2)

(continued)

D. Takahashi et al.



73

Name
Changea Function Phenotypeb

ReferencesLoss of function Gain of function
Sterol 
glycosyltransferase 
(SGT)

N/A Glycosylation of 
sterol molecules

↓ freezing 
tolerance

↑ cold tolerance Mishra et al. 
(2013), (2015)

↓ FS and SG ↑ RD29a and 
RD29b genes (A. 
thaliana 
overexpressing W. 
somnifera SGT 
family gene)

Lipocalin ↑ CA1d Transport of small 
and hydrophobic 
molecule

N/A ↑ freezing tolerance 
(protoplast)

Charron et al. 
(2002)
Uemura et al. 
(2006)

Protein phosphatase 
2C (PP2C)

↑ CA1d Serine/threonine 
phosphatase 
activity

↑ freezing 
tolerance

N/A Tähtiharju and 
Palva (2001)

Negative regulator 
of ABA

Synaptotagmin 1 
(SYT1)

↑ CA1d Calcium-induced 
membrane-
membrane fusion

↓ freezing 
tolerance

N/A Yamazaki et al. 
(2008)

Dynamin-related 
protein 1E (DRP1E)

↑ CA12h Scission vesicle 
from the plasma 
membrane

↓ freezing 
tolerance

N/A Minami et al. 
(2015)

Cold-responsive 
protein kinase 1 
(CRPK1)

→ Phosphorylation 
of 14-3-3 protein 
and negatively 
regulates 
CBFC-repeat 
binding factor 
(CBF) expression

↑ freezing 
tolerance

N/A Liu et al. 
(2017)

Phospholipase Dδ 
(PLDδ)

↑ CA3d Hydrolyze 
phospholipids to 
phosphatidic acid 
and head group

↓ freezing 
tolerance

↑ freezing tolerance Li et al. (2004)

Phospholipase Dα1 
(PLDα1)

N/A Hydrolyze 
phospholipids to 
phosphatidic acid 
and head group

↑ freezing 
tolerance

N/A Welti et al. 
(2002)

↑ COR47 and 
COR78

Rajashekar 
et al. (2006)

↑ raffinose 
content

Blue-copper-binding 
protein (BCB)

↑ CA7d Regulator of 
lignin biosynthesis

↑ freezing 
tolerance

N/A Ji et al. (2015)

↓ phenylalanine 
ammonia-lyase 
genes (PALs)
↓ lignin content

Lipid transfer 
proteins (LTP)

↑ CA3h Lipid transport No changes ↑ freezing tolerance Guo et al. 
(2013)↑ soluble sugar 

content
aArrows indicate expression trends at the mRNA and/or protein level during cold acclimation (CA)
bPhenotypes of knockdown/knockout or overexpression mutants

Table 4.1  (continued)
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On the other hand, most of the previous stud-
ies employed single condition for cold acclima-
tion treatment. However, cold acclimation 
conditions (e.g., processing temperature, cooling 
rate, and light conditions) can influence plasma 
membrane changes and eventual plant freezing 
tolerance. Furthermore, plant freezing tolerance 
can be determined by cellular responses to not 
only cold acclimation but also freezing and post 
freeze-thawing processes. Omics studies of the 
plasma membrane should therefore be focused 
not only on cold acclimation-induced changes 
but also on changes during acclimation, freezing, 
thawing, and recovery.
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