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Many hitherto hidden facts about [Indian]
mathematics were brought to light by R. C. Gupta
through the light of his brilliant expositions. May the
sun [light] of these expositions blossom the lotus minds
of scholars. Having compiled these expositions, we
present them to the scholarly world with immense
pleasure and a deep sense of gratitude. May this
offering be gracefully accepted.



Foreword

It is a great pleasure as well as a privilege to be invited to write these few words
about this collection of the selected works of Prof. Radha Charan Gupta, one of the
great Indian scholars on the history of Indic mathematics. Dr. Gupta began his
career as a mathematics teacher in a college and was inspired by Datta & Singh’s
book on the History of Hindu Mathematics, which he came across in 1963, to
pursue the history of Indic mathematics. He went on to complete his Ph.D. thesis
under the guidance of Prof. T. A. Sarasvati Amma, whose book on Geometry in
Ancient and Medieval India represents a landmark in Indic historical studies of
mathematics.

Dr. Gupta dedicated the rest of his life to carrying out a whole series of
meticulous studies on Indic works in mathematics—studies which have stood the
test of time and won him the 7th Kenneth O. May Prize in the year 2009, awarded
by the International Commission on the History of Mathematics—the first Indian to
get the Prize. Among his most notable contributions are the analyses of
Parameśvara’s third-order series approximations for the sine, and the methods of
Govindasvāmin for interpolating in sine tables. He has contributed articles to
Studies in History of Exact Sciences, volume in honour of David Pingree, edited by
Burnett et al., and Writing the History of Mathematics: Its Historical Development,
edited by Dauben and Scriba. He has over 500 publications and has served the
world of scholarship in many different ways.

His personal qualities of simplicity, modesty, frugality and generosity match the
passion and extraordinary care with which he has pursued the history of mathe-
matics. He is at once both an outstanding scholar and a sage, in the classical Indic
tradition. I congratulate the editor of this volume Prof. K. Ramasubramanian for his
effort in producing a collection of selected works of Dr. Gupta. The volume is
appropriately called Gaṇitānanda (roughly the Joy of Mathematics)—and I cannot
help recalling how the great Bhāskara promised that his algorithms will bring
ānanda to all gaṇakas. I am sure this book will do the same.
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We need more of the kind of authentic papers that Dr. Gupta has written with
such dedication. Such papers are rare, and are generally scattered over the scholarly
literature, so it is convenient to collect them into a volume and make them easily
available. Prof. Ramasubramanian deserves our gratitude for his effort.

October 2015 Roddam Narasimha
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Preface to the Second Edition

In the year 2015, the Annual Conference of the Indian Society for History of
Mathematics (ISHM) was held at IIT Bombay. As the 80th birthday of
Prof. R. C. Gupta also happened to be in the same year, there was a suggestion from
the then Administrative Secretary S. L. Singh1 and the President of the Society
Prof. S. G. Dani that we could take the opportunity to felicitate Prof. R. C. Gupta on
this occasion for the immense contributions he has made to the studies in the history
of mathematics as well as to the society. From this germinated the idea of bringing
out a volume containing selected works of Prof. Gupta. Since the time interval
between the emergence of this idea and the conference was hardly two months, it
was not possible to approach any professional publisher to bring out this volume.
Hence, the volume was brought out as a publication of ISHM, and only a few
copies were printed, primarily for the distribution among the participants of the
conference and a few others.

Since this was a limited edition, subsequently it was felt that it would be highly
desirable to bring out the volume through a reputed publisher and make it com-
mercially available for various institutions and individuals to purchase and get
benefited from its contents. Professor Dani took the lead in this direction and got in
touch with Springer. They readily agreed to publish the volume and requested that
I, as an editor of the volume, should consider adding a few more articles to
the volume. However, it occurred to me, I thought that it would be more appropriate
to seek inputs from Prof. Gupta himself in this regard. When I approached him,
he gave a list of articles that could be considered to be included in this revised and
enlarged edition. From this list, ten articles have been typeset and included in this
volume. The inclusions have been done in such a way that we may find one article
added per part of the volume either at the beginning or at the end, except for Part I
and Part VIII of the previous edition.

1Professor Shyam Lal Singh, born on January 20, 1942, took his last breath at the age of 75 on
October 2, 2017. His dedication to the promotion of studies in the history of mathematics in India
and his selfless service to the society can never be overstated. For more details, see Gaṇita Bhāratī
39.1 (2017).
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While Part I of the previous edition remains unchanged, Part VIII is included with
two very interesting articles, one on Prof. P. C. Sengupta—a doyen among the
historians of Indian mathematics and astronomy—and the other on Prof. Augustus
De Morgan, who was a brilliant teacher, a prolific writer and a scholar par excellence
on mathematics, logic, and philosophy. Incidentally, during one of the conversations
with Prof. Gupta, I came to know that he travelled all the way to Calcutta to meet the
direct heirs of Prof. Sengupta in order to get an authentic biographical sketch about
their father, which he has nicely written up in the form of a short article.

Another valuable addition that has been made to this volume is the inclusion of
an up-to-date bibliography of Prof. Gupta. In 1996, Prof. Takao Hayashi prepared a
bibliography of the writings of Prof. Gupta which was published in Historia
Scientiarum. Then again in 2011, he compiled an updated version of it which was
published in Gaṇita Bhāratī. Those two years incidentally happened to be the 60th
and 75th birth anniversaries of Prof. Gupta. It was so kind of Prof. Gupta that he
gave us the necessary materials to further update and present an up-to-date
bibliography of his writings while working on this revised edition. This
bibliography is provided at the end of this volume.

While preparing this edition, as done in the earlier edition, much attention was
paid to eliminate the typos that had inadvertently crept into the earlier publications,
particularly in the Sanskrit passages quoted by the author as well as in the
transliteration of Sanskrit terms. It is worth mentioning the suggestion from
Prof. Gupta that this volume be supplemented with an exhaustive index. Efforts
were taken in this direction, and significant progress was also made. But considering
the current trend of both the individuals and the institutions preferring to procure
digital versions of the texts, it was suggested by the publisher that efforts towards
preparing an index may not be worthwhile. Hence, the idea of adding an index to the
volume was dropped.

Finally, I would like to acknowledge all those who contributed in various ways to
the production of this revised and enlarged edition of Gaṇitānanda. First, I would
like to thank Prof. Dani of ISHM and Mr. Shamim Ahmad of Springer for having
taken interest in bringing out this revised edition. Working with Shamim has been a
great pleasure as he has been very gentle, highly encouraging and extremely
cooperative. Secondly, I would like to thank all my project staff, namely
Ms. Sushama Sonak, Ms. Sreelekshmy Ranjit, Ms. Lalita Hotkar, Dr. Dinesh Mohan
Joshi and Mr. G. Periasamy, for their editorial assistance. In particular, Sushama
needs a special mention for being kind enough to work quite late in the evenings on a
few days in order to meet the deadline for the submission of the manuscript.

All these project staff are supported under the auspices of Science and Heritage
Initiative (SandHI) at IIT Bombay. But for the financial support made available, I
cannot imagine venturing into the task of producing this volume, as well as others
that were produced in the past, or are in the pipeline. In this connection, I would
like to express my sincere gratitude to Ms. Amita Sharma (former Additional
Secretary, MHRD) and Prof. Devang Khakhar (Director, IIT Bombay) for getting
this project sanctioned and letting me work with it within the norms of the system in
an unfettered system.
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Thanks are also due to Mr. Aditya Kolachana and Dr. K. Mahesh for their
technical assistance in handling the bibliography using LaTeX. Mr. Devaraja Adiga
and Mr. Prasad Jawalgekar also helped by proofreading a few articles. Last but not
least, I am grateful to Prof. R. C. Gupta, who notwithstanding his old age
enthusiastically responded to a few queries over the phone—in spite of the oddities
of the connections!

K. Ramasubramanian
IIT Bombay

April 4, 2018
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Preface to the First Edition

The study of the Indian tradition of Gan  ita and J yotiṣa (Mathematics and
Astronomy) was taken up bymany great Indian savants in the modern period, starting
with Pandit Bāpūdeva Śāstrī (1821–1900), and Mahāmahopādhyāya Sudhākara
Dvivedī (1855–1910). Both these highly talented scholars, after mastering the
traditional Indian texts, effortlessly got acquainted with the modern mathematical
tradition. In fact, besides teaching traditional texts, they were also teaching Euclidean
geometry (rekhāgan  ita) in the Government Sanskrit College.2 It was Bāpūdeva Śāstrī
who first drew the attention of modern scholars about the occurrence of a differential
formula (d sin h ¼ cos h � dh) in Bhāskara’s Siddhāntaśiromaṇī, while he was
translating the work into English along with Lancelot Wilkinson.

The contributions of Mahāmahopādhyāya Pandit Sudhākara Dvivedī, who was
the successor of Pandit Bāpūdeva Śāstrī to teach astronomy and mathematics in
Benaras since 1890, are indeed phenomenal. He brought out authentic editions of
several important works, such as Siddhānta-tattvaviveka, Śiṣyadhīvṛddhidatantra,
Paṅcasiddhāntikā, Bṛhatsaṃhitā, Triśatikā, Brāhmasphuṭasiddhānta, Grahalāghava,
Sūryasiddhānta and Gaṇitakaumudī (published later by his son Padmākara Dvivedī),
when he was working in the Sarasvatī Bhavana Granthālaya (Library), now merged
with Sampurnanand Sanskrit University. Dvivedī also added his own commentary in
lucid Sanskrit to most of these texts. He also did pioneering work in producing text
books in Hindi and Sanskrit on modern mathematics. The stupendous work done by
him in such a short span of life that he lived (55 years) is both amazing and inspiring!

Early decades of the twentieth century saw yet another remarkable scholar
Bibhutibhusan Datta (1888–1958). True to his name3 Datta was blessed with
remarkable ability to deeply penetrate into any subject and bring out its essence.
Ancient Hindu Geometry: The Science of the Sulba based on the lectures that he gave in
1932, and the two volume History of Hindu Mathematics that he wrote along with
A. N. Singh, are indeed all time classics in the history of Indian mathematics.

2It is in this college that the famous western indologists James R. Ballantyne, Ralph T. H. Griffith,
George Thibaut and Arthur Venis, served as Principals in succession from 1846–1918.
3The term Bibhutibhusan when taken as a bahuvrīhi compound means ‘for whom talents are an
ornament’ or equivalently ‘who is adorned with talents’.
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P. C. Sengupta (1876–1962) and A. A. Krishnaswami Ayyangar (1892–1953)
are two of the outstanding scholars who enriched our understanding of the history
of mathematics and astronomy through their writings in the early part of twentieth
century.4 Soon there emerged a host of other scholars such as T. S. Kuppanna
Sastry (1900–1982), K. S. Shukla (1918–2007) and K. V. Sarma (1919–2005) who
meticulously brought out excellent editions of important primary sources, generally
accompanied with translations and detailed mathematical notes as well. They also
wrote scholarly articles on various topics that are highly insightful.

The tradition that was set by such stalwarts was carried forward by many other
erudite scholars. Notable among them are: C. N. Srinivasiengar (1901–1972),
C. T. Rajagopal (1903–1978), S. N. Sen (1918–1992), T. A. Sarasvati Amma
(1918–2000), B. V. Subbarayappa (b. 1925), S. R. Sarma (b. 1937) and A. K. Bag
(b. 1937). All these scholars, through their painstaking efforts, have made sub-
stantial contributions which have greatly enhanced our understanding of the
development of Indian mathematics and astronomy.5

Professor Radha Charan Gupta (RCG), whose selected works are presently being
brought out as a volume, is a shining star in the galaxy of such illustrious scholars.
He was born in Jhansi,6 to Chote Lal and Bino Bai in the Śālivāhana Śaka year
1857 on the Śrāvaṇa-pūrṇimā day, which corresponds to August 14, 1935.7 He had
his education up to Intermediate (currently higher secondary) in Jhansi itself. Even
during early 1950s there was not much facility to pursue higher studies in Science
in Jhansi, and one had to go to Lucknow (approx. 300 km from Jhansi) for that
purpose. While RCG wanted to pursue his studies, his father seemed to have
reservations due to financial constraints. However, being keen on what he wanted to
achieve, RCG managed to get a merit scholarship (Rs. 60 per month) to continue
his studies in Lucknow University.

While he was doing Bachelor’s in Lucknow University, RCG got married to
Savitri Devi in 1953.8 Continuing his studies further, RCG successfully completed
his Masters degree with flying colors in 1957.9 As he was already married, and had

4Among other works of these two scholars, the translation and detailed mathematical notes of
Khaṇḍakhādyaka brought out by Sengupta in 1934, and the (24 page) article on Cakravāla
method, written by Ayyangar in 1930 are truly exceptional!
5Needless to say that this scholarly enterprise also owes a great deal to the monumental efforts and
contributions of several European scholars such as H. T. Colebrooke, Lancelot Wilkinson, Rev.
Ebenzer Burgess, George Thibaut in the nineteenth century and David Pingree and his disciples in
the second half of the twentieth century.
6A historic city of northern India, in the region of Bundelkhand, in the southern part of Uttar
Pradesh, India.
7It was clarified by Prof. Gupta himself that the date of October 26, 2015 given as his date of birth
in the citation of Kenneth O. May prize is erroneous.
8During personal conversations RCG mentioned that in those days the practice of dowry was
rampant. Since his father was in need of money to pay the dowry to get his sister (Shanti) married,
RCG was obliged to get married so early, so that the dowry that was received in his marriage could
be used for the dowry to get Shanti married.
9RCG was awarded Devi Sahay Mishra Gold Medal, for securing the first position in the Master’s
examination.
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to support his family, he immediately took up the job of a lecturer, deferring his
desire to pursue further studies leading to a doctoral degree. This in fact turned out
to be a blessing in disguise for him. In 1963–1964, RCG got acquainted with the
great scholar Dr. Sarasvati Amma. Under her guidance he completed his Ph.D.
dissertation on “Trigonometry in Ancient and Medieval India” in 1970–1971.

The pursuit of history of mathematics that RCG started in the early 1960s, has
been continuing till date unabated. Inexorably drawn as it were into the subject, he
has published several hundreds of articles on a variety of topics related to history of
science over a period of nearly five decades, starting from the late 1960s. From the
day he stepped on to the hill of history of mathematics, by a divine providence, he
has been trekking up the hill all the way!

This volume contains 46 selected articles of RCG written on a variety of
important topics in Indian astronomy and mathematics. These articles have been
organized in 9 parts, whose short summary can be gleaned from the back cover
of the volume. The articles appearing in each of these parts have been arranged in
chronological order of their appearance in journals/books.

In this volume, except for correcting a few obvious typographical errors in the
text, in the equations, and in the Sanskrit verses, the articles are essentially
reproduced as in the original (including the style of footnotes, references, etc.).
Other editorial corrections such as replacing or inserting a Sanskrit word in the
quoted passages that were carried out are indicated in footnotes with ‘–ed.’ at the
end of them. Though all the papers have been entirely retyped, most of the figures
(many of which are hand-drawn by RCG himself) have been simply scanned and
reproduced.

Venturing into the task of highlighting the key points made by RCG in each of
his articles, would make the preface too lengthy. To avoid this, I shall confine
myself to merely highlighting some of the special and distinctive features that
characterize all his writings.

Brevity and clarity: This seems to be one of the hallmarks of RCG’s articles. It is
hard to find any of his articles being discursive or verbose. By adopting a trenchant,
yet simple style, he seems to have set a trend that is worth emulating.

Building on factual findings: His articles are filled with factual findings, without
making exaggerated claims. Given an opportunity, RCG does not spare those who
try to make superfluous statements. For instance, in his article “In the name of
Vedic mathematics” he observes:

It is a common experience that as soon as a scientific discovery is made known, someone
would come out with the claim that it was already known to the Vedic sages. To give a
sample we take an example…

Precision in translation: RCG did not have the privilege of receiving any formal
training in Sanskrit, while he was a student in school or college. Neither does he
hail from a family of pandits. However, the great erudition that he has acquired in
making precise translations of Sanskrit passages is highly commendable. During
one of my visits to his place, when I asked him about how he gained such a mastery
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in Sanskrit, he took me to his library and showed a set of Sanskrit dictionaries.
I was amazed to notice marginal notes that he had made by painstakingly going
through every relevant entry of these dictionaries.

Sobriety of judgement: RCG has been extremely careful while analysing the
contribution made by ancients. Wherever he finds any inaccuracy in the ancient
work, he doesn’t shy or hesitate to point out the lacunae in their treatment. At the
same time he also makes it a point to add that “it will not be fair to judge those
books by modern standards” (see article in Part VIII of the volume, on Pandit
Sudhākara Dvivedī).

Critical but not harsh: Though he has been quite critical in his analysis, he
carefully avoids making harsh statements. In fact, his general approach to history of
science, can be gleaned from the following statement he makes in the preamble to
his article “In the name of Vedic mathematics”, appearing in Part II of the volume:

Excitement is predominating over real understanding of the matter. Emotional feelings are
overtaking rationality needed to know the correct situation involved in the issue. Logic and
cool thinking is necessary for assessment of historical significance, scientific value, edu-
cational utility, and…

RCG also seems to be quite adept in subtly pointing out the errors noticed in
other works, instead of being blunt or unceremonious in making remarks.

Meticulous in giving references: One of the hallmarks of RCG is that he is
extremely meticulous in providing references to the source texts and secondary
works that he has consulted.

Always up-to-date: With the advancement in technology, today it may be easy to have
access to various journals merely by the click of a button. But in those days (40–50
years ago) when RCG was a young researcher, it would have been extremely difficult
to keep oneself informed on the research activities going on at different places, par-
ticularly about the current work being done abroad. But, somehow, RCG seems to have
managed to stay in touch with many scholars abroad and thereby keep himself
up-to-date, as is evident from the references provided in his articles.

Aware of the historical context: Yet another interesting feature of RCG’s articles is
that, wherever possible he tries to make a link to the relevant historical information.
This besides making the reading of the article more lively, also sometimes helps us
develop an understanding of the context in which certain things happen, certain ideas
get developed, etc. For instance, posing himself the question as to why Pandit
Sudhākara Dvivedī has not written a commentary on Śiṣyadhīvṛddhidatantra, as he has
done it for most of the other texts, RCG observes:

There is no commentary, possibly because the text itself was simple and expository, or
more probably because the editor was lacking peace of mind due to the sad loss of his father
which he mentioned in the words:
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Balanced approach: While scholars like David Pingree have written extensively
on transmission of scientific ideas into India, not many have attempted to study the
transmission of ideas outwards from India. Some of the articles contained in Part IX
throw light on this aspect. It is also interesting to note that, while narrating about the
transmission of mathematical ideas of Indian origin into other cultures, RCG also
points out how in the process of transmission, the ideas themselves get transformed
and assume new dimensions.

Having said this much about RCG’s unique and scholarly style of writing, now I
would like to focus on the unique contributions made by him to promote studies in
history of science in India. From his fairly early teaching days, RCG has been
deeply concerned about the need to foster and promote scholarship on history of
science in India. In his article on “The Study of History of Mathematical Sciences in
India” (Part II of the volume), he observes:

There are no adequate arrangements in India for imparting sufficient formal education and
training to produce competent historians of science. A few special papers on History of
Science are taught in some universities, but there are hardly any full graduate or post-
graduate degree courses exclusively in the field. …

Indian scholars must cultivate greater historical sense. Also we must have real love for
records and try to preserve them. In foreign (western) countries, the papers, notes, corre-
spondence of scientists is preserved and catalogued (in various libraries). In India, the
material is often disposed of as waste paper (also cf. the practice of worshipping very costly
idols and then do visarjana).

Elsewhere in the article he remarks:

It seems History of Mathematics is not a dead but dynamic subject. Before 1930, it was
mostly just the glory of the Greeks. After that the picture changed by findings in
Babylonian mathematics. Further dimensions have been added to ancient period by the
researches in prehistoric and megalithic times and by theories of ritual origin of sciences.
Now medieval period is being enriched by studies and publications of Arabic mathematics.
However, it is better to wait rather than give final and immature judgements in a hurry. Let
us pool material; building may be erected later on. It is wise to look before leap.

The above passages more or less summarize RCG’s understanding of the nature
of history of science, and the role of serious scholarly studies in taking the subject
forward. RCG not merely wrote on what needs to be done to promote history of
science in India, he indeed devoted his entire life and all his resources for this cause.
He was instrumental in forming the Indian Society for History of Mathematics, and
also served as the founder-editor of Gaṇita Bhāratī—the official journal of the
Society for over 25 years from 1979. It was indeed most appropriate that he was
honoured with the coveted Kenneth O. May Prize in the year 2009, the highest
international honour that a historian of mathematics can seek.

Before I conclude, I would like to quote a verse from Bhartṛhari:
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The divine beings were not contented with the gems (that emerged out) of the ocean; nor
were they frightened by the terrible poison (which arose from it); they did not rest till they
obtained the nectar (for which they commenced their activity). Indeed, resolute men do not
relax till they reach their determined goal.

The nectar for RCG is achieving a truly global view of history of mathematics.
The enthusiasm that he has, even in an advanced age of eighty plus, for history of
mathematics is indeed amazing. I only wish and pray that he be blessed with many
more years of healthy life, so that the world of history of mathematics is guided and
benefited by all that emerges from the pen of this erudite scholar!

October 30, 2015

K. Ramasubramanian
IIT Bombay
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The Oeuvre of Radha Charan Gupta



A Portrait of the Life of R. C. Gupta

K. Ramasubramanian

1 Introduction

Though I have known Prof. R. C. Gupta (RCG) for more than two decades through
his writings, till recently I did not have an occasion to interact with him closely.1

However, by divine providence, I have had an opportunity to make a couple of visits
to his residence in Jhansi during the previous two months.

Myfirst visit tomeetRCGwas onSeptember 5, 2015. Thiswas primarily to inform
him about the proposed Indian Society of History of Mathematics (ISHM) Annual
Conference to be held at IIT Bombay between November 14 and 16, 2015, and invite
him for the same. I was particularly interested in his presence at the conference, as
we had plans to dedicate this conference to him on the occasion of his 80th birthday,
as well as bring out a volume containing his selected articles. RCG gladly accepted
the invite and also quickly prepared a list of articles that could be considered to be
included in the volume.

Prof. R.C. Gupta with Prof. K. Ramasubramanian

1Meeting him at conferences was not possible as RCG did not travel much, particularly after his
‘formal’ retirement in 1995, around which period I had just entered into the field. Correspondence
through e-mails was not possible either, as he does not use computers at all!.

© Springer Nature Singapore Pte Ltd. 2019
K. Ramasubramanian (ed.), Gan. itānanda,
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4 A Portrait of the Life of R. C. Gupta

Subsequently I met him two more times, once on September 25, and again on
October 18 to discuss and finalize the contents of the proposed volume. During these
visits, besides having fruitful academic discussions, I also had the privilege of talking
to him at length on several issues of common interest. During the conversations,
RCG recounted some interesting anecdotes from his life, including those that played
a crucial role in turning him into an outstanding researcher in history of mathematics,
rather than merely retiring as an ordinary mathematics teacher.

These conversations also provided me an opportunity to discover in him many
divine virtues (daivı̄ sampat) such as honesty, simplicity, nobility, generosity and
more importantly fixity of purpose. In short, the noble native that I could discover in
him enhancedmy respect for himmanifold. For the benefit of those who have not had
an opportunity to interact with RCG, I would like to share some of my observations.

2 The Role of Providence in Shaping his Career

Though RCG started his career as an ordinary mathematics teacher in a college,
it was providence that seems to have driven him to take up serious studies in
history of mathematics and thereby turn him into an extraordinary historian of
mathematics. Narrating how he was drawn, inexorably as it were, into the area of
history of mathematics, RCG said, “three events played a crucial role in shaping me,
into what I am today”:

1. The first and the foremost was reading a review of the book on ‘History of Hindu
Mathematics’2 byDatta and Singh in 1963. The charges that were levelled against
the authors as being ignorant of historical matters and their theories being filled
with grossest errors of fact made me curious as well as restless. So, I decided to
take up research in history of mathematics myself.

2. Getting acquainted with the remarkable scholar T. A. Sarasvati Amma3 in
1963–64, who was working at the same place (Ranchi) where I was employed,
and subsequently completing Ph.D. under her guidance.4

3. Becoming amember of the International Commission onHistory ofMathematics,
and the International Mathematical Union, and serving in these bodies for a fairly
long period (1972–97), which helped me develop a better world view in this area.

The arduous task of engaging himself to do meticulous research in Indian math-
ematics, that RCG took upon himself in the late 1960s, is still shouldered by him,
unabated in spirit (even at the advanced age of 80+ years). He has published more
than 500 papers till now, excelling all his predecessors in the field, and is still pro-

2Mathematical Review 26, (1963) p. 1142.
3Whose outstanding doctoral dissertation got published asGeometry in Ancient andMedieval India,
Motilal Banarsidass, Delhi, 1979.
4By submitting my dissertation on ‘Trigonometry in Ancient and Medieval India’.
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lific. In this connection, I am reminded of a beautiful verse in the Nı̄tiśatakam of
Bhartr.hari

5:

No task is undertaken, out of the fear of obstacles, by the lowly people. Those of the middle
class, do undertake a task, but give it up when faced with impediments. [However] men of
the noblest calibre (uttama-gun. a) never abandon a task once they have undertaken it, in spite
of being assailed repeatedly by difficulties.

3 Passion to Discover the Truth

During my second visit to meet RCG, in a particular context, there was a discussion
on Bhūtasaṅkhyā system of representing numbers. Then I shared with him that for a
long time I had not been in a position to figure out the rationale behind the use of the
word (lit. king) to refer to the number 16. Though RCG did not have an answer
to that immediately, he said: “it should not be difficult to find that out”.6 Then as we
both left for lunch, the discussion on the matter got suspended.

A couple of days later, after returning to IIT Bombay, when I called RCG to
inform him about the travel arrangements that had been made for his forthcoming
visit in November, the first news that he shared with me was that he had found the
names of the 16 kings. Thanking him profusely for that, I told him that I would note
down the names when I would meet him the next.

On my next visit, when I expressed my desire to note down the names, he swiftly
walked to his library, pulled out a volume7 and showed me where the 16 names
appear. Needless to say I was overjoyed as I got the answer for the question that was
nagging my mind for a long time.

Also as I flipped through the volume, (essentially a Compendium of technical
terms in Astronomy and Astrology), I was amazed to notice marginal notes made
almost in every page of the volume, which is truly encyclopedic in nature.

In addition to the rare collection of articles, books, dictionaries, encyclopedias,
etc., his library contains huge collection of data cards on a variety of topics related
to history of astronomy and mathematics. Figure 1 depicts a sample of the card that
RCG had prepared (on September 29, 2015) soon after discovering the basis for the
mnemonic referring to the number sixteen.

The word ‘Eureka’ in the top left corner of the card clearly mirrors the joy that
would have been experienced by RCG in discovering the truth.

5One of the greatest poets of all times, who through his immortal contributions enriched several
branches of Sanskrit literature.
6I was a bit surprised at his cool and spontaneous positive response, because I was expecting him
to second my thought by saying: “yes, these things are difficult to find out …”.
7 by Mukunda Sarma, published by Mukundasram, Amola, Garhwal, Uttaranchal
(formerly UP), 1967.



6 A Portrait of the Life of R. C. Gupta

Fig. 1 Sample of data card

4 A Unique Collection of Data Cards

The amount of information that has been meticulously collected by RCG over the
past five decades, and stored in the form of data cards, is simply astounding. In my
estimate, the number of cards in his possession, all handwritten, would easily be of
the order of a few tens of thousands, or it may even cross a lakh. RCG’s style of
making these cards, the mode of storing them, updating them, and more importantly
easily tracing a card when required, was indeed a sight to watch. Some characteristic
features about these cards that I would like to share are:

• All these cards are essentially of the same size (8× 4 inches) mostly generated by
cutting one-sided A4 sheets it into 3 parts.

• They are stored in the form of bundles wrapped in old postal envelopes (Fig. 2)
and tied with a thin piece of old cloth, fashioned in the form of a ribbon.

• Each bundle is titled by topic (Āryabhat.a, Bhāskara I, Bibliography, Transits,
Misc., etc.), and the size of the bundle varies depending upon data collected on that
topic. For instance, the cards related to the famous mathematician Bhāskarācārya
were stored in 2–3 bundles each containing a few hundred cards.8

• As RCG keeps adding cards to these bundles (see Fig. 1, for the one added on
29–9–15), as and when he gathers more information, the bundles keep growing
fatter.9

• The information in these data cards is not merely confined to providing details
regarding source works, secondary works, journals, encyclopedia, etc., but also
extend to a variety of other things related to other studies currently going at different
places. For instance, when I met him the first time, and told him about the students
who had completed Ph.D. with me, he immediately pulled out a piece of paper,
noted down the names of the students, along with the topics of their dissertation,
turned that piece of paper into a card and inserted it into a bundle marked ‘Transit’.

8The data collected by RCG seems to be quite comprehensive. Name any topic in history of math-
ematics, RCG may be able to pull out a bundle (piled up in cartons) in no time and present a card
giving the necessary information!.
9Naturally, a few cards in these bundles would be decades-old and brittle, while others relatively
new.
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Fig. 2 Bundles of data cards

Out of curiosity, when I opened a bundle titled ‘Miscellaneous’, to my pleasant
surprise, I found several oft-quoted verses jotted down in some of those cards, with
proper references. Meticulously noting down the references is indeed a hallmark of
RCG! So much so, this data card collection, in my view, forms the most valuable
and unique feature of RCG’s library.

5 Frugal and Simple, Yet Quite Generous

Anyone who pays a visit to RCG’s residence in Jhansi, would quickly realize that
he greatly values a frugal and simple life style. The choice of RCG to lead such a
frugal life, is born out of certain mature understanding and appreciation of higher
principles of life, and definitely not out of necessity.

There is a fine line between frugality and miserliness. Having said this, I must
also add that though RCG leads a quite frugal and simple life, he has been extremely
generouswhen it comes to serving a cause.With hismeagre earnings as amathematics
teacher,10 and having no additional source of income, RCG has donated substantial
amounts of money to various institutions,11 to establish endowments, to organize
lectures in History of Mathematics and to create awareness among the masses. A
remarkable gesture indeed!

It may not be out of context to remind ourselves of an interesting verse from
Vidura-nı̄ti (verse 53) in Mahābhārata:

These two, O king, dwell (as it were) in regions higher than the heaven. viz., a powerful man
endowed with forgiveness, and the poor man who is incredibly generous.

10RCG told me (the author of the article) that he started his teaching career as a lecturer with a
salary of around Rs. 250 per month and retired as professor with a salary of around Rs. 9000 per
month.
11To name a few: National Academy of Sciences (NASI), Association of Mathematics Teachers of
India (AMTI), Astronomical Society of India, CalcuttaMathematical Society, KeralaMathematical
Association, Sree Sarada Educational Society.
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6 Concluding Remarks

Most of us, not knowing how to effectively manage our time between work and
family, hardly find any time to pursue other interests seriously and thereby end up
retiring as exhausted individuals, having nothing much to look back and cherish in
the life. But here is an individual who could find sufficient time to earnestly pursue
his research in history of mathematics, and also bag the Kenneth O. May prize, the
highest honour bestowed upon a historian, notwithstanding the fact that by profession
he was a teacher of mainstream mathematics, which hardly had anything to do with
history.

The secret behind his success got incidentally revealed during one of the private
conversations with him at his place. In a particular context his wife, Savitri Devi
(a very pious lady) remarked (in Hindi), “most of the time he is so engrossed in
research that he hardly finds time to participate in social and religious functions”.
RCG quickly pitched in and said, not that I do not want to participate, but:

My body, mind, as well as all the resources at my disposal are inexorably drawn towards
history of mathematics.

From what has been previously narrated in the article, it should be quite evident
that there is no figurative element or boast in the statement above. Prof. R. C. Gupta
not merely worked in the area of history of mathematics, but seems to have revelled
in it. Based on the close interactions that I had with him, I can confidently say that
his passion to have ‘truly’ global view of history of mathematics is unparalleled, and
his enthusiasm to further the cause even at his advanced age of 80 plus is indeed
incredible!



A Birthday Tribute to R. C. Gupta

Christoph J. Scriba

The internationally renowned historian of mathematics, Radha Charan Gupta,
celebrated his 60th birthday on October 26, 1995.† According to custom in his native
India, this implies official retirement from his post as Professor of Mathematics at
the Birla Institute of Technology (BIT) in Mesra, Ranchi. His many friends, as well
as the many colleagues who have been in contact with him, realize, however, that
“retirement” and “official retirement” are two different things; they look forward
to benefiting from the continuing labours of this active and productive historian of
mathematics towards the promotion of the discipline both in his native country and
on an international level.

Born in Jhansi, Uttar Pradesh, Gupta graduated fromLucknowUniversity in 1955.
Two years later, he passed theM.Sc. examination (with amajor inmathematics) in the
first rank from the same university, and in 1965, he earned a diploma in mechanical
engineering from the School of Careers in London. Ranchi University awarded him a
Ph.D. for his research in the history of mathematics in 1971. His achievements were
further acknowledged in 1986 with an honorary doctorate in the history of science
from the World University (U.S.A.).

After teaching at Lucknow Christian College for a year, he joined the staff of the
Birla Institute of Technology in 1958. He served there in the ranks of first assistant
professor and then associate professor prior to his promotion to full professor of
mathematics in 1982. Beginning in 1979, he was Professor-in-charge of the Research
Center for the History of Science at BIT.

R. C. Gupta has travelled widely in India and abroad and has given presentations
of his research before many audiences. In 1977, he addressed the British Society
for the History of Mathematics at Cambridge and attended the XVth International
Congress on the History of Science in Edinburgh. Three years later, he lectured in

Historia Mathematica, 23 (1996), pp. 117–120.

†The editor of the volume was informed by Prof. R. C. Gupta himself that somehow this wrong
date has gone into records, and that he was actually born on Śrāvan. a-pūrn. imā of the
year 1935, which corresponds to August 14 (October 26 is as per H.S. Certificate).

© Springer Nature Singapore Pte Ltd. 2019
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Germany, the USA, and Canada. He also participated in the XVIIth International
Congress of Mathematicians in Berkeley, California, in 1985.

In his several hundred papers—among them a series of 16 popular articles, enti-
tled “Glimpses ofAncient IndianMathematics”—Gupta has always striven to deepen
and broaden our knowledge and understanding of the development of mathematics
on the Indian subcontinent. He is thus a successor to his compatriots, B. B. Datta
(1888–1958) and A. N. Singh (1901–1954). Their important book, History of Hindu
Mathematics (Lahore, 1935, 1938), although now some 60years old, remains a stan-
dard referencework for those of uswho are unable to read the native Indian languages.
It is to be hoped that Gupta’s forthcoming book on Indian mathematics (in Hindi)
will soon be translated for a wider readership. In the meantime, we can gain from
his insights by reading the pages of Gan. ita Bhāratı̄, the official journal of the Indian
Society for the History ofMathematics, which he founded in 1979 and which he con-
tinues to edit. As the cumulative index (in volume 13 (1991)) for volumes 1 through
12 of that journal reveals, Gupta has publishedmany articles, notes, and reviews there
under both his own name and the pseudonym “Ganitanand.” One recent article, “The
Chronic Problem of Ancient Indian Chronology” (Gan. ita Bhāratı̄ 12 (1990), 17–26),
is characteristic of his scholarship. For reasons of space, the selected bibliography
below is limited to some of the more extensive papers that Gupta has published in
English.

R. C. Gupta’s scientific achievements have received acknowledgement in many
ways during his fruitful and ongoing career. Most recently, he was elected Fellow
of the National Academy of Sciences in India in 1991, President of the Associa-
tion of Mathematics Teachers of India in 1994, and Corresponding Member of the
International Academy of the History of Science in 1995. He has also represented
India on the Executive Committee of the International Commission on the History
of Mathematics for many years. An active sportsman, he has won numerous medals
and prizes for his athletic prowess. May his health continue and enable him to pursue
his researches in the history of mathematics for many years to come.

Selected Bibliography of Radha Charan Gupta by Takao
Hayashi

Abbreviations used: GB, Gan. ita Bhāratı̄ (Bulletin of the Indian Society for History
of Mathematics); HM, Historia Mathematica; HS, Historia Scientiarum [Japan];
IJHS, Indian Journal of History of Science; IS, Indological Studies (Journal of the
Department of Sanskrit, University of Delhi); JAS, Journal of the Asiatic Society.

1. Bhāskara I’s Approximation to Sine, IJHS 2 (1967), 121–136.
2. Second-Order Interpolation in Indian Mathematics up to the Fifteenth Century,

IJHS 4 (1969), 86–98.
3. Fractional Parts of Āryabhat.a’s Sines and Certain Rules Found in Govin-

dasvāmin’s Bhās. ya on the Mahābhāskarı̄ya, IJHS 6 (1971), 51–59.
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4. Early Indians on Second-Order Sine Differences, IJHS 7 (1972), 81–86.
5. An Indian Form of Third-Order Taylor Series Approximation of the Sine, HM 1

(1974), 287–289.
6. Solution of the Astronomical Triangle As Found in the Tantrasaṅgraha

(A.D. 1500), IJHS 9 (1974), 86–99.
7. Sines and Cosines of Multiple Arcs As Given by Kamalākara, IJHS 9 (1974),

143–150.
8. Addition and Subtraction Theorems for the Sine and the Cosine in Medieval

India, IJHS 9 (1974), 164–177.
9. Some Important Indian Mathematical Methods As Conceived in Sanskrit Lan-

guage, IS 3 (1974), 49–62.
10. Circumference of the Jambūdvı̄pa in Jaina Cosmography, IJHS 10 (1975),

38–46.
11. Sine of Eighteen Degrees in India up to the Eighteenth Century, IJHS 11 (1976),

1–10.
12. Parameśvara’s Rule for the Circumference of a Cyclic Quadrilateral, HM 4

(1977), 67–74.
13. On SomeMathematical Rules from the Āryabhat. ı̄ya, IJHS 12 (1977), 200–206.
14. Indian Values of the Sinus Totus, IJHS 13 (1978), 125–143.
15. Munı̄śvara’s Modification of Brahmagupta’s Rule for Second-Order Interpola-

tion, IJHS 14 (1979), 66–72.
16. Square Root of 164 in the Berlin Papyrus 11529, GB 2 (1980), 29–31.
17. IndianMathematics andAstronomy in theEleventhCentury Spain,GB 2 (1980),

53–57.
18. Bibhutibhusan Datta (1888–1958), Historian of Indian Mathematics, HM 7

(1980), 126–133.
19. The Marı̄ci Commentary on the Jyotpatti, IJHS 15 (1980), 44–49.
20. The Process of Averaging in Ancient and Medieval Mathematics, GB 3 (1981),

32–42.
21. A Bibliography of Selected Sanskrit and Allied Works on Indian Mathematics

and Mathematical Astronomy, GB 3 (1981), 86–102.
22. Indian Mathematics Abroad up to the Tenth Century A.D., GB 4 (1982), 10–16.
23. Can.d. ū, an Astronomer of Medieval Rajasthan, GB 4 (1982), 134–135.
24. Decimal Denominational Terms in Ancient and Medieval India, GB 5 (1983),

8–15.
25. Spread and Triumph of Indian Numerals, IJHS 18 (1983), 21–38.
26. On Some Ancient and Medieval Methods of Approximating Quadratic Surds,

GB 7 (1985), 13–22.
27. Jinabhadra Gan. i and Segment of a Circle between Two Parallel Chords, GB 7

(1985), 25–26.
28. On Derivation of Bhāskara I’s Formula for the Sine, GB 8 (1986), 39–41.
29. Some Equalization Problems from the Bakhshālı̄ Manuscript, IJHS 21 (1986),

51–61.
30. Mādhavacandra’s andOtherOctagonalDerivations of the JainaValueπ = √

10,
IJHS 21 (1986), 131–139.
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31. South Indian Achievements in Medieval Mathematics, GB 9 (1987), 15–40.
32. On the Date of Śrı̄dhara, GB 9 (1987), 54–56 (under the pen name Ganitanand).
33. Mādhava’s Rule for Finding the Angle between the Ecliptic and the Horizon

and Āryabhat.a’sKnowledge of It, inHistory of Oriental Astronomy, Cambridge:
Cambridge Univ. Press, 1987, pp. 197–202.

34. Chords and Areas of Jambūdvı̄pa Regions in Jaina Cosmography, GB 9 (1987),
51–53, and 10 (1988), 124.

35. On the Values of π from the Bible, GB 10 (1988), 51–58.
36. Tombstone Mathematics, GB 10 (1988), 69–74.
37. Volume of a Sphere in Ancient Indian Mathematics, JAS 30 (1988), 128–140.
38. On Some Rules from Jaina Mathematics, GB 11 (1989), 18–26.
39. Sino-Indian Interaction and the Great Chinese Buddhist Astronomer-

Mathematician I-Hsing (A.D. 683–727), GB 11 (1989), 38–49.
40. The Laks. a Scale of the Vālmı̄ki Rāmāyan. a and Rāma’s Army, GB 12 (1990),

10–16 (under the pen name of Ganitanand).
41. The Chronic Problem of Ancient Indian Chronology, GB 12 (1990), 17–26.
42. A FewRemarks concerning Certain Values of π in Ancient India,GB 12 (1990),

33–38 (under the pen name of Ganitanand).
43. The Value of π in the Mahābhārata, GB 12 (1990), 45–47.
44. Sudhākara Dvivedı̄ (1855–1910), Historian of Indian Astronomy and Mathe-

matics, GB 12 (1990), 83–96.
45. An Ancient Approximate Rule for the Area of a Polygon, GB 12 (1990),

108–112.
46. The ‘Molten Sea’ and the Value of π, The Jewish Bible Quarterly 19, No. 2

(1990–1991), 127–135.
47. On the Volume of a Sphere in Ancient India, HS 42 (1991), 33–44.
48. The First Unenumerable Number in Jaina Mathematics, GB 14 (1992), 11–24.
49. Varāhamihira’s Calculation of nCr and the Discovery of Pascal’s Triangle, GB

14 (1992), 45–49.
50. Abū’lWafā’ andHis Indian Rule about Regular Polygons,GB 14 (1992), 57–61.
51. On the Remainder Term in theMādhava–Leibniz’s Series,GB 14 (1992), 68–71.
52. Rectification of Ellipse from Mahāvı̄ra to Ramanujan, GB 15 (1993), 14–40.
53. A Problem of Interest in the Nārada-purān. a, GB 15 (1993), 67–69.
54. Sundararāja’s Improvements of Vedic Circle-Square Conversions, IJHS 28

(1993), 81–101.
55. Six Types of Vedic Mathematics, GB 16 (1994), 5–15.
56. A Circulature Rule from the Agni-purān. a, GB 16 (1994), 53–56.
57. Areas of Regular Polygons in Ancient and Medieval Times, GB 16 (1994),

61–65.
58. Marx and His Mathematical Work, GB 16 (1994), 66–69 (under the pen name

Ganitanand).



Professor R. C. Gupta Receives
the Kenneth O. May Prize

Kim Plofker

Professor Radha Charan Gupta, who founded and nurtured Gan. ita Bhāratı̄ as
editor for over a quarter century, was awarded the Kenneth 0. May prize of 2009,
jointly with Prof. Ivor Grattan—Guinness of UK—by the International Commis-
sion for the History of Mathematics (ICHM). The prize, which includes a bronze
medal designed by the Canadian sculptor Salius Jaskus, was instituted in 1989
and is given every four years; it was named after the mathematician and historian
Kenneth 0. May who founded the ICHM and its journal Historia Mathematica and is
awarded in recognition of scholarly work in the history of mathematics. Dirk Struik
(USA), Adolf P. Yushkevieh (Soviet Union), Christoph J. Scriba (Germany), Hans
Wussing (Germany), René Taton (France), Ubiratan d’Ambrosio (Brazil), Lam Lay
Yong (Singapore) and Henk Bos (The Netherlands) have been the earlier recipients
of the award. As Prof. Gupta could not be present at the 23rd International Congress
of History of Science and Technology held in Budapest, Hungary, in 2009, at which
the original awards ceremony was held, the award was presented to him at the Inter-
national Congress of Mathematicians, at Hyderabad on August 2010, at its closing
ceremony on 27 August 2010.

Professor Gupta has been a scholar and researcher par excellence in the area
of history of mathematics; the corpus of his works exceeds 500 items. Among his
groundbreaking works are his analysis of Parameśvara’s third-order series approxi-
mation for the sine function, in the fifteenth century (“An Indian form of third-order
Taylor series approximation of the sine”, Historia Mathematica 1 (1974), 287–289)
and his examination of the eighth-century methods of Govindasvāmin for interpo-
lating in sine tables (“Fractional parts of Āryabhat.a’s sines and certain rules found
in Govindasvāmin’s Bhās. ya on the Mahābhāskarı̄ya”, Indian Journal of History of
Science 6 (1971), 51–59). Prof. Gupta’s notable recent publications include “His-
toriography of Mathematics in India” (in Writing the History of Mathematics: Its

Gan. ita Bhāratı̄, Vol. 31, Nos. 1–2 (2009), pp. 115–118.
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Historical Development (Basel, 2002), pp. 307–315 (Chap. 18) edited by J. Dauben
andC. J. Scriba), “Area of a bow-figure in India” (in Studies in the History of the Exact
Sciences in Honour of David Pingree, Leiden, 2004, pp. 517–532 edited by Burnett
et al.) and “A little-known nineteenth century study ofGan. ita-sāra-san. graha”,Arhat
Vacana 14, 2–3 (2002), 101–102.

Radha Charan Gupta was born on 26 October 1935 in Jhansi, Uttar Pradesh, in
north India. He received his B.Sc. and M.Sc. degrees from Lucknow University in
1955 and 1957, respectively, earning a first-place medal in the M.Sc. mathematics
examination. He received his Ph.D. in the history of mathematics from Ranchi Uni-
versity in 1971, for his dissertation work carried out with T. A. Sarasvati Amma,
the renowned historian of Indian mathematics and author of the book Geometry in
Ancient and Medieval India (Delhi, 1979), in honour of whom Prof. Gupta later
endowed the annual Memorial Lecture of the Kerala Mathematical Association.
Prof. Gupta’s career as a teacher began in 1957 at Lucknow Christian College where
he served as Lecturer during 1957–58, following his M.Sc. In 1958, he entered the
faculty in mathematics of the Birla Institute of Technology (BIT), Ranchi, where he
spent the rest of his regular career. In 1979, he was appointed as Head of the Research
Center for the History of Science at BIT. He was made full professor in 1982 and
emeritus professor in 1995, following themandatory retirement at the age of 60years.
He currently continues to be active in research and other academic activities under
the aegis of the Gan. ita Bhāratı̄ Institute, from his home at his native city of Jhansi.

Prof. Gupta’s research work, which started in the late 1960s, has focused on
ancient Indian mathematics, particularly the development of trigonometry, including
interpolation rules and infinite series for trigonometric functions. Besides skilfully
analysingmany hitherto unknownmathematical formulas expressed in elliptical San-
skrit verses, Prof. Gupta has published several key papers on the remarkable mathe-
matical discoveries of the Jaina tradition; this has been a yeoman service especially
in the case of the many works that have been almost inaccessible to anyone not
closely linked with the Jaina canon. Prof. Gupta has adopted this “bridge-building”
approach in many other respects as well: explaining Sanskrit algorithms for a mod-
ern mathematical audience, surveying twentieth-century Indian doctoral research on
history of mathematics, tracing the influence of Indian mathematical discoveries in
foreign traditions, and expounding Jaina, Buddhist or Hindu cosmological theories
in the context of early Indian work with transfinite quantities. He has combined
scrupulous textual scholarship and expert mathematical commentary with clear and
comprehensible exposition, serving the needs of general audiences and specialist
researchers alike. It may be worthwhile to quote here the following lines from the
citation read out on the occasion of the awards ceremony of theKenneth 0.May prize,
at the Budapest function in 2009, about Professor Gupta: “No scholar in the twenti-
eth century has done more to advance widespread understanding of the development
of Indian mathematics—and that, in a century that spanned (most of) the working
lifetimes of researchers such as S. Dvivedi, B. Datta and A. N. Singh, K. S. Shukla,
A. K. Bag, Sarasvati Amma, David Pingree and K. V. Sarma, is saying something.”

Apart from carrying out excellent research and dedicated teaching service,
Prof. Gupta has contributed in numerous other ways towards enhancing the
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awareness of the history of mathematics in general and of ancient Indian mathe-
matics in particular. In 1979, he started Gan. ita Bhāratı̄ and fostered it as editor for
over a quarter century, until 2005. A large number of high-quality articles appeared in
the journal over the years of his editorship. He himself contributed regularly articles
and reviews to the journal, some under his own name and others with the pen name
“Ganitanand” (“joy of mathematics”). His pedagogical publications and lectures, in
English and Hindi, as well as his sponsorship of numerous endowed lectures have
greatly increased the prominence of history of mathematics in Indian mathematics
education and scholarship.

His endeavours received recognition in various ways. In 1991, he was elected
Fellow of theNational Academy of Sciences, India, and in 1994, he became President
of theAssociation ofMathematics Teachers of India, a positionwhich he continues to
hold. In February 1995, hewas elected asCorrespondingMember of the International
Academy of History of Science. In May 2002, he was elected Effective Member of
the same Academy (No. E305).

References

1. Christoph J. Scriba, “A Birthday Tribute to R. C. Gupta”, Historia Mathematica 23 (1996),
117–120.

2. Takao Hayashi, “A Bibliography (1958–1995) of Radha Charan Gupta, Historian of Indian
Mathematics”, Historia Scientiarum 6, 1 (1996), 43–53 (an abbreviated version without bibli-
ography was published in the Newsletter of the British Society for the History of Mathematics
30 (1995), 25–26).

3. “R. C. Gupta”, Mathematical Sciences: Who’s Who (Delhi, 2004), p. 42. Unpublished bibli-
ographies and publication lists from R. C. Gupta (private communications).



Part II

On Studies in History
of Mathematics



On the Date of Śrı̄dhara

H. T. Colebrooke seems to be the first modern scholar who studied the work of
Śrı̄dhara. He had an incomplete copy of Pāt. ı̄gan. itasāra from which he often quoted
parallel passages in his translation (1817) of the Lı̄lāvatı̄. But he did not take any
risk of dating Śrı̄dhara in a narrower range than the very safe span from Āryabhat.a I
(b. 476 ad) to Bhāskara II (c. 1150). Mabel Duff (1890) gave astronomer Śrı̄dhara’s
date as 691 ad. In spite of G. R. Kaye’s refutation, this date may not be far from
Śrı̄dhara’s birth-year. Sudhakara Dvivedi (1892) dated his work at about 991 ad on
the false identification of themathematician Śrı̄dharawith the author ofNyāyakandalı̄
(Śaka 913). Kaye (1912–13) committed a double mistake of accepting this wrong
identification and further regarding the date as birth-year, thereby pulling the date of
Triśatikā to about 1020!

S. B. Dikshit (1896) had found a reference to Śrı̄dhara by name in an old
manuscript ofMahāvı̄ra’sGan. ita-sāra-saṅgraha (c. 850) and soput the former before
the latter. The modern editions of the GSS do contain the said quoted rule but not as
quotation from Śrı̄dhara or others. On the other hand the said rule is not found in or
reported from any available portions of Śrı̄dhara’s extant works. However, Dvivedi
seems to have partially accepted Dikshit’s observation when he stated (1899) that
the rule might be from the lost algebra of Śrı̄dhara. Royal Asiatic Society, Bombay
Ms. No. 230 of GSS also ends with the words (ABORI, Vol. 31, p. 268)

The similarity of several rules and of many other features between the works
of Śrı̄dhara and Mahāvı̄ra is accepted by scholars. Both may have drawn from a
third and common source which is not known nor likely to be known. But most
of the scholars considered Mahāvı̄ra as borrower (he himself named his work as a

Gan. ita Bhāratı̄, Vol. 9, Nos. 1–4 (1987), pp. 54–56. Also, see Gan. ita Bhāratı̄, Vol. 25 (2003),
pp. 146–149.
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“Collection”). Thus placing somewhat midway between Brahmagupta (628 ad) and
Mahāvı̄ra, Śrı̄dhara’s date was accepted as circa 750 ad by B. Datta and A. N. Singh
in the famous History of Hindu Mathematics (1935–38). This date or at least place-
ment before Mahāvı̄ra was also accepted by B. Mishra (1946), N. C. Jain (1947),
S. Singh (1950), etc. However, the possibility of dating Śrı̄dhara before Brahmagupta
as suggested sometimes, e.g. by S. Singh, is to be ruled out because Brahmagupta’s
line

is quoted in Śrı̄dhara’s Pāt. ı̄gan. ita, rule 112 (but without naming).
The practice of placing Śrı̄dhara in the eighth century was upset by K. S. Shukla’s

emphasis on regarding Śrı̄dhara to be posterior to Mahāvı̄ra. His arguments are
mostly based on a comparative study of works of these two ancient mathematicians
(see Pāt. ı̄gan. ita, Introduction, pp. xxxix–xliii) and have some flaws. For instance,
absence of certain rules of Śrı̄dhara in Mahāvı̄ra (p. xl), may be deliberate, just as the
former himself omitted the earlier rule of eleven (p. xv), rather than due to anteriority
of the latter. Similarly, concise statements of certain rules in Śrı̄dhara may be true,
namely Mahāvı̄ra elaborated Śrı̄dhara’s brief rules. In fact, the several and varietyful
arguments given by Datta (1932), S. Singh and others for Mahāvı̄ra being a borrower
from Śrı̄dhara aremore forceful and convincing than those of Shukla andU. Asthana.
Still, due to established authority of Shukla in the field, scholars quoted and used his
assigned date circa 850 to 950 for Śrı̄dhara.

Luckily the priority of Śrı̄dhara overMahāvı̄ra is now shown in a different manner
(independent of the mutual relation between them) by D. Pingree’s discovery of
a genuine quotation by Govindasvāmin (c. 800–850) of a sūtra from Śrı̄dhara’s
Triśatikā. Earlier, Pingree had dated Śrı̄dhara between 850 and 1050 (C E SS, series
A, Vol. I, 1970, p. 53) or in nineth century (DSB, Vol. 12, 1975, p. 597).

It may be pointed out that Shukla, following earlier scholars, dated Āryabhat.a II
at circa 950 ad, while Pingree put him between 950 and 1100 in C E SS (A), I, p. 53.
However, the date of Āryabhat.a II’s Mahāsiddhānta has been now pushed forward
to about 1500 due to researches of Roger Billard and others. After all, history of
mathematics is not a dead subject. Another interesting possibility may be pointed
out. Shukla, in the meantime, also sees “reasons to suspect that Govindasvāmin was
either anterior to or senior contemporary of Haridatta” (683 ad) (see Shukla’s edition
of Āryabhat. ı̄ya with commentary of Bhāskara I etc., Delhi, 1976, (p. lxxxviii). If this
comes to be true, it will bring Śrı̄dhara very close to Brahmagupta! To me this
possibility seems to be remote and we may stay safely by placing Śrı̄dhara in the
eighth century, be it beginning, middle or end.

The date circa 799 ad was assigned to Śrı̄dhara by N. C. Jain by equating him to
the Jaina author of Jyotirjñānavidhi (799). And to reconcile salutations ‘Sivam’ and
‘Jinam’—of the different manuscripts—it has been suggested that the same Śrı̄dhara,
after writing mathematical works, may have turned a Jaina towards the end of his
life. Anyway, there seems to be a lot of scope and need to carry out vigorous research
on the various aspects of Śrı̄dhara. Ph.D. theses of S. Singh and U. Asthana need
to be examined, revised and augmented (a third thesis on Śrı̄dhara was abandoned
partly because the candidate’s findings disproved those which the supervisor made).
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3. S. B. Dikshit: Bhāratı̄ya Jyotis. a (in Marathi, 1896), translated into Hindi by S. N. Jharkhandi,

Lucknow, 1963.
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In the Name of Vedic Mathematics

For quite some time and especially in recent days there is much talk about “Vedic
Mathematics” among the mathematicians as well as among others. People hear about lot
of activities of various types which are going on in India and abroad in the field of Vedic
Mathematics. From school children to university professors and from scholars to govern-
ment officials all are involved in programmes ranging from elementary education to higher
research in Vedic Mathematics. Its effectiveness in propagating the grandeur of ancient
India’s glorious past and its utility in playing significant role in modern computer-oriented
fast mathematical calculations are being much talked in various circles and mass media.
Its name is working miracles. At the same time there is lot of confusion among historians,
indologists, and other scholars about it. Excitement is predominating over real understanding
of the matter. Emotional feelings are overtaking rationality needed to know the correct situ-
ation involved in the issue. Logic and cool thinking is necessary for assessment of historical
significance, scientific value, educational utility, and genuineness of other claims.

In this note we shall describe some clearly distinct categories of activities which have been
going on in the name of “Vedic Mathematics”.

1 The Real Ancient Vedic Mathematics

In this category comes the genuine VedicMathematics as found in the Vedas or Vedic
literature in general. The fourVedas consisting of various Vedic Sam. hitās, the several
Brāhman. as, Āran. yakas and Upanis. ads are the basic literary sources for this type of
Vedic Mathematics. The original works on the six Vedāṅgas form the rich primary
sources for research in Vedic science including mathematics. Some other works such
as the Prātiśākhyas, and available ancient original Upvedic texts are also very much
part of the ancientVedic vāṅmaya in general sense. Themathematics of theVedicAge
as reconstructed by using logical-mathematical implications, historical deductions,
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justified empirical generalizations, and other historiographical techniques will also
come under this category. The mathematical knowledge of the Vedic Indians or of
Vedic Āryans of antiquity (whether settled or on the move) as gleaned and gathered
by corroborative research using literary, historical, epigraphical, archaeological, and
other sources (whether Indian or foreign) is also to be included.

One of the best studies of this true category ofVedicMathematics isThe Science of
Śulba by Bibhutibhusan Datta (1888–1958) published by the Calcutta University in
1932. The author has correctly stated in the preface that the book is more specifically
concerned with “Vedic Science of Geometry” which mostly grew and developed for
and from the construction of Vedic altars needed to perform Vedic sacrifices and
other rituals. Datta’s article on “Vedic Mathematics” appeared 5 years later in The
Cultural Heritage of India, Vol. III (Calcutta, 1937).

For the last 30 years A. Seidenberg has been making serious study of Vedic
Mathematics as part of his general theory of ritual origin of mathematics. His paper
on “The origin of mathematics” (Archive Hist. Exact Sciences, 18, 1978, 301–342)
includes a special Appendix on “Vedic Mathematics”. Another of his paper on “The
Geometry of the Vedic Rituals” appeared recently in the book Agni edited by F. Staal
(Delhi 1984).

The contents of researches and findings in this category of “Vedic Mathematics”
have great historical significance. They provide guiding material for studying and
knowing science and culture of India some 2000 to 5000 years ago.

2 The Fantastic Vedic Mathematics

In this category we place those mathematical achievements which are claimed to be
found in the Vedas, but actually the claims are either baseless or grossly exaggerated.
The achievements, especially ofmodernmathematics, are part ofmore general claims
of all types of modern and advanced science which is “already found in our Vedas”
as the fanatics put it. In fact protagonists of this type easily assert that

All† that was, is, and will be (in future) can be derived from the Veda.

Accordingly, they believe that all modern discoveries and inventions of science
(including mathematics) are hidden secretly in the Vedas. It is a common experience
that as soon as a scientific discovery is made known, some one would come out with
the claim that it was already known to the Vedic sages.

To give a sample we take an example. It is well known that the sequence of odd
numbers, 1, 3, 5, ... up to 33, is mentioned in the Yajurveda (XVIII, 24). A scholar
considered these as the first differences of the square numbers 0, 1, 4, 9, ... although

†The reading in the original published article was: “ ”. It has been changed as above in
consultation with the original source work ( , XII. 97) –ed. Also see p. 36.
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no such thing is mentioned in the text. But then he quotes the following modern
formulas

y = logx; dy

dx
= x−1; d2y

dx2
= −x−2, etc.

and (by a sort of false analogy) jumps to conclude that “From this it is clear that
Indians had already known differential calculus through the Veda” (See Siddhānta-
śiroman. i, Grahagan. ita, ed. by K. D. Joshi, Part III, Varanasi, 1964; Prākkathana,
p. 8).

In another work (Some Positive Sciences in the Vedas, 1961) it is claimed that
area of a triangle is dealt in the Atharvaveda (VIII, 9, 2) and surface of a cylinder
in the R. gveda (I, 105, 17). Also without giving any reference a large number of
bhūtasam. khyās are stated to be used by Vedic people.

Examples of fantastic claims can be easily multiplied. In fact western histori-
ans generally forewarn the reader that “there are a number of books in which the
contributions from India are grossly overrated” (C. B. Boyer, Hist. of Math., 1968;
p. 229).

It is said that during the period of struggle for independence, the motivation of
inflating the scientific achievements of the Vedas to somehow boost up the morale
of the people might be understood. But the tendency continues and certain type of
scholars want to make the public believe that the Vedas contain the whole of science,
even, “all the knowledge needed by mankind” (p. xiii of Tirthaji’s book mentioned
below). Let the readers go through the issues of the journal Vaidika-Gan. ita published
from Sonepat, Haryana (1st issue dated 1986) to know more about similar claims.

It must be noted, however, that by above criticism, we are not denying that Vedas,
especially seeing their antiquity, are rich source for knowledge and wisdom.

3 Tirthaji’s Modern System of Vedic Mathematics

Jagadguru Śaṅkarācārya Swami Bharati Krishna Tirthaji’s book entitled “Vedic
Mathematics” or ‘Sixteen Simple Mathematical Formulae from the Vedas’ (For One-
line Answers to All Mathematical Problems)was first published in 1965. It has created
a new category of “Vedic Mathematics.”

The 16 Sūtras (aphorisms) along with 13 sub-sūtras given in the book provide
many algorithmic devices which enable us in a simple way to make fast calculations
related to certain problems of elementary mathematics mostly arithmetic. The tech-
niques help in rapid computations and in this respect the book has great educational
and research value. The author has contributed a very significant and original math-
ematical system in a general way. This merit, the pontifical authority of the author,
and the sensational title havemade the circulation of the book quite wide. The system
has become popular.
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The objectionable things about the book or system are the name “Vedic Mathe-
matics” given to it and the claim that the 16 formulas are from the Vedas. Both are
deceptive and false and are responsible for creating lot of confusion and misunder-
standing. The book or the sūtras have nothing to do with the Vedas.

The sūtras (or formulas) were composed by the author himself who lived from
1884 to 1960. Hence, as mildly stated by Manjula Trivedi, a disciple of the author,
“these formulae are not to be found in the present recensions of Atharvaveda; they
were actually reconstructed [by the author] on the basis of intuitive revelation from
materials scattered here and there in the Atharvaveda” (p. x).

Only thing is that the author composed the 16 aphorisms in Sanskrit sūtra style,
and put a stamp “From the Vedas” on them. But the language is clearly modern and
not Vedic Sanskrit. Hence the author’s claim that they are “contained in the Pariśis. t.a
(theAppendix portion) of theAtharvaveda” (p. xv) can be tolerated only by regarding
them,† following a suggestion of V. S. Agrawal (see p. 6 of his Foreword) as a new
Pariśis. t.a added according to the tradition of formulating subsidiary apocryphal texts.
Thus we find that the title “VedicMathematics” of the book or formulas have nomore
worth than that of a fiction. An expert Sanskrit scholar even says that “to glorify the
Vedas and Hindu culture by these false claims will only create revulsion of feeling
when the truth is known” (Vishveshvaranand Indological Jour.,Vol. IV, 1966, p. 109).

However, by above criticismwe are not undermining the mathematical excellence
of the book or its intrinsic importance. As A. P. Nicholas puts it, Tirthaji’s system is
“one of the most delightful chapters of the twentieth century mathematical history”
(Gan. ita Bhāratı̄, Vol. 6, p. 37). Its novelty has inspired several scholars to delve into
the new area of research created by it and found more significant results through its
approach. Its popularity is increasing both in India and outside. Lot of activities are
taking place. Literature in the field has been growing. There is even an international
journal called Vaidic Gan. it (Vol. I dated Nagpur, 1985).

†For obvious reasons, the original reading: “regarded them”, has been changed as above. –ed.



Foreign Reviews and Evaluation
of Indian Works on History of Science

Although studies and research in the field of history of exact sciences in India have
been going on for the last two centuries, no comprehensive and authentic chrono-
logical history of Indian mathematics has been written so far.1 Whatever books and
monographs are available at present, they are not only inadequate but far from being
satisfactory. Their coverage is not up-to-date and the treatment is poor. There is an
urgent need to write a history of mathematics in India in the true sense of the word,
and this is a national task.2

Although assessment of any work might be considered a matter of personal opin-
ion of the reviewer, and thus there may be some bias, but there are some international
norms and standard practices by which works are judged by professional experts,
and we cannot altogether shut our eyes to the consistent evaluation and opinions of
foreign scholars and reviewers.

Here we bring to notice of all concerned some serious shortcomings in Indian
publications so that due attention be paid to rectify them or justify them by scholarly
counter-refutations. It is hoped that things will be taken sportively as a śāstrārtha.

Forewarning the reader, Boyer in his History of Mathematics states3 that “there
are a number of books in which the contributions from India are grossly overrated”.
He mentions B. K. Sarkar’s Hindu Achievements in Exact Sciences (1918) as one
such book.

The History of Hindu Mathematics by B. Datta and A. N. Singh (Parts I and II
Lahore, 1935 and 1938) is considered to be the most standard book on the subject.
But even this is said to have unreliable features.4 While reviewing the single volume
edition of the work (Bombay, 1962), G. J. Toomer5 of Oxford charged the Indian
authors to be ignorant of historical matters, prejudiced against admitting that there
was any influence on Indian civilization from outside, and to rest their theories often
on the “grossest errors of facts”.

Gan. ita Bhāratı̄, Vol. 11, Nos. 1–4 (1989), pp. 50–54.
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L. V. Gurjar’s Ancient Indian Mathematics and Vedha (Poona, 1947) is pro-
nounced as a “miserable book” by Archibald.6 E. B. Allen in his review7 of the
book noted many deviations of the texts cited and lack of references for many quo-
tations. Another phase of its “worthlessness” is brought out elsewhere.8 Gurjar has
completelymisinterpretedBrahmagupta’s rule for the volumeof frustum-like solids.9

J. Filliozat wrote in the preface to his monograph on Indian medicine (Paris,
1949) that10 “Indian scholars, moved by national pride, are prone to maintain that
their sciences in high antiquity surpassed even those of today”. Joseph Needham,11

while reviewing the papers presented at the Symposium on History of Science and
Technology in India and South Asia (held under INSA, etc., in 1950), said that “the
papers too marked a chauvinistic tendency, an effort to minimize foreign influences
on Indian science and emphasize all outward transmissions.”

Jaggi’s work on history of science and technology in India12 has been reviewed
by David Pingree in Isis (Vol. 61, Part 3, 1970, 407–408), the standard international
journal of professionals in the field. But the review is very unfavourable. The Indian
author has been criticized to have an “uncritical attitude towards his sources”, and
to depend on frequently the “worst translations” for primary sources. Parts of the
work are said to be written at “primitive level” and bibliographies are described as
“grossly insufficient and out-of-date” for serious students. The reviewer goes to the
extent of saying that the author does “not have the competence” to write good work
in the field. The volumes are considered unfit to be recommended.

The reviewer took the opportunity to blame other Indian scholars also by stating
that the author “shares with many of his countrymen an unfortunate tendency to
read ancient Sanskrit texts as if their authors were striving, somewhat obscurely, to
express precisely what one now finds in a text on physics, astronomy, or chemistry.”

Before pronouncing the foreign reviewer as biased, the scholars will do well if
they read the review of Jaggi’s Scientists of Ancient India (Delhi, 1966) because this
review is by two Indian reviewers who have exposed lot of weak points of the author
and his work.13

The voluminous Concise History of Science in India published by the Indian
National Science Academy (New Delhi, 1971) is often described by Indians as a
prestigious publication. It was reviewed by W. A. Blanpied in the J. for Hist. of
Astronomy, Vol. 6 (1975), 135–137. According to the reviewer, the volume has a
number of deficiencies. Several of the authors are considered “to have scant exper-
tise in historical methodology or familiarity with history of science outside India”.
Blanpied states that “the book’s endeavour to demonstrate a one-to-one correspon-
dence between classical Indian and modern-Western disciplinary divisions has led
to a number of serious distortions.” He adds that several of the contributing authors
“have been led into attempts of dubious validity to demonstrate the independent, par-
allel development of western scientific concepts while ignoring several indigenous
concepts and techniques that had no western analogue”.

However, the contributions of one author (S. N. Sen) are considered by the
reviewer to be free from the “myopia and frequent defensiveness” of the other chap-
ters. But even Sen (like others) is said to focus on North Indian Science (e.g. the



Foreign Reviews and Evaluation of Indian … 29

Tamil tradition is not even mentioned). Of course, the treatment given to the history
of mathematics has similar limitations and many other weaknesses.

The Science and Technology in Medieval India—A Bibliography of Source
Materials in Sanskrit, Arabic and Persian compiled by A. Rahman and others is
another massive volume published by INSA (New Delhi, 1982). However, it is said
to suffer from serious defects both in conception and in execution in a recent review.14

The reviewer, who is expert in Sanskrit, Arabic and Persian, and a specialist in bib-
liographic research, judges that the compilers were neither familiar with relevant
literature nor particularly careful in their scholarship. According to him the compil-
ers failed “to consult standard bibliographical and biographical reference works.”
The reviewer has pointed out several other defects such as “listing of non-existing
authors and works”, imposition of the inherently absurd western classification of
sciences on the Indian śāstras, etc.

The History of Astronomy in India recently published by INSA (NewDelhi, 1985)
does not fare better. It has almost all same and similar defects as pointed out for above
two works. Most of the authors are unaware of the modern work done on the history
of both Indian and non-Indian science. In a personal correspondence with the editor
of a journal, a foreign scholar wrote that he found the book to be filled with errors
and confusions; indeed, some of the contributions are thoroughly disgraceful. Apart
from Sen and Ansari, no contributor took any notice of Billard’s new methodology
and numerous other achievements which are fundamental and were published more
than a decade earlier.

In fact the book ismerely a collection of isolated articles on selected topics and not
a history of astronomy in India in any sense. The bibliography does not mention the
most comprehensive recent work, the History of Ancient Mathematical Astronomy
by Otto Neugebauer (1975). No doubt the 12 page errata lists hundreds of printing
errors but this represents only a fraction of the actual errors and omissions.

More instances of the poor quality work on history of exact sciences published in
India can be cited. Lack of international perspective, and of awareness about current
research work in the field is a general defect in the work of most Indians which
is published here. For fantastic claims about Indian achievements one may refer to
some recent works.15

Indians must give a serious thought to the point as to why, in spite of so much
expenditure in the research and publication in the field, the situation is deplorable.
But whatever be that, no one will disagree with a recent historian,16 that the history
of Indian mathematics, “still awaits a more reliable and scholarly treatment.”
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Bhāratı̄, 10 (1988), 75–78.

16. Howard Eves, Introduction to History of Mathematics, New York, 1969; p. 182. Quotation is
valid for 1989 also.



The Study of History of Mathematical
Sciences in India

1 Introduction

Part I (1935) and Part II (1938) of the famous History of Hindu Mathematics by
B. B. Datta and A. N. Singh were published from Lahore (now in Pakistan), while
the promised Part III was never published in its authors’ lifetime. In 1962 a single
volume edition (actually a mere reprint of Parts I and II) was brought out by the
Asia Publishing House, Mumbai. This was reviewed by G. J. Toomer of Oxford
(Math. Reviews, Vol. 26, 1963, p. 1142). He charged the authors of being ignorant
of “historical matters” and of having “prejudice against admitting that there was any
influence on Indian civilization from outside”. Their theories have been said to be
often based on the “grossest errors of fact”.

Such remarks against a work which was (and still) taken to be a standard book on
the subject arose curiosity inmymind and I decided to study the history ofmathemat-
ics seriously. In 1964 Dr. T. A. Sarasvati Amma completed her doctoral work under
the great Sanskrit scholar Dr. V. Raghavan. Her thesis was on Geometry in Ancient
and Medieval India (published, Delhi, 1979). She supervised my doctoral thesis on
Trigonometry in Ancient and Medieval India (Ranchi Univ. 1970/71, unpublished).
In 1972, I was appointed India’s representative on the International Commission on
History of Mathematics which started the Historia Mathematica journal in 1974.

As a significant event, India’s first artificial satellite was launched in 1975 from
a cosmodrome in Russia. It was named ARYABHATA after the great Indian revolu-
tionary scientist Āryabhaṫa I (born ad 476) whose 1500th birth anniversary was also
celebrated throughout the country during 1976. Due to these events, a great interest
was rekindled amongst the Indian scientists to study history of science.

On the initiative of late Prof. U. N. Singh, the Indian Society for History of
Mathematics was formed in 1976 (HM, Vol. 5, 465–466). Soon the Society accepted

Gan. ita Bhāratı̄, Vol. 23, Nos. 1–4 (2001), pp. 1–11; Expanded version of a talk given during the
NISTADS-INSA Workshop on History of Science Research in India. New Delhi, 2000.
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the idea of starting its Bulletin and appointed me as the editor. It was named Gan. ita
Bhāratı̄ and the first volume (2 issues) was printed and distributed from Ranchi in
1979. Since then the Gan. ita Bhāratı̄ has been appearing continuously and, in fact,
serves as an international journal in the field of history ofmathematics with particular
reference to India. It has a special column (a teamwork) on “Notices of Select Current
Publications” as a service to scholars. It is a refereed journal. I try to associate and
involve a large number of scholars with GB and follow an open policy.

My contact and correspondence with scholars in India and abroad (both as the
editor of GB and a member of the ICHM) gave me ample opportunities to gain expe-
rience and enrich my knowledge in the field of History of Mathematics. This in turn,
also made the GB richer in information and varietyful articles which successfully
played the double role of making foreigners more familiar with mathematical sci-
ences of ancient and medieval India and in making Indian scholars familiar with the
work, publications, and other activities going on outside India to some extent.

In fact the output of studies and researches during the last 40 years have grown so
much so to provide enough material for writing a national History of Mathematics in
India easily in 10 or 12 volumes (similar to the famousHistory of Hindu Mathematics
or, better, in chronological order). Of course the Indus Valley achievements are still
quite uncertain because Indus scripts have not yet been fully deciphered.

Knowledge in any field may be compared with an ocean. Even small articles
on some topics have been expanded to give more historical information and deeper
analysis. Moreover, new findings and features have been brought to light. Examples
are the use of π = 25

8 in ancient Indian (Mānava Śulba-sūtra), 4th order pandiagonal
magic square in Varāhamihira’s Br. hat-sam. hitā (sixth century ad), secant method
in medieval India, and a number of new researches in the Jaina School of Indian
Mathematics (both in Laukika and Pāralaukika-gan. ita). The history of Indian math-
ematics is greatly enriched by recent doctoral theses of foreign scholars such as Takao
Hayashi, Yukio Ohashi, Kim Plofker, and Agatha Keller. Lot of bio-bibliographical
material has been also brought to surface in GB issues.

It seems History of Mathematics is not a dead but dynamic subject. Before 1930,
it was mostly just the glory of the Greeks. After that the picture changed by findings
in Babylonian mathematics. Further dimensions have been added to ancient period
by the researches in prehistoric and megalithic times and by theories of ritual origin
of sciences. Now medieval period is being enriched by studies and publications of
Arabic mathematics. However, it is better to wait rather than give final and immature
judgements in a hurry. Let us pool material; building may be erected later on. It is
wise to look before leap.

2 Ancient Indian Chronology

Chronology is the backbone of history. For ancient India, the problem of a sound
chronology continues to be a seriousmatter. Themost important point to keep inmind
in this regard is that the date of a historical event and that of a work which records
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that event may be widely apart. For example the dates of the astronomical events
found recorded or described in the Vedāṅga-jyotis. a (= VJ) may be quite earlier than
the date of composition of the work. There are also necessary questions of internal
consistency and collaboration fromother sources.Without these considerations, there
will be no coherency as is clear from the following somany divergent dates suggested
for the VJ (for reference see present author’s paper in GB, Vol. 12, 1990, pp. 19–20):

(i) V. R. Lele, 26000 bc (as quoted by S. B. Dikshit).
(ii) B. N. Narahari Achar pleads for 1800 bc

(see Indian J. Hist. Sci. 35, 2000, 173–195.)
(iii) H. T. Colebrooke, P. C. Sengupta, and K. S. Shukla, about 1400 bc
(iv) T. S. Kuppanna Sastry and Gorakh Prasad, 1200 bc

(This date is quite popular).
(v) Ramatosh Sarkar, 600 bc and Chronology Committee of 1950, (see below),

500 bc
(vi) S. N. Sen, 400 bc (Also Pingree for R. g version).
(vii) Maxmuller 300 bc; A. K. Bag, 200 bc
(viii) A. Weber, c. 400 ad (Also Pingree for the Yajur recension).

When VJ is dated so differently, the divergence for other Vedic Corpus (Sam. hitās,
Brāhman. as, etc.) is bound to be wider. Even the so-called “astronomical methods”
also yield different results because of the different identification of stars, different
parameters used, and also due to cyclic nature of some events.

Another difficulty is created by assigning divine origin to almost all ancient Indian
sciences. For instance, it is stated in the Nārada-purān. a (Chap. 54) that Jyotis. a was
enunciated by Brahmā in antiquity, and Garud. a-purān. a (59.1) says that Jyotis. a
science of 4 lakh stanzas was communicated to god Rudra by god Keśava (see
GB, 12, p. 18). Yantras (including magic squares) are said to be first taught by
lord Śiva, and the game of the chess by lord Kr.s.n. a (to Rādhā). It is said that the
attribution of the divine origin to works or subjects was due to philosophical attitude
(of being indifferent to worldly matters) of the Indian mind. But often the practice is
for securing importance and antiquity for one’s own works and findings. Anyway, in
the absence of the knowledge of the real author or actual date of a work, we cannot
know the true history of science.

An important point to remember in this connection is that many of the ancient
works (especially epics and purān. as) are of composite nature; i.e., different portions
were composed by different writers of different times.

The difficulty of early chronology in India was realized as early as in 1950 when
the first noted symposium on History of Sciences in South Asia was organized by
INSA at Delhi. At that time a Chronological Committee of senior historians of
science was formed. It recommended the following working chronology:

http://dx.doi.org/10.1007/978-981-13-1229-8_54
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Age of R. gveda 2000 bc–1500 bc
Age of Sam. hitās and Brāhman. as 1500 bc–800 bc
Dharmasūtras 600 bc–200 bc
Vedāṅga-jyotis. a (Present text) 500 bc
Śulbasūtras 500 bc and later.
Mahābhārata and Rāmāyan. a 200 bc–200 ad

For some sort of uniformity, scholars should adhere to above dates. Of course, the
whole matter should also be reviewed by a fresh committee to be formed jointly by
INSA, ICHR, etc., to reduce controversies.

3 Importance of History of Science

“History makes a man wise” is a common saying. The study of history of science
should certainlymake scientists wiser. It cannot only save us from repeatingmistakes
of the past but we can learn a lot from them. Our curiosity or urge for knowing every-
thing, including past, gave rise to historical disciplines. Then how we can neglect
the subject of History of Science in this era of science, technology, computers and
information.

We are all enjoying the fruits and comforts provided by science and technology.
But these facilities are the results of hard labour, often painful, of hundreds of sci-
entists working over centuries. It is our moral duty to remember these pioneers. In
fact the story of development of science (including mathematics) and technology is
quite fascinating in itself. Often it will be found to be thrilling.

Mathematical sciences have always played a significant role in the development
of science and technology and provide a rational organization of natural phenomena.
Due to nature of mathematics, the History ofMathematics needs special treatment by
mathematicians themselves but with adequate knowledge of linguistics and historical
methods.

The greatest use of History of Mathematics is in mathematics education. Its study
makes the subject more enlightened and increases the understanding of mathematics
itself. One can know clearly as to how and why mathematics is created, grows,
develops, changes, abstracted and generalized. According to George Sarton, “the
main duty of the historian of mathematics, as well as his fondest privilege, is to
explain the humanity of mathematics, to illustrate its greatness, beauty and dignity.”
Through the study of history of mathematics, one can also correct a lot of miscredits
prevailing in education.

While addressing theBritishAssociation for theAdvancement of Science in 1890,
J. W. L. Glaisher rightly remarked that “no subject loses more than mathematics by
any attempt to dissociate it from its history.” Thus History of Mathematics should be
a serious concern of each student, teacher, and researcher of mathematics. Specialists
in History of Mathematics should also study History of Science for a broader base
and developmental links.
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By now enough studies and researches in the field of History of Science have
been (and still being) carried out to treat it as a separate discipline (with specialized
societies, journals etc.). In fact, separate departments of History of Science flourish in
many universities in the world. Even quite a few full-fledged institutions also exist.
Recent examples are those Dibner Institute in U. S. A. and Max Planck Institute
in Germany. More specialized institutions are also there e.g., Needham Research
Institute of Cambridge, U. K., which is devoted to Chinese Sciences.

In this race of institutionalization, India is lagging far behind compared to its size
and needs (because it has a continuous scientific tradition of 5000 years). There is
an utter lack of job opportunities for historians of science in India—a fact which
in turn detracts young brilliant scholars. However, some funds are available for
doing research in History of Science in India (with various types of fellowships).
Moreover, teachers and professors must take interest in the history of their own
subject or discipline. They can make use of history of the relevant topics in their
lectures, textbooks, and offer to teach courses in the History of Science (general or
particular).

4 Problems of History of Science Scholars in India

There are no adequate arrangements in India for imparting sufficient formal education
and training to produce competent historians of science. A few special papers on His-
tory of Science are taught in some universities, but there are hardly any full graduate
or postgraduate degree courses exclusively in the field. Most of the Indian scholars in
the field have managed to acquire knowledge and efficiency in that interdisciplinary
field by self-study. Quite a good number of them have successfully completed their
Ph.D. especially in the specialized area of History of Mathematics. Many modern
scientists have developed interest in History of Science (specially in their respective
science subject) but knowledge of languages and of historicalmethods is also needed.

A major practical difficulty faced by Indian working scholars is the cost of pub-
lications both books and journals. When Historia Mathematica was started in 1974,
its annual subscription was $6 (and dollar itself was cheap). Now the subscription
is more than a hundred dollars of much higher rates. How can the Indian scholar
subscribe the standard journals—HM, AHES, JHA, SCIAMVS, etc. Only very few
libraries in the vast India could afford them.

Some foreign books are equally beyond individual’s affordable capacity. The
important Bakhshālı̄ Manuscript (by T. Hayashi) costs Rs. 5000/- and the very use-
ful Encyclopedia of History of Science in Non-Western Cultures (1977) is priced
USD 420 (or Rs. 20000/-). Indian publications have also become costly for poor
Indian pockets. Indian J. Hist. Sci. costed Rs. 10/- yearly when started in 1966; now
the annual subscription is Rs. 700/- (and it is not a private business). Some chari-
table institutions are still mindful of Indian scholars (recent voluminous edition of
Gan. ita-sāra-saṅgraha from Hombuja Jain Math, costs only Rs. 750/-).
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The case about acquiring photocopies and transcripts of manuscripts is more
horrible. Very few Indian scholars succeed in getting these. Even it is difficult to get
replies of requests (perhapsmanuscripts libraries are too busy). Foreign scholars face
less difficulty in thismatter (evenwhen they visit orwrite to Indian libraries).National
Commission on History of Science (under INSA) should have a knowledgeable
person who should be able to provide prompt information to scholars regarding
publications, journals, institutions, grants, and other facilities in the field. INSA
should also maintain an up-to-date core library with relevant back volumes and
modern facilities (at present even GB set is not there in INSA!).

Lastly, something about historical attitude and temperament. It is said that ancient
India could not produce historians likeHerodotus (note that epic and purān. ic tradition
is mixed with myths). The reason is philosophical, i.e. more attention to spiritual
matters. Indian scholars must cultivate greater historical sense. Also we must have
real love for records and try to preserve them. In foreign (western) countries, the
papers, notes, correspondence of scientists is preserved and catalogued (in various
libraries). In India, the material is often disposed off as waste paper (also cf. the
practice of worshipping very costly idols and then do visarjana—sinking in water).

5 Nature and Type of Research

Many scholars believe that to establish national and racial superiority in the past is
the sole purpose of research in the field of history of science even if such a thing was
not there in reality. So attempts to glorify one’s national and racial achievements by
exaggerated and inflated claims are frequently made in historical studies. Often such
tendencies of making hyperbolic claims are sought to be justified even at the cost of
scholarly norms and standards. Actually, the purpose of history of science studies
should be truly educational and it should not be used as an instrument for mak-
ing priority claims. We should try to know the intellectual framework for scientific
inventions and to learn why discoveries took place.

In the case of history of science in India, the Vedas are frequently proclaimed to
contain the whole stock of modern and advanced science (including mathematics).
In fact, champions of this Vedic orthodoxy assert that, in the words of Manu,

All that was, is, and will be (in future) can be derived from the Veda.

Also

It is common experience that as soon as (not before) a scientific discovery or invention
is made known, someone would come out with the claim that it was already known
to the Vedic sages. Examples of claim include knowledge of differential calculus,
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Newton’s law of gravitation, Einstein’s equation, E = mc2, Dirac delta function,
proof of Fermat’s Last theorem, etc. (see GB, Vol. 16, 9–10; and 20, p. 114).

The usual methodology for the Vedic claims for modern science is to give arbi-
trary meaning to certain words and to have forced interpretation without caring for
coherency, consistency, and collaboration. For example, Indra is taken tomean ‘Sun’
in one place and ‘electricity’ at another by Hansraj (in Science in Vedas), ‘autumn
equinox’ by R. Krishnamurty (Math. Student, 23, 77–81), ‘celestial point at 180◦
from Sun’ (Holay in Ganit Bikash, 28, 36), etc. The popular Vedic Mathematics
book by Swami Bharati Krishna Tirthaji claims to give “One-line Answers to All
Mathematical Problems”! Actually the book has nothing to do with Vedas, Vedic
literature, or Vedic times, but has some educational value.

The so-called research projects have been going on (especially at INSA) since
long. Now an evaluation is needed so that we can assess whether they were or are
worth the money and time spent. May be that some modifications will yield better
results. In particular, we should also conduct a survey to find as to what happened
to the research scholars and the projects themselves. A consolidated list of all the
History of Science research projects sponsored by INSA during 1960–2000 is now
available in the IJHS, Vol. 35, No. 4 (Dec., 2000) which also has the Cumulative
Index of the journal, Vols. 1–35. But the preservation of the project reports is not
satisfactory as scholars would like to consult the submitted reports.

I believe that research in History of Science is a serious pursuit and not a holiday
pastime meant for retired persons or waiting room-like job for scholars. It is also
not just a side-hobby but full time devoted work. Without keeping in mind the sober
nature of research in History of Science, it is not easy to get the projects completed
in entirety (like that on Śulbasūtras) or at all (like that on Brāhmasphut.a-siddhānta).
Why other parts of S. N. Sen’s Bibliography of Sanskrit Works are not published?

Past experience shows that some invited projects succeed when right choice is
made (cf. INSA publications on the Āryabhat. ı̄ya). Now there is a national need for
following type of projects (either team work or single competent scholar):

(i) Multi-volume chronological History of Science in India.
(ii) Encyclopedia of History of Science in India (similar to that of Arabic Sciences

or that of History of Science, edited by H. Selin).
(iii) History of each discipline (e.g. mathematics) in India.
(iv) Source books of each discipline.
(v) Special or specific monographs related to Bibliography, Glossary, etc., or Jaina

School.

6 World Perspectives and Scenario

George Alfred Léon Sarton (1884–1956), the Belgium born late Professor of History
of Science at Harvard (U. S. A.) is often called the father of History of Science. After
getting doctorate in mathematics and celestial mechanics, he decided to devote his
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life “to explain the development of science across the ages and around the earth,
the growth of man’s knowledge of nature and himself”. In 1912, he founded and
supported the Isis, an International Journal of History of Science (Isis is the name
of an Egyptian goddess). In 1915, he migrated to U. S. A. where the History of
Science Society was founded in 1924. His monumental Introduction to the History
of Science (3 Vols. in 5 parts, Baltimore 1927–48) is still useful. For modern scholars,
the multi-volume Dictionary of Scientific Biography (a famous work) will be found
to be very informative.

Noteworthy accounts of Indian mathematical sciences in European languages are
already found in the eighteenth century. In 1772, Guillaume Le Gentil (1725–1792)
published an account of Indian astronomy in his “Mémorie sur I’Inde” which was
included in the Histoire de l’Academie Royale des Sciences (Paris, 1772), J. S. Bailly
in his Traité (1787) emphasized the antiquity, originality, and methodology of Indian
exact sciences, and this attracted attention of many Europeans.

Meanwhile the Asiatic Society was founded in 1784 in Calcutta byWilliam Jones
to study history, arts, crafts, sciences, and literature of not only the peoples of Asia in
general, but of India in particular. Soon the English translations ofGı̄tā and Śakuntalā
stirred Europe. Jones’s announcement (1786) of Sanskrit’s affinity to European lan-
guages brought a revolution in the whole approach to history of entire human race!
A new chapter in the historiography of Indian mathematical sciences began when
H. T. Colebrooke’s Algebra with Arithmetic and Mensuration from the Sanscrit of
Bramegupta and Bháscara was published (London, 1817).

C. M. Whish’s paper (1835) on South Indian mathematics, E. Burgess’ transla-
tion (1860) of Sūrya-siddhānta, A. Weber’s translation (1862) of Vedāṅga-jyotis. a,
H. Kern’s edition (1874) of Āryabhat. ı̄ya, G. Thibaut’s translations (1875, 1888) of
Śulba-sūtra, and Pañcasiddhāntikā, etc. all unfolded Indian exact sciences. Thus
we find that Western scholars were keenly bringing to light the treasures of Indian
traditional mathematics and astronomy hidden in ancient Sanskrit works.

On the other hand Indian scholars were busy in writing native works on mod-
ern (western) sciences to educate their fellow beings “towards the cultivation of
Western science.” The works were based on European scientific works or were their
translations (into native languages) and this renaissance continued throughout the
nineteenth century. Scores of such works can be cited but a few illustrative examples
should suffice.

M. H. usain Isfahanı̄ wrote his Risālah-i-Hai’yat-i-Angrezı̄ in 1797. It is on Euro-
pean astronomical system. About 1824, Maulvı̄ Abdur Rahı̄m translated Euro-
pean books in mathematics into Persian for Calcutta Madrasa. Yogadhyāna Miśra’s
Ks. etratattva-pradı̄pikā (1826) was based on Hutton’s work. Ghulam H. usain
Jaunpurı̄’s Jāmi‘i Bahādur Khānı̄ (1833/1834) is a Persian encyclopedic work which
contains European methods along with logarithms and trigonometrical tables. Nānā
Apte, Kr.s.n. a Godbole, and others translated Euclid’s Elements into Marathi (nine-
teenth century.).

Syed Ahmed Khan founded the Aligarh Science Society in 1864 while the Indian
Association for the Cultivation of Science was formed by M. L. Sircar (1876). The
Golaprakāśa (in Sanskrit) of Nı̄lāmbara Jha (1823–1883) is on trigonometry and
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spherical geometry. It is said to be an enlargement of an English textbook. Sudhākara
Dvivedı̄ was a pioneer in this regard. His Dı̄rghavr. tta-laks. an. am (1881) on ellipse,
Calanakalana (1886) and Calarāśikalana on differential and integral calculus, and
Samı̄karan. a-mı̄mām. sā (1897) on the theory of equations are significant works.

However, it must be noted that there were several original and noteworthy con-
tributions by Indian scholars to mathematical sciences. Ram Chandra of Delhi pub-
lished a Treatise of Problems of Maxima and Minima Solved by Algebra (Calcutta,
1850). His talent was soon discovered by Augustus De Morgan of U. K. Ashutosh
Mukherji’s first research paper was on elliptic functions (1886). Ganesh Prasad was
a great mathematician of north India during this period. Concurrently, a sort of syn-
thesis of the Indian tradition of mathematical sciences with the universal or the world
heritage of mathematics was slowly but steadily going on. The present vast stock
of mathematics is like an ocean into which different national streams poured and
continue to pour their mathematics.

7 Concluding Remarks and Epilogue

In India, the main official body to promote activities and research in the field of
History of Science is the National Commission for History of Science (NCHS)
working at I.N.S.A., New Delhi, and they get funds for the purpose. To popularize
study and research in the field, the NCHS may think of bringing out a Directory
of Indian Historians of Science as well as a Handbook which should be able to
provide necessary introductory information and guidance to scholars and aspirants
in the field. If possible a separate full-fledged Section on History of Science may be
started at INSA to give formal recognition to the discipline similar to Sections on
Mathematics, Physics, etc.

Therewas an Indian Society for History of Sciencewhichwas formed in 1957 (see
BNISI No. 21, article by S. N. Sen). In 1974 the Indian Association for the History
and Philosophy of Science was formed, but due to restricted attitude of its executive
official, the activities could not yield desired result. Now nothing is being heard of
the IAHPS (perhaps it has ceased working). So there is an urgent need to form an
ISHS again. Of course separate history societies/associations for different disciplines
have their own importance (for mathematics, the ISHM is there; for astronomy, an
ISHA has been recently formed at Hyderabad).

There exist a number of world prizes in the field of History of Science (for some
details, see GB, Vol. 2. pp. 62–63). One of them is rightly named after George
Sarton. For History of Mathematics, the ICHM awards Kenneth O. May Medal
during each International Congress History of Science. Some such prizes are needed
to be established in India. However, a number of endowment lectures in history of
mathematics have already been started in India. Recently, the National Academy of
Sciences, India has instituted History of Science Lecture Award. It seems enough
encouragement and recognition is available for work in the field ofHistory of Science
in the world.
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In spite of all this, very few Indians study the World History of Science. In fact
most of research, studies, and publications in India in the field of history of science
are confined to India. One reason is lack of facilities. But the main reasonmay be that
of languages. True research is possibly only if one can consult the original sources.
So interested Indians will have to pick up working knowledge of Chinese, Greek,
Latin, etc. as the casemay be. National history of any science subjectmay be easy, but
the world history of the same subject is a tough thing. But I hope that the interested
serious scientist will accept the challenge.



Historical Notes: Kali Chronograms
of Nārāyan. a Bhat.t.atiri

Nārāyan. a Bhat.t.atiri (sixteenth–seventeenth century ad), son of Māt.rdatta, is one of
the greatest scholar-poets of Kerala. He composed many works on diverse subjects
both literary as well as technical in Sanskrit. He was a Nambutiri Brāhmin hailing
from the family ofMelpattur situated not far from thebankof the riverBharatappuzha.
According to his grammatical work (see below), he learnedMı̄mām. sā from his father,
Vedas from Mādhava, logic from Dāmodara and grammar from Acyuta who was a
great authority in the subject of Vyākaran. a-śāstra.

In addition to grammar, Acyuta (a member of the Pis.ārat.i community), was a
scholar of astronomy, astrology, poetics andmedicine. Hewas a pupil of Jyes.t.hadeva,
the author of the famousMalayalamworkYuktibhās. ā on astronomyandmathematics,
and was patronized by the king Ramavarman of Prakasavisaya who ruled from 1595
to 1607 of the Common Era (=ad).

Acyuta Pis.ārat.i wrote Praveśaka on grammar, Horāsāroccaya on astrology, a
Malayalam commentary on Ven. vāroha of Mādhava of Saṅgamagrāma (not the same
as the Mādhava mentioned above), and half a dozen works on astronomy. Pingree’s
Census1 descriptively mentions these as

1. Karan. ottama (with auto-commentary)
2. Uparāgakriyākrama
3. Sphut.anirn. aya
4. Chayās. t.aka
5. Uparāgavim. iśati and
6. Rāśigolasphut.ānı̄ti

1Full references are given at the end.
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Of these, the concluding verse of the Uparāgakriyākrama contains the Kali
chronogram (Sarma, p. 16) (proktah. pravayaso dhyānāt) which
gives (in the usual kat.apayādi system) in number 01714262.

This has been taken (as explained in a commentary) to yield the date of compo-
sition of the work on the Kali day 1714262 (of the present Kaliyuga). Ever since
Iyer (p. 44) took this to correspond to 1593 ad, many scholars (such as Pingree and
Sarma) accepted it, but K. K. Raja (Adyar Library Bulletin No. 27, p. 157) mentioned
it as 1592 which is correct. The exact date worked out by the author (RCG) of the
present article comes out to beMonday, July 10, 1592 (Julian). This working is based
on assuming the usually accepted date Friday, February 18, 3102 bc as the first day
of present Kaliyuga.

According to a popular Kerala tradition, when Acyuta died, his pupil Nārāyana
composed a caramaśloka (obituary verse) in his memory. There is slight difference
in the text found in various sources (e.g. Pingree, p. 37 and Raja, p. 125), but the
quoted fourth line

vidyātmā svarasarpadadya bhavatāmādhārabhūracyutah.

The phrase constituted by the first seven syllables, namely vidyātmā svarasarpat,
which literally means “the learned soul passed to heaven”, also has the common
Kali chronogram. The chronogram represents the Kali day number 1724514 thereby
mentioning the definite date of Acyuta’s death. Unfortunately, here also the corre-
sponding year is wrongly given as 1621 ad by various scholars such as Iyer, Pingree,
Raja, Sarma etc. The correct date works out to be Friday, August 4, 1620 (Julian) or
August 14, 1620 (Gregorian) as difference being 10days here.

Nārāyan. a’s Nārāyan. ı̄yam is his most popular work and is one of the finest reli-
gious lyrics in Sanskrit literature. It primarily deals with the themes of the famous
Bhāgavata-purān. a (including its sām. khya doctrine) as well as presents a condensed
version of Rāmāyan. a. Its date of composition is expressed by the following interest-
ing Kali chronogram given at the end.

āyurārogyasaukhyam

This on the one hand is a wish or prayer for longevity (āyuh. ), health (ārogya)
and happiness (saukhya), and on the other hand it represents the Kali day number
1712210 expressed in the usual Kat.apayādi system.2 The corresponding Julian date
is November 27, 1586 as correctly given by Raja (pp. 126 and 130), the week day
being Sunday.

Nārāyan. a was not only fond of forming such chronograms but was an expert in
creating them with literary gymnastics. A popular tradition in Kerala ascribes him
the following verse (Raja p. 130 with slight correction):

2In the Concept of Śūnya (Delhi, 2003, p. 41), the number appears wrongly as 171211 (paper by
K. V. Sarma), and the same also in IJHS, 34(4), 1999, p. 274.
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nadı̄pus. t.irasahyā nu na hyasāram payo’jani |
nijāt kut. ı̄rāt sāyāhne nas. t.ārthāh. prayayurjanāh. ||

The verse describes3 the catastrophe of the devastating flood in the Bharatappuzha
river in the following words:

The flood in the river was unbearable and there came down an abundance of water. By the
evening, the people (living nearby) fled from their huts, having lost all their belongings.

But themore interesting part in the verse is that its each four lines (pādas) represent
the same number 01721180 in theKat.apayādi system.However, herewe have to note
that while the usual right to left convention is followed in the first and third pādas,
the opposite left to right convention is to be observed in the other pādas. This is a
good example showing that the same person may follow different conventions at the
same time! The Julian date of the tragic event corresponding to the above 1721180th
Kali day was Wednesday, June 19, 1611.

The Prakriyā-sarvasva stands at the top of the scientific works (i.e., those devoted
to Śāstras or technical Sanskrit) of Nārāyan. a. It is said to be an original recast of
Pan. inian sūtras on the Sanskrit grammar (As. t.ādhāyı̄). According to Raja (p. 129),
two Kali chronograms found in one of its introductory verses are:

(yatnah. phalaprasūh. syāt) and

(kr. tarāgarasodya)

The first of these represents the Kali day 1723201 and the second the Kali day
1723261, their difference being only of 60days. The corresponding Julian dates are
Monday, 30 December, 1616 and Friday 28 February, 1617. In Gregorian these days
will fall in January and March in 1617 and not in 1616 as Raja states. Regarding
ancient dates, there has to be always a clear mention or understanding as to whether
they are in Julian or Gregorian to avoid confusion. It may be mentioned that although
in Italy the Gregorian reform was adopted in 1582, it was adopted much later (in
1752) in England.

Nārāyan. a is also said to have coined the chronogram Bālakalatram saukhyam
as printed in Raja’s book (p. 121). This gives Kali Day 1723133

and corresponds to the Julian date 23 October, 1616 (Wednesday). However, there
seems to be some confusion apparently because Raja mentions the Kali day numbers
as 1729133 which will correspond to the date 28March, 1633 (Thursday). Of course,
the latter number can be easily obtained by taking the second la in the above
chronogram as l.a of theMalayalam as this denotes 9 (instead of 3) in the extended
Kat.apayādi system. The story goes that when Acyuta asked Nārāyan. a to give an
alternative chronogram, the pupil formed the new one as

(liṅga vyādhirasahyah. )

3Several typographical errors that had crept into this verse (as well as many other places), in the
earlier printed version of the article, were corrected. –ed.
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which represents the same Kali Day 1729133. The date of 1633 might had been the
then proposed date for completion of Prakriyā-sarvasva.

Nārāyan. a composed Caturaṅga-ślokas on the game of chess (Raja, p. 148) whose
oriental name śataram. ja is clearly derived from the Sanskrit name. His Śūkta-ślokas
are said to give various statistics about the R. gveda. The technique used is described
in the opening verse and is based on theKat.apayādi systemwith some changes. Here
the letter na means 10 (and not the usual 0) and the conjoint letter ks. a means 12
(not 6). This shows that variation in the system already started. The famous Vedic
Mathematics by Swami Bharati Krishna Tirthaji uses ks. a=0.

Above, the dates in ad of many Kali chronograms have been given. The converse
problem of finding the Kali day or chronogram for a given date is also there. On a
current N th Kali day, the gata ahargan. a (elapsed number of Kali days) is (N − 1).
For example, the epoch of Karan. a-kuthūhala is Thursday, the 24 February, 1183
(Julian) which corresponds to the Kali day number N = 1564738 and on this Kali
day the (gata)Ahargan. a is 1564737 (Rao andUma, p. S171). Of course theAhargan. a
number also represents the (N − 1)th Kali day and so on. In essence, the day by day
counting of civil days from the first day of Kaliyuga is involved.

Important Indian astronomical works contain methods of finding Ahargan. a on
any lunar tithi. Minor deviations or errors can be corrected if week day is known.
But often mistaken results are found. For instance D. A. Somayaji (IJHS, Vol. 20,
164–165) finds the ahargan. a upto As. ādha-bahula-amāvasyā, Śaka 1906 as the num-
ber 1857473. But according to Rao and Uma (pp. S171–S174) the ahargan. a for the
said Gregorian date 28 July, 1984, comes out to be 1857444days! How Nārāyan. a
got the Kali day numbers for forming his chronograms is also worth investigating.
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Part III

Mathematics in Ancient Period



On Some Mathematical Rules
from the Āryabhat. ı̄ya

The paper deals with the controversies which arise due to different interpretations of certain
mathematical rules as found in the Āryabhat. ı̄ya of Āryabhat.a I (born 476 ad). The first half
of the sixth stanza (Kern’s edition) from the Gan. itapāda part of the work gives the area of a
triangle as half the product of its base and altitude. But even in this respect a controversy exists
as to whether the text gives the rule for the general triangle or for the isosceles triangle only.
The second half of the same stanza is generally interpreted to contain the wrong expression
for the volume of a tetrahedron as half the product of it areal base and altitude. However,
some scholars have attempted to interpret is differently so as to yield the correct formula.

Volume of tetrahedron = area of base × altitude

3

The first half of the next stanza (no. 7) gives the correct rule

Area of a circle = circumference × diameter

4

The second half is generally taken to contain the wrong formula

Volume of sphere = A
√

A

where A is the area of its (greatest) circular section.

However, by giving very unusual interpretations, some scholars maintain that the rule in the
text is not about the volume of a sphere but rather about the surface of a hemisphere for
which it is made to give a correct expression!

Another controversy is about the interpretation of the 28th stanza from the Golapāda part
of the work. P. C. Sengupta has translated it in such a way as to discredit Āryabhat.a for not
knowing the correct rule for finding the altitude of the Sun at any time of the day. However,
it is pointed out here that the explanation given by Parameśvara and the observations made
by Pr.thūdaka show that Āryabhat.a knew the correct rule.
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48 On Some Mathematical Rules from the Āryabhat. ı̄ya

1 Introduction

The Sanskrit work Āryabhat. ı̄ya (hereafter abbreviated as AB) is from the pen of the
well-known Indian astronomer and mathematician, Āryabhat.a I (born 476 ad) who
is also called the elder Āryabhat.a in order to distinguish him from his name sake,
Āryabhat.a II or the younger Āryabhat.a (tenth century). According to an interpretation
of the author’s own statement in AB, III (kālakriyā-pāda), 10 (p. 58),1 the work was
composed at a young age of 23 years. This interpretation is clearly given bySūryadeva
Yajvan (born 1191) in the introductory passage to his AB commentary called Bhat.a-
prakāśikā (=BP),2 and by Parameśvara (c. 1380–1460) in his AB commentary called
Bhat.a-dı̄pikā (=BD) (p. 58). However, the matter is not free from objections. For
instance, Sengupta accepted this interpretation when he translated3 that AB, but later
on he gave another interpretation4 and said that “we are not justified in concluding
that the AB was composed when Āryabhat.a was only 23 years old.”

The AB has four parts or sections of which the second is called Gan. ita-pada
and deals with mathematics. However, the author has presented only selected topics
from themathematical knowledge of his time in India in the form of condensed rules.
According to the commentator Bhāskara I (629 ad),5 the AB contains only “ a bit of
mathematics”.

Due to brevity, elliptic language, and poetic form of the rules, the difficulty of
understanding the text increased with the passage of time. Already in the nineteenth
century, the work was considered to be6

More hard than even the rocky mountain.

It is therefore not surprising to find that some of the AB rules have been differently
interpreted by various commentators, translators, and other scholars, thereby leading
to several controversies. The present paper deals with four such rules.

2 Rule for the Area of a Triangle

The first half of AB, II. 6 (p.23) says:

The area of a triangle is the product of the samadalakot. ı̄ and half of the base.

Interpretation of the rule depends on the meaning of the word sama-dala-kot.i.
The BP (p. 39) and BD (p. 23) both take it to mean altitude, the perpendicular side
common to the two triangles formed by it. Bhāskara I also illustrates the rule by
taking examples of all types of triangles.7

However, Nı̄lakan. tha Somasutvan’s (c. 1500) Bhās. ya (=NAB) on the AB says8

that the rule is meant for equilateral triangle and explains that the common altitude
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(kot.i) is designated by the work sama-dala here because it divides the base into two
equal halves.

Givingweight to earlier commentators,modern scholars like Sengupta (AB transl.
p. 15) and Shukla9 take the rule to mean the general formula

Area = 1

2
(base × altitude). (1)

G. R. Kaye,10 however, takes the word to mean ‘perpendicular that bisects the base’
(cf. NAB). B. Mohan,11 listing several possible meanings of the word sama, finally
takes it to mean, like BD, ‘common’.

3 Rule for the Volume of a Pyramid

The second half of AB, II.6 (p. 23) says:

Half the product of that (area of the triangular base) and the vertical height is the volume of
a six-edged solid (or tetrahedron).

So that this rule implies the volume of a pyramid with triangular base as

Volume = Area of base × height

2
, (2)

which is wrong, the correct formula being

Volume = Area of base × height

3
. (3)

Bhāskara I (629ad) is stated12 to havemade little or no improvement on the result (2).
However, Brahmagupta (628 ad), a great Indian mathematician of the same time,
has given the correct rule in his Brāhma-sphut.a-siddhānta, XII. 44 which says13

The volume of a pit of uniform depth is the (sectional) area multiplied by the depth; (this)
divided by three is (the volume) of sūcı̄ (a tapering figure, i.e., the pyramid or cone).

Hence the formula (3) is implied here. The BP (pp. 41–42) says that the height of
the tetrahedron involved in the above AB rule lies along the height at the centre or
middle (madhya) of the base and gives the following formula for its computation

Two times the square of the edge divided by three is the square of the height [of a regular
tetrahedron].
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That is

h2 =
(
2

3

)
s2, (4)

which is correct for a regular tetrahedron of each edge s. In fact, the BP takes the AB
rule as meant for such pyramids only. The BD (p. 23) also gives the usual rule for
finding the lamba (altitude) of any triangle of given sides. But, for finding the height
of a tetrahedron, it gives the following line

The square root of the difference of the squares of the lamba (of the triangular base) and of
its half is the vertical height (of the triangular pyramid) here.

That is

h =
√

p2 −
(p

2

)2
, (5)

where p is a lamba (altitude) in the triangular base.
The result (5) is not true for regular tetrahedron whose every face is an equilateral

triangle. But it is certainly true for the tetrahedron whose base is any triangle (with
an altitude p) and whose one slant face is congruent to the base. Further, this face is
so inclined that the slant height equals p and that the perpendicular from the vertex
falls on the middle point of the altitude p of the base. Does the BD really intend to
deal only with pyramids which have the above-mentioned property that is not found
even in the simple regular tetrahedron, or, the formula (5) is the result of confusing
the centre of the triangular base with the middle point of the altitude in the base?

The NAB (part I, p. 35) takes the six-edged solid to mean, like BP, a regular
tetrahedron whose faces are equilateral triangles. Not only that the Sanskrit line
for (4) is quoted from Sūryadeva Yajvan (author of BP), but a long and systematic
derivation of it is presented.

However, like other earlier Āryabhat.an scholars he accepted thewrong formula (2)
without demur and even justified it. Even the very late commentator Kodan.d. arāma
(c. 1850) made no fuss about it (see No. 6 at the end in References).

Some modern scholars have tried to interpret the Sanskrit text in such a way
as to yield the correct formula (3), thereby defending Āryabhat.a I. For instance,
Conrad Mueller14 translates phala-śarı̄ram as a “a solid obtained from the area (of a
triangle)”, that is, a special pyramidwhich,whenunfoldedgives a triangle and s. ad. aśri
as “a prism equivalent to six (of mentioned) pyramids” (i.e. a cube). The stanza AB,
II. 6 is then taken to give the lateral area and volume of a regular triangular pyramid.
The details are as follows:

Lateral surface (S) of the pyramid

S = Area of the unfolded triangle

= 4A,
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where A is the area of each face. Then,

Volume (of s. ad. aśri) = S × h

2

or 6V = S × h

2
,

where V is the volume of the pyramid. From these we readily get

V = A × h

3
,

which is the correct rule (3). The details have again appeared in some recent publi-
cations of Kurt Elfering.15 These peculiar interpretations are not supported by any
known ancient commentator, and the argument that the correct formula was surely
known to Āryabhat.a because the Indians were familiar with Greek science, needs
justifications.16

No doubt the Greeks not only knew the correct rule (3) but have proved it several
centuries before the date ofAB,17 but the errors continued not only in India but abroad
also. Maimonides (1135–1204) in his Moreh N Vokheem speaks of those who think
the cone to be half of the cylinder with the same base and height.18 Analogy, which
was one of the tempting methods for arriving at empirical formulas (see the next
section), with the formula (1) seems to be responsible for the error.

4 Rule for the Volume of a Sphere

The second half of the AB, II. 7 (p. 24) says:

That (i.e. the area of a circle mentioned in the first half) multiplied by its own (square) root
is the volume of a sphere (whose greatest section is above circle), without any remainder
(i.e. exactly).

So that, the volume of a sphere is

V = A
√

A, (6)

where A is the area of the greatest circular section and which, by the first half of the
verse, is given by

A =
(
circumference

2

)
×

(
diameter

2

)
(7)

= C × D

4
= πR2. (8)
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The formula (6) is wrong although AB calls it exact. More surprising is the fact
that the commentaries, of Bhāskara I,19 BP (p. 43), BD (p. 24), NAB (part I, p. 39),
all fail to point out the inaccuracy. Elsewhere the BD (p. 25) says:

In (the case of a) sphere, the (square) root of the area of the (great) circle is the (effective?)
height.

The implied understanding may be put as

Volume = effective height × sectional area, (9)

which can yield correct results if, corresponding to a sectional area taken, the effective
height is properly chosen. For example, in the case of a cube of uniform sectional
area A, the effective height is the square root of A and the formula (6) is valid for a
cube. An analogy with a cube seems to be the way of arriving at (6) for a sphere.
This view is supported by NAB (part I, p. 39).

According to some new translation,20 the text is taken to give the curved surface
of a hemisphere (and not the volume of a sphere), the result being obtained by taking
the radius and circumference for the two factors (tat and nijamūla) mentioned in the
text and forming the specified product.

5 Altitude of the Sun at Any Time

In the accompanying diagram, U GS is a part of the diurnal circle of the sun whose
position, at any time t, is at S. The line U V is the rising-setting line, and GH (not
shown) is the line of intersection of the diurnal circle and the six o’clock circle. It is
clear from the figure that the altitude is given by

SK = SC cos φ = SC × (R cos φ)

R
, (10)
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where SC is the perpendicular from S on U V . The main problem, therefore, is the
computation of SC. Now AB, IV. 28 (p. 89) states:

After multiplying the is. t.ajyā (measured) from the horizon in (the sun’s) own diurnal circle,
by the avalambaka (sine of the colatitude), divide by the semi-diameter. The result is the
(great) gnomon (sine of the sun’s altitude) corresponding to the (part of the) day elapsed or
to be elapsed.

That is,

SK = is. t.ajyā × (R cos φ)

R
. (11)

Now, Sengupta (AB translation, pp. 47–48) takes

is. t.ajyā = R sin t × (R cos δ)

R
, (12)

thereby discrediting Āryabhat.a for not knowing the correct rule. However, the BD
(p. 89) clearly explains that (for northern hemisphere)21

is. t.ajyā = (earth-Sine) + [R sin(t − cara)] (R cos δ)

R
= GD + SJ

= SC, as required.

The remark of Pr.thūdaka (860 ad) in his commentary on the BSS, III. 25–26 also
indicates that Āryabhat.a I knew the correct rule.22 The NAB (part III, pp. 56–57)
explains the subject in detail.
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Decimal Denominational Terms
in Ancient and Medieval India

1 Introduction

Although the choice of ten as a base for numeration is not the best, God favoured it
by giving us ten fingers. In India, ten has been the basis for counting since very early
days. Later on it served the base for the place-value system of numerals which was
invented in India about two thousand years ago. Specific names are found for numbers
which are equal in value to 10n , where n = 0, 1, 2, . . .. Later on these decuple terms
were used as names for various notational places when positive integral numbers
were written in decimal place-value system.

It is remarkable that Indians developed terminology for denominations up to very
high orders in comparison to other ancient nations. In this connection we quote
al-Bı̄rūnı̄ (Vol. I, p. 174) (c. 1030 ad):

I have studied the names of the orders of the numbers in various languages with all kinds of
people with whom I have been in contact, and have found that no nation goes beyond the
thousand. The Arabs too stop with the thousand, which is certainly the most correct and the
most natural thing to do. I have written a separate treatise on this subject. Those, however,
who go beyond the thousand in their numeral system are the Hindus.….

This leads us to ask the following questions:

1. Why was stopping at the thousand considered most correct and natural by
al-Bı̄rūnı̄?

2. Was he ignorant of theGreek termmyriad (frommyrioi, “countless”) which stood
for ten-thousand? Which is his separate treatise on the subject?

3. What about the terms for the large numbers used by Archimedes (died 212 bc)
in his book entitled Principles which dealt with the naming of numbers (Heath,
p. xxxvi)? I leave the matter and come to the main topic.

Gan. ita Bhāratı̄, Vol. 5, Nos. 1–4 (1983), pp. 8–15.
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2 Decuple Terms in Vedic Literature

Decuple terms up to sahasra (“thousand”) frequently occur in R. g-Veda, the oldest of
the four Vedas. The next term ayuta in the sense of “ten thousand” is also found in it
side by side with sahasra at several places especially in the Eighth Man.d. ala e.g. 1,
5 (p. 1107); 2, 41 (p. 1117); 21, 18 (p. 1185); 34, 15 (p. 1224); and 46, 22 (p. 1257).
The next three (decuple) terms namely (see below) niyuta, prayuta, and arbuda are
also found in it, but none of these is said to denote a number (Satya Prakash, p. 367).

Adefinite list of 13 decuple terms occurs in theYajur-Veda (Vājasaneyı̄ recension),
XVIII, 2 (p. 270) as follows:

eka; daśa; śata; sahasra; ayuta; niyuta; prayuta (= 106); arbuda; nyarbuda; samudra;
madhya; anta; and parārdha (= 1012).

We shall call this set as Medhātithi’s List after the name of the associated Vedic
seer. The same set is found in the Taittirı̄ya-sam. hitā, IV. 4, 11, 4 of the Black Yajur-
Veda (Macdonell and Keith, p. 342; and Mishra, p. 17) and also in the Śatapatha
Brāhman. a, IX. 1, 2, 16 (Ibid., p. 342; and Suryakant, p. 189).

The popularity of Medhātithi’s List is also shown by the fact that with slight
variations it occurs in several other places in the Vedic literature. Some references
are:

(a) Kāt.haka-sam. hitā, XVII, 10, where niyuta and prayuta interchange places
(Macdonell and Keith, p. 342; Datta and Singh, I, 10).

(b) Maitrāyan. ı̄-sam. hitā, II, 8.14, where we have ayuta for 104 as well as for 106

(Ibid., p. 342; and Kapadia, p. XLVIII).
(c) Kāt.haka-sam. hitā, XXXIX, 6, where there is an interchange like (a) above, and

then, after nyarbuda (= 108), a new term badva(= 109) intervenes so that the
subsequent four terms take the list to 1013 here (Ibid., 342; and Suryakant, 189)

(d) Pañcavim. śa-(or tān. d. a-brāhman. a, XVII, 14.2 where the last four terms of
Medhātithi’s List are replaced by nikharvaka, badva, aks. ita, and go (= 1012)
respectively) Ibid., 342; and Kapadia, XLIX).

(e) Jaiminı̄ya-upanis. ad-brāhman. a, I. 10, 28, 29, seems to replace the last four terms,
like (d) above, by nikharva, padma (= 1010), aks. iti (= 1011), and ends with the
phrase vyomāntah. which might imply a term or two (vyoma and anta) further
(Ibid., 342; Suryakant, 189).

(f) Śāṅkhāyana-śrauta-sūtra, XV, 10.7, where, similarly, the last four terms are
replaced by five namely, nikharva or nikharvāda (= 109; samudra; salila; antya;
and ananta (= 1013); Ibid., 342; Ibid., 189; Datta and Singh, I, 10).

Nowwe give aVedic extension (ofMedhātithi’s List) which is notmentioned inmany
histories of Indian mathematics. According to Datta and Singh (I, 9), the Taittirı̄ya-
sam. hitā, VII, 2.20, contains just the above list of 13 terms. But according to Gurjar
(p. 16), Ram Behari (p. 3 and cover page 3), and Mishra (p. 18), etc., the set of
decuple terms given here extends Medhātithi’s List to 7 more terms as follows:

Us. as (= 1013); vyus. t.i; udes. yat (deśyat according to Gurjar); udyat; udita; suvarga; and loka
(= 1019).
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These terms are not interpreted in the above manner apparently by Macdonell and
Keith (p. 342) and by Suryakant (p. 189), but Mishra (p. 18) quotes the words of the
commentator, Bhattabhāskara, in support of the above numerical extension.

3 Decimal Notational Names in Scientific Works

We have already shown that Medhātithi’s List was not followed uniformly beyond
ayuta. Due to vast distances and intervals of time, and also due to different Vedic
schools, the names of the decuple terms varied. Sometimes the same term denoted
different numbers in different texts. No care seems to have been taken to maintain
the order of terms especially in the Epic literature. For instance, the Mahābhārata,
Sabhāparva, 65, 3–4 (Gita Press ed., Vol. I, p. 889) lines

in which Yudhis.t.hira describes his wealth, present a complete mixing of various
decuple terms.

Obviously there was a need for fixing the order of the terms and possibly stan-
dardizing the terminology. This seems to have been attempted by the authors of the
astronomical and mathematical works. Āryabhat.a I (b. 476 ad) in his Āryabhat. ı̄ya,
II. 2 (p. 33) confined to just 10 terms (why?) which are same as in Medhātithi’s list
up to 106 beyond which the former’s terms are kot.i, arbuda (= 108 here), and vr. nda
(“flock”), the last, for 109. According to al-Bı̄rūnı̄ (I, 176). “The book of Āryabhat.a
of Kusumapura” gives, after kot.i, padma (= 108) and parapadma (= 109).

But stopping at the tenth “order” could not be accepted especially when higher
orders were already reached earlier. Also there was a need to standardize the number
of terms to be given in common texts for general use. Various considerations led to
favour the traditional number eighteen as the choice for the purpose. Accordingly
a list of 18 decuple terms came to be accepted as the standard practice. Al-Bı̄rūnı̄
(I, 174) says that the extension to the 18th order was done for “religious reasons”.
According to the Vis. n. u-purān. a, VI, 3, 4–5 (pp. 513–514), the 18th place of counting
(in decuple scale) is called parārdha (= 1017) which represents half of that period
at the end of which there is the prākr. ta-pralaya (“annihilation of nature”) when the
visible world shrinks into the invisible one.

Whatever be that, the names up to 18th denominational place are found in standard
works on Indianmathematics by Śrı̄dhara, Bhāskara II, etc. Butwhowas the first to do
so? Lists of “eighteen places of numeration” do appear in the Puranic literature, e.g.
Vāyu-purān. a,Chap.63 (pp. 408–410) gives two sets of names. But due to uncertainty
about the dates of the Purān. as and due to their composite character, we cannot be
sure of the originality of their lists.
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According to al-Bı̄rūnı̄ (I, 177), the Puliśa-siddhānta has the following names;

eka, daśa, śata, sahasra, ayuta, niyuta, prayuta, kot.i, arbuda, kharva, kharva (repeated),
nikharva, mahāpadma, śaṅku, samudra, madhya, antya, parārdha.

Half this list is same as that of Āryabhat.a I. But then the use of kharva for 10th
as well as for the 11th order is a confusion which is to be removed. D. Pingree
(p. 186) who collected and translated the fragments of the said work is silent over
the matter. He calls the work as “The Later Puliśa-siddhānta” and places it in eighth
century ad (Ibid., p. 172). Since the original forms of the above and of the Older
Puliśa-siddhānta which is summarized by Varāhamihira (sixth century ad) in his
Pañca-siddhāntikā are not extant, we cannot be sure of their contents. According to
Pingree (p. 172), the Puliśa-siddhānta mentioned by al-Bı̄rūnı̄ above, was already
known to Pr. thūdaka (864 ad).

A definite list of 18 denominational places is given by Śrı̄dhara who was placed
circa 750 ad by Datta and Singh but now placed after Mahāvı̄ra (c. 850) by Shukla
(p. XLII). Whatever be that, Śrı̄dhara’s set of 18 names became almost the standard
Indian list of 18 decuple termswhich also served as a sort of ideal for subsequentwrit-
ers. Of course this idealismwas not confined to names of numbers only; Śrı̄dhara was
themodel for ancient Indianmathematics in general—“Gan. ite Śrı̄dharācāryah. ”—as
an old popular saying puts it. His list is as follows:

eka, daśa, śata, sahasra, ayuta, laks. a (or laks. ya), prayuta, kot.i, arbuda, abja (or abda),
kharva, nikharva, mahāsaroja, śaṅku (or śaṅkha), saritām. -pati, antya, madhya, andparārdha
(= 1017).

The Sanskrit text is found in Śrı̄dhara’sPāt. ı̄-gan. ita, verses 7–8 (Shukla, text p. 5) and
verbatim in his Triśatikā, verses 2–3. The variants laks. ya and śaṅkha are quoted by
Shukla while abda and śaṅkha are found in the Kriyākramakarı̄ commentary (p. 8)
on the Lı̄lāvatı̄ edited by K. V. Sarma (V.V.R.I. Hoshiarpur, 1975). Similar lists are
found in the following works:

• Al-Bı̄rūnı̄’s India (I, 175) except for the use of nyarbuda for arbuda, and of syn-
onyms padma, mahāpadma, samudra for the 10th, 13th, 15th terms respectively;
also antya and madhya interchange places.

• Śrı̄pati’s Gan. ita-Tilaka (c. 1040), I, 2–3 (Kapadia, p. I) except padma for abja,
and samudra for 1014.

• Lı̄lāvatı̄, verses 10–11 (pp. 11–12) of Bhāskara II (1150 ad) except for the use
of synonyms mahāpadma and jaladhi for 13th and 15th orders respectively. The
Kriyākramakarı̄ (mentioned above) version gives abda for abja besides the above
two changes.

• the ancient anonymous commentary (Shukla, text p. 5) on Pāt. ı̄gan. ita gives a list
similar to the Lı̄lāvatı̄. Does this indicate that the commentary is to be dated after
1150 ad?

• Hemachandra’s Abhidhāna-cintāman. i (twelfth century), III, 537–538 (Kapadia,
p. XLVIII) except mahāmbuja for mahāsaroja.



3 Decimal Notational Names in Scientific Works 59

• Gan. ita-Kaumudı̄, 1, 2–3 (p. 1) of Nārāyan. a Pan.d. ita (1356 ad) except for the use
of the synonyms saroja, mahābja, and pārāvāra for the 10th, 13th, and 15th orders
respectively, Cf. (i) above.

4 Lore of Large Numbers

While the practice of giving a list of 18 decuple termswas generally accepted bymany
leading Indian mathematical authors, some other scholars, especially those living in
the southern part, included terms extending to very high orders. One such extended
list was given by Mahāvı̄ra (c. 850), a Jaina writer who lived during the reign of
Amoghavars.a I, the Ras.t.rakūt.a monarch of Karnataka and Maharashtra (815–877).
In his Gan. ita-sāra-saṅgraha, I, 63–68 (p. 8) is found a list of 24 decuple terms, the
last being mahāks. obha (= 1023). The list is well-known (see Datta and Singh, I, 13;
Kapadia, XVI–XVII; Shukla, transl., 2–3). Also see below.

Actually Mahāvı̄ra could carry out the task by employing a fewer words than
one would expect by resorting to the prefixes daśa and mahā (“great”). Thus he
avoided ayuta, niyuta and prayuta by using daśa-sahasra, laks. a, and daśa-laks. a
respectively. In fact, according to al-Bı̄rūnı̄ (I, 176), daśa-sahasra and daśa-laks. a
were the “popular” names and their equivalents, ayuta and prayuta were “rarely
used”. The question arises whether Mahāvı̄ra followed the practice because it was
alreadypopular in his times, or thedaśa-systembecamepopular becauseofMahāvı̄ra.
Anyway the system is even more popular now.

Shukla (transl., 3) has brought out a big list of 36 decuple terms from the Gan. ita-
śāstra of Pāval.ūri Mallikārjuna. Up to 24th place, the names are same as those given
by Mahāvı̄ra except for the mutual interchange of places of ks. on. ı̄ and mahā-ks. on. ı̄
with the next pair of śan. kha and mahāśaṅkha, respectively. Beyond 24th order,
Mallikārjuna’s terms are:

nidhi, mahā-nidhi, parārdha, parata, ananta, sāgara, avyaya, aprameya, atula, ameya, bhūri,
and mahā-bhūri (= 1035).

Although Shukla has not given the date and manuscript reference, we guess that
the above Mallikārjuna is same as Pāvulūri Mallana (c. 1100?) who wrote a Telugu
version or adaptation of the Gan. ita-sāra-saṅgraha (see Census of the Exact Sciences
in Sanskrit under Mahāvı̄ra). The Gan. ita-śāstra mentioned by Shukla may be same
as that whose author is given asMallaya (=Mallana) andwhich ismanuscript No. 551
(in Telugu script) in E. Hultzsch’sReports of Sanskrit Manuscripts in Southern India,
Vol. I, Madras, 1895 (see S. N. Sen’s Bibliography, p. 140; and Census, A, 4, 365).
According toK.R.Rajagopalan (Bhavan’s JournaldatedNov. 15, 1959),Mallana has
mentioned king Pratāparudra (1158–94) and Rājāditya’s work (?) (see below). Also
note another scholar, Mallikārjuna Sūri (fl. 1178), who wrote a Telugu commentary
on Sūrya-siddhānta (and another in Sanskrit).

Now we mention another Jaina author, Rājāditya (c.1190 ad), whose Vyavahāra-
gan. itam (in Kannada) extends the list of decimal place-names to 40th order. This
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list is not well-known to the historians of mathematics and is as follows (p. 3 of the
work):

(1) ekam, (2) dāham, (3) śatam, (4) sābira, (5) dāsābira, (6) laks. a, (7) dālaks. a, (8) kot.i,
(9) dākot.i, (10) śatakot.i, (11) arbuda, (12) nyarbuda, (13) kharva, (14) mahākharva,
(15) padma, (16) mahāpadma, (17) ks. on. ı̄, (18) mahāks. on. ı̄, (19) śaṅkha, (20) mahāśaṅkha,
(21) ks. iti, (22) mahāks. iti, (23) ks. obha, (24) mahāks. obha, (25) nadı̄, (26) mahānadı̄,
(27) naga, (28)mahānaga, (29) ratha, (30)mahāratha, (31) hari, (32)mahāhari, (33) phan. i,
(34) mahāphan. i, (35) kratu, (36) mahākratu, (37) sāgara, (38) mahāsāgara, (39) parimita,
and (40) mahāparimita (= 1039).

It will be seen that the first 24 names in the above list are exactly same as those given
by Mahāvı̄ra except for Kannada influence, i.e. using dāham (or dā) and sābir for
daśa and sahasra, respectively.

Lastly,wemaypoint out that a list of 29 place-names* is said to be given byYallaya
(c. 1480) in his commentary on the Āryabhat. ı̄ya, II, 2. Shukla (transl., p. 3) has already
published the list. The first 24 names are the same as those given byMahāvı̄ra except
that Yallaya goes back to the ayuta and prayuta for daśasahasra and daśalaks. a,
respectively; and, like Pāval.ūri Mallikārjuna, the pair ks. on. ı̄ and mahāks. on. i inter-
changes places with the pair śaṅkha and mahāśaṅkha respectively. Beyond 24th, the
terms are: parārdha, sāgara, ananta, cintya and bhūri (= 1028). Yallaya belonged
to Skandasomeśva (in Āndhra region) and was influenced in giving his list by
the Telugu writer Pāval.ūri Mallikārjuna rather than the Kannada writer Rājāditya.
Yallaya points out that some people use the term saṅkr. ti for parārdha (1024) and
makes the surprising statement that the people of Āndhra and Karn. ataka “call the
number (1010) (arbuda) by the denomination śatakot. ı̄ ” which is otherwise equal to
109 only (see Āryabhat. ı̄ya) (pp. XLIII–XLIV).

In the end we mention that Kapadia (pp. XX and XLIX) has quoted a peculiar list
of 24 decuple terms from a Buddhist work called Abhidhānappadı̄pikā, and another
(incomplete) list of 60 decuple terms from Rahul Sankrityayan’s commentary on
Vasubandhu’s Abhidharmakośa, III, 94. We leave these for a future discussion. See
now Vijñāna Parisad Anusandhāna Patrikā 47.1(2004), 1–6.
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18. Vāyu-purān. a edited with Hindi translation by S. Sharma, Part II, Bareilly, 1967.
19. Vis. n. u-purān. a edited with Hindi translation by M. Gupta, Gita Press, Gorakhpur, Samvat 2014

(= 1957 ad).
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New Indian Values of π
from theMānava-śulba-sūtra

1 Introduction

India’s oldest written works are the Vedas. To assist their proper study, there are
six ancillary texts, called Vedāṅgas (“limbs of the veda”), namely Śiks. ā (Phonet-
ics), Kalpa (Ritualistics), Vyākaran. a (Grammar), Nirukta (Etymology), Chandas
(Prosody) and Jyotis. a (Astronomy and Astrology). The Kalpa deals with rules and
methods for performing vedic rituals, sacrifices and ceremonies, and is divided into
three categories, namely Śrauta, Gr. hya and Dharma. The Śrauta-sūtras, especially
those which belong to the various Sam. hitās of the Yajurveda, often include treatises
that give rules concerning the mensuration and construction of fireplaces and altars,
and also deal with allied ecclesiastical matters.

These treatises are often found as separate works and are called Śulba-sūtras.
They represent, in the coded form, themuch older and traditional Indianmathematics
developed for construction and transformation of Vedic altars of various forms. The
Śulba-sūtras are thus the oldest geometrical treatises which are also simply called
Śulbas. The word śulba literally means a cord, rope or string and is derived from the
basic root śulb (or śulv), “to mete out” or “to measure”.

The names of the 10 Śulba-sūtras are known, namely Baudhāyana, Āpastamba,
Satyās. ād. ha (whose text is said to be identical with that of Āpastamba), Kātyāyana,
Mānava, Maitrāyan. ı̄ (which is said to be another recension of the Mānava), Vārāha,
Vādhūla, Maśaka andHiran. yakeśı̄. They are variously dated, and their exact times of
composition or compilation are controversial. TheBaudhāyana Śulba-sūtra (= BSS)
is the oldest of them and is generally placed between 800 bc and 500 bc. The
Āpastamba Śulba-sūtra (= ASS), Kātyāyana Śulba-sūtra (= KSS), and the Mānava
Śulba-sūtra (= MSS) are the other important old works.1

Following A. J. E. M. Smeur2 I shall distinguish between π and π′ defined respec-
tively by
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area of circle

square on the radius
= π and

circumference of a circle

diameter
= π′.

2 Some Rules Related to Circle and Square

For transforming a square into a circle of equal area (approximately), the BSS 2.9
(p. 19) prescribes the following rule:

If it is desired to turn a square into a circle, half the diagonal-cord is stretched from the centre
towards the east (which is along the right bisector of a side). By one-third of that which lies
beyond (the side) combined with the remainder the desired circle is drawn.

Fig. 1 Baudhāyana rule

That is, if (see Fig. 1)

MT = ME

3
(1)

where ME is that part of OE (= OA, the half diagonal) which lies beyond the side
AB (= a) then OT (= r) is the radius of the required circle. It can be easily seen that

r = a(2 + √
2)

6
. (2)

The same rule (but in different wordings) is found in the ASS 3.2 (p. 40), KSS 3.11
(p. 56) and MSS 1.8 (p. 58). Since the true area of the obtained circle will be πr2,
the above rule implies the following approximation of π

π = a2

r2
= 18(3 − 2

√
2). (3)
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It may be pointed out that the same rule is repeated in MSS 11.10 (p. 66) although
the language used here is not so clear as in MSS 1.8.

The MSS 11.13 (p. 66) gives a rough rule for getting the circumference of a circle
quickly. It says:

The fifth part of the diameter and three times the diameter is the perimeter of a circle. Not
even a hair’s length is extra.

That is, the perimeter p is related to the diameter d by

p = d

5
+ 3d =

(
16

5

)
d (4)

which is an upper bound of the circle’s circumference. The relation (4) implies the
approximation

π′ = p

d
= 16

5
. (5)

Although simple, the above rule is quite differently (and wrongly) interpreted by
van Gelder3 and Kulkarni.4 According to these scholars, the rule states that the side
length of a square of an area equal to that of a given circle is 13 parts out of the 15
parts into which the diameter of the circle is divided. That is,

(
13d

15

)2

= πd2

4
(6)

which implies

π = 676

225
. (7)

The BSS 2.11 (p. 19), ASS 3.3 (p. 41) and KSS 3.12 (p. 56) all contain rules which
will give (6), and the two above scholars perhaps thought (incorrectly) that the same
should be the case with MSS 11.13 which otherwise gives (4), and not (6).

About the Gārhapatya fire altar, the MSS 13.6 (p. 68) says:

A square or a circle is the twofold form of the Gārhapatya. Construct the square of (side)
one vyāyāma, and the circle of (radius) half purus. a.

Now according to MSS 4.4 and 4.5 (p. 60) itself, a vyāyāma is equal to 96 aṅgulas
(finger-breadths) and a purus. a is equal to 120 aṅgulas. So that the areas of the two
forms of the Gārhapatya fire altar will be as follows.

Square form = 962 = 9216 sq.aṅg.

Circle form = π · 602 = 3600 π sq.aṅg.
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Even with the simple and low value π= 3, the above two areas are not equal (even
approximately)5. It is also possible to interpret the second part of the above rule
(MSS 13.6) as follows:

Construct the square of measure one (square) vyāyāma, and the circle of (area) half (square)
purus. a.

This will yield the areas:

Square form = 96 × 96 = 9216 sq.aṅg.

Circle form = (120 × 120)/2 = 7200 sq.aṅg.

These cannot either be regarded approximately equal6. These BSS 7.4, and 7.5 (p.
25), and ASS 7.3 (p. 44) state that the Gārhapatya fire altar is known to be of one
vyāyāma measure, and that it is a square according to some and a circle according
to others. This ancient Indian tradition of a twofold form is also very well expressed
in the Āpasatamba Śrauta-sūtra, XVI, 14.1, as7

The extent of the Gārhapatya altar is a square or circle and measures one square vyāyāma.

These statements from the two ancient works show that the areas of the two forms
of the Gārhapatya should be equal. Modern scholars such as Thibaut8, Datta9 and
others also believe in the equality of the areas. In spite of all this, the MSS 13.6 rule
does not, as shown above, lead to equal areas. In fact, the equalization of the area
will mean

3600π = 9212

which will imply the very unlikely value

π = 64

25
= 2.56. (8)

However, if we equate the perimeters (instead of areas) of the two forms, namely a
square of side one vyāyāma and a circle of radius half purus. a, we get

4 × 96 = 2π′ · 60

giving exactly the same value of π′ as in (5). Thus, we find that the rules in MSS
11.13 and MSS 13.6 use the same approximation (π′ = 3.2). It may also be pointed
out that besides the equality of areas and perimeters, there seems to be a third type,
namely equality of breadths. For example, the ancient scholiast Dvārkānātha Yajva,
while commenting on BSS 7.5, says:10

In the case of circular form [of theGārhapatya], the circle should be drawnwith half vyāyāma
(as radius). There the breadth is four aratnis [= 4 × 24 aṅgulas].
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Thus, the diameter of the circle will be equal to the side of the square but neither
their areas nor perimeters will be equal.

Without quoting the Sanskrit text, Datta writes11 that the “MSS (I. 27) states that a
square of two by two cubits is equivalent to a circle of one cubit and three aṅgulas”.
Since a cubit (aratni) is taken to have 24 aṅgulas, the rule gives

4 = π

(
1 + 3

24

)2

(9)

which yields the approximation

π = 256

81
. (10)

This value is also implied in some old Indian rules which are quoted by Khadilkar12

and which are equivalent to

a = d −
(
2d

18

)
= d − d

9
(11)

where a is the side of the square equal in area to a circle of diameter d. Khadilkar
adds that the same value (π = 3.1605 nearly) is also given by the MSS but does not
quote any reference. It may be pointed out that the Egyptian Rhind Mathematical
Papyrus (circa 1650 bc). Problem 50 uses the second form of the rule (11) for finding
the area of a round field of diameter 9 khet.13

According to Mazumdar’s account of MSS:14

(i) Gārhapatya altar is a circle of radius 14 aṅgulas less 1 yava.
(ii) Āhavanı̄ya altar is a square of side 24 aṅgulas.
(iii) Daks. inı̄ altar is a semi-circle of radius 191

2 aṅgulas.

Apparently these statements are from the commentary of Śivadāsa (see below) in an
illustration to MSS 1.8 and not from the text or MSS. The areas of the above three
altars are to be the same. But Mazumdar made a mistake in stating15 that an aṅgula
has 8 yavas. This mistake led Kulkarni to take the radius of a circle as 13 plus 7

8
aṅgulas and get, by16

π

(
111

8

)2

= 242 (12)

the wrong value

π = 36864

12321
= 2.99 nearly, (13)

The correct relation is, according to MSS 4.4 (p. 60), that one aṅgula equals 6 yavas.
So that the radius of the circle will be 13 plus 5

6 aṅgulas as given by Śivadāsa.17

Hence, the correct equation will be
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π

(
83

6

)2

= 242 (14)

which gives

π = 20736

6889
= 3.01 nearly (15)

Consideration of the semicircular altar will give

(π

2

)
·
(
39

2

)2

= 242 (16)

which yields

π = 512

169
= 3.03 nearly (17)

3 New Values of π

Sen and Bag’s remark18 that in MSS 11.14 and 11.15 “ordinary squares are drawn
without anymathematical significance” shows that they have not understood the rules
fully. We shall present a simple and meaningful interpretation of these two verses.
MSS 11.14 (p. 66) states:

After dividing the diameter (of a circle) into ten (equal) parts, leave out three parts there
from. The Square which is drawn with the remainder (as a side) has its extension upto the
circle.

That is, if d is the diameter of a circle, then 7 d
10 will be (approximately) the side of

the inscribed square or

AB = 7d

10
. (18)

Since the actual value of AB is d√
2
, the above implies the simple approximation

√
2 = 10

7
. (19)

It may be remarked that, since 1√
2
is the same as

√
2
2 , the above approximation may

be considered equivalent with
√
2 = 7

5 also (Fig. 2).
The next verse MSS 11.15 (p. 66) states:

Make a ninefold division of the square and [the elongated trisecting lines will] divide the
arcual segments [of the circumscribing circle] into three parts each. Leave out the fifth part
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from the altitude [OE]. The circular disc formed by the remainder [OT ] as radius is equal
to that [square].

Fig. 2 Mānava Śulba-sūtra rule

That is, if (see Fig. 2)

r = OT = OE −
(

OE

5

)
=

(
4

5

)
OE (20)

then (approximately)
πr2 = area of the square = a2 (21)

where a is the actual side of the square. Now the actual value of OE is a√
2
, so that

the above rule (20) gives

r = 4a

5
√
2
. (22)

Hence, by (21) we get the approximation

π = a2

r2
=

(
5
√
2

4

)2

= 25

8
. (23)

However, if we use the approximation (18) of the previous verse with OE = d
2 , then

from (20) r = (
4
5

) · (
d
2

)
, and from (18) a = 7d

10 . Hence,

π = a2

r2
= 49

16
. (24)
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Another value is obtained if we use the approximation (19) in (22). Thus (22) will
be

r = 14a

25
(25)

yielding

π = a2

r2
= 625

196
(26)

which gives a value in excess, but better than (5).
Now we shall give a possible and simple derivation of the basic relation (20) for

the suggested method of circling the square. The traditional older method found in
all the four important Śulba-sūtras (Sect. 2) is represented by the relation (2)

r =
a

(
2 + √

2
)

6
.

Using the approximation (19) for
√
2, we get from (2)

r = 4a

7
= OT . (27)

But (Fig. 1) OE = OA = AC
2 = (

√
2a)
2 which, by using the same approximation (19),

becomes

OE = 5a

7
. (28)

Hence, by (27) and (28),

OT =
(
4

5

)
OE = OE −

(
OE

5

)

which is height diminished by its own fifth part, and is the required relation (20).
Moreover, the new rule is far better than the older traditional rule because the approx-
imation (23) is more accurate than (3).

The translation of theMSS 11.15 as given by Sen andBag19 is incomplete and does
not serve any purpose. Kulkarni has quoted the better translation of Van Gelder but
he takes PF (instead of OE) for the height (utsedha).20 After making some tedious
calculations (and an assumption for

√
17 ), he gets the approximation21

r = 11a

20
(29)

which yields

π = 400

121
= 3.3 nearly (30)



3 New Values of π 71

instead of our (23). Since this value is quite high, he thinks that the original reading
in the MSS text may be equivalent to

r = (utsedha) − (utsedha)

6

by which he finds r to be 55a
96 , and π as nearly 3.047.22

4 Table of Values of π

Sl.No. Value of π Reference/Remark

1 64
25 = 2.56 MSS 13.6 (cf. Serial No. 13)

2
( 192
111

)2 = 2.99 nearly Wrong calculation by Mazumdar and Kulkarni
(see Serial No. 4)

3 676
225 = 3.004 nearly MSS 11.13 misinterpreted by van Gelder (see

Serial No. 13)

4
( 144
83

)2 = 3.01 nearly Śivadāsa’s example (for Serial No. 2)

5 512
169 = 3.03 nearly Rule quoted by Mazumdar

6
( 96
55

)2 = 3.047 nearly Kulkarni’s guess for MSS 11.15

7 1296
425 = 3.049 nearly Exact calculation for Kulkarni’s guess (Serial

No. 6)

8 49
16 = 3.063 nearly MSS = 11.15 with MSS 11.14

9 18(3 − 2
√
2) = 3.094 nearly MSS 1.8 and MSS 11.10

10 25
8 = 3.125 Our interpretation of MSS 11.15

11 256
81 = 3.1605 nearly Rule quoted by Datta

12 625
196 = 3.18 nearly MSS 11.15 with MSS 11.14

13 16
5 = 3.2 = (π′) MSS 11.13; also our new interpretation of MSS

13.6

14 400
121 = 3.3 nearly Kulkarni’s interpretation and calculation forMSS

11.15

15 225
68 = 3.31 nearly Accurate calculation forKulkarni’s interpretation

of MSS 11.15 (Serial No. 14)

Details and exact location of references are given in the main body of the present
paper. It will be seen from the Table that the best value of π therein is 25

8 (Serial
No. 10). In France, this value was given by La Comme in 1836, and in England by
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James Smith in 1860 (see Mathematics Magazine, Vol. 23. pp. 226–227). It is an old
Babylonian value.
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The Laks. a Scale of the Vālmı̄ki
Rāmāyan. a and Rāmā’s Army

C. N. Srinivasiengar was perhaps the first historian of mathematics to give a modern
exposition of the Laks.a Scale as found in the Yuddhakān. d. a (the Sixth Book) of the
Vālmı̄ki Rāmāyan. a, the national epic of India. This is a numeration system in which
counting (here beyond Kot.i or crore) proceeds by the scale factor of one lakh or
105. He quoted 11 lines of the relevant Sanskrit text, but nowhere mentioned the
edition or even the recension of the Rāmāyan. a which he used as his source. This
created a difficulty for serious scholars especially in view of the fact that different
recensions and versions of the epic are available with quite different chapter and
verse numbering as well as with variant readings.

I have consulted four different editions published from Bombay, Lahore, Baroda
and Gorakhpur (see details in the Bibliography). It was found that the text quoted by
Srinivasiengar closely resembles that of the Bombay edition. Most probably it was
perhaps this very edition or version which was used by him. His indicated reference
vi, 28 also tallies.

However, on making a close comparison, it is found that the Bombay edition
contains 12 relevant lines instead of 11 quoted by him. The 11th line of the original
text is missing in his quoted set of verses, and this has made his exposition not
only imperfect but wrong towards the end. The Gorakhpur edition also confirms the
mistake of his omission. In this small article, attempt will bemade to present a correct
form of the Laks. a Scale.

There is one more important point which was noted. The Bombay text uses the
term Śaṅkha to denote the number 1012, while the other editions have the word
Śaṅku for the same purpose. This also indicates that Srinivasiengar perhaps used

Gan. ita Bhāratı̄, Vol. 12, Nos. 1–2 (1990), pp. 10–16. Also see Indian Journal History of Science,
43 (2008), pp. 79–82.
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the Bombay version. Of course, both the above terms (Śaṅkha and Śaṅku) were in
common use to denote 1012 during ancient and medieval India. For example, they
can be found in Sanskrit works on mathematics of various authors from Śrı̄dhara to
Bhāskara II and their commentaries [Gupta, 1983, 11–12].

Since Śaṅku is found used more frequently than Śaṅkha, we shall give the full
relevant text for the Rāmāyan. a Laks. a Scale from the Gorakhpur edition (Vol. II,
p. 1124). The 12 lines from the 28th Sarga of the Yuddhakān. d. a are as follows:

The language is simple and straightforward and may be translated verse by verse
thus:

A hundred of hundred-thousand is said to be Kot.i by the learned.
A hundred of thousand-kot.i is termed Śaṅku (33).
A hundred of thousand-śaṅku is known as Mahā-śaṅku.
A hundred of thousand-mahāśaṅku is called Vr. nda (34).
A hundred of thousand-vr. nda is known as Mahā-vr. nda.
A hundred of thousand-mahāvr. nda is called Padma (35).
A hundred of thousand-padma is known as Mahā-padma.
A hundred of thousand-mahāpadma is called Kharva (36)
A hundred of thousand-kharva is known as Mahā-kharva.
Thousand-mahākharva is termed Samudra.
A hundred of thousand-samudra is termed Ogha (37).
A hundred of thousand-ogha is heard to be Mahaugha.

Themeaning of these lines is given in the form of a table for better comprehension.
It may be noted that the continuity of the scale factor of one laks. a or lakh is

broken at one place in the above table. Perhaps this was done to attain the convenient
sexagesimal power at the end. Another point is that the word laks. a itself is not used
in describing the above Laks. a Scale Counting System from 107 to 1060.

From the way in which the above counting system is described, it is clear that
it is given as a traditional method of numeration of very large sets. It is used in the
Vālmı̄ki Rāmāyan. a for narrating the strength of Rāma’s army that reached Laṅkā
after crossing the newly constructed bridge across the ocean (the bridge is said to be
100 yojanas long and 10 yojanas wide). The exact strength of the army was told to
Rāvaṅa by one of his spies in the following words (Sarga 28, p. 1124)†:

†The Bombay edition is explicit .
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Table 1 India Laks. a scale

100 lakh = 1 kot.i = 107

1 lakh kot.i = 1 śaṅku = 1012

1 lakh śaṅku = 1 mahāśaṅku = 1017

1 lakh mahāśaṅku = 1 vr. nda = 1022

1 lakh vr. nda = 1 mahavr. nda = 1027

1 lakh mahāvr. nda = 1 padma = 1032

1 lakh padma = 1 mahāpadma = 1037

1 lakh mahāpadma = 1 kharva = 1042

1 lakh kharva = 1 mahākharva = 1047

1000 mahākharva = 1 samudra =1050

1 lakh samudra = 1 ogha = 1055

1 lakh ogha = 1 mahaugha = 1060

In this way (the strength of Rāma’s army is) a thousand Kot.i and a hundred Śaṅku; and a
thousandMahā-śaṅkuplus a hundredVr. nda (38); and a thousandMahā-Vr. ndaplus a hundred
Padma; and a thousand Mahā-padma plus a hundred Kharva (39); and same (hundred)
Samudra plus the same (number) of Mahaugha; and a Kot.i Mahaugha. It is like a sea.

That is, the strength of the army (see Table1)

= 1000 · 107 + 100 · 1012 + 1000 · 1017 + 100 · 1022 + 1000 · 1027
+ 100 · 1032 + 1000 · 1037 + 100 · 1042 + 100 · 1050
+ 100 · 1060 + 107 · 1060

So that the strength is given by

N = 1010 + 1014 + 1020 + 1024 + 1030 + 1034 + 1040 + 1044

+ 1052 + 1062 + 1067,

excluding the commander-in-chief (Sugrı̄va) and his (four) ministers.
It may be pointed out that the last line of the Sanskrit text admits other interpre-

tations also. The translation given here is somewhat supported by the commentaries
included in the Bombay edition (p. 230, under verse 41 there) and by the exposition
of Srinivasiengar. According to the translation in the Gorakhpur edition, we should
have 1069 instead of 1067 in the above representation of N. The last figure in N can
also be replaced by (1067 + 1057) according to another interpretation, and etc.
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Table 2 Older Laks. a scale

Denomination (number) Lahore ed. term Baroda edition (extra verses)

107 Kot.i Kot.i

1012 Śaṅku Śaṅku

1017 Vr. nda Mahāśaṅku

1022 Mahāvr. nda Vr. nda

1027 Padma Mahāvr. nda

1032 Mahāpadma Padma

1037 - - - Mahāpadma

1042 - - - Kharva

1047 - - - Samudra

1052 - - - Mahaugha

Anyway, the number N is really very very high. Its hugeness may be visualized
in an interesting manner as follows:

We know that the equatorial diameter of the Earth (on which we live) is about
7927miles. Hence by using the usual formula (S = 4πR2), the area of Earth’s surface
(both land and sea) can be easily found to be about 20 crore square miles. In square
feet this will be

= 20 × 107 × (1760 × 3)2

which can be seen to be less than 1016 square feet.
Thus, if we calculate the area of ground needed for the army even at the bare

rate of one square foot per warrior, an area equal to that of our Earth can hardly
accommodate 1016 warriors (without bothering whether they get land or water). In
this way, by looking at the various terms in N , we find that 1020 warriors will need
10000 Earths, 1024 warriors will need 10 crore Earths, and so on.

From this we get some idea of the hugeness of the monstrous number N . For
human beings it is not possible to imagine the strength of Rāma’s army. It all looks
to be a world of super-human beings or gods. What to say of the present Sri Lanka,
even our present globe of Earth was not sufficient to accommodate the army.

We get some less imaginative figures when we look into the critical editions of
Vālmı̄ki Rāmāyan. a which are based on older manuscripts. The Lahore edition deals
with the relevant matter in Sarga 4 of the Yuddhakān. d. a. Verses 51–53 (p. 23) give
a shorter list of names of terms which denote various denominations in the Laks. a
Scale. These are shown in Table2—column II.

The short list in column II ends with Mahāpadma (= 1032). It should be noted
that, since Mahāśaṅku is missing here, the denominational values of terms beyond
Śaṅku will be different here (for column II) than those in Table1.
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In terms of values in Table2 (column II), the strength of Rāma’s army is given in
the Lahore edition (verses 54–55a) to be as

1000 kot.i + 100 śaṅku + 1000 vr. nda + 100 mahāvr. nda

+1000 padma + 100 mahāpadma

= 1010 + 1014 + 1020 + 1024 + 1030 + 1034

which is exactly same as represented by first six terms in N (which, of course, is a
much bigger number).

Thus the basic definition of the Laks. a Scale and the similarity of the method of
describing Rāma’s army are both found here also. The only difference is that the
span of the table is short here, but the mathematical principle is essentially present. It
appears that the old list of denominational names of theLaks. aScalewas smoothed out
and extended toMahaugha subsequently, as happened in the case of theMedhātithi’s
List of Vedic decuple terms in Decimal Scale System [Gupta, 1983, pp. 9–10].

As far as the very critical and detailed Baroda edition of the Yuddhakān. d. a is
concerned, it is stated to be based on 34 manuscripts (instead of 10 in the Lahore
edition). The relevant subject is dealt here in Sarga 19 (pp. 118–124). But most of the
relevant verses are given in the footnotes, and not in the main body of the (accepted)
text.

The strength of Rāma’s army, as mentioned in the main text, verse 33 (p.123), is
given to be

1000 kot.i + 100 śaṅku = 1010 + 1014

The additional verses, which will make the army’s strength same as given in the
Lahore and Gorakhpur editions, are mentioned in foot-notes (p. 124). Moreover
even the number (1010 + 1014) is not small and, significantly, represents the first two
terms in N .

Then there are only ten lines (instead of 12) defining the Laks. a Scale which are
mentioned in the foot-notes. Thus Mahākharva and Ogha are missing (but these are
found separately given under material from other manuscripts). But the definition of
the scale factor (in the footnote verses) is uniformly followed from Kot.i (= 107) to
Mahaugha. The Laks. a Scale from these verses is shown in Table2 (column III).

It is interesting to note that this list ofLaks. aScale permits a different interpretation
of the 6 lines which we have given above from the Gorakhpur edition for the strength
of Rāma’s army. Of course, the same lines can also be found in the Baroda edition
in which one line is given in the main text (verse 33) and the other as extra lines in
foot-notes (p. 124). The crucial line is:

The new interpretation is based on taking the phrases ‘tenaiva’ and ‘tathaiva’ both
to mean ‘following the same pattern’ (as in the previous four lines). This pattern is
(as can be seen from those 4 lines)
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1000x + 100y ,

where x and y are various denominations of the concerned Laks. a Scale, taken in
pairs (that is, two at a time). By this rule, the strength of the army will be, using
column III of Table2, given by

N ′ = 1010 + 1014 + 1020 + 1024 + 1030 + 1034 + 1040

+ 1044 + 1050 + 1054 + 1059

Here the last term is from Kot.i-Mahaugha.
Whatever be different forms of Laks.a Scale, the most important point is that the

technical terms Kot.i and Śaṅku (of Śaṅkha) are found even in the oldest manuscripts
(see verse no. 4 in the relevant Sarga of all the four editions.) And since the scale
difference between these two is equal to

1012

107
= 105 = laks. a

it is clear that the basic idea of the Laks. a Scale is very old. Hence, as usually happens
in the historical growth of science, the idea was then developed in a fuller Laks. a
Scale for numeration of very very large numbers from 107 to 1060. The narration of
Rāma’s army also followed the same pattern as given in the older or original versions,
whatever be the other historical, mythological and related matters.

Lastly, the date of composition of the Vālmı̄ki Rāmāyan. a is a difficult and contro-
versial question (as usually happens with such works). Moreover, the date of Rāma
(or Rāma’s story), the date of Vālmı̄ki (or of his original composition), and the date
of the present form of the text of the epic are, historically speaking, all different
things. Various scholars have placed the work from 600 bc to 400 ad which has
been reasonably narrowed down to the period 200 bc–200 ad for the epic [Roy,
1963, p. 58]. Sengupta [1947, p. ix] considers the present text to be not earlier than
circa 450 ad.
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(pp. 1122–1124).
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The Chronic Problem of Ancient Indian
Chronology

1 Introduction

Chronology is the backbone of history, and its knowledge is essential for a historian
dealing with any period, culture area or subject. There cannot be a coherent history
without a chronological order. Proper historical writing is not possible unless there
is a sound chronology.

Unfortunately in case of India, the problem of chronology continues to be very
serious especially with regard to the prehistoric and ancient periods. The dates of
most of the important events and literary sources are full of serious controversies
and divergent opinions. What to say about the absolute chronology, even a relative
chronology is not free from challenges.

The situation has been creating hampering factors in dealing with Indian history
and historiography whether of arts or of sciences. In this paper, we shall briefly
highlight the facts and the situations, present problems and offer some preliminary
suggestions.

2 Arbitrary and Controversial Dates

Let us see the matter in some details. Firstly, fantastic chronological claims are
not lacking. The knowledge contained in the Sūrya-siddhānta is stated to be com-
municated some time before the end of the elapsed Kr. tayuga which occurred in
2163102 bc according to the work itself.1 V. R. Lele observes that the Indian people
“possessed upto-date knowledge of astronomy since 26000 years before Śaka or even
before that date” (about 25922 bc).2

Dinanatha Sastri Chulet has attempted to show in his Vedakāla Nirn. aya3 that
the Vedas are more than 18000 years old. A recent writer brings down the claim of
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antiquity of the Vedic literature to a moderate figure 8000 bc4 More moderate claims
for the antiquity of the Vedas upto 4000 bc or earlier are met quite frequently. It
seems that there is a sort of race for assigning earlier dates on any whimsical ground.

In this connection, it must be noted that the date of a book may be much later than
the date of an event which it records. Clarifying this point, P. C. Sengupta writes5:

.... the antiquity of the Vedic culture is one thing while the date of the present R. gveda (the
oldest of the four Vedas) is another, the date of the (Mahā) Bhārata Battle is one thing while
the date of the modern Mahābhārata (about 400 bc to 300 bc, according to him) is another,
the date of Rāma or the Rāma story is one thing while the date of the modern (Vālmı̄ki)
Rāmāyan. a (about ad 450 or later, according to him) is another.

Unless the above distinction is kept in mind, correct historical chronology cannot be
visualized.

Another chronological difficulty is created by the fact that Hindus generally
attribute a divine origin to all sciences. This practice automatically attaches a hoary
past to the related works. Thus, the exposition of Chap. 54 (on astronomy and math-
ematics) of the Nārada-purān. a commences with the line6:

(Sanandana says) I shall now set out the Jyotis. a part which enunciated in antiquity by (god)
Brahmā.

The Garud. a-purān. a (59.1) similarly states that the Jyotis. a science of 4 lakhs stanzas
was communicated to god Rudra by god Keśava.7 The extant Sūrya-siddhānta is
said to be based in the astronomy taught by the Sun (god) himself to Maya (demon)
more than 20 lakhs years ago.8 In fact, the astronomical works of all the eighteen
classical expounders of Jyotis. a-śāstra are considered to be apaurus. eya (non-human)
writings, being attributed to ancient sages. Even the historical work Āryabhat. ı̄ya of
Āryabhat.a I (born ad 476) is stated to be “the same as the ancient Svāyambhuva (that
is, which was revealed to Brahmā)” according to the last verse of the work itself.9

These divine or superhuman attributions seem to be deliberately made in order to
claim great antiquity and unquestionable authority for the works. Whatever be that,
this practice does a great harm and injustice not only to history and historiography,
but also to the authors themselves (who are deprived of the credit for their contribu-
tions). By it, we are unable to know the real science-authors who are supposed to be
human beings. Anyway, if such is the state of affairs, how can we have a historical
chronology?

3 Special Examples for Scientific Works

The Śulba-sūtras are a class of ancient Sanskrit works whose importance for history
of mathematics is enormous. They are considered to be part of the Vedic literature
(via the six Vedāṅgas). Ever since Datta10 carried out his detailed study of these
works, Indian historians of mathematics have been following him in assigning the

http://dx.doi.org/10.1007/978-981-13-1229-8_54
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time 800 bc to 500 bc to them (especially the four major Śulba-sūtras, namely
Baudhāyana, Āpastamba, Kātyāyana and Mānava). However, some Western schol-
ars, like A. B. Keith,11 have placed them in the period 500 to 200 bc; S. Prakash12

suggested, perhaps by combining the above two, the span 800 to 200 bc, while P. V.
Kane13 dated them between 800 and 400 bc After some consideration, Ramgopal14

came to the conclusion that the first dates (800 to 500 bc) were alright.
On the other hand, one Indian scholar15 pushed back the date of the Śulba period

from 1200 to 800 bc And although scholars seem to be unanimous in considering
Baudhāyana Śulba-sūtra to be the oldest such work, the problem is whether it should
be assigned 500 bc, 800 bc, 1000 bc or even 1200 bc A variation of more than 500
years in the date of the same important work is bound to create serious difficulty in
the history of not only Indian but of the world mathematics, keeping in view, e.g. the
date of Thales (about 600 bc), the father of Greek mathematics.

A more interesting case is that of the Vedāṅga-jyotis. a (=VJ). Three versions of VJ
are well-known, namely R. g-, Yajur- and Atharva- (the last is, admittedly, of a later
date). R. g and Yajur versions are similar and both are ancient. But even for these two,
about a score of dates have been suggested which are so divergent as spread over a
range of some 30000 years. Some selected assigned dates are as follows:

1. V. R. Lele says that the VJ was probably composed 28000 years ago.16

2. According to Sengupta,17 the year 1429 bc is the true date of a VJ tradition.
3. H. T. Colebrooke got the date 1410 bc18

4. T. S. Kuppanna Sastry gives two dates namely 1370 bc or 1150 bc19

5. Gorakh Prasad favours 1200 bc20

6. A. N. Singh gives 1000 bc21

7. Ramatosh Sarkar’s date for VJ is about 600 bc22

8. D. Pingree puts the R. g Recension in 400 bc but the Yajur Recension in 400 ad23

9. Bag says that “the modern scholars are more or less unanimous” in fixing the
date of VJ in 200 bc24

10. A. Weber even suspects VJ to have been written in the fifth century ad25

The awkward part about these and many other divergent dates is that they often
appear side by side in the same collected work. The situation leaves the readers in
a confusing condition, and scholars have been expressing disgust about the matter.
Some instances of this may be cited. As early as in 1951, Jospeh Needham, while
reviewing the papers of the Symposium on history of Science and Technology in
India and S. E. Asia, pointed out the divergence if the “quite unacceptably early”
dating of the VJ at 1400 bc (by K. S. Shukla) from the dates 600 bc to 200 bc
given by A. S. Altekar and R. C. Majumdar.26 Some four decades later, N. Sivin
reviewed27 the papers of another conference (IAU Colloquium 91 on History of
Oriental Astronomy). He also emphasized the serious disagreement of dates about
landmarks by citing that S. K. Chatterjee dates VJ around 1300 bc but just 20 pages
later S. N. Sen says that it was prepared around 400 bc

Thus, we do not seem to bother about any chronological agreement, coherency or
even about the working dates recommended by a committee (see Sect. 5), and assign
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any date which we feel convenient or suitable. Obviously no historical purpose is
served by such attitudes and practices. Sooner or later the situation has to be changed
or improved, otherwisewewill be simplywasting time, energy and resourceswithout
any progress or significant achievement in this connection.

4 Some Related Matters

As is known to scholars, some works are of composite nature. Such a work is not
composition of a single author. Its different portions are pieces from the writings of
different times, and of different authorswhose identities are not disclosed.Great epics
like Vālmı̄ki Rāmāyan. a and Mahābhārata and most of the (Mahā)-purān. as (in their
present forms) easily come under the category of composite works. For example, this
is very true for the Nārada-purān. a which was made a compendium of knowledge of
different branches of Sanskrit literature by extracting portions and pieces from the
classics on the subject. A large number of verses in this Purān. a have been drawn
from the Sūrya-siddhānta and the famous Lı̄lāvatı̄ (twelfth century ad).28

The extant Sūrya-siddhānta, the most popular work of Hindu astronomy, is an
example of a scientific work of this nature. The original work, as Shukla clearly
points out,29 has been subjected to correction, emendation and modification, etc.,
from time to time, and the present Sūrya-siddhānta is the latest redaction or version
of that work. In such a case, a more relevant chronological question is to ask as
to which specific portions are assigned which dates, to find the date of the latest
version, and broadly indicate the two limits of the time between which the whole
can be placed.

What to say of sources of the different portions of a composite work, it is not
often easy to sort out the portions and date them. Critical editions of such works are
frequently useful in sorting out later additions from the earlier portions and assign
some chronology to them, but there are limitations. Whatever be that date of a piece
in a composite work cannot be taken to be the date of the whole work as such. Of
course, the dating of works of known joint authorship is a different matter and may
not present serious chronological problem. The Kriyākramakarı̄ commentary30 on
the Lı̄lāvatı̄ was composed partly by Śaṅkara Vāriyar, and, after his death, the rest
by Mahis.amaṅgala Nārāyan. a (about ad 1560).

It frequently happened, especially with religious works, that the subsequently
written items were attributed to older names to get a stamp of authority. For example,
many of the Purān. as are attributed to Vyāsa. The interpretation or explanation that
Vyāsa is not the name of a person but only a general title or designation does not
solve the problem of authorship or of chronology. Then, there have been practices
of adding appendices to existing texts and the tradition of formulating subsidiary
apocryphal texts. The Pariśis. t.as (Appendices) of the Atharva-veda are well-known.
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Often the copyist of the manuscripts adds material at different places of the work,
and we would be lucky if he himself mentions this. A good example is that of the
copyist Govinda (son of Bhat.t.a Vāhnika) who added four chapters by way of sup-
plementing the material of the Tripraśnādhikāra part of the Vat.eśvara-siddhānta.31

For ancient chronological matters, there is also the so-called Astronomical Meth-
ods of dating, that is, finding the date on the basis of the astronomical data or evidence
found in literary and other works. But here also, due to different possible interpre-
tations, we often do not get unique dates. In some cases, it has been shown that the
data is not enough to determine a definite date.32

Moreover, the Astronomical Method is based on the fallacious assumption that
the data recorded was found by the actual observations (which could not be very
accurate due to limitations of the instruments, needs of those time, and etc.), and that
the observed data was recorded as such without rounding-off.

Let us take an example. The value of the obliquity of the ecliptic, ε, as mentioned
in almost all Hindu astronomical works (including Sūrya-siddhānta) is 24◦.We know
that the obliquity has been decreasing at the rate of about 47 seconds per century. A
simple formula for finding its value in the year t ad is33

ε = 23◦27′8′′.26 − 0′′.4684 (t − 1900)

By using this, it can be found that ε was 24◦ when t = −2309, that is, in 2310 bc
Thus, it may be claimed that the Sūrya-siddhānta was composed near this date. In
fact, this is how Samuel Davis argued as early as in 1789 although his date was
slightly different.34 Such conclusions were alright if 24◦ was the exactly recorded
value of the actually (and accurately) made observations for which there is no definite
evidence. Moreover, 24◦ is the value of obliquity used by the Hindus for about 2000
years (if it had been found by observations from time to time, the situation would
have been different).

5 Chronology Committee

Serious-minded historians have always been worried about the chronic problem of
Indian chronology, more so about the very divergent views held by various scholars.
The difficulty was also realized as early as 1950 when the first significant symposium
on History of Sciences in South Asia was organized at Delhi by INSA (which was
then called NISI). At the very outset of the Symposium, a Chronology Committee
was appointed under the Chairmanship of the noted historian R. C. Majumdar.35 It
met on November 5, 1950 and, after lengthy discussions, recommended the follow-
ing chronological tables as a working hypothesis.36
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Age of the R. gveda 2000 bc–1500 bc
Age of Sam. hitās and Brāhman. as 1500 bc–800 bc
Age of Old Upanis. ads 900 bc–500 bc
Vedāṅga-jyotis. a (Present text) 500 bc
Śulba-sūtras 500 bc and later
Dharmasūtras 600 bc–200 bc
Mahābhārata; also Manusmr. ti and Rāmāyan. a 200 bc–200 ad

It should be noted that this table is said to have been adopted by the General
Meeting of the Symposium on November 7, 1950. Although about 30 leading histo-
rians and scientists of India participated in the Symposium, the suggested dates seem
to have no significant effect on subsequent writings on history of science in India.
In fact, most of the present Indian historians of science seem to be unaware of the
Committee and its recommendations.

Seeing the continuation of confusions and controversies in ancient Indian chronol-
ogy, the need is even more now for following some norms. One way to meet the
demand is that bodies like the Indian Council for Historical Research and INSA’s
National Commission on History of Science should jointly appoint a permanent
Chronology Committee which should play the leading role in the matter. It should
examine the problem in detail and suggest a revised and longer unambiguous work-
ing table which the scholars should follow. Wide and continuous publicity should
be given. Appropriate revisions and changes may be made from time to time. Those
who differ from the suggested dates should clarify the reasons (which should not be
whimsical) thereof as an accepted norm.

One of the serious charges against many of the Indian writers is that of claiming
fantastic early chronology especially when it is on arbitrary grounds. No such com-
plaint can be there if some suggested working chronology is followed. There is also
no need or use of making false claim of antiquity by putting an older stamp (such as
prefixing the word ‘Vedic’ to a later composition). The currently popular book Vedic
Mathematics by Tirthaji (1884–1960) is a recent example of such work. A forced
chronology or exaggerated claim will not stand the test of time.

Of course, some controversies about dates of a few specific authors or works may
remain as isolated problems even in later periods. Instances of such cases include the
date of the Bakhshālı̄ Manuscript (fourth to seventh century ad), date of Śrı̄dhara
(seventh to nineth century), and data of Āryabhata II’s Mahāsiddhānta.37 It is hoped
that these minor chronological problems will be settled soon, just as the accepted
date (beyond any doubt) of Bhāskara I’s commentary on the Āryabhat. ı̄ya is now
settled as ad 629 (instead of ad 522 as believed half a century ago).

Finally before closing this discussion, a few general points may be given for
consideration:

1. An earlier chronology does not necessarily or automatically imply a borrowing
by later writers or civilizations.

2. While using doubtful chronological limits, it is better to be critical and take the
safer dates especially when serious or significant conclusions are drawn.
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3. If possible, support, corroboration or even confirmation may be sought from
archaeological, epigraphical and similar other historical sources. Note that con-
sistency is a sound criterion and a great merit.

4. It will be safe (and therefore better) if emphasis is not given on apaurus. eya works
especially for making historical chronology and conclusions.

5. Current research and publications (giving latest findings) should be consulted
as ‘ignorance is no bliss’. If possible, examine the things critically instead of
accepting them blindly.

If attention is paid to what has been discussed in this paper, then scholars will not
be groping in darkness about chronology. Otherwise, more and more controversies
will go on creating more and more problems and confusions (perhaps with little hope
of synthesis); and we would be doing research which is one sided or is a world of
our own (perhaps like that of frogs in a well). A good example about such further
confusions has just come in the knowledge of the present author at the time of closing
this article. It is this:

While C. S. Upasak saw the evolution of the Brahmi script to go back to 1000 bc only, S. C.
Kak is of the view that it evolved probably out of the Harappan script “perhaps in the first
half of the second millennium bc” (say about 1500 bc).38 On the other hand, but just at the
same time, L. C. Jain,39 while mentioning the ‘fierce controversy’ about origin of Brāhmi
script, still banks and builds his research on the following two ‘inescapable conclusions’–

(i) Brahmi script was invented in the third century bc.

(ii) Indians (except the people of N. W.) did not have any written letters, whatever, before,
that time,40 that is before the time of Aśoka.
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A Problem on Interest
in the Nārada-purān. a

The Sanskrit text of the Nārada-purān. a (abbreviated NP hereafter) was, perhaps
first, published by the Venkateshwara Press, Bombay in Śaka 1845 (or ad 1923).
Chapter54 of the Pūrvabhāga of NP is devoted to mathematics and astronomy
(gan. ita-jyotis. a). The next two chapters are on astrology (phalita-jyotis. a). A some-
what emended text of this chapter with Hindi translation was published in 1954
by the Gita Press, Gorakhpur as part of their Sam. ks. ipta Nārada-Vis. n. u-purān. āṅka
which was the special issue of Kalyān. a for its 28th year. In fixing the reading of the
Chap.54 in this edition, the editor and translator Pt. Rāmanārāyan. adatta was assisted
by the famous Sı̄tārāma Jhā of Kashi and others. Almost the same text of the chapter
was included by Pt. Śrı̄rāma Śarmā in his edition and Hindi translation of the NP
(Sam. skr.ti Sam. sthāna, Bareilly, 1971).

Based on the Bombay text-edition, Chap.54 of the NP Pūrvabhāga was trans-
lated into English by K. V. Sarma (wrongly spelt as Sharma) and M. R. Bhatt. The
translation appeared in 1981 in theNP (translated by G. V. Tagare), Part II which was
published as Ancient Indian Tradition and Mythology, Volume 16 (Delhi, 1981). On
the other hand, the NP Sanskrit text of the Bombay edition has been brought out by
Nag Publishers, Delhi, 1984.

Very recently, Takao Hayashi has published a paper entitled “The Mathematical
Section of theNārada-purān. a” in the Indo-Iranian Journal, Vol. 36 (1993), pp. 1–28.
This is a detailed study of the text and contents of Chap.54 (mentioned above), verses
1 to 60, and contains an emended text of these verses. The first eleven and a half
verses give general introduction and the remaining deal with mathematics (except
the 60th which contains concluding remarks).

Most of these ‘mathematical’ verses and the rules contained therein resemble
those found in the famous Lı̄lāvatı̄ (the most popular work on Hindu mathematics)

Gan. ita Bhāratı̄, Vol. 15, Nos. 1–4 (1993), pp. 67–69.
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of the renowned Bhāskarācārya or Bhāskara II (born ad 1114) whose 800th Death
Anniversary is being observed this year (1993). Thus it is clear that the mathematical
portion of the NP was incorporated in it after ad 1150 (which is the date of composi-
tion of the Lı̄lāvatı̄), as other possibilities being very meagre. In fact the said portion
may be much later than twelfth century. To H. H. Wilson, the extant NP appeared
to be a compilation of the sixteenth or seventeenth century (see Gorakhpur edition
mentioned above, p. 12). It is also to be noted that the astronomical portion of the
NP (Chap. 54) resembles the modern Sūrya-siddhānta especially in Raṅganātha’s
version of the early seventeenth century.

In this note we are more concerned about a couplet or rule which has not been
fully understood by scholars. The Sanskrit text reads (Hayashi, p. 16):

(NP, Pūrvabhāga, Chap. 54, verses 40–41)

Hayashi admits that “the mathematical purport of this rule is not clear” to him
(p. 22). As such his tentative translation, although literal, does not explain the matter
clearly. As he indicates, the translation given by Sarma and Bhatt (Delhi translation
of NP, p. 696) is not satisfactory as it misses the words vivara and antara. On the
other hand the Gorakhpur and Bareilly editions do not contain these words at all!

Actually, I think that the rule contained in the above lines is related to a problem
on simple interest. Two unequal principal amounts (rāśis) P1 and P2 (P1 > P2) are
loaned or invested simultaneously at the interest-rates r1 and r2 per cent per month,
respectively, so that the monthly interest (māsaphala) on P1 will be

P1r1
100

= i1 say,

and on P2 will be
P2r2
100

= i2 say.

If i2 > i1, then therewill be a period of time (= mmonths say)when the total amounts
(capital+interest) will become equal, that is

P1 + mi1 = P2 + mi2. (1)

I believe that the above Sanskrit lines simply given a rule to findm in this problem.
My translation will be:

If (ced) the monthly interest (i2) on the smaller amount (P2) is more than the (monthly)
interest (i1) on the greater amount (P1) then the difference of the amounts divided by the
difference of monthly interests gives the caya (number of months) (when the total amounts
become equal).

http://dx.doi.org/10.1007/978-981-13-1229-8_54
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That is

m = (P1 − P2)

(i2 − i1)
(2)

which is the correct solution of (1).

Example: An amount of Rs. 700/- was lent at the rate of 3% per month and, at the
same time, another of Rs. 500/- was lent at the rate of 5% per month. After how
many months will the amounts become equal sums (that is, the principal amount
plus interest in each case)?

Here

P1 = 700, i1 = 700× 3

100
= 21,

P2 = 500, i2 = 500× 5

100
= 25.

Hence

m = (700− 500)

(25− 21)
, by (2)

= 200

4
= 50 months.

Thus the māsacaya, the ‘collection’ or ‘heap’ or the number of required months
is 50 (after which each amount will be 1750/-).

In the Sanskrit rule, māsacaya is indicated by ‘caya’ only just as i1 is indicated by
‘phala’ instead of māsaphala (as is the case with i2). Anyway, the keyword to under-
stand the rule is the word ‘māsaphala’ (‘monthly fruit’) used, quite appropriately,
for ‘monthly interest’.

Thus, whatever be the source for the Sanskrit lines, or whosoever be the author or
compiler of the rule, it represents a simple interest-problem belonging to the category
of equalization problems which were very popular and common in ancient Indian
mathematics, e.g. see R. C. Gupta, “Some Equalization Problems from the Bakhśālı̄
Manuscript”, IJHS, 21 (1986), 51–61.



Who Invented the Zero?

1 Introduction

Obviously the answer depends on the meaning of ‘zero’. That is whether we mean
the word zero or some concept of zero, the number zero or some symbol for zero, the
mathematical zero or some philosophical zeroism. As a word for literal description,
zero means a person or thing with no importance or independent existence. Ideas
of neutrality, non-entity, and total absence may be indicated by zero. Nadir may be
called as zero. (avidyam. jı̄vanam. śūnyam) ‘Without learning the
life is void (or zero)’ is an ancient Indian saying.

Technicalmeanings of zero are there. Zero hour is the scheduled time for a specific
action or operation. Zero day, zero date, and zero year (i.e. the starting point of an
era). Zero error is frequently applied to scientific instruments.

Discussion in this paper will be often viewed according to the following four
broad (but not exclusive) categories.

(I) Since ancient times the ideas of emptiness or nothingness are represented by
zero. This notionmay not imply any numerical concept. Itmay indicate absence
of a thing or vacantness of some kind. The emptiness of unfilled square cells
(to be filled by letters or numbers) in a puzzle comes under this category as also
the vacant entries in qualitative or quantitative tables. Such blank space may
be indicated by a sign such as a cross, star, or a small circle (not necessarily
zero number)1 which will show that there is ‘nothing’ or ‘zero’ there. Empty
space between other symbols may be denoted by a separationmark.When total
receipts and total payments are found to be equal, the balance will be ‘nothing’
(or zero) which may be denoted by a sign. But actual subtraction of numbers
or the concept of zero as a number may not be involved.

(II) In this category, we put such ideas and concepts which are found, e.g. in the
practice of using zero as an indicator of the point of reckoning, measuring, or
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graduation, etc. It may be a mark for any datum level. For measuring distances
along any line or curve (e.g. a road) we may use and mark a reference point
and call it our zero. For the calibration of a scale we use a similar mark, e.g.
zero temperature. In spiritual matter there is an ascent of the soul (zero level)
to Brahma (infinite).
When such type of reckoning ormeasuring is combinedwith that in the possible
opposite sense or that which is extended in the opposite direction, the zero is
themeeting point (or bridge) between positive and negative quantities or levels.
For instance, the mean sea level is the zero between the heights (above) and
depths (below). Profits and lossesmay be plotted on the opposite sides of a zero.
For chronological reckoning of historical events there can be a zero between
bc and ad dates. The origin or the point (0,0,0) is the meeting point of positive
and negative parts of the axes.

(III) Grown from the idea of emptiness, this category deals with the concept of
zero as a symbol which denotes the absence of a denominational term in any
positional numerical notation. The sign or indicator for zero may be merely a
‘vacant space’ or itmay be some concrete symbol to avoid any visual confusion.
Our present decimal place-value system is a very clear and ideal example of a
positional numerical notation in which the oval symbol ‘0’ is used to denote the
zero. In this system any positive integer N (and zero itself) can be expressed
as

N = a0 + 10 · a1 + 100 · a2 + . . . . . . 10n · an

=
n∑

r=0

10r · ar where ar = 0 or 1, 2, . . . . . . 9.

In a fully developed place-value system, the zero must be able to play all the
following three roles successfully:

(i) medial or internal, which is the classical role of a blank space, e.g. as in
205 or 2005, etc.

(ii) final or terminal, which is a more stringent role, e.g. in 250 or 2500.
(iii) initial, which is rather a superfluous role ordinarily, e.g.

025 = 0025 = 25 in value.

For a perfect and ideal place-value system to base (radix, scale, period) b,
there must be only one set of (b − 1) nonzero independent numerical signs
which must be capable of being used in all positions or places (representing
various ranks or denominations or orders, or gradations) without any further
modification or additional aiding device. Same zero sign should play all the
above three roles. Earlier examples of place-value systems often lack these
ideal conditions.
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(IV) This category has concepts which treat zero as a number (going beyond the
role of blank space filler or a reference point). Here the zero can be subjected
(like other numbers) to mathematical operations (with some exceptions), and
it obeys certain laws. Ancient mystical doctrine looked at zero as a sort of
infinitely small quantity which does not affect another quantity (additively or
subtractively).2 So that this ‘little zero’ (ks. udra) may be defined by

N ± 0 = N (1)

When we subtract any (finite) numbers from itself, the result is zero number,
i.e.

n − n = 0 (2)

In this paper, we do not need arithmetic of zero in detail.

2 The Case of Ancient Egypt

The pictographic or hieroglyphic numerals of the Egyptians (about 3000 bc) formed
a perfect juxtapositional numerical notation in which the principles of repetition and
addition were used. The base was strictly ten; i.e., ten additive signs of any order
would be represented by a single sign of the next higher order. A set of n independent
signs would be able to represent all numbers less than 10n . The sign for unit was a
vertical stroke and that for ten looked like an inverted U. Thus 23 would appear as

| | | ∩ ∩ (read from right to left)

The concept or sign for zero was totally absent as there was no need. The circular
symbol “0” stood3 for the Egyptian Horus eye fraction 1

4 .
Although simple, the above system would need a large number of signs to repre-

sent big numbers. To overcome this burden or defect, the Egyptians* introduced the
principle of independent representation called encipherment or cipherization. This
they developed when their hieratic (“sacred”) script, a cursive form of hieroglyphs,
was evolved. In hieratic numerals, a set of nine symbols was used to denote the
numbers 1 to 9, but another (different) set for the sequence 10, 20, . . .90, yet another
for the numbers 100, 200, . . .900, and so on. Hieratic numbers are found used in the
Reisner Papyri (about 1880 bc), Mascow Papyrus (c. 1850 bc), Rhind Papyrus (c.
1650 bc) and other documents. Still the hieratic system of numerals was zero-less.

According to R. J. Gillings,4 while giving certain results in the Reisner Papyri,
“a blank space indicates zero.” For instance a result (to be expressed in terms of the
units: cubit, palm, and finger) may be 4c 2 f , leaving blank space for the absent or

*For contribution of Egypt, see B. Lumpkin, “Africa, Cradle of Mathematics”, Gan. ita Bhāratı̄ 19
(1997), pp. 1–10, especially 6–7.
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zero palm (i.e. o p). The concept of zero is also found in some other contexts among
the Egyptians. For instance, Dieter Arnold has shown that a zero symbol was used by
the Egyptians to label or mark the ground level reference line at the medium pyramid
belonging to the Old Kingdom.5

The symbol employed for zero (level) was the hieroglyph n f r . It is also claimed6

that this symbol was also “used to express zero remainders in a monthly account
sheet from the Middle Kingdom, dynasty XIII (c. 1770 bc)”. It is explained that
the account (in a double entry account sheet) was balanced. Income was added, and
then, disbursement was totalled. Finally, total disbursement was subtracted from total
income (for each column). Four columns had zero remainder which was shown by
the symbol n f r .

3 Zero in Ancient Babylonia

By convention, the word ‘Babylonia’ applies to the whole region of Mesopotamia
of ancient times with various civilizations. The antique Sumerian word geš for one
was also used for sixty.7 Similarly, the Sumerian sign for sixty was also same as that
for one but bigger in size, so that 60 was treated a ‘big 1’. This idea was perhaps
the first step towards a positional sexagesimal notation. Recent findings of proto-
cuneiform script from some tablets (c. 3000 bc) show the earliest development of
the sexagesimal place-value notation and the concept of zero.8 Clay tablets from the
Old Babylonian period (2000 to 1600 bc) show a wedge shaped sign (�) for one
and a hook or angle-bracket sign ( ) for ten. These two signs were used to form
numerals up to 59 by the usual additive principle with decimal base.

For higher numbers, the Babylonians made use of the positional notation to base
sixty. Thus in the clay tablet VAT 7858, the sequence 10, 20, 30, 40, 50 is continued
by their symbols which can be read as (in our symbols with commas).9

But the Old Babylonians did not use a concrete sign for zero. However, they often
left blank space when any medial denominational term was absent. Still this was a
serious defect because we cannot be sure whether one or more terms are missing in
the blank space left. Moreover, without a terminal zero sign the Babylonian system
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behaved as a “floating-point place-value system”. For instance, ancient contexts show
that while in one case, the triplet (commas put by us) 17, 46, 40 represents.10

17 × 602 + 46 × 60 + 40 = 64000,

and in another case, a triplet, namely 42, 25, 35, must be taken to represent11

42 + 25

60
+ 35

602
.

In the VAT 7537 tablet, there is an expression of zero for the result of the sub-
traction process when the subtrahend (quantity to be subtracted) was equal to the
minuend (or diminuend). However, it is said to indicate only the emptiness of the
result (due to balancing) or “nothingness” (category I).12

About 500 bc, we do come across a zero sign (which looks like the sign for ten).
This sign (say, Z) has been used in the text CBS 1535 in the following cases13

(24, 30)2 is given as 10, Z , 15

and (42, 30)2 as 30, Z , 6, 15.

A few centuries later, the Babylonians of the Seleucid period (312 to 64 bc)
introduced some signs for zero. One of them was a punctuation mark used as a
separation sign in literary or bilingual texts.14 One commonly used zero symbol in
this Neo-Babylonian period was the slanted double-wedge sign. Use of the angle-
bracket sign (with the lower arm somewhat extended) was another zero symbol. This
latter sign is comparable to that used in C BS 1535 (noted above).

Examples:

Z , Z , 30 for 0 + 0

60
+ 30

602

and 2, 11, 46, Z for 2 × 603 + 11 × 602 + 46 × 60 + 0

Thus, we find that Babylonians of about 300 bc were freely using a sexagesi-
mal place-value system with zero symbol in all the three roles. But the symbol was
not standardized. Moreover, the numbers 1 to 59 were not represented by indepen-
dent ciphers, but were additively composed from two signs on base ten (like the
Egyptians). It was thus a mixed system.

4 Zero in Greek Mathematics and Astronomy

Although the principle of cipherization, that is, of independent representation, had
been already applied by the Egyptians (2000 bc or earlier) in their hieratic numer-
als, it was limited to numbers upto thousands. About 700 bc, the Greek used the
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technique of encipherment systematically to cover numbers up to millions (and even
beyond) by utilizing their alphabet. To the 24 letters of their classical alphabet, the
Greeks added three archaic forms and cipherized the full set on decimal base. The
letters from alpha to theta denoted numbers 1 to 9 (with stigma = 6); iota to qoppa
denoted 10, 20, . . .90; and rho to sampi stood for 100, 200, . . .900, respectively.
Higher sequences of similar type were formed with modification marks. Often bars
were used to indicate numerical role of letters. For example, 202 would appear as
σβ (i.e. 200 + 2), and 2534 as, βφλδ (i.e. 2000 + 500 + 30 + 4), where we have
put a comma (instead of an accent) in the lower left corner of β to make it denote
2 × 1000 as per the scheme.

There was no need of zero in this system. Aristotle (c. 340 bc) rejects zero from
being included among numbers because it could not be used in forming ratios.15

Five centuries later the famous astronomer Claudius Ptolemy (c. 150 ad) used
the alphabetical notation (of decimal base) to express integers but followed the old
(Babylonian) scheme for writing the fractions. His Almagest contains a table of
chords in a circle of radius 60 units (or parts, p). His value of the (length of) chord
subtending angle 72◦ at the centre is16

o,λβ, γ

that is, 70p 32′, 3′′

or, 70 + 32

60
+ 3

602

Note that the Greek letter omicron “o” stands for 70. Another example is:

Crd 90◦ = πδ, να, i = 84p, 51′, 10′′.

The first and the last entries in the table are17

(3)

and
ρ ρ (4)

which mean

Crd

(
1

2

)◦
= O p, 31′, 25′′ and Crd 180◦ = 120p, O ′, O ′′,

respectively. Note that commas in all above values have been inserted by us for
convenience, and there are no usual bars over the alphabetic numerals in (3) and
(4) as they are already from a numerical table. In (3) and (4), the most important
thing is the use of a special zero symbol ( ) to indicate the empty space caused
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by the absence of either the whole part or a fractional part. Equally significant to
note is that the symbol is the decorated form of a sign (O) which is quite like ours.
According to Neugebauer,18 the same symbol is found in a papyrus belonging to the
second century ad. Other manuscripts also have the same or similar signs:†

It is clear that the new zero symbols are various embellishments of the basic
sign which is a small circle “O”. And, as pointed out by several scholars this O is
almost surely from the first letter (omicron) of the Greek word “Ouden” (oυ′δε′ν)
or “Oudemia” (oυ′δεμíα) which means “nothing” quite appropriately. But as an
alphabetic numeral O (omicron) denoted 70, it was embellished or decorated to give
a different look (and thereby avoid confusion) to serve a zero symbol. The crowning
of the small o (“micron o”) by a dumb-bell crown made it the crowned king (among
the numerical signs) which was to govern the world of numerals for ever. Later on the
embellishments were dropped and the bare o-like zero sign is found in manuscripts
belonging to the Byzantine period (ad 300–600).19

5 The Chinese Case

Since the Chinese language is written in ideograms (or ideographs), its first nine
numbers–words can also be treated as the basic nine number symbols or numerals
1 to 9 needed to form the base for the Chinese system of written numbers. The char-
acters for the numbers ten, hundred, thousand, and ten thousand were shi, bai, qian,
and wan, respectively. These characters (say S, B, Q, W in short) were also used to
indicate the corresponding ranks or denominations in the numerical description or
representation of numbers. For example, the numbers 14957 and 4085 would appear
as

1 W 4 Q 9 B 5 S 7 and 4 Q 8 S 5 respectively.

If some denominational term was absent (as in the 2nd example above), it was
omitted altogether, without leaving even a blank space to indicate the situation.
Anyway, the ancient Chinese written numerals (more than 2000years old) formed a
perfect example of a ranked or named system to base ten without any zero (which
was not needed).

For carrying out computations the ancient Chinese employed the so-called rod
numerals in which the principle of decimal positional notation was used. Two sets of
basic numerals 1 to 9 were defined so that the digits in the adjacent positions could
be differentiated. When a number had no digit of a particular rank or denomination,
the position corresponding to that rank was left vacant (this continued to ad 700).20

†For an example from aboutad 200, seeNeugebauer’s article inA Scientific Humanist,Philadelphia,
1988; pp. 301–304.
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For instance the number 33406 would appear as

| | | ≡ | | | | T (here T represents 6).

This practice of leaving the vacant space doubtlessly reflects the idea of zero as
indicator of emptiness or nothing (category I). But, as pointed out by Martzloff,21

the existence of blank spaces on the counting board is not itself a special property
of Chinese counting-rod system but rather of counting boards and abacuses (abaci)
in general. According to Lam and Ang,22 the vacant place of a rod numeral was
described by the Chinese character kong (“empty”), but no historical example has
been given to clarify or illustrate what exactly was the role played by it. That is,
it is not clear whether kong was really a technical term (for zero) which could be
repeated two (as kong kong) or more times for consecutive vacant places.

Moreover, it is mentioned by Martzloff23 that according to the old mathematical
manuscript Stein 930 from the Dunhuang caves (c. ad 900), “the presence of blank
spaces was not automatically preserved in the written versions of the rod numeral
system”.

After the spread of Buddhism in China in the early centuries of the present era,
there were lot of cultural contacts and exchanges between India and China. A large
number of Indian scholars visited China with lot of Indian works of which many
were translated into Chinese. These included Lalitavistara and Abhidharmakośa
which have, respectively, centesimal and decimal scales of counting to very high
orders. Indian systems of recording small and large numbers were adopted in China
and did affect Chinese mathematics.24 An Indian system of counting appeared in
China in the Ta Pao Chi Ching (“Mahāratnakūt.a-sūtra”) translated by Upaśūnya
(“small zero”) in ad 541, and Chinese children learnt mathematics from Buddhist
textbooks.25 The list given in the Sui Shu or Official History of the Sui Dynasty
(seventh century) mentions about half a dozen Chinese translations of Indian works
on mathematics and astronomy.26

More vigorous contacts and activities took place during the Thang dynasty (618–
907). Gotama Siddha (Levensita) prepared the famous translation Chiu Chih li or
Jiu zhi li (“Navagraha Karan. a”) from Sanskrit sources. Later on this was included
in the Khai-Yuan Chan Ching (c. 725). Through it the Indian methods of calculation
based on the decimal place-value system (with the zero symbol denoted by bindu
or thick dot) were introduced in China.27 For small number names xū (“void”) and
kong (“empty”), see Li and Du (ref. 24), p. 108.

Earlier, this zero symbol (bindu) has appeared in India as is clear from Subandhu’s
Vāsavadattā (sixth century), Bakhshālı̄ Manuscript (seventh century), and from
South-East Asian inscriptions under Indian influence, as well as from some other
sources.28 However, it is said that the mathematicians of China did not adopt the
above Indian zero symbol. The circular zero symbol (which was also used in India
and in S. E. Asian inscriptions) appeared in China very late (1247) but its source and
other details are not known.
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6 The Mayan Zero

Probably the ancient choice (although not the best) of base ten for countingwas based
on fingers. Similarly the choice of counting by 20 was perhaps based on fingers and
toes. The Maya of central America had practised a vigesimal system of counting,
more than 2000 years ago although they were not the first to do so. Earliest Maya
village has been dated at 1000 bc by archaeologists. They had uncompounded words
hun, kal, bak, pic, calab, kinchil, and alau for numbers 20n , n = 0, 1, 2, 3, 4, 5, 6,
respectively.

The Maya had a system of absolute chronology with zero date in 3114 bc29 Their
various units or periods of time were kin (= 1 day), uinal (= 20 kins) (month), tun (=
18 uinals), katun (= 20 tuns), baktun (= 20 katuns), then pictun, calabtun, kinchiltun
and alautun each 20 times the preceding.30

As an example, the date on Stela E at Quiringua represents31 9 baktuns, 17 katuns,
tuns, 0 uinals, 0 kins which gives 1418000days (Reckoned from the Mayan epoch
this is said to correspond to January 24, ad 771).

The usual Maya numerical notation for the numbers 1 to 19 uses two basic signs,
namely a thick bar (which has value five) and a thick dot (which has value one). Then
the usual ancient principles of repetition and addition are employed. For example 9
and 12 would appear as

respectively.
For numbers greater than 19 the principle of positional notation was used. It

is said that the invention of this notation in Mesoamerica32 may have been “the
work of earlier peoples other than the Maya, such as those in Oaxaca, Tabasco, and
Vera Cruz”. In fact the bar-and-dot numerals are already found in the Oaxaca Valley
inscriptions (c. 500bc).33 It is also shown that theAztecs (ofMexico) had a positional
numerical notation inwhich a corn glyphwas used for zero.34 The positional notation
is also found in several Mesoamerican monuments (of non-Maya origin) dated from
36 bc to ad 162; and significantly, the notation was pure positional (i.e. without
using signs for the ranks), but zero sign is not found.35

On dynastic monuments, the Maya used named positional system in which the
time counts were expressed by prefixing numerals to glyphs representing kin, uinal,
tun, katun and baktun.Theoldest datedMayamonument of this type althoughwithout
any zero glyph is Stela 29 at Tikal (ad 292), and second oldest is the Leiden Plaque
(ad 320).36 For use of zero glyphs, we should refer to Stela 18 and Stela 19 from
Uaxactun bearing date 8, 16, 0, 0, 0 (in ad. 357).37 Pure positional dates are also
mentioned.38

In its abstract from theMayan place-value system to base 20 (except in one place)
with zero is quite simple, elegant, clear and systematic (and perhaps also original).
The most common zero symbol employed is in the form of a shell design (ornate
shell) resembling half open eye. We shall extract examples from a very good Mayan
text calledDresden Codex (c.ad 1200), which is a copy or new recension of an earlier
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work (eighth century).39 It contains a table (see its p. 24) which gives multiples of
the synodic revolution of Venus (which was reckoned as 584days).

Example (i): In this 5 × 584 or 2920days appear as

That is, 8 × (18 × 20) + 2 × 20 + 0(= 2920)
Example (ii): Here 45 × 584 or 26280 (days) shown as

That is, 3 × (20 × 18 × 20) + 13 × 360 + 0 × 20 + 0
Example (iii): Interestingly 25 × 584 or 14600 appears as

That is, 2 × 7200 + 0 × 360 + 10 × 20 + 0.
An important thing to note is that the medial (or internal) zero is depicted by

a special symbol (different from terminal zeros). This practice is found in other
cases also.40 In fact, a number of forms (glyphs) or variations for zero are used with
decorations, and Guitel suggested that Maya use of zero was dictated by practical,
religious, and aesthetic reasons.41

Another numerical notation used byMaya was the system of head-variant numer-
als (with zero) in which portrait heads represented numbers.42

7 Claims for Indian Zero

The Indian decimal place-value notation (with zero) is now used all over the world
but Boyer regards statements like “In the whole history of mathematics there has
been no more revolutionary step than the one which the Hindus made when they
invented the sign 0” as incorrect in historical details.43 Here we present material
with fresh findings for critical examination of opinions and difficulties thereto.

Onedifficulty is that the script used during the remarkable IndusValley civilization
(3rd millennium bc) has not been deciphered successfully. The system of Indus
weights (as examined by A. S. Hemmy) was binary in the case of smaller ones and
then decimal for the higher.44 The Indus “decimal ruler” has remarkably marked
accurate divisions of which only nine remain. The zero of the scale is indicated by
a small circle, and a thick dot on the 6th line marks the next (quinary) division.45

Some 3000years later these two signs (small ◦ and •) were used as zero symbols by
the Indians!
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The Indus people (like the Egyptians) used vertical strokes (each of value one) to
represent small numbers. But (unlike the Egyptians) groups of 10, 12, and 13 strokes
are reportedly used.46 This violates numeration to base ten.Moreover quite divergent
views exist regarding other supposed numerical signs. For instance, the sign “U” is
interpreted as

(i) letter u ( ) by F. Singh,
(ii) sacrificial pot by A. Parpola,
(iii) number 100 by J. E. Mitchiner,
(iv) number 20 by B. V. Subbarayappa, and
(v) number 10 by S. C. Kak.47

By correlating the round zero symbol to the loop of the fish sign (∝) of Brāhmı̄
and Indus script, Kak pushes the ancestry of the (present) zero sign to the third
millennium bc However, no zero is claimed for Indus numerals themselves.48

A more serious difficulty is about the ancient Indian chronology. The Chronology
Committee of 1950 (under Chairmanship of R. C. Majumdar) suggested following
dates:

Age of the R. gveda −− 2000 − −1500 bc

Other Sam. hitās and Brāhman. as −− 1500 − −800 bc

Old Upanis. ads −− 900 − −500 bc, etc.

But claims ofVedas andvedic times beingmanymillennia earlier are not lacking.49

Specific names of decuple terms found in theVedaswere used later on as designations
of various notational places when the decimal positional system was evolved. The
most popular wasMedhātithi’s list of 13 terms, the last three beingmadhya (= 1010),
anta, and parārdha (= 1012). Later on this was extended to include 7 more terms
namely,50 us. as (= 1013) vyus. t.i, udeśyat, udyat, udita, suvarga, and loka (= 1019).
But Mukherjee interprets these terms philosophically to contain idea of zero.51 He
further writes, like some other scholars, the Vedic number words in the form of
modern numerals (with zeros) to advance claim of Vedic knowledge of place-value
system with zero.

By giving a very peculiar interpretation of R. gveda Hymn (IV 58, 2–3)
E. C. McClain in his The Myth of Invariance (Boulder, 1978) has claimed that “Indi-
ans must have known a positional number system” at that time.52 T.M. P.Mahadevan
(1969) and K. S. Shukla (1989) see the word ks. udra in Atharvaveda, XIX, 22–23, to
refer to zero (along with anr. ca as negative number).53 Ks. udra means very small or
tiny and led Tirthaji to take the letter ks. a ( ) as denoting zero in his famous “Vedic
Mathematics” system. Of course we know that many words, such as kham, vyoma,
pūrn. a, found in the Vedas, were used later on as word–numerals for zero.

The use of the thick dot sign for zero is claimed to be found in the text of the
so-calledKashmirianAtharva-veda and in themarginal notes therein.54 Surprisingly,
the number one is represented by a square (in diamond form), and small circles in
pair have been used to denote blank space. Although critical investigation of these
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unusual features of a peculiar work (or manuscript) is needed, the reviewer55 has
already refuted Mukherjee’s claim of Indian invention of full place-value system in
3000 bc

Scholars (including Needham) have often talked about the contribution of philo-
sophical and mystic ideas in the evolution of the concept and symbol for zero. Vedic
philosophy of void andmāyā, Buddhist theory of śūnyavāda (zeroism) as propounded
by Nāgasena (first century bc) and Nāgārjuna (c. 200 ad) and the idea of abhāva
(“absence”) of Indian Nyāya system, etc., are all quoted for the genesis of zero.56

But no definite and convincing linkage or links are available.
On the other hand the Sanskrit grammatic system of Pān. ini (c. 500 bc) has been

claimed recently to contribute to the concept of zero in mathematical sense (i.e.
involving positional analysis, operation of subtraction, process for going from max-
imum to minimum)57 It is even said58 that “he was the first man to use mathematical
concept of ‘zero’ before mathematicians accepted it”. His conception is presented in
three forms, namely the linguistic zero, the it ( ) zero, and the anuvr. tti-zero, but his
idea of ‘absence’ (lopa, etc.) cannot be truly compared with a zero in a place-value
system.59

According to Sadguru-śis.ya, the prosodist Piṅgala was a younger brother of
Pān. ini, but usually Piṅgala is taken to flourish about 200 bc For computing 2n ,
he gave a set of four sūtras one of which reads (VIII, 29 in his Chandah. -śāstra):

or “(Place) a zero (“śūnya”) when unity is subtracted (from index or power)”.
So it is believed that India possessed a zero symbol at that time60 (but śūnya may

mean blank space.).
The word ‘thibuga’ used by Bhadrabāhu (c. 300 bc) has been found in a quoted

gāthā and interpreted by Hemacandra to mean bindu. Some scholars try to see ‘zero’
of place-value notation in this.61 The Jaina canonical work Anuyogadvāra-sūtra (c.
100 bc) is said to provide the “earliest literary evidence” of the use of the word
“notational place” (see sūtra 142).62 Now credit for inventing the place-value system
(with zero) is also being given of Kundakunda (between 100 bc and 100 ad) who
may be the possible author of relevant works (Parikarma and Sam. ta-kamma-pam. jiya
which are relevant.63

That the decimal place-value system was in use then in India is clear from ref-
erence to it by Vasumitra (first century ad) to illustrate that ‘things are spoken in
accordance with their states’. He says64 “When the clay counting-piece is placed in
the place of Units, it is denominated ‘one’, when placed in the place of Hundreds, it
is denominated ‘hundred’, and in place of Thousands it is denominated a ‘thousand’.
Vasumitra was a Buddhist. Similar counting process is mentioned in ancient Jaina
works.65 In such positional process, the circular symbol (representing empty pit)
would automatically denote zero. The use of zero symbol to fill the blank space66 is
also found in Mahābandha (c. ad 100).

There are direct and indirect evidences to show that the decimal place-value system
was prevalent in India during the early centuries of present era. It is implied in the
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system of word–numerals67 whose origin cannot be exactly dated. An early example
is provided by the chronogram vis. n. ugraha which David Pingree68 has interpreted
as śaka 71 or ad 149 (it can also mean śaka 91 or ad 169). Equally popular
was the system of letter–numerals called Kat.apayādi Nyāya which fully recognizes
and employs the decimal place-value system with zero. Its promulgation is often
attributed to Vararuci (c. ad 300).

The Bakhshālı̄ Manuscript (a mathematical work) surely and explicitly uses the
decimal place-value system with a zero symbol (dot or circle),69 but its date is uncer-
tain (being given from ad 200 to 1200). Same difficulty of definite dates is there in
the case of a large number of apaurus. eya works (i.e. those which are attributed to
gods and sages) including the often cited Puliśa-siddhānta which is available not in
the original but in later versions.

A very good confirmation of the popularity of the decimal place-value system
comes from the following line in the Vyāsabhās. ya (before ad 400)70: yathā ekā
rekhā śatasthāne śatam. , daśasthāne daśa, ekañcaikasthāne, i.e. “as the same one
stroke (or numeral 1) denotes 100 in the hundreds place, 10 in tens place and one
in units place”. It seems that the use of the system had penetrated different literary
circles. But due to peculiar Indian social set-up, the artisans (including engravers) got
its knowledge only slowly.71 If D. C. Sircar’s guess is correct, the earliest epigraphic
use of the zero symbol (small o) is in the Mankuwar stone inscription of Gupta year
109 or ad 428 (but still category I and not III).72 Rules in the Āryabhat. ı̄ya (ad 499)
are based on place-value system with zero. Subsequent evidences are too many to
be documented here (see references under note 28 below).
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World’s Longest Lists of Decuple Terms

1 Lists from Vedic Literature

Perhaps the practice of using fingers for counting was responsible for the choice
of ten as a base for numeration. In India, ten has been the basis for counting since
the very early days. Specific names are found in the Vedic literature for numbers
which are equal in value to 10n, where n = 0, 1, 2, 3, . . . A typical and definite list
of 13 decuple terms occurs in the Vājasaneyı̄-sam. hitā, XVII, 2 of the Śukla (White)
Yajurveda and is as follows.1

eka, daśa, śata, sahasra, ayuta, niyuta, prayuta (= 106), arbuda, nyarbuda, samudra,
madhya, anta, and parārdha (= 1012).

This set is called Medhātithi’s List after the associated Vedic seer. Its popularity
is shown by its occurrence (with slight variations) in several works of Vedic corpus.2

Some of the instances are as follows

(i) Kat.ha or Kāt.haka-sam. hitā, 17.10, where niyuta and prayuta interchange their
places.

(ii) Same interchange is found in the Kapis. t.hala Kat.ha-sam. hitā, 26.9.3

(iii) ButKāt.haka-sam. hitā, 39.6, in addition to the above interchange, further inserts
a new term badva for 109 therebymaking samudra, madhya anta and parārdha
to stand for 1010, 1011, 1012, and 1013, respectively.

(iv) The Maitrāyan. ı̄-sam. hitā, II, 8.14 has ayuta for 104 as well as for 106. The
second ayuta may be emended to niyuta in conformity with (i), (ii) and (iii).

(v) The Pañcavim. śa (or Tān. d. ya) Brāhman. a, XVII, 14.2, replaces the last four
terms of the Medhātithi’s List by nikharvaka, badva, aks. ita, and go (= 1012),
respectively.4

(vi) The Jaiminı̄ya-upanis. ad-brāhman. a I, 10.28–29 replaces the last four terms
differently by nikharva, padma (= 1010), aks. iti (= 1011), and with the phrase,
vyomānta (= 1012).5
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(vii) Śāṅkhāyana-śrauta-sūtra, XV, 11.7, where we have, (after nyarbuda),
nikharvāda (= nikharva, 109), samudra, salila, antya (= 1012), and ananta
(= 1013).

(viii) The above referred White Yajurveda mantra, XVII, 2 (which contains the
Medhātithi List) has been briefly mentioned in the Śatapatha Brāhman. a, IX,
1,2.16 from ekā ca daśa etc. to antaśca parārdhaśca.6

(ix) The Atharvaveda (cf. 8.8.7 and 20.8.24) seems to have a shortened list, some-
thing like eka, daśa, śata, sahasra, ayuta, nyarbuda, and badva.7

(x) Taittirı̄ya-sam. hitā of the Kr. s. n. a (Black) Yajurveda, IV, 4, 11.4 contains the
Medhātithi List of 13 decuple terms.8

Moreover, the Taittirı̄ya-sam. hitā, VII, 2.20, contains what can be called as the
Extended Medhātithi List. The extension part consists of the following 7 decuple
terms, beyond the parārdha (= 1012), of the above ordinary Medhātithi List:9

us.as(= 1013), vyus.t.i, udes.yat, udyat, udita, suvarga, and loka (= 1019).

The above additional 7 decuple terms are not usually interpreted in this numerical
manner by earlier scholars but Markandeya Mishra has quoted the words of the
commentator Bhat.t.abhāskara in support of the above extension.10 Later on decuple
terms were used as denominational names in the decimal place-value system.

2 Buddhist Lists

Buddhist religious and philosophical exposition needed very large numbers. In reply
to a test-question put by the mathematician Arjuna, Prince Gautama narrated nicely a
centesimal numeration systemwhich was then prevalent in India. As described in the
Lalitavistara (first century bc)11, the first series of this counting system consisted of
the 23 names from ayuta (= 100 kot.i) to tallaks. ana (= 10023 kot.i) which stands for
1053 (see accompanying Table1). Then follows 8 more such series. Thus the whole
set will go upto the monstrous number12

1053+8×46 = 10421.

Another interesting numeration system is found in Kāccāyana’s Pali Grammar13.
It is in the kot.i scale and, starting from kot.i (= 107), it goes upto asam. kheya which
stands for

1020×7 = 10140.

It is this very numeration scale which is found in the Buddhist work styled as
Abhidhānappadı̄pikā.14 In forming names of decuple terms also, the Buddhists went
far ahead of the Vedic lists.
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Table 1 Buddhist Names of Numbers

Number Lalita-vistara Vasubandhu’s Number Lalita-vistara Vasubandhu’s

Centesimal
scale

decuple term Centesimal
Scale

decuple term

1 ... eka 1030 — mahā-vyava pra-
jña

10 ... daśa 1031 hetuhila hetu

102 ... śata 1032 — mahā-hetu

103 ... sahasra 1033 karaku/karahu karabh

104 ... prabheda 1034 — mahā◦

105 ... laks. a 1035 hetvindriya indra

106 ... atilaks. a 1036 — mahā◦

107 kot.i kaut.i (kot.i) 1037 samāpta-
lambha

samāpta

108 ... madya 1038 — mahā◦

109 ayuta ayuta 1039 gun. anā-gati gati

1010 ... mahā-ayuta 1040 — mahāgati

1011 niyuta niyuta 1041 niravadya nimbaraja

1012 ... mahā-niyuta 1042 — mahā◦

1013 kaṅkara kaṅkara 1043 mudrābala mudrā

1014 ... mahā◦ 1044 — mahā◦

1015 vivara vivara 1045 sarva-bala bala

1016 ... mahā◦ 1046 — mahā◦

1017 aks. obhya aks. obhya 1047 visam. jña-gatı̄ sam. jñā

1018 ... mahā◦ 1048 — mahā◦

1019 vivāha vivāha◦ 1049 sarva-sam. jñā sarva-
sam. jñā/bindu

1020 ... mahā◦ 1050 — mahā◦

1021 utsaṅga utsaṅga 1051 vibhūtaṅgamā vibhūti

1022 ... mahā◦ 1052 — mahā◦

1023 bahula bahula 1053 tallaks. an. a tallaks. an. a

1024 ... mahā◦ 1054 — mahā◦

1025 nāgabala vāhana 1055 — ogha

1026 ... mahā◦ 1056 — mahā◦/abbuda

1027 tit.ilambha tit.ibha 1057 — balāks. a

1028 ... mahā◦ 1058 — mahā◦

1029 vyavasthāna- vyavasthāna- 1059 — asam. khya

prajñapti prajñapti
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The famousBuddhist scholarVasubandhu (adfifth century) in his commentary on
his own Abhidharmakośa (III, 93–94) talks of 60 decimal denominational places.15

He describes 52 decuple terms from eka to asam. khyam (= 1059) stating that

Eight (place-names) from madhya (middle) have been forgotten.

The super-commentator Yaśomitra states that to restore the full set of 60 terms,
one should form suitable eight names oneself (to compensate for the loss caused
by carelessness of the scribe). So I reconstructed* the whole Buddhist set of 60
decuple terms (see Table1) taking the help of the terminology of names found in
the Lalitavistara mostly. To have consistency, coherency, and uniformity of similar
names (with similar values), I had to drop prayuta from Vasubandhu’s list and make
some other slight changes.16

3 Jaina and Other Lists

We have seen that there was a lack of uniformity in assigning numerical values to
ayuta, niyuta, prayuta, etc., in the earlier lists. To avoid ambiguity and confusion,
authors of astronomical andmathematicalworks usually gave definite lists of decimal
denominational names. Āryabhat.a I (born ad 476) in his Āryabhat. ı̄ya (which is
regarded to be the first extant Indian work of the paurus. eya or historical type) gives
the following list of 10 decuple terms.17

eka, daśa, śata, sahasra, ayuta, niyuta, prayuta, kot.i, arbuda and vr. nda (= 109).

Obviously this list is too short; so bigger lists were evolved. A definite list of 18
decuple terms is found in the Pāt. ı̄gan. ita (verses 7–8) in Triśatikā (verses 2–3) of
Śrı̄dhara (c. ad 750). The names are18

eka, daśa, śata, sahasra, ayuta, laks. a (= 105), prayuta, kot.i, arbuda, abja, kharva, nikharva,
mahāsaroja, śaṅku (or śaṅkha), saritām. -pati, antya, madhya and parārdha (= 1017).

The choice of eighteen for the size of the set is noteworthy as 18 is a sacred
Hindu number.19 Anyway, like Śrı̄dhara and his works, his above list also became
very popular in India. It is found (often with minor changes only) in the works of al-
Bı̄rūnı̄, Bhoja,Ks.ı̄rasvāmin, Śrı̄pati, Someśvara, Bhāskara II, Hemacandra,Nārāyan. a
Pan.d. ita (ad 1356), etc.20

If the number 18 is sacred to Hindus, then 24 is more sacred to Jainas. So when
Mahāvı̄ra (c. 850) the famous Jainamathematician, wrote hisGan. ita-sāra-saṅgraha,
he gave in it a list of 24 decuple terms. The names are (GSS, I, 63–68).21

*The Buddhist table is now restored by R. C. Gupta. See the Hindi Journal
(Allahabad), 47.1 (2004), pp. 3–6.
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eka, daśa, śata, sahasra, daśa-sahasra, laks. a, daśalaks. a, kot.i, daśakot.i, śatakot.i, arbuda,
nyarbuda, kharva, mahā-kharva, padma, mahā◦, ks. on. ı̄, mahā◦, śaṅkha, mahā◦, ks. iti, mahā◦,
ks. obha, and mahā-ks. obha (= 1023).

Mallana (c. 1100) son of Śivvana translated the Gan. ita-sāra-saṅgraha (= GSS)
from Sanskrit into Telugu. Being a Hindu, he naturally changed the deity’s name
‘Jina’ (found in GSS) to ‘Śiva’.22 He also made another change in this spirit. To
Mahāvı̄ra’s list of 24 decuple terms (as found in the GSS), he added further 12 terms
more to make a total of 36 which is double of the Hindu sacred number 18. The
names added by Mallana are23:

nidhi (= 1024), mahā-nidhi (= 1025), parata, ananta, bhūri, mahā-bhūri, meru (= 1030),
mahā-meru, bahuśa, mahā-bahuśa, samudra, and mahā-samudra or sāgara (= 1035).

Shukla gives a different list of these additional 12 names from Gan. ita-śāstra of
Pāval.ūri Mallikārjuna (which is Sanskrit form of Mallana).24 Whole matter needs
further studies and a critical edition of Mallana’s work(s).

Thus we find that a sort of religious rivalry gave us bigger lists of decuple terms.
But it was not the end. Mallana was soon excelled by another Jaina author. Rājāditya
wrote his Vyavahāra-Gan. itam in Kannada in the twelfth century. In this work, he
extendedMahāvı̄ra’s list to 40 terms (instead ofMallana’s 36)! His addition consisted
of the following 16 new terms.25

nadı̄ (= 1024), mahā-nadı̄ (= 1025), naga, mahā◦, ratha, mahā◦, hari (= 1030), mahā◦,
phan. i, mahā◦, kratu, mahā◦, sāgara (= 1036),mahā◦, parimiti, andmahā-parimiti (= 1039).

We find that Rājāditya uses the suffix “mahā” (which was used earlier by
Vasubandhu etc.) uniformly and consistently for economy. Popularity of Mahāvı̄ra’s
list is also reflected.26

Finally, I give now the longest list of decuple terms which I have come to know
recently. The list is a big extension of the traditional Hindi list of 19 terms which are:

(1) eka, (2) daśa (or dasa), (3) sau, (4) hajāra, (5) dasa hajāra, (6) lākha, (7) dasa lākha,
(8) karod. a, (9) dasa karod. a, (10) araba, (11) dasa araba, (12) kharaba, (13) dasa kharaba,
(14) padma, (15) dasa padma, (16) nı̄la (17) dasa nı̄la, (18) śam. kha, and (19) dasa śam. kha
(= 1018).

Beyond this set, the work entitled Amalasiddhi gives the following27:

(20) ks. iti (= 1019), (21) dasa ks. iti, (22) ks. obha, (23) dasa ks. obha, (24) riddhi, (25) dasa
—, (26) siddhi, (27) dasa—, (28) nidhi, (29) dasa— , (30) ks. on. i, (31) dasa—, (32) kalpa,
(33) dasa—, (34) prāhi, (35) dasa—, (36) brahmān. da, (37) dasa—, (38) rudra, (39) dasa—
, (40) tāla, (41) dasa—, (42) bhāra (= 1041), (43) dasa—, (44) burja, (45) dasa—, (46)
ghan. t.ā, (47) dasa—, (48) nūla, (49) dasa—, (50) pacūra, (51) dasa—, (52) laya (= 1051),
(53) dasa—, (54) kāra, (55) dasa—, (56) apāra, (57) dasa—, (58) nat.a, (59) dasa—, (60)
giri, (61) dasa giri (= 1060), (62) mana (= 1061), (63) dasa—, (64) bana, (65) dasa—,
(66) śaṅkū, (67) dasa—, (68) bāpa, (69) dasa—, (70) bala. (71) dasa bala (= 1070) (72)
jhād. a, (73)dasa—, (74) bhı̄ra, (75) dasa—, (76) vajra, (77) dasa—, (78) lot.a, (79) dasa—,
(80) naje, (81) dasa—, (82) pat.a, (83) dasa—, (84) tama, (85) dasa—, (86) drambha, (87)
dasa—, (88) kaika, (89) dasa—, (90) amita, (91) dasa—, (92) gola (= 1091), (93) dasa—,
(94) parāmita, (95) dasa—, (96) ananta (= 1095), and (97) dasa-ananta (= 1096).
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Indeed this is world’s longest list (so far known) of decuple terms or of the denom-
inational names in decimal place-value system of numeration. Amalasiddhi’s author
and manuscripts etc. should be found out. Also note the influence of sacred numbers
18, 96 (which is four times 24), and 33 (see note 27 at the end) in the powers of 10
with which the lists end.
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Circumference of the Jambūdvı̄pa
in Jaina Cosmography

In Jain cosmography, the periphery of the Jambu Island is taken to be a circle of diameter
100,000 yojanas. The circumference of a circle of this size, as stated in Jain canonical and
geographical works like the Anuyogadvāra-sūtra and Triloka-sāra etc. is equal to

316227 yojanas, 3 krośas, 128 dan. d. as and 13 1
2 aṅgulas nearly.

However, the Tiloya-pan. n. atti (between the fifth and the ninth century ad) gives a value
(apparently quoted from the canonical work Dit.t.hivāda) of the circumference of the
Jambūdvı̄pa as calculated upto a very fine unit of length called avasannāsanna-skandha
where 812 of these units make one aṅgula (finger-breadth). It is shown that the value was
computed by making use of the following two approximate rules

• circumference =
√
10 (diameter)2

• √
a2 + x = a + ( x

2a ).

The correctly carried out long numerical calculations leave a fractional remainder whose
true interpretation has been obtained here.

1 Introduction

According to Jaina cosmography, the Jambūdvı̄pa (‘Jambu Island’) is circular in
shape and has diameter of 100,000 yojanas. Umāsvāti’s Tattvārthādhigamasūtra
(= TDS), III, 9, for example, states.1

The Jambūdvı̄pa is of diameter one hundred thousand yojanas’. That is,

Indian Journal of History of Science, Vol. 10, No. 1, pp. 38–46, (1975) : Paper presented at the
Seminar on Bhagavan Mahavira and His Heritage held, under the auspices of the Jainological
Research Society, at the Vigyan Bhavan, New Delhi, December 1973, pp. 30–31.
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D = 100, 000 yojanas. (1)

Some other explicit references are:

• Tiloya-pan. n. atti (= TP), IV, 11 (Vol. I, p. 143) of Yativr.s.abha
2

• Tiloya-sāra (= TS), gāthā 308 (p. 123) of Nemicandra (tenth century ad)3

• Jambū-pan. n. atti-sam. gaho (= JPS), I, 20 (p. 3) of Padmanandin4

The Vis. n. u-purān. a, a non-Jaina work, also takes the Jambūdvı̄pa to be of the same
shape and size5.

The constancy of the ratio of the circumference of any circle to its diameter was
recognized in all parts of the ancient world. This ratio is denoted by the Greek letter
π(pi), so that the circumference C is given by

C = πD. (2)

However, pi is not a ‘simple’ number. It is not only irrational but transcendental.
Hence its true value cannot be expressed by an integer, fraction, surd, or by a ter-
minating decimal. Thus, for any practical purpose, we can use only an approximate
value of pi.

The simplest approximation to the exact formula (2) will be

C = 3D. (3)

A rule equivalent to (3) is contained, for example, in TS, 17 (p. 9) which states

Diameter multiplied by three is the circumference.*

Utilizing the crude formula (3), the circumference of the Jambūdvı̄pawill be given
by

C = 300, 000 yojanas. (4)

However, the Jainas knew the inaccuracy of the rough value given by (4). That is
why they attempted to find an accurate value which is far better than (4).

The purpose of the present paper is to describe those values of C which were
intended to be more accurate and explain as to how they were obtained.

For the purpose of comparison, we first find the correct modern value ofC. Taking
the true modern value of pi, correct upto 27 decimal places, and using (2), we get6

C = 314159.265, 358, 979, 323, 846, 264, 338, 3 yojanas (5)

correct to 22 decimal places.
However, the form in which ancient values were expressed should not be expected

to be of the type (5) which utilizes decimal fractions. For expressing fractional parts,
the Jainas employed a series of sub-multiple units to a very very fine degree. Starting

*Rule also in TP, V, 241 (p. 560).
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with the paramān. u (‘extremely small particle’) of an indeterminately small size and
ending with the yojana, the TP, I, 102–106 (pp. 12–13) and I, 114–116 (p. 14),
contains a system of linear units which we present in Table1 below.7

From Table1, it can be easily seen that

1 yojana = 5.3 × 1016 avasa units roughly,

so that an avasa unit is of the order of about 10−17 of a yojana or of the order of
about 10−22 with respect to the given diameter (1). That is why we must employ a
decimal value correct to about 25 places in order to check or compare with another
value which is specified upto the avasa unit together with the fractional remainder
thereafter.

The value (5), which is in conformity with above consideration, can now easily
be transformed and expressed in terms of the units of Table1. We have done this
by successively changing the value of the fractional part left into sub-units at each
stage. This transformed form of the correct modern value of the circumference of
the Jambūdvı̄pa is shown in Table2.

Table 1 Units of length from the Tiloya-pan. n. atti

Infinitely many paramān. us = avasannāsanna skandha

8 avasa units = 1 sannāsanna skandha

8 sannāsannas = 1 trut.aren. u

8 trut.aren. us = 1 trasaren. u

8 trasaren. us = 1 ratharen. u

8 ratharen. us = 1 uttama bhogabhūmi bālāgra

8 ut. bho. bālāgras = 1 madhyama bhogabhūmi bālāgra

8 ma. bho. bālāgras = 1 jaghanya bhogabhumi bālāgra

8 ja. bho. bālāgras = 1 karma-bhūmi bālāgra

8 ka. bālāgras = 1 liks. a

8 liks. as = 1 yūka

8 yūkas = 1 yava (barley corn)

8 yavas = 1 aṅgula (finger-breadth)

6 aṅgulas = 1 pāda

2 pādas = 1 vitasti (span)

2 vitastis = 1 hasta (fore arm or cubit)

2 hastas = 1 rikkū (or kis. ku)

2 kis. kus = 1 dan. d. a (staff) or dhanus. (bow)

2000 dan. d. as = 1 krośa

4 krośas = 1 yojana
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Table 2 Circumference of the Jambūdvı̄pa of Diameter 100,000 yojanas

Sl. No. Denomination
or unit

By C = πD,

with actual
value of pi

By C =√
10D,

with actual
value of

√
10

As Found in
the Tiloya
pan. n. atti (TP)

Area = C.D
4 ,

with C from
TP. (in square
units)

1 yojana 314159 316227 316227 79056, 94150

2 krośa 1 3 3 1

3 dan. d. a 122 128 128 1553

4 kis. ku 1 0 0 0

5 hasta 1 0 0 0

6 vitasti 0 1 1 1

7 pāda 1 0 0 0

8 aṅgula 5 0 1 1

9 yava 5 7 5 6

10 yūka 4 3 1 3

11 liks. a 4 4 1 3

12 ka. bālāgra 3 7 6 2

13 ja. bho. bālāgra 2 4 0 7

14 ma. bho. bālāgra 3 3 7 3

15 ut. bho. bālāgra 6 5 5 7∗
16 ratharen. u 7 5 1 4∗
17 trasaren. u 4 2 3 2∗
18 trut.aren. u 5 1 0 3∗
19 sannāsanna 0 5 2 7

20 avasa. units 6 7 3 1

21 kha-kha fraction
(or remainder)

43
100
nearly

71
100
nearly

23213
105409

48455
105409

2 The Jaina Value of the Circumference

Naturally, we need not expect the exactmodern value ofC (as calculated by us above)
to be stated in any ancient Jaina work, because, like all other ancient peoples, the
Jainas also used only approximate values of pi needed in the relation (2).

The Jainas commonly employed the following formula, which is better than (3),

C =
√
10D2 (6)

or C = √
10D (7)
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There is no shortage of references to (6) or (7) in Jaina works. It occurs in the
Bhās. ya (p. 170)8 which accompanies the TDS under III, II. Some other references
are:

1. TP, I, 117, first half (Vol. I, p. 14); TP, IV, 9 (vol. I, p. 143); etc.
2. TS, 96, first half (p. 41) and TS, 311, first half (p. 125).
3. JPS, I, 23 (p.3).
4. Jyotis. -karan. d. aka (gāthā 185).9

By taking the value of
√
10 correct to 27 decimal places, we get, from (7) which

is theoretically equivalent to (6),

C = 316227.766, 016, 837, 933, 199, 889, 354, 4 yojanas. (8)

As before, we have converted this value in terms of the units of Table1. The result
obtained is shown in Table2.

The value of the circumference of the Jambūdvı̄pa as found stated in the TP, IV,
50–57 (vol. I, p. 148)10 is also given in Table2. The TP value is slightly more than

C = 316227 yojanas, 3 krośas, 128 dan.d. as, and 13
1

2
aṅgulas. (9)

This simplified value which is rounded off to the nearest half of an aṅgula is found
in many works including:

1. Anuyogadvāra-sūtra, 146, where it is given as the circumference in a palya of
diameter one lac yojana.11

2. Jı̄vājı̄vābhigama-sūtra, 82 (without reference to Jambūdvipa).12

3. TS, 312 (p. 126) as an accurate value.
4. JPS, I, 21–22 (p. 3).

A glance at the Table2 will show that the TP value does not fully agree with that
which is accurately found by the Jaina formula (6) or (7). The latter value is slightly
less than

C = 316227 yojanas, 3 krośas, 128 dan.d. as, and 13 aṅgulas. (10)

Thus, there is a divergence even between the frequently met and rounded off Jaina
value, given by (9), and the one given by (10) which is based on the correct value of
the square-root of ten to a desired degree.13

Naturally, we are keen to know the cause of disagreement between the two sets
of values, particularly because the values are intended to give accuracy to a very
fine degree of smallness. Is there some arithmetical error of calculation in extracting
the square root, successively, to the desired degree? Or, the Jainas followed some
different procedure? This we answer in the following pages.
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3 How the Circumference was Obtained

For finding the square-root of a non-square positive integral number N , the following
binomial approximation was frequently used during the ancient and medieval times.

√
N ≡

√
(a2 + x) = a +

( x

2a

)
(11)

where a and x are positive integers, and the ‘remainder’ x is less than the ‘divisor’
2a; otherwise or alternately, we may use

√
N ≡ √

(b2 − y) = b −
( y

2b

)
. (12)

The approximation (11) was known to the Greek Heron of Alexandria (between
c. 50–c. 250 ad)14 and even to the ancient Babylonians.15 The Chinese Sun Tzu
(between 280 and 473 ad),16 while extracting the square-root of 234567 by an elab-
orate method, finally said:17

“Thus we get 484 for the square-root in the above and 968 for the hsia-fa, the
remainder being 311.”

He gave the answer

484 +
(
311

968

)
. (13)

Thus, whatever be the method of Sun Tzu, the result (13) is equivalent to what
we get by using (11).

The Jaina Gem Dictionary (pp. 154–155) gives the same rule, as represented by
(11), for finding the square-root.18 The TP, I, 117 (vol. I. p. 14) implies that the
circumference of a circle of diameter one yojana was calculated to be 19

6 yojanas.
This is in agreement with the use of the rule (11), since

√
10 =

√
(32 + 1) = 3 +

(
1

6

)
. (14)

Now from (1) and (6) we get

C = √
(100, 000, 000, 000) =

√
(316227)2 + 484471

= 316227 + 484471

2 × 316227
yojanas (15)

by applying the approximation (11). In the present case, therefore, we have

‘divisor’ = 632454

and ‘remainder’ = 484471.
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The fractional yojana remainder, namely

484471

632454

when converted into krośas, will give

484471 × 4

632454
krośas = 3 +

(
40522

632454

)
krośas. (16)

The fractional krośa remainder, namely

40522

632454

can, similarly, be converted into the next lower sub-units (dan. d. as). The process can
be continued likewise.

We shall easily get 128 dan. d. as, 1 vitasti (= 12 aṅgulas) and 1 aṅgula with the
fractional aṅgula remainder to be equal to

407346

632454
(17)

which is equal to
67891

105409
. (18)

Thus, we see that the fractional aṅgula-remainder (18) is slightly more than half.
In this way, we get the circumference of the Jambūdvı̄pa as given by (9).

However, if wewant to carry out the evaluation to lower and lower units (as should
be done in order to get a value comparable to that found in the TP), we easily have
(putting 105409 equal to H );

(a) aṅgula-fraction, 67891
105409 = 5 + (

16083
H

)
yavas

(b) yava-fraction, 16083
H = 1 + (

23255
H

)
yūkas

(c) yūka-fraction, 23255
H = 1 + (

80631
H

)
liks. as

(d) liks. a-fraction, 80631
H = 6 + (

12594
H

)
ka. bālāgras

(e) ka. bāl.-fraction, 12594
H = 0 + (

100752
H

)
ja. bho. bālāgras

(f) ja. bho. bāl.-fraction, 100752
H = 7 + (

68153
H

)
ma. bho. bālāgras

(g) ma. bho. bāl.-fraction, 68153
H = 5 + (

18179
H

)
ut. bho. bālāgras

(h) ut. bho. bāl.-fraction, 18179
H = 1 + (

40023
H

)
ratharen. us

(i) ratharen. u-fraction, 40023
H = 3 + (

3957
H

)
trasaren. us

(j) trasaren. u-fraction, 3957
H = 0 + (

31656
H

)
trut.aren. us
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(k) trut.aren. u-fraction, 31656
H = 2 + (

42430
H

)
sannāsanna

(l) sannāsanna-fraction, 42430
H = 3 + (

23213
H

)
avasa units

Thus we have, finally, the avasannāsanna fractional remainder

= 23213

105409
. (19)

In this way, we see that the above long calculation yields a value which is in
complete agreement with the TP value right from the whole number of a yojana
down to the lowest submultiple units defined in the text. Moreover, we have found
out a meaning of the fraction (19), designated as kha-kha (or ananta-ananta, ‘end-
lessly endless’) term, which can yield measure in still smaller and smaller units of
length (to be defined with the help of the infinitely small particles or paramān. us) if
desired.

That the above method is the actual one which was used by the Jainas is quite
evident from the full agreement obtained above and is also confirmed by what is
given by Madhava-candra in the commentary of his teacher’s TS under the gāthā
311 (pp. 125–126) where the calculation has been carried out upto the fractional
aṅgula remainder (17).

Once we know the circumference, the area of the Jambūdvı̄pa can be computed
by using the well-known rule, for example see TP, IV, 9 (Vol. I, p. 143),

Area = C · D

4
. (20)

The result of our computation of the area by using (20) and TP value of C is shown
is Table2. The contribution of the fraction (19)

= 23213 × 25000

105409
square avasa units

= 5505 +
(

48455

105409

)
. (21)

The measures of various denominations (specifying the area) as found in the
TP, IV, 58–64 (Vol. I, p. 149) agree with the corresponding value which we have
computed, including the kha-kha fraction19 given by the bracketed quantity in (21).
This again confirms our calculations and interpretations.

Incidentally we have discovered that at least one line (or verse), which ought to
be there to specify the numerical values (marked by asterisks in Table2) of the four
denominations from ut. bho. bālāgras to trut.aren. us, is missing in the printed text
in the TP (between verses 61 and 62 in the fourth mahādhikāra) which we have
consulted if not in the original manuscripts.
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The contents of the manuscript entitled jambūdvı̄pa-paridhi20 (Jambūdvı̄pa-
Circumference’), which seems to be relevant to the subject of our present paper,
are not known to me.
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value is apparently quoted: (see Babu Chotelal Jain Smriti Grantha, Calcutta, 1967, English
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Mādhavacandra’s and Other Octagonal
Derivations of the Jaina Value π = √

10

√
10 was one of the approximate values of π used in ancient andmedieval times especially in

Jaina works. K. Hunrath derived it from a dodecagon a century ago, and G. Chakravarti from
an octagon about fifty years ago. An ancient derivation given byMādhavacandra (c. 1000ad)
in his Sanskrit commentary on Tiloya-sāra of Nemicandra. (c. 975 ad) has been examined
in detail especially in the light of expositions given by Chakravarti and Āryikā Viśuddhamatı̄
recently. Somenewandmore plausible interpretations are advancedhere regarding derivation
of π = √

10 based on octagons. Use of the process of averaging is also illustrated.

1 Introduction

It is well known that an ancient Indian rule for finding the perimeter (or circumfer-
ence) p of a circle of diameter d can be expressed by the formula

p = √
10 d2. (1)

This rule is found used or adopted especially in the early Jaina canonical and other
works.1 Rules equivalent to (1) are also found in non-Jaina Indian as well as foreign
works.2 Several derivations of (1) have been suggested. According to Colebrooke
(1755–1837),3 Brahmagupta (c. 628 ad) is said to have obtained the value π = √

10
by “inscribing in a circle of unit diameter regular polygons of 12, 24, 48, and 96 sides
and calculating successively their perimeters which he found to be

√
9.65,

√
9.81,√

9.86,
√
9.87, respectively, and to have assumed that as number of sides is increased

indefinitely, the perimeter would approximate to
√
10”. Hankel (1873) suggested the

Indian Journal of History of Science, 21(2): (1986), pp. 131–139. Paper presented in the International
Seminar on Jaina Mathematics, Hastinapur (Meerut), April, 1985.
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same method by taking d = 10 (instead of unity) but this explanation is considered
doubtful by Hobson.4

Hunrath (c. 1883)5 first calculated the arrow (= height of the segment) correspond-
ing to the arc of a sixth part of the circumference of the circle as

h6 = d(2 − √
3)

4
. (2)

Then he took the approximate value 5
3 for

√
3 thereby getting

h6 = d

12
(3)

and so the side of the inscribed dodecagon would be given by

s212 = h2
6 +

(
1

4

)
· s26

=
(

d

12

)2

+
(
1

4

)
·
(

d

2

)2

= 10d2

144
.

(Subscripts here denote the number of sides of the related inscribed regular polygon).
Hence, finally (but approximately)

p2 = (12s12)
2 = 10d2

which is equivalent to (1). Hunrath’s method is considered to be “most plausible” by
Sarasvati Amma6 (but see Sect. 3 below for a comment on this method).

Another method based on dodecagon has been recently suggested by Afzal
Ahmad7 but it is unsatisfactory since it chooses an arbitrary denominator in approx-
imating

√
3.

However, Mādhavacandra Traividya (c. 1000 ad), an ancient Jaina writer, gave a
different derivation which is based on a polygon of only 8 sides (instead of 12 and
more employed in above methods). We discuss below in detail the various methods
based on considerations of octagons.

2 Mādhavacandra’s Derivation

Nemicandra, a famousDigambara Jaina author (c. 975ad) composed hisTiloya-sāra
(Sanskrit, Triloka-sāra ) in Prakrit. Its gāthā 96 contains the formula (1) as8
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The square root of ten-times the square of the diameter becomes the circumference of the
circle.

Mādhavacandra, pupil of Nemicandra, in his Sanskrit commentary on the Triloka-
sāra gives the derivation (vāsanā) of (1) under the above gāthā in the following
words:9

(Take) a circle of diameter one yojana and draw a square of the same dimension. By mutual
(or self) multiplication obtain the squares of the base (horizontal side, say) and upright
(perpendicular side) 1dd and 1dd; adding which we get 2d2, the square of the diagonal.
Halving (each d) in it we get (the square of) half the diagonal, and by again halving, we get
(the square of) the fourth part (of the diagonal); and by (once more) halving, we get (the
square of) the eighth part of the diagonal.

Now take one of the (eight arcual) segment, and by reducing (the squares of) the bhuja,(
= 2d2

16

)
and kot.i

(
= 2d2

64

)
to a common denominator, add them

(
to get 10d2

64

)
. If this is the

result for one segment (khan. d. a), what will it be for the eight segments? By the rule (nyāya)
that when a (to be operated) quantity is in square form, its multiplier and divisor should also
be in the square form, the desired (proportionality) multiplier here should be in square form

(i.e. 82 = 64). So that by mutual (or cross) cancellation
(
in 64 × 10d2

64

)
, the result will be

10d2. This gives the derivation of the above rule (starting with the word) vis. kambha.

From this almost literal translation of Mādhavacandra’s passage, it is seen that
many points in his derivation need explanation especially because he himself did not
give any accompanying diagramwhichwould have clarified the doubts. This situation
has given rise to various interpretations by scholars. In the following sections we
critically examine some of these interpretations.

3 G. Chakravarti’s Computations

More than 50years ago Chakravarti10 found that Mādhavacandra’s method consisted
in equating the perimeter of the (inscribed regular) octagon to the circumference of
the circle. In other words the arc W m R (see Fig. 1) was taken equal to the chord
W R which is a side of the octagon. To find this Chakravarti gave the following
calculations:

W Y = OW√
2

= d

2
√
2
. (4)
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This is what Mādhavacandra called bhuja, for one khan. d. a (segment or portion)
and gave

(bhu ja)2 = 2d2

16
(5)

which is clearly equal to (W Y )2 exactly. However, Chakravarti took the value

√
2 = 1 +

(
1

3

)
= 4

3
(6)

which he got from the Śulbasūtra approximation

√
2 = 1 +

(
1

3

)
+

(
1

3.4

)
−

(
1

3.4.34

)
(7)

whose first two terms are believed to be based on the formula (which itself is based
on a sort of linear interpolation)11

Fig. 1 Mādhavacandra’s method
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√
a2 + x = a + x

(2a + 1)
. (8)

By using (6), Chakravarti then got, from (4),

W Y = 3d

8
or (W Y )2 = 9d2

64
(9)

against the mathematically exact value (5) given by Mādhavacandra. Chakravarti
then calculated

RY = O R − OY =
(

d

2

)
− W Y = d

8

so that

(RY )2 = d2

64
, (10)

while Mādhavacandra took

(kot.i)
2 = 2d2

64
. (11)

However, the final results will be the same since

(W R)2 = (W Y )2 + (RY )2 =
(
9d2

64

)
+

(
d2

64

)
= 10d2

64

and also, from (5) and (11),

(bhuja)2 + (kot.i)
2 =

(
8d2

64

)
+

(
2d2

64

)
= 10d2

64
.

It must be noted that although Mādhavacandra’s bhuja gives the exact value of
W Y , his value of kot.i does not represent the exact or true value of RY which is,
otherwise, given by

RY =
(

d

2

)
−

(
d

2
√
2

)
= d(2 − √

2)

4
. (12)

Of course Chakravarti’s values of W Y and RY , given by (9) and (10), are both
approximate. Anyway, if W Y is regarded bhuja in the right angled�W Y R, then RY
must be called kot.i therein. Now Mādhavacandra’s value of his kot.i also represents
the length of half of OY or O L or C L , and W L is equal to Y R. We may therefore
say that he made the practically sound assumption that W is the middle point of C L .
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However, there seems to be another reason as to why Mādhavacandra took his kot.i
equal to half of his bhuja. We have, by using the true values† (4) and (12),

Y R

OY
= Y R

W Y
= √

2 − 1, exactly. (13)

But according to the usual Jaina formula (of the binomial theorem type and based
on completing the square, say)12

√
a2 + x = a +

( x

2a

)
(14)

so that, √
2 =

√
12 + 1 � 1 + 1

2
= 3

2
(15)

and thus, by (13)
Y R

OY
= 1

2
= W L

O L
= W L

C L
. (16)

That is, Y R is half of W Y or W L is half of L R. In other words kot.i is half of bhuja.
And this theoretical basis and practical interpretation seem to be quite plausible (see
Sect. 4 below, for other interpretations).Wehave thus distinguishedMādhavacandra’s
method based on (14) from that of Chakravarti based on (8). It may be pointed out
that Hunrath’s value 5

3 for
√
3 (see Sect. 1 above) is also based on the non-Jaina

formula (8). To emphasize the contrast between the calculations of Mādhavacandra
and Chakravarti we see that the value of

(
W Y
RY

)2
is 4 according to the former but 9

according to the latter, while the correct value is, from (4) and (12), given by

(W Y )2

(RY )2
= 3 + 2

√
2 ≈ 5.8.

So Mādhavacandra’s value is better. It should also be noted that although point Y
trisects O R according to (16) in conformity with Mādhavacandra’s values, he did
not take the simplified values

Y R = O R

3
= d

6

and OY = 2 · O R

3
= 2d

6
= W Y

†This also follows directly from the fact that

OY + Y R = O R = OW = √
2 · OY

or Y R = √
2 · OY − OY = (

√
2 − 1) OY.

.



3 G. Chakravarti’s Computations 135

as these would have led to

(W R)2 =
(
2d

6

)2

+
(

d

6

)2

= 10d2

72

instead of the desired value 10d2

64 .
Finally, one more thing may be pointed out. The method of inscribed polygon,

when correctly followed, should lead to a value of π which is less than the actual
value; but here we are getting

√
10 which is greater than the true value of π. The

reason is that in finding the length of the side of the octagon both Mādhavacandra
and Chakravarti overestimated it.

4 Āryikā Viśuddhamatı̄’s Exposition

In her recent translation and exposition of Mādhavacandra’s derivation,
Viśuddhamatı̄13 has correctly given the values of the squares of the bhuja and kot.i
as mentioned in the commentary by the former and represented by (5) and (11).
But from the diagrams accompanying her exposition it seems that she has taken
the rectangle T HU J as representing an as. t.amām. śa (“eighth part”) which has also
been drawn as shown separately. No doubt, the dimensions (i.e. the two mutually
perpendicular sides HU and U J ) of this rectangle are the same as those given by
Mādhavacandra. There are two difficulties in accepting this interpretation. Firstly,
the arc anb contained in it is not the eighth part of the circumference of the circle (the
eighth part is correctly given by the arc αnβ, instead of anb). Secondly, the practi-
cal equality of the arcual eighth part (anb or even αnβ) to the diagonal H J of the
rectangle is not clear from the diagram. So, this interpretation cannot be considered
satisfactory, although it does not theoretically affect the derivation.

To remove the above difficulties, I suggest that Mādhavacandra’s bhuja, be taken
to represent the side P N (= HU ) and his kot.i be taken to represent the upright
or perpendicular side N A1(= U J ) in the right-angled �P N A1 (or the rectangle
P N A1T1). Here, the enclosed arc Pan is exactly equal to the eighth part of the
circumference of the circle and the upright N A1 is also the eighth part of the diagonal
AC . Moreover, the equality of the resulting hypotenuse (or diagonal) P A1 to the
overlapping (or crossing) arc Pan. seems to be a practical approximation to the
eyes. Of course, the final result in this new interpretation will be the same as found
by Mādhavacandra (and Viśuddhamatı̄, and even Chakravarti) since

P A2
1 = P N 2 + N A2

1 = (RN )2 +
(

N A

2

)2

= (bhu ja)2 + (kot.i)
2 =

(
8d2

64

)
+

(
2d2

64

)
= 10d2

64
,
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And so
p2 ≈ (8.P A1)

2 = 10d2, as desired.

5 Applying the Process of Averaging

The process of averaging is known to be a popular and useful ancient technique
especially when the exact result or derivation was unknown or difficult.14 Even in
matters of circling the square or squaring the circle, averaging has been suggested
as an explanation of some of the Indian rules.15 Here we shall confine to derivations
based on considerations of octagons only.

From the figure we have

x = E D = (
√
2 − 1)r,

y = F D = √
2x = (2 − √

2)r

z = F S = r − y = (
√
2 − 1)r = x .

These results also follow by using trigonometry, since 2x or 2z is the side of the
circumscribed regular octagon and, from �s O E F and O SF

x = z = r tan

(
45

2

)◦
= (

√
2 − 1)r,

but we confine to more elementary and primitive methods and approach. Now the
perimeter of the circumscribed octagon

= 8x + 8z = 16x,

so that

π = p

2r
<

16x

2r
= 8(

√
2 − 1). (17)

Therefore,
φ2 < 64(3 − 2

√
2) < 11.

On the other hand by considering the inscribed regular octagon and using (4) and
(12), we have

s28 = W R2 = (2 − √
2)r2,

Now,
2πr > 8 · s8
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or,

π2 > 16(2 − √
2)

= 9 + (23 − 16
√
2),

from which it follows that
π2 > 9.

Hence we have
9 < π2 < 11,

and so by averaging
π2 = 10

as desired and implied in (1).
Instead of perimeters, we may consider the areas of the two octagons. We see that

the area of the circumscribed octagon

= square ABC D − 4 · �G DF

= (2r)2 − 4 ·
(

y2

2

)
= 8(

√
2 − 1)r2.

So that
πr2 < 8(

√
2 − 1)r2

giving the same inequality as (17), and hence here also

π2 < 11.

On the other hand, let us approximate the area of the circle by the square P Q RS
plus the four rectangles of the type T HU J on the four sides. From the shaded areas
in the octant P O B1 we see that the area left-out is more than the extra area included.
Thus,

πr2 > square P Q RS + 4 × (rectangle T HU J )

= 6 × (square O M P N )

= 6 × r2

2
= 3r2.

So that
π2 > 9.
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Hence we get, again
9 < π2 < 11,

and the desired result follows by averaging as before.
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Chords and Areas of Jambūdvı̄pa
Regions in Jaina Cosmography

In Jaina works, the Jambūdvı̄pa (“Jambu Island”) is circular and of diameter
D = 100000 yojanas (Tiloyapan. n. attı̄ = TP, IV. 11; Vol. II, p. 4; Kota, 1986).
It is divided into 13 main regions by boundary lines which are all parallel to
the east–west direction. Starting from southern end, their widths are 2nσ , where
n = 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, respectively (the śalākā σ = D

190 ). The central
zone, called Videha, of width 64σ is thus bisected by the east–west diameter. The
names of the regions of the southern half of the Jambūdvı̄pa are shown in Table1
along with the lengths of their northern boundary chords (which cut out circular
segments of various heights h).

The lengths of the chords were found out by the well-known ancient rule (equiv-
alently given in TP, IV. 183, p. 51)

c2 = 4h(D − h). (1)

The calculations have been done in a simplified manner. In evaluating the square
root of a rational number, a suitable integral denominator or divisor is separated and
the square root of the large numerator is extracted to a whole number (leaving out
the remaining portion). For example, the chord of the Bharata region is given by,
using (1),

c =
√
756 × 108

19

=
√

(274954)2 + 297884

19

= 274954.54

19
nearly.
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Table 1 Northern chords

Sl. no. Region Width h Integral
value of
chord

Actual
part
nearly

Fraction
after
leaving
decimal
portion

Textual
value of
fraction

TP
reference

1 Bharata σ σ 14471
5.54

19

5

19

5

19
IV, 194;
p. 56

2 Himavān 2σ 3σ 24932
0.77

19
0

1

19
IV, 1647;
p. 471

3 Haimavata 4σ 7σ 37674
15.26

19

15

19

16

19
IV, 1722;
p. 487

4 Mahāhimavān 8σ 15σ 53931
6.07

19

6

19

6

19
IV, 1742;
p. 491

5 Hari 16σ 31σ 73901
17.7

19

17

19

17

19
IV, 1763;
p. 495

6 Nis.adha 32σ 63σ 94156
2.1

19

2

19

2

19
IV, 1775;
p. 498

7 South Videha 32σ
D

2
100000 0 0 0 IV, 1798;

p. 503

But the value given in the text (TP, IV. 194, p. 56) is

c = 274954

19
= 14471 + 5

19
,

omitting the (decimal) portion of the square root although greater than half. However,
the text values do not uniformly confine to this (or any other) convention of rounding
off. Table1, we have listed the integral values, the (nearly) actual parts, the fractions
obtained by leaving out the (decimal) portions of the square roots (even if greater
than half), and the fractions as found in the TP.

However, we have noted a very significant uniformity in one matter. If we use
the fractions obtained by leaving out the decimal portions (in the square roots) in
calculating the areas of the regions (see below), there is perfect agreement with the
text values of the areas. We show this now.

For finding the area of a segment of a circle, the TP, IV. 2401 (p. 636) contains
the verbal rule equivalent to the empirical formula

S =
√

10

(
ch

4

)2

. (2)
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Using this, the area of the Bharata region will be

A1 = S1 =
√(

10

16

)
.

(
274954

19

)2

.

(
104

19

)2

=
√
4724, 9813, 8225 × 107

361

= 2173, 7022, 29

361
.

where we have, following the same above practice, neglected the decimal portion of
the square root in the numerator. Thus, we have

A1 = 6021, 335 + 294

361
,

which is exactly same as given in TP, IV. 2402 (p. 636).
For the next segment formed jointly by the Bharata and Himavān regions, we will

have

A1 + A2 = S2 =
√
10

16
.

(
473709

19

)2

.

(
3 × 104

19

)2

=
√
1262, 2458, 8961 × 109

361

= 1123, 4971, 693

361

= 3112, 1805 + 88

361
,

following the same practice or convention of extracting square root to completed
(not nearest) whole number. In this way we get

A2 = S2 − S1 = 2510, 0469 + 155

361
,

which is exactly what is given in TP, IV. 2403 (p. 637).

Similarly we can find S3, S4, S5 and S6. The combined segment of the listed
seven regions is simply equal to half the Jambūdvı̄pa whose area is already given
earlier in TP, IV. 59 (p. 17) as 7905,6941,50 (square) yojanas. So we have S7 equal to
3952,8470,75 units without taking trouble to find it by the above procedure (which
otherwise yields the additional fraction 75

361 ).
All these calculated values of the segmental areas are shown in Table2 along with

the resulting corresponding regional areas which are found to tally completely with
those given in text (TP, IV. 2402–2407, pp. 636–638).
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Table 2 Areas

Sl. no. Region Area of corresponding segment
calculated by whole-number
square root method S

Area of the region from
previous column A = ∇S

1 Bharata 602, 1335 + 294
361 602, 1335 + 294

361

2 Himavān 3112, 1805 + 88
361 2510, 0469 + 155

361

3 Haimavata 1, 0973, 2502 + 25
361 7861, 0696 + 298

361

4 Mahāhimavān 3, 3660, 3542 + 349
361 2, 2687, 1040 + 324

361

5 Hari 9, 5324, 3109 + 260
361 6, 1663, 9566 + 272

361

6 Nis.adha 24, 6817, 2123 + 211
361 15, 1492, 9013 + 312

361

7 South Videha 39, 5284, 7075 14, 8467, 4951 + 150
361

Total 39, 5284, 7075

The area of Mahāhimavān is not available as the relevant gāthā in the manuscript
is eaten by the moths! For finding areas, the present writer has found another method
which does not need extraction of square roots.
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The First Unenumerable Number
in Jaina Mathematics

1 Introduction

The definition of asam. khyāta (“unenumerable”) numbers in the ancient Indian Jaina
Schools is linked to their cosmography according to which the Jambūdvı̄pa (“Jambū
Island”) is circular in shape and has a diameter D0 equal to one lakh yojanas. It is
surrounded by a series of concentric rings (or annuli) of sea and land alternately (see
Fig. 1). The width of the Nth ring (whether land or sea), taking the Jambūdvı̄pa itself
as the first ring, is given by

WN−1 = 2N−1.W0 (1)

where the width of the first ring (= the Jambū Island, J.I.) is denoted and given by

W0 = D0 = 100, 000 yojanas. (2)

The diameter of outer boundary of the Nth ring will be given by (see Fig. 2)

DN−1 = W0 + 2(W1 + W2 + · · · + WN−1)

= W0 + 2(2 + 22 + 23 + · · · + 2N−1)W0

= W0 + 2(2N − 2)W0

= (2N+1 − 3)D0. (3)

Now counting is done by means of tiny sars. apa seeds with which a variable
(anavasthita) pit is repeatedly filled and emptied by dropping the seeds one by one
on the various rings of land and sea starting with the Jambū Island itself. Let

n = f (R) (4)

Gan. ita Bhāratı̄, Vol. 14, Nos. 1–4 (1992), pp. 11–24.
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where n is the total number of seeds required to fill the pit fully in the prescribed
manner when its radius is R (the pit is cylindrical). Initially the pit has a radius R0

equal to that of the Jambū Island and is over-filled with n0 seeds (see below for
calculation of n0). By dropping these seeds one by one on the various successive
rings we will be able to cover the first n0 rings.

Fig. 1 Jaina cosmography

Fig. 2 Widths and diameters of rings

Let the radius of the last ring (nth
0 ) reached at the end of the first operation of

filling and emptying be R1 which is now taken to be the radius of the freshly made
variable pit. Suppose n1 is the number of seeds required to over-fill it, and therefore

n1 = f (R1). (5)

When dropped one by one these n1 seeds will cover the next n1 rings. At the end
of this second operation of filling and emptying, the last ring reached will be the
(n0 + n1)th whose radius is R2 say. The number of seeds needed to over-fill the fresh
pit of radius R2 will be
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n2 = f (R2). (6)

Again the one-by-one dropping of seeds is continued and will cover the next n2 rings.
At the end of the third operation of filling and emptying, we will make the variable
pit of radius R3 (equal to that of the last ring reached) and over-fill it with n3 seeds
where

n3 = f (R3). (7)

The above operation of filling and emptying the variable pit is to be performed n3
0

times at the end of which we will reach the ring whose radius will be Rno
3 . The pit

with this radius will then have seeds whose number is given by

nno
3 = f (Rno

3). (8)

This number is found to be very very large and is called jaghanya-parı̄ta-asam. khyāta
(“unenumerable of low enhanced order”). The actual calculation of the numerical
value of this first giant number is very complicated and is somewhat different in
the two main Jaina Schools (Digambara and Śvetāmbara). We present below the
exposition based on theDigambara texts in simplifiedmodern language and notation.

2 Value of n0

The filling of the cylindrical variable pit (of radius r, and height or rather depth h)
with seeds is done in such amanner that the over-filled tiny seeds from a right circular
cone of height H. Thus the volume of the cylindrical portion will be (Fig. 3).

Fig. 3 Overfilled cylindrical pit

V1 = πr2h (9)
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and that of the surmounting cone

V2 =
(
1

3

)
πr2H. (10)

The volume of each tiny seed assumed to be spherical and of radius e, (say), will be

v =
(
4

3

)
πe3. (11)

The number of seeds required to fill the cylindrical part (neglecting the interparticle
empty space) will be

N1 = V1

v
= 3r2h

4e3
(12)

and that for the conical part will be

N2 = V2

v
= r2H

4e3
. (13)

Now according to Triloka-sāra (gāthā 23) of Nemicandra (tenth century ad)1

H = perimeter

11
(14)

= 2πr

11
. (15)

Thus

N2 = πr3

22e3
. (16)

The diameter of each tiny seed is taken to be equal to one sars. apa (a very small unit
of length). Hence

e = 1

2
sars. apa. (17)

On the other hand r, h and H are measured in yojanas where

1 yojana = 4 × 2000 dan. d. as

= 8000 × 96 pramān. a aṅgulas

= 8000 × 96 × 500 utsedha aṅgulas

= 96 × 400, 0000 × 64 sars. apas

= 6 × 84 × 106 sars. apas. (18)
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Now the initial value of r, that is r0, is 50000 yojanas and h is constantly taken to be
1000 yojanas always (even when the radius of the pit varies). By (12) we get

N1 = 6r2h (19)

when r and h are in sars. apas. Thus

N1 = 6 × (50000)2 × 1000 × (106 × 84 × 6)3

= 81 × 238 × 1031. (20)

Also from (12), (13) and (16) we get

N2

N1
= V2

V1
= H

3h
(21)

= 2πr

33h
(22)

= 100π

33
. (23)

Therefore

N2 =
(
100π

33

)
N1. (24)

Thus we get the initial value of the total number of seeds to be

no = N1 + N2 = (100π + 33)
N1

33

= (100π + 33) ·
(
27

11

)
· 238 × 1031. (25)

More explicitly we have

N1 = 222, 651, 104, 64 × 1031 (26)

= 2.22651 × 1044 nearly (27)

and

N2 = 9.51997751N1 nearly (28)

or

N2 = 2.11963 × 1045 nearly. (29)
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Hence

n0 = 2.34228 × 1045 nearly. (30)

In ancient texts the above (modern) calculations were done in slightly different way.
The value of V1 was found by taking π = 3 (Triloka-sāra, gāthā 17). So the ancient
value was

V ′
1 = 3r2h. (31)

Similarly for the conical volume, we have (Triloka-sāra, gāthā 22)

V ′
2 =

(
perimeter

6

)2

·
(
perimeter

11

)
(32)

= 2π3r3

99
(33)

= 6r3

11
by taking π = 3 (as implied). (34)

Therefore,

N ′
2

N ′
1

= V ′
2

V ′
1

= 2r

11h
= 100

11
. (35)

Finally the value of v was not found by (11), but by using the following ancient
formula (Triloka-sāra, gāthā 19)

v′ =
(
9

2

)
e3. (36)

Thus

N ′
1 = V ′

1

v′ = 2r2h

3e3
=

(
8

9

)
N1 (37)

by (12). Hence we have, from (20),

N ′
1 = 9 × 241 × 1031 (38)

= 197, 912, 092, 999, 68 × 1031 (39)

which tallies exactly with the value as given in the Triloka-sāra, gāthā 21. Similarly
the value of N ′

2, which can be easily found by using (35), tallies with the ancient
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value found in gāthā 25, and hence also that of (N ′
1 + N ′

2) (gāthā 28). Approximately
this ancient value is

n′
0 = 1.997113 × 1045 nearly. (40)

3 How the Operations Were Counted

We have stated above that the operation of filling-and-emptying the variable
(anavasthita) pit was carried out n3

0 times before the final over-filling was done
to define the jaghanya-parı̄ta-asam. khyāta. Since n0 itself is a very large number,
the question may be asked as to how it was possible to maintain a check or record
of the number of operations completed at any stage. The answer is that the very
ancient principle of counting by using positional places and counting pebbles or
sticks (śalākā) was employed.

Let us take a simple case. Suppose we have to count 103 or 1000 operations. For
this we take 30 pebbles and divide them into three groups A, B, C, each containing
10 pebbles, and place them near three separately marked places or pits P, Q, R, which
may be called units, tens, and hundreds places, respectively.

When the said operations are over once, we place one pebble from group A into P.
When the operation is completed once more, we place one more pebble from group
A into P. Thus when the operation is performed 10 times, all the pebbles of group
A will be inside P. At this stage, we take out all the 10 pebbles out of P, but place
one pebble from group B into the pit Q to have an equivalent count of 10 operations
(which is represented by a single pebble in the tens place).

When the next (that is, the 11th) operation is completed we again put one pebble
from group A into P, and so on. Thus for every 10 operations, marked by putting 10
pebbles in P, we will place one pebble from B into Q (and at the same time take out
the accumulated 10 from P). This can be done upto 102 or 100 operations when all
the 10 pebbles of group B will be inside Q.

At this stage, we take out the 10 pebbles from Q, but place one pebble from group
C into R at the same time. Being in hundreds place, this one pebble in R will mark
those 100 operations. If we repeat the above process of 100 operations again, we will
have two pebbles in R at the end of the 200 operations performed so far. It will be
clear now that when there will accumulate all the 10 pebbles of group C into R (and
there is none in P and Q), then it will mark the completion of 103 = 1000 operations.
Of course, if we still continue, we can go upto (10 + 102 + 103) or 1110 operations
whose number can be recorded by the 30 pebbles of the three groupswhen they are all
inside their pits (Fig. 4 shows the stage when 123 operations have been completed).
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Fig. 4 Method of Counting

Exactly in a similar way, the ancient Jaina texts2 ask us to make three pits, called
śalākā, paratı̄śalākā, and mahāśalākā Kun. d. as, each of which is equal (in shape
and size) to the initial form of the variable (anavasthita) pit. Since the capacity of
each of these auxiliary pits is n0 seeds, we shall be able to count upto n3

0 by the
positional method described above. Actually, we have simplified the matter. The fact
is that from themanner inwhich the texts describe the process of filling-and-emptying
the three auxiliary pits, it can be concluded that the operationwas performed n3

0 times.

4 The Function f(r)

We will now discuss the capacity (in terms of number of seeds, n, which it can
contain) when the radius of the variable pit is r. We see that v or v’ is fixed because e
is taken to be constant. Also h is constant (being taken to be 1000 yojanas always),
and H varies linearly with r. Since

n = vol. of cylinder and cone

v or v′ ,

we will have from (9), (10) and (11), or (31), (32) and (36),

n = a1r
2 + a2r

3 (41)

where a1 and a2 are certain constant. Initially the radius of the pit is 50000 yojanas,
but its subsequent value will depend on the serial number N of the ring (of land or
sea, counting from the Jambūdvı̄pa itself as the first ring) where the said operation
of filling and emptying ends. It follows from (3) that the radius of the Nth ring will
be given by

RN−1 = (2N+1 − 3)R0, (42)
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where R0 is the radius of the Jambū Island. Prof. L. C. Jain3 and Muni Mahendra
Kumar Dvitı̄ya4 have mistakenly taken RN−1 to be equal to half of the Valaya-vyāsa
(width of the ring) WN−1 given by (1). The more correct or proper things is to take
it equal to RN−1 which is half the sūcı̄-vyāsa (diameter of the outer boundary of the
ring) DN−1 given by (3).

Another mistake made by both the above scholars is to take the first term in (41)
for making further calculations and neglect the second term which is in fact always
far greater than the first term. If N1 and N2 denote the two terms in (41), we have

N1

N2
= a1

a2 · r
= a3

r
, say. (43)

which becomes smaller and smaller since r goes on increasing very rapidly. Even
the initial value of the ratio N1

N2
is, by (23),

= 33

100π
<

11

100
= 0.11. (44)

Also see (35) in this connection.
Aswill be seen below, the number n3

0 is so large that it cannot be expressed in terms
of the usual number-words or digits or even by simple numerical power-notation.
Therefore the central question is only to find a good lower bound for its value. Hence
we can use some simplifications to have easy calculations.

From (42), it is clear that the radii of the successive rings do not form a geometrical
progression. But we can write that equation as

RN−1 = 2N

(
2 − 3

2N

)
R0

> 2N R0, if N ≥ 2. (45)

Now the initial case of Jambū Island (N = 1) can be treated separately, and for all
other rings we can safely apply (45). Thus we take

r = k2N (46)

where k is constant, and N is equal to 2, 3, 4, 5, etc. According to (45) the constant k
will be equal to r0. But if we take k = r0

2 , we will get what is assumed by the above
two mentioned scholars. However, we are able to take stronger case (k = r0). It must
be remembered that (46) is not to be used for N = 1, which is the case of Jambū
Island for which we know separately that r = r0 = 50000 yojanas.

In the like manner we take another general rule, namely

n = ar p. (47)
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This will cover the first term of (41) when a = a1 and p = 2 and the second term
when a = a2 and p = 3. Of course we know that the latter case (p = 3) will yield
a far greater and therefore a better lower bound than the former. Thus, although the
true form of the function f(r), in the equation (4), is given by (41), we will first go
ahead (see the next section) by assuming the rule (47) for finding all values of n,
utilizing (46) also when the next successive value is found each time.

5 Expressions for Jaghanya-parı̄ta-asam. khyāta

Before calculating various values of n, we recollect the very useful and impor-
tant Jaina concept of Vargita-sam. vargita which will be needed. The (first) vargita-
sam. vargita of x is defined by x x , that is, by raising any number x to power (or index)
x itself. It is denoted by

x�1, or simply x�.

Thus

x� = x x = y, say (48)

The second vargita-sam. vargita of x is written and defined by

x�2 = yy = (x x )xx = z, say (49)

that is, the vargita-sam. vargita of the first vargita-sam. vargita of x is called the second
vargita-sam. vargita of x, or

x�2 = (x�)�.

Similarly if we take the vargita-sam. vargita of x�2, that is of z, we will get the third
vargita-sam. vargita of x. So that

x�3 = (x�2)(x�2) = zz = (yy)yy
. (50)

Similarly for higher vargita-sam. vargita. In general the qth vargita-sam. vargita of x
is written and defined by the relation

x�q = (x�q−1)
(x�q−1)

(51)

where q = 2, 3, 4, etc. (for including the case q = 1, we may define x�0 to be equal
to x itself).
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There are several interesting properties associated with the above concept and
notation. One of them is the relation (which can be easily checked to any base)

log(x�q) = (log x) · x · (x�1) · (x�2) . . . (x�q−1). (52)

It is clear that we can obtain very rapidly increasing divergent sequence by applying
the above definition. For example the various vargita-sam. vargita of the small number
2 will be

2� = 22 = 4, 2�2 = 44 = 256, 2�3 = (256)256

which is a number that contains 617 digits. Let the readers try to find the next figure
of the sequence or ask some computer to do it.

With the above powerful notational tool in our hand, the calculation of the various
successive values of n can be done quite easily. The numerical value of the number
n0 has already been found above in Sect. 2 (it is a 46-digit number). Here by (47) we
will have the relation

n0 = a · (r0)p (53)

where r0 is equal to 50000 yojanas.
The radius r1 of the n0th ring (whichwill be reached at the end of the first operation

of filling-and-emptying) will be, from (46), given by

r1 = k · 2n0 . (54)

The corresponding number n1 (which represents the number of seeds in the variable
pit) will then be, by (47),

n1 = ar p
1 = a · k p · 2p·n0 (55)

by further using (54). These seeds will cover the next n1 rings, thereby reaching the
(n0 + n1)th ring. The radius of this ring will be, by (46),

r2 = k · 2n0+n1 . (56)

And the corresponding number of seeds in the variable pit (with radius r2) will be,
by (47),

n2 = a · r p
2 (57)

= a · k p · 2p·n0 · 2p·n1 (58)

= n1 · 2p·n1 (59)

by using (55). Similarly the next pair of values (or r and n) will be
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r3 = k · 2(n0+n1+n2) (60)

and

n3 = a · r p
3 (61)

= a · k p · 2p·n0 · 2p·n1 · 2p·n2 (62)

= n2 · 2p·n2 (63)

and so on. In general, we have the recurrence relation

ni+1 = ni · 2p·ni (64)

where i = 1, 2, 3, . . . . Therefore we will have

2p·ni+1 = 2(p·ni )×2p·ni (65)

= (2p·ni )
(2p·ni )

= (2p·ni )� (66)

where the right-hand side denotes the (first) vargita-sam. vargita of 2p·ni . Thus

2p·n2 = (2p·n1)2
(p·n1) = cc = c� (67)

where

c = 2p·n1 (68)

Similarly,

2p·n3 = (2p·n2)(2
p·n2 ) = (cc)cc = c�2. (69)

In general, we will have

2p·ni+1 = c�i . (70)

From this we can find the values of all the successive numbers n2, n3, n4, etc., after
finding c by using (55) and (68). In particular, we thus get theoretically the number
nn3

0
also by taking

i = n3
0 − 1. (71)

Let us try a slightly different approach. By using (68), we can write (59) and (63) as

n2 = n1.c (72)
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and

n3 = n1 · c · 2p·n1·c = n1 · c · cc, by (68)

= n1 · c · c�. (73)

Similarly, by (64) etc.,

n4 = n3 · 2p·n3 = n1 · c · cc · 2p·n1·c·c�, by (73)
= n1 · c · c� · c�2. (74)

In general we will have

ni+1 = n1 · c · c� · c�2 . . . c�i−1. (75)

Now we will show that (70) and (75) are equivalent as ought to be. From (70) we
get

p · ni+1 log 2 = log(c�i )

= (log c) · c · c� · c�2 . . . c�i−1, by (52).

This is easily seen to be same as (75) because from (68) we have

log c = p · n1 · log 2. (76)

Thus we see that the giant numbers ni+1 can be expressed by simple relations like
(70) or (75). Even simpler lower bounds can be found from them.

For instance, we have, from (75),

ni+1 > n1.c�i−1

or log

(
ni+1

n1

)
> log c�i−1 = (log c) · c · c� · c�2 . . . c�i−2

by using (52). Thus,

ni+1 > n1 · cc·c�·c�2...c�i−2
> n0 · cc·c�·c�2...c�i−2

. (77)

A result somewhat equivalent to this inequality has been obtained byMuniMahendra
KumarDvitı̄ya in a complicatedmanner.5 Moreover, there are somemistakes (besides
those of printing) in his expressions. For example, from the first two factors in the
power in (77), namely

c · c� or c · cc.
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he mistakenly guessed the next factor to be ccc
instead of the actual one namely

c�2 or (cc)
(cc)

Thus he thought wrongly that the various factors (shown separated by dots) in the
power or index in (77) are formed after c has been self-power-raised (svaghātita) 3, 4,
5, etc., times (after cc) instead of being formed by the respective vargita-sam. vargita
forms of c successively which is the actual case here. Due to this lapse, his conclusion
about the number of c’s which form the last factor in the power of (77) is also not
correct. Instead of (n3

0 − 2) (which he found), the correct number of c’s forming the
last factor ci−2 will be

2i−2, or 2n3
0−3, by (71).

6 Numerical Lower Bounds

We will try to compute the numerical value of the constant c on which depends the
measure of jaghanya-parı̄ta-asam. khyāta. From (55) and (68) we have

c = 2pak p ·2pn0
. (78)

For finding better lower bound we take p = 3 (instead of 2), and k = r0 (instead of
r0
2 ). Thus

c = 23·a·r30 ·23·n0 = 23n0·23·n0 (79)

by (53). We can write this as

c = 8n0 ·8n0
. (80)

We can further change the base from 8 to 10 by writing the above as

c = 10(n0 log 8)·10(n0 log 8)
. (81)

Now the bracketed quantity is

n0 log 8 = 2 · 1153 × 1045 nearly (82)

by using the modern value of n0 given by (30), and

n0 log 8 = 1 · 8036 × 1045 nearly (83)
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if we use the ancient value given by (40). Since we are finding a lower bound, we
should accept the value (83) which is also justified due to historical suitability. Also
we have

1.8036 = 100.25614 nearly (84)

2.1153 = 100.3254 nearly. (85)

Thus by using (83) along with (84) in (81), we can very safely say that

c > 1010
(n0 log 8)

(86)

> 1010
1045.256

(87)

or more simply we have

c > 1010
1045

. (88)

This value of the lower bound is better than that obtained in the Viśva-prahelikā
(pp. 269–271) and which is

1010
1043

. (89)

Again we have

n3
0 = 12.85 × 10135 nearly (modern)

or n3
0 = 7.9656 × 10135 nearly (ancient).

With these values in mind, we find that the ancient Jaina number jaghanya-parı̄ta-
asam. khyāta was, from (70), still far greater than

log
[
c�(n3

0−1)
]

(log 8)
(90)

which is quite a compact expression for the lower bound.
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गोलपृ के लये महावीर-फे सू और वदशे म
उनक झलक

सार श
इस लेख म जस ावहािरक सू क चच क गई है वह है

𝑆 = 𝐶2

4

जह S एक गोले का पृ फल है तथा C उस गोले के के ीय ख (Section) क पिर ध है | भारत म
इस सू क जड़ ग णत महावीराचाय (लगभग 850 ई.) के एक सरल नयम म न हत है और ठ ु र फे
(लगभग 1300 ई.) ने इसका कुछ सुधरा प दया है | योरोप तथा जापान के (बाद के कुछ) म भी
यह सू पाया जाता है |

1 गोल य ख के पृ फल के लये महावीराचाय का सू -

ाचीन काल से ह एक वृ ाकार (circular) े का े फल A नकालने का व (exact) सू

𝐴 = 𝑝 ⋅ 𝜔
4 (1)

व भ स ताओं म पाया जाता है | यह 𝑝 े का घेरा (पिर ध) (perimeter) तथा 𝜔 े क
चौड़ाई (width) या ास (diamter) है | दलच बात यह है क इस सू म समचतुभुज (square)
का े फल भी सह सह आ जाता है जसके लये 𝑝 = 4𝑎, तथा 𝜔 = 𝑎 (= भुजामान) है |
ाचीन काल म यह सू अ ाकार (oval) तथा प वाकार या ने ाकार (जैसे दोहरा वृ ीयख )
े का ावहािरक फल नकालने म उपयोगी था (Gupta 2011, pp. 640–641) |
महा दग र जैन ग णत महावीराचाय ने अपने ग णत सार सं ह (= GSS) म आयतवृ

(elongated circle or ellipse) के े फल नकालने के जो दो सू दये ह (GSS, VII, 21 एवं
63) उन दोन म ह सू (1) का उपायोग कया गया है (Gupta 1974) | ले कन ग णतीय
से उ ेखनीय बात यह है क उ ने जो ावहािरक सू गोल नतोदर (concave) तथा उ तोदर

अहत वचन - 26, अंक - 1–2, जनवर -जून - 2014, पृ सं ा - 03–09. This paper was awarded Arhat Vacana
I Prize, 2014.
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(convex) तल के लये दया ह,ै वह भी (1) का व तृ (extended) प मा म पड़ता है | यह
है (GSS, VII. 25): -

पिरधे चतुभ गो व गुण: स व ग णतफल |
च ाले कूम नभे े े न ो ते त ा || २५ ||

इस मूल सू का अनुवाद इस कार है ( च 1 दखे) | पिर ध के चौथाई भाग तथा (व य)
ास (PVQ = s) के गुणनफल को च ाल जैसे न (नतोदर) और कूमपीठ जैसे उ त (उ तोदर)

सतह का े फल जानो |
अथ 𝑝 पिर ध वाले आधार वृ (base circle) ( जसका ास 𝑃 𝑄 ह)ै के ऊपर खड़े

गोल यख (spherical segment) के पृ का े फल

𝐴 = 𝑝 ⋅ 𝑠
4 (2)

जह 𝑠 ख का व य ास (curvilinear width) 𝑃 𝑉 𝑄 है |
सू दनेे के बाद ह थंकत ने प म दो उदाहरण दये ह जो इस कार ह-

(i) च ाल े का ास 𝑠 = 27, और पिर ध 𝑝 = 56 है | उसका े फल ा ह?ै (उ र
378)

(ii) कूम नभ े का व 𝑠 = 15, तथा पिर ध 𝑝 = 36 है | उसका ावहािरक े फल
ा ह?ै (उ र 135)

दोन उदाहरण म पिर ध 𝑝 का मान अपने-अपने ास ( व ) 𝑠 के तगुने से ब त कम
है | अतः है क सू (2) म 𝑠 का अथ आधार वृ का ास 𝑃 𝑄 नह है | फर भी
ा ापक रंगाचाय ने जब 𝐺𝑆𝑆 का अं जेी अनुवाद (म ास 1912) कया तो उसम 𝑠 = 𝑃 𝑄
लया जो उ चत नह लगता | ा. ल ीचंद जैन ने अपने ह ी अनुवाद (शोलापुर 1963) म उनका
ह अनुसरण कया |

सू 𝐺𝑆𝑆, VII. 25 म आये ` व ' (= ास) श का अथ `व य ास' (curvilinear
diameter or width) 𝑃 𝑉 𝑄 लेने क बात इस लेखक ने 1974 म तु (1975 म का शत) एक
छोटे से शोधप म क थी | स ता क बात है क अ धकतर वशेष ने इस नये शा क अथ
(interpretation) को मान लया है (दखे Hayashi तथा जैन और अ वाल p. 49) आशा है क
व ान इस ओर ान दगे |
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2 सू (2) क ता का ववेचन-

महावीराचाय ने यं अपने सू (2) को ावहािरक णेी म रखा है न क सू णेी म | अथ
सू से व या पूण (exact) पिरणाम अपे त नह है | यह हम कुछ नये ढगं से उसक

ता क ज च करगे | पहले हम ाचीन जैन ग णत म यु नयम से गोलख का े फल
नकालगे | सव व दत सामा सू से-

𝑝 = 𝜋𝑐 (3)

जह 𝑐 = 𝑃 𝑄 ( च 1 दखे) | एक अ सटीक सू से

4ℎ (𝑑 − ℎ) = 𝑐2 (4)

जसम ℎ गोल य ख क ऊँचाई 𝑉 𝑀 है तथा 𝑑 (= 2𝑅) संपूण गोले का ास (=अध ास
𝑉 𝑂 का गुना है | यह 𝑑 उस ऊ वृ (vertical circle) का भी ास है जसका वृ ीय ख
𝑃 𝑉 𝑄𝑃 है | इस वृ ीयख (segment of circle) के लये ाचीन जैन ग णत के एक वशेष
नयम के अनुसार (Gupta 1979 तथा 1989)

𝑠2 = 𝑐2 + (𝜋2 − 4)ℎ2 (5)

जसका उपयोग 𝐺𝑆𝑆 म आ है (VII, 43 b तथा 731/2)
यह हम 𝑝 तथा 𝑠 के मान मा म ह | इनक मदद से पहले (3) से 𝑐 का, फर (5) से ℎ

का, और अ म (4) से 𝑑 का मान ा हो जाएगा | आधु नक ग णत के अनुसार गोलख का
सह (exact) े फल

𝐴0 = 2 𝜋 𝑅 ℎ. (6)

इसम (4) से 𝑑ℎ (= 2𝑅ℎ) का मान रखने से

𝐴0 = 𝜋 (ℎ2 + 𝑐2

4 ) (7)

जो पूणतया सह (exact) है | अब ावहािरक सू (5) का उपयोग करके

𝐴0 = (
𝜋𝑐2

4 ) + 𝜋(𝑠2 − 𝑐2)
(𝜋2 − 4)

. (8)

अंत म (3) से 𝑐 का मान रखकर सरल करण करने पर हम ा होगा

𝐴0 = 4𝜋2𝑠2 + (𝜋2 − 8)𝑝2

4𝜋(𝜋2 − 4)
. (9)

नयम (5) के इ मेाल के कारण अब सू (9) से व ता क अपे ा नह करना चा हए |
फर भी ावहािरक सू (9) को लगाकर नकाले गए े फल क तुलना महावीराचाय के अ
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सरल सू (2) से ा मान से क जा सकती है | ाचीन जैन ग णत म सामा तया 𝜋 = 3 ( लू)
तथा 𝜋 = √10 (सू ) लेकर गणना क जाती है | संल सािरणी (Table 1) म व भ े फल
दये गए ह |

सािर ण क तैयार म पॉकेटगणक (calculator) का उपयोग कया गया है | यह ान रहे क
महावीराचाय के सू (2) म 𝜋 क सीधे कोई भागीदार नह है | ले कन (9) म 𝜋 स य है |
सू (2), (3) तथा (6) से

𝐴
𝐴0

= (𝜋𝑐)𝑠
8𝜋𝑅ℎ = 𝑐𝑠

8𝑅ℎ

Table 1. े फल सािरणी (Table of Areas)

उदाहरण 𝐺𝑆𝑆 से सू (2) से सू (9) से े फल आधु नका व ध
s p े फल 𝜋 = 3 𝜋 = √10 सह 𝜋 से े फल

(i) 27 56 378 489.67 466.86 469.67 471.5

(ii) 15 36 135 156.60 152.74 153.28 155.3

इसम सरल कोण मतीय संबंध जैसे ( च 1 दखे)
𝑠 = 2𝑅𝜃; 𝑐 = 2𝑅 sin 𝜃; ℎ = 𝑅(𝑙 − cos 𝜃), लगाकर सरल करण करने पर हम पायगे क

𝐴
𝐴0

= (
𝜃
2 )

[tan 𝜃
2 ]

जसका मान यह हमेशा धन (positive) और एक से कम है | अतः सू (2) से ा े फल सदा
सह मान से कम होगा |

3 महावीराचाय के का आधु नक हल-

कसी गोलख म 𝑝 तथा 𝑠 के मान ात होने पर उसके े फल नकालने क एक आधु नक
व ध इस कार है | च 1 म भुज 𝑀𝑂𝑃 से

तथा sin 𝜃 = 𝑃 𝑀
𝑂𝑃 = 𝑐

2𝑅 = 𝑝
2𝜋𝑅 (10)

𝜃 = (arc 𝑃 𝑉 )
𝑅 = 𝑠

2𝑅. (11)

इन दो संबंध से हम कोण 𝜃 नकालने के लये समीकरण (equation) मलती ह-

sin 𝜃 = 𝑝 𝜃
𝜋𝑠 . (12)
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इस समीकरण (12) म कोण 𝜃 का मान रे डयन (radians) म है | य द मान को अंश (degrees)
म ल तो समीकरण का प होगा

sin 𝜃 = 𝑝 𝜃
180𝑠 . (13)

महावीराचाय के पहले (𝑠 = 27, 𝑝 = 56) तथा सरे (𝑠 = 15, 𝑝 = 36) उदाहरण के लये कोण
𝜃 नकालने के लये समीकरण मशः होगी

sin 𝜃 = 14𝜃
1215 . (14)

तथा
sin 𝜃 = 𝜃

75 . (15)

इन समीकरण को ाचीन या आधु नक कसी व ध से हल कया जा सकता है | असकृतकम
(interation) क व ध लगाकर ा हल (दो दशमल ान तक) ह |

𝜃 = 86.64 अंश ( थम उदाहरण) (16)

तथा
𝜃 = 70.85 अंश ( सरा उदाहरण) (17)

अब व (exact) सू (6) से गोलख का सह े फल

𝐴0 = 2𝜋 (1 − cos 𝜃) 𝑅2 (18)

जह ℎ = (𝑅 − 𝑅 cos 𝜃) ले लया गया है | इसम

𝑝 = 𝑐𝜋 = 2𝜋𝑅 sin 𝜃

का उपयोग करके सरल करने पर

𝐴0 = 𝑝2

2𝜋(1 + cos 𝜃) . (19)

इस सरल सू म 𝜃 के ऊपर नकाले गये आधु नक मान के लये महावीराचाय के दोन
उदाहरण म े फल नकाला जा सकता है |एक दशमलव तक यह े फल 471.5 तथा 155.3
आते ह ज सारणी म लख दया गया है |

कुछ ावहािरक सू लगाकर हायाशी (p. 201) ने 𝜃 के जो लमान (86.25 तथा 67.70)
नकाले उनक तुलना ऊपर नकाले गये आधु नक मान से क जा सकती है | इसके अ तिर
सू (9) क तरह, जैन पर रा के सू को लगाकर sin 𝜃 के लये एक ापक (general) सू
भी नकाला जा सकता है | यह इस कार है | च 1 से

sin 𝜃 = 𝑐
2𝑅 = 4𝑐ℎ

4𝑑ℎ = 4𝑐ℎ
(𝑐2 + 4ℎ2)

, सू (4) से |
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अब इसम (5) से ℎ का मान रखने पर

sin 𝜃 =
4𝑐√

(𝑠2−𝑐2)
(𝜋2−4)

𝑐2 + 4(𝑠2−𝑐2)
(𝜋2−4)

.

इसम (3) का उपयोग करके, सरल करने से

sin 𝜃 = 4𝑝√(𝜋2 − 4)(𝜋2𝑠2 − 𝑝2)
4𝜋2𝑠2 + (𝜋2 − 8)𝑝2 . (20)

ावहािरक सू (20) क वशेष बात यह है क इसे लगाकर कसी भी उदाहरण म मनचाह
𝜋 के मान के लये सीधे कोण 𝜃 का मान नकाला जा सकता है | अथ एक-एक करके पहले
𝑐, ℎ तथा 𝑑 नकालने क ज रत नह है | एक नमूना पय होगा | महावीराचाय के तीय
उदाहरण (𝑠 = 15, 𝑝 = 36) तथा सरलतम ावहािरक 𝜋 = 3 लेने पर सू (20) से

sin 𝜃 = 12√5
29 .

जो ाचीन जैन ग णत लगाकर ा सह (exact) मान दगेा | दो दशमलव तक राउ करने पर
𝜃 = 67.71 अंश आता है |

4 संपूण गोले (sphere) के लये दशे- वदशे म महावीर-फे सू -

उ तोदर तल म गोलाध क बा सतह का मामला रोचक है | य द इसके आधार वृ क पिर ध
𝐶 हो तो सू (2) म

𝑝 = 𝐶, तथा 𝑠 = 𝐶
2

होगा | अतः गोलाध का व य पृ फल 𝐶2

8 होगा |इस कार हम कह सकते ह क एक संपूण
गोले (sphere) का गोल य पृ फल (spherical surface area)

𝑆 = 𝐶2

4 (21)

जह गोले के कसी भी महावृ (great circle) क पिर ध 𝐶 है |
सू (21) को महावीराचाय ने (explicit) प म नह दया ह,ै ले कन वह उनके सू (2)

का सीधा पिरणाम है | बाद म ठ ु र फे (लगभग 1300 ई.) ने अपनॆ थं ग णतसार कौमुदी म
दो ल (III. 65 तथा V. 25) पर (21) का थोड़ा सा सुधरा प इस कार दया ह-ै
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𝑆1 = (
10
9 ) (

𝐶2

4 ) . (22)

ान दनेे यो बात यह है क सुधारक गुणक (
10
9 ) भी फे ने महावीराचाय से हण कया

आ मा म पड़ता है | महावीराचाय ने इस गुणक का उपयोग करके अपने गोले के आयतन वाले
सू को पिरव तत प म दनेे के लये कया था (Gupta 2011, pp. 650–653) | अतः दोन को
ये दतेे ए हम (21) को महावीर-फे सू कहगे, तथा (22) को उसका सुधारा (modified) प |

ाचीन जैन ग णत म वृ पिर ध और ास संबं धत नयम (𝐶 = 𝜋𝑑) का लू ( ावहािरक)
प

𝐶 = 3𝑑. (23)

तथा सू प
𝐶1 = √10𝑑2 (24)

सव व दत है | अतः
𝐶1 =

(
√10

3 )
𝐶. (25)

जससे है क य द हम (21) को गोलपृ का लू नयम कह तो (22) को उसका सू
कहगे | संभव है क ठ ु र फे ने (25) का उपयोग करके (22) ा कया हो | ात है क
गोलपृ का (exact) सू हःै-

𝑆0 = 𝐶2

𝜋 . (26)

सू (21) के बारे म एक ब त ह रोचक ऐ तहा सक त यह है क वह बाद म अनेक वदशेी
थं म पाया जाता है | इटल (Italy) क ऐसी ह ल खत पो थय (manuscripts and codices)

क सूचना हम Simi और Rigatelli के लेख के आधार पर दे रहे ह जो इस कार है (Simi and
Rigatelli, pp. 466–469):-

बोलो ा (Bologna) व व ालय के पु कालय के एक ह ल खत थं Ms. 1612 (वष 1464
ई.) का रचनाकार Piero Jachon di Maestro Antonio de Chapelam था जो वह का नवासी
था | उसने सू (21) को

𝑆 = (
𝐶
2 )

2
(27)

के प म दया | यह सू ोरे (Florence) के रा ीय पु कालय के ह ल खत थं Palat
575 (वष 1460 ई. के लगभग) तथा वह के एक अ पु कालय के Pluteo 30, 26 (वष 1370)
के लेखक ने दया है |

जापान म तो महावीर-फे सू (21) ईसव क 17 व शता ी के अनेक थं म पाया जाता
है | जैसे इमामूरा चशो (Imamura Chishō) के 1639 ई. म छपे Jugai-roku नाम के थं म
(Mikami, p. 296) | यह थं मूल प म ा सकल चीनी भाषा म लखा गया था जसका बाद
म जापानी भाषा म अनुवाद कया गया | इमामूरा के श Andō Yūyeki ने अपनॆ गु के उ
थं को अपनी टीका के साथ 1660 ई. म छपाया |
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स 1660 ईसव म ह सू (21) जापान के इसोमा क ोकू (Isomaru Kittoku) र चत
जापानी थं Ketsugi-shō म भी दखेने को मला | इसका सरा सं रण 1684 ई. म छपा | इस
सं रण म लेखक ने लखा है क उ सू (21) क जानकार न ल खत जापानी थंकार
को थी (Smith and Mikami, pp. 74–75):-

(i) Mōri (1600 ई. के लगभग) (= मोर या मओर )
(ii) यो शदा (Yoshida) (1627 ई.) (मोर के श )

(iii) इमामूरा (1639 ई.)
(iv) तकाहारा क ू (Takahara Kissu) (इसोमा के गु ज यो शताने Yoshitane

भी कहते थे)
(v) हरागे (Hirage)

(vi) शमोदा (Shimoda)
(vii) इ ा द (जैसे सु मदा Sumida) (Mikami p. 296)

दलच बात यह भी है क इसोमा ने सू (21) को एक ाचीन व ध बताया और माना था
क उनके पहले सह (exact) सू जापान म कसी को भी मा म नह था | बाद म इसोमा ने
ब त ह सरल क ु बु पूण व ध से सह सू का पता लगा लया था जो था

𝑆0 = 6 × (गोले का आयतन)
( ास) .

यह सू सह सू (26) का ह एक अ प है | वा व म (26) तथा इसोमा के प को
सरल करने पर उनका आधु नक प

𝑆0 = 4𝜋𝑅2

मलता है जसे सू (6) म ℎ = 2𝑅 रखने से भी ा कया जा सकता है |
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Part V

Geometry



Brahmagupta’s Formulas for the Area
and Diagonals of a Cyclic Quadrilateral

1 Introduction

Let ABC D be a plane (convex) quadrilateral with sides AB, BC,C D and D A equal
to a, b, c and d, respectively. Let the figure be drawn in such a manner that we may
consider, according to the traditional terminology, the side BC to be the base (bhū),
the side AD to be the face (mukha), and the sides AB and DC to be the flank, sides
(bhujas or arms) of the quadrilateral.

Since a quadrilateral is not uniquely defined by its four sides, its shape and size
are not fixed. So that, by merely specifying the four sides, the question of finding its
area does not arise. That is why Āryabhat.a II (950 ad) in his Mahāsiddhānta XV. 70
says:1

The mathematician who desires to tell the area or the altitude of a quadrilateral without
knowing a diagonal, is either a fool or a devil.

Brahmagupta (628 ad)2 in his Brāhmasphut.asiddhānta (BSS) has given two rules
(see below) for finding the area of a quadrilateral in terms of its four given sides.
One of the rules is for getting a rough value of the area and the other for an accurate
(sūks. ma) value. Now, Brahmagupta’s formula for the area of a quadrilateral gives the
exact value only when the quadrilateral is cyclic, although he has not specified this
condition. But the conditionmay be taken to be understood, especiallywhenwe know
(see below) that his expressions for the diagonals of the quadrilateral are also true
only when the figure is cyclic, otherwise the diagonals have remained undefined.
In fact, Brahmagupta does speak of the circum-circle (kon. aspr. g-vr. tta) and the
circum-radius (hr. daya-rajju) of triangle and quadrilateral in connection with some

The Mathematics Education, Vol. VIII, No. 2, 1974, pp. 33–36.
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other rules which are given between his rule for the area and that for the diagonals
of the (cyclic) quadrilateral.3

2 Rules for the Area

The BSS XII. 21 (Vol. III, p. 816) states:

The product of half the sums of (the two pairs of) the opposite sides of a triangle or a
quadrilateral, gives the gross area. Set down half the sum of the sides in four places (and)
diminish them by the (four) sides (respectively). The square–root of the product (of the four
numbers) is the accurate area.

The formulas coded in the above verse may be expressed as:

gross area = 1

2
(a + c)× 1

2
(b + d) (1)

accurate area = √
(s − a)(s − b)(s − c)(s − d) (2)

where s = (a + b + c + d)

2
. (3)

The above formulas are stated to be applicable to the quadrilateral as well as to the
triangle. In the latter case we have to take the face d to be zero. Thus, in the case of
a triangle of sides a, b, c, we have

gross area = b

2
× (a + c)

2
(4)

accurate area = √
s(s − a)(s − b)(s − c) (5)

where s = (a + b + c)

2
. (6)

We see that it does not matter much whether the formula (1) is used for cyclic or
other quadrilaterals, since, after all, it is stated to be a rough one only. Formula (2) is
know to give exact area only in the case of cyclic quadrilateral. However, the formula
(5) is applicable to every triangle. But the formula (4) has now an additional defect
of not yielding a unique (though rough) value of the area of a triangle, because we
may get different results by regarding each of the sides a, b, c to be ‘base’ in turn.

Anyway, equivalent rules, which yield formulas (1) and (2), have been given by
several subsequent Indian writers with or without some additional comments. Some
of these will be noted now.
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Śrı̄dhara in his Pātı̄gan. ita (PG)4 has reproduced, word by word, BSS rule which
gives the formula (1). However, he adds the following remarks immediately after
quoting the rule.5

But this result (1) is true only for those figures in which the difference between the altitude
and the flank sides is small. In the case of other figures the above result is far removed from
the truth; as for example, in the case of the triangle having 13 for the two (flank) sides and
24 for the base, the gross area is 156, whereas the correct area is 60 (PG, rule 112–114).

An ancient commentator of the PG even goes further and points out an interesting
theoretical defect of the rule (1) or (4) other than its grossness. He says (p. 160) that
the rule may yield a rough answer for the area even in the case of impossible figures,
and gives the example of a triangle of base 20 and flank sides 13 and 7. Since the sum
of the two sides is equal to the third (base), no triangle is possible, but the formula
(4) will give 100 for its gross area.

The Mahāsiddhānta XV. 69 (p. 165) gives the BSS rule for the accurate area,
but it is laid down there for a triangle only and not for a quadrilateral. Bhāskara II
(ad 1150) in his Lı̄lāvatı̄, rule 169, has also given the same rule but with the remark
that it gives exact area for a triangle and inexact (as. phut.a) for a quadrilateral.

6

3 Some Historical and Other Remarks

The approximate formula (1) was used outside India much before the date of Brah-
magupta. The Babylonians of the ancient Mesopotamian valley are stated to have
used it in finding the area of a quadrilateral.7 The same formula can be gathered
from the inscriptions (about 100 bc) found on the Temple of Horus at Edfu.8 In this
type of Egyptian mensurational mathematics, the triangles were regarded9 as cases
of quadrilaterals in which one side (the face) is made zero, just as what is met with
in Brahmagupta.

The Chinese mathematical work Wu-t’sao Suan-ching (about fifth or sixth cen-
tury) applies the formula (1) for computing the area of a quadrangular field whose
eastern, western, southern and northern sides are given to be 35, 45, 25 and 15 paces
respectively.10 The formula (5) for the area of a triangle is generally called Heron’s
Formula, but, according to some medieval Arabic scholars, it was known even to
Archimedes (third century bc ).11

How Brahmagupta arrived at his formula (2), is difficult to say with certainty. For
an exposition of the attempted proof, of this formula, as given by Gan. eśa Daivajña
in his commentary (1545 ad) on the Lı̄lāvatı̄, a paper by M. G. Inamdar may be
consulted.12 The Yukti-bhās. ā (=YB, sixteenth century) also contains a proof of the
same formula.13
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4 Brahmagupta’s Expressions for the Diagonals

The BSS XII. 28 (Vol. III, p. 836) states:

The sums of the products of the sides about the diagonals be both divided by each other; mul-
tiply (the quotients obtained) by the sum of the products of the opposite sides; the square-root
(of the results) are the two diagonals (vis. ame?).

That is

AC =
√

(ac + bd)
(ad + bc)

(ab + cd)
(7)

and B D =
√

(ac + bd)
(ab + cd)

(ad + bc)
. (8)

Brahmagupta’s Sanskrit stanza, giving these diagonals, has been quoted verbatim
by Bhāskara II in his Lı̄lāvatı̄14 with the remark that ‘although indeterminate, the
diagonals are sought to as determinate by Brahmagupta and others’. It may be noted
that from (7) and (8), we immediately get

AC × B D = a.c + b.d, (9)

which is called the Ptolemy’s theorem for cyclic quadrilateral after the famous Greek
astronomer of the second century ad. The YB (pp. 232–33), however, follows the
opposite procedure of deriving (7) and (8) from (9) and some other relations.

Brahmagupta’s expressions for the diagonals are considered to be the ‘most
remarkable in Hindu geometry and solitary in its excellence’ by a recent historian of
mathematics.15 The formula (8) is stated to be rediscovered16 in Europe by W. Snell
(about 1619 ad).
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On the Volume of a Sphere in Ancient
India

1 Introduction

Seidenberg’s paper “On the Volume of a Sphere” appeared in the Archive for the
History of Exact Sciences, Vol. 39 (1988), pp. 97–119. He had conveyed it in January
1988 but could not see its proofs due to his death a few months later on May 3. The
present article may be considered as a sequel to his paper although a version of it
containing the basic findings was presented during the Seminar on Astronomy and
Mathematics in Ancient and Medieval India, Calcutta, May 19–21, 1987.

The famous Greek mathematician Archimedes (third century bc) states in the
preface of his treatise, On the Sphere and Cylinder, that the formula

volume = (area of base) ⋅ (altitude)
3 (1)

for any pyramid (including cone) was already known to Eudoxus (circa 370 bc), but
that the formula

𝑉 = (
2
3) ⋅ (vol. of circumscribed cylinder) = (

4
3) ⋅ 𝜋𝑟3 (2)

for the sphere was unknown to geometers before his own time.1 The Chinese work,
Chiu Chang Suan Shu (“Nine Chapters on Mathematical Art”), of about 100 bc
contains a rule which implies

𝑉 = (
9

16)𝑑3 = (
9
2)𝑟3 (3)

for the sphere.2 The commentator Liu Hui (third century) interprets this in a manner
which implies3

Historia Scientiarum, No. 42 (1991), pp. 33–44. Dedicated to the memory of Professor Abraham
Seidenberg (1916–1988).

© Springer Nature Singapore Pte Ltd. 2019
K. Ramasubramanian (ed.), Gaṇitānanda,
https://doi.org/10.1007/978-981-13-1229-8_23

177



178 On the Volume of a Sphere in Ancient India

𝑉 = (
𝜋
4 )

2
𝑑3 = (

𝜋2

2 )𝑟3. (4)

And, although Tsu Keng-chih (fifth century) gave a derivation of the correct formula

(𝑉 = 𝜋𝑑3

6 ), the use of the crude relation (3) continued in China, through her Golden

Era, by mathematicians such as Yang Hui (thirteenth century) and Chu Shi-chih
(circa 1300).4

Archimedes gave two derivations of (2), one based on the method of balancing
and the other on the method of exhaustion.5 The Chinese proof utilized a sort of Cav-
alieri’s Theorem.6 Surprisingly, the process of averaging, which was quite popular
in ancient and medieval times,7 also leads to formula (2) if, in contents, the sphere
is taken to be the mean between the inscribed double cone and the circumscribed
cylinder. For, if a cone, a hemisphere, and a cylinder all have a common base and a
common altitude (= 𝑟), then the mean of the volumes of the cylinder and the cone is

= 1
2 (𝜋𝑟3 + 𝜋𝑟3

3 ) = (
2
3)𝜋𝑟3, (5)

which is exactly the volume of the hemisphere. This also shows that the mere oc-
currence of the correct expression for the volume of a sphere in some work does not
necessarily imply that a correct proof was also known.

For practical purpose, a fairly accurate formula (of the type 𝑉 = 𝑘𝑟3) could be
obtained by weighing a solid sphere of known density, or by comparing its weight
with that of a cube of the same material.

2 Āryabhaṭa I’s Rule

According to Sarasvati Amma,8 we do not come across any authentic mention of
the sphere in India before the time of Āryabhaṭa I (born ad 476). She is not sure
as to whether the term ghana-parimaṇḍala means a cylinder or a sphere. But other
scholars9 have taken it to mean an elliptic cylinder in contradistinction to the term
pratara-maṇḍala (“plane-ellipse”) as found in the Jaina canonical work, Bhagavatī -
sūtra (Sūtra 726).

Āryabhaṭa’s peculiar rule is contained in his Āryabhaṭīya, II (gaṇitapāda), 7,
which is:10

समपिरणाह ाध व ाधहत एव वृ फल |
त जमूलेन हतं घनगोलफलं नरवशेष ||
Half the circumference multiplied by half the diameter is the area of a circle, that multiplied
by its own square-root is the volume of a sphere without remainder.

That is,

(
𝑐
2)(

𝑑
2 ) = area of a circle, 𝐴 say. (6)
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Then
𝐴√𝐴 = volume of the sphere, 𝑉 . (7)

By taking 𝜋𝑟2 for 𝐴, scholars transform the working relation (7) to amathematical
formula, namely,

𝑉 = 𝜋√𝜋 ⋅ 𝑟3 (8)

from which unnecessary conclusions are often drawn. Thus Smith,11 by a com-
parison to correct expression (2), infers that the rule (8) “would make 𝜋 equal to
16
9 , possibly an error for the (

16
9 )

2
of Ahmes”, the scribe of the famous Egyptian

Rhind Mathematical Papyrus (about 1600 bc). This is unjustified. First, because
Āryabhaṭa’s rule is based on a different consideration (see below) and so the ques-
tion of comparing (8) with (2) does not arise. And second because Āryabhaṭa knew
the far better value 3.1416 of 𝜋 (Āryabhaṭīya, II, 10) and hence there is no need or
ground of assuming his use of the bogus value 𝜋 = 16

9 , or of imagining any possible

confusion with the Egyptian value 256
81 .

Parameśvara (early fifteenth century) in his commentary on Āryabhaṭīya, II, 9
says:12

घनगोलेऽ प वृ फल मूल उ ायः ||
In a sphere also, the square-root of the area of a (great) circle is the (effective) altitude.

That is,
√𝐴 = effective height or altitude, ℎ. (9)

So that
𝑉 = 𝐴 ⋅ ℎ. (10)

Of course, exact volume can always be found by using correct effective height.
However, the correct effective height here is 4𝑟

3 , and not that which is given by (9).
Nīlakaṇṭha (about 1501) has explained the calculation of the volume of a sphere in

terms of an effective side of an equivalent cube. In his commentary on Āryabhaṭīya,
II, 7, he says:13

अ फले मू लते पुन मतचतुर बा ः ा | एवं वृ े णे समचतुर ं
स ादनीय | एवं घनगोल सम ादशा आप ा प त तुर बा तु एव
ादश बाहवः | त ा त ा घन एव गोलघनफल ... ||

Here the square-root of an area is the side of the square constructed (from that area). Thus
from a circular figure an equivalent square can be made. Similarly, the cubic contents of a
sphere too can be represented by an equivalent cube whose side is equal to the side of the
square (base or face). Hence the cube of that side is the volume of the sphere.

However, Nīlakaṇṭha is not right in regarding √𝐴 to be the side of the equiv-
alent cube. The correct effective side is the cube root of the volume of the sphere.
Anyway, it appears that Āryabhaṭa propounded, according to the discussion of the
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above commentators, his rule (7) by analogy to a cube for which the square-root of
its square sectional area is actually both the effective height ℎ and the effective side
𝑎. That is,

cube’s 𝑉 = 𝐴 ⋅ ℎ = 𝐴√𝐴 = (√𝐴)3 = 𝑎3. (11)

The commentaries of Parameśvara and Nīlakaṇṭha do not regardĀryabhaṭa’s rule
to be approximate. In fact, Parameśvara takes the descriptive expression
‘niravaśeṣam’ (“without remainder”) to mean ‘sphuṭam’ (“exact”). Sūryadeva
Yajvan (born 1191) in his commentary says:14

शा ा रेषूपाया रदशना एव अ भधान |
Due to occurrence of a different (i.e. non-exact) method given in some other work, the rule
is called here like that (i.e. exact).

Bhāskara 1 (629 ad) in his commentary explains the expression as follows:15

नरवशेष | न क अनेन कमणा श ते | येना ने कमणा घनगोलफल
आनय न तेन घनगोलफलं नरवशेषं भव त, ावहािरक ा त कमणः... |
Niravaśeṣam (means that) nothing is left out by applying this method. By which it is made
clear that the volume found by other method, the result is not niravaśeṣam because of the
practical nature of that method.

Bhāskara I then quotes the other rule (see the next section). From the numerical
examples solved by Bhāskara I and Sūryadeva Yajvan, no indication is given that
Āryabhaṭa’s rule was considered to be crude or rough. In fact, answers to the exam-

ples have not been worked out fully and are left in the form √𝑁 possibly for fear
of leaving out remainder after extracting the square-root up to certain stage thereby
violating the niravaśeṣam claim.

The examples given by Bhāskara I correspond to 𝑑 equal to 2, 5, and 10, while
that of Sūryadeva to 𝑑 = 8. But it is interesting to note that no units are mentioned
at all for any of these linear measures.

We have seen that, although Āryabhaṭa’s rule is very crude, he or his four com-
mentators do not explicitly mention this crudeness or even its non-exactness. Shukla
remarks15 that “mathematicians and astronomers in northern India too regarded
Āryabhaṭa I’s formula as accurate and went on using it even in the second half of
the ninth century ad”, and he cites the case of Pṛthūdaka Caturveda (860 ad) who
prescribed it in his commentary on the work of Brahmagupta (628 ad) who himself
is silent on the matter. Bhāskara II (twelfth century) who knew the correct rule (see
below) tried to defend Pṛthūdaka by saying that after all16

चतुवदाचायः परमत उप वा ||
Professor Caturveda has given other’s opinion.
(So he should not be blamed for the wrong rule.)

Lastly it may be pointed out that in some German translations, the Sanskrit text
is interpreted in such manners as to yield not the wrong formula (7) for volume, but
the correct formula for rather the surface of a hemisphere.17
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3 The Jaina Tradition

While commenting on Āryabhaṭa’s rule, Bhāskara I quotes the following empirical
(vyāvahārika) rule:18

ासाधघनं भ ा नवगु णत अयोगुड घनग णत ||
The cube of the semi-diameter (when) halved and multiplied by nine gives the volume of a
sphere.

That is

𝑉 = (
9
2) ⋅ (

𝑑
2 )

3
= (

9
2) ⋅ 𝑟3. (12)

It is likely that Āryabhaṭa knew this rule and was led to designate his own rule as
exact niravaśeṣam to proudly distinguish it from the above approximate (sāvaśeṣam
or sthūlam) formula. It is also probably that (12) was already found in some early
Jaina work as it is found in several subsequent works of the Jaina School. After all,
Bhāskara I also quoted the well-known Jaina rule for perimeter of a circle19

𝐶 = √10𝑑2,

while commenting similarly on Āryabhaṭīya, II, 10, which gives

𝐶 = (
62832
20000)𝑑.

Mahāvīra (about 850 ad), a famous Jaina mathematician, in his Gaṇita-sāra-
saṅgraha (=GSS), VIII, 28, has given (12) in similar wording:20

ासाधघनाधगुणा नव गोल ावहािरकं ग णत ||
Half the cube of the semi-diameter multiplied by nine is the practical volume of a sphere.

That is,

𝑉 = (
9
2) ⋅ (

𝑑
2 )

3
, (13)

which is further taken to be as

𝑉 = (
3
2) ⋅ 𝜋𝑟3 (14)

by Sarasvati Amma since 𝜋 = 3 for practical purposes according to Mahāvīra.
Subsequently the same formula (13) is also found in the following Jaina works:

(i) Tiloya-sāra (= Triloka-sāra), gāthā 19, of Nemicandra (about 975 ad).21

(ii) Gaṇita-sāra (in Prakrit), V, 25, of Ṭhakkura Pherū (about 1300 ad), where the
rule is given in the form22
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𝑉 = (
3
4) ⋅ (

3
4) ⋅ 𝑑3. (15)

Indian mathematicians were aware of the roughness of the rule (although not
stated so in the above two works) and believed it to be based on the crude value
𝜋 = 3. However, the corresponding formula with general 𝜋 was not (14) as thought
by Sarasvati Amma; it was rather (4) although both are actually wrong or false. Our
conjecture that (13) was believed byMahāvīra to be based on (4) with 𝜋 = 3 is shown
by the fact that he gave the corresponding sūkṣma (“accurate”) formula as

𝑉 ′ = (
10
9 )𝑉 , (16)

which is obtained by adjusting the rough value 𝑉 by means of his sūkṣma value

𝜋′ = √10 in (4) since

𝑉 ′

𝑉 = (
𝜋′

𝜋 )
2

= 10
9 .

That Mahāvīra used 𝜋 = 3 as a rough value and 𝜋′ = √10 as the accurate value
is already known from his set of rough and accurate rules for the perimeter and area
of a circle (𝐺𝑆𝑆, VII, 19, 60), arc of a circular segment (𝐺𝑆𝑆, VIII, 43, 45, 73),23

etc. The original Sanskrit text as found in the manuscripts of the 𝐺𝑆𝑆, VIII, 28.5
runs as follows:24

त वम शं दशगुण अशेषसू ं फलं भव त ||
The ninth part of that (rough value 𝑉 just found in the previous line) multiplied by ten
becomes the accurate volume without remainder.

That is,

𝑉 ′ = (
𝑉
9 ) ⋅ 10 = 5𝑟3. (17)

However, since 𝑉 already gives a value in excess of the correct volume, formula
(17) has become bad to worse which is contrary to the intended improvement or ac-
curacy. Hence the modern editors and translators (M. Rangacharya and L. C. Jain)25

have adopted the following emended text for the above original of Mahāvīra:
त शम शं नवगुण अशेषसू ं फलं भव त ||
The tenth part of that (rough value 𝑉 ) multiplied by nine is the accurate volume with no
remainder.

That is,

𝑉 ′ = (
9𝑉
10 ) = (

81
20)𝑟3 = (4.05)𝑟3. (18)
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This yields a far better value than 𝑉 and is quite comparable to the modern value

(
4𝜋
3 )𝑟3 = (4.188)𝑟3 nearly. (19)

If Sarasvati Amma’s interpretation of (13) as (14) were correct, the accurate for-
mula expected from Mahāvīra would be

𝑉2 = (
3
2) ⋅ √10𝑟3 = 4.74𝑟3 nearly, (20)

instead of (17) or (18).
There is another way of arriving at (12) and showing that it was based on taking

𝜋2 = 9. The method is based on finding the surface area of the sphere by a rule given
by Mahāvīra and as newly interpreted by the present writer in an earlier paper.26

𝐺𝑆𝑆, VII, 25 states:27

पिरधे चतुभ गो व गुणः स व ग णतफल |
च ाले कूम नभे े े न ो ते त ा ||
Know that one fourth of the perimeter multiplied by the curvilinear breadth is the area of
the concave or convex spherical surface resembling the sacrificial fire-pit or the back of a
tortoise.

That is,

𝑆 = (
𝑝
4) ⋅ 𝑏. (21)

By applying this for a hemispherical surface, the area of the sphere’s surface will be

𝑆 = 2(
2𝜋𝑟

4 ) ⋅ 𝜋𝑟 = 𝜋2𝑟2, (22)

against the mathematically correct value 4𝜋𝑟2. If we now apply the empirical for-
mula

𝑉 = (
1
2)𝐴ℎ, (23)

for the volume of a pyramid which, although wrong, was used often in India and
abroad during olden days,28 we get the volume of the sphere to be

𝑉 = (
1
2) ⋅ 𝑆 ⋅ 𝑟 = (

1
2) ⋅ 𝜋2𝑟3, (24)

by the usual method of regarding the sphere to consist of a large number of pyramids
with their common vertex at the centre. And by taking 𝜋2 equal to nine we get the
required result (12).
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There is yet another supporting evidence in this matter. The derivation (vāsanā)
of (12) as given by Mādhavacandra (about 1000 ad) has been recently explained to
be based on determining the effective depth of a hemispherical pit.29 The area of the
base will be 3𝑟2 (with 𝜋 equal to 3). The effective depth has been found to be 3𝑟

4 .
Hence

volume of the hemisphere = (3𝑟2) ⋅ (
3𝑟
4 ) = (

9
4)𝑟3, (25)

which will give (12) by doubling.
I think that the effective depth has been found by analogy to the effective altitude

of a semi-circle for which

(
𝜋
2 )𝑟2 = 2𝑟 ⋅ ℎ,

which gives ℎ equal to 𝜋𝑟
4 (which will become 3𝑟

4 with 𝜋 = 3). Hence (12) should be
interpreted as

𝑉 = 2(3𝑟2) ⋅ (
3𝑟
4 ) = 2 ⋅ (𝜋𝑟2) ⋅ (

𝜋𝑟
4 ) = (

𝜋2

2 )𝑟3,

indicating the implied assumption 𝜋2 equal to the rough value 9. Of course, if the ef-
fective depth 3𝑟

4 were found by, say, actual digging and converting the hemispherical
pit into an equivalent cylindrical one, then (12) should be interpreted as

𝑉1 = 2(𝜋𝑟2)ℎ, (26)

where ℎ is 3𝑟
4 , the mathematically correct value being 2𝑟

3 for equivalence

(samīkaraṇārtha) as intended by Mādhavacandra.30
It is surprisingly interesting to note that if we apply formula (23) to averaging

process similar to what we used in deriving the correct rule in (5), we get yet another
empirical way of getting (12). For, the mean of the volumes of the circumscribed
cylinder and the inscribed double cone will give

(
1
2)(𝜋𝑟2 ⋅ 2𝑟 + 𝜋𝑟2.2𝑟

2 ) = (
3𝜋
2 )𝑟3, (27)

which gives the required result (12) with 𝜋 = 3. Although (26) and (27) are what
Sarasvati Ammawill read in (12), the last itself should be interpreted as (4) according
to Liu Hui and Mahāvīra.

According toWagner,31 the derivation of (4) was believed by Liu Hui to be based
on two reasoning:

(A) The volume of a cylinder inscribed in a cube is (
𝜋
4 ) times the volume of the

cube.
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(B) The volume of the inscribed sphere is (
𝜋
4 ) times the volume of the above in-

scribed cylinder.

Thus the volume of the sphere will be

𝑉 = (
𝜋
4 )

2
𝑑3 = (

𝜋2

2 )𝑟3, (28)

which yields (3) or (12) when 𝜋 is taken as 3, the simple and universally used ancient
value. Now it should be noted that, although assumption (A) is correct, assumption
(B) is incorrect. As mentioned earlier, the correct ratio in (B) was already found by
Archimedes to be 2

3 , instead of 𝜋
4 . Thus the volume of a sphere will be given by

𝑉 = (
2
3) ⋅ (

𝜋
4 ) (cube on diameter 𝑑) = (

𝜋
6 )𝑑3. (28a)

Anyway, we note that the mistake of Liu Hui in taking 𝜋
4 for the correct value 2

3
is comparable to Mādhavacandra’s taking 3

4 (instead of 2
3 ) in finding the effective

depth (see above). In this connection, Liu Hui has also considered the volume of an
object called ho-kai (“box-lid”) which is the intersection of two cylinders inscribed in
the cube with perpendicular axes. His compatriot, Tsu Keng-chi, had finally shown
that32

𝑉 = (
𝜋
4 ) ⋅ (vol. of box-lid) = (

𝜋
4 ) ⋅ (

2
3)𝑑3, (29)

giving the correct result for the sphere.

4 Śrīdhara’s Rule

Śrīdhara (about 800 ad) in his Triśatikā, rule 56, states:33

गोल ासघनाध ा ाद भागसंयु ं ग णत ||
Half the cube of the diameter of a sphere combinedwith its own eighteenth part is the volume
(of the sphere).

That is,

𝑉 = (
𝑑3

2 ) + (
1

18)(
𝑑3

2 ) (30)

= (
19
36)𝑑3 = (

38
9 )𝑟3 = (4.22…)𝑟3, (31)
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which is quite comparable to the true value (19). The same rule is found in
Siddhānta-śekhara, XIII, 46 or Śrīpati (eleventh century),34 and in Mahā-siddhānta,
XVI, 108 of Āryabhaṭa II (fifteenth century ?).35

The usual derivation or rationale of (30) is given to be as follows (using √10 for
𝜋 from Triśatikā, 45):36

𝑉 = (
𝜋
6 )𝑑3 =

(
√10

6 )
𝑑3. (32)

But by approximations we have

√10 = √32 + 1 = 3 + 1
6 = 19

6 . (33)

Or, by using Śrīdhara’s own rule as given in his Pāṭīgaṇita (rule 118),37

√10 = √360
6 =

(√192 − 1)
6 = 19

6 (34)

Hence by (32) we get

𝑉 = (
19
36)𝑑3 = (1 + 1

18)(
𝑑3

2 ), (35)

the required equivalent of (30).
Recently it has been argued38 that Śrīdhara also knew the better approximation

22
7 for 𝜋. In that case we shall have

𝑉 = (
𝜋
6 )𝑑3 = (

22
42)𝑑3 = (1 + 1

21)(
𝑑3

2 ) (36)

= (
88
21)𝑟3 = (4.19)𝑟3. (37)

Formula (36) as such is directly found in the Lī lāvatī, sūtra 203, of Bhāskara
II (twelfth century) as a rough (sthūla) value because the author knew not only the
exact formula but also a still better value of 𝜋.39

The important question is whether Śrīdhara knew the exact form of the expres-

sion (
𝜋
6 )𝑑3 for the volume, and then derived (30) from it as suggested above by

modern scholars, or he got (30) directly by some empirical or approximate method.
Also, if he knew the exact form, how did he obtain it? That is, whether it was some
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true mathematical demonstration or simply some other technique like the averaging
process explained above in deriving (5) which was also possible because the correct
formula for the volume of a pyramid (including a cone) was already known by his
time in India. For instance, Brahmagupta in his Brāmasphuṭa-siddhānta (628 ad),
XII, 44, gave the correct rule for the volume of sūci (a tapering figure, i.e. pyramid
or cone), although his contemporary Bhāskara I did not give it.40 Brahmagupta is
silent on the volume of a sphere, and Śrīdhara’s works are not fully known.

In case of a circle of diameter 𝑑, the areas of its circumscribed and inscribed

squares are 𝑑2 and 𝑑2

2 , respectively. Hence the area of the circle itself will be 𝑘(
𝑑2

2 ),
where 𝑘 lies between 1 and 2. In analogy (which is not mathematically correct) to
this, the volume of a sphere might have been considered to lie between 𝑑3 (which

is the volume of the circumscribed cube) and 𝑑3

2 (which is, however, not truly the
volume of the inscribed cube). Thus

𝑉 = 𝑐 (
𝑑3

2 ), 1 < 𝑐 < 2. (38)

In fact most of the writers do first take the quantity 𝑑3

2 and then prescribe formulas
which are of the type (38). Now for the correct volume,

𝑐 = 𝜋
3 = 1 + 𝑒, nearly (say), (39)

where 𝑒 is a small fraction, depending on the approximate value of 𝜋 employed.

Śrīdhara’s rule has 𝑒 equal to 1
18 (which corresponds to 𝜋 = 19

6 ) and Bhāskara II’s

rule has 𝑒 equal to 1
21 (corresponding to 𝜋 = 22

7 ). Both values of 𝜋 implied here can

be derived from √10 itself according to whether we approximate √𝑎2 + 𝑥 by

(𝑎 + 𝑥
2𝑎), or (𝑎 + 𝑥

2𝑎 + 1),

both of which were used in ancient times.41

However, as far as Bhāskara II is concerned, we need not make any conjecture in
this regard. He not only gave the correct formulas (Lī lāvatī, sūtra 201),42

𝑉 = 𝑆 ⋅ 𝑑
6 = 4(

𝑐 ⋅ 𝑑
4 ) ⋅ (

𝑑
6 ), (40)

but also mentioned the derivation of the volume by the usual simple method of
dividing it into pyramids in a subsequent work (Siddhānia-śiromaṇi, Golādhāya,
Vāsanābhāṣya under Bhuvanakoṣa, verses 58–61).43
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Kamalākara’s Mathematics
and Construction of Kun. d. as

1 Introduction

Kamalākara was a great astronomer and mathematician of India and was a senior
contemporary of the famous Newton in Europe. He belonged to a family of jyotis. ı̄s
and was the second son of Nr.simha who wrote a commentary called Saurabhās. ya on
the Sūrya-siddhānta in ad 1611. Nr.simha also wrote the vasanāvārttika commentary
(ad 1621) on the Siddhānta-śironman. i of Bhāskara II (ad twelfth century). Accord-
ing to Sudhakara Dvivedi,1 this commentary mentions a number of yantras (as-
tronomical instruments) such as mayūra-yantra, brahmacāri-yantra, ham. sa-yantra,
vānara-yantra, śaravedha-yantra.

Kamalākara studied astronomy andmathematics under his elder brother Divākara
(born 1606) who wrote a commentary on the Makaranda (1478) and another
called Gan. itatattva-cintāman. i on his own Jātakamārga (1625). Kamalākara wrote a
commentary called Sauravāsānā on the Pūrvakhan. da of the Sūrya-siddhānta, and
Sauravāsanā has been recently published2 and refers to the Siddhānta-tattva-viveka
(= ST V, ad 1658) which is the main work of Kamalākara.

The ST V contains 15 (including Mānādhyāya and Upasam. hāra) chapters and is
accompanied by an auto-commentary (= ST V C) which consists of various deriva-
tions and explanations (upapatti and vāsanā). There is also the remaining (“śes. a”) or
supplementary part of the ST V C called śes. avāsanā. Apparently another commentary
called Tattvavivekodāharan. a by the author himself is reported by Pingree.3

Sudhakara Dvivedi4 considers the ST V to be the best among all the siddhāntas
(Indian astronomical works in Sanskrit). It is respected, studied, and taught in the
traditional system of education in India through the Sanskrit medium. Dvivedi was
the first to edit and publish it.5 Gangadhara Misra did prepare an edition in 1923, but
it was published slowly. He included his own Vāsanābhās. ya, a detailed commentary
in Sanskrit, in it along with the Śes. avāsanā.6

Gan. ita Bhāratı̄ , Vol. 20, Nos. 1–4 (1998), pp. 8–24.
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Due to being a staunch follower of the Sūrya-siddhānta, Kamalākara gave the
following crude rules connecting the diameter D and circumference C in any circle7

C =
√
10D2 (1)

D =
√

C2

10
. (2)

Of course, such rules are quite old and are found in many ancient Indian
works which are older than the extant Sūrya-siddhānta, the implied approximation
π = √

10 being usually called a Jaina value.8 Kamalākara knew better values of
π, but his adherence to π = √

10 was a hurdle in attaining the intended accuracy in
many cases.

Nevertheless, the ST V contains a large number of novelties and these have been
listed in Sanskrit, Hindi, and English.9 Due to many new things, new topics, and al-
ternatives in methodology, historians of science and scholars interested in traditional
jyotis. a-śāstra still read the ST V . One such topic is related to the construction of the
agni-kun. d. as (“fire pits”) which is the subject of the present chapter.

2 Havana-yajña and Agni-kun. d. as

For attaining full benefits, certain religious acts such as building of temple, con-
struction of a tank, a mahādāna (“great donation” e.g. tulādāna), some associated
ceremonies are needed to be followed. One such ceremony is the performance of
a havana-yajña in which oblations are offered to consecrated fire. An agni-kun. d. a
(“fire pit”) is a pit of prescribed shape and size dug in the ground to hold the ritual
fire. A kun. d. a of specific shape is dug for specifically desired object or objective e.g.
lotus-shaped kun. d. a for rain and triangular kun. d. a for the destruction of enemy!

Somewhat eight or ten different types of kun. d. as are mentioned in tradition-
ally typical works like Śāradātilaka (eleventh century?), Man. d. apa-kun. d. a-siddhih.
(= MKS, 1619)10 of Viṫṫhala Dı̄ks.ita, and Man. d. apa-druma (1654) of Mahādeva-
sūri.11 Kamalākara has dealt with 12 forms of kun. d. as, namely

(i) caturbhujam (“four-sided”) or square
(ii) vr. tta or circular
(iii) ardha-candram (“half-moon”) or semicircle
(iv) tribhujam or (equilateral) triangle
(v) yonikun. d. a I whose shape resembles the leaf of pippal tree of fig family (Ficus

Religiosa)
(vi) yonikun. d. a II
(vii) s. ad. asram (“six-edged”) or regular hexagon
(viii) as. t.āsram or regular octagon
(ix) padma-kun. d. a I or lotus-shaped No. 1
(x) -do- II
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(xi) pañcāsram or regular pentagon
(xii) saptāsram or regular heptagon

The important point to note is that, whatever be the shape (out of the 12 above
sections), the area enclosed by the curve in any ceremony is determined by the size
of the havana-yajña i.e. by the number of āhutis (oblations) to be offered. Table 1
is prepared according to the MKS, II, 5 (p. 30) as further explained by its expositor
B. Pathak (pp. 30–31).12

The units used are defined in MKS, 1, 3–4 (p. 3) and further explained by Pathak.
These are presented in Table 2 after consolidation.

It must be noted that the MKS here defines the hasta as one-fifth of the full height
of the yajamāna (or yajña-performer) when he stands (even on his toes) with his arms
fully stretched upwards. Therefore, the cubit and other measures of Table 2 are not
absolutely fixed. The aṅgula measure obtained in this way is called dehāṅgula (i.e.
aṅgula as related to the body of the yajña-kartā). Moreover, there are many different
types of even variable aṅgulas and several conventions to adopt them on different
occasions.

Table 1 Fixing the area of a kun. d. a

Size of Yajña No. of Āhutis Kun. d. a-Area

1. Śatārdha-nyūna Less than 50 No kun. d. a-needed

2. Śatārdha-havana 50 to 99 1 sq. ratni

3. Śata-havana 100–999 1 sq. aratni

4. Śahasra-havana 103 – 9999 1 sq. hasta

5. Ayuta-havana 104 – 99999 2 sq. hastas

6. Laks. a-havana 105 – 999999 4 sq. hastas

7. Prayuta-havana 106 – 9999999 6 sq. hastas

8. Koṫi-havana 107 and above 8 or 16 sq. hastas

Table 2 (Linear measures)

1 hasta (cubit) = 24 aṅgulas

1 aṅgula = 8 yavas (barley corns)

1 yava = 8 yūkās

1 yūkā = 8 lı̄ks. ās

1 lı̄ks. ā = 8 bālāgras (tips of hair)

1 bālāgra = 8 ratharen. us

1 ratharen. u = 8 trasaren. us

1 trasaren. u = 8 paramān. us (“atomic particles”)

1 ratni = 21 aṅgulas

1 aratni = 22 1
2 aṅgulas13
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The dimensions of a kun. d. a must be drawn accurately so that the prescribed area-
measure or value is achieved. Otherwise what to say of attaining a desired object
even adverse results might be caused. Several warnings are found e.g.14

(i)

When the area is more (than the prescribed amount), there will be death; when the area is in
deficit, there will be poverty.

(ii)

When the volume is in excess, there will be diseases; when in deficit, there will be loss of
cattle and wealth.

The usual or traditional method of drawing the prescribed sectional curve was first
to draw a square of the desired area and then convert or transform it into the prescribed
shape of equal area with sufficient accuracy (as could be expected with possessed
knowledge of that time, exactness being theoretically impossible in some cases).
However, Kamalākara’s method was different. By using relevant mathematical rules,
he found two coefficients (gun. akas) for each type of 12 kun. d. as he dealt with. If S
is the area to be achieved for a kun. d. a, the two coefficients β (called bhuja-gun. aka)
and δ (called vyāsa-gun. aka) are defined for that kun. d. a by the relations

b2 = βS (3)

d2 = δS (4)

so that
b2

β
= d2

δ
= S (5)

where b is the side (bhuja) and d the diameter (vyāsa) related to the figure to be
drawn (see the next section for details). Kamalākara has expressed the values of the
two coefficients in the usual ancient sexagesimal system (of fractions) and presented
them in a tabular form (ST V C, p. 167) which is produced here as Table 3.

Thus for any particular yajña, we know S from Table 1 and then find b and d
by using (3) and (2) in conjunction with Table 3. The details for each kun. d. a (with
known b and d ) are given below. The discussion does not cover the placement and
orientation of the sacred pits.

3 Kamalākara’s Calculations and Constructions

Kamalākara has dealt with the subject of kun. d. as in three parts:

(i) Gan. ita-prakāra (ST V , III, 105–141) contains some relevant rules and numeri-
cal results.

(ii) Sādhana-prakāra (ST V , III, 142–146) contains the methods of construction.
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(iii) Vāsanā (ST V C, pp. 160–167) and Śes. a-vāsanā, p. 12, contains derivations and
calculations.

Table 3 (Kun. d. a coefficients)

Sl. No. Kun. d. a β δ

1. Square 1;0,0 2;0,0

2. Circle – 1;15,53

3. Semicircle – 2;31, 47

4. Triangle 2;18,33 3;4,45

5. Yoni I 0;40,43 0;54,17

6. Yoni II 0;33,30 1; 7,1

7. Hexagon 0;23,10 1;32,40

8. Octagon 0;12,24 1;24,54

9. Padma I 0,7,7 0;48,46

10. Padma II 0;6,7 0;41,51

11. Pentagon 0;34,51 1; 40, 56

12. Heptagon 0;16,30 1;27,41

He begins by saying (ST V , III, 105) that after knowing the rough methods which
lead to inauspicious constructions as given by others, he is presenting the method
for drawing the kun. da-figures by using trigonometrical demonstration. We take his
mathematical exposition of the kun. das one by one.

3.1 Square kun. d. a

S = b2 (6)

and d2 = 2b2 = 2S (7)

Fig. 1 Square kun. d. a

Hence, β = 1, and δ = 2 as in Table 3; also for S = 1 square hasta (or 576 sq.
aṅgulas) b will be 24 aṅgulas and d will be 24

√
2 units (Fig. 1). This is given in

ST V, III, 114 (p. 152) as
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d = 33; 56 i.e. 33 + 56

60
aṅgulas

by taking square root closely (āsanna-mūla). In this kun. d. a, the diameter d of the
circumscribed circle is same as the diagonal of the square. The figure can be con-
structed directly on side b or after drawing the circle first. It seems that for irrational
values, sufficiently accurate dimensions are taken for practical construction (as will
be clear below also).

3.2 Circular kun. d. a (of diameter d)

Here, there is no b or β, and

S = πd2

4

∴ d2 =
(
4

π

)
S =

(√
8

5

)
S (8)

which is given in ST V , III, 115 (pp. 152–153) in equivalent forms because π = √
10

for Kamalākara. Thus

δ =
√(

8

5

)
= 1; 15, 53 nearly

as given in Table 3. The actual coefficient is δ = 4
π

= 1; 14, 24 nearly.
Also for unit-hasta square, (8) gives

d =
[(√

8

5

)
× 576

] 1
2

= 27 aṅgulas, almost

as given in ST V , III, 116 (p. 153). Interestingly, this areal equivalence of a square
of side 24 with a circle of diameter 27 implies the ancient Egyptian value π, namely
4 × (

8
9

)2
.

3.3 Semicircular kun. d. a

Here also, there is no b or β and
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S = π
d2

8
, or d2 =

(
8

π

)
S (9)

Thus with π = √
10, we have δ = 8√

10
= 2; 31, 47 nearly as in Table 3. Also we

have, from (9), similarly

d4 =
(
32

5

)
S2 (10)

which is found in ST V , III, 117–118 (p. 153) with the numerical value d = 38; 10
for S = 576.

3.4 Triangular kun. d. a

Here, b is the side of the equilateral triangle EFG and d is the diameter of the
circumscribed circle. We have, area of the triangle,

S =
√
3b2

4
(11)

or

b2 =
(

4√
3

)
S (12)

giving β = 4√
3

= 2; 18, 33 nearly as in Table 3, after neglecting fractions ST V , III,
119–120 (pp. 155–156) states equivalent of (12) and also the correct formula

d =
√(

4

3

)
b2 (13)

Fig. 2 Triangular kun. d. a
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From (12) and (13), we get

d4 =
√
(16S)2

27
(14)

which is also stated along with the above rule and from which follows

δ = 16
√
3

9
= 3; 4, 45 nearly

as in Table 3. For the unit-hasta square (i.e. S = 576sq. aṅgulas), ST V , III, 121
(p. 156) states b = 36; 28 and d = 42; 7 which are correct approximations (Fig. 2).

3.5 Yoni kun. d. a No.1

Construction of the first formof the yoni-kun. d. a is given inST V , III, 147–149 (p. 158).
In this, the starting figure is the equilateral �EFG. Outer semicircles are described
on all sides as diameters. Middle point here K of one of the semicircle is joined to F
and G. Leaving out the arcs of the Chords FK and KG, we get the figure FMELGKF
of the first yoni-kun. d. a in the form of a pippal leaf. ST V C, pp. 161–162, gives area
of �EFG (i.e.

√
3b2

4 = (1; 43, 55) · b2

4

area of two semicircles
(
i.e.

√
10b2

4

)
= (3; 9, 44) · b2

4

area of �FKG
(
i.e. b2

4

)
= (1; 0, 0) · b2

4 .

Adding these, we get

Fig. 3 Yoni kun. d. a No.1

S = (5; 53, 39).b
2

4
=

(
7073

4800

)
b2 (15)

so that β = 4800

7073
= 0; 40, 43 (16)

as given in ST V , III, 122 (p. 154), ST V C, p. 162, and Table 3. Again, if d is the
diameter of the circumcircle of �EFG, them by Eq. (13)
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d2 =
(
4

3

)
b2 =

(
4

3

)
.

(
4800

7073

)
S, by (15).

Thus, we get

δ = 6400

7073
= 0, 54, 17, as in Table 3.

Using (15) for unit-hasta square, we get

b =
√(

4800

7073

)
· S = 19; 46, 16

as given in the ST V , III, 123 (p. 155) along with d = 22; 50 (which follows by using
(13) or the value of δ).

It must be pointed out that the tangent GT to the semicircle GLE at G does not
lie along the side GK (see Fig. 3). Thus, the curve is not smooth (although it is
continuous) at F and G. This defect is also found in the usual traditional method.15

3.6 Yoni kun. d. a No.2

The construction of this is described in ST V , III, 150–151 (p. 158). In this, the basic
figure is the square EFGH of side b inscribed in a circle of diameter d (Fig. 4).
Semicircles are described on sides EF and EH . Figure EMFGHLE is the pippal-
leaf-shaped Yoni Kun. d. a No.2. As explained in ST V C, p. 162, here we have

S = square + 2 semicircles; with b = d√
2

= d2

2
+ πd2

8
; with π as in No.1

= (1; 42, 26)d2

2
(17)

Fig. 4 Yoni kun. d. a No.2
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giving δ = 2
(1;47,26) = 3600

3223 = 1; 7, 1 as in ST V , III, 124 (p. 155), ST V C, p. 162, and
Table 3 (Fig. 4).

Also b2 = d2

2 = δS
2 which gives β = δ

2 = 0; 33, 30, nearly, as in Table 3. For the
unit-hasta square (S = 576), the ST V , III, 125, gives

d = 25; 22, 20 (The correct value being 25; 21, 53), and

b = 17; 56, 8 which is correct.

It should be noted that here the curve is smooth at F and H . But in the traditional
construction, end G lies below outside the circle, and so it will make a defective
leaf.16

3.7 Hexagonal kun. d. a

In Fig. 5, let EF represent a side b of a regular polygon of n sides inscribed in a circle
of diameter d with its centre at C. Modern forms of two simple relations are

b = d sin
(π

n

)
(18)

S =
(

n d2

8

)
sin

(
2π

n

)
. (19)

In the case of a hexagon (n = 6), these become

b = d

2
(20)

Fig. 5 Part of octagonal kun. d. a
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and

S2 = 27d4

64
(21)

which are stated in the ST V C, p. 162. Thus

d2 =
(

8

3
√
3

)
S

leading to δ = 8 ×
√
3
9 = 1; 32, 23which is slightly less than that in Table 3. ST V , III

126–127 (p. 155) states some other rules which follow from (20) and (21). Equations
(5) and (20) show that β = δ

4 as indicated by data in Table 3. Lastly from (20) and
(21), we get

b2 =
(√

4

27

)
S =

(√
4

27

)
× 576,

for S = 576; whence we get b = 14; 53 nearly, as in ST V .III , 128.

3.8 Octagonal kun. d. a

In this case, n = 8, and (18) gives

b = d sin
(π

8

)
= (0; 22, 57) d nearly (22)

as stated in STV, III, 130 (p. 156) and as derived in STVC, p. 163 by using the ancient
trigonometrical formula

R sin

(
θ

2

)
=

√
R

2
· (R − R cos θ), with θ = π

4
.

Then, the ST V C also finds the area of the isosceles �EFC (of sides d
2 ,

d
2 , and b

found above) to be (0;5,18) d2. Thus

S = 8 × �EFC = (0; 42, 24)d2. (23)

Hence, we get

d2 = S

(0; 42, 24) =
(
75

53

)
S = (1; 24, 54)S (24)

as given in ST V , III, 129 (p. 156), derived in ST V C, p. 163, and as implied in Table 3
in the form of δ. From (22) and (24), we now get
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b2 = (0; 22, 57)2 ×
(
75

53

)
S = (1; 12, 25)S nearly

which compares well with that implied in Table 3. Using the above two results for
unit-hasta square (S = 576), we easily get d = 28; 33, and b = 10; 55 as in ST V ,
III, 131.

3.9 Lotus kun. d. a No.1

A padma (“lotus”) kun. d. a has a flowery look with 8 equal petals (Fig. 6). The sides
of a regular octagon are the bases (such as EF) of the petals. Different modes of
formation of the petals give rise to different lotus kun. d. as.

In Kamalākara’s lotus kun.d. a No. 1, a petal is drawn as follows (see STV, III,
152–156, p. 159):

The outer semicircle on a side EF(= b) is divided into four equal parts (Fig. 7),
two of which are arcs EP and QF . Tip V of the petal is obtained by taking

PV = QV = b

2
. (25)

Fig. 6 Lotus kun. d. a No.1

Fig. 7 Petal of lotus kun. d. a No.1
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The petal boundary on side EF consists of the circular arcs EP and FQ, and the
(tangential) linesPV andQV . Calculations are explained in the ST V C, pp. 163–164.
M is the middle point of EF and is the centre of the semicircle.

Here,

∠EMQ = ∠QMF = π

4

∴ ∠PMQ = π

2
or 90◦

Also MP = MQ = PV = QV = b

2
each

∴ PMQV is a square and (PV and QV are tangents).
Thus, we see that the area of the petal consists of a square of area b2

4 and two
sectoral triangles of the semicircle. Hence by adding the areas of the eight petals to
the area of the inner octagon, we have

S = 2

(
πb2

4

)
+ 8

(
b2

4

)
+ Octagonal area.

Now

2πb2

4
=

√
4

(
pb2

4

)2

=
√
4

(
5

8

)
b4, as p = √

10 here,

=
√
4

(
5

8

)
(0; 22, 57)4d4, by eq. (22)

= (0; 13, 52, 42) d2 (26)

as has been worked out step by step in the ST V C, pp. 163–164. Again

8

(
b2

4

)
= 2b2 = 2(0; 22, 57)2d2, by (22),

= (0; 17, 33, 24) d2. (27)

Also by Eq. (23),
Octagonal area = (0; 42, 24) d2. (28)

Hence by adding (26), (27), and (28), we get

S = (1; 3, 50) d2 nearly

or
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Fig. 8 Petal of lotus kun. d. a No.2

d2 = S

(1; 13, 50)
=

(
360

443

)
S = (0; 48, 46) S (29)

as given in ST V , III 132, ST V C, p. 164, and Table 3. Again using (22) and (29), we
have

b2 = (0; 22, 57)2(0; 48, 46)S
= (0; 7, 7) S nearly, givingβ of Table 3.

when S = 576 square angulas, (29) will give

d =
√(

360
443

) × 576 = 21; 38, 7 aṅgulas, as given on p. 164 of the ST V C.17 Again
for S = 576, we also have from above

b =
√
(0; 22, 57)2(0; 48, 46) × 576

= 8; 16, 14 nearly.

3.10 Lotus kun. d. a No.2

Construction18 for this kun. d. a is given in ST V , III, 157–159 (p. 159). For forming
the petal on side EF(= b), circular arcs W ELV and W FKV are drawn by taking
radius b and centres at F and E, respectively (Fig. 8). The petal ELV KFE is called
outer part of the matsya (“Fish Figure”) EV FW E. Calculations are found in ST V C,
pp. 164–165.
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There the square of the area of the equilateral triangle V EF is given (p. 165)
i.e. 3b4

16 = (0; 11, 15)b4 which is exact. Extracting the square root, we then get

�V EF
(
i.e.

√
3b2

4

)
= (0; 25, 59)b2, very nearly.

Similarly, the area of the circle sector EV KFE i.e. πb2

6 = (0; 31, 37)b2, with
π = √

10.
Now, the area of the petal

= sector EV KFE + segment ELV E

= sector + (sector − �V EF)

= (0; 32, 37)b2 + (0; 31, 37 − 0; 25, 59)b2, by above

= (0; 37, 15)b2. (30)

Also from Eq. (24),

area of octagon =
(
53

75

)
d2

=
(
53

75

)
b2

(0; 22, 57)2 , by using (22)

= (4; 50, 11)b2. (31)

Adding to this area of 8 petals from (30), we get

S = (4; 50, 11)b2 + 8(0; 37, 15)b2
= (9; 48, 11) b2 as in ST V C, p. 165.

From this, we also get

b2 = S

(9; 48, 11) = (0; 6, 7, 14)S, (32)

giving β = 0; 6, 7, 14 as in ST V , III, 134 (p. 156), ST V C, p. 165, and Table 3. Again
by using (22) and (32), we have

d2 = (0; 6, 7, 14) S

(0; 22, 57)2
= (0; 41, 50)S nearly.

This gives a value of δ quite near to that in Table 3.
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3.11 Pentagonal kun. d. a

In this case (see Fig. 5), n = 5 and we have b = d sin 36◦, cf. Eq. (18).
But from Kamalākara’s sine table (see ST V C, pp. 168–169), we see that

60 sin 36◦ = 35; 16, 1, 36, 52
b = (0; 35, 16) d nearly (33)

as in ST V , III, 138 and in ST V C, p. 165. Then, the lamba (perpendicular) from C
on EF as

lamba =
√(

d

2

)2

−
(

b

2

)2

= (0; 24, 17) d , using (33).

Now

S = 5 × �CEF = 5(b × lamba)

2
= (0; 35, 40)d2 (34)

or

d2 = S

(0; 35, 40) =
(
180

107

)
S (35)

as given in ST V , III, 137 (p. 157) and ST V C, p. 166. Also δ = 180
107 = 1; 40, 56, as

in Table 3. Again from (33) and (35)

b2 = (0; 35, 16)2
(
180

107

)
S = (0; 34, 52)S

the tabular value of the coefficient being 0; 34, 51. But for S = 576 square aṅgulas,
we will have b = √

(0; 34, 52) × 576 = 18; 18, aṅgulas as in ST V , III, 139 (p. 157)
which also contains d = 31; 9 for same value of S. However, (35) gives d = 31; 8.

3.12 Heptagonal kun. d. a

In this case (n = 7), we have (see Fig. 5)

b = d sin
(π

7

)
= sin

(
180◦

7

)

= (0; 26, 1, 59) d (36)



3 Kamalākara’s Calculations and Constructions 207

by modern calculator. But by using the sine table in the ST V C (p. 168) and the usual
linear interpolation, we will get

60 sin

(
180◦

7

)
= 60 sin

(
25 + 5

7

)◦

= 60 sin 25◦ +
(
5

7

)
.(60 sin 26◦ − 60 sin 25◦)

= 25; 21, 25, 33 +
(
5

7

)
(0; 56, 42, 37)

= 26; 1, 55, 58
∴ b = (0; 26, 1, 56) d , nearly (37)

as given in ST V , III, 141, (p. 157) and ST V C, p. 166. To get better value, the
Śes. avāsanā (p. 12) asks us to get sine of 180

7 degrees by interpolation between 25.5◦
(instead of 25◦) and 26◦, but further details are not mentioned.

Anyway, as in the case of pentagonal kun. d. a, the lamba from C on EF (Fig. 5)
can be found here also, and then the area of the isosceles �CEF of sides b, d

2 ,
d
2 .

ST V C, p. 166, correctly finds

S = 7 × �CEF = (0; 41, 3)d2. (38)

Thus

d2 = S

(0; 41, 3) =
(
1200

821

)
S (39)

as given in ST V , III, 140 (p. 157) and ST V C, p. 166. From (39), we find

δ = 1200

821
= 1; 27, 41, 52 . . .

which appears in Table 3 as 1;27,41. Also from (37) and (39)

b2 = (0; 26, 1, 56)2 ×
(
1200

821

)
S (40)

= (0; 16, 30)S nearly (41)

giving the coefficient β of Table 3. Finally for S = 576, we can find d and b using
(39) and (40). The values given in ST V C, p. 157 are D = 29, 0, 56 which is correct,
and b = 12; 35, 21 which is nearly correct.

For application of the pentagonal and septagonal kun. d. as to religious rituals, one
may refer to the Kun. d. a-kādambarı̄.19
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4 Concluding Remarks

It may be mentioned that Kamalākara has not dealt with those two forms of kun. d. as
which have been called vis. ama-sad. asra and vis. ama-as. t.āsra (cf. MKS, II, 13 and 16,
pp. 44–55). Hayashi20 calls these figures as irregular hexagon and irregular octagon,
respectively. Actually, they are what we usually call hexagram or hexacle (Fig. 9)
and octagram or octacle (Fig. 10). MKS rightly considers the hexagram to be netra-
ramyam (“charming to eye”) or beautiful.

Kamalākara has used the words sama (“equal”) and vis. ama (“unequal”) with
respect to the various sides of a polygon is ST V , III, 111 (p. 152). He says that
polygonal kun. d. as with equal sides (and accurate area) lead to longevity, health, and
prosperity, while kun. d. as of unequal sides may cause the opposite.

As explained above, Kamalākara’s Table 3 of coefficients will be able to find b
and d corresponding to any given S by using the relation (5). In particular, we can
apply it to the fundamental case of ekahasta-kun. d. a i.e. when S is unit square hasta or
576 square aṅgulas. Due to the importance of this case, Kamalākara has invariably
stated the values of b and d specifically and separately for each type of kun. d. a. We
collect and present these in Table 4.

Now it is clear from (5) that if the area S is increased to mS (i.e. m times its own
value), then the corresponding values of b and d will be increased

√
m times. Thus,

we see that for S equal to m square hastas (or m × 576 sq. aṅgulas), the values of
b and d for any kun. d. a will be

√
m times those given in Table 4 which, therefore,

provides an alternative method for finding b and d . Even a table of
√

m (which we
need in this method) for m = 1 to 10 (integral values only) is also available e.g. in

Fig. 9 Hexacle

Fig. 10 Octacle
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Table 4 Bhuja and vyāsa for 1 square hasta area

Sl. No. kun. d. a shape b in aṅgulas d ST V Reference

1. Square 24;0,0 33;56 III, 114 (p. 152)

2. Circle – 27 III, 116 (p. 153)21

3. Semicircle – 38;10 III, 118

4. Triangle 36;28 42;7 III, 121 (p. 154)

5. Yoni No.1 19;46.16 22;50 III, 123 (p. 155)

6. Yoni no.2 17;56,8 25;22,20 III, 125 (p. 155)22

7. Hexagon 14;53 29;46 III, 128

8. Octagon 10;55 28;33 III, 131 (p. 156)

9. Lotus No. 1 8;16,31 21;38.7 ST V (p. 164)23

10. Lotus No. 2 7;39,55 20;3,12 III, 136 (p. 157)24

11. Pentagon 18;18 31;9 III, 139 (p. 157)25

12. Septagon 12;35,21 29;0,56 ST V C (p. 157)26

MKS, II, 7 (pp. 32–34)27 which gives the values of 24
√

m aṅgulas (and from which√
m follows easily). One must remember that MKS values are expressed in octonary

fractions, while Kamalākara uses sexagesimal fractions.
Of course for the discussion of accuracy of any ancient tabular values and other

numerical results, attention has to be paid to the method of multiplication, division,
square rooting, etc., followed in ancient works (along with conventions of rounding
off etc.) Kamalākara’s claim of accuracy of many results are not theoretically sound
because of his use of π = √

10 and some other approximations.
Although there exist scores of works on kun. d. as, the historical and mathematical

aspects of the related geometrical figures have not been given the attention they
deserve. The present paper forms an introductory study some what similar to what
Hayashi (ref. 12 at the end) has done from Gan. eśa’s commentary on the MKS (but
we have omitted Sanskrit texts). Relevant connected topics, like man. d. apas, vedis,
mekhalas, also need attention. Anyway, I have now added one more item on the
interesting mathematics from Kamalākara’s ST V .28

Before closing this chapter, I am tempted to point out a relevant fact which seems
to have been hidden by the editor and publisher of theMKS which has been consulted
here (ref. 10 at the end). A small work called “Vāstava-kun. d. asiddhih. ” of 63 verses
is attached at the end (see supplementary pages 1 to 7). The colophon describes this
small work to be “Baladevapāthaka-pran. ı̄tā” i.e. as “composed by Baldev Pathak”.
But actually the 63 verses are exactly the reproduction of the ST V , III, verses 105–
168 (leaving out no. 166) without any acknowledgement!29
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18. Kamalākara’s value is 8;16,38 (ST V , III, 133 p. 156) or 8;16,31 (ST V C, p. 164).
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Area of a Bow-Figure in India

1 Introduction

In Fig. 1, P N Q P is segment of a circle (i.e. circular disc) whose centre is at O
and whose radius is O P = O Q = r . Due to the figure’s resemblance to an archer’s
bow, the arc P N Q (= s in length) was called cāpa (‘bow’), the chord P Q(= c)
was called jyā or jı̄vā (‘bow-string’), and the segment’s height M N (= h) was called
bāṅa or śara (‘arrow’) in ancient India. The cāpaks. etra (‘bow-figure’) or segment
of a circle had great importance in Indian cosmography and geography, especially
in the Jaina school. The Bharata-ks.etra (=Bhārata-vars.a or ‘land of India’) of those
times was in the shape of a bow-figure which formed the southernmost part of the
central continent or Jambūdvı̄pa (‘Jambū Island’) which is stated to be circular and
of diameter one lac (100,000) yojanas. This cartographic description may be taken to
represent the oldest map of India as part of Asia. The maximum north–south breadth
of the country was 526 6

19 yojanas.
The exact relation between c and h for any segment of a circle of diameter d (=

2r) is

c = √
4h(d − h) (1)

which easily follows by applying the so-called Pythagorean theorem to the right-
angled triangle O P M . An explicit verbal statement of (1) is found in the Bhās. ya on
the Tattvārthādigama-sūtra (III, 11) of Umāsvāti.1

The usual method for finding the exact area A of the circular segment takes

1See the Bhās. ya under sūtra 11 of chapter III in [Umāsvāti 1932, 170]. He is placed in the first
century ad by [Pingree 1970, 59]. But the date (and even authorship) is controversial.

Studies in the History of Exact Sciences (2004), Leiden, pp. 517–532.
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Fig. 1 Segment of a circle

A = sector O P N Q − triangle O P Q (2)

= s · r

2
− c(r − h)

2
(3)

= r(s − c)

2
+ c · h

2
. (4)

In terms of the semi-central angle θ subtended by arc at the centre, we have the
formulas

s = 2rθ, (5)

c = 2r sin θ, (6)

h = r(1 − cos θ), (7)

where

tan

(
θ

2

)
= 2h

c
. (8)

We see that the use of trigonometric functions and tables makes the computation of
the arc-length s and of the area A quite straightforward when any two of the three
parameters c, h and d(= 2r) are known. But when trigonometry was not sufficiently
developed, or when its proper use was unknown or avoided, the problem of finding
s and A was difficult. In such a situation mathematicians had recourse to devising
suitable empirical rules. Practical formulas were found for needful calculations.

In an earlier paper [Gupta 1979], the present author discussed the Indian rules
for finding the arc of a circular segment. Most of the formulas used in ancient and
medieval India were of the type

s =
√

c2 + kh2 (9)
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where k was chosen such that the formula yielded the expected result for the semi-
circle (which is also a segment with c = 2r and h = r ). That is,

k = π2 − 4. (10)

The simplest approximation π = 3 gives k = 5. But the most commonly used value2

of k was 6, which corresponds to the well-known Jaina approximation π =
√
10. For

small arcs, Nı̄lakan. t.ha Somasutvan (c.1500 ad)3 found the best formula of the type
(9) to correspond to k = 16

3 . An altogether different formula.

s =
√

10

(
c

4
+ h

2

)2

(11)

is said 4 to be quoted by Bhāskara I in his commentary (ad 629) on the Āryabhat. ı̄ya
of Āryabhat.a I (born ad 476).

2 Area of a Circular Segment in Other Ancient
Civilizations

Some rules for computing the area of a segment of a circle are found in Babylonian
tablets, but they have not been stated clearly therein nor have they been understood
satisfactorily5. However, the present author was able [Gupta 2001] to assign some
sensible meaning to certain procedures in a Babylonian text to arrive at a few empir-
ical mensurational rules for the arc-length and area of a circular segment. On that
basis the old Babylonian text BM 85194 (c. 1600 bc)6 can be cited to infer that the
Babylonians had used the formula

A = ch − kh2 (12)

for the area of the segment where k is 1
2 or 1. The value k = 1

2 is to be preferred if
(12) is expected to give the exact result for a semicircle with the Babylonian value
π = 3. Otherwise k = 1 yields better values of A for segments significantly smaller
than a semicircle.

2See [Umāsvāti, 170], and [Gupta 1979, 91–2].
3[Gupta 1972], [Gupta 1972–73]; also [Gupta 1979, 93].
4[Shukla 1976, LVI, 74] (under II, 10).
5For an example see [Katz 1993, 20].
6[Van der Waerden 1983, 177–9].
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Fig. 2 The double-segment

Nevertheless there is no doubt that the most popular ancient rule for the area of a
circular segment was

A = (c + h) · h

2
. (13)

So far no direct evidence for the use of (13) is found in Babylonian texts. But it easily
follows by using the newly discovered formula (for a segmental arc)7

s = c + h (14)

suitably in the case of the figure formed (in the shape of a banana leaf) by the double-
segment (see Fig. 2). For this purpose we use the well-known and universal ancient
rule8 for round figures

area = perimeter × width

4
. (15)

When this is applied to the double-segment of area 2A, we get, by (14),

2A = 2(c + h) · 2h

4
(16)

thereby getting the expected rule (13).
The formula (13) was used in a Demotic mathematical papyrus of Hellenistic

Egypt. It is found in the Papyrus Cairo (JE 89127–30 and 89137–43) written during
the third century bc9 In its following equivalent form

A = ch + h2

2
(17)

7[Gupta 2001] contains details.
8For circular areas the rule is found in Umāsvāti’s Bhās. ya, 170 and in the Jiu Zhang Suanshu (I.32)
(c. ad 100). See [Lam 1994, 13]; also see [Hφyrup 1996, 21–3], and [Hayashi 1990, 5].
9[van der Waerden 1983, 39–40, 172–7].
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the same rule (13) is found in the famous Chinese classic Jiu Zhang Suanshu (‘Nine
Chapters on mathematical Art’) written in the Han Period (206 bc to 221 ad).10

The inaccuracy of the formula (13) was known to the Greek mathematician Heron
(ad first century). He attributed the rule11 to ‘the ancients’ and conjectured that it
arose by taking π = 3 in which case it gives the correct area for the semicircle. He
further says that those who wanted a better result applied the formula

A = (c + h) · h

2
+ 1

14
·
( c

2

)2
. (18)

Since for a semicircle (c = 2r, h = r), this will give

A = 11

7
r2, (19)

it is clear that the correction term in (18) was added by those who accepted the
Archimedean value π = 22

7 . However, Heron adds that the use of (18) should be
restricted to the range where

2 ≤ c

h
≤ 3. (20)

Where c
h > 3, Heron recommends the formula

A = 2ch

3
(21)

which is based on assuming the circular arc (of the segment) to be approximated by
a parabolic arc in the Archimedean style.12 Further the Mensurae (= De mensuris)
attributed to Heron contains two more formulas [Heath 1981, 330]

A = h

2
· (c + h)

(
1 + 1

16

)
(22)

A = h

2
· (c + h)

(
1 + 1

21

)
(23)

to be used for segments which are smaller and bigger than a semicircle, respectively
(for semicircle itself the second rule gives exact result with π = 22

7 ).

10[Lam 1994, 13] and [van der Waerden 1983, 36–40].
11[Heath 1981, 330].
12 When h is small we can neglect h2 in (1) to get

( c
2

)2 = dh which becomes the parabola y2 = dx
with a proper choice of coordinate axes.
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The formula (18) is mentioned by the Roman agrimensor Columella (ad first cen-
tury)13 and is also found in the Hebrew work Mishnat ha-Middot which is attributed
to Rabbi Nehemiah (c. ad 150).14

3 The Classical Rule (13) in India

It has been pointed out above that in Heron’s view, the classical rule (13) based on
π = 3, and it was modified to the form (18) by those who preferred value π = 22

7 . A
similar thing happened in China. The formula

A = ch + h2

2
+ (π − 3) · c2

8
(24)

is found in the Siyuan yujian (ad1303) of Zhi Shijie.15 It is his improvement of the
Chinese form (17) with π = 22

7 and 157
50 .

In India, modification was done in a different manner which may be compared
with those that are represented by (22) and (23). We shall describe them here. But
first of all it may be mentioned that the classical rule (13) itself as such as is found
in the Gan. ita-sāra-saṅgraha (VII, 43) of Mahāvı̄ra (c. ad 850) as well as in the
Triloka-sāra (gāthā 762) of Nemicandra (tenth century).16 Both these authors use
π = 3 as a rough approximation and hence specify the said rule also so which is
quite natural. The rule (13) along with (14) is also found in the Gan. itakaumudı̄ (IV,
12) of Nārāyan. a Pan.d. ita (1356) for segments which are smaller than a semicircle.17

A rule given by Śrı̄dhara (c. ad 750) in his Triśatikā (sūtra 47) is perhaps the
earliest modified form of (13) found in India. He says18

Take ten times the square of the product of the arrow and half the sum of the chord and
arrow, and divide by nine. The square-root of the quotient (so obtained) gives the area of the
bow-figure.

That is,

A =
√(

h · c + h

2

)2 (
10

9

)
. (25)

13[Heath 1981, 303], and [Hφyrup 1996, 13, 16].
14[Midonick 1968, 197]. For controversy about date and authorship of the Hebrew work, see [Katz
1993, 152] and [Hφyrup 1996, 25].
15[Martzloff 1997, 327].
16[L. C. Jain 1963, 190], and [Viśuddhamati 1975, 597].
17[Hayashi 1990].
18[Dvivedi 1899, 35].
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Clearly this is a modification of (13) based on an adjustment of π from the rough
value π = 3 to the better value π = √

10 which is used in the Triśatikā itself (sūtra
45) and the accompanying example. The formula (25) is also found in the Prakrit
workGan. ita-sāra (III, 46) of T. hakkura Pherū who, being a Jaina, describesπ = √

10
as exact (III, 43).19

In the Mahā-siddhānta (XV, 89) of Āryabhat.a II the equivalent of formula (25) is
given as a rough rule20 and the corresponding value π = √

10 is used in the preceding
verse (XV, 88). For accurate area, he gives (XV, 93) a verbal rule equivalent to the
formula (23) with the corresponding value π = 22

7 in the preceding verse (XV, 92)21.
Actually Āryabhat.a II’s form for (23) is

A = 22 · c + h

2
· h

21
. (26)

It is clear that (25) and (26) imply a modification of (13) to some desired value of π,
thereby yielding the general prototype form

A = (c + h) · h · π

6
. (27)

Now the Jainas frequently used the approximation formula [Gupta 1975, 43]

√
a2 + x = a + x

2a
. (28)

This will give the approximation π = 19
6 for

√
10 (with a = 3, x = 1). The value

π = 19
6 itself is found22 in the Gan. ita-sāra (III, 45) of T. hakkura Pherū. For such π,

the typical rule (27) implies the formula

A = (c + h)

(
h

2

) (
1 + 1

18

)
(29)

which is fact reported to be found in the anonymous Indian work Pañcavim. śatikā
(c. 1400 or earlier) [Hayashi 1991, 399, 411, 436–7]. In addition to (28), the following
formula was also used in India [Gupta 1985, 14, 17]:

√
a2 + x = a + x

2a + 1
. (30)

19[Nahata & Nahata 1961, part II, 56].
20[Dvivedi 1910, 171] where the reading in the footnote is correct and accepted here.
21[Dvivedi 1910, 172] [Billard 1971, 157–62] shifts the date of the Mahā-siddhānta to early six-
teenth century. Also see [Mercier 1993].
22The use of π = 19

6 is found earlier in the Tiloya-pan. n. atı̄, I, 118 (see Viśuddhamatı̄ 1984, 26]) and
elsewhere (see [Hayashi 1991, 333–5]).
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This easily enables us to get π = 22
7 from π = √

10whichwaswell known in India23.
In turn we get (26) as a modification of (13).

It may be that practical geometers or surveyors found that (13) always yielded
results in defect of the actual area for segments smaller than a semicircle or even
for semicircle (because they knew that the actual value of π was greater than 3). So
a modifying factor f might have been thought to be a remedy. That is, for better
results, a suggested modification could be in the form

A = (c + h)

(
h

2

)
· f (31)

where f slightly greater than one, or more specifically of the form

f = 1 + 1

N
(32)

where N is a suitable positive integer. The choice of N = 21 in (23) and of N = 18
in (29) was made from a consideration of approximation to π. If the same criterion
is applied to N = 16 in (22), it would imply the value π = 51

16 which is nowhere
mentioned. So there may have been some other consideration for choosing N = 16.
Of course for a chosen integer N , the corresponding implied value of π will be given
by

π = 3 + 3

N
. (33)

It is possible that a simpler integer was selected for making the calculations more
convenient but without affecting the result much. In India, the case N = 18 and 21
are found in (29) and (26). It may be that for convenience of computation, the choice
of N = 20 was found to be good because it is a decimally simple integer between
18 and 21 (in fact near the better N = 21). The new choice yields

A = (c + h)

(
h

2

) (
1 + 1

20

)
. (34)

And it is interesting to note that this formula was in fact popular in India in the
fifteenth century. It is said to have been used by Vis.n.u Pan.d. ita (c. 1410)

24. Gan. eśa in
his commentary (1545) on Lı̄lāvatı̄ (rule 213) states that it was known to his father
Keśava (c.1500)25. The Sanskrit text for (34) is

23[Gupta 1991]. Alberuni credits Brahmagupta (fl.628) with a knowledge of π = 22
7 (see [Sachau

1964, Vol. I, 168]). It was also known to Śrı̄dhara [Hayashi 1985, 755].
24[Datta & Singh 1980, 167].
25[Apte 1937, part II 218].
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In a bow-figure, the area is the product of the arrow and half the sum of the chord and the
arrow, increased by its 20th part.

That is,

A = h · c + h

2
+ 1

20
·
(

h · c + h

2

)
. (35)

Interestingly, the same Sanskrit hemistich is found in the Gan. itapañcavim. śı̄ (sūtra
25) which is attributed to Srı̄dhara but whose authorship of the extant work is said
to be doubtful.26 If Śrı̄dhara was the original author of (35), it is likely he got it from
his own formula (25) by simplification and using typical ancient Indian techniques
of surd-computation to produce27

√
10

3
=

√
4000

60
= 63

60
= 21

20
= 1 + 1

20
, (36)

the required form.

4 Special Jaina Rule for the Area of a Segment

In the Jaina school of Indian mathematics, the computation of the area of the bow-
figure was carried out also in another way especially for cosmographical purposes.
Themethod is based on a formulawhich is explicitlymentioned in theTiloya-pan. n. attı̄
(IV, 2401) of Yativr.s.abha in the following verbal statement:28

The square of the product of a quarter iśu (= h) and chord (= c) is multiplied by ten. The
square-root of the result is the accurate (suhuma) area of the bow-figure.

That is,

A =
√

10

(
c · h

4

)2

. (37)

We can say that this formula is based on π = √
10 because in the case of a semicircle

(c = 2r, h = r) it gives the exact area πr2

2 for that value of π . The formula (37)

26[Pingree 1979, 903]; and [Hayashi 1985, 751–6].
27For Śrı̄dhara’s rule

√
N =

√
Na2
a , see [Shukla 1959, 175] and Triśatikā rule 46.

28[Viśuddhamatı̄ 1986, 636]. Yativr. s. abha is placed between ad 473 and 609.
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is also found in the Br. hatks. etrasamāsa (I, 122) of Jinabhadra Gan. i. (fl. 609 ad).29

The first half of a gāthā quoted by Bhāskara I in his commentary (629 ad) on the
Āryabhat. ı̄ya (under II, 10) reads30

The product of the chord and a quarter of the arrow, when further multiplied by the square-
root of ten, becomes the area of the bow-figure. That is,

A = √
10 c · h

4
(38)

which is just a simplified form of (37). This form of the formula is also found in the
Gan. ita-sāra-saṅgraha (VII, 70) of Mahāvı̄ra31 as an accurate rule, whereas (13) is
given as an approximate rule (VII, 43). This is also the case with another Jaina work,
the Triloka-sāra of Nemicandra (gāthā 762).32

By making use of (37) the areas of various geographical regions (into which the
Jambū Island is divided) were obtained. These areas are found in the Tiloyapan. n. atti
(IV, 2402–9) itself andhavebeen shown tobe in complete agreementwith thosewhich
the present writer computed by applying (37) and then simplifying the calculations
in the Jaina style.33 It seems that the formula (37) is older than the Tiloyapan. n. atti.

It may be pointed out that the corresponding formula of the type (37), which is
consistent with the rough value π = 3, would be

A = 3c · h

4
. (39)

But it is significant to note that the Jaina authors of Gan. ita-sāra-saṅgraha and
Triloka-sāra (both of which give π = 3 as a rough value) did not give the formula
(39). Instead, both of them preferred to prescribe the popular classical rule (13) for
rough calculation. Why was it so? This point is relevant because the formula (39)
gives better results than (37) or (38) and even than34

A = πc · h

4
(40)

except for segments which are nearly semicircular.
A more important question is the source or derivation of the peculiar rule (37).

It is still likely that (37) was a modification of (39) from π = 3 to π = √
10. So we

consider the rationales of the simple rule (39).

29[Anupam Jain 1990, 163].
30[Shukla 1976, 73].
31[L. C. Jain 1963, 198].
32[Viśuddhamatı̄ 1975, 597]; see Sect. 3.
33[Gupta 1987, 52–3].
34[Gupta 1989, 21–2].
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Averaging35 was a usual and simple method to get empirical results. In Fig. 3,
situated on the same base P Q, the area of the inscribed triangle P N Q is ch

2 , and
that of the outer rectangle P S RQ is ch. Taking the average of these two areas,36 we
get (39) by regarding the segmental area lying midway between those of the triangle
and rectangle.

Fig. 3 Mean of two areas

Geometrically the above averaging process amounts to equating the area of the
segment with that of the trapezoid P E F Q where E F = c

2 . Incidentally it may be
pointed out that such a technique of replacing a given figure by a simpler figure that
is assumed equivalent has often been taken as an explanation or rationale of ancient
formulas. Thus the popular classical rule (13) follows by equating the area of the
segment to that of the trapezoid PG H Q, where G H = h. On the other hand, [Eves
1983 11] obtained (13) by equating the segmental area to that of triangle U N V ,
where U P = QV = h

2 .

5 Karavinda’s Segment-Area Rules

In closing, some rules found in Karavinda’s commentary on the Āpastamba
Śulbasūtra may be mentioned. One verbal rule reads37

35[Gupta 1981] contains a survey on averaging.
36Ancient mathematicians may have easily noted that the area of a semicircle ( 3r2

2 with π = 3) is
in fact the mean of the areas of the triangle (= r2) and outer rectangle (= 2r2) on the same base.
37[Srinivasachar & Narasimhachar 1931, 124].



224 Area of a Bow-Figure in India

Half of (the product of) arc as multiplied by arrow is the area of the bow-figure.

That is,

A = s · h

2
(41)

According to Datta,38 the above Sanskrit line gives the accurate area of the sector
of a circle. His interpretation is wrong because śara (‘arrow’) is usually taken as
the height of the segment (and not the radius of the circle). However, he is right in
pointing out that another rule

A = s

2
· h

2
(42)

whichKaravinda quotes is incorrect.39 If we apply the ancient rule (15) to the double-
segment in Fig. 2, we get

2A = 2s · 2h

4
(43)

which at once gives (41). The analogy of segment with semicircle may be used by
writing the latter’s area as

A = πr2

2
≈ 3r2

2
= 3r · r

2
= 3 (2r · r)

4
.

In the last two expressions, replacing 3r, 2r and r by s, c and h (as is true for the
semicircle), we get (41) and (39) for the segment analogously.
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32. David Pingree, Census of the Exact Sciences in Sanskrit, Series A, Vol. I, Philadelphia, 1970.
33. David Pingree, ‘The Ganitapañcavimśı̄ of Śrı̄dhara’, in Ludwik Sternbach Felicitation Volume,

Lucknow, 1979, pp. 887–909.
34. Edward C. Sachau (tr.), Alberuni’s India, repr. Delhi, 1964.
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Yantras or Mystic Diagrams: A Wide
Area for Study in Ancient and Medieval
Indian Mathematics

As an appliance, yantra may be an astronomical or surgical instrument, or a machine
or mechanical device. In religion and mysticism, yantra is a diagram containing
geometrical drawing and mystical symbols including mantras, letters, numbers and
other figures. These mystic diagrams are used in worship, meditation, and ritual
practices. They have been also used for protection against ill effects of evil spirits,
diseases and planets, and even for abhicāra (malefic practices). Mathematical magic
squares (aṅka-yantras) and other magical figures are also included in them.

The present paper deals with various aspects of yantras including traditional
views, classification and technical terminology along with appropriate historical re-
marks. The famous and profound śrīyantra has been given special attention. Other
yantras discussed include Ganẹśa, Durgā, Rudra, Bhauma (related to planet Mars)
and the beautiful Sarvatobhadra-yantra.

Detailed discussions of yantras’ construction and of themathematics involved are
there in the paper. Full references to original Sanskrit texts and profuse illustrations
are included here. There is a list of one hundred important yantras (with references)
and a glossary of technical terms. It is hoped that this general study of yantras will
motivate further studies and research and will serve to draw attention of scholars to
the somewhat hitherto neglected area of the history of ancient and medieval science
in India.

1 Introduction: Yantras in General

Regarding the Sanskrit word yantra, quite a few etymological connections and ex-
planations are found in different works. Apte1 gives the root yantr which means to
check, restrain or fasten fromwhich the verbal forms yantrati, yantrayati follow. Ac-
cording to Monier-Williams2, the root yantr (Dhātupātḥa XXXII. 3) itself is rather
a nominal verb from the word yantra. In general yantra is said to mean that which
checks or restrains.
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According to Vācaspatyam3 and Sanskrit Dhātu Sāgara Taranịh,̣4 the word
yantra is connected to the root yantri ( to curb or check). It has been also connected
with the root yam which is used in somewhat similar sense.5 Rao6 gives derivation
of yantra from yam as well as from the above two verbal forms. Thus the Sanskrit
word yantra usually means any appliance or apparatus, contrivance, or device, en-
gine or machine, implement or instrument in general. Depending on the context, it
may specifically denote an object of any of the above type in different areas of Indian
sciences in a broad sense.

In Ganịta-jyotisạ (mathematical astronomy), the astronomical instruments have
been called yantras in general. Yukio Ohashi’s doctoral work7 A History of Astro-
nomical Instruments in India is very comprehensive on such yantras. The earliest
of these are the nara-yantra or śaṅku (gnomon) and the ghat ̣ikā or ghat ̣ī-yantra a
which is also called jala-yantra (clepsydra).

The traditional Siddhāntas (Sanskrit works on astronomy) deal with a number of
astronomical yantras including the gola-yantra (celestial globe or armillary sphere).
The staff-type instruments were yasṭ ̣i-yantra, nalaka or nālakā, śalākā, śakatạ, etc.
Under the round-type are put cakra, dhanur or cāpa, turya (qudrant), bhuganạ or
nādị̄valaya, kartarī, kapāla, pī tḥa and Āryabhatạ’s chatra-yantra.8 Bhāskara II’s
phalaka-yantra (board instrument) is his own invention and his dhī-yantra is called
buddhi-yantra by Munīśvara.9 The yantrarāja (astrolabe) was indeed ‘king’ among
yantras.

List of other Indian astronomical instruments include the dhruvabhrama-yantra,
diksādhan-yantra (Padmanābha), kaśā-yantra (Hema), pratoda or cābuka-yantra
and sudhīrañjana (Ganẹśa). The Sanskrit manuscript Yantra-prakāra (in City Palace,
Jaipur) is said to list more than a dozen astronomical instruments including
jayaprakāśa, krānti-vrṭta, palabhā-yantra, digamṣa-yantra, śara-yantra,
agrā-yantra, yāmyottara-bhitti, rāśī-valaya and Sudas Phakarī ( = suds fakhrī) also
called sạsṭḥāmṣ́a (sextant).10

The Jaipur Observatory is the biggest and best preserved among the five obser-
vatories of Jai Singh and has two dozen instruments. According to Zī j-i Muhammad
Shāhī (1733/1738 ad), Jai Singh himself invented the Jayaprakāśa-yantra (named
after himself), Rāmaprakāśa-yantra (named after his grandfather Rāmasimḥa) and
Samrāt-̣yantra (named after his guru Jagannātha Panḍịta).11

In ancient and medieval times, mathematics was intimately connected with as-
tronomy and the twinmathematical sciences contributed significantly to their mutual
development. The theory and construction of astronomical yantras involved a lot of
mathematics. So a study of the works on such yantras (instruments) and analysis of
the principles on which the yantras were based cannot be neglected while dealing
broadly with the history of mathematics of the time in India.

Since our concern here is more about the mathematics involved in some spe-
cific type of yantras, so a few other type of yantras are only briefly mentioned
now. In the traditional Rasāyana-śāstra, different types of apparatus used in pro-
cessing of medicines (ausạdha), other preparations (rasas, etc.) were called yantras.
Dozens of such yantras are known such as dola-yantra, dẹki-yantra (for distillation),
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bhūdhara-yantra, vidyādhara, dạmarū, nālikā, ghatạ-yantra, etc.12 In ancient In-
dian system of surgery (śalya), the term yantra was applied to the surgical instru-
ments. The Suśruta-samḥitā mentions many such yantras such as śālākya-yantra,
tāla-yantra, samḍamṣ́a-yantra, nādi (tabular) and there were also upa-yantras (ac-
cessory appliances).13

Among the various mechanical devices which were called yantras, mention may
be made of the kūpa-yantra (for drawing water), taila-yantra (for extracting oil) and
dāru-yantra (wooden puppets). The Yantra-Sarvasva of Bhāradvāja (manuscript at
Baroda) is said to describe a few yantras.14

2 Mystic Diagrams

For certain meditation and ritual practices (especially in Buddhism and Tantric
Hinduism), frequent use is made of a variety of diagrams with mystic and magical
designs. These mystic diagrams (or figures) comprise some sort of graphical repre-
sentations involving geometrical drawings and designs and are called yantras. Usu-
ally they contain a few particular numbers, letters or words which may form some
mantras (mystic formulas) or their symbolic representations. Often figures and sym-
bols representing objects and ideas which have religious, mystical and philosophical
significance are also included in such yantras. Examples of such objects are the so
frequently used lotus (padma) which is a symbol of purity, trident (triśūla) which
represents the vector of energy, and vajra which is Indra’s divine weapon and which
is also a symbol of highest intellectual power in the Vajrayāna Buddhist School.15

These mystic diagrams yantras may be broadly classified into several categories
such as pūjana yantras, mantra-yantras, raksạ̄ yantras and a type which are called
malefic yantras. Of course the employment of yantras from a variety of objectives
and other various purposes is so wide and divergent that it will be difficult to have
an exhaustive and non-overlapping classification.

The pūjana yantras are used in worshipping or actualizing divinities. They are
deity-specific, i.e. each divine form is associated with a yantra of its own. Thus
Durgā yantra and kālī yantra are different. Even minor deities have their separate
yantras. Often more than one version of yantra is associated with a deity, more so
when the purpose of the yantra is different. A dhyāna-yantra may serve as a visual
aid for the concentration of mind in meditation.

The raksạ̄ yantras aremeant to provide protection for a variety of ills and dangers.
Their wearing is said to pacify the troubles arising out of diseases and destroy the
evil effect produced due to unfavourable position of astrological planets (grahas).
When such yantras are worn by a person on his body (as amulet or talisman), they are
called dhāranạ yantras. For a deity, the pūjana and raksạ̄ yantras may be different
but it is often feasible to combine them.

The malefic yantras are used for abhicāra (“destructive magic”) such as sorcery,
witchcraft and black magic. Usually they are used for seven specific objectives:
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stambhanam (arresting the movement or speech of opponent), mohanam (attract-
ing affection by coercion), uccātạnam (upsetting enemy by occult influence), vaśī
karanạ (controlling by magic and hypnotism), Jrṃbhanạm (terrorizing opponent),
vidvesạnạm (causing enmity among friends) and māranạm (causing death).

Fig. 1 Double lotus

Fig. 2 Hexagram and Solomon’s seal

To take a simple example, thePuraścaryārnạva16 contains the statement asṭạdala-
kamala-dvayātmakaṃ candrayantram, ‘The Moon mystic diagram consists, of the
figure of double eight-petalled lotus’. This is shown in Fig. 1 which should be, as
usual, enclosed by a decorated square called bhūpura, and which is comparable to
the yantra of the sun.17

The hexagram (Fig. 2) is called Sạtḳonạ (‘six-angled’) in Tantric literature and is
the basic figure in many mystic diagrams especially for the malefic yantras.18 It is
interesting to note that Solomon’s seal of the hexagram form has been used in the
western culture also as an amulet especially against fever.19

Manḍạla is another important term in connection with yantras. A simple fig-
ure consisting of square inscribed by a circle (which itself has an inscribed equilat-
eral triangle) is called kalaśasthāpanā manḍạla.20 The term manḍạla is also applied
to special type of mystic diagrams which consists of concentric circles interwoven
with lotus petals. Manḍạla (dkil-dkhor ̣in Tibetan) as a mystic diagram is one of the
most important objects of Lamaist meditation and worship.21 The Tibetan Śrīcakra-
sambhāra manḍạla is dedicated to god Heruka who is personified as Nirvānạ.22
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Many of the yantras were in the form of what are now called Latin and Magic
squares. Theywere called aṅka-yantras (numerical diagrams). TheNạmokāra yantra
(Fig. 3) is basically a Latin square.23

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

Fig. 3 Nạmokāra yantra

The use of magic squares of order three for pacifying the astrological nine plan-
ets (navagrahas) has been prescribed by the legendary writer Garga. The nine magic
squares for the purpose are shown in Fig. 4 concisely from which yantras associated
with sun,moon,mercury, jupiter, venus, saturn, rāhu and ketu can be obtained by tak-
ing 𝑥 = 0 to 8, respectively. In the Brḥaddaivajña-rañjana24, the verses containing
these magic squares and credit to Garga, etc. are quoted from Yantra-cintāmanị.25

6 + x 1 + x 8 + x

7 + x 5 + x 3 + x

2 + x 9 + x 4 + x

Fig. 4 General navagraha yantra

Among the 4th-order aṅka-yantras, the available evidences show that the Indian
had an early interest in pandiagonal magic squares.26

The aṅka-yantras of Fig. 5 was possible used by Varāhamihira (fifth century
ad.)27 and that of Fig. 6 was carved on the lintel of an eleventh century temple at
Dudhai (then in Jhansi district) and is still found in an inscription at the famous
Khajuraho (100 miles east of Jhansi).28 It seems that early peoples were astonished
to find the peculiarly wonderful arrangements of numerical figures in the form of
magic squares. They were influenced, and attributed some magical powers to the
arrangements. Hence theywere frequently employed as yantras (mystical diagrams).

But soon the properties of magic squares attracted mathematicians both as a
source of recreational mathematics and as a branch of pure mathematics (combi-
natorics). By now the subject of these aṅka-yantras is vast and their genesis and
growth form a significant part of history of the development of mathematics.



232 Yantras or Mystic Diagrams: A Wide Area for Study …

10 3 13 8

5 16 2 11

4 9 7 14

15 6 12 1

Fig. 5 An aṅka-yantra

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

Fig. 6 A temple yantra

3 Some Traditional Views and yantras

In ancient India, arts and sciences were handmaiden of religion. Almost all the sci-
ences have been attributed to a divine origin. This attitude (and practice) automati-
cally attaches a hoary past to the genesis and beginning of those sciences. It also puts
a stamp of unquestionable authority on the so-called apaurusẹya works, i.e. those
works which are attributed to ancient sages although they are composed by ordinary
human beings.

Thus, the exposition of Chap. 54 (on astronomy and mathematics) in the Nārada-
purānạ commences with the line.29

ौ तषा ं व ा म य ं णा पुरा |
(Sanandana Says) I shall now set out the Jyotisạ portion which was enunciated in antiquity
by (god) Brahmā.

The ghat ̣īyantra is attributed to the same god:30 mukhyaṃ tvamasi yantrānạ̄ṃ
brahmanạ̄ nirmitamp̣urā.

Nārāyanạ Panḍịta begins chapter on magic squares in his Ganịta-kaumudī (1356
ad) by stating that the subject was taught to Manibhadra by Lord Śiva.31 In fact all
yantras or mystic diagrams, as explained by Mahindhara in his auto-commentary on
Mantra-mahodadhi (XX.1, p. 180),32 were told by Lord Śiva to his consort Gauri.

Another characteristic of religious domination of Indian history and culture is to
trace the beginning of everything to Vedas which are taken to be the fountainhead of
all knowledge whether past, present or future. And since Vedas themselves are re-
garded to be God’s words, the origin of all vidyās (arts and sciences) whether sacred
or secular are attributed a divine origin. Nīlakanṭḥa Caturdhara (seventeenth cen-
tury ad) has claimed that the practice of generating aṅka-yantras (magic squares) is
hinted in certain Rg̣-vedic verses.33
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The Vedic tradition of construction and mensuration of plane geometrical fig-
ures existed in India since quite ancient times in connection with the erection of
śrauta (i.e. Vedic) agnis and citis (fire-altars) which are dealt and discussed in the
Śulba-sūtras in great details. Later on the mathematics of the plane geometrical di-
agrams is also met in the construction and calculation related to Kunḍạs (fire-pits)
and manḍạpas of the smārta tradition which became somewhat more popular and
practical in medieval India. Thus the mathematics needed for the construction of the
tāntric cakras, manḍạlas and yantras may be considered as a continuation and ex-
tension of the earlier traditions. It involved the application of the Indian geometrical
knowledge related to plane figures including circles, triangles, polygons, lotuses and
other flowery designs obtained by combining these figures in various ways. Such di-
agrams have specifically direct relevance to the history of geometrical knowledge
in broad terms and reflects an aspect of application of ancient and medieval Indian
mathematics in a field different from astronomy.

Most of themystic diagrams to be considered here in detail are the pūjana-yantras
used in worshipping various divinities. Their importance is clearly stated in the fact
that34

वना य णे चे पूजा दवेता न सीद त |
A worship without yantra does not please the deity.

Correctness in forms as laid down and of dimensions as prescribed is significant
while drawing the geometrical diagrams whether they are related to the śrauta or
smārta or tantric rituals. Otherwise desired objective may not be achieved and even
adverse effects might be caused. For instance, regarding the area of a kunḍạ, a warn-
ing reads35

माना ध े भवे रोगो मानह ने दिर ता |
When the area is more (than the prescribed amount), there will be disease; when it deficit,
there will be poverty.

Similarly for drawing (or engraving) a mystical diagram, the straight lines must
be made perfectly; otherwise, poverty may be caused instead of laksṃī (wealth) as
is reflected in the statement36

ऋजुलेखे भवे ीः, व रेखे दिर ता |

Interestingly, it is also said that a yantra (magic diagram) is to be drawn by free-
hand and not by the use of instruments.37

A noted attitude of Indian mind which affected the speedy growth and propaga-
tion (transfer and transmission) of all branches of ancient knowledgewas the practice
of gopanīyatā or protected and hidden secrecy. An astronomical correction, called
Bī ja-samṣkāra, was found in some manuscripts (which were used by its commen-
tators Ranġanātha and Viśvanātha) of the Śūrya-siddhānta, the most famous Indian
work on astronomy. The correction is stated to be gopanīyam as it is to be taught
only to a well-tested pupil and not to others.38 The sacred and mystic sciences of
tantra, mantra and yantra are given such treatment of well-guarded protection more
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strictly. The Sạdạksạrī Vidyā is not to be given to others even if one has to sacrifice
his “state (rājyam), son, wife, life, etc.” so says the Nārada-pañcarātra.39

The recitation or muttering (japa) of a mantra (formula of prayer) is a significant
Hindu method of worshipping any deity. Some of these mantras are to be written
down (or engraved) on suitable plates of suitable materials. The resulting documents
are called mantra-yantras (mystic diagrams of mantra) which are also used for the
worship of the mantras themselves. The importance of mantras is clear from the
ancient saying that “Siddhavaidyastu-māntrikah”̣ which implies that mantras were
believed to have some role in medical treatment. In fact the triple path or means of
tantra, mantra and yantra was used for sacred as well as secular objectives.

Although mantras are not to be translated, their original forms must be written
and pronounced correctly. Incorrectly written mantras or their bī jāksạras (mystic or
seed letters which serve as algebraic symbols) on the mantras may lead to adverse
results. We need not only to have a correct understanding of construction of yantras
but to know the correct meaning of the technical terms used. The language and sym-
bology used in tāntric tradition of writing, worshipping and performing rituals is
quite complicated. A handy glossary is required for reference.

4 Technical Terms and Symbols

Every art and science has its own terminology and symbology.Without a knowledge
of relevant technical terms and symbols used in any specific area of study, a clear
understanding of its various topics and matters is not possible. Some simple exam-
ples will be mentioned here for illustration taking the specific case of the technical
term ‘manu’ for expository clarification.

Scholars of History of Science are familiar with the usual various systems of
expressing numbers using Sanskrit words and letters of alphabet. These include the
popular bhūta-samḳhyās (word-numerals), Āryabhatạ I’s special alphabetic system
and the famous Katạpayādi-nyāya so frequently used in ancient and medieval Indian
mathematical sciences.40

In Indian mythological history, mention is made of 14 successive progenitors
and sovereigns of Earth who are called Manus. So, as a bhūta-samḳhyā, the Sanskrit
word manu is used for 14, just as agni (fire) stands for 3, veda for 4, etc.

Thus in a description of famous Śriyantra (see next section), we come across the
line

म नागदलसंयुतषोडशार
(The yantra) has 14 corners with (lotuses) of 8 (nāga) and 16 petals.

One of the usual meanings of the word manu is mantra (formula). Mantra
Mahodadhi X. 71 of Mahīdhara (1588 ad)41 has the line

वेद ा रो मनुः
A mantra (manu) of 114 letter.
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(Here 114 comes from veda = 4 and rudra = 11written from right to left according
to convention).

As a technical term manu is also used as a big period of time, there being 14 such
manus in the bigger astronomical period called Kalpa. Āryabhatạ I (born 476 ad)
puts the equation as

काहो मनवो ढ
A day of Brahmā (or a Kalpa) has dḥa or 14 (dḥa = 14 according to Āryabhatạ’s system)
manus.

It may be mentioned that at present we are living in the period of the 7th Manu
(called Vaivasvata). In the above equation, Brahmā is denoted by the single letter
ka. But in the vital word 𝑂𝑚(= 𝑎 + 𝑢 + 𝑚) which is symbol of Hindu Trinity, he is
denoted by ma.42 Also it may be noted that, as a combination of letters ma and nu, the
phrase manu will denote the number 200025 according to Āryabhatạ I’s alphabetic
system, but will stand for the number 05 according to the well-known Katạpayādi
system.

For Tantric literature and for matters related to tantra-mantra-yantra in general,
a special type of glossary is also needed. Various mantras (mystic formulas) are
almost invariably inscribed on different yantras (mystic diagrams). Due to want
of space, these mantras are frequently given in abbreviated forms which are usu-
ally called bī ja-mantra and bī jāksạra (seed or algebraic letters). These letters are
evolved by certain syncopation and other processes. In fact we have works like
Mātrḳā-nighanṭụ, which are a sort of ekāksạra kosạ (dictionary of one-letter words).
For example, words bhrg̣uh ̣ and hamṣah ̣ both denote letter sa, and the letter ha is
denoted by nabhah ̣ (sky) and its synonyms.43

The set of five monograms or mystic letters representing germ or seed of mantra
for the five metaphysical elements (pañca mahā-bhūtas) are laṃ for ksịti (earth), vaṃ
for jala (water), raṃ for agni (fire), yaṃ for vāyu (wind) and haṃ for gagana (sky,
ether or space) as mentioned above. Complicated tāntric expressions are often used
(especially for poetic use) to denote bī jas and bī jamantras. For example, take the
phrase.44

अ ी शुा यु य
which literallymeans “skywith fire, moon, and peace”, but whose actual contextualmeaning
is entirely different. It is as follows: Here agni (fire) stands for the seed letter r (reph), indu
(moon) for anusvāra śānti (for vowel), and viyat (sky) for ℎ. So the above phrase means
“The letter ℎ with 𝑟, mātrā and anusvāra”

That is, the śakti-bī ja “hrīm”̣ ( ी ).
This highly technical (sacred and secret) symbology must be noted in tantric con-

text. Otherwise as the usual word-numerals, agni denotes 3, indu 1 and viyat 0.
As another example take the phrase45

भृगुव ी युु नुः
The actual meaning of this is: Letter 𝑠 with 𝑟, vowel au and anusvāra, i.e. srauṃ ( ौ ) bī ja.
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Here the Sanskrit word manu stands for the vowel au (औ). A possible explanation
is that au is the 14th mātrā in the set of 16 svaras (vowels) of Devanāgarī alphabet.

The historians of science should also note some technical terminology and sym-
bology regarding geometrical figures related to mystic diagrams. The usual isosceles
(including equilateral) triangle with vertex upwards (Fig. 7a) is called agni (fire) or
Śiva triangle. It is stated that46

अ मुखं कोण
Fire is represented by an upward triangle.

It may be pointed out that the Greek Pythagoreans represented the metaphysical
element fire by a pyramid whose symbolic form can be taken to resemble Fig. 7a.
The reverse triangle, i.e. the one with vertex downwards (Fig. 7b) is called Śakti
or yoni triangle. The symmetrical combination of two equilateral triangles one of
which is Śiva and the other is Śakti gives us the sạtḳonạ (hexagram of Fig. 2) which
is taken to represent the universe (produced from the primordial energy).

Fig. 7 The Śiva and Śakti triangles

Fig. 8 A svastika floor design

The figure of svastika is considered auspicious in India. Its use has been noticed
even in the Indus Valley motifs in antiquity. The figure of svastika has been used
in constructing some yantras (mystic diagrams). The Vrḥat Sarvatobhadra yantra
made from svastikas (Fig. 8)47 yields a beautiful floor design which can be used for
mathematically symmetrical tiling. Nārāyanạ Panḍịta in his Ganịta-kaumudī (1356
ad) has given the name ‘sarvatobhadra’ to magic figure (aṅka-yantra) which is
obtained by filling (in Fig. 9) the 64 triangles by numbers 1 to 64 to obtain magically
constant sum.48

Yantras or mystic diagrams are frequently enclosed or surrounded by what is
called bhūpura (Earth-city or world-place) which is a square with openings on all
the four sides or cardinal (Fig. 10).
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Fig. 9 Square divided into 64 cells

Fig. 10 Bhūpura

Avery common figure on yantras is that of lotus (padma) with a number of petals,
the most frequent number being 8 (representing the 8 cardinal directions and corner
directions). Petals are usually of three types, namely,

(i) Round (Fig. 11),
(ii) Simply pointed (Fig. 12) and
(iii) Ogee form or inflectional (Fig. 1),

in which each side of a petal has a point of inflection where the curvature changes
(sign). Some other symbols depicted on mystic diagrams include those for triśula

Fig. 11 Round-petal lotus
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(trident), vajra, etc. It is often maintained that mystic language and symbols are
needed to express the higher and deeper inner experience of the yogic, tāntric and
spiritual mind.

Fig. 12 Pointed-petal lotus

5 Śrīyantra: The Famous Mystic Diagram

According to the anonymous Sanskrit work Yantroddhāra Sarvasva,49 there are as
many as 10000 yantras or mystic diagrams. Among these the Śrīyantra is found to
be most important and popular. It is the one which has drawn the widest attention of
scholars. Indeed, it is the profoundest yantra and is significant from various points
of view.

Fig. 13 Śrīyantra

As a basic geometrical diagram, the usual andmost commonly depicted Śrīyantra
is the plane (two-dimensional) type shown in Fig. 13 which shows its line diagram.
The diagram consists of a central bindu (dot) surrounded by a bilaterally symmetrical
figure composed of a set of nine interwoven primary isosceles triangles four of which
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are Śiva (vertex upwards) and five Śakti (apex downwards). The vertices of all the
9 triangles lie on the East (taken upwards) to West line of symmetry, and their bases
and tops run from North to South.

The central design of the triangular complex is usually enclosed in a circle and
surrounded by a lotus figure of 8 petals and then by another lotus of 16 petals situated
similarly and symmetrically all around. Then a triplet of concentric circles is often
made to surround the lotuses. Finally the whole pattern is enclosed in a three-lined
square boundary (called bhūpura) with a gate on each of the cardinal sides.

It is clear from the diagram that mathematically the most complicated part of
Śrīyantra is the inner triangular complex. Among the traditional constructions
(uddhāra-prakāra), a well-known classical method is that of Kaivalyāśrama which
is given in his commentary on famous Saundarya Laharī attributed to Śank̇arācārya.
This may be briefly described as follows.50

Draw a circle (see Fig. 14) of desired size and divide the vertical diameter 𝐸𝑊
into 48 equal parts or units. Starting from 𝐸, draw 9 parallel chords of the cir-
cle (all perpendicular to 𝐸𝑊 ) at respective distance of 6, 12, 17, 20, 23, 27, 30,
36 and 42 units. These are marked as 𝐴1𝐵1,𝐴2𝐵2, etc. to 𝐴9𝐵9 serially. Leav-
ing out the third and seventh chords as they are, delete (or rule off) 3, 5, 16,
18, 16, 4 and 3 units of length at both ends of the 1st, 2nd, 4þ, 5þ, 6th 8þ and
9th chords, respectively. By this, these seven shortened chords become the line seg-
ments (𝐶1𝐷1,𝐶2𝐷2,𝐶4𝐷4,𝐶5𝐷5,𝐶6𝐷6,𝐶8𝐷8 and 𝐶9𝐷9 symmetrically placed on
the 𝐸𝑊 line (for completeness we may say 𝐶3𝐷3 is 𝐴3𝐵3 and 𝐶7𝐷7 is 𝐴7𝐵7).

Fig. 14 Construction of Śrīyantra

Now the nine basic triangles of the triangular complex are formed as follows:

(i) Ends of the 1st segment 𝐶1𝐷1 are joined to the midpoint of 𝐶6𝐷6.
(ii) Ends of the 2nd segment 𝐶2𝐷2 are joined to the midpoint of 𝐶9𝐷9.
(iii) Ends of the chord 𝐴3𝐵3 are joined to west point 𝑊 .
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(iv) Ends of segment 𝐶4𝐷4 are joined to the midpoint of 𝐶8𝐷8.
(v) Ends of 𝐶5𝐷5 are joined to the mid-point of 𝐶7𝐷7.
(vi) Ends of 𝐶6𝐷6 to the midpoint of 𝐶2𝐷2.
(vii) Ends of 𝐴7𝐵7 to east point of 𝐸.
(viii) Ends of 𝐶8𝐷8 to midpoint of 𝐶1𝐷1.
(ix) Ends of 𝐶9𝐷9 to the midpoint of 𝐶3𝐷3.

It may be noted that the midpoints of the segments 𝐶4𝐷4 and 𝐶5𝐷5 are not used
in forming any of the nine above primary triangles.

A slightly different version of the construction of Śrīyantra is found in Tantra-
samuccya (śilpabhāgam)51 in which the katạpaya system is used to specify the dis-
tances of the parallel chords from 𝐸, and for giving the amounts of deletion at their
ends. In this version the amount of deletion is 4 units (instead of 5) for the 2nd chord
and 19 units (instead of 18) for the 5th chord.

Recently the author (𝑅𝐶𝐺) of the present article has found a new version of the
construction which the chosen diameter is divided into 42 parts (instead of 48) and
distances of the chords from 𝐸 are taken to different. In this version the deletion of
8th and 9th chords are given to be 8 and 6 units. If these are taken as total deletions,
then at one end of the said two chords, the deletion will be 4 and 3 units which are
same as in Kaivalyāśrama’s version.52

Laksṃīdhara, another commentator, of Saundarya Laharī , calls the above con-
struction of Kaivalyāśrama to be one of samḥarakrama (order of destruction).53 He
has another construction which is called to be of srṣṭ ̣i-krama (order of creation). In
this, we start from the centre, i.e. with the construction of the small innermost śakti
triangle around the bindu (dot) and then move outwards to construct other triangles
to complete the desired set of 9 primary triangles.54

The method in the order of destruction is also said to be found in the Tantrarāja
and that of creation in Jnānārnạva. Further,55 there is mention of a third method
called that of sthiti-krama (order of sustenance or protection) which is to be found in
the work Śubhagodaya. These three orders match or correspond to the three stages or
creation, protection and destruction (pralaya) in Hindu cosmological science (srṣṭ ̣i-
vijñāna).

Fig. 15 The 43 triangles of Śrīyantra
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The mutual intersections of the nine basic primary triangles in the samḥāra-order
construction given above (Fig. 14) results in the formation of 43 smaller secondary
triangles (Fig. 15). The inner most central śakti triangle, containing dot (bindu, as a
symbol of single unseparated form of śiva and śakti), is surrounded by an enclosure
(āvaranạ) formed by 8 triangles arranged in a symmetric polygonal figure called
asṭạkonạ (eight-angled) or asṭạ̄ra. The outer boundary of this enclosure (Fig. 16a)
of 8 small triangles forms the figure of a re-entrant polygon with 8 angles (Fig. 16b).

(a) (b)

Fig. 16 The asṭạkona (with yoni traingle) and re-entrant octagon

Figure 16a itself is important and is called navakonamaka mystic diagram. It
is often used to form other yantras. After the enclosure of 8 small triangles, three
more successive such enclosures or garlands are formed. They contain 10, 10 and
14 secondary triangles, respectively (see Fig. 15).

Thus the total number of secondary triangles:
= 1 + 8 + 10 + 10 + 14 = 43

as already mentioned above.
For the geometrical constituents (avayavas) of the Śrīyantra (Fig. 13), the fol-

lowing classical verse from Rudrayāmala Tantra is frequently quoted56

ब ु कोणवसुकोणदशारयु ं, म नागदलसंयुतषोडशार |
वृ यं च धरणीसदन यं च, ीच राजमु दतं परदवेतायाः ||
The great Śrīyantra of the supreme deity consists of a bindu (dot), a central triangle, then
enclosures formed of 8, 10, 10 and 14 triangles, and then surrounded three circles and three
bhūpuras.

The above Sanskrit verse is also said to be found in the Tripuropanisạd.57 Due to
its importance, the Śrīyantra is discussed in many ancient works especially tantric
texts and related works. But it appears that a large variety of forms and constructions
of this great yantra are available. This is not surprising for a vast country like India
which has a continuous history and culture of thousands of years. Some differences
arise from different interpretations of the Sanskrit technical terms.

Out of the ten components or constituents of Śrīyantra mentioned above, the
enclosure formed by the triplet of circles (vrṭta-trayam)̣ is not accepted by some
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schools (e.g. Hayagrīva school). The remaining 9 constituents are usually called the
nine cakras of the mystic diagram. But the term or word cakra is used in other senses
also, e.g. even the 9 triangles of the triangular complex of the Śrīyantra have been
called 9 cakras.58

The Mantra-mahodadhi59 gives the construction of the Śrīyantra as follows:

बं गभ कोणं तु कृ ा चा ारमु रे || दशार यम ा ारषोडशकोणक ||

The accompanying figure in the edition used here by us shows that the word
āra has been interpreted in the sense ‘petalled lotus’, and therefore the central in-
nermost triangle (with bindu inside) is surrounded by three lotuses of 8, 10 and 10
petals (instead of angled polygons of Fig. 15). This interpretation is similar to that of
the famous tantric or yogic sahasrāra, ‘the 1000-petalled lotus’. Also, the sọdạśa-
konạkam is drawn as a lotus with 16 angular petals. So we have a different Śrīyantra
here which have teethed wheels.

In the Kaivalyāśrama’s construction of Śrīyantra (given earlier in this very sec-
tion) some small imperfections are found at a few intersections of lines which form
the 43 secondary triangles. Of course, by drawing the mystic diagram on a smaller
scale and with a little sleight of hand in drawing it, the imperfections become prac-
tically undetectable. The Mathematical aspect in attaining precision in the construc-
tion of theoretically ideal Śrīyantra has been discussed by Kulaichev.60

A technique for drawing a nearly perfect Śrīyantra within a square has been given
by Bolton and Macleod who also mention that Alan West of the University of Leeds
has produced a scheme to construct the yantra without any error.61 A Nepalese ver-
sion (dated 1700 ad) of Śrīyantra is reported to illustrate the occurrence of the
mysterious pyramid angle of 51∘51′ in the largest triangles of the yantra, thereby
showing geometrical relationships involving the famous constant 𝜋 (ratio of cir-
cumference to diameter in any circle).62 The Tibetan ‘Śrīcakra sambhāra manḍạla’
diagram consists of a series of circles and lotuses.63

From the point of view of architectural construction, the Gaurī yāmala Tantra
mentions four types of Śrīyantra as follows.64

चातु व ं ह च ारा भव ह | भूकूमप ारा मे ा प तथा वधः ||
There are four prastāras (architectural forms) of Śrīyantra, namely bhū, kūrma, padma, and
meru.

The bhū version is the plane version in which the full diagram lies in a horizontal
plane. In the kūrma form (resembling the back of a tortoise), the triangular complex
is drawn on the spherical surface with the help of spherical triangles. In the meru
version, different constituents or enclosures (counted from outermost) lie in different
horizontal planes at different heights like the mythical Mount Meru. The padma
(lotus) form does not seem to be popular.

The history of Śrīyantra is claimed to go to Vedic times, and it is found men-
tioned in Buddhist inscriptions of Sumatra (seventh century ad).65 Verse no. 11
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of Saundarya-laharī (attributed to Ādi-Śank̇arācārya)66 is taken to refer to the
Śrīyantra.

Elementary mathematics is involved in the solution of primary triangles formed
by Kaivalyāśrama’s method (Fig. 14). Let 𝑥 be the distance, from 𝐸, of the chord
along which the base or top of such a triangle lies. If 𝑘 is the deletion on either end
of the chord, then the length of the base or top of the triangle will be given by

𝑏 = 2(√𝑥(2𝑅 − 𝑥) − 𝑘

where 𝑅 is the radius of the circle (Fig. 14). If 𝑦 is the distance of the chord on which
the apex of the triangle lies, then the apex angle will be given by

𝜃 = 2 tan−1
(

𝑏
2|𝑥 − 𝑦|), here |𝑥 − 𝑦| is modulus of (𝑥 − 𝑦).

For example, for the śakti triangle of top 𝐶1𝐷1 (lying along 𝐴1𝐵1) and apex on
𝐶6𝐷6, we have 𝑅 = 24,𝑥 = 6, 𝑦 = 27, and 𝑘 = 3.

Using above formulas, we get 𝑏 = 25.75 and 𝜃 = 63∘ nearly. Thus the innermost
triangle (Fig. 15), which contains the bindu, is nearly equilateral.

The high mathematical theory of the spherical type of Śrīyantra is reportedly
found in the doctoral thesis on Plane and Spherical Triangular network by
Dr. C. S. Rao (I.I.T., Bombay, 1993).67 Also the Śrīyantra as an “Ancient Instrument
to Control, the Psychophysiological State of Man” has been discussed in a joint pa-
per by Kulaichev and Ramendic.68 In fact, the yantra is regarded to be a complicated
object whose study requires efforts by specialists from different fields of knowledge.
Indeed Śrīyantra is rightly called yantrarāja, the king of mystical diagrams.

6 Other Selected yantras

As already mentioned, the total number of yantras or mystical diagrams is practi-
cally very large, and theoretically without any limit if we include the aṅka yantras
(magic squares and other magic figures) also. The writer of the present article be-
lieves that for the authenticity and genuineness of a yantra found anywhere, the name
of the ancient work and mention of the relevant Sanskrit text should be ensured. The
Jainendra Siddhānta Kośa (ref. 23 at the end) contains a large number of yantras but
neither the source nor the Sanskrit/Prakrit text is found there. Similar remark applies
to the Saundarya-Laharī which we consulted (ref. 66) and which is supplemented
with a large number of yantras. Huge collections of yantras are also found in several
modern works69 but original Sanskrit lines for their ancient uddhāra (construction
and description) are generally missing.
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The author (𝑅𝐶𝐺) of the present article has collected a number of mystical and
magical diagrams with relevant Sanskrit verses from various sources. A sample list
of these is given in Appendix for illustration, a few of typical yantras are described
in this section. For a broader panorama, the selection below is made full of variety.
Abbreviations used are as follows:

𝑀𝑀 = Mantra-mahodadhi (1588 ad) of Mahīdhara with Auto-commentary, Bombay,
1988.

𝑃 𝐶 = Puraścaryārnạva (1775), edited by M. Jha, Delhi, 1985 (see ref. 16).

𝑌 𝐶𝐷 =Yantra-cintāmanị ofDāmodara (seventeenth century), ed. byH.G. Turstig, Stuttgart,
1988.

6.1 Ganẹśa yantras

According to the Hindu tradition of ‘Ādi pūjyo ganẹśvarah’̣, the God Ganẹśa is to
be worshipped first in all religious work to avoid any hurdle (vighna) during the
period. For this his Vighnarāja (‘controller-king of hurdles’) form may be selected.
The corresponding yantra is described in the Merutantra as follows (PC, p. 1140)
(Fig. 17):

चतु रयुतं कुय तुर यं भ | त ऽे दलं काय पूजापीठं गणे शतुः ||
For worshipping Lord Ganẹśa, make an auspicious triple square (i.e. bhūpura) with four
gates and in its middle make a lotus of eight petals.

Fig. 17 Ganẹśa yantra

The mystical diagram for the śakti and virañci forms of Ganẹśa is said to be same.
In the case of Mahāganạpati, the karnịka (pericarp) of the lotus contains a hexagram
which itself has a triangle (𝑃 𝐶 , p. 1140), and with slight modifications, we get a few
other forms.70



6 Other Selected yantras 245

6.2 Janana yantras

भूजप े लखे कोणं रोचना द भः || ९८ ||
वा णं कोणमार स धा वभजे म |
एवमीशा कोणा जाय े त योनयः || ९९ ||
नववेद मता व ल ो ातृक मा |
अकारा दहकारा मीश दव णाव ध || १०० ||
Make an equilateral triangle on birch paper with yellow ink etc. Starting with the west corner
(taken downward) divide it sevenfold by equi-distant lines. Carry out similar division from
𝑁𝐸 and𝑆𝐸 corners thereby generating 49 triangular cells (yonis) in which should bewritten
the alphabet from 𝑎 to ℎ𝑎 serially from 𝑁𝐸 corner to the west corner.

The total number of mantras is said to be seven crore (𝑀𝑀 , p. 224). But they
all have some dosạ (lacuna). The number of various types of dosạs is fifty. For
pacification of ill effects caused by the dosạs and for curing them, ten samṣkāras are
prescribed. The first of which is called Janana. The mystical diagram used for the
purpose is called Janana yantra (Fig. 18). MM, XXIV, 98–100 (p. 224) describes its
method of construction as follows:

Fig. 18 Janana yantra

Thus the original equilateral triangle is divided into 49 small triangles by 18
equidistant lines (6 each parallel to the three sides). The cells are filled with 49 let-
ters (16 vowels and 33 consonants) of the Sanskrit alphabet (not shown in Fig. 18).
If we count the cells, we have (starting from 𝑊 )

1 + 3 + 5 + 7 + 9 + 11 + 13 = 49
which leads easily and geometrically to

1 + 3 + 5 + … + (2𝑛 − 1) = 𝑛2

It may bementioned that Sanskrit alphabets were scientifically devised separating
vowels and consonants whichwere further classified scientifically according to place
of pronunciation. In fact, India’s linguistic sciences were quite advanced relatively.
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6.3 A Māranạ yantra

Astrology is a pseudoscience, but astrology of ancient times is significant for a study
of history of astronomy. Similarly, association of magical properties with yantras
may be superstitious and claims of their efficacy may be ridiculous. Yet here we
are concerned with them only as ancient geometrical diagrams. A māranạ yantra is
mentioned in the 𝑌 𝐶𝐷 (p. 45) as follows:

Fig. 19 Māranạ yantra

सा नाम लखे म े े त स टु || ३३ ||
तत कोणं स े प कोणं तथोपिर |
Write the intended name between the coupled word stambasambha, enclose it in a triangle
and surround the whole by a pentagram.

That is, we get a diagram of Fig. 19 in which the writing of the phrase is omitted.
The usual figure of a pentagram is shown with an apex at the top (i.e. at highest
point). It was the emblem of the Greek Pythagorean school. The figure may be drawn
with the help of a regular pentagon 𝐴𝐵𝐶𝐷𝐸 or by making angles on a line 𝐸𝐶 , etc.
Did the Indians know to divide a circle into five equal parts? What is the nature of
the inscribed triangle?

6.4 Bālā-pūjana yantra

This is described in 𝑀𝑀 , VIII.17 (p. 58) as

नवयो ा कं य ं ब हर दलावृत | भूगृहणे पुनव तं पूजनाय लखे धुीः || १७ ||
For worshipping the deity, the Navayonyātmaka yantra should be written and it should be
surrounded by an eight-petalled lotus which should be enclosed further by bhūpura.

Thus the mystical diagram consists of a navakonạ̄tmaka yantra (Fig. 16a) sur-
rounded by the usual lotus and bhūpura.

The geometrical diagram of the Bālādhāranạ yantra (𝑀𝑀 , VIII, 74–76; p. 62)
is same except that the outermost single bhūpura is to be replaced by two bhūpuras
with different orientations.
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Fig. 20 Squares, lotus construction, and lotus

As explained in the 𝑀𝑀 commentary (p. 62) the bhūpura pair here consists
of two squares one of whose vertices (or corners) lie along cardinal directions and
those of the other along the intermediary directions (Fig. 20a). Incidentally, if eight
semicircles are described on the eight equal sides of the squares inwardly, we get a
flowery design (Fig. 20b) and finally an eight-petalled padma with simply pointed
petals by mathematical method (Fig. 20c) (after deleting superfluous portions).71

6.5 Other yantras Based on Navakonạka yantra

The Navakonạ̄tmaka (=navakonạka) yantra was introduced above in section 5 as
part of Śrīyantra. It consists of (see Fig. 16a) one central tri-konạ (triangle) and
eight surrounding outer triangles or outward angles (konạs). It is also called navay-

Fig. 21 A mini-Śrīyantra
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onyātmaka (9-triangled) yantra and may even be called a mini Śrīyantra. Since this
type of mystical diagram forms the main part in several other yantras, a simple
construction was evolved for it. In a circle of desired size (Fig. 21), the equilateral
triangle 𝐴𝐵𝐶 with vertex upwards is inscribed. An isosceles triangle 𝑈𝑀𝑉 is then
constructed with apex.

𝑀 is at the midpoint of 𝐵𝐶 . These two triangles intersect at 𝐾 and 𝐿 also. The
third inscribed triangle 𝑃 𝑄𝑇 is formed by producing 𝐾𝐿 both ways and joining the
ends to the lowest point 𝑇 of the circle.

Let 𝑟 be the radius of the circle and 2a the side of the triangle 𝐴𝐵𝐶 . If 2𝜃 and 2𝜙
are the angles at the apexes 𝑀 and 𝑇 of the other triangles, the following mathemat-
ical relations can be easily found.

Height of 𝑃 above 𝑇 = 𝑃 𝑇 cos𝜙

= (𝐴𝑇 cos𝜙).cos𝜙 = 2𝑟cos2 𝜙.

∴ Altitude of the triangle 𝐾𝐵𝑀

ℎ = 2𝑟cos2 𝜙 − 𝑀𝑇 = 2𝑟cos2 𝜙 − (2𝑟 − √3𝑎)
= √3𝑎 − 2𝑟sin2 𝜙

But from △𝐾𝐵𝑀 , we also have

ℎcot60∘ + ℎcot(90∘ − 𝜃) = 𝐵𝑀 = 𝑎.

Putting above value ofℎ in this and using 𝑟 = 2𝑎
√3 , we finally get, on simplification,

(3 − 4sin2 𝜙)(1 + √3 tan𝜃) = 3.

For the usual value 2𝜃 = 60∘, we get 2𝜙 = 76∘.
In addition to the Bālā yantras already mentioned, the mystical diagram of

Fig. 21 is the central figure in the Tripura Bhairavī and Dhanadā Devi yantras.72

The 𝑃 𝐶 (pp. 1154–1155) quotes the Sanskrit verse for the Tripura Bhairavī yantra
but interprets navayonis as 9 concentric triangles (see PC plate 12) instead of navay-
onis of Fig. 21. One form of Durgā Pūjana yantra73 also is based on Fig. 21 (see
below) For the Sanskrit text of Dhanadā Devi yantras, see 𝑃 𝐶 , p. 1215.

6.6 Durgā yantras

Goddess Durgā is a popular deity. The construction of her yantra is described in the
Merutantra as follows (𝑃 𝐶 , p. 1159):

अ प ा जु ं चतुर यावृत | चतु रसमायु ं कु ु मा द भ रे ||
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Construct, with kunḳuma (saffron) etc. a pair of 8-petalled lotuses surrounded by three
squares each with four gates.

That is, the Durgā yantra accordingly to the Meru-tantra consists of a usual dou-
ble lotus (Fig. 1) enclosed in a triple bhūpura.

The Durgā yantra which is used in the śatacanḍị̄ ceremony is usually called
Durgā-sapataśatī-mahāyantra. It consists of a śakti equilateral triangle (apex down-
wards) circumscribed by a hexagram (Fig. 2), and then enclosing the latter in 8-
petalled lotus surrounded by a bhūpura.74 But the Sanskrit text (𝑀𝑀 , p. 167),
tattvapatrāvrṭa-tryasra-sạtạkonạ̄sṭạdalānvite, asks us to draw a 24-petalled lotus
also (before bhūpura).75

Fig. 22 Durgā yantra

Another form of Durgā yantra consists of the Navakonạka diagram (Fig. 21) sur-
rounded by a triplet of circles and then by the usual lotus and bhūpura.76 A beautiful
rendering or modification of Fig. 21 is found in Durgā yantra designed by Penny
Lea Morris Serferovich (Fig. 22).77 The complex has 9 lines and 18 points of inter-
section (including vertices). The importance of the basic diagram was increased by
Michael Keith by making it an aṅka yantra also. He filled the 18 points of intersec-
tion by consecutive numbers 1 to 18 in such a way that the sum along each of the 9
lines comes magically the same, namely, 41 (the magical constant).

6.7 Rudra yantra

This is described in 𝑀𝑀 , XVI. 78–79 (p. 143) as follows:

अ प ं षोडशारं चतु वश तप क ||
द प ं ततः कुय ािरंश लं ततः | त हभूपुरं कुय ं पूजये ||
Make lotuses (successively) of 8, 16 and 24 petals, then of 32, and then of 40 petals. Outside
them make the bhūpura. In that yantra, the God Rudra should be worshipped.
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Thus we have the Rudra mystical diagram as shown in Fig. 23. The same is said
to be found in the Skanda-purānạ.78 It may be noted that the number of petals in the
yantra forms the arithmetical progression 8, 16, 24, 32, 40.

Fig. 23 Rudra yantra

There are yantras in which the number of petals in successive lotuses forms a
geometrical progression. One such diagram is the Vidyarājñi yantra (𝑀𝑀 , V. 32–
33; p. 39) in which we come across the set 8, 16, 32 and 64.

6.8 Svayamṿarakalā yantra

This is a sort of ākarsạna yantra (claimed to help in attaining the goal of marriage!).
It is taken here to illustrate that often somewhat complicated mathematical figures
are prescribed. 𝑀𝑀 , VI. 60–61 (p. 47) describes the yantra as follows:

कोणचतुर ा कोणा दल द ल |
द लाद प ा ण चतु दलं पुनः ||
वृ यं चतु रयु ं धर णकेतन |

The above Sanskrit lines simply give a list of the mathematical objects which
one has to construct to get the yantra for doing the pūjā for coercion. They are suc-
cessively triangle, square and hexagram (aṅgakonạ = sạtạkonạ); then lotuses of 8,
10 (dik), 10, 16 (kalā), 32 (danta) and 64 petals; then three circles, and finally the
bhūpura (dharanị-ketana) with four gates.

Knowledge of elementarymensurational geometry is needed to draw the diagram.
For example, for making square inscribed in the hexagram (Fig. 2), one has to draw
a square in the hexagon space inside it (Fig. 24). If 2a and 2b are the sides of the

hexagon and square in Fig. 24, it be shown that 𝑏 = (3−√3)𝑎. By considering angles,
a square can be circumscribed by hexagon.



6 Other Selected yantras 251

Fig. 24 Square inscribed in a hexagon

6.9 Bhauma yantra

The aṅka-yantras (magic squares) associated with the nine ancient astrological plan-
ets have been already mentioned in Sect. 2 (see Fig. 4). Similarly, there is a mystical
diagram for each of the navagrahas. Some details on the subject have been already
published by the present writer (see ref. no. 17 and the end). The mystical diagram
of planet Mars is peculiar and is called Maṅgala or Bhauma yantra. It is briefly
described here for illustration.

Fig. 25 Bhauma (Mars) yantra

The planet Mars has been associated with triangle and this played role in the
evolution of its yantra (Fig. 25).79 The 𝑀𝑀 , XV. 51 (p. 133) knows that it consists
of 21 triangular cells.

The full details of the construction of the Mars yantra are described in the
merutantra whose verses are quoted in 𝑃 𝐶 , p. 1158. The Sanskrit text and its trans-
lation can be found in present author’s paper mentioned above. Here we give a new
translation as follows.80

“First construct an equilateral triangle (𝐴𝐵𝐶) and then divide it into five parts
(by equidistant lines parallel to the base). Mark the third line (𝐷𝐺) by points (𝐸 and
𝐹 ) of three equal division. Join (crossly) the ends of the first line to these points (𝐸
and 𝐹 ) of the third line. Join directly the ends of the second line to the same points.
The already connected third line be bisected (at 𝑆), and the fourth and fifth lines be
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divided by two (𝐽 and 𝐾) and three (𝑈,𝑀,𝑉 ) points. Join the ends (𝐷 and 𝐺) of
the third line to the midpoint (𝑀) of the fifth line, and the ends (𝑌 and 𝑍) of the
fourth to its other points (𝑈 and 𝑉 ). The wise man should supply the pair of lines
(𝑆𝑈 and 𝑆𝑉 ) for forming figure of two fishes (joined back to back at 𝑆𝑀). Thus
we get twenty one cells”.

In this way the Mars yantra (Fig. 25) is obtained. Some involved crucial mathe-
matics related to the construction is already published.81 If 𝐷𝑀 and 𝑆𝑈 intersect
on 𝑌 𝑍 at 𝐽 , the 𝐵𝑈 will be 𝑎

5 and 𝑌 𝐽 will be 𝑎
4 , where 𝐵𝐶 = 𝑎.

6.10 Sarvatobhadra yantra

The Sarvatobhadra mystical diagrams (cakras, yantras, manḍạlas) are symmetrical
from all four sides. They are indeed architecturally beautiful and considered aus-
picious. For constructing them, a big square is subdivided into a large number of
small square cells like the chess board or ordinary graph paper often with cross lines
(Fig. 9).

Fig. 26 A Sarvatobhadra yantra

A few Sanskrit texts for making the Sarvatobhadra yantras are quoted in the
Vācaspatyam.82 The text for the elaborate diagram of Fig. 26 is given from Hemadri
(Skande) as follows:

ागुदी ा ता रेखाः कुय दकेोन वंश त | ख े ु पादकोणे ला प भः पदःै || १ ||
एकादशपदा व भ ु नव भः पदःै |चतु वश दावा प पिर ध वश ा पदःै || २ ||
म े षोडश भः को ैः प म दल | ेते ःु ला-कृ व नीलेन पूरये || ३ ||
भ ा णा सतावापी पिर धः पीतवणकः | बा रदलैः ेता क णका पीतव णका || ४ ||

The last three lines mention the colours of the various regions of the yantra. Based
on the above text, its construction can be concisely explained as follows:

Draw 19 equidistant lines from east to west and from north to south (These will
form a square network of 18 × 18 or 324 small square cells). In the space of central
(madhya) 16 cells, a padma (pink lotus) of 8 petals be made with yellow karnịkā
(pericarp). Around it a square yellow belt (called paridhi or periphery) of 20 cells is
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made. Just outside this belt and on each of its 4 cardinal sides, a vāpī (like a square
kunḍạ with steps) of 24 white cells be constructed.

Starting from each corner of the paridhi, a chain (śrṇ̇khalā) of 5 black cells is laid
down along outward diagonal direction. At the end of each chain, angled tromino
(khanḍẹndu) of 3 white cells is placed. Closely juxtaposed on each side of every
śrṇ̇khalā (chain) is a vallī (stepped creeper) constructed from 11 blue cells (So far
252 cells out of 324 have been filled). The remaining eight spaces (two on each
side) are called bhadras (pyramid type nonaminos). On each side, the two bhadras
are between vāpī and its adjacent vallīs. Bhadras are red (arunạ), and each has 9
cells. The space between lotus and paridhi is white. Finally the whole figure of 324
cells is to be surrounded by three square belts of white, red and black colours (these
three squares may be said to form bhūpura).

Appendix I: Yantra-śataka

(list of 100 yantras or mystic geometrical diagrams)

Abbreviations used are: MM = Mantra-mahodadhi (ref. 32); PC = Puraścar-
yarnạva (ref. 16); YCD = Yantra-cintāmanị of Dāmodara (ref. 18); Mishra (ref. 69);
Varni (ref. 23); etc. (see references at the end).

1. Agni-pūjanạ-yantra (𝑀𝑀 , I. 113, p 7).
2. Agni-stambhana-yantra (𝑌 𝐶𝐷, No. 35, p. 37).
3. Annapūrnạ̄-yantra (𝑃 𝐶 , p. 1157) (from Merutantra). Cf. Annapurnẹśvarī-

yantra (𝑀𝑀 , IX. 9, p. 68).
4. Bagalāmukhī-pūjana-yantra (𝑀𝑀 , X. 7, p. 78; 𝑃 𝐶 , p. 1156).
5. Bagalāmukhī-stambhana-yantra (𝑀𝑀 , X. 25–26, p. 79).
6. Bālā-pūjāna-yantra (𝑀𝑀 , VIII. 7, p. 58). Also see section 6 above.
7. Bālā-dhāranạ-yantra (𝑀𝑀 , VIII. 74–76, p. 62); Section 6 of this paper.
8. Bandhamoksạ-karam-yantra (𝑀𝑀 , XX. 118–119, p. 188).
9. Bhauma-yantra (from Merutantra) (𝑃 𝐶 , p. 1158); Sec. 6 of this paper.

10. Bhavānī-yantra (𝑃 𝐶 , p. 1146).
11. Bhutalipi-yantra (𝑃 𝐶 , p. 1148) (from Śāradātilaka-t ̣īka).
12. Bhuvaneśvarī-yantra (𝑃 𝐶 , p. 1154) (from Śārada-tilaka).
13. Brahma-yantra (𝑃 𝐶 , p. 1158).
14. Brāhmī-yantra (Ibid).
15. (Lord) Buddha-yantra (𝑃 𝐶 , p. 1145).
16. (Planet) Budha-yantra (𝑃 𝐶 , p. 1158).
17. Caitanya-bhairavī-yantra (from Jñānārnạva) (𝑃 𝐶 , p. 1155).
18. Cāmunḍā-Mahālaksṃī-yantra (𝑃 𝐶 , p. 1158).
19. Cāmunḍạ̄ (Navadurgātmaka)-yantra (𝑃 𝐶 , p. 1158).
20. Candra-(Moon)-yantra (𝑃 𝐶 , p. 1158).
21. Chinnamastā pūjana-yantra (𝑀𝑀 , VI. 12, p. 45).
22. Chinnamastā-yantra from Rudra-yāmala (𝑃 𝐶 , p. 1155).
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23. Daksịnạ̄-murti-yantra (from Merutantra) (𝑃 𝐶 , p. 1145).
24. Dattātreya-yantra (see Kalyānạ Vol. 42, 1968 i.e. ref. 39; plate facing p. 544).
25. Devamātrḳa-yantra (𝑌 𝐶𝐷, No. 30, p. 34).
26. Dhanadā-devi-yantra (𝑃 𝐶 , p. 1215; Mishra, p. 193).
27. Dhūmāvatī-yantra (𝑃 𝐶 , p. 1156).
28. Dūramāranạm-yantra (𝑌 𝐶𝐷, No. 47, p. 44).
29. Durga-yantra (I) (𝑃 𝐶 , p. 1159). See Sect. 6 of the paper.
30. Durga-yantra (II). This is called Canḍị-yantra (𝑀𝑀 , p. 167 and its figure

no. 49). Also cf. Sec. 6 and Mishra, p. 79.
31. Ganẹśa-yantras (𝑃 𝐶 , p. 1140 and Sect. 6 of present paper).
32. Garudạ-yantra (𝑃 𝐶 , p. 1146 and Mishra, pp. 61–63).
33. Gāyatrī-yantra (see A. Avalan, Iśopanisạd, Madras, 1952).
34. Guhyakālī-yantra (I) (𝑃 𝐶 , p. 1149–1150) (from Mahakalasamhita).
35. Guhyakālī-yantra (II) (Mishra, pp. 125–126).
36. Hanumat-pūjana-yantra (𝑃 𝐶 , p. 1147).
37. Hanumat-dhāranạ-yantra (𝑀𝑀 , XIII. 46–53, p. 116).
38. Hayagrīva-yantra (𝑃 𝐶 , p. 1145).
39. Indra-yantra (𝑃 𝐶 , p. 1158).
40. Janana-yantra (𝑀𝑀 , XX IV. 98–101, p. 224). see Sec 6.
41. Jayadam-yantra (𝑀𝑀 , XX. 53–57, p. 184).
42. Jvaraharanạ-yantra (𝑌 𝐶𝐷, No. 60, p. 50; 𝑀𝑀 , p. 188).
43. Kālarātri Dīpasthāpana-yantra (𝑀𝑀 , XVIII. 39, p. 158).
44. Kālarātri Pūjana-yantra (𝑀𝑀 , XVIII. 13–14, p. 157).
45. Kālī-yantras (from Kālī tantra etc) (𝑃 𝐶 , p. 1148–49 mentioning other works

also; 𝑀𝑀 , III. 11, p. 23).
46. Kalki-yantra (𝑃 𝐶 , p. 1145).
47. Kāmakalā-yantra (from Mahākāla-samḥitā) (𝑃 𝐶 , p. 1150).
48. Kāmya-yantras (from Merutantra) (𝑃 𝐶 , p. 1146–47).
49. Kārtavīrya-dīpasthāpana-yantra (𝑀𝑀 , XVII. 64–81, p. 153–154).
50. Kārtavīrya-pūjāyantra (𝑀𝑀 , XVII, 21–22, p. 150) ( = Arjuna-yantra).
51. Kaumārī-yantram (𝑃 𝐶 , p. 1158).
52. Krodha-śamana-yantra (𝑌 𝐶𝐷, No. 18, p. 27).
53. Krṣṇạ-yantra (I) (𝑃 𝐶 , p. 1145, and Mishra, p. 66).
54. Krṣṇạ-yantra (II) (from Gautamiyatantra) (Mishra, p. 65–66).
55. Kubera-yantra (𝑃 𝐶 , p. 1158).
56. Kubjikā-yantra (𝑃 𝐶 , p. 1157).
57. Kūrma-yantra (𝑃 𝐶 , p. 1141, and p. 476 for cakra).
58. Laghuśyamā-yantra (𝑀𝑀 , VIII. 121, p. 66).
59. Laksṃī-yantra (𝑃 𝐶 , p. 1157, and Mishra, p. 189).
60. Lalitā-yantra (𝑀𝑀 , XX. 74–79, p. 185).
61. Mahāganạpati-yantra (from Merutantra) (𝑃 𝐶 , p. 1140).
62. Mahāmohana-yantra (𝑌 𝐶𝐷, No. 1, p. 20).
63. Mālā-yantra(?) (𝑃 𝐶 , p. 1158).
64. Māranạ-yantras (𝑌 𝐶𝐷, No. 49, p. 45; 𝑀𝑀 , XX. 97–98, p. 187). Also see

Sec. 6 of present paper.
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65. Mātaṅgī-yantra (𝑀𝑀 , VII. 72, p. 55; 𝑃 𝐶 , p. 1156–57).
66. Mātrḳā-yantra (from Saradatilaka) (𝑃 𝐶 , p. 1148).
67. Matsya-yantra (𝑃 𝐶 , p. 1141).
68. Mrṭyuñjaya-yantra (𝑀𝑀 , XX . 38–39, p. 183; 𝑌 𝐶𝐷, No. 6, p. 22).
69. Nạmokāra-yantra (Varni, p. 353, see Fig. 3 in Sec. 2).
70. Navakonạ̄tmaka-yantra (see Sec. 6 of this paper).
71. Nigada mocana-yantra (𝑌 𝐶𝐷, No. 78, p. 57–58).
72. Nrṣimḥa-yantra (𝑃 𝐶 , p. 1141; 𝑀𝑀 , XIV 7–8, p. 121).
73. Paraśurāma-yantra (𝑃 𝐶 , p. 1142).
74. Pavitrayajana-yantra (𝑀𝑀 , XXIII. 51–54, p. 214–215).
75. Rāma Pūjana-yantra (𝑃 𝐶 , p. 1142).
76. Rāma Dhāranạ-yantra (𝑃 𝐶 , p. 1142–1144).
77. Rudra-yantra (𝑀𝑀 , XVI 78–79, p. 143). See Sec. 6 in paper.
78. Śānti-yantras (𝑀𝑀 , XX. 105–111, p. 187; Varni. pp. 361–363).
79. Śarabha-yantra (𝑃 𝐶 , plate 14 at the end).
80. Sarasvatī-yantra (𝑃 𝐶 , p. 1157; cf. Mishra, p. 161).
81. Sarvatobhadra-yantra (See Section 6 of present paper).
82. Sạtḳūtạ̄ Bhairavī-yantra (𝑃 𝐶 , p. 1155).
83. Siddhilaksṃī-yantra (𝑃 𝐶 , p. 1151).
84. Śī talā-yantram (𝑃 𝐶 , p. 1139 and plate 10).
85. Śiva-yantras (𝑃 𝐶 , p. 1145) (from Prapañcasāra etc).
86. Smara (cupid)-yantra (𝑃 𝐶 , p. 1147).
87. Śmaśānakālī-yantra (𝑃 𝐶 , p. 1150; Mishra, p. 122).
88. Śrīyantra (See Section 5 of the present paper).
89. Sumukhī pūjāyantra (𝑀𝑀 , III. 56, p. 26).
90. Sūrya-yantra (𝑃 𝐶 , p. 1140–41; 𝑀𝑀 , x. 28, p. 131).
91. Svapnavārāhī Pūjā-yantra (𝑀𝑀 , X. 41, p. 80; 𝑃 𝐶 , p. 1158).
92. Svayamṿarakalā-yantra (𝑀𝑀 , VI. 60–61, p. 47; See. 6 above).
93. Tārā-yantra (𝑃 𝐶 , p. 1151; 𝑀𝑀 , IV. 87, p. 34).
94. Tripura Bhairavī-yantra (𝑃 𝐶 , p. 1154–1155; Mishra, p. 100).
95. Vāmana-yantra (𝑃 𝐶 , p. 1141).
96. Varāha-yantra (from Prapañcasāra) (𝑃 𝐶 , p. 1141).
97. Vardhamāna-yantra (Varni, p. 359).
98. Vārtālī Pūjana-yantra (𝑀𝑀 , X. 76–78, p. 82–83).
99. Vidyārājñī-yantra (𝑀𝑀 , V. 32–34, p. 39).

100. Visṇụ-yantra (𝑃 𝐶 , p. 1141).

Appendix II: Select Glossary

For details of references, see at the end, e.g. M M (= Mantra-mahodadhi) in ref.
no. 32.

1. Adhara (lip): Number 2 (used in Kālacakra-tantrarāja).83

2. Aditya (sun): number 1 and 12 (see Ekādisamḳhyākośa. Jodhpur, 1964).
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3. Agni: A Hindu god; vedic citi (altar); number 3; a metaphysical element-bhūta
q.v.; consonant 𝑟.

4. Agni-bī ja : raṃ (𝑀𝑀 , p. 2 gives vahni-bī jam = ram)̣.
5. Agni-priya: svāhā.
6. Agni-trikonạ : a triangle with apex upwards.
7. Ākāśa : number 0; consonant ℎ; a bhūta q.v.
8. Antya : ksạ (last consonant in tantras, see 𝑀𝑀 , p. 63, 2391.
9. Anugraha : vowel 𝑎𝑢.

10. Ara, āra : corner, angle, spoke, petal.
11. Āsạ̄dhī : consonant 𝑡.
12. Asṭạ-dala (or patra) : 8-petalled lotus.
13. Balah ̣ : vah.̣
14. Bhaga : vowel 𝑒 (𝑀𝑀 , pp. 31, 45, 237).
15. Bhrg̣u : consonant 𝑠.Bhū (earth) : number 1; a gross element (bhūta); 𝑙𝑎.
16. Bhūpura : a decorated square with 4 gates (see Fig. 10).
17. Bhūta : a gross or meta physical element, see Pañca-mahābhūta for 5 such ele-

ments.
18. Bī ja (seed) : mystic root syllable (of a mantra etc.).
19. Cakra : astrological diagram; mystic diagram (yantra); a mystical nerve plexus,

wheel weapon of Visṇụ.
20. Candra (moon) : number 1; vowel aṃ or anusvāra bindu; consonant 𝑠 (𝑀𝑀 ,

p. 239).
21. Candra-bī jam : tḥam.̣84

22. Damodara : vowel 𝑎𝑖 (𝑀𝑀 , pp. 58, 237).
23. Danḍi : consonant 𝑡ℎ (𝑀𝑀 , pp. 53 and 238).
24. Daśa-mahā-vidyās : ten tāntrika goddesses.85

25. Dhruvam : the syllable 𝑜𝑚 (𝑀𝑀 , p. 38 and 237).
26. Dik : (direction-cardinal): number 8 (𝑀𝑀 , p. 121) or 10 (usually).
27. Gadi : consonant 𝑘ℎ (𝑀𝑀 , pp. 35 and 237).
28. Gagana : synonym of ākāsa q.v.
29. Gajapūrva : number 7 (used in Śrutabodha, see ref. 2, p. 643).
30. Ganạnāyaka (Ganẹśa) : letter ga or bī ja gam.̣
31. Govinda : vowel 𝑖 (𝑀𝑀 , pp. 27 and 237).
32. Gupta : number 7 (used in Mānasāra).86

33. Hali : consonant 𝑐 (1st in cavarga).
34. Hamṣa : consonant 𝑠 (𝑀𝑀 , pp. 5, 33, and 239).
35. Harabī ja : mercury (chemical element).
36. Harih ̣ : tah (𝑀𝑀 , pp. 27, 52, and 238).
37. Indra : letter 𝑙𝑎 (𝑀𝑀 , pp. 42 and 239).
38. Indu : synonym of candra q.v.
39. Jala : letter 𝑣𝑎; a gross element (see Pañca-mahābhūta).
40. Jhintiśa : vowel 𝑒 (𝑀𝑀 , pp. 17 and 237).
41. Kah ̣ : Brahmā of the Hindu Trinity.
42. Kala (time) : number 3 (see Ref. no. 83, Appendix I).
43. kālibī ja : kriṃ (𝑀𝑀 , p. 25 and ref. 85, p. 40).
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44. Kamikā letter 𝑡𝑎 (𝑀𝑀 , pp. 14, 37 and 238).
45. karnạ (ear) : diagonal: hypotenuse; vowel u or ū (u is right ear and ū is left ear,

𝑀𝑀 , p. 237).
46. Kesari (lion) : number 24 (used by Pūjyapada).87

47. Keśava : vowel 𝑎 (𝑀𝑀 , pp. 50 and 237).
48. kham : synonym of ākāśa q.v.
49. Konạ : corner; angle; planet Saturn number 4 (used in Mohacūdottara, see

Ref. 3, p. 2080).
50. Kriyā : letter 𝑙𝑎 (𝑀𝑀 , pp. 23 and 239).
51. Krodhabī ja : huṃ (𝑀𝑀 , p. 32).
52. Ksịti (earth) : synonym of bhū q.v.; letter 𝑙𝑎.
53. Kūtạbī ja : the phoneme ksạ (ref. 85, p. 46).
54. Laksmībī ja : śrīm.̣
55. Lamg̣alī : letter tha (𝑀𝑀 , p. 238; ref. 16, p. 1148).
56. Lotus : Its botanical name is Nelumbo nucifera, Gaertn, and the red, pink, blue,

and white flowers are called kamala, padma, utpala, punḍarīka.
57. Madana (cupid) : number 13 (ref. 83, Appendix I).
58. Mahābhūta (gross elements) : see Pañca-mahā bhūta.
59. Mahāśūnya (great vacuity) : a mental condition of yogin.
60. Manḍạla : mystical or symbolic diagram.
61. Manu : mantra; number 14; etc. (see Sec. 4 of the paper).
62. Mātrḳās : alphabet; varṇạs a to ksạ (𝑀𝑀 , p. 5).
63. Māyābī ja : hrīṃ (Ibid.).
64. Mrṭyuh ̣ (death) : Letter śah ̣ (𝑀𝑀 , pp. 31 and 239)
65. Nabha : synonym of ākāśa q.v.
66. Nādị̄ trayam : idạ̄, piṅgalā, and suśumnā.
67. Nandaja : letter tḥa (𝑀𝑀 , pp. 26 and 238).
68. Netra (eye) : number 2; vowel i (right eye) or (left eye).
69. Pañca-mahābhūta : 5 gross or metaphysical elements viz. bhū (earth), jala (wa-

ter), agni (fire), vāyu (air), ākāśa (sky or ether).
70. Pañca-makāra : madhya, māmṣa, mīna, mūdrā and maithuna.
71. Pavana : synonym of vāyu q.v.
72. Pradaksịnạ̄ : going round (clock wise) a deity etc.
73. Prṭhivī or Prṭhvī : synonym of bhū q.v.; letter 𝑙𝑎.
74. Sahasrara : 1000-petalled lotus supposed to exist in the head.
75. Śaktibī ja : hriṃ (𝑀𝑀 , p. 3).
76. Śakti-trikonạ : triangle with apex downwards (ref. 16, p. 1149).
77. Śānti (Peace): vowel 𝑖 (𝑀𝑀 , p. 25, 27, 37 and 237).
78. Saptamātrịkā : 7 universal mothers, see ref. 69, p. 30 for names.
79. Sạtḳonạ : (six-angled): hexagram (see Fig. 2).
80. Śiva-trikonạ : triangle with apex upwards.
81. Surpatlocana : number 1000 (from Indra’s eyes).88

82. Tārah ̣ : the sacred syllable 𝑜𝑚 (𝑀𝑀 , pp. 5 and 237).
83. Tattva (element) : number 5 (cf. bhūta), or 24 (in Mahābhārata of 𝑀𝑀 , p. 167),

or 25 (usual in sāmḳhya).
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84. Tḥa : number 0 (according to Ekāksạranāma-kosạ).
85. Tḥadvayam : svāhā (𝑀𝑀 , pp. 9 and 32).
86. Trika : trinity of Brahmā, Visṇụ and Maheśa or of Śiva, Śakti and Nara; etc.
87. Tri-pancāra yantra : a special mystic diagram (ref. 69, p. 126).
88. Trirekhāputạm : triangle (see Rāmāpurvatapini Upanisạd): (on page 237 of

𝑀𝑀 , trikonạka means 𝑒!).
89. Vahni : synonym of agni q.v.
90. Varāha (boar) : Letter ℎ𝑎 (𝑀𝑀 , pp. 23 and 239).
91. Vasu :letter 𝑟𝑎 (𝑀𝑀 , p. 69).
92. Vāyu (air) : letter 𝑦𝑎 (𝑀𝑀 , p. 239); a bhūta q.v.
93. Vedādi (origin of Veda) : sacred syllable om (𝑀𝑀 , p. 237).
94. Viyat : synonym of ākāśa q.v.
95. Yantra-gāyatrī : Gāyatrī mantra for yantras.89

96. Yoni-trikonạ : same as śakti-trikonạ q.v.; triangle.
97. Yoni-yugma : same as sạtkonạ q.v. (ref. 85, p. 105).90
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18. For example see the Yantracintāmanịh ̣ of Damodara edited by Hans-Georg Turstig, Franz

Steiner, Stuttgart, 1988; yantra Nos. 4 and 23.
19. Webster’s Seventh New Collegiate Dictionary, Indian edition, Calcutta, 1971; p. 831.
20. Rao, ref. 6 above, p. 46.



References and Notes 259

21. Anuruddha, ref. 15, pp. 103–105.
22. Ibid., p. 108.
23. Jinedra Varni, Jainendra Siddhānta Kośa, Part III, Delhi 1997, p. 353.
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Part VI

Interpolations and Combinatorics



Second-Order Interpolation
in Indian Mathematics up to the
Fifteenth Century

The computational abilities of ancient Indian mathematicians are well known. The paper
deals with the second-order interpolation schemes found in a few astronomical works of
India. The earliest one is the rule of Brahmagupta (c. ad 625) for equal intervals, which
resembles the modern Newton–Stirling interpolation formula up to the second-order. Later
on (ad 665), Brahmagupta also gave a modified form of his rule to cover the case of unequal
intervals. Then we come across a peculiar set of rules for second-order interpolation in a
work of Govindasvāmin (c. ad 800–850). The famous Bhāskara II (c. ad 1150) gave an
empirical derivation of Brahmagupta’s rule for equal knots. Next are described the Indian
forms of the second-order Taylor series approximations which are attributed to Mādhava
(ad 1350–1410). Finally are given the forms of various rules quoted by Parameśvara (c. first
quarter of the fifteenth century ad).

Symbols

a the argument, circular arc measured in angular units; anomaly.
𝑎1, 𝑎2, etc. successive unequidistant values of a.
ℎ equal (common) arcual interval; elemental arc.
ℎ1,ℎ2, etc. unequal arcual intervals (gatis); ℎ1 = 𝑎1;

ℎ2 = 𝑎2 − 𝑎1;
ℎ3 = 𝑎3 − 𝑎2, etc.

R sinus totus (radius).
R sin a, R cos a,
R versin a Indian sine, cosine and versed sine of the arc a
f(a) the functional value of sine, versed sine or certain astronomical

function called ‘equation’ (phala).
p, q positive integers; 𝑥 = 𝑝⋅ℎ or 𝑎𝑝; arc passed over, such that f(x) is

known.
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𝜃 residual arc such that 𝑓(𝑥 + 𝜃) is required to be interpolated, 𝜃
being positive and less than h or ℎ𝑝+1.

n
𝜃
ℎ .

𝐷1,𝐷2, etc. tabulated functional differences;
𝐷1 = 𝑓(𝑎1) or 𝑓(ℎ)
𝐷2 = 𝑓(𝑎2) − 𝑓(𝑎1) or 𝑓(2ℎ) − 𝑓(ℎ)
𝐷3 = 𝑓(𝑎3) − 𝑓(𝑎2) or 𝑓(3ℎ) − 𝑓(2ℎ),etc.

Δ first-order forward difference operator;
Δ𝑓(𝑎) = 𝑓(𝑎 + ℎ) − 𝑓(𝑎);
Δ𝑓(𝑎𝑞) = 𝑓(𝑎𝑞+1) − 𝑓(𝑎𝑞);
Δ𝑓(𝑥) = 𝐷𝑝+1.

Δ2 second-order difference operator.
ℎ𝑝,ℎ𝑝+1 argumental intervals just passed over (last or bhukta-gati) and yet

to be passed over (current or bhogya-gati), respectively.
𝐷𝑝,𝐷𝑝+1 the corresponding tabulated functional differences passed over

(bhukta-khanḍạ or gatiphala) and to be passed over (bhogya-
khanḍạ or gatiphala), respectively.

𝐷𝑡 the envisaged true (sphutạ) value of the functional difference to
be passed over.

𝑍𝑝 ‘adjusted’ value of the functional difference passed over in case
of unequal intervals.

1 Introduction

Tabular values of the trigonometric functions R sin𝑎 , R versin a or their differences
and of certain astronomical functions are found almost in every work on astronomy
of ancient and medieval India. Various numerical values of R and h were taken by the
Indians. For computing the functional values corresponding to the intervening values
of the argument, the ordinary method used was that of linear proportion, i.e. first-
order interpolation. For better results, more elegant techniques using second-order
interpolation schemes are also found in few Hindu works. Below we give the meth-
ods described by few Indian astronomer–mathematicians starting with Brahmagupta
(seventh century) who taught, ‘for the first time in the History of Mathematics, the
improved rules for interpolation by using the second differences’.1

2 Brahmagupta’s Rule for Equal Intervals

It is well known2 that Brahmagupta composed Brāhmasphutạ-siddhānta in ad 628
and Khanḍạkhādyaka in ad 665. The famous couplet containing Brahmagupta’s in-
terpolation rule for equal intervals is found in the uttara (supplementary) part of
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Khanḍạkhādyaka. However, an earlier reference is worth noting. The same couplet
occurs in Brahmagupta’s earliest known work, the Dhyāna-graha-adhikāra or
Dhyāna-graha-adhāya or the Dhyānagrahopadeśādhyāya. That the Dhyānagraha
was written earlier than the Brāhmasphutạ-siddhānta is concluded on the ground
that the latter (XXIV, 9) quotes the former.3 Hence, the invention of the second-order
interpolation formula given by Brahmagupta should be placed near the beginning of
the second quarter of the seventh century ad, if not earlier.

Now we quote the couplet:

गतभो ख का रदल वकलवधा शतैनव भरा ःै |
त ु तदलं युतोनं भो ा ना धकं भो ||

(Dhyāna-graha-Upadeśa-adhyāya, 17;

Khanḍạkhādyaka, IX, 8, etc.)4

Multiply half the difference of the tabular differences crossed over and to be crossed
over by the residual arc and divide by 900’ (= ℎ) by the result (so obtained) increase or
decrease half the sum of the same (two) differences, according as this (semi-sum) is less
or greater than the difference to be crossed over. We get the true functional differences
to be crossed over.

That is
𝐷𝑡 = 1

2(𝐷𝑝 + 𝐷𝑝+1) ± 1
2(𝐷𝑝 ∼ 𝐷𝑝+1) 𝜃

ℎ , (1)

the upper or lower sign is to be taken according as 1
2 (𝐷𝑝 + 𝐷𝑝+1) is less than or

greater than 𝐷𝑝+1, i.e. according as 𝐷𝑝 is less or greater than 𝐷𝑝+1. Then we have

𝑓(𝑥 + 𝜃) = 𝑓(𝑥) + 𝜃
ℎ ⋅ 𝐷𝑡. (2)

Combining (1) and (2) and using 𝐷𝑝+1 = Δ𝑓(𝑥), we easily obtain

𝑓(𝑥 + 𝑛ℎ) = 𝑓(𝑥) + 𝑛
2{Δ𝑓(𝑥 − ℎ) + Δ𝑓(𝑥)} + 𝑛2

2 {Δ𝑓(𝑥) − Δ𝑓(𝑥 − ℎ)}

which may be regarded as the modern form of Brahmagupta’s rule and is a partic-
ular case (up to second-orders) of the more general Newton–Stirling interpolation
formula of modern Mathematics.5 From the context in the work Dhyāna-graha-
Upadeśa-adhyāya, it is clear that Brahmagupta gave the rule for the interpolation
of sine (𝐷𝑝 > 𝐷𝑝+1) and the versed sine (𝐷𝑝 < 𝐷𝑝+1). However, in the statement of
the rule itself, there is no such limitation on the scope of its use and the rule may
be applied to other functions tabulated at equal intervals. In fact, the commentators
Prṭhūdaka (ad 864) and Āmarāja (1180) both explained its use in finding the equa-
tion of centre (manda-phala).6 Brahmagupta’s rule is also found in the Vatẹśvara-
siddhānta (II, i, 62) of ad 904.
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3 Bhāskara II’s Form of Brahmagupta’s Formula
and Its Rationale

In the Grahaganịta part of his Siddhānta-śiromanị, Bhāskara II (ad 1150) gives the
rule as

यातै योः ख कयो वशेषः शेष श न ो नख त न |
युतं गतै ै दलं ु टं ा मो म ा करणेऽ भो || १६ ||

(Siddhānta-śiromanị, II (Spasṭạ̄dhikāra), 16)7

Multiply the difference of the tabular differences passed over and to be passed over by
the residual arc and divide by 20. By the result decrease or increase half the sum of (the
differences) passed over and to be passed over to get the true difference to be passed over
for interpolating sine and versed sine respectively.

That is,

𝐷𝑡 = 1
2(𝐷𝑝 + 𝐷𝑝+1) ± 𝜃

20 × (𝐷𝑝 ∼ 𝐷𝑝+1),

where we have to take the negative and positive signs, respectively, for computing
sine and versed sine.

Thus, we see that the formula is same as that of Brahmagupta except that
Bhāskara II takes ℎ = 10∘, instead of ℎ = 900′(= 15∘). The rationale (upapatti) of
the rule given by Bhāskara II is as follows.8

𝐷𝑝+1 and 1
2 (𝐷𝑝 + 𝐷𝑝+1) are the tabular differences at the end and beginning of

the current interval, respectively. Take proportional part of their difference (to get
the necessary correction to be made for finding the true difference corresponding to
the intervening point).

By the rule of three, this correction (change)

= [
1
2(𝐷𝑝 + 𝐷𝑝+1) ∼ 𝐷𝑝+1]

𝜃
10

= 𝜃
20 × (𝐷𝑝 ∼ 𝐷𝑝+1).

This combined with 1
2 (𝐷𝑝 + 𝐷𝑝+1) (which has been taken above as the tabular

difference at the beginning of the current interval) will give the required 𝐷𝑡. We have
to add or subtract the correction term since tabular differences decrease (apacaya)
for sine and increase (upacaya) in case of versed sine. Thus, it is proved.

In the above proof of Bhāskara II, the assumption that 1
2 (𝐷𝑝 + 𝐷𝑝+1) is the

tabular difference at the beginning of the interval considered is wrong since it is
actually 𝐷𝑝 there* Kamalākara (ad 1658) attacked Bhāskara II on this point in his

*However, these arguments are not adequate, since the true functional difference, corresponding
to the residual arc, is 𝜃

ℎ ⋅ 𝐷𝑡 (and not simply 𝐷𝑡) which will be zero (as it ought to be) when 𝜃 = 0,

whether 𝐷𝑡 is taken 𝐷𝑝 or 1
2 (𝐷𝑝 + 𝐷𝑝+1) there.
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Siddhānta-tattva-viveka (II, 179).9 Whether Brahmagupta argued in the same man-
ner as Bhāskara II to arrive at his rule or had some other approach for it is difficult
to say in the absence of specific evidence.

In case of sine function, the following derivation of the rule will not be without
interest here. We have

1
2(𝐷𝑝 + 𝐷𝑝+1) = 𝑅

2 {sin𝑥 − sin(𝑥 − ℎ) + sin(𝑥 + ℎ) − sin𝑥}
= 𝑅 cos 𝑥 sin ℎ (3)

and
1
2(𝐷𝑝 − 𝐷𝑝+1) = 𝑅

2 {sin𝑥 − sin(𝑥 − ℎ) − sin(𝑥 + ℎ) + sin𝑥}
= 𝑅 sin𝑥(1 − cos ℎ). (4)

If 𝜃 and h are small, we may assume

sin𝜃
sinℎ =

sin(
1
2 𝜃)

sin(
1
2 ℎ)

= 𝜃
ℎ. (5)

Now the ‘true’ bhogyaphala, 𝜃
ℎ ⋅ 𝐷𝑡

= 𝑅 sin (𝑥 + 𝜃) − 𝑅 sin 𝑥
= 𝑅 cos 𝑥 sin 𝜃 − 𝑅 sin 𝑥(1 − cos 𝜃)
= 𝑅 cos 𝑥 sin 𝜃 − 𝑅 sin 𝑥 ⋅ 2sin2

(
1
2𝜃)

= 𝑅 cos 𝑥 ⋅ 𝜃
ℎ ⋅ sin ℎ − 𝑅 sin 𝑥 ⋅ 2 𝜃2

ℎ2 sin2
(

1
2ℎ) by (5)

= 𝑅 𝜃
ℎ ⋅ cos 𝑥 ⋅ sin ℎ − 𝑅 ⋅ 𝜃2

ℎ2 ⋅ sin 𝑥(1 − cos ℎ)

= 𝜃
ℎ ⋅ 1

2(𝐷𝑝 + 𝐷𝑝+1) − 𝜃
ℎ ⋅ 𝜃

ℎ ⋅ 1
2(𝐷𝑝 − 𝐷𝑝+1) by (3) and (4)

hence we get the required expression for the ‘true’ bhogya-khanḍạ, 𝐷𝑡.

4 Brahmagupta’s Rule for Unequal Intervals

This rule is given by Brahmagupta in Khanḍạkhādyaka (ad 665) in connection with
computing the gatiphala (change in the equation) corresponding to any given gati
(change in anomaly) by using the tabulated values of the gatiphala at unequal inter-
vals. The relevant Sanskrit passage is
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भु ग तफल शगुणाभो ग तः भु ग त ता ल |
भु गतेः फलभागा ो फला राधहत ||
वकलं भो ग त तं ल नेोना धकं फलै ाध |
भो फलाद धकोनं त ो फलं ु टं भव त ||

(Khanḍạkhādyaka, II, 12–13, etc.)10

Multiply the last gatiphala (in degree) by the current gati and divide by the last gati; the
result is the “adjusted” last gatiphala (in degrees). Multiply half the difference of the
“adjusted” last gatiphala and the current gatiphala by the residual arc and divide by the
current gati. By the new result decrease or increase half the sum of the “adjusted” last
gatiphala and the current gatiphala when this half sum is more or less than the current
gatiphala. The final result is the true current gatiphala, i.e. true functional difference to
be passed over.

In symbols

𝑍𝑝 = 𝐷𝑝 ⋅
ℎ𝑝+1
ℎ𝑝

, and

𝐷𝑡 = 1
2(𝑍𝑝 + 𝐷𝑝+1) ± 𝜃

ℎ𝑝+1

1
2(𝑍𝑝 ∼ 𝐷𝑝+1)

the upper or lower sign is to be taken according as 1
2 (𝑍𝑝 + 𝐷𝑝+1) is less or greater

than 𝐷𝑝+1, i.e. according as 𝑍𝑝 is less or greater than 𝐷𝑝+1.
The desired result is given by

𝑓(𝑥 + 𝜃) = 𝑓(𝑥) + 𝜃
ℎ𝑝+1

⋅ 𝐷𝑡,

where 𝑥 = 𝑎𝑝
= ℎ1 + ℎ2 + ⋯ + ℎ𝑝

and 𝑓(𝑥) = 𝐷1 + 𝐷2 + ⋯ + 𝐷𝑝.

The numerical illustration of this rule given by Sengupta11 in his paper is wrong.
Instead of 𝐷𝑝(= 12∘ in his example), he put 𝜃 (= 14∘) in finding 𝑍𝑝. However,
this error was avoided by him while illustrating the rule in his translation of the
Khanḍạkhādyaka.12

In case the intervals are equal, i.e. ℎ𝑝 = ℎ𝑝+1, we will have 𝑍𝑝 = 𝐷𝑝 itself, and
the rule will reduce, as should be expected, to his earlier rule for equal intervals.

5 Govindasvāmin’s Rule for Second-Order Interpolation

About two centuries after Brahmagupta, we come across a set of peculiar rules of
making second-order interpolation to compute the intermediary functional values.
These rules are found in Govindasvāmin’s (c. ad 800–850)13 commentary on
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Mahābhāskarīya of Bhāskara I (seventh century ad). The peculiar thing to note
is that different formulae are laid down for different argumental intervals. The
relevant text is as follows:

ग ातगुणा राहतवपुय तै द ासन-
ेदा ाससमूहकामुककृ त ा ा , भ ा डता |

वेदःै ष रवा म गुणजे रा ोः मा , अ भे
ग ाहतवतमानगुणजा ापा मेका द भः ||
अ ा मतः मेण वषमैः सं ा वशेषैः पे *

भ ा ,ं य द मौ वका व धरयं म ाः मा वतते |
शो ं ु मत थाकृतफलं, .....

(Govindasvāmin’s comm. on Mahābhāskarīya)14

Multiply the difference of the last and the current sine differences by the two parts of the
elemental arc (made by any intermediary point on it) and divide by the square of the ele-
mental arc and further multiply by three. Now divide the result so obtained by four, in the
first rāśi, or by six, in the second rāśi. The final result thus obtained should be added to the
portion of the current sine difference (got by linear proportion).

In the last (third) rāśi, multiply the linearly proportional part of the current sine difference
by the remaining part of the elemental arc and divide by the elemental arc. Now divide the
result (so obtained) by the odd numbers 1,[3,5], etc., according as the current sine difference
is first, (second, third), etc., when counted from the end in the reversed order. Add the final
result thus obtained to the portion of the current sine difference (got by ordinary proportion).

These are the rules of computing true sine difference for (direct) sines. In case of versed
sines apply the rules in the reversed order* and the above corrections are to be subtracted
from the respective differences (got by linear interpolation).

Let the true sine difference (bhogyaphala) desired,

𝑅sin(𝑥 + 𝜃) − 𝑅sin 𝑥 = 𝜃
ℎ ⋅ 𝐷𝑝+1 + 𝐸, approximately,

where 𝜃
ℎ ⋅ 𝐷𝑝+1 is the portion of the current sine difference, 𝐷𝑝+1, obtained by the

ordinary first-order linear interpolation, and E is the term got by second-order inter-
polation. Then, according to the above rules, we have (assuming 24 equal divisions
of the first quadrant).

𝐸 = 1
4 × 3𝜃(ℎ − 𝜃)

ℎ2 (𝐷𝑝 − 𝐷𝑝+1), when 𝑝 = 1 to 7

𝐸 = 1
6 × 3𝜃(ℎ − 𝜃)

ℎ2 (𝐷𝑝 − 𝐷𝑝+1), when 𝑝 = 8 to 15

𝐸 = (ℎ − 𝜃)
ℎ × 𝜃

ℎ𝐷𝑝+1 × 1
(47 − 2𝑝) , when 𝑝 = 16 to 23.

*In the published article, the reading was: ` वषमैः वशेषैः पे ’. This has been refined in consultation
with the source work. (–ed.).
*That is, the first, second, third rāśi rules of sines are to be used, respectively, for third, second,
first rāśi in case of versed sines.
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Using the general functional notation and finite difference operator, the rule for
the second rāśi (30∘ to 60∘) may be put as

𝑓(𝑥 + 𝑛ℎ) = 𝑓(𝑥) + 𝑛Δ 𝑓(𝑥) + 𝑛(𝑛 − 1)
2 {Δ 𝑓(𝑥) − Δ 𝑓(𝑥 − ℎ)},

which is the modern form of Govindasvāmin’s rule and is a particular case (up to
the second-order) of the general Newton–Gauss interpolation formula.15 Mathemat-
ically, this rule of Govindasvāmin is equivalent to that of Brahmagupta for equal
knots. But, unlike Brahmagupta, Govindasvāmin gives different rules for the three
rāśis of the first quadrant.†

6 Mādhava’s Taylor Series Approximation

Nīlakanṭḥa (1443–1545)16 in his commentary on Āryabhat ̣īya quotes the text of
rules for computing sine and cosine functions, which are equivalent to modern
Taylor series approximations up to the second-order of small quantities. Nīlakanṭḥa
attributes these rules to Mādhava (1350–1410),17 who antedates Taylor by more
than 300 years.18 The same verses containing the same rules (but without mention-
ing Mādhava) are also included by Nīlakanṭḥa in his Tantrasaṅgraha (ad 1500), a
‘compendium’ on astronomy. The text is

त ाह माधवः
इ दोःको टधनुषोः समीपस मिरते |
े े सावयवेऽ कुय ना धकं धनुः |
त का कैशरशैल शखी वः |
ा ेदाय च मथः त ं ार व ध या |

छ कै ा पे ा त नु धकोनके |
अ ामथ त ा तथा ा म त सं ॄ तः |
इ त ते कृतसं ारे गुणो ै धनुषो योः |

(Āryabhat ̣īya-bhāsỵa (II, 12);19

Tantrasaṅgraha (II, 10–13))20

Thus spake Mādhava:
Placing the (sine and cosine) chords nearest to the arc whose sine and cosine chords
are required get the arc difference to be subtracted or added. For making the correction,
13751 should be divided by twice the arc difference in minutes and the quotient is to be
placed as the divisor. Divide the one (say sine) by this (divisor) and add to or subtract
from the other (cosine) according as the arc difference is to be added or subtracted.
Double this (result) and do as before (i.e., divide by the divisor). Add or subtract the
result (so obtained) to or from the first sine and cosine to get the desired sine or cosine
chords.

†The author of the present paper proposes to publish a separate article about Govindasvāmin’s
computations of Indian sines.
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That is,

‘divisor’ = 13751
2𝜃 = 𝐷, say.

Then sin(𝑥 + 𝜃) = sin 𝑥 + (cos 𝑥 − sin 𝑥
𝐷 )

2
𝐷

cos(𝑥 + 𝜃) = cos 𝑥 − (sin 𝑥 + cos 𝑥
𝐷 )

2
𝐷 .

The sinus totus in this case is

𝑅 = 21600
2𝜋 = 3437.75 very nearly

= 13751
4

∴ 𝐷 = 2𝑅
𝜃 .

Using this, the above approximations can be easily put as

sin(𝑥 + 𝜃) = sin 𝑥 + 𝜃
𝑅 ⋅ cos 𝑥 − 𝜃2

2𝑅2 ⋅ sin 𝑥 and

cos(𝑥 + 𝜃) = cos 𝑥 − 𝜃
𝑅 ⋅ sin 𝑥 − 𝜃2

2𝑅2 ⋅ cos 𝑥

which are particular cases of the well-known Taylor series,

𝑓(𝑥 + 𝜃) = 𝑓(𝑥) + 𝜃𝑓 ′(𝑥) + 𝜃2

2! 𝑓 ″(𝑥) + …,

for sine and cosine, respectively, up to second power of small quantity (in radians
when using the Taylor series).

Shukla21 interprets the text to yield the rule in the following mathematical form:

sin(𝑥 + 𝜃) = sin 𝑥 + 𝜃
2𝑅{cos 𝑥 + cos(𝑥 + ℎ)}.

But this interpretation does not seem to conform to the text closely. Our interpre-
tation is justified by the commentator Śank̇ara Vāriar22 (ad 1556) as well as by the
exposition of the text in Yukti-bhāsạ̄,23 a work attributed to Jyesṭḥadeva (c. 1475–
1575) by K. V. Sarma.24
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7 Forms of Various Rules Found in the Works
of Parameśvara

In Parameśvara’s commentary (ad 1408)25 on Laghubhāskarīya is found a second-
order interpolation rule described in the following text:

गतै चाप शकयोः संवगण समाहत |
पूव परो ख ा ववर दलं हरे ||
चापवगण त ा म ासु व न पे |
य ा धका पराख जीवा त तु शोधये * ||

(Parameśvara’s comm. on Laghubhāskarīya)26

By the product of the two parts of the elemental arc (made by any intermediary point on
it) multiply half the difference of the last and the current sine differences and divide by
the square of the elemental arc. By the quotient (so obtained) increase or decrease the sine
desired for correction accordingly as the current sine difference is less or greater than the
last sine difference.

That is,

𝐸 = ±𝜃(ℎ − 𝜃)
ℎ2 × 1

2(𝐷𝑝 ∼ 𝐷𝑝+1).

Thus, we see that this formula is same as that of Govindasvāmin for the argu-
mental interval from 30∘ to 60∘. However, unlike Govinasvāmin, Parameśvara rec-
ommends the use of this single rule for the whole of the first quadrant.

Exactly the same rule but described in different words is found quoted in
Parameśvara’s supercommentary (called Siddhāntadīpikā) on Govindasvāmin’s
commentary on the Mahābhāskarīya.27 But here Parameśvara accepts that the rule
is not his own, for the statement of the rule is found to be preceded by the words

के चदा ः or के चदवेमा ः
Thus is said by others.

thereby clearly ascribing the rule to other persons.
Finally, in the Siddhāntadīpikā mentioned above are also found the rules, again

ascribed to others, for computing sines and cosines using central values but ulti-
mately amounting to the use of Taylor series approximations up to the second-order.
The text quoted is

चापख म ो ा या को ट ा तया हता |†
चापख ा या ं त े दोगुणो भवे || ७ ||
चापख म ो भुज ा नहता तथा |
चापख ा या ं त े को टका भवे || ८ ||
चापख ाधसंभूतदोःको ो व ध ते |
दो चापा ज चापख ाधन समाहता || ९ ||

*In the published article the reading was: ` वशोधये ’. This has been refined in consultation with the
source work. (–ed.).
†We have changed the printed ता to हता for an obvious reason. (–ed.).
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ासाधन वभ ा ं य ा ेन वव जता |
चापा ो ा को टजीवा चापख ाधजा भवे || १० ||
तया को ा हता ापख ाध या त |
य ा तेन तु संयु ा दो चापा संभवा || ११ ||
चापख ाधजा सा ा , भूयोऽ वंे गुण य |
सा ं पर रं चापख म ो जीवया † || १२ ||
अ व श ं तु त ं ाख ा ो ै ु टं भवे |

(Siddhāntadīpikā of Parameśvara)28

7. Multiply the cosine at the middle of the residual arc by the residual arc and divide by the
radius. That becomes the sine-difference for the residual arc.
8. Multiply the sine at the middle of the residual arc by the residual arc and divide by the
radius. That becomes the cosine-difference for the residual arc.
9–10. (Now) is described the method of finding the sine and cosine at the middle of the
residual arc (needed above). Multiply the sine of the arc passed over by half the residual
arc, and divide by the radius. By the result, so obtained, subtract the cosine of the arc passed
over. This gives the cosine at the middle of the residual arc.
11. Multiply the cosine of the arc passed over by half the residual arc and divide by the
radius. The result, so obtained, is to be added to the sine of the arc passed over.
12. That becomes the sine at the middle of the residual arc. Thus compute the sine and
cosine differences (of the residual arc) mutually from the cosine and sine at the middle of
the residual arc.
13. Combine the sine and cosine of the arc passed over respectively with the sine and cosine
differences of the residual arc (got above), we get the true desired sine and cosine for any
arc....

In symbols, we can write the rules as follows:

𝑅sin(𝑥 + 𝜃) − 𝑅sin 𝑥 = 𝑅cos(𝑥 + 𝜃
2 ) ⋅ 𝜃

𝑅 (6)

𝑅cos(𝑥 + 𝜃) ∼ 𝑅cos 𝑥 = 𝑅sin(𝑥 + 𝜃
2 ) ⋅ 𝜃

𝑅 (7)

𝑅cos(𝑥 + 1
2𝜃) = 𝑅cos 𝑥 − 𝑅sin 𝑥 ⋅ 𝜃

2𝑅 (8)

𝑅sin(𝑥 + 1
2𝜃) = 𝑅sin 𝑥 + 𝑅cos 𝑥 ⋅ 𝜃

2𝑅 (9)

Combining (6) with (8) and (7) with (9), we get

𝑅sin(𝑥 + 𝜃) = 𝑅sin 𝑥 + 𝜃
𝑅 ⋅ 𝑅cos 𝑥 − 𝜃2

2𝑅2 ⋅ 𝑅sin 𝑥

𝑅cos(𝑥 + 𝜃) = 𝑅cos 𝑥 − 𝜃
𝑅 ⋅ 𝑅sin 𝑥 − 𝜃2

2𝑅2 ⋅ 𝑅cos 𝑥

which are the modern Taylor series approximations up to the second-order and which
are already ascribed to Mādhava by Nīlakanṭḥa as has been already pointed out.

†In the published article the reading was: `चापख ो जीवया’. This has been refined in consultation
with the source work. (–ed.).
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Also, as noted above, Parameśvara himself attributes the rules to others although
he does not mention any specific names in this connection. But since Parameśvara
(c. ad 1360–1460) is stated29 to have studied under Mādhava (c. ad 1350–1410)
in his young age, it is very likely that Mādhava was the source for Parameśvara for
these rules involving values at the centre of the residual arc.

8 Concluding Remarks

The difference of the first-order finite differences, which is the second-order differ-
ences, was used as early as the fifth century ad by the Indian astronomer Āryabhatạ
I. His Āryabhat ̣īya (II, 12)30 contains a rule equivalent to the relation

Δ2 sin 𝑥 = −𝑘sin 𝑥

which was apparently used in finding tabular sine differences. But the use of the
second-order differences for interpolating intervening functional values appears in
India in the early part of the seventh century in the works of Brahmagupta. In modern
language, Brahmagupta’s technique of interpolating the functional value between
a pair of tabular entries amounts to passing a parabola through the two functional
values at the end points of the interval and the next preceding tabular value.

It is stated31 that Al-Bīrūnī (eleventh century ad) in his work Canon Masudicus
employs a parabola through the same end points. The scheme found in the work Zij-
i-Khāqānī of Al-Kāshī (d. ad 1429) using second-order differences is about interpo-
lating planet’s longitudinal speed denoted by the Persian-Arabic word ‘buht’ which,
as pointed out by Kennedy,32 is from the Sanskrit word ‘bhukti’. It is not difficult to
understand the Indian influence in general when we remember that both the impor-
tant works of Brahmagupta, viz. Brāhmasphutạ-siddhānta and Khanḍạkhādyaka,
were translated into Arabic at Baghdad under the titles ‘Sind-Hind’ and ‘Al-arkand’
as early as eighth century of our era.33

Acknowledgements I am indebted to Dr. T. A. Sarasvati for checking the English rendering of
the Sanskrit passages and giving the relevant information from Malayalam edition of Yukti-bhāsạ̄.
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Munı̄śvara’s Modification
of Brahmagupta’s Rule for
Second-Order Interpolation

When the values of a function are tabulated for some discrete values of the argument, the
functional values corresponding to intermediary argumental values are obtained ordinarily
by linear interpolation. For greater accuracy, higher order technique is necessary. It is known
that the famous Indian mathematician Brahmagupta (seventh century ad) gave a rule for
second-order interpolation. This yields results equivalent to what one will get by using the
Newton–Stirling formula upto the same order.

Munı̄śvara (seventeenth century) has given a modification, which consists of applying a
process of iteration and leads to better results in some cases. The paper presents a discussion
on Brahmagupta’s original rule, its modification by Munı̄śvara, and the example which has
been worked out by the latter.

Symbols

a – the argument, circular arc measured in angular units
a0, a1, a2 …, – successive and equidistant values of a with a0 = 0.
D1, D2, D3 … – tabulated functional differences

D1 = f (a1) − f (a0),
D2 = f (a2) − f (a1), etc.

Dp , Dp+1 – tabulated functional difference just crossed over (bhukta-khan. d. a) and the cur-
rent tabulated functional difference (bhogya-khan. d. a).

Dm = 1

2

(
Dp + Dp+1

)
.

Dt – the true (sphut.a) value of the current functional difference as given by Brah-
magupta.

Indian Journal of History of Science, Vol. 14, No. 1. (1979) pp. 66–72. Paper presented at the
Annual Conference of the Indian Mathematical Society, Trivandrum, 1976.
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f (a) – functional value corresponding to the argumental value a. The function considered
here is either the Indian Sine (= R sin a), or the Indian Versed Sine (R vers a). So
that we have f (a0) = 0.

p – positive integer.
h – equal (or common) arcual interval

h = a1 − a0 = a2 − a1 and so on.

n = θ

h
.

x = p.h, the arc crossed over.
R – Sinus totus, radius of the circle of reference defining Sine and Versed Sine.
T – mathematically exact value of the current functional difference, so that f (x + θ) =

f (x) + θ .
T

h
.

T1, T2, etc., are successive approximations to T
T∞− the theoretically ultimate or limiting value

� – first-order forward finite difference operator
� f (a) = f (a + h) − f (a)

� f (x) = Dp+1.
∇ – first-order backward finite difference operator

∇ f (a) = f (a) − f (a − h)

∇ f (x) = Dp .
θ – residual arc such that f (x + θ) is required to be found out or interpolated, θ being

positive and less than h.

1 Introduction and Brahmagupta’s Rule

Tabular values of the trigonometric functions R sin a and R vers a or of their differ-
ences are found in several astronomical works of ancient and medieval India. For
computing the functional values corresponding to the intervening values of the argu-
ment the ordinary method used was that of linear proportion. This usual method of
first-order interpolation can be expressed as

f (x + θ) = f (x) +
(

θ

h

)
. [ f (x + h) − f (x)]

= f (x) +
(

θ

h

)
. Dp+1. (1)

For better results, more elegant techniques using second-order interpolation schemes
also found in some of the Indian works of the earlier period.

One such rule is found in the works of Brahmagupta (seventh century ad). What
he gives is equivalent to the following expression called sphut.a (true) functional
difference to be crossed over1

Dt =
(
1

2

)
.
(
Dp + Dp+1

) −
(
1

2

)
.
(
Dp − Dp+1

)
.

(
θ

h

)
(2)
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Then the required result is obtained by using the relation

f (x + θ) = f (x) +
(

θ

h

)
. Dt . (3)

Combining (2) and (3) and, using the notation of finite difference operators, we easily
get the following formulas

f (x + nh) = f (x) +
(n

2

)
.[� f (x − h) + � f (x)] +

(
n2

2

)
. �2 f (x − h) (4)

and

f (x + nh) = f (x) +
(n

2

)
.[∇ f (x) + ∇ f (x + h)] +

(
n2

2

)
.∇2 f (x + h), (5)

which can be regarded as the modern forms of Brahmagupta’s second-order interpo-
lation rule using forward and backward differences, respectively.

The formula (4) is a particular case (upto second-order) of the more general
Newton-Stirling Interpolation Formula of modern calculus of finite differences.2

Brahmagupta’s rule is found subsequently in the works of Govindasvāmin (ninth
century); Vat.eśvara (tenth century). Bhāskara II (twelfth century) and Parameśvara
(fifteenth century).3 The general form of Brahmagupta’s expression (2) will be

Dt =
(
1

2

)
.[ f (x + h) − f (x − h)] −

(
1

2

)
.[2 f (x) − f (x − h) − f (x + h)].

(
θ

h

)

which, on using Taylor Series expansions, will become

Dt = h

[
f ′(x) +

(
θ

2

)
. f ′′(x) +

(
h2

6

)
. f ′′′(x)

+
(

θh2

24

)
. f iv(x) +

(
h4

120

)
. f v(x) + · · ·

]
(6)

Now, the mathematically exact value of the current functional difference will be
given by

T =
(

h

θ

)
. [ f (x + θ) − f (x)]

= h

[
f ′(x) +

(
θ

2

)
. f ′′(x) +

(
θ2

6

)
. f ′′′(x)

+
(

θ3

24

)
. f iv(x) +

(
θ4

120

)
. , f v(x) + · · ·

]
(7)
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Thus we have

T − Dt = −h
(h2 − θ2)

6
f ′′′(x) − θh(h2 − θ2)

24
f iv(x) + · · · (8)

Since h is small and θ still smaller, we may leave the subsequent terms involving
higher powers of these small quantities in order to consider the sign of the R.H.S.
of (8). Since the third and fourth derivatives of the Versed Sine function are both
negative, the R.H.S. of (8), presumed to be dominated by the first two terms, will be
positive. And hence T will be greater than Dt .

In the case of the Sine function, we have

T − Dt =
(

h

6

)
. (h2 − θ2) .

[
cos x −

(
θ

4

)
. sin x

]
(9)

neglecting subsequent terms. So that T will be greater than Dt provided that

cot x >
θ

4
or, a fortiori† if, tan h >

h

4
which is always true under the conditions. Therefore,Brahmagupta’s ‘true’ functional
difference Dt may be taken to be less than the really true (or exact) functional
difference.

Thus we see that, if one wants to improve Brahmagupta’s expression (2), it should
bemodified in such away as to yield an expressionwhich is greater inmagnitude.One
such modification, found in a commentary (circa 1635) by Munı̄śvara, is discussed
below.

2 Munı̄śvara’s Modification of the Rule

Brahmagupta’s rule (adopting it for a tabular interval of 10◦, instead of 15◦) has been
given by Bhāskara II (1150 ad) in theGraha-gan. ita part (Chapter II, stanza 16) of his
Siddhānta-śiroman. i and the scholiast Munı̄śvara (1635) in his commentary Marı̄ci
(=MC) on it, gives not only an exposition of the subject but also a modification of the
rule.4 This modification, which is meant for achieving greater accuracy (sūks. matā),
consists of applying a process of iteration (asakr. t-karma). The theory of the process,
as gathered or based on the numerical example worked out in the MC (p. 134), may
be outlined as follows.

We successively find the values of T1, T2, ... by using (2) which can be written as:

Dt = Dm −
(

θ

2h

)
. Dp +

(
θ

2h

)
. Dp+1 (10)

†Since, in the first quadrant, cotangent decreases and the greatest values of θ and x are h and
90◦ − h, respectively.



2 Munı̄śvara’s Modification of the Rule 281

The initial value is taken as T1 = Dt and the subsequent values are computed by the
iteration formula

Tn+1 = Dm −
(

θ

2h

)
. Dp +

(
θ

2h

)
. Tn (11)

obtained from (10). The limiting value will be obtained by making n → ∞. Thus
we get,

T∞ = Dm −
(

θ

2h

)
. Dp +

(
θ

2h

)
. T∞ (12)

giving

T∞ = [(h − θ).Dp + h.Dp+1]
2h − θ

. (13)

3 Example from the Marı̄ci

By applying the iteration process represented by (11), the MC (p. 134) works out an
example of computing the Sine of 24◦ (which was the Indian value for the obliquity
of the ecliptic) from the following (here partially reproduced) Table belonging to the
Siddhānta-Śiroman. i, Graha-gan. ita, II, 13 (MC, p 127) (Table1).

Table 1 (R = 120)

a R sin a Functional difference

10◦ 21′ 21 = D1

20◦ 41′ 20 = D2

30◦ 60′ 19 = D3

40◦ 77′ 17 = D4

Here, h = 10◦, θ = 4◦, x = 20, and p = 2. And, Dp = D2 = 20; Dp+1 =
D3 = 19. Thus from (11) we have,

Tn+1 = 15′30′′ +
(
1

5

)
. Tn, (14)

which is the required iteration formula for finding Tn to any desired degree. However,
we have noticed some calculation and printingmistakes in theMC valueswhile doing
the computation work ourselves. The results are shown in Table 2.

Using (13), the limiting value will be T∞ = 19; 22, 30. With this value used for
T , we have sin 24◦ = 41 + 7; 45 = 48; 45.

Brahmagupta’s rule (2) would give sin 24◦ = 41 + 7; 43, 12 = 48; 43, 12, while
the modern value is about 48; 48, 30.*

*Linear interpolation yields 48; 36.
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Although theMC (p. 134) states that the technique can be used for the Versed Sine
also, but its author has not worked out there any example to illustrate the process
for the Versed Sine. On the other hand, we found that the process does not give
satisfactory results. So I leave the matter for further discussion and investigation.
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Varāhamihira’s Calculation of nCr
and the Discovery of Pascal’s Triangle

In ancient time, the Jaina School of Indian mathematics took great interest in the
subject of permutations and combinations as is clear from their canonical and other
literature. TheBhagavatı̄-sūtra (dated about 300bc) is said to havementioned combi-
nations ofn objects taken one at a time (eka-sam. yoga), two at a time (dvika-sam. yoga),
three at a time (trika-sam. yoga), or more at a time.1 The Jainas had correctly found
the values of nC1,

nC2., and nC3 by rules which are particular cases of the formula
that we now write as

nCr = n(n − 1)(n − 2) . . . (n − r + 1)

1 × 2 × 3 × · · · × r
. (1)

This formula for finding nCr or the number of ways in which r things can be selected
out of n is more specifically indicated by Śrı̄dhara (about ad 750) in his Pāt. ı̄gan. ita,
rule 72, and several subsequent works.2 In fact, it represents the current modern
method.

However,Varāhamihira (ad sixth century) hadgiven a differentmethod for numer-
ically finding nCr for various values of n and r . This method is based on what is
called the los. t.a-prastāra. The relevant rule has been mentioned very briefly in a con-
densed form in hisBr. hat-sam. hitā, Chap. 76, verse 22. The original Sanskrit text of the
rule is3

It may be translated thus:

Leaving out the last (from the bottom in a column) and by adding any earlier number to still
earlier ones, are obtained the said numbers (nCr+1 from the column containing nCr ).

Gan. ita Bhāratı̄, Vol. 14, Nos. 1–4 (1992), pp. 45–49.
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Following the example and exposition in the accompanying Sanskrit commentary
by Bhat.t.otpala (also called Utpala simply) on the rule, the details may be explained
as follows.

Let n be 16.Wewrite the numbers 1 to 16 one above the other in a column starting
from the bottom. These are shown in column 1 in Table1. Of course these numbers
are also the values of nC1 for n equal to 1, 2, 3, etc., up to n = 16.

Table 1 Calculation of nCr for n = 16

16 – – –

15 120 – –

14 105 560 –

13 91 455 1820

12 78 364 1365

11 66 286 1001

10 55 220 715

9 45 165 495

8 36 120 330

7 28 84 210

6 21 56 126

5 15 35 70

4 10 20 35

3 6 10 15

2 3 4 5

1 1 1 1

The entries (from bottom) of column 2 in Table1 are obtained by Varāhamihira’s
above rule thus:

1st entry is same as in column 1. For the next entry , the number 3 is obtained by
adding 2 of column 1 to its earlier member which is 1. That is,

1 + 2 = 3, the 2nd entry of column 1.

Similarly, by adding 3 of column 1 to its earlier members (or entries) we get 6 for
the third entry of column 2. That is,

1 + 2 + 3 = 6.

In the same manner, the next number 10 of column 2 is obtained by adding 4 to 3, 2,
and 1 in column 1. That is,

1 + 2 + 3 + 4 = 10

This operation is continued on all the entries in column1 except on the last (namely
16) which is left out as such. By this process, we will get the entries or numbers of
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column 2 in Table I. These numbers (starting from the bottom) will be the values of
nC2 for n = 2, 3, 4, . . . 16.

The numbers in column 3 of Table1 are obtained from those in column 2 by
the same procedure as was followed to get the numbers of column 2 from those in
column 1. Thus, we have

1 = 1, the first entry of column 3.

1 + 3 = 4, the second entry;
1 + 3 + 6 = 10, the third entry

till 1 + 3 + 6 + . . . + 105 = 560, the 14th entry.

The last number 120 of column 2 is to be left out as such according to the rule.
These numbers of column 3 will give the values of

nC3 for n = 3 to 16.

The 4th column of Table1 is obtained from column 3 by following the same
procedure. The numbers of column 4 give the values of

nC4 for n = 4 to 16.

In this way, we find that the last entries (or rather the first entries from the top) in
the first four columns of Table1 represent all the values of

16Cr , for n = 1, 2, 3, 4.

It is clear that by this method, we can find nCr for any n and r . Although somewhat
lengthy, the use of this method will be beneficial if we wish to tabulate all possible
numerical values of nCr upto a particular n and for all r which are less than or equal
to n.

The tabulation of the full set of these values of nCr (r ≤ n) by Varāhamihira’s
rule is what seems to be called the los. t.a or los. t.aka-prastāra. Verse No. 30 of the same
chapter gives the value of 9C3 (= 84) and Utpala’s commentary therein explains this
by finding

9C1,
9C2,

9C3

and adds that for showing all this we should have the los. t.aka-prastāra.
Varāhamihira stated his rule for forming the los. t.aka-prastāra in conformity with

the ancient Indian traditional practice of operatingwith a columnof numbers.Accord-
ing to this practice, any repetitive type of a prescribed operation (like the one followed
above) is to be started from the lower end or bottom of the column, and then to be car-
ried out upwards in the laid downmanner. Other examples of this bottom-to-top-type
operation are



288 Varāhamihira’s Calculation of nCr and the Discovery of Pascal’s Triangle

(i) the ‘adhauparigun. itam-antyayuk’ rule of Āryabhat.a I (born ad 476) for solving
the problem of two divisions.4

(ii) Mādhava’s power-series method of computing the sine.5

However, for getting the los. t.a-prastāra, the numbers can be written in an increas-
ing order, and the prescribed operation can be done by starting from the top. We take
the case n = 11 to illustrate this. The result is shown in Table2 in which an extra
trivial column has been added in the beginning.

Table 2 Binomial coefficients

1 1 1 1 1 1 1 1 1 1 1 1

↗ 1 2 3 4 5 6 7 8 9 10 11 –

↗ 1 3 6 10 15 21 28 36 45 55 – –

↗ 1 4 10 20 35 56 84 120 165 – – –

↗ 1 5 15 35 70 126 210 330 – – – –

↗ 1 6 21 56 126 252 462 – – – – –

↗ 1 7 28 84 210 462 – – – – – –

↗ 1 8 36 120 330 – – – – – – –

↗ 1 9 45 165 – – – – – – – –

↗ 1 10 55 – – – – – – – – –

↗ 1 11 – – – – – – – – – –

↗ 1 – – – – – – – – – – –

When the ancient Indian los. t.a-prastāra is depicted in this way, the so-called
Pascal’s Triangle is at once seen formed in it. The binomial coefficients are seen
contained in it in the diagonal direction as viewed in the marked directions indicated
by arrows.

We have thus the successive sets:

1 = 0C0?; expansion of (a + b)0?

1, 1 = 1C0,
1C1; coefficients in (a + b)1

1, 2, 1 = 2C0,
2C1,

2C2; coefficients in (a + b)2

1, 3, 3, 1 = 3C0,
3C1,

3C2,
3C3; coefficients in (a + b)3

and so on.
It must be pointed out that the original form of the Arithmetical Triangle as given

by Blaise Pascal in his Traité du triangle arithmétique (ad 1665) was in fact same
as Table2 upto n = 9 with only very minor difference.6 It should also be noted that
Girolamo Cardano had also given exactly the same Table2 in his Opus novum of
1570 ad7.
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In India, the ‘Pascal’s Triangle’ was known much earlier and was called meru or
meru-prastāra. Each row of the meru was called sūcı̄ or sūcı̄-prastāra. Thus the sūcı̄
corresponding to n = 6 will be

1, 6, 15, 20, 15, 6, 1

that is,
6C0′ 6C1′ 6C2′ 6C3′ 6C4′ 6C5′ 6C6′ .

More refined rules for finding the combinatorial and binomial coefficients, and
for forming the sūcı̄ and meru are found in the works of Janāśraya (about ad 600
or before), Virahāṅka (between 600 and 800), Jayadeva, the prosodist (between 600
and 900), Halāyudha (tenth century), and others.8 It seems that what was perhaps
missed by Varāhamihira was noted by others.
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The Last Combinatorial Problem
in Bhāskara’s Lı̄lāvatı̄

There is no doubt that the most prominent name in the history of ancient and
medieval Indian mathematics is that of Bhāskarācārya (ad twelfth century). He
is usually designated as Bhāskara II in order to differentiate him for his earlier
namesake the Āryabhat.an scholiast Bhāskara I who wrote a commentary in ad 629
on the Āryabhat. ı̄ya of Āryabhat.a I (born ad 476).1

According to Bhāskara II’s own statement,2 he was born in Śaka 1036 or ad 1114.
His father Maheśvara was also his teacher as well. Bhāskara II composed a number
of works (all in Sanskrit) three of which are very famous:

1. Lı̄lāvatı̄ (on arithmetic, geometry, mensuration, etc.) which is the most popular
work on ancient Indian or Hindu mathematics.

2. Bı̄jagan. ita (on algebra including indeterminate analysis) which is a standard
Hindu work on algebra.

3. Siddhānta-śiroman. i3 which is standard work on Hindu astronomy, and which
was composed in 1150.

The fame and usefulness of the above three works are also illustrated by their
one or more Persian translations. The Lı̄lāvatı̄ was translated into Persian by Abū
al-Fayd. Fayd. ı̄ in 1587, and the Bı̄jagan. ita by ‘At.a’ Allāh Rushdı̄ in 1635.4 The
Zij-i-Sarūmanı̄ (1797) by S. afdar ‘Alı̄ Khān is presumably the Persian translation of
the Siddhānta-Śiroman. i.5

The otherworks ofBhāskara II include theKaran. a-kutūhala (also calledBrahmat-
ulya), a commentary onLalla’s astronomicalwork.6 But his authorship ofBı̄jopanaya
has been refuted by T. S. Kuppanna Sastry.7 It is interesting to note that Bhāskara’s
grandson Caṅgadeva (who was the chief astronomer in the court of king Siṅghan. a)
had established, in 1207, a residential institution for the study of the works of his
grandfather.8
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The popularity of Lı̄lāvatı̄ is shown by the fact that it is still used as a textbook in
the Sanskrit-medium schools and colleges throughout India. Ever since its composi-
tion, the Lı̄lāvatı̄ (“the beautiful”) has been commented by a large number of schol-
ars. Some of the Sanskrit commentators were Gaṅgādhara (c. 1420), Parameśvara
(c. 1430), Laks.mı̄dāsa (c. 1500), Sūryadāsa (c. 1540), Gan. eśa (1545), Mahı̄dhara
(c. 1590),Munı̄śvara (c. 1635),Rāmakr.s.n. a (1687), etc. TheKriyākramakarı̄ (c. 1534)
commentary is a joint work of Śaṅkara Vāriyar and Mahis.amaṅgala Nārāyan. a (who
completed it after the demise of Śaṅkara). This commentary is a rich source for
traditional Indian mathematics.9

It was through H. T. Colebrooke’s translation of 1817 that the West became quite
familiar with Lı̄lāvatı̄ although this was not the first English translation.10 Of course,
there exists a large number of other translations in Indian as well as foreign lan-
guages.11

The last chapter of Lı̄lāvatı̄ is called Aṅkapāśa (“Net of Numbers”) and is devoted
to combinatorics or the theory of permutations and combinations. In it the last prob-
lem deals with the formula for finding the number of n-digit numbers with a given
digital sum. Take the nine digits 1–9 (0 is excluded here). Then the total number of
n-digit numbers formed using these digits will by 9n , because each digital positional
place can be occupied by any of the said nine digits. But in Bhāskara’s problem, we
have to find the total number of those n-digit numbers in each of which the sum of
the digits is a given fixed quantity, say S.

Let an n-digit number be represented in the usual decimal number form as

d1 d2 d3 . . . . . . dn, (1)

where each digit d satisfies the relation

1 ≤ di ≤ 9, i = 1, 2, . . . . . . n. (2)

Then Bhāskara’s problem is to find the total number of numbers of the form (1)
where

d1 + d2 + d3 + . . . · · · + dn = S. (3)

For example, if S = 13, and n = 5, the problem is to find the total number of numbers
of the type

11119, 11146, 44221, 71131, etc.

in each of which the sum of the digits is 13.
Bhāskara’s rule (sūtra) for solving such problems reads verbally as12
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When the digital sum (S) is fixed, subtract one from it (to get S − 1). Again subtract one, and
continue this subtraction one-less times than the number of digital places (i.e., n − 1 times).
Divide the results (so obtained) by one etc. and multiply together the quotients obtained.
The product will be equal to the number of number-variations. Here the given digital sum is
understood to be less than the number of digital places plus nine.

That is, we have to first form the quantities

(S − 1)

1
,
(S − 2)

2
, . . . . . .

(S − n + 1)

(n − 1)
,

where n is the number of digital places. Then the required number of the n-digit
numbers will be

(S − 1)

1
× (S − 2)

2
, . . . × (S − n + 1)

(n − 1)

= S−1C(n−1) (4)

provided S < (n + 9) (5)

To illustrate his rule, Bhāskara took the example in which n = 5 and S = 13 (as
mentioned above) and got the answer 495 which is correct. However, as is usual
with Hindu mathematical texts, he has not given any proof of his solution, although
he may have known one as is indicated by the restriction (5). A simple proof of
Bhāskara’s rule follows from the following lemma.

LEMMA: The number of the ways in which r similar balls can be placed in n bags
or compartments (empty cases allowed) is equal to

(n+r−1)Cr (6)

This lemma is easily proved by considering the n compartments formed by placing
(n − 1) dividing boundaries, each of which is represented by the capital letter I; for
example, one case in which 13 balls are distributed over 5 compartments (formed by
4 I’s) may look like

◦ ◦ ◦ ◦ I ◦ ◦ ◦ I ◦ I I ◦ ◦ ◦ ◦◦

Then the required number of ways of placing the r balls (◦) variously in the n
compartments will be the same as the total number of arrangements of (n − 1 + r)
letters, of which (n − 1) are of one kind (I) and the rest of the other kind (◦). This
is a standard exercise, and the solution was also known to Bhāskara.13 The answer



294 The Last Combinatorial Problem in Bhāskara’s …

will be

(n − 1 + r)!
(n − 1)! r !
=(n+r−1) Cr (7)

which proves the lemma.
For Bhāskara’s problem, the n compartments may be taken to be the n positional

places to be filled by digits instead of balls. But unlike the balls, the digits are not
similar. So we can imagine the digits or the single digital numbers 1 to 9 to be
represented by the corresponding number of vertical strokes as was done by the
Egyptians or the Indus Valley people about 4000years ago! For example, the 5-digit
number 23125 will be represented as

|| I ||| I | I || I |||||.

The only difference is that here empty space is not allowed (since 0 has been
excluded). This is equivalent to having only (S − n) similar ‘strokes’ (instead of
balls) to be distributed over the n places or compartments, so that r = S − n. Thus,
the required number of arrangements will be, by the Lemma formula (6), equal to

(n+S−n−1)CS−n =(S−1) CS−n =(S−1) Cn−1

as given by Bhāskara in his rule (4). The restriction or condition (5) or (S − n) < 9
is obvious here as no digit (in the used decimal base) can exceed 9, and hence the
number of additional ‘strokes’which can be placed in any compartment is necessarily
less than 9. Bhāskara was equipped with the tool andmethod of proof given here, and
he most probably followed the above line of arguments or some very similar to it.14

The restriction (5) in the above proof is due to employment of the commonly used
decimal place-value system of numerals which the Indians have been possessing
since about two millennia.

Now Bhāskara’s problem will be worked out without the restriction (5). For this
we take another approach.We know that the total number of ways in which a score of
S points can be depicted in a throw of n ordinary dice (each having six faces marked
by dots or numbers 1–6) is equal to the coefficient of x S in the expansion of

(x1 + x2 + x3 + x4 + x5 + x6)n.

Similarly, if we take dice with nine faces each marked by numbers 1 to 9, the total
number of ways in which a score of S points will appear (when n such dice are
thrown) is the coefficient of x S in

(x1 + x2 + x3 + · · · + x9)n. (8)

Here the score S is the sum of the numbers shown on the n faces of the dice thrown.
These faces may be treated as cells or positional places in which any of the digits
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may appear. For example, when 5 dice (each having nine faces) are rolled, the score
13 may appear as

[2] [3] [1] [2] [5].

With such an analogy, the total n-digit numbers (formed from the digits 1 to 9) in
which the digital sum is S will be the coefficient of x S in (8), or the coefficient of
x (S−n) in

(1 + x + x2 + · · · + x8)n.

With some simplifications, the required number will be the coefficient of x (S−n) in

(1 − x9)n(1 − x)−n,

or in

[ n∑
r=0

nCr (−1)r · x9r

][ ∞∑
t=0

(n+t−1)C(n−1) · xt

]
(9)

where we have used the result

n(n + 1)(n + 2) . . . (n + t − 1)

t ! =(n+t−1) Cn−1.

The coefficient of x (S−n) can now be easily collected in the above product of the
series (9). Corresponding to r = 0, 1, 2, 3, . . . , the value of t will be

(S − n), (S − n − 9), (S − n − 18), . . .

Thus, the required number n-digit numbers with fixed digital sum S will be given by

nC0 · (S−1)Cn−1 −n C1 · (S−10)Cn−1 +n C2 · (S−19)Cn−1 −
. . . (−1)r · nCr · (S−9r−1)Cn−1 (10)

where

(n − 1) ≤ S − 9r − 1

or r ≤ (S − n)

9
. (11)

COROLLARY: Under Bhāskara’s restriction (5), the value of r, by (11), will be
less than unity. Hence, only the first term in (10) will be taken in this case, and the
required answer will be the same as Bhāskara’s solution (4).
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Example 1: Let S = 20, and n = 5. Hence we have by (11), r ≤ 5
3 , so that we can

take r = 0, 1 only. The answer will be by (10),

= 1 ·19 C4 − 5 ·10 C4

= 2826

Example 2: Let S = 45, n = 5. In this case, we have, by (11), r ≤ 40
9 , so that r =

0, 1, 2, 3, 4. The required answer will be, by (10),

44C4 − 5 · 35C4 + 10 · 26C4 − 10 · 17C4 + 5 · 8C4

= 135751 − 261800 + 149500 − 23800 + 350

= 1

which is correct, since the only 5-digit number with digital sum 45 will be 99999.

Example 3: Let S = 46 and n = 5. Here, by (11), we have r ≤ 41
9 , so that we can

take r = 0, 1, 2, 3, 4. Then by (10) the required answer will be

= 45C4 − 5 · 36C4 + 10 · 27C4 − 10 · 18C4 + 5 · 9C4

= 148995 − 294525 + 175500 − 30600 + 630

= 0.

This answer is correct, since no 5-digit number in decimal digital representation can
have a digital sum 46 (cf. Example 2).

Historically, the name of A. De Moivre (1730) is associated with the problem
of finding the ways of getting scores S when n dice (each with f faces) are thrown
together.15 Here our purpose is not to go into more historical details related to above
problems. But it is worthwhile to quote the remarks of Sharon Kunoff:16

“Many of the permutation and combination formulas attributed to Cardan, Tartaglia, and
Pascal were known to the Hindus”. And that “the algebra of combinatorics in the twelfth
century and perhaps earlier was considerably more advanced in Hindu mathematics than in
Western circles.”
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the four parts of Siddhānta-śiroman. i itself.
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Early Pandiagonal Magic Squares
in India

1 Introduction

In ancient India, arts and sciences were hand-maiden of religions. In fact religion has
been the dominant feature of Indian culture through the ages. Almost all sciences
have been attributed a divine origin. For instance, the exposition of the 54th chapter
(on astronomy and mathematics) of the Nārada-purān. a commences with the line.1

(Sanandana says) I shall now set out the Jyotis. a portion which was enunciated in antiquity
by (god) Brahma.

Nārāyan. a Pan.d. ita begins Chap.14 (on magic squares and other magic figures) of
his Gan. ita-kaumudı̄ (ad 1356)2 by stating that the subject was taught to Man. ibhadra
by Lord Śiva, the Master of the three worlds.

Actually magic squares (aṅka-yantras) are particular type of the more general
figures or diagrams called yantras (mystic diagrams). According to Mahı̄dhara,3 the
yantras were enunciated by Lord Śiva.

Another characteristic of religious domination of Indian history and culture
is to trace the beginning of everything to Vedas. The six ancient broad sciences
namely śiks. ā (phonetics), kalpa (ritual), vyākaran. a (grammar), nirukta (etymol-
ogy), chandah. -śāstra (prosody) and jyotis. a are considered only vedāṅgas or limbs
of Vedas. The sciences of āyurveda (medical sciences), śilpa (architecture and fine
arts), and of music and war etc. are also included in the vedic fold as Upavedas.
This attitude of assigning divine and vedic origin to Indian sciences automatically
attaches a hoary past and authority to them. Manu even claims.4

All that was, is, and will be (in future) can be derived from the Vedas.
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Magic square in seed form has been traced to R. gveda (see below).
A magic square of order n is an arrangement of n2 different numbers (usually

positive integers) in n rows and n columns such that the sum of the numbers along
each row, each column, and along each main diagonal is same. This constant sum
is called the magical sum or magic constant of the magic square. In a simple way, a
magic square of order n may bewritten in the form of a square array of its n2 numbers
which may be called its elements. Usually the square array is depicted in a square
consisting of n2 sub-squares or cells each of which contains an element (Fig. 1a).

Fig. 1 General magic squares

In addition to the constancy of the sum along every row, column, and main diago-
nal, if the sum of elements along each broken diagonal is also equal to the samemagic
constant, then the array is called a diabolic or pandiagonal magic square. Here we
are mainly concerned with 4th order magic squares. In Fig. 1b, the main diagonals
are represented by a1, b2, c3, d4 (forward), and d1, c2, b3, a4 (back-ward). The six
broken diagonals are formed by (b1, c2, d3, a4); (a2, b3, c4, d1); (c1, d2, a3, b4); etc.

2 The Vedic Method

For introducing a condensed notation, let pi and qi denote the pairs of elements or
numbers of magic square in Fig. 1b as follows:

pi = (ai , bi ); qi = (ci , di ) (1)

where i takes the values 1–4. In terms of these new pairs, the magic square of Fig. 1b
can be written as Fig. 2a.

Similarly by pairing the elements vertically, Fig. 1b becomes Fig. 2b where,

r1 = (a1, a2), r2 = (b1, b2), etc.

and
s1 = (a3, a4), s2 = (b3, b4), etc.
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Fig. 2 Condensed notations

Now let us have a look at the simple ancient magic square of Fig. 2c. It will be
clear that the constancy of the magical sum (= 15) is due to arrangements of the
pairs.

(1, 9), (2, 8), (3, 7), (4, 6) (2)

around the central number 5. The important point to note is that the sum of numbers
in each pair of (2) is 10 (which is partial magical sum). Perhaps taking idea or hint
from this, a technique emerged to form magic squares of order 4 by taking two sets
of pairs of numbers suitably.

To illustrate the method, we take the first sixteen natural numbers 1–16. From the
first eight we form the four pairs.

p, q, r, s ≡ (1, 8), (2, 7), (3, 6), (4, 5). (3)

The sum of numbers in each pair is 9. It should be noted that the first members in
(3) are from the set 1, 2, 3, 4 and the second members from the set 5, 6, 7, 8 taken in
the reversed order to achieve constancy of sum. The next four pairs are to be formed
similarly by taking numbers respectively from the sets

9, 10, 11, 12; and 16, 15, 14, 13. (4)

This time we start from the end and take

P, Q, R, S ≡ (13, 12), (14, 11), (15, 10), (16, 9) (5)

Fig. 3 Magic squares by condensed notation
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We see that the sum in each pair here is 25 which with earlier partial sum of 9, will
give us the total 34 which is magic constant of the 4th order magic square formed
from first sixteen natural numbers.5

Using the condensed notation of Fig. 2a, if we set the pairs from (3) and (5) as
shown in Fig. 3a, we will get an array in which the sum along the rows will be same
(namely 34) but the sum along the columns will not be so. But by making diagonal
moves in the sets p, q, s, r and P, Q, S, R the symmetric scheme of Fig. 3b was
discovered.

Putting of numerical values from (3) and (5) in Fig. 3b leads us to the magic
square of Fig. 3c (according to the condensed notation of Fig. 2a). Surprisingly, it is
a pandiagonal magic square!

The magic square of Fig. 3c is found in some Sanskrit works including the Gan. ita
Kaumudı̄ where it is frequently used.6 In the light of the above method, a rule given
in this work for constructing 4th order magic square (catur-bhadra) from numbers
of an arithmetical series (śred. hı̄) (here 1–16) may be interpreted as follows.7

The diagonal move from p to q (Fig. 3b) implies moves from 1 to 2 and from 8 to 7
(Fig. 3c). Each of these twomoves is similar to a knight’s move in chess (caturaṅga).
So it is called movement of numbers taking in pairs or two at a time (dvau dvau)
according to (turaga-gati) (“horse-move”). The move from p to q is towards right
(savya) and that from P to Q to left (asavya). Also the pair of pairs p, q is taken in
the direct order (krama) but the next pair of pairs r, s is taken in the reverse order
(utkrama) namely s to r (and S to R). Thus the method amounts to moving numbers
in pairs (p, q, s, r and P, Q, S, R) in pairs of cells (kos. t.haikya) diagonally from left
to right and right to left alternately (ekāntaren. a).

It should be noted that although the above numerical illustration is simple, the
method is quite general and can be applied to any 16 different numbers of an arith-
metical progression. If the series is

f, f + e, f + 2e, . . . , f + 15e (6)

then we take

p, q, r, s = ( f, f + 7e), ( f + e, f + 6e), ( f + 2e, f + 5e), ( f + 3e, f + 4e)
(7)

and

P, Q, R, S = ( f + 12e. f + 11e), ( f + 13e, f + 10e), ( f + 14e, f + 9e), ( f + 15e, f + 8e)
(8)

respectively. The Vedic method represented by the condensed notation of Fig. 3b will
easily lead8 to the magic square of Fig. 4a. Indeed it is a pandiagonal magic square
of magic constant (4 f + 30e).

Instead of given series of 16 numbers, if we are to construct a magic square of
given constant K (= 2m say) we can proceed as follows. The set p, q, r, s is taken
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Fig. 4 Vedic magic squares

to be as given by (3). For the second set, we take the series a, a + d, a + 2d, a +
3d, a + 4d, a + 5d, a + 6d, a + 7d. Like (5) we form P, Q, R, S respectively as

(a + 4d, a + 3d), (a + 5d, a + 2d), (a + 6d, a + d), (a + 7d, a) (9)

If we use values from (3) and (9) in the scheme of Fig. 3b, the sum of each row
in the magic square formed will be (2a + 7d + 9) which should be 2m. Assuming
d = 1, we get, a = m − 8.

Putting this and d = 1 in (9), we have (with m > 16 )

P, Q, R, S = (m − 4,m − 5), (m − 3,m − 6), (m − 2,m − 7), (m − 1,m − 8).
(10)

By the scheme of Fig. 3b, the required magic square is (Fig. 4b).
Considering the Vedas (from the root vid, to know) to be the source of all knowl-

edge, the Vedic words and phrases are thought to be multi-intentional as well as pol-
ysemous. Often manymeanings are derived from passages and verses of the Vedas. It
is frequently demonstrated that the Tantric works follow the line of canonical Vedic
literature. Tantric yantras (mystic diagrams) include magic squares (aṅka-yantras).

Nı̄lakan. t.ha Caturdhara has claimed that the practice of generating magic squares
is hinted in certain R. g-vedic verses. He is famous for his commentary on the
Mahābhārata but wrote several other works. These include his commentary on the
Śivatān. d. ava-tantra which deals with magic squares. This commentary was com-
posed in ad 1680 and contains his rather unexpected interpretation of R. g-veda, X,
114, 6–7. The newmeaning and analysis claim that theR. g-vedic verses contain, in the
coded seed form, the hint to obtain the basic pairs (3) and other related information.9
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The presence of the initial pair 1, 8 has been identified by Nı̄lakan. t.ha by
applying the Kat.apayādi Nyāya to the word yajña in a peculiar way. No doubt
ya stands for 1. But jña as ña will give zero which is meaningless (anarthakah. ), so
it indicates ja, that is 8. The indicated sum (1 + 8) or 9 is then to be measured in
different forms (vividha rūpen. a) to get the set (3) etc.

According to Nı̄lakan. t.ha, R. g-veda text word caturah. (four) indicated the order
of the magic square and the word s. at.trim. śān indicates its magic constant.10 After
filling the pairs (3) in Fig. 4b, the remaining entries are to befilled through intelligence
(manı̄s. ā). Nı̄lakan. t.ha rightly points out that the number (m − x) is to be put in the
cell reached by the camel-step (us. t.ra-pada) ie. by a diagonal jump from the number
x etc.11

3 Varāhamihira’s Method

Let the arithmetical numbers 1–8 be put in two groups.

1, 2, 3, 4 (11)

and
5, 6, 7, 8 (12)

From (11) we form pairs, as usual, with equal sums in direct and reverse order,
namely

(1, 4), (3, 2) = p, q say (13)

We do same with (12) by starting from the end as in (5), to get

(8, 5), (6, 7) = P, Q say (14)

Fig. 5 First steps for 4th order square

By the scheme shown in Fig. 5a (which is comparable to Fig. 3b), we form the
square shown in Fig. 5b. This square represents a preliminary step in the method but
it is not a magic square. However, except for the repetition of numbers, it satisfies all
the conditions of a pandiagonal square, the sum of each row, column, and diagonal
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being 18. To get a magic square of constant K = 2m from it, we have to add half
of (2m − 18) i.e. (m − 9) to half the numbers in Fig. 5b staggerly in an intelligent
manner (using manı̄s. ā). This can be done by keeping in mind the camel move (us. t.ra-
pada) or Diagonal Jump method of Fig. 4b. That is, starting with the first number 1
in the first cell in Fig. 5b, (m − 1) should appear in place of 8 in the 11th cell (here
m − 1 comes from m − 9 added to 8). From the first cell we now go respectively to
the next numbers 2, 4 and 3 obtained by aśvagati (knight’s move). Then, of course,
the numbers (m − 2), (m − 4), and (m − 3) should appear in the cells located by the
usual camel move.

The result at this stage is shown in Fig. 6a for convenience after dropping the
duplicated numbers 1, 2, 3, 4 (which have already been attended from other cells of
Fig. 5b following knight’s move in the order 1, 2, 4, 3). The final pandiagonal magic
square of Fig. 6b is now easily obtained from Fig. 6a by filling the empty entries
through the usual camel moves. Figures4b and 6b are comparable.

Fig. 6 Forming pandiagonal magic square

Fig. 7 Varāhamihira’s kacchaput.a

Varāhamihira’s Br. hat-sam. hitā (sixth century ad) is a historically important ency-
clopedicwork. In its Chap. 76, verses 23–26, he gives themethod of preparing the sar-
vatobhadra perfumes.12 As explained by his ancient commentator Bhat.t.otpala, the
method clearly involved the use of the following 16 celled squarewhichVarāhamihira
calls S. odaśa-kacchaput.a (Fig. 7a).

Figure7a is practically same as Fig. 5b whose rows are now written from bottom
to top and the numbers in each row are reversed. The Pandiagonal magic square
corresponding to Fig. 7a is shown in Fig. 7b (as obtained by above method). With the
minimum value m = 17, we get the magic square of Fig. 8a.

In addition to Fig. 8a, Takao Hayashi13 reconstructed three more magic squares
from Varāhamihira’s kacchaput.a (Fig. 7a) by adding the (constant) same number to
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Fig. 8 Pandiagonal magic squares

Fig. 9 Matsyadvaya (fish-pair)

exactly two terms of each row, each column, and each of the two main diagonals.
But only one of these three is found to be pandiagonal (Fig. 8b).

It may be pointed out that the diagrammatic patterns implied in the schemes rep-
resented by Figs. 3b and5a are same. The resulting geometrical diagram may be
depicted as shown in Fig. 9 and is called matsyadvaye (fish-pair) in ancient termi-
nology.14 The diagram is formed by two zigzag lines joining the centres of the cells
of the columns of the Fig. 3b (or Fig. 5a) alternately. The mouths of the two fishes
in Fig. 9 meet at the centre line XY . It may also be noted that the order p, q, s, r
(instead of p, q, r, s) in Fig. 3b is comparable to the order 1, 2, 4, 3 (instead of 1, 2,
3, 4) used in forming Fig. 6a.

Fig. 10 Nāgārjuna’s code and magic square
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4 Nāgārjuna’s Pandiagonal Magic Squares

There were at least two famous ancient Indian scholars bearing the name Nāgārjuna.
The well known Buddhist philosopher and logician Nāgārjuna lived in the first or
second century ad Subsequent Nāgārjunas are often confused andwrongly identified
with him. Here we are concerned with the Tantric Nāgārjuna who was the author of
a work called Kaks. aput.a. His date is variously given from seventh to tenth century
ad In this work he gives briefly a rule for the construction of pandiagonal magic
square of order four. His mnemonic Sanskrit line is 15

arka

(01)

indunidhā

(0809)

nārı̄

(02)

tena

(60)

lagna

(30)

vināsanam

(4070)

Nāgārjuna has used the popular Kat.apayādi alphabetic system in his mnemonic
rule. The square of Fig. 10a is obtained when the decoded sixteen numbers are filled
in the cell in order. Actually Fig. 10a represents the preliminary steps and the zeros in
it are to be considered in the sense of śūnyas (“empty spaces”) to be filled suitably to
get a required magic square. If we want a pandiagonal magic square of constant 2m,
then the blank cell lying next plus one cell diagonally to any number x (among the
eight positive numbers of Fig. 10a) is to be filled by m − x according to Nāgārjuna
(the diagonal direction may be upwards or downwards, right or left16. The method
is same as Nı̄lakan. t.ha’s camel-step i.e. the diagonal jump method used in getting
Fig. 4b in Sect. 2.

Fig. 11 Nāgārjuna’s other magic squares

A more interesting case is that of the magic square (given by Nāgārjuna) shown
in Fig. 11a which has been similarly expressed by a Sanskrit verse or mnemonic
formula using the kat.apaya system.17

Thepandiagonalmagic square of Fig. 11a is calledNāgārjunı̄ya (because probably
he himself constructed it). Its magic sum is 100. But it cannot be obtained from
Fig. 10b by putting m = 50. How Nāgārjuna got it, is not satisfactorily known. We
use the Vedic method to construct it or its equivalent form (Fig. 11b) obtained by
halving the elements.

First a general pandiagonal magic square is constructed by using four subsets
(caran. as) of arithmetical numbers namely
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a1, a1 + d, a1 + 2d, a1 + 3d (15)

a2, a2 + d, a2 + 2d, a2 + 3d (16)

a3, a3 + d, a3 + 2d, a3 + 3d (17)

a4, a4 + d, a4 + 2d, a4 + 3d (18)

where an essential condition is that

a1 + a4 = a2 + a3. (19)

Fig. 12 General pandiagonal magic square (with example)

Fig. 13 Forming blocks in a magic square

We can form p, q, r, s and P, Q, R, S and proceed according to scheme of Fig. 3b
of Sect. 2. But since we already know the Fig. 3c, the required Vedic square can be
easily obtained by replacing the numbers 1–16 (of Fig. 3c) by the sixteen terms of
the sets (15)–(18) respectively in order. The resulting pandiagonal square will be
(Fig. 12a).

By taking the values a1 = 3, a2 = 8, a3 = 11, a4 = 16, and d = 2, we get the
Fig. 12b (the values have to be chosen avoiding repetition of numbers subject to con-
dition (19)). It can be noted that the numbers in Fig. 12b are same as in Nāgārjunı̄ya
square, reduced form of Fig. 11b (compare especially the leading diagonals). A suit-
able transformation will change Fig. 12b exactly to Fig. 11b.
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A simple transformation is based on the constancy of magic sum in blocks of four
cells selected in several ways. Figure13 shows four such ways namely by combining

(i) 4 central squares (B1);
(ii) Two middle cells from the first and the last columns (to form B2);
(iii) Two middle cells from the top and bottom rows (to form B3); and
(iv) 4 corner cells to form the block B4 (see Fig. 13).

If the formation of these four combinations is applied to the square of Fig. 12b, the
four numerical blocks of Fig. 14 will be obtained.

Fig. 14 The Four Blocks

Fig. 15 Block diagram and resulting square

From the blocks of Fig. 14, we get the block diagram (Fig. 15a) which is an
intermediary step. The final magic square (Fig. 15b) is then obtained by resetting the
numbers of Fig. 15a such that the FIRST number of EACH block should be placed in
the respective CORNER cell of the magic square being formed and rows of EACH
block be changed to columns from top to bottom or bottom to top (starting from
the corner-filled number as shown by arrows in Fig. 15b). Indeed we thus get the
Nāgārjunı̄ya square of Fig. 11b. The transformation may be called Nāgārjunı̄ya.

If we perform this transformation on the square of Fig. 15b, we get the square
of Fig. 16a which itself will transform to Fig. 16b if the process is repeated. How-
ever, a further application of the process will yield the original square to Fig. 12b
(Cyclic shifting of leading diagonal elements may be noted). In this way18 three new
pandiagonal magic squares are easily obtained from the general square of Fig. 12a.
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Fig. 16 Magic squares by transformation

Fig. 17 The Dudhai and Gwalior magic squares

5 Epilogue

Discussionofmaterial fromsome tantricworks likeBhairava Tantra and Śivatān. d. ava
Tantra is not included in this paper because of their uncertain dates.19 In fact, it is
difficult to assign definite historical value to them due to their apaurus. eya (non-
human or divine) nature and authorship.

Fig. 18 Geometrical designs in magic squares

However, some early archaeological sources may be mentioned. Earliest of these
seems to be the case of the JhansiMagic Square (Fig. 17a)whichwas found carved on
the underside of a lintel from the collapsed doorway of a shrine known as the Chota
Surang (situated at the Dudhai village of Jhansi district and supposed to have been
built in the first half of the eleventh century ad)20. Exactly the same square (Fig. 17a)
is now found preserved in an inscription of a temple at the famousKhajuraho (situated
about a hundred miles east of Jhansi town) and dated about ad 1200. The Gwalior



5 Epilogue 311

Magic Square (Fig. 17b) was discovered in a ruined temple in the Gwalior Fort and
is dated21 Sam. vat 1540 (= ad 1483). It is same as the Vedic square (of Fig. 3c) with
its corner blocks interchanged diagonally. It seems that pandiagonal magic squares
of order four were quite popular in India.

Often artistic significance is attached to the beautiful symmetrical designs which
are generated from the geometrical patterns and other properties of numbers arranged
in the form of magic squares. If we join centres of the cells (taken two at a time)
which have numbers whose sum is equal to half the magic constant 17 in Fig. 3c
(or in Fig. 17a or b), then we will obtain the geometrical pattern shown in Fig. 18a.
Of course, the same method can be applied to other squares (dealt in this paper)
to obtain the said pattern. The implied property is an extension of the constancy
of sum of blocks of four cells described and used in Sect. 4 above. The geometrical
design of Fig. 18a also represent the so called camel-step moves (us. t.ra-pada) of each
joined-pair of dots mutually towards each other.

Another symmetrical design can be obtained by joining the centres of the cells
containing odd and even numbers separately in squares of Figs. 3c or 17a or b. The
resulting symmetry is shown in Fig. 18b. The joining of odd and even number cells in
Varāhamihira’s pandiagonal magic squares (Fig. 8a and b) will yield the symmetry of
Fig. 18b as rotated through 90 degrees. Other designsmay be obtained by considering
other properties e.g. cells which have constant partial magical sum in pairs.

In the Islamic world, pandiagonal magic squares are first found in the twelfth or
thirteenth century ad and their most famous such square is same as that of
Varāhamihira (Fig. 8a) rotated through 90 degrees.22 The popular Albert Dürer’s
magic square (ad 1514) is not a pandiagonal or diabolic although it has some inter-
esting features.23

References and Notes
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Trigonometry and Spherical
Trigonometry



Bhāskara I’s Approximation to Sine

The Mahābhāskarīya of Bhāskara I (c. ad 600) contains a simple but elegant algebraic
formula for approximating the trigonometric sine function. It may be expressed as

sin𝛼 = 4𝛼(180 − 𝛼)
40500 − 𝛼(180 − 𝛼) ,

where the angular arc 𝛼 is in degrees. Equivalent forms of the formula have been given by
almost all subsequent Indian astronomers and mathematicians. To illustrate this, relevant
passages from the works of Brahmagupta (ad 628), Vaṭeśvara (ad 904), Śrīpati (ad 1039),
Bhāskara II (twelfth century), Nārāyaṇa (ad 1356) and Gaṇeśa (ad 1520) are quoted.

Accuracy of the rule is discussed and comparison with the actual values of sine is made and
also depicted in a diagram. In addition to the two proofs given earlier by M. G. Inamdar (The
Mathematics Student, Vol. XVIII, 1950, p. 10) and K. S. Shukla, three more derivations are
included by the present author. We are not aware of the process by which Bhāskara I himself
arrived at the formula which reflects a high standard of practical Mathematics in India as
early as seventh century ad.

1 Introduction

Indians were the first to use the trigonometric sine function represented by half the
chord of any arc of a circle. Hipparchus (second century bc) who has been called the
‘Father of Trigonometry’ dealt only with chords and not the half-chords as done by
Hindus. So also Ptolemy (second century ad), who is much indebted to Hipparchus
and has summarized all important features of Greek Trigonometry in his famous
Almagest, used chords only. The history1 of the word ‘sine’ will itself tell the story
as to how the Indian Trigonometric functions sine, cosine and inverse sine were
introduced into the Western World through the Arabs.

Among the Indians, the usual method of finding the sine of any arc was as follows:
First a table of sine-chords (i.e. half-chords), or their differences, was prepared on
the basis of some rough rule, apparently derived geometrically, such as given in
Āryabhaṭīya (ad 499) or by using elementary trigonometric identities, as seems to
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be done by Varāhamihira (early sixth century). To avoid fractions the Sinus Totus
was taken large and the figures were rounded off. Most of the tables prepared gave
such values of 24 sine-chords in the first quadrant at an equal interval of 3 3

4 degrees
assuming the whole circumference to be represented by 360 degrees. For getting
sine corresponding to any other arc, simple forms of interpolation were used. In
Bhāskara I we come across an entirely different method for computing sine of any
arc approximately. He gave a simple but elegant algebraic formula with the help of
which any sine can be calculated directly and with a fair degree of accuracy.

2 The Rule

The rule stating the approximate expression for the trigonometric sine function is
given by Bhāskara I in his first work now called Mahābhāskarīya. The relevant
Sanskrit text is:

म ा दर हतं कम व ते त मासतः |
च ाध शकसमूहा शो ा ये भुज शकाः || १७ ||
त ेषगु णता ा शो ाः खा षेुखा तः |
चतुथ शेन शेष म फलं हत || १८ ||
बा को ोः फलं कृ ं मो मगुण वा |
ल ते च ती ो ाराण वा प त तः || १९ ||

(Mahābhāskarīya, VII, 17–19)2

Dr. Shukla3 translates the text as follows:

(Now) I briefly state the rule (for finding the bhujaphala and the koṭiphala, etc.) without
making use of the Rsine-differences, 225, etc. Subtract the degrees of the bhuja (or koṭi )
from the degrees of half a circle (i.e. 180 degrees). Then multiply the remainder by degrees
of the bhuja (or koṭi ) and put down the result at two places. At one place subtract the result
from 40500. By one-fourth of the remainder (thus obtained) divide the result at the other
place as multiplied by the antyaphala (i.e. the epicyclic radius). Thus is obtained the entire
bāhuphala (or koṭiphala) for the sun, moon or the star-planets. So also are obtained the direct
and inverse Rsines.

In current mathematical symbols the rule implied can be put as

𝑅sin𝜙 = 𝑅𝜙(180 − 𝜙)
1
4 {40500 − 𝜙(180 − 𝜙)}

(1)

i.e.

sin𝜙 = 4𝜙(180 − 𝜙)
40500 − 𝜙(180 − 𝜙) (2)

where 𝜙 is in degrees.
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3 Equivalent Forms of the Rule from Subsequent Works

Many subsequent authors who dealt with the subject of finding sine without using
tabular sines have given the rule more or less equivalent to that of Bhāskara I, who
seems to be the first to give such rule. Below we give few instances of the same.

(i) Brāhmasphuṭa-Siddhānta

The fourteenth chapter has the couplets:

भुजको शंोनगुणा भाध शा तुथभागोनैः |
प ी खुच ै वभा जता ासदलगु णता || २३ ||
त े परमफल ा संगु णता ले वना ा भः |
इ ो नीचवृ ासाध परमफलजीवा || २४ ||

(Brāhmasphuṭa-siddhānta, XIV, 23–24)4

Multiply the degrees of the bhuja or koṭi by degrees of half a circle diminished by the same
(the product so obtained) be divided by 10125 lessened by the fourth part of that same
product. The whole multiplied by the semi-diameter gives the sine …

i.e.

𝑅sin𝜙 = 𝑅𝜙(180 − 𝜙)
10125 − 1

4 𝜙(180 − 𝜙)

which is equivalent to Bhāskara’s rule.
The Brāhmasphuṭa-siddhānta was composed by Brahmagupta in the year ad 628

according to what the author himself says in the work at XXIV, 7–8.5

Dr. Shukla6 points out that Bhāskara I’s commentary on the Āryabhaṭīya was
written in ad 629 and his Mahābhāskarīya was written earlier than this date. Thus
Bhāskara I seems to be a senior contemporary of Brahmagupta. Kuppanna Sastri7

even asserts that the statements of Pṛthūdaka svāmī (ad 860), the commentator of
Brāhmasphuṭa-siddhānta, imply that the Bhāskara I’s works must have been known
to Brahmagupta.

(ii) Vaṭeśvara-Siddhānta

In the fourth adhyāya of the Spaṣṭādhikāra of Vaṭeśvara-siddhānta the rule occurs
in two forms as follows:

च ाध शा भुज शै वर हत नहता ह नै वभ ाः
ख ोमे वेदःै स लल नहताः प रा शः द ः |
ष श ा भुज शा नजकृ तर हता ुर य शह नैः
भ ाः ा रा श व शखनयनभू ोमशीत भव ||

(Vaṭeśvara-siddhānta, Spaṣṭādhikāra, IV, 2)8
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Multiply degrees to half the circle less the degrees of bhuja (by the degrees of bhuja). Divide
(the product so obtained) by 40500 less that product. Multiplied by four is obtained the
required sine. Or the bhuja in degrees be multiplied by 180 degrees and (the result) be
lessened by its own square. Fourth part of the quantity (so obtained) be subtracted from
10125, and by this (new) result the first quantity be divided. The sine is obtained.

Thus we have the two forms as

sin𝜙 = 𝜙(180 − 𝜙) × 4
40500 − 𝜙(180 − 𝜙)

and

sin𝜙 = 𝜙 ⋅ 180 − 𝜙2

10125 − 1
4 (𝜙 ⋅ 180 − 𝜙2)

both being equivalent to Bhāskara I’s rule.
According to a verse9 of the work itself, the Vaṭeśvara-siddhānta was composed

in ad 904.

(iii) Siddhānta-śekhara

In this astronomical treatise the rule is given as:

दोःको टभागर हता भहताः खनागच ा दीयचरणोनशराक द ः |
ते ासख गु णता व ताः फले तु ा भ वनैव भवतो भुजको टजीवे || १७ ||

(Siddhānta-śekhara III, 17)10

The degrees of 𝑑𝑜ℎ or koṭi multiplied to 180 less degrees of doh or koṭi. Semi-diameter
times the product (so obtained) divided by 10125 less fourth part of that product becomes
the bhuja or koṭīphala.

i.e.

𝑅sin𝜙 = 𝑅𝜙(180 − 𝜙)
10125 − 1

4 ⋅ 𝜙 ⋅ (180 − 𝜙)

This form is exactly the same as that of Brahmagupta. Sengupta11 gives ad 1039
as the date of Siddhānta-śekhara which was composed by Śrīpati.

(iv) Lī lāvatī

The concerned stanza is:

चापोन न पिर धः थमा यः ा प ाहतः पिर धवगचतुथभागः |
आ ो नतेन ख तेन भजे तु ासाहतं थममा मह का ा ||

(Lī lāvatī, Kṣetravyavahāra, No. 48)
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Circumference less ( a given) arc multiplied by that arc is prathama. Multiply square of the
circumference by five and take its fourth part. By the quantity so obtained, but lessened by
prathama, divide the prathama multiplied by four times the diameter. The result will be
chord (i.e. pūrṇa jyā or double-sine) of the (given) arc.

i.e.

(360 − 2𝜙) ⋅ 2𝜙 = 𝑝𝑟𝑎𝑡ℎ𝑎𝑚𝑎

2𝑅sin𝜙 = 4 × 2𝑅 × (𝑝𝑟𝑎𝑡ℎ𝑎𝑚𝑎)
1
4 × 5 × 3602 − (𝑝𝑟𝑎𝑡ℎ𝑎𝑚𝑎)

= 8𝑅(360 − 2𝜙) ⋅ 2𝜙
1
4 × 5 × 3602 − (360 − 2𝜙) ⋅ 2𝜙

giving

sin𝜙 = 4𝜙(180 − 𝜙)
40500 − 𝜙(180 − 𝜙)

which is mathematically equivalent to the rule of Bhāskara I. Lī lavatī was composed
by Bhāskara II in the first half of the twelfth century.

It should be noted that Bhāskara II himself accepted the rule to be very approxi-
mate. He says in his jyotpatti12 (an appendix to Golādhyāya):

लंू ानयनं पा ा मह त ो दतं मया
The rough (crude) rule for finding sine given in my arithmetic (Lī lāvatī ) is not discussed
here.

(v) Gaṇita-Kaumudī

As in case of Vaṭeśvara-siddhānta, two forms of the rule occur here in the chapter
called Kṣetravyavahāra as follows:

वृ ध धनु नतं गु णतं तेनोनयु े मा
वृ ध च वृ त ते गु णते तौ गु हारा यौ |
ासे गु हते हरा व ते ा ादथा या-

ऽऽस ा ार हता हा ग णते ु सख ा न च ||
अथवा
वृ ेधनूर हत न वृ त धा त ासाहत च वभजे दतरा ह नैः |
वृ वगग णतै वषयै जीवा ा खेचरा ग णतेऽ पुयोग एष: |

(Gaṇita-kaumudī, Kṣetravyavahāra, 69–70)13

Multiply to itself half the circumference less (a given) arc. The quantity so obtained when
respectively subtracted from and added to the squares of half the circumference and circum-
ference respectively gives the Numerator and Denominator. Multiply the diameter by the
Numerator and divide by one-fourth of the Denominator to get the chord. …



320 Bhāskara I’s Approximation to Sine

Alternately,

Multiply the circumference less the given arc by the arc and put the result in two places.
In one place multiply it by the diameter and divide the result by five times the square of
the quarter circumference less the quarter of the result in the other place. The final result is
chord. …

In symbols these can be expressed as follows. Let c stand for circumference,

First form:

Numerator,𝑁 = (
1
2𝑐)

2
− (

1
2𝑐 − 2𝜙)

2

Denominator,𝐷 = 𝑐2 + (
1
2𝑐 − 2𝜙)

2

then
Chord = 𝑁 × 2𝑅

1
4 ⋅ 𝐷

i.e.

2𝑅sin𝜙 = 2𝑅{1802 − (180 − 2𝜙)2}
1
4 {3602 + (180 − 2𝜙)2}

Second form:

Chord = (𝑐 − 2𝜙)2𝜙 ⋅ 2𝑅

5(
1
4 𝑐)

2
− 1

4 ⋅ 2𝜙(𝑐 − 2𝜙)

or

2𝑅sin𝜙 = 2𝑅(3602 − 2𝜙)2𝜙
40500 − 𝜙(180 − 𝜙) .

On simplification both the forms reduce to the rule of Bhāskara I.
It is stated by Padmākara Dvivedī14 that Gaṇitakaumudī was composed by

Nārāyaṇa Paṇḍita in ad 1356. See colophonic verse No. 5 of the work in the
edition referred.

(vi) Grahalāghava

In this work the rule is given in various modified forms adopted for particular cases.
The relevant text from Ravicandra-spaṣṭādhikāra for one such case is:

वधोः के दोभ गष ोन न ाः खरामाः पृथ त ख शो नतै |
रसा ै ता े लवा ं फलं ा रवी ू ु टौ सं ृ तौ ता ा || ३ ||

(Grahalāghava, II, 3)15



3 Equivalent Forms of the Rule from Subsequent Works 321

Subtract the sixth part of the degrees of the bhuja of the moon from 30 and multiply the result
by the same sixth part. Put the product in two places. By 56 minus the twentieth part of the
product in one place divide the product of the other place. The result is the Mandaphala ….

𝑅sin𝜙 = (30 − 𝜙
6 ) × 𝜙

6

56 − 1
20 (30 − 𝜙

6 )
𝜙
6

or sin𝜙 = 20𝜙(180 − 𝜙)
𝑅{40320 − 𝜙(180 − 𝜙)}

= 4 ⋅ 𝜙(180 − 𝜙)
40320 − 𝜙(180 − 𝜙)

since the value of the maximum mandaphala for moon, i.e. the value of 𝑅 for
moon, is 5 degrees approximately.16 Thus we see that the form of the rule given
here is slightly modified. In place of the figure 40500 of Bhāskara I we have 40320
here. Another modified form is given in the stanza preceding the one we have quoted
above.

Grahalāghava was written by Gaṇeśa Daivajña in the year 1520. He dealt with
the whole of astronomy contained in the work without using Jyāgaṇita (i.e. sine-
chords). For sine, whenever needed, he used the rule equivalent to that of Bhāskara
I after duly modifying it and rounding off the fractions.

Table 1 Accuracy of Bhāskara’s rule

𝜙 sin𝜙 by Actual value
Bhāskara’s rule of sin𝜙

0 0.00000 0.00000
10 0.17525 0.17365
20 0.34317 0.34202
30 0.50000 0.50000
40 0.64183 0.64279
50 0.76471 0.76604
60 0.86486 0.86603
70 0.93903 0.93969
80 0.98461 0.98481
90 1.00000 1.00000

4 Discussion of the Rule

The rule of Bhāskara I, mathematically expressed by relation (2), is a representation
of the transcendental function sin𝜙, by means of a rational function, i.e. the quotient
of two polynomials. This algebraic approximation is not only simple but surprisingly
accurate remembering that it was given more than thirteen hundred years ago. The
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Fig. 1 Geometrical representation

relative accuracy of the formula can be easily judged from Table 1 which gives the
comparison of the values of sines obtained by using Bhāskara’s rule with the correct
values. Calculations have been made by using Castle’s Five Figure Logarithmic and
Other Tables (1959 ed.) from which the actual values of sin𝜙 are also taken.

A glance at Table 1 will show that Bhāskara’s approximation affects the third
place of decimal by one or two. The Maximum deviation in the table occurs at 10
degrees and is

= +0.00160

The corresponding percentage error can be seen to be less than one per cent.
Figure 1 shows how nicely the curve represented by Bhāskara’s formula approx-

imates the actual sine curve. The deviations have been exaggerated so that the two
curves may be clearly distinguished; otherwise, they agree so well that, on the size
of the scale used, it was not practically possible to draw them distinctly.

The proper range of validity of the rule is from 𝜙 = 0 to 𝜙 = 180. It cannot be
used directly for getting sine between 180 and 360. However with slight modifica-
tion17 it can yield sin𝜙 for any value of 𝜙.

The last word tattvataḥ (‘truly’ or ‘really’) of the text, quoted for Bhāskara I’s
rule, indicates that the rule is to be taken as ‘accurate.’ Dr. Singh18 used the word
‘grossly’ in his translation of the passage. As already pointed out earlier (see under
(iv) Lī lāvatī ), Bhāskara II clearly stated his equivalent rule as sthūla (‘rough’ or
‘gross’). But whether Bhāskara I also meant his rule to be so is doubtful.

5 Derivation of the Formula

The procedure through which Bhāskara I arrived at the rule is not given in
Mahābhāskarīya which contains the rule. But this seems to be the general feature
in case of most of the results in ancient Indian mathematics. This may be partly due
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to the fact that these mathematical rules are found mostly in works which do not
deal exclusively with mathematics as they are treatises on astronomy and not on
mathematics. Below we give few methods of arriving at the approximate formula.†

(i) First Approach

Following* Shukla,19 let 𝐶𝐴 be the diameter of a circle of radius 𝑅, where the arc
𝐴𝐵 is equal to 𝜙 degrees, and (Fig. 2)

Fig. 2 Derivation of the rule

𝐵𝐷 = 𝑅sin𝜙

Now

Area of the Δ𝐴𝐵𝐶 = 1
2𝐴𝐵 ⋅ 𝐵𝐶

and also = 1
2𝐴𝐶 ⋅ 𝐵𝐷

Therefore
1

𝐵𝐷 = 𝐴𝐶
𝐴𝐵 ⋅ 𝐵𝐶

so that
1

𝐵𝐷 > 𝐴𝐶
(arc𝐴𝐵) ⋅ (arc𝐵𝐶) (3)

†Now also see Gaṇita Bhāratī , Vol. 8 (1986), pp. 39–41.
*See M. G. Inamdar’s paper in The Mathematics Student, Vol. XVIII, 1950.
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After this Shukla assumes

1
𝐵𝐷 = 𝑋.𝐴𝐶

(arc𝐴𝐵) ⋅ (arc𝐵𝐶) + 𝑌 (4)

= 2𝑋𝑅
𝜙(180 − 𝜙) + 𝑌

so that

𝑅sin𝜙 = 𝜙(180 − 𝜙)
2𝑋𝑅 + 𝑌 𝜙(180 − 𝜙) (5)

By taking two particular values, viz., 30 and 90, for 𝜙 we get two equation in 𝑋 and
𝑌 from (5). Solving these it is easily seen that 𝑌 = − 1

4𝑅 and 2𝑋𝑅 = 40500
4𝑅 . Putting

these in (5), Bhāskara’s formula is readily obtained.
If 𝑋 is greater than one and 𝑌 is positive the assumption (4) is justified by virtue

of the inequality (3). But as noted above, 𝑌 comes out to be negative. Hence some
more investigation to justify (4) is needed which I give below.

Let 𝑎, 𝑏, 𝑝 and 𝑞 be four positive quantities all different from each other. If 𝑎 > 𝑏,
then we can write

𝑎 = 𝑝𝑏 − 𝑞. (6)

That is
𝑏 = 𝑎 + 𝑞

𝑝

provided

𝑎 > 𝑎 + 𝑞
𝑝 , since 𝑎 > 𝑏.

That is to say we can write (6) if

𝑝 > 𝑎 + 𝑞
𝑎

that is 𝑝 > 1 + 𝑞
𝑎 (7)

In the above case

𝑎 = 1
𝑅sin𝜙

𝑏 = 𝐴𝐶
(arc𝐴𝐵) ⋅ (arc𝐵𝐶)

𝑝 = 𝑋 = 40500
8𝑅2 (8)

and
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𝑞 = −𝑌 = 1
4𝑅

therefore

1 + 𝑞
𝑎 = 1 + 𝑅sin𝜙

4𝑅

Now greatest value of this

= 1 + 1
4 = 5

4

Also, since 𝑅 = 360
2𝜋 , from (8) we get

𝑝 = 405 ⋅ 𝜋2

2592 > 5
4

So that the condition (7) is satisfied and hence Shukla’s assumption (4) is justified.

(ii) Second Approach

Let20

sin𝜆 = 𝑎 + 𝑏𝜆 + 𝑐𝜆2

𝐴 + 𝐵𝜆 + 𝐶𝜆2 (9)

where 𝜆 is in radians and corresponds to 𝜙 degrees.
Out of the six unknown coefficients 𝑎,𝑏,𝑐,𝐴,𝐵,𝐶, only five are independent.

Those can be found by using the following five mathematical facts:

𝜆 = 0, sin𝜆 = 0
𝜆 = 𝜋, sin𝜆 = 0

sin𝜆 = sin(𝜋 − 𝜆)

𝜆 = 1
6𝜋, sin𝜆 = 1

2
𝜆 = 1

2𝜋, sin𝜆 = 1

Utilizing these five conditions we easily arrive at Bhāskara’s formula. Perhaps the
justification for supposition (9) is that the very form of Bhāskara’s rule is of type (9).

(iii) Third Approach

Shifting the origin through 90 degrees by putting 𝜙 = 90 + 𝑋 (2) becomes
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cos𝑋 = 4(90 + 𝑋)(90 − 𝑋)
40500 − (90 + 𝑋)(90 − 𝑋)

or

cos𝑋 = 4(8100 − 𝑋2)
32400 + 𝑋2 (10)

By elementary empirical arguments we shall derive formula (10) which resembles
the first form given by Nārāyaṇa Paṇḍita (vide under (v) Gaṇita-kaumudī ).

Since the sine function, in the interval 0 to 180, is symmetrical about 𝜙 = 90, it
follows that the cosine function will be symmetrical about 𝑋 = 0 in the interval −90
to +90. In other words, cos𝑋 is an even function of 𝑋, say

cos𝑋 = 𝑓(𝑋2)

Now cos𝑋 decreases as 𝑋 increases from 0 to 90. The simplest way of effecting
this is to take

cos𝑋 ∝ 1
𝑋2

But cos𝑋 also remains finite at 𝑋 = 0; hence, we should assume, instead of above,

cos𝑋 ∝ 1
𝑋2 + 𝑎

, where 𝑎 ≠ 0

Finally, remembering that cos𝑋 vanishes for finite values of 𝑋, we take

cos𝑋 = 𝐶
𝑋2 + 𝑎

− 𝑘

𝑘 being positive.
It should be noted that the possibility of taking simply

cos𝑋 = 𝐶
𝑋2 + 𝑎

is ruled out since by this assumption we cannot make cos𝑋 to vanish for any finite
value of 𝑋 while we know cos90 = 0. The three unknowns 𝑎,𝑐 and 𝑘 can be found
by taking particular known simple rational values, e.g.

cos 0 = 1; cos 60 = 1
2; cos 90 = 0.

Utilizing these we get (10) without difficulty.
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(iv) Fourth Approach

Now we take the method of approximation by continued fractions. The general for-
mula which we shall use is21

𝑓(𝑋) = 𝑎0 +
𝑋 − 𝑋0

𝑎1 +
𝑋 − 𝑋1

𝑎2 +
𝑋 − 𝑋2
𝑎3 + ⋯

(11)

where
𝑎𝑘 = 𝜙𝑘[𝑋0,𝑋1,𝑋2 …𝑋𝑘−1,𝑋𝑘]

The quantities 𝜙𝑘’s are called the ‘inverted differences’ and are defined as follows:

𝜙0[𝑋] = 𝑓(𝑋)

𝜙1[𝑋0,𝑋] = 𝑋 − 𝑋0
𝜙0[𝑋] − 𝜙0[𝑋0] = 𝑋 − 𝑋0

𝑓(𝑋) − 𝑓(𝑋0)

𝜙2[𝑋0,𝑋1,𝑋] = 𝑋 − 𝑋1
𝜙1[𝑋0,𝑋] − 𝜙1[𝑋0,𝑋1]

and so on.
Now we form the table of ‘inverted differences’ for the function 𝑓(𝑋) = sin𝑋 by

taking some simple rational values of the sines (see Table 2).

Table 2 Inverted differences
𝑋 in degrees 𝑓(𝑋) = 𝜙0 = sin𝑋 𝜙1 𝜙2 𝜙3 𝜙4
𝑋0 = 0 0 = 𝑎0 — — — —

𝑋1 = 30 1
2 60 = 𝑎1 — — —

𝑋2 = 90 1 90 2 = 𝑎2 — —

𝑋3 = 150 1
2 300 1

2 −40 = 𝑎3 —

𝑋4 = 180 0 ∝ 0 -45 −6 = 𝑎4

Using (11) the successive convergents are:

First, = 𝑎0 = 0

Second, = 𝑎0 + 𝑋 − 𝑋0
𝑎1

= 𝑋
60
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Third, = 𝑎0 +
𝑋 − 𝑋0

𝑎1 +
𝑋 − 𝑋2

𝑎2

= 2𝑋
𝑋 + 90

Fourth, = 𝑎0 +
𝑋 − 𝑋0

𝑎1 +
𝑋 − 𝑋1

𝑎2 +
𝑋 − 𝑋2

𝑎3

= 𝑋(170 − 𝑋)
9000 − 20𝑋

Fifth, = 𝑎0 +
𝑋 − 𝑋0

𝑎1 +
𝑋 − 𝑋1

𝑎2 +
𝑋 − 𝑋2

𝑎3 +
𝑋 − 𝑋3

𝑎4

= 4𝑋(180 − 𝑋)
40500 − 𝑋(180 − 𝑋)

which is the rule of Bhāskara I.
Inverted differences or rather the related quantities called ‘reciprocal differences’

were introduced by T. N. Thiele22 in ad 1909. We do not know if any ancient In-
dian mathematician ever used the inverted or reciprocal differences, although Brah-
magupta (ad 665) has been credited for being the first to use ‘direct’ differences up
to second-order.23

(v) Fifth Approach

It will be noted that the quantity

𝜙(180 − 𝜙) = 𝑝, say

is an important function of 𝜙 in connection with sin𝜙. In fact it is a quarter of what
Bhāskara II has called prathama (see under (iv) Lī lāvatī ). Now 𝑝 can be written as

𝑝 = 8100 − (𝜙 − 90)2.



5 Derivation of the Formula 329

It follows that the maximum value of 𝑝 will be 8100 when 𝜙 = 90. Also the
function 𝑝 vanishes for 𝜙 = 0 and 180 and is symmetrical about 𝜙 = 90. Thus the
nature of 𝑝 and sin𝜙 resembles in certain points. Since the maximum value of sin𝜙
is 1, we may take as a crude approximation

sin𝜙 = 𝑝
8100 = 𝑃 , say.

However Bhāskara I’s formula is far better than the above simplest (linear) but
very rough approximation. We now attempt to find a better relation between sin𝜙
and 𝑃 . Since 0 × 0 = 0 and 1 × 1 = 1, the product function 𝑃 × sin𝜙 will also have
the same nature as 𝑃 or sin𝜙. The simplest relation between 𝑃 ,sin𝜙 and 𝑃 sin𝜙 will
be a linear one. Therefore we assume

𝑙𝑃 sin𝜙 + 𝑚𝑃 + 𝑛sin𝜙 = 0 (12)

which is the general form of a linear relation. Taking 𝜙 = 90 and 𝜙 = 30 we get
respectively

𝑙 + 𝑚 + 𝑛 = 0

and
5

18𝑙 + 5
9𝑚 + 1

2𝑛 = 0.

Solving the above two equations we get

𝑙 = −1
5𝑛

𝑚 = −4
5𝑛

Using these, the linear relation (12) becomes, after simplification (i.e. solving for
sin𝜙),

sin𝜙 = 4𝑃
5 − 𝑃 (13)

which is the formula of Bhāskara I in disguise. Form (2) of the rule can be obtained
by substitution of the value of 𝑃 , viz.

𝑃 = 𝜙(180 − 𝜙)
8100

Relation (13) may be regarded as the simplest form of Bhāskara’s rule and may
be derived in many ways.
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6 Conclusion

To Bhāskara I (early seventh century ad) goes the credit of being the first to give
a surprisingly simple algebraic approximation to the trigonometric sine function. In
its simplest form his rule may be expressed by the mathematical formula

sin𝜙 = 4𝑃
5 − 𝑃 ,

where 𝑃 may be called as the ‘modified prathama’ (accepting the definition of
Bhāskara II). If 𝜙 is measured in terms of right angles (quadrants) then 𝑃 will be
given by

𝑃 = 𝜙(2 − 𝜙).

The formula is fairly accurate for all practical purposes. A better formula, which
will have the simplicity and practicability of Bhāskara I’s formula, can hardly
be given without introducing bigger rational numbers or irrational numbers and
higher degree polynomials of 𝜙. No such mathematical formula approximating alge-
braically a transcendental function seems to be given by other nations of antiquity.
The formula as such, or its modified form, has been used by almost all the subse-
quent authors, a few instances of which are given in this paper. Remembering that
it was given more than one thousand and three hundred years ago, it reflects a high
standard of mathematics prevalent at that time in India. ‘How Indians arrived at the
rule’ may be taken as an open question.

Acknowledgements I am grateful to Dr. T. A. Saraswati for going through this article and making
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Fractional Parts of Āryabhaṭa’s Sines
and Certain Rules found in
Govindasvāmin’s Bhāṣya on the
Mahābhāskarīya

The commentary of Govindasvāmin (circa ad 800–850) on the Mahābhāskarīya contains
the sexagesimal fractional parts of the 24 tabular Sine-differences given by Āryabhaṭa I
(born ad 476). These lead to a more accurate table of Sines for the interval of 225 minutes.
Thus the last tabular Sine becomes.

3437 + 44
60 + 19

602 ,

instead of Āryabhaṭa’s 3438.

Besides this improvement of Āryabhaṭa’s sine table, the paper also deals with some empiri-
cal rules given by Govindasvāmin for computing tabular Sine-differences in the argumental
range of 60 to 90 degrees. The most important of these rules may be expressed as

𝐷(24−𝑝) = [𝐷24 − (1 + 2 + … + 𝑝) ⋅ 𝑐
602 ] ⋅ (2𝑝 + 1),

where
𝑝 = 1,2,…,7;

and 𝐷17,𝐷18,…𝐷24 are the tabular Sine-differences with 𝐷24 being given, in the usual
mixed sexagesimal notation, as

𝑎 + 𝑏
60 + 𝑐

602 .

Symbols

𝑎;𝑏,𝑐 The usual notation for writing a number with whole part ‘a’ (say, in
minutes) separated from its sexagesimal fractional parts (of various
orders, ‘𝑏’ (in second), ‘𝑐’ (in thirds),…, by a semicolon.

𝐷1,𝐷2 … Tabular Sine-differences such that 𝐷𝑛 = 𝑅sin𝑛ℎ − 𝑅sin(𝑛 − 1)ℎ;
𝑛 = 1,2,…

ℎ Uniform tabular interval.
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© Springer Nature Singapore Pte Ltd. 2019
K. Ramasubramanian (ed.), Gaṇitānanda,
https://doi.org/10.1007/978-981-13-1229-8_33

333



334 Fractional Parts of Āryabhaṭa’s Sines and Certain Rules …

𝐿(ℎ) Last tabular Sine-difference when the tabular interval is ℎ, so that
𝐿(ℎ) = 𝑅 − 𝑅cosℎ.

𝑚,𝑛,𝑝 Positive integers.
R Radius, Sinus Totus, norm.

1 Introduction

It is well known1 that the Āryabhaṭīya of Āryabhaṭa I (born ad 476) contains a set
of 24 tabular Sine-differences. In the modern language we can say that the work
tabulates, to the nearest whole number, the values of

𝐷𝑛 = 𝑅sin𝑛ℎ − 𝑅sin(𝑛 − 1)ℎ

for
𝑛 = 1,2,……,24;

where the uniform tabular interval ℎ is equal to 225 minutes and the norm 𝑅 is
defined by

𝑅 = 21600
2𝜋 (1)

Āryabhaṭīya, II, 10 gives2

𝜋 = 3.1416, approximately.

Using this approximation of 𝜋, the definition (1) gives

𝑅 = 3437.73872, nearly

= 3437; 44,19 to the nearest third.

Thus, to the nearest minute, the 24th tabular Sine (the Sinus Totus or the radius) will
be given by

𝑅 = 𝑅sin90∘ = 3438.

By employing his own peculiar alphabetic system3 of expressing numbers,
Āryabhaṭa could express the 24 tabular Sine-differences just in one couplet which
runs as follows: (Āryabhaṭīya I, 10; pp. 16–17)

225 224 222 219 215 210 205 199 (191) 183 174 164
म ख भ ख फ ख ध ख ण ख ञ ख ङ ख ह क क घ क क |
154 143 131 119 106 93 79 65 51 37 22 7

क क ह धाहा फ छ कलाध ाः ||
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In Kern’s edition (Leiden 1874), which is used here, the text and commentary both
give the reading svaki, 250 (a wrong value), for the ninth tabular Sine-difference. It
is stated by Sen4 that Fleet pointed out the mistake as early as 1911. However, it must
be noted that although the commentary reading is svaki, the translation or explana-
tion given by the commentator (Parameśvara, circa ad 1430) is ‘candrāṅkaikaḥ’,
191, which is correct. This shows that svaki was not the original reading.

In fact, Śaṅkaranārāyaṇa (ad 869) in his commentary5 on Laghu-bhāskarīya
quotes the above couplet in full with the reading skaki, 191 (which is correct),
instead of the wrong reading svaki, 250. That in the original text of Āryabhaṭīya
the reading was skaki has also been confirmed by consulting the manuscripts6 of the
commentaries of Bhāskara I (ad 629)7 and Sūryadeva Yajva (born ad 1191). Hence
it is certain that the original reading was skaki which is adopted here as well as by
other translators.*

These tabular Sine-differences are shown in Table 1.

Table 1 Tabular Sine-differences
n Actual value of Ārya- Govinda- Āryabhaṭa’s

𝑅sin𝑛ℎ Actual Sine- bhaṭa’s svāmin’s Sine-diff.
(𝑅 = 10800

3.1416 , diff. 𝐷𝑛 Sine- fractional improved by
and ℎ = 225 min.) diff. parts Govindasvāmin

1 224; 50, 19, 56 224; 50, 19, 56 225 −9, 37 224; 50, 23
2 448; 42, 53, 48 223; 52, 33, 52 224 −7, 30 223; 52, 30
3 670; 40, 10, 24 221; 57, 16, 36 222 −2, 42 221; 57, 18
4 889; 45, 08, 06 219; 04, 57, 42 219 +4, 57 219; 04, 57
5 1105; 01, 29, 37 215; 16, 21, 31 215 +16, 22 215; 16, 22
6 1315; 33, 56, 21 210; 32, 26, 44 210 +32, 26 210; 32, 26
7 1520; 28, 22, 38 204; 54, 26, 17 205 −5, 34 204; 54, 26
8 1718; 52, 09, 42 198; 23, 47, 04 199 −36, 12 198; 23, 48
9 1909; 54, 19, 05 191; 02, 09, 23 191 +2, 09 192; 02, 09

10 2092; 45, 45, 51 182; 51, 26, 46 183 −8, 33 182; 51, 27
11 2266; 39, 31, 06 173; 53, 45, 15 174 −7, 02 173; 52, 58
12 2430; 50, 54, 06 164; 11, 23, 00 164 +12, 10 164; 12, 10
13 2584; 37, 43, 44 153; 46, 49, 38 154 −13, 11 153; 46, 49
14 2727; 20, 29, 23 142; 42, 45, 39 143 −17, 14 142; 42, 46
15 2858; 22, 31, 00 131; 02, 01, 37 131 +2, 02 131; 02, 02
16 2977; 10, 08, 37 118; 47, 37, 37 119 −12, 22 118; 47, 38
17 3083; 12, 50, 56 106; 02, 42, 19 106 +2, 42 106; 02, 42
18 3176; 03, 23, 11 092; 50, 32, 15 93 −9, 28 92; 50, 32
19 3255; 17, 54, 08 079; 14, 30, 57 79 +14, 31 79; 14, 31
20 3320; 36, 02, 12 065; 18, 08, 04 65 +18, 08 65; 18, 08
21 3371; 41, 00, 43 051; 04, 58, 31 51 +4, 59 51; 04, 59
22 3408; 19, 42, 12 036; 38, 41, 29 37 −21, 19 36; 38, 41
23 3430; 22, 41, 43 022; 02, 59, 31 22 +3, 00 22; 03, 00
24 3437; 44, 19, 23 007; 21, 37, 40 07 +21, 37 07; 21, 37

*It is now evident that the reading in the commentary by Parameśvara has also been skaki originally
and not svaki as appears in the printed edition.
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Instead of tabulating the Sine-differences to the nearest whole minutes, if they
are tabulated up to the second-order sexagesimal fraction, then the tabular values
should be given in minutes, seconds, and thirds. The sexagesimal fractional parts
(seconds and thirds), in defect or in excess, of the Āryabhaṭa’s Sine-differences are
found stated in the commentary (gloss) of Govindasvāmin (circa ad 800–850)8 on
the Mahābhāskarīya of Bhāskara I (early seventh century ad), both belonging to
the Āryabhaṭa School of Indian Astronomy. These fractional parts (avayavāḥ) are
described below in section two of the paper. Certain other rules concerning the com-
putations of Sine-differences, as found in the same commentary, are discussed in the
subsequent sections of the paper.

2 Fractional Parts of Āryabhaṭa’s Sine-Differences

Described in the usual Indian word-numerals (Bhūtasaṅkhyās), the seconds and
thirds (in defect or in excess) of all the 24 Āryabhaṭa’s Sine-differences appear on
page 200 of the printed edition (Madras, 1957) of Govindasvāmin’s commentary on
the Mahābhāskarīya. They are as follows (the first two digits in each figure-group
of the text denote the thirds):

9,37 7,30 2,42 4,57
स ा र ा ण, वय णुाग,ं ने ा ने ,ं मु नप वेदाः |

16,22 32,26 5,34 36,12
यः, ष यन रामा, वेदा भूत,ं र वष ृशानुः ||

2,09 8,33 7,02 12,10
र ा प ं, गुणपावका ौ, च ु वय , खच सूय ः |

13,11 17,14 2,02 12,22
ा च ा, मनुस सोमा, द ा ने ,ं नयनं सूय ||
2,42 9,28 14,31 18,08

अ प ं वसुने र ,ं च ा व ा, वसुखा च |
4,59 21,19 3,00 21,37

र षेुवेद,ं नव प म ,ं खा ा य , स गुणे सं ||

(Govindasvāmin’s commentary on the Mahābhāskarīya under IV, 22).
After describing these values the commentary says (p. 201):

इ ु ा रा ाः ुरेते ह ना धक शकाः |
गुणान ते ततः शो ा म ादौ यो जता अ प ||
- - - प-ने -ैक- -च -ैके- -ुसं या |

एक- - प-ने ै ा व गणकैः मा ||
These are the fractional parts, thirds first, in defect or in excess, of the Sine-differences.
They are subtracted from, and added to, (the Āryabhaṭa’s Sine-differences) makhi, etc., by
the calculators expert in Sines (taking) 3, 3, 2, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, in succession
(from the set).
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These fractional parts with their proper signs are tabulated in Table 1. The result-
ing tabular Sine-differences are also given in the table along with the actual values
for the purpose of comparison.

3 An Approximate Rule Concerning The Last Tabular
Sine-Difference

For finding an approximate value of the last Sine-difference with tabular interval ℎ
2 ,

from the last Sine-difference when the tabular interval is ℎ, the commentary (p. 199)
of Govindasvāmin on the Mahābhāskarīya gives a simple rule as follows:

अ गुण ताव चतुभ गः, तदधका ा ा
The fourth part of the last (tabular) Sine-difference (corresponding to a tabular interval of
arc ℎ) is the last (tabular) Sine-difference corresponding to half of the (given tabular) arc.

That is,

(
1
4) ⋅ 𝐿(ℎ) = 𝐿(

ℎ
2 )

The work gives the following illustrations of the rule:

(
1
4)⋅ 𝐿(450) = 𝐿(225),

(
1
4)⋅ 𝐿(225) = 𝐿(112;30)

(
1
4)⋅ 𝐿(112;30) = 𝐿(56;15)

‘In this way’, says the author, ‘the last tabular Sine-difference corresponding to any
tabular arc (of the type ℎ

2𝑛 ) should be obtained’. Thus we have the rule

𝐿(
ℎ
2𝑛 ) = 𝐿(ℎ)

4𝑛 .

Rationale: We have

𝐿(
ℎ
2 ) = 𝑅 − 𝑅cos

(ℎ)
2 = 2𝑅sin2

(
ℎ
4 ).

Now
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𝐿(ℎ) = 𝑅 − 𝑅cosh = 2𝑅sin2
(

ℎ
2 )

= 8𝑅sin2
(

ℎ
4 ) ⋅ cos2

(
ℎ
4 )

= 4 ⋅ 𝐿(
ℎ
2 ) ⋅ cos2

(
ℎ
4 ), by the above.

Therefore,

𝐿(
ℎ
2 ) = (

1
4) ⋅ 𝐿(ℎ) sec2

(
ℎ
4 )

= (
1
4) ⋅ 𝐿(ℎ) + (

1
4) ⋅ 𝐿(ℎ) ⋅ tan2

(
ℎ
4 )

From this the rule follows, since (when ℎ is small)

(
1
4) ⋅ 𝐿(ℎ), tan2

(
ℎ
4 )

= (
1
4) ⋅ 2𝑅sin2

(
ℎ
2 ) ⋅ tan2

(
ℎ
4 )

= ℎ4

128𝑅3 , approximately,

which is negligible. For an alternative rationale see Sect. 4.

4 A Crude Rule for Computing Tabular Sine-Differences
in the Third Sign (60∘ to 90∘)

After giving the method of finding the last tabular Sine-difference 𝐷𝑛 (described
in the last section), the commentary (p. 199) of Govindasvāmi on Mahābhāskarīya
gives the following crude rule for obtaining the other tabular Sine-differences (lying
in the third sign only) from 𝐷𝑛.

सा पुन ा द वषमसं ागु णता तदधः भृ ु मत ाग ा |
एवं तृतीयरा श ाक ना |
That (that is, the last tabular Sine-difference) severally multiplied by the odd numbers 3, etc.,
become the Sine-difference below that (that is, the last-but-one), etc. (that is, the other Sine-
differences), counted in the reversed order. This is the method of getting Sine-differences
in the third sign.

That is, from

𝐿(ℎ) = 𝐷𝑛,
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we get

3 × 𝐿(ℎ) = 𝐷𝑛−1,
5 × 𝐿(ℎ) = 𝐷𝑛−2,

.............................
(2𝑝 + 1)𝐿(ℎ) = 𝐷𝑛−𝑝; 𝑝 = 0,1,2,…

Rationale: We have

𝐷𝑛−𝑝 = 𝑅sin (𝑛 − 𝑝)ℎ − 𝑅sin (𝑛 − 𝑝 − 1)ℎ
= 𝑅cos 𝑝ℎ − 𝑅cos(𝑝 + 1)ℎ, as 𝑛ℎ = 90∘,

= 2𝑅sin(
ℎ
2 ). sin(𝑝ℎ + ℎ

2 )

= 2𝑅sin2
(

ℎ
2 ).

sin(𝑝ℎ + ℎ
2 )

sin(
ℎ
2 )

= 𝐷𝑛.
sin{

(2𝑝+1)ℎ
2 }

sin(
ℎ
2 )

= (2𝑝 + 1). 𝐷𝑛, roughly,

since ℎ(= 90
𝑛 degrees) is small and (𝑝ℎ + ℎ

2 ) is less than 30 degrees in the third

sign. Thus follows the above crude rule.
From this rule it is clear that

𝐷𝑛−1 = 3𝐷𝑛
𝐷𝑛−2 = 5𝐷𝑛
𝐷𝑛−3 = 7𝐷𝑛,etc.

Now

𝐿(ℎ) = 𝐷𝑛
𝐿(2ℎ) = 𝐷𝑛 + 𝐷𝑛−1 = (1 + 3)𝐷𝑛

= 4𝐿(ℎ)
𝐿(4ℎ) = 𝐷𝑛 + 𝐷𝑛−1 + 𝐷𝑛−2 + 𝐷𝑛−3

= (1 + 3 + 5 + 7)𝐷𝑛

= 42𝐿(ℎ).

Thus, in general, we have
𝐿(2𝑛ℎ) = 4𝑛𝐿(ℎ),
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or

𝐿(ℎ) = 𝐿(2𝑛ℎ)
4𝑛

which is equivalent to the rule described in Sect. 3.
It can be easily seen that the rule, although simple, is very gross. The 𝐷24, of

Table 1, when multiplied by 3, 5, 7,…,15, will not give results equal to 𝐷23,𝐷22,
𝐷21,…,𝐷17, respectively. ‘This is no fault, as the manipulation is not complete’,
says Govindasvāmin. He, therefore, gives a modification of this rule which we
describe now.

5 Govindasvāmin’s Modified Rule for Computing Tabular
Sine-Differences in the Third Sign

In the commentary (p. 201) of Govindasvāmin on the Mahābhāskarīya is found an
excellent rule for computing, from a given last tabular Sine-difference 𝐷𝑛, the other
Sine-differences lying in the third sign (60 degrees to 90 degrees). The text says:

अ ा तावदकेा दसंक लतगु णतत राह ना
ा द वषमगु णता फा दतु ाऽ भवने भवे द त |

Diminish the last (tabular) Sine-difference by its thirds multiplied (severally) by the sums
of (the natural numbers) 1, etc. The results (so obtained) multiplied by the odd number 3,
etc., become the (tabular) Sine-differences, in the third sign, starting from “pha” (that is,
the last-but-one Sine-difference).

That is, taking the last Sine-difference

𝐷𝑛 = 𝑎 + 𝑏
60 + 𝑐

602 minutes

= 𝑎; 𝑏,𝑐, say,

we have

𝐷𝑛−1 = [𝐷𝑛 − 1 × 𝑐
602 ] × 3

𝐷𝑛−2 = [𝐷𝑛 − (1 + 2)𝑐
602 ] × 5

.............................................

𝐷𝑛−𝑝 = [𝐷𝑛 − (1 + 2 + … + 𝑝)𝑐
602 ]. (2𝑝 + 1),

𝑝 = 0,1,2,…

Illustration: We take, for the last Sine-difference, the value
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𝐷24 = 7; 21,37

as found in the work itself (see Table 1). Applying the above rule, we get

𝐷23 = (𝐷24 − 1 × 37
602 ) × 3

= 22;3,0.

𝐷22 = [𝐷24 − (1 + 2) × 37
602 ] × 5

= 36;38,50.

Similarly all the differences up to 𝐷17 may be worked out. These are shown in
Table 2 and may be compared with the set of values given in the work itself.

Table 2 Sine-difference in third sign
Sine-diff. by the Sine-diff. as By the Rule

𝑝 𝐷𝑛−𝑝 Rule applied to given in the Actual value applied to
(𝑛 = 24) 𝐷𝑛 = 7;21,37 work 𝐷𝑛 = 7;21,38

0 𝐷24 7; 21, 37 7; 21, 37 7; 21, 38 7; 21, 38

1 𝐷23 22; 03, 00 22; 03, 00 22; 03, 00 22; 03, 00

2 𝐷22 36; 38, 50 36; 38, 41 36; 38, 41 36; 38, 40

3 𝐷21 51; 5, 25 51; 04, 59 51; 04, 59 51; 04, 50

4 𝐷20 65; 19, 03 65; 18, 08 65; 18, 08 65; 17, 42

5 𝐷19 79; 16, 02 79; 14, 31 79; 14, 31 79; 13, 28

6 𝐷18 92; 52, 40 92; 50, 32 92; 50, 32 92; 48, 20

7 𝐷17 106; 05, 15 106; 02, 42 106; 02, 42 105; 58, 30

Rationale: We have already shown (see Sect. 4)that

𝐷𝑛−𝑝 =
𝐷𝑛 ⋅ [sin{

(2𝑝+1)ℎ
2 }]

sin(
ℎ
2 )

.

Now it is known that9

sin𝑚𝜃 = 𝑚sin𝜃 − 𝑚(𝑚2 − 12)
3! sin3 𝜃 + 𝑚(𝑚2 − 12)(𝑚2 − 32)

5! sin5 𝜃 − …
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Taking in this,

𝑚 = 2𝑝 + 1, and 𝜃 = ℎ
2

we get

[sin{
(2𝑝+1)ℎ

2 }]
sin(

ℎ
2 )

= (2𝑝 + 1) − (
2
3)𝑝(𝑝 + 1)(2𝑝 + 1)sin2

(
ℎ
2 ) + 𝑓(𝑝)sin4

(
ℎ
2 ) − …

Using this we get

𝐷𝑛−𝑝 = (2𝑝 + 1)𝐷𝑛 − 𝐷𝑛.(
4
3)(2𝑝 + 1)(1 + 2 + … + 𝑝)sin2

(
ℎ
2 ) + …

= [𝐷𝑛 − (
4
3)(1 + 2 + … + 𝑝)𝐷𝑛.sin2

(
ℎ
2 )]. (2𝑝 + 1),

neglecting higher terms which are comparatively small. This we can write as

𝐷𝑛−𝑝 = [𝐷𝑛 − (1 + 2 + … + 𝑝)𝑘] ⋅ (2𝑝 + 1),

where

𝑘 = (
4
3)sin2

(
ℎ
2 ) ⋅ 𝐷𝑛

= (
2

3𝑅)𝐷2
𝑛, or (

8𝑅
3 )sin4

(
ℎ
2 ).

since
𝐷𝑛 = 𝑅(1 − cosℎ) = 2𝑅sin2

(
ℎ
2 ).

Now, in our case,

ℎ = 225 minutes,

𝑅 = 10800
3.1416 .

Hence we easily get

𝑘 = 1
95.2 , nearly.

The numerical value implied in the rule given by Govindasvāmin is

= 37
602

= 1
97.3 , nearly.
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This is quite comparable to the actual value calculated above.

Acknowledgements I am grateful to Dr. T. A. Sarasvati for checking the English rendering of the
Sanskrit passages.

References and Notes

1. The subject of the Āryabhaṭīya Sine-differences has been dealt by many previous scholars.
Some references are:

(i) Ayyangar, A.A.K.: ‘The Hindu Sine-Table’. Journal of the Indian Mathematical Society,
Vol. 15 (1924–25), first part, pp. 121–26.

(ii) Sengupta, P.C.: ‘The Āryabhaṭīyam’ (An English Trans.) Journal of the
Department of Letters (Calcutta University), Vol. 16 (1927), pp. 1–56.

(iii) Sen, S.N.: ‘Āryabhaṭa’s Mathematics’. Bulletin of the National Institute of Sciences of
India, No. 21 (1963), pp. 297–319.

2. The Āryabhaṭīya with the commentary Bhaṭadīpikā of Paramādīśvara
(Parameśvara); edited by H. Kern, Leiden, 1874, p. 25. In our paper the page-references to
Āryabhatīya and Parameśvara’s commentary on it are according to this printed edition.

3. For an exposition of his alphabetic system of numerals see, for example, History of Hindu
Mathematics: A Source Book by B. Datta and A. N. Singh; Asia publishing House, Bombay,
1962; pp. 64–49 of part I.

4. Sen, S.N.: ‘Āryabhaṭa’s Math.’ op. cit., p. 305.
5. Laghu-bhāskarīya with the commentary of Śaṅkaranārāyaṇa edited by

P. K. N. Pillai; Trivandrum, 1949; p. 17.
6. Vide Manuscripts of the commentaries by Bhāskara I, p. 39, and by Sūryadeva Yajvan, p. 20,

both in the Lucknow University collection.
7. Laghu-bhāskarīya edited and translated by K. S. Shukla; Lucknow University, Lucknow,

1963; p. xxii.
8. Mahābhāskarīya of Bhāskarācārya (Bhāskara I) with the Bhāṣya (gloss) of Govindasvāmin

and the super-commentary Siddhāntadīpikā of Parameśvara edited by T. S. Kuppanna Sastri;
Govt. Oriental Manuscripts Library, Madras, 1957; p. xlvii. All page-references to Govin-
dasvāmin’s commentary (gloss) are according to the edition

9. Higher Trigonometry by A. R. Majumdar and P. L. Ganguli; Bharti Bhawan, Patna, 1963;
p. 128.



Early Indians on Second-Order
Sine-Differences

The well-known property that the second-order differences of sines are proportional to the
sines themselves was known even to Āryabhat.a I (born ad 476) whose Āryabhat. ı̄ya is
the earliest extant historical work (of the dated type) containing a sine table. The paper
describes the various forms of the proportionality factor involved in themathematical formula
expressing the above property. Relevant references and rules are given from the Indian
astronomical works such as Āryabhat. ı̄ya, Sūrya-siddhānta, Golasāra and Tantrasaṅgraha
(ad 1500).

The commentary of Nı̄lakan. t.ha Somayāji (born ad 1443) on the Āryabhat. ı̄ya discusses the
property in detail and contains an ingenious geometrical proof of it. The paper gives a brief
description of this proof which is merely based on the similarity of triangles.

The Indian mathematical method based on the implied differential process is found, in the
words of Delambre, “neither amongst the Greeks nor amongst the Arabs.”

1 Introduction

Let (n being a positive integer)

Sn = R sin nh (1)

D1 = S1
Dn+1 = Sn+1 − Sn (2)

It is easily seen that

Dn − Dn+1 = F · Sn (3)

where the proportionality factor F (independent of n) is given by

Indian Journal of History Science, Vol. 7, No. 2 (1972), pp. 81–86.
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F = 2(1 − cos h). (4)

Relation (3) represents the fact that in a set of equidistant tabulated Indian Sines
defined by (1), the differences of the first Sine-differences (Sn+1 − Sn), that is, the
second Sine-differences (Dn − Dn+1) are proportional to the sines Sn themselves.
This fact seems to be recognized in India almost since the very beginning of Indian
trigonometry. In Sect. 2 below we shall describe some of the forms of the rule (3)
along with various forms of the factor F as found in important Indian works. In
Sect. 3 we shall outline an Indian proof of the rule as found in Nı̄lakan. t.ha Somayāji’s
Āryabhat. ı̄ya-Bhās. ya (= NAB) which was written in the early part of the sixteenth
century of our era.

2 Forms of the Rule

It is easy to see that

F = (D1 − D2)

D1
. (5)

When the norm (radius or sinus lotus) R is equal to 3438min and the uniform tabular
interval h is equal to 225min (as is the case with the usual Indian sine tables), we
have

D1 = 3438 sin 225′ = 224.86 nearly,

D2 = 3438 sin 450′ − 3438 sin 225′ = 223.89 nearly,

D1 − D2 = 0.97 = 1 approximately.

Using this value and (5), we can put (3) as

Dn+1 = Dn − Sn

D1
. (6)

A rule which is equivalent to (6) is found1 in the Āryabhat. ı̄ya II, 12 of Āryabhat.a I
(born 476 ad) which is the earliest extant historical work of the dated type containing
a sine table. The rule found2 in the Sūrya-siddhānta II, 15–16 is also equivalent to
(6) according to the interpretations of the commentators Mallikārjuna (1178 ad) and
Rāmakr.s.n. a (1472 ad). The NAB also accepts that the Sūrya-siddhānta rule is same
as above and further gives an exact form of the rule (3) which can be expressed in
our notation as follows3

Dn+1 = Dn − Sn(D1 − D2)

D1
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or,

Dn+1 = Dn − (D1 + D2 + · · · + Dn).(D1 − D2)

D1

The Golasāra III, 13–14 gives a rule equivalent to4

Sn−1 = Sn −
[(

2

R

)
{R sin 90◦ − R sin(90◦ − h)}Sn + Dn+1

]

which implies (3) with

F = 2(R − R cos h)

R
.

The NAB (part I, p. 53) quotes the Golasāra-rule and further adds that we equiv-
alently have

F = 2(R vers h)

R
.

The actual value of F (independent of R) is given by

F = (2 sin 112.5′)2 = 1

233.53
very nearly.

The Tantrasaṅgraha (= TS) II, 4 gives5 the value of the reciprocal of F as 233.5 and
the commentator thereof even gives it as

233 + 32

60

which is almost equal to the true value.
A rule equivalent to (3) occurs in the TS II, 8–9 (p. 18), which was written in

ad 1500, as follows:

Twice the difference between the last and the last-but-one (Sines) is the multiplier; the semi-
diameter is the divisor. The first Sine then (that is, when operated by the multiplier and
divisor defined above) becomes the difference of the initial Sine-differences. With those
very multiplier and divisor (operated upon) the tabular Sines starting from the second, (we
get) the successive differences of Sine-differences respectively.

That is, 2[R sin 90◦ − R sin(90◦ − h)] = Multiplier, M ; Semi-diameter or radius
R = Divisor D. Then
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(
M

D

)
S1 = D1 − D2

(
M

D

)
Sn = Dn − Dn+1 n = 2, 3 . . .

So that we have
Dn − Dn+1 = 2(1 − cos h)Sn,

which, is equivalent to (3).
Finally, we also have

F = (crd h)2

R2
(A)

where crd h denotes the full chord of the arc h in a circle of radius R. With (A) as the
value of the proportionality factor, the NAB (part I, p. 52) gives the verbal statement
of the rule (3) as follows (NAB was composed after TS):

For the Sine at any arc-junction (that is, at any point where two adjacent elemental arcs
meet) the square of the full chord is the multiplier; the square of the radius is the divisor. The
result (of operating the Sine by multiplier and divisor) is the difference of the (two adjacent)
Sine-differences.

That is,

Dn − Dn+1 = Sn(crd h)2

R2
(7)

From this, the NAB rightly concludes that

The (numerical) increase of the Sine-differences is proportional to the very Sines.

3 Proof of the Rule

An Indian proof of the rule (7) as found in the NAB (part I, pp. 48–52) may be briefly
outlined in the modern language as follows:

Make the reference circle on a level ground and draw the reference lines XOX’
and YOY’ (see the accompanying figure where only a quadrant is shown). Mark the
parts of the arc on the circumference (by points, such as L, M , N , which are at the
arcual interval h).
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Sine-chord differences

Take a rod OQ equal in length to the radius R and fix firmly and crossly (and
symmetrically) another rod MN whose length is equal to the full chord of the (ele-
mental) arc h at the point P which is at a distance equal to the Versed Sine of half
the elemental arc h from the end Q of the first rod.

The sides of the similar triangles NKM and OAQ are proportional. Therefore, by
the Rule of Three we have

NK = OA · MN

OQ

MK = QA · MN

OQ

In other words we have*

Lemma I The difference of Sines, corresponding to the end-points of any elemental
arc, is proportional to the Cosine at the middle of the arc;

Lemma II The difference of Cosines, corresponding to the end-points of any ele-
ments arc, is proportional to the Sine at the middle of the arc; the proportionality

factor in both cases being = (chord of the arc)

Radius
= (crd h)

R
Thus, in our symbols we have (when arc MX = nh)

Dn+1 = (crd h) · OA

R

*The Sanskrit text ( ), as quoted in the NAB, states the Lemmas
as two Rules of Three. SeeGupta R.C., Some Important IndianMathematicalMethods as conceived
in Sanskrit Language, paper presented at the International Sanskrit Conference, New Delhi, March
1972, p. 3. For a nice statement of the Lemmas, see Gupta R. C., Second-Order Interpolation in
Indian Mathematics etc., I.J.H.S., Vol.4 (1969), p. 95, verses 7–8.
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and, similarly

Dn = (crd h) · OB

R
.

Therefore,

Dn − Dn+1 = (crd h) · (OB − OA)

R
. (8)

Now the second half (TM ) of the first (lower) arc LTM and the first half (MQ)

of the second (upper) arc MQN together form the arc TMQ whose length is equal to
that of an elemental arc h. Thus we can place the above frame of two rods such that
the radial rod coincides with OM and the cross radial rod (therefore) coincides with
the full chord of the arc TQ and consider the proportionality of sides as before.

In other words we use Lemma II for the arc TQ. This will mean that the differ-
ence of the Cosines, OB and OA, corresponding to the end-points T and Q, will be
proportional to the Sine, MC, at the middle point M of the arc TQ. That is, we have

OB − OA = (crd h) · MC

R

= (crd h) · (R sin nh)

R
.

Hence by (8)

Dn − Dn+1 = (crd h)2 · (R sin nh)

R2

which is equivalent to (7).

4 Concluding Remarks

An Indian method of computing tabular Sines by using a process given basically
by the rule expressed by (7) has been regarded curious by Delambre whom Datta6

quotes as remarking thus:
“This differential process has not upto now been employed except by Briggs

(c.1615 ad) who himself did not know that the constant factor was the square of
the chord or the interval (taking unit radius), and who could not obtain it, except by
comparing the second differences obtained in a different manner. The Indians also
had probably done the same; they obtain the method of differences only from a table
calculated previously by a geometrical process. Here then is a method which the
Indians possessed and which is found neither amongst the Greeks nor amongst the
Arabs.”

Like Delambre, Burgess7 also thinks that the property, that the second differences
of Sines are proportional to Sines themselves, ‘was known to the Hindus only by



4 Concluding Remarks 351

observation. Had their trigonometry sufficed to demonstrate it, they might easily
have constructed much more complete and accurate table of Sines.’

Datta (op. cit.), however, sees no reason to suspect that Indians obtained the above
formula (6) by inspection after having calculated the table by a different method;
“there is no doubt that the early Hindus were in possession of necessary resources
to derive the formula,” he adds.

Finally it may be stated that various geometrical proofs of the rule have been
given8 by modern scholars like Newton, Krishnaswami Ayyangar, Naraharayya and
Srinivasiengar. However, it may be pointed out that the rule given by (7) is exact,
and not approximate as assumed by some of the above scholars. The exposition and
the limiting forms of the rules and results from the NAB and Yukti-bhās. ā (17th cen-
tury ad) as given by Saraswathi9 should also be noted. Many other modern proofs
have been given.10
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2. The Sūrya-siddhānta (with the commentary of Parameśvara) edited by K. S.
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by S. K. Pillai, Trivandrum 1958; p. 17. The same value is also found in Bhāskara II’s Jyotpatti,
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An Indian Form of Third-Order Taylor
Series Approximation of the Sine

The paper describes an approximation formula for sine (x + h) that differs from the first
four terms of the Taylor expansion only by having 4 in place of 6 in the denominator of the
fourth term. It appears in Sanskrit stanzas quoted in a work of about the fifteenth century
and given here with translation and explanation.

Approximation formulas for the sine of x + h equivalent to the first two terms of
the Taylor series expansion and to the first three terms were known from at least as
early as the tenth century ad and the fourteenth century ad to Indian mathematicians
[Sengupta 1932, 5; Gupta 1969, 92–94].

An approximation formula equivalent to the first four terms, except that the
denominator in the fourth term is 4 instead of 6, appears in a literary form in three
stanzas quoted by Parameśvara (circa 1360–1455) in his super-commentary, called
Siddhānta-dı̄pikā, onGovindasvāmin’s gloss (circa 800–850) on theMahābhāskarı̄ya
(about early seventh century) [Kuppanna Sastri 1957, 205].

Belowwe give the text in Sanskrit from the Siddhānta-dı̄pikā and an almost literal
translation of the Sanskrit stanzas. Then follows an explanation of the various steps
in the rule laid down in the text. (the Indian sine, or Sine, of an angular arc φ is equal
to R sin φ, where sin φ is the modern sine of the angle φ and R is the radius of the
circle of reference).

Historia Mathematica 1 (1974), pp. 287–289. Paper read in the Mathematics Section of the 60th
Session of Indian Science Congress, Chandigarh, 1973.
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The semi-diameter divided by the residual arc becomes the divisor. Put down the Sine and
again the Cosine at the end of the arc traversed. (14)

From the Cosine, subtract half the quotient obtained from the divisor-divided Sine [which
is] increased by half the quotient obtained from the Cosine by the divisor. Again, (15)

[The quotient] obtained from that [above difference] by dividing by the divisor becomes
the true Sine difference. The Sine at the end of the arc traversed increased by that [true
Sine-difference] becomes the desired Sine for a [given] arc. (16)

1 Explanation

Suppose the given arc lies between the tabulated argument α and the next tabulated
argumental value. Let the given arc be α + θ , where α is called the arc traversed and
θ is the residual arc which is necessarily less than the current tabular interval. We
have to find R sin(α + θ). The quantities R sin α and R cosα are the Sine and the
Cosine at the end of the arc traversed. R sin α can be read directly from a sine table.
Thus R sin α and R cosα are taken to be known.

The rule starts with the introduction of a quantity D, called “divisor”, defined by
D = R

θ
. The second half of the first stanza (14) simply asks us to write down R sin α

and R cosα for the operations which are given in the two subsequent stanzas.
The contents of the next stanza (15) may be put as follows:

1. Divide the Cosine at the end of the arc traversed by the divisor, so that we get
(R cosα)

D .
2. Half the above quotient is added to the Sine at the end of the arc traversed. Thus

we get R sin α + (R cosα)

2D .

3. Divide the above result by the divisor, so that we get

[
R sin α+ (R cosα)

2D

]

D .
4. Half the above quotient is to be subtracted from the Cosine at the end of the arc

traversed. Hence we now get R cosα −
[

R sin α+ (R cosα)

2D

]

2D .

The first half of the last stanza (16) again asks us to divide the results obtained above
by the divisor.

Thus we finally get [
R cosα −

[
R sin α+ (R cosα)

2D

]

2D

]

D
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which is stated to be the true Sine-difference needed. That is, the above final result
is taken to be the value of R sin(α + θ) − R sin α. The second half of the last stanza
asks us to add the true Sine difference, obtained above, to the Sine at the end of the
arc traversed to get the desired Sine corresponding to a given arc.

Thus the rule, expressed mathematically, is equivalent to the formula

R sin(α + θ) = R sin α +

[
R cosα −

(
R sin α+ (R cosα)

2D

)

2D

]

D
.

Substitution of D = R
θ
and simplification yield

R sin(α + θ) = R sin α +
(

θ

R

)
(R cosα) −

(
θ

R

)2
(R sin α)

2
−

(
θ

R

)3
(R cosα)

4
.

When R = 1, this becomes the third-order Taylor series approximation except for
the 4 in place of 6 in the last term.

It is interesting that a four-term approximation formula for the Sine function so
close to the Taylor series approximation was known in India more than two centuries
before the Taylor expansion was discovered by Gregory about 1668 [Boyer 1968,
422].
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Solution of the Astronomical Triangle as
Found in the Tantrasaṅgraha (AD 1500)

The spherical triangle formed on the celestial sphere by the positions of the Sun, north pole
and the zenith on it is called an astronomical triangle. The three sides of this triangle are the
co-latitude of the place of observation, the co-altitude of the Sun and its co-declination at
the time of observation. The internal angles formed at the zenith and the north pole are the
azimuth and the hour angle respectively. If any three of the above named five elements are
known, the remaining two can be found out. This gives rise to ten cases to be considered.

A complete solution of the astronomical triangle dealing systematically with all the ten
cases is found in the Sanskrit work Tantrasaṅgraha which was composed by Nīlakaṇṭha
Somayājī’s in the year ad 1500. However, some material of the work belongs to an earlier
period of Indian astronomy.

The present paper contains the translations (for the first time?) of the various rules given in
the above work for solving the astronomical triangle in the ten different cases. When these
rules are expressed in modern forms (as done in the present paper), it is seen that they give
results which are same as those obtained by using the current standard formulas of modern
spherical trigonometry, such as the Sine, Cosine and Cotangent Rules, and applying the the-
ory of quadratic equation in some cases. For example, in Case I, where latitude, declination
and azimuth are given, the rule given in the Tantrasaṅgraha for finding out the altitude of
the Sun, yields a result which is same as that obtained from the Cosine Rule

sin𝛿 = (sin𝜙) ⋅ (sin𝛼) + (cos𝜙) ⋅ (cos𝛼) ⋅ (cos𝐴)

when this relation is converted into a quadratic equation in sin𝛼 and solved.

The said work, however, does not contain the rationales of the rules, and the present paper
does not make any attempt to investigate as to how the rules were arrived at.

Symbols and Select Glossary

𝐴 Azimuth measured from the north.
𝐵 Bhā-bhuja (‘Shadow-arm’) which is the distance of the Sun’s

projection on the plane of the celestial horizon from the east–
west line.
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𝐶 Cosine of the local hour angle; √𝑅2 − 𝐽 2.
𝐷 Certain divisor (s).
‘Day-sine’ Radius of the Sun’s diurnal circle; 𝑅cos𝛿.
‘Gnomon’ Sine of the altitude of the Sun.
𝐻 Hour angle measured eastward.
𝐽 Svanata-jyā, the Sine of the local hour angle defined by

𝐽 = (𝑅sin𝐻).(𝑅cos𝜙)
𝑅 .

𝐾 Bhā-koṭi (‘Shadow-upright’) which is the distance of the Sun’s
projection on the plane of the celestial horizon from the north–
south line.

𝑅 Radius, norm, trijyā or sinus totus.
‘Shadow’ Cosine of the altitude of the Sun.
𝛼 Altitude of the Sun or its co-zenith distance.
𝛾 Digagrā (directional amplitude), the (Indian) azimuth

measured from the east–west line; so that we have 𝐴 = 90∘ ±𝛾 .
𝛿 Declination of the Sun.
𝜙 Terrestrial latitude.

1 Introduction

Let 𝑆 be the position of the Sun on the celestial sphere, 𝑃 the position of the north
pole and 𝑍 the zenith. Then the astronomical triangle 𝑆𝑃 𝑍 is a spherical triangle
in which the arcual sides 𝑃 𝑍,𝑍𝑆 and 𝑆𝑃 are equal to the co-latitude, co-altitude
and co-declination, respectively. The angles 𝑆𝑃 𝑍 and 𝑃 𝑍𝑆 are the hour angle and
azimuth, respectively. Knowing any three out of the above five elements of the tri-
angle, the remaining two can be found. A nice exposition of the subject of determin-
ing the remaining two elements, when any three of the above named five elements
are given, is found in the Sanskrit work Tantrasaṅgraha (= 𝑇 𝑆) which was com-
posed in ad 1500 by Nīlakaṇtha Somayājī (1444–1545)1. 𝑇 𝑆 is an important work

The astronomical triangle
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of the late Āryabhaṭa I School of the Indian astronomy. The title of the work signi-
fies that it is a “Compendium” or “Collection” of astronomical rules and no doubt it
includes some earlier material on Indian astronomy. The work has been published2

with the commentary (= 𝑇 𝑆𝐶) Laghuvivṛti written in ad 1556 by Śaṅkara Vāriar
(circa 1500–1560) who was a disciple of the author of 𝑇 𝑆.3

The above-mentioned almost complete solution of the astronomical triangle has
been dealt in the third chapter of the work. 𝑇 𝑆, III, 60 (p. 64) says:

इह श ु नत ा दग ा ेषु प सु |
यो योरानयनं दशधा ा परै भः || ६० ||

The determination of any two elements at a time out of the five elements, altitude, hour
angle, declination, (Indian) azimuth and latitude, from the other three (being given) is of ten
types (that is, there are ten cases).*

The ten cases have been dealt systematically and one by one in 𝑇 𝑆, III, 62–87
(pp. 65–88) and each case is followed by numerical exercises (uddeśakas). In the
following pages we shall describe these ten cases one by one giving each time the
method of solution as stated in the 𝑇 𝑆. Most of the 𝑇 𝑆 rules under these cases are
included in the Trigonometry in Ancient and Medieval India by the author of the
present paper (Table 1).4

Table 1 Elements given in the ten cases

Case Given Elements Elements to be found out Reference

I 𝛿,𝐴,𝜙 𝛼,𝐻 TS. III, 62–67

II 𝐻,𝐴,𝜙 𝛼,𝛿 TS. III, 68–73

III 𝐻,𝛿,𝜙 𝛼,𝐴 TS. III, 74–75

IV 𝐻,𝛿,𝐴 𝛼,𝜙 TS. III, 75–78

V 𝛼,𝐴,𝜙 𝐻,𝛿 TS. III, 78–79

VI 𝛼,𝛿,𝜙 𝐻,𝐴 TS. III, 80–81

VII 𝛼,𝛿,𝐴 𝐻,𝜙 TS. III, 81–83

VIII 𝛼,𝐻,𝜙 𝛿,𝐴 TS. III, 83–85

IX 𝛼,𝐻,𝐴 𝛿,𝜙 TS. III, 86–87

X 𝛼,𝐻,𝛿 𝐴,𝜙 TS. III, 86–87

2 Case I: Given 𝛿, 𝐴, 𝜙

In order to find the Sun’s altitude, the TS, III, 62–65 (p. 65) states:

आशा ा ल का ा ाभ ा च को टका || ६२ ||
भुजा ा तयोवगयोगमूलं ु तहर: |
ा वग त ग ा को ौ तयोः पदे || ६३ ||

कुय ा योघ तं को ोघ तं तथा पर |

*Angle 𝑍𝑆𝑃 has not been considered here.
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सौ े गोले तयोय गा भेदा ा े तु घातयोः || ६४ ||
आ घातेऽ धके सौ े योगभेद याद प |

ा ा ारवग ः श ु िर दगु वः || ६५ ||
………The Sine of the directional amplitude multiplied by the Cosine of the latitude and
divided by the radius is the upright (a small side of some right-angled plane triangle). The
Sine of the latitude is the base (the other small side of the same triangle). The square root of
the sum of their squares is the hypotenuse which is the Divisor.

The square roots of the quantities got by subtracting (separately) the squares of the Sines of
the declination and the latitude from the square of that (Divisor) are the two koṭis.
Obtain the product of the Sines of the declination and the latitude and (also) the product of
the two koṭis. Take their (of the above two products) sum (when the Sun’s declination is) in
north and difference (when it is) in south and both the sum as well as the difference (when
it is) in north and the first product is greater (than the second product), multiply (the sum
and/or the difference) by the radius and divide by the square of the Divisor. (The result is)
the Gnomon (Sine of the altitude) in the desired direction.*

That is,

Divisor = √(𝑅sin𝜙)2 + {
(𝑅sin𝛾 ⋅ 𝑅cos𝜙)

𝑅 }
2

= 𝐷, say.

Then†

𝑅sin𝛼 = (
𝑅
𝐷2 ) ⋅ [𝑅sin𝛿 ⋅ 𝑅sin𝜙 ± √𝐷2 − (𝑅sin𝛿)2 ⋅ √𝐷2 − (𝑅sin𝜙)2]

This solution can be easily seen to be equivalent to the result obtained by solving
the quadratic equation

sin2 𝜙 + cos2 𝜙 ⋅ cos2 𝐴)sin2 𝛼 − 2sin𝜙 ⋅ sin𝛿 ⋅ sin𝛼 + (sin2 𝛿 − cos2 𝜙 ⋅ cos2 𝐴) = 0

which is derived from the relation sin𝛿 = sin𝜙 ⋅ sin𝛼 + cos𝜙 ⋅ cos𝛼 ⋅ cos𝐴.
This last relation is written down by applying the modern cosine rule to the spher-

ical triangle 𝑍𝑆𝑃 .
Then 𝑇 𝑆, III, 66 (p. 65) includes a rule which can be expressed in modern sym-

bols as follows:

𝑅sin𝐻 = (𝑅cos𝛼 ⋅ 𝑅cos𝛾)
𝑅cos𝛿 .

This relation for finding out the hour angle is equivalent to the sine formula for
the spherical triangle 𝑍𝑆𝑃 .

*TS, III, 67 (p. 65) says that, in the case of the southern declination, the desired altitude of the Sun
will not be attained if the first product is greater than the second (numerically); so also if 𝑅sin𝛿 is
greater than the Divisor (whatever be the direction of 𝛿).
†In the equation below and all the other subsequent equations throughout the article wherever ‘±’
appears the ‘−’ sign denotes the positive difference of the quantities.
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3 Case II: Given 𝐻, 𝐴, 𝜙

For finding the altitude, the TS, III. 68–71 (p. 70) says:

नतल कयोघ ता ा ं त दशेज |
दशेनतको ा ं नता ावधा ु य || ६८ ||

तदाशा ावधे को ो योघ तं पे द |
शोधये द णा ाय या च ततो हरे || ६९ ||
ल ा नतको ट ा पृथ ा व गत |
युतं नतवगण त लेून तं फल || ७० ||
पृथ ृ ता भवे ु ः ................................. |
.............................................................. || ७१ ||
The product of the Sine of the hour angle and the Cosine of the latitude divided by the radius
is the Sine of the local hour angle. Divide the product of the Sines of the hour angle and the
latitude by the Cosine of the local hour angle and multiply by the Sine of the directional
amplitude (the azimuthal angle measured from the east). The result should be added to, in
case the directional amplitude is towards north, or subtracted from, in case the directional
amplitude is towards south, the product of their ‘koṭis’ (that is, their uprights when they
are taken as bases and the radius is taken as the hypotenuse in each case). The result (now
obtained) be divided by the radius and the quotient (thus obtained) multiplied by the Cosine
of the local hour angle be put separately (at two places).

At one place divide (the quantity) by the radius and add the square (of the result) to the
square of the Sine of the local hour angle. By the square root of that (the sum of the squares
just now obtained) divide the quantity (placed) separately. (The final result) becomes the
Gnomon (the Sine of the altitude)...........

That is,
Sine of the local hour angle

= (𝑅sin𝐻 ⋅ 𝑅cos𝜙)
𝑅 = 𝐽, say.

Cosine of the local hour angle

𝐶 = √𝑅2 − 𝐽 2.

Then we form the quantity

(
𝐶
𝑅 )

⎡
⎢
⎢
⎣
𝑅cos𝛾 ⋅ √𝑅2 − {

(𝑅sin𝐻 ⋅ 𝑅sin𝜙)
𝐶 }

2
± 𝑅sin𝛾 ⋅ (𝑅sin𝐻 ⋅ 𝑅sin𝜙)

𝐶
⎤
⎥
⎥
⎦

= 𝑄, say.

The rule then gives

𝑅sin𝛼 = 𝑄√𝐽 2 + (
𝑄
𝑅 )

2
.

By combining the various above steps, the solution given in the 𝑇 𝑆 can be seen
to be equivalent to the relation.



362 Solution of the Astronomical Triangle as Found in the Tantrasaṅgraha (ad 1500)

sin𝛼 = sin𝐴 ⋅ cos𝐻 + cos𝐴 ⋅ sin𝐻 ⋅ sin𝜙
√(sin𝐻 ⋅ cos𝜙)2 + (sin𝐴 ⋅ 𝑐𝑜𝑠𝐻 + cos𝐴 ⋅ sin𝐻 ⋅ sin𝜙)2

which is transformed form of the following result obtained by using the modern
cotangent formula of the spherical trigonometry5

tan𝛼 ⋅ cos𝜙 = sin𝐴 ⋅ cos𝐻 + cos𝐴 ⋅ sin𝜙

After finding the altitude, 𝑇 𝑆, III, 71 (second half) gives the equivalent of

𝑅cos𝛿 = 𝑅cos𝛼 ⋅ 𝑅cos𝛾
𝑅sin𝐻

which completes the desired computations in the present case.

4 Case III: Given 𝐻, 𝛿, 𝜙

For finding the altitude, 𝑇 𝑆, III, 74–75 (p. 74) states:

नतको ा हता ु ा वभ ा भजीवया |
सौ या दशोभू ायुतोना ल काहता || ७४ ||

ा ा श ु ः ...................................... || ७५ ||
Multiply the Cosine of the hour angle by the Day-sine (Cosine of the declination) and di-
vide by the radius. (The quotient obtained be) increased or diminished, according as the
direction (of the declination) is north or south, by the Earth-sine (the distance between the
rising-setting line and the line joining the points of intersection of the diurnal circle and the
six O’clock circle). (The result now obtained) multiplied by the Cosine of the latitude and
divided by the radius is the Sine of the altitude.

That is,

𝑅sin𝛼 = [
(𝑅cos𝐻 ⋅ 𝑅cos𝛿)

𝑅 ± (Earth-sine)] ⋅ 𝑅cos𝜙
𝑅

Now we know that (see 𝑇 𝑆, III, 59)6

Earth-sine = 𝑅sin𝛿 ⋅ 𝑅sin𝜙
𝑅cos𝜙

So that the rule is equivalent to the relation

sin𝛼 = sin𝛿 ⋅ sin𝜙 + cos𝛿 ⋅ cos𝜙 ⋅ cos𝐻

which can be directly written by using the cosine formula for a spherical triangle.
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Just after giving the above rule, 𝑇 𝑆 text says that the Cosine of the directional
amplitude should be found as before and the 𝑇 𝑆𝐶 (p. 74) gives the following usual
rule for the purpose:

𝑅cos𝛾 = (𝑅sin𝐻) ⋅ (𝑅cos𝛿)
𝑅cos𝛼 .

5 Case IV: Given 𝐻, 𝛿, 𝐴

𝑇 𝑆, III, 75–78 (p. 76) states:

छाय नी ाथ त ो ट ु ावाग रा पद || ७५ ||
त ायाबा घातो य ु ा ोवधोऽ प यः |
ा यो ु दशो योभदोऽ था यु तः || ७६ ||

उ ल तजयोर रेऽक च त ु तः |
त त वभजे त ायाको टवगयोः || ७७ ||
अ रेण भवेद ः ......................................... || ७८ ||
After getting the Shadow (Cosine of the altitude), take the square root of the difference of the
squares of its upright (east-west component) and the Day-sine (Cosine of the declination).

The product of that (square root) and the Shadow-arm and also the product of the Sine of
the altitude and the Sine of the declination (are formed). Take their (of the above two prod-
ucts) difference, if the declination and the directional amplitude are in the same direction,
otherwise sum, and (also take their) sum when the Sun is between six O’clock circle and
the horizon. That (the sum when the Sun is between the six O’clock circle and the horizon.
That (the sum or difference) multiplied by the radius and divided by the difference of the
squares of the radius and the Shadow-upright becomes the Sine of the latitude.......

Explanation : For finding the latitude by the above rule, we should first determine
the ‘Shadow’, Shadow-upright, and the Shadow-arm needed in the rule. For this
purpose the 𝑇 𝑆𝐶 (p. 76) on the text of the rule gives the equivalent of the following
formulas:

Shadow = (𝑅sin𝐻 ⋅ 𝑅cos𝛿)
𝑅cos𝛾 = 𝑅cos𝛼;

Shadow-upright = (𝑅sin𝐻 ⋅ 𝑅cos𝛿)
𝑅 ,

that is, 𝐾 = (𝑅cos𝛼 ⋅ 𝑅cos𝛾)
𝑅 ;

and Shadow-arm = √(𝑅cos𝛼)2 − 𝐾2

or 𝐵 = (𝑅cos𝛼 ⋅ 𝑅sin𝛾)
𝑅 .

Then the above rule gives
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𝑅sin𝜙 =
𝑅 ⋅ [(𝑅sin𝛼) ⋅ (𝑅sin𝛿) ± 𝐵 ⋅ √(𝑅cos𝛿)2 − 𝐾2]

𝑅2 − 𝐾2 .

This solution can be seen to be equivalent to the roots of the equation

(1 − cos2 𝛼 ⋅ sin2 𝐴)sin2 𝜙 − sin𝛼 sin𝛿 ⋅ sin𝜙 + (sin2 𝛿 − cos2 𝛼 ⋅ cos2 𝐴) = 0

which is derived from the relation

sin𝛿 = sin𝛼 ⋅ sin𝜙 + cos𝛼 ⋅ cos𝜙 ⋅ cos𝐴

already mentioned in case I.

6 Case V: Given 𝛼, 𝐴, 𝜙

For finding the declination of the Sun, the 𝑇 𝑆, III, 78–79 (p. 79) states:

अ श ोवधो य य भाबा ल योः || ७८ ||
सौ या ते भानौ तयोय गा रा तः |
ा ा ता ................. || ७९ ||

…Take the product of the Sine of the latitude and the Sine of the altitude and also that of the
Shadow-arm and the Cosine of the latitude. Their (of the two products) sum or difference,
according as the Sun’s position is north or south (of the prime vertical), divided by the radius
is the Sine of the declination ……

That is,

𝑅sin𝛿 = [(𝑅sin𝜙 ⋅ 𝑅sin𝛼) ± 𝐵 ⋅ 𝑅𝑐𝑜𝑠𝜙]
𝑅 .

Since 𝐵 = (𝑅cos𝛼) ⋅ (𝑅cos𝐴)
𝑅 ,

the above rule gives the same result as obtained by using the Cosine formula which
has already been mentioned in cases I and IV.

Just after stating the above rule, the 𝑇 𝑆 says that the hour angle should be ob-
tained as before. The 𝑇 𝑆𝐶 (p. 80) gives two methods for this. One of these is same
as that contained in 𝑇 𝑆. III, 66 (p. 65) and which we have already mentioned under
case I.

7 Case VI: Given 𝛼, 𝛿, 𝜙

To find the azimuth or the directional amplitude, 𝑇 𝑆, III, 80–81 (p. 81) says:
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ाप मघातो यो य श योवधः |
तयोय गा रं य ु गोलयोय सौ योः || ८० ||
भाबा ल का ोऽ ा ा ा भा ते द |
.................................. || ८१ ||
Take the product of the radius and the Sine of the declination and also the product of the Sine
of the altitude and the Sine of the latitude. Their (of the two products) sum or difference,
(according as Sun’s declination is) in southward or northward, divided by the Cosine of the
latitude is the Shadow-arm. This multiplied by the radius and divided by the Cosine of the
altitude is the desired Sine of the directional amplitude.................

That is,
[(𝑅 ⋅ 𝑅sin𝛿) ± (𝑅sin𝛼 ⋅ 𝑅sin𝜙)]

𝑅cos𝜙 = 𝐵

Then
𝐵 ⋅ 𝑅

𝑅cos𝛼 = 𝑅sin𝛾

giving the Sine of the (Indian) azimuth which is measured from the east. The above
result may be seen to be same as that obtained by solving the following cosine rela-
tion for getting 𝐴:

sin𝛿 = (sin𝛼 ⋅ sin𝜙) + (cos𝛼 ⋅ cos𝜙 ⋅ cos𝐴)

As explained in the 𝑇 𝑆𝐶 on the text of the above rule, we can then get the hour
angle by using the relation

𝑅sin𝐻 = 𝐾 ⋅ 𝑅
(𝑅cos𝛿)

where
𝐾 = √(𝑅cos𝛼)2 − 𝐵2

8 Case VII: Given 𝛼, 𝛿, 𝐴

For finding the latitude, the 𝑇 𝑆, III, 81–83 (p. 83) says:

वग रपदं य ा ायाको ट जुीवयोः || ८१ ||
त ायाबा योगो यः श ु ा ै वगतः |
तेना ं य फलं त वे त मृणं पृथ || ८२ ||
तयोर हता ा महता ा मौ वका |
................................. || ८३ ||
........Take the square root of the difference of the squares of the Shadow-upright and the
Cosine of the declination and add it to the Shadow-arm. By the quantity so obtained, divide
the square of the sum of the Sines of the altitude and the declination. The quotient should
be separately added to or subtracted from that very quantity. When the radius is multiplied
by the smaller result (of the above subtraction) and divided by the greater result (of the last
addition), we get the sine of the latitude…
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That is,
𝐵 + √(𝑅cos𝛿)2 − 𝐾2 = 𝐷, say

Then form the two quantities

𝐷 + (𝑅sin𝛼 + 𝑅sin𝛿)2

𝐷 = 𝑄1, say

and

𝐷 ∼ (𝑅sin𝛼 + 𝑅sin𝛿)2

𝐷 = 𝑄2, say.

Finally we get

𝑅sin𝜙 = 𝑅 ⋅ 𝑄2
𝑄1

so that we have

𝑅sin𝜙 = 𝑅 ⋅ {𝐷2 ∼ (𝑅sin𝛼 + 𝑅sin𝛿)2}
{𝐷2 + (𝑅sin𝛼 + 𝑅sin𝛿)2}

This rule may be compared with that given under case IV for finding the latitude.
For finding the hour angle, the 𝑇 𝑆𝐶 (P. 83) gives the equivalent of the following

rule before commenting on the above rule proper:

𝑅sin𝐻 = (𝑅cos𝛼).(𝑅cos𝛾)
𝑅cos𝛿

However, the same occurs in the text of the 𝑇 𝑆 also and we have already given it
(see under case I).

9 Case VIII: Given 𝛼, 𝐻, 𝜙

For finding the declination, 𝑇 𝑆, III, 83–85 (p. 85) says:

ाहता श ू नतको ु तृौ पृथ || ८३ ||
ये त ो ौ च त ावगभेदपदीकृतौ |
मथः को ट योय गा ा े सौ ऽे रा योः || ८४ ||

या व ता ु ा ........................................... || ८५ ||
Multiply the Sine of the latitude and the Sine of the altitude (each) by the radius and divide
(the results) separately by the Cosine of the local hour angle. The corresponding uprights
(with the above two quotients as bases) are the square roots of the radius-square minus (each
of) the quotients.

Multiply the (above) quotients crossly by their uprights. Their (of the two products just
obtained) sum (when the Sun is) in the south (of the six O’clock circle), or difference in the
north, divided by the radius is the Day-sine, (Cosine of the declination) ....................
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That is.

𝑅cos𝛿=(
1
𝑅 )[

(𝑅sin𝜙)(
𝑅
𝐶 )√𝑅2−{(𝑅sin𝛼)(

𝑅
𝐶 )}

2
±(𝑅sin𝛼)(

𝑅
𝐶 )√𝑅2−{(𝑅sin𝜙)(

𝑅
𝐶 )

2
}]

On simplification this will become

cos𝛿 =
sin𝜙 ⋅ √sin2 𝜙 + cos2 𝜙 ⋅ cos2 𝐻 − sin2 𝛼 ± cos𝜙 ⋅ sin𝛼 ⋅ cos𝐻

(sin2 𝜙 + cos2 𝜙 ⋅ cos2 𝐻)

This solution is same as that obtained by solving the quadratic equation

(sin2 𝜙 + cos2 𝜙 ⋅ cos2 𝐻)cos2 𝛿 ± 2cos𝜙 ⋅ sin𝛼 ⋅ cos𝐻 ⋅ cos𝛿 + (sin2 𝛼 − sin2 𝜙) = 0

which itself is derived from the already mentioned (see case III) cosine relation,
namely,

sin𝛼 = sin𝜙 ⋅ sin𝛿 + cos𝜙 ⋅ cos𝛿 ⋅ cos𝐻

After giving the above rule the 𝑇 𝑆 asks us to find the directional amplitude as
before and the 𝑇 𝑆𝐶 (p. 86) lays down the equivalent of the following procedure for
finding the azimuthal angle.

(𝑅cos𝛿) ⋅ (𝑅sin𝐻)
𝑅 = 𝐾,

√(𝑅cos𝛼)2 − 𝐾2 = 𝐵.

Finally,

𝑅sin𝛾 = 𝐵 ⋅ 𝑅
(𝑅cos𝛼)

10 Case IX: Given 𝛼, 𝐴, 𝐻

For finding the declination, 𝑇 𝑆, III, 86 (p. 88) says:

दग ाया ु त ो ट ायाघाततो ता |
नत या भवे ु ा................. || ८६ ||
From the (Sine of) the directional amplitude get its Cosine. The product of that (the above
Cosine) and the Cosine of the altitude divided by the Sine of the hour angle becomes the
Day-sine (the Cosine of the declination)..............

That is

𝑅cos𝛿 = (𝑅cos𝛾) ⋅ (𝑅cos𝛼)
𝑅sin𝐻
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a rule which has already been given earlier in 𝑇 𝑆, III, 71 (see under case II above)
and which is equivalent to the sine formula for the spherical triangle 𝑆𝑍𝑃 .

For finding the latitude see under case X below.

11 Case X: Given 𝛼, 𝐻, 𝛿

ु ानत योघ ताद ाको टः भा ता ||
.......................................... || ८७ ||
The product of the Day-sine (Cosine of the declination) and the Sine of the hour angle
divided by the Shadow (Cosine of the altitude) becomes the Cosine of the directional am-
plitude...............

That is,

𝑅cos𝛾 = (𝑅cos𝛿) ⋅ (𝑅sin𝐻)
𝑅cos𝛼

which is another form of the rule given under case IX above.
The result of finding one unknown element in each of the above two cases IX

and X is that we know now the four elements 𝛼,𝐻,𝐴 and 𝛿 in either or the cases.
The problem in both these cases is therefore same, namely, to find out the remaining
fifth element 𝜙. For this the 𝑇 𝑆 simply says.

‘Latitude (should be found) as before’.
The 𝑇 𝑆𝐶 (p. 88) at this point asks us to use either the rule given under case IV

or the rule given under case VII for determining the latitude.

12 Concluding Remarks

Just after giving the said solutions in the ten cases. 𝑇 𝑆, III, 87 (p. 88) says

(Here) ends the description of the answers to the ten problems.

However, the work contains several other rules which provide alternate methods
of solution in some of the above general cases or their particular ones. For example,
𝑇 𝑆, III, 88–91 (pp. 89–90) gives an alternate rule for finding the ‘Shadow’ (Cosine
of the altitude) from given azimuth, declination and latitude (Cf. Case I dealt above).

From the present study, the readers must not conclude that Indian solution of the
astronomical triangle in each case was given for the first time in the 𝑇 𝑆. In fact,
solution in many general and particular cases were known in India much earlier than
the date of the 𝑇 𝑆. It is outside the scope of the present paper to give the history and
development of the Indian solutions in the various cases.

As is usual with most of the ancient Indian original texts, the 𝑇 𝑆 does not state
explicitly the methods through which the rules were arrived at. However, many of
the ancient ways of deriving these rules can be known from the material found in
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the commentaries on various astronomical works. It is believed that most of the In-
dian rules were derived by working ‘inside’ the armillary sphere rather than ‘on its
surface’. For this purpose the Indians also employed the so-called latitudinal and de-
clinational triangles. In this connection the following remark of Nīlakaṇṭha Somayājī
is noteworthy.7

The whole of the planetary-mathematics is pervaded by the two theorems (namely) the
Bhujā-koṭi-karṇa-nyāya (the so-called Pythagoras Theorem) and the Rule of Three (the pro-
portionality of sides in similar triangles)

Some other methods, like those based on the theory of successive approximations
or of quadratic equations, were also employed by the Indians.
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Addition and Subtraction Theorems
for the Sine and the Cosine in Medieval
India

The paper deals with the rules of finding the sines and the cosines of the sum and difference

of two angles when those of the two angles are known separately. The rules, as found in the

important medieval Indianworks, are equivalent to the correct modernmathematical results. Indians

of the said period also knew several proofs of the formulas. These proofs are based on simple

algebraic and geometrical reasoning, including proportionality of sides of similar triangles and

the Ptolemy’s theorem. The enunciations and derivations of the formulas presented in the paper are

taken from theworks of the famous authors of the period, namely, Bhāskara II (ad 1150), Nı̄lakan. t.ha

Somayājı̄ (1500), Jyes.t.hadeva (sixteenth century), Munı̄śvara (1st half of the seventeenth century)

and Kamalākara (2nd half of the seventeenth century).

1 Introduction

According to Carl B. Boyer1, the introduction of the sine function represents the
chief contribution of the Siddhāntas (Indian astronomical works) to the history of
mathematics. The Indian Sine (usually written with a capital S to distinguish it from
the modern sine) of any arc in a circle is defined as the length of half the chord of
double the arc. Thus the (Indian) Sine of any arc is equal to R sinA, where R is the
radius (norm or Sinus totus) of the circle of reference and sinA is the modern sine of
the angle,A, subtended at the centre by the arc. Likewise, the (Indian) Cosine function
is equivalent to R cosA and similarly for the Versed Sine and its complement. The
Āryabhat. ı̄ya of Āryabhat.a I (born 476 ad) is the earliest extant historical work of
the dated type in which the Indian trigonometry is definitely used.

Indian Journal of History of Science, Vol. 9, No. 2 (1974), pp. 164–177.
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The modern forms of the Addition and the Subtraction Theorems for the sine and
the cosine functions are:

sin(A + B) = (sinA) · (cosB) + (cosA) · (sinB) (1)

sin(A − B) = (sinA) · (cosB) − (cosA) · (sinB) (2)

cos(A + B) = (cosA) · (cosB) − (sinA) · (sinB) (3)

cos(A − B) = (cosA) · (cosB) + (sinA) · (sinB) (4)

The present paper concerns the equivalent forms of the above four Theorems for
the corresponding Indian trigonometric functions. Statements as well as derivations
of these formulas, as found in important Indian works, are described in it.

2 Statement of the Theorems

Bhāskara II (ad 1150) in his Jyotpatti, which is given at the end of the Golādhyāya
part of his famous astronomical work called Siddānta-śiroman. i, states2

The Sines of the two given arcs are crossly multiplied by (their) Cosines and (the products
are) divided by the radius. Their (that is, of the quotients obtained) sum is the Sine of the
sum of the arcs; their difference is the Sine of the difference of the arcs.

R sin(A ± B) = (R sinA) · (R cosB)

R
± (R cosA) · (R sinB)

R
(5)

Thus we get the Addition Theorem (called the Samāsa-Bhāvanā by Bhāskara II) and
the Subtraction Theorem (called the Antara-Bhāvanā) for the Sine.

We have some reason (see below and also Sect. 3) to believe that Bhāskara II
was aware of the corresponding Theorems for the Cosine. According to the Marı̄ci
commentary (=MC) by Munı̄śvara (1638) on the Jyotpatti, a reason for Bhāskara’s
omission (upeks. ā) of the Cosine formulas was that the following alternately shorter
procedure, after having obtained R sin(A ± B), was known3

R cos(A ± B) =
√

R2 − {R sin(A ± B)}2 (6)

Kamalākara (1658) also mentions (or quotes MC) in his commentary on his own
Siddhānta-tattva-viveka (=ST V ) that the Ācārya (Bhāskara) has not followed or
given the Cosine Theorems because of the exactly same reason as stated in the MC.4

In the late Āryabhat.a School the Addition-Subtraction Theorem for the Sine was
known as the Jı̄veparaspara-Nyāya and is attributed to the famous Mādhava of
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Saṅgamagrāma (circa 1340–1425) who is also referred as Golavid (Master of spher-
ics).5 The Tantrasaṅgraha (=TS), composed by Nı̄lakan. t.ha Somayājı̄ (ad 1500),
gives Mādhava’s rule in Chap.2 as6

The Sines (of two arcs) reciprocally multiplied by the Cosines and divided by the radius,
when added to and subtracted from each other, become the Sines of the sum and difference of
the arcs (respectively). Or (we get the same results when the mutual addition and subtraction
is performed with) the two (positive) square-roots of the (two) differences of their own (that
is, of the two Sines themselves) and lamba squares.7

So that the first part of the rule gives the formula (5), while the second part contains
the alternate formula

R sin(A ± B) =
√
(R sinA)2 − (lamba)2 ±

√
(R sinB)2 − (lamba)2 (7)

Nı̄lakan. t.ha in the Āryabhat. ı̄ya-bhās. ya (=NAB) and Śan.kara Vāriar (ad 1556) in
his commentary (=TSC)8 on the above rule explains that the lamba involved is to
be calculated from the relation

lamba = (R sinA) · (R sinB)

R
(8)

Thus it will be noticed that the form (7) is mathematically equivalent to the for-
mula (5).

An important point to note is that the TSC (pp. 22–23) makes it clear that the
word jı̄ve (which we have translated as Sines) can be also taken to mean Cosines.
But in such a case the phrase nijetaramaurvikās (‘the other chords’) should be taken
to mean, as the TSC points out, the corresponding Sines. In other words we can get
the same Addition and Subtraction Theorems for the Sine, if we interchange “sin”
and “cos” with each other in the right-hand sides of (5). Following this interpretation
the form (8) can also be expressed as

R sin(A ± B) =
√
(R cosA)2 − (lamba)2 ±

√
(R cosB)2 − (lamba)2 (9)

where the lamba will now be given by

lamba = (R cosA) · (R cosB)

R
(10)

This interpretation also leads to the same Addition and Subtraction Theorems for
the Sine.

For a geometrical interpretation of the quantity lamba, see Sect. 4.
Almost the same Sanskrit text of Mādhava’s rule is also found quoted in the NAB

(part I, p. 58) where it is explicitly mentioned to be ‘Mādhava-nirmitam. padyam’,



374 Addition and Subtraction Theorems for the Sine and the Cosine …

that is a stanza composed byMādhava. In this connection the NAB (part I, p. 60) also
mentions the variant readings:

For the Addition and Subtraction Theorems of the Cosine function, we may quote
the Siddhānta-sārvabhauma (= SSB, 1646 ad), II, 57 which says9

The product of the Sines of the degrees (of two arcs) subtracted from or added to the product
of their Cosines, and (the results) divided by the radius, become the Sines of the sum or
difference of the degrees diminished from the ninety degrees.

That is,

R sin(90◦ − A ± B) = (R cosA · R cosB ∓ R sinA · R sinB)

R
(11)

which are equivalent to the Theorems (3) and (4).
The ST V (ad 1658), III, 68–69 (p. III) puts all the four Theorems side by side in

the following words clearly.

Multiply the Sines of the two arcs crossly by the Cosines and divide (separately) by the
radius. Their (that is, of the two quotients obtained) sum and difference are the Sines of the
sum and difference of the arcs (respectively). The products of the Sines and the Cosines are
(each) divided by the radius. Their (that is, of the two quotients just obtained) difference and
sum are (respectively) the Cosines of the sum and difference of the arcs.

That is,

R sin(A ± B) = (R sinA) · (R cosB)

R
± (R sinB) · (R cosA)

R

R cos(A ± B) = (R cosA) · (R cosB)

R
∓ (R sinA) · (R sinB)

R

Immediately after the statement of the above Theorems, the author, Kamalākara,
in the next two verses (ST V , III, 70–71), says
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Such a computation, which is quite evident from the two bhāvanās (see the next Section), was
given earlier also by the highly respected Bhāskara in his (Siddhānta-śiroman. i).† And many
accurate proofs of that computation have been given previously by the respected astronomers
according to the manifoldness of their intelligence.

Belowwe outline the various derivations as found in some Indianworks andwhich
indicate the ways through which Indians understood the rationales of the Theorems.

3 Method Based on the Theory of Indeterminate Analysis

The second-degree indeterminate equation

Nx2 + k = y2 (12)

is called varga-prakr. ti (square-nature) in the Sanskrit works. In connection with its
solution the following two Lemmas, referred to as Brahmagupta’s (ad 628) Lemmas
by Datta and Singh,10 have been quite popular in Indian mathematics since the early
days.

Lemma I: If x1, y1 is a solution of (12) and x2, y2 that of

Nx2 + g = y2 (13)

then (Samāsa-bhāvanā)

x = x1y2 + y1x2, y = y1y2 + Nx1x2

is a solution of the equation
Nx2 + kg = y2 (14)

Lemma II: (Antara-bhāvanā)

x = x1y2 − y1x2, y = y1y2 − Nx1x2

is also a solution of (14).
An elaborate discussion of the subject including references to Sanskrit works,

translations, proofs, and terminology is available and need not to be reproduced
here.11 Dr. Shukla’s paper on Jayadeva (not later than 1073) is an additional note-
worthy publication in this connection.12

Now, as indicated by the terminology used by Bhāskara II and clearly explained
by his great mathematical commentator, Munı̄śvara, it is evident that Bhāskara II

†Alternately, the first verse may be translated thus: ‘This was very clearly computed earlier by the
respected Bhāskara also through the bhāvanās in his Siddhānta-śiroman. i’.
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arrived at the truth of the Addition and Subtraction Theorems for the Sine (and
Cosine) possibly by applying the above Lemmas as follows.

As explained in the MC (pp. 150–151) on Jyotpatti 21–25, if we compare the
Eq. (12) with the relation

− (R sinQ)2 + R2 = (R cosQ)2 (15)

we see that we can take

gun.aka(multiplier) N = −1

ks.epaka(interpolator) k = R2

x = R sinQ

y = R cosQ

Hence, on identifying

k = g = R2

x1 = R sinA, y1 = R cosA

x2 = R sinB, y2 = R cosB

we at once see, from Lemma I, that

x = (R sinA) · (R cosB) + (R cosA) · (R sinB) (16)

and
y = (R cosA) · (R cosB) − (R sinA) · (R sinB) (17)

is a solution of the equation
−x2 + R4 = y2

that is,
( x

R

)
and

( y

R

)
will be a solution of (12), since

−
( x

R

)2 + R2 =
( y

R

)2
(18)

Thus comparing (15) and (18), we see, from (16) and (17), that

(R sinA) · (R cosB) + (R cosA) · (R sinB)

R

and
(R cosA) · (R cosB) − (R sinA) · (R sinB)

R
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will represent some sort of additive solutions for the Sine and Cosine functions,
respectively. The above were taken to represent R sin(A + B) and R cos(A + B),
respectively. From mathematical point of view there is a lacuna in such an iden-
tification without further justification.13

Similarly, by using Lemma II. the expansions of R sin(A − B) and R cos(A − B)
were identified.

Such a derivation undoubtedly supports the view that Bhāskara must have been
aware of the Addition and Subtraction Theorems for the Cosine, although he did not
state them.

The SSB, II, 58–59 (pp. 144–145). whose author is same as that of MC, also gives
the same derivation of the Theorems (also see ST V C, pp. 112–113).

4 Geometrical Derivation as Given in the NAB

While explaining Mādhava’s Sanskrit stanza (Jı̄ve-paraspara etc.) and the implied
rules, which we have already mentioned above, the NAB (part I, p. 59) says:

The first three lines (of the stanza) form one rule (or method). The last line represents another
rule. This is the break-up. We demonstrate the derivation of the first rule by (applying) the
Rule of Three (that is, the proportionality of sides in the similar triangles). The other (rule)
will follow from the relation between the base, upright and hypotenuse (or Sine, Cosine and
radius) by extracting the square-root.

The geometrical demonstration given in the NAB (part I. pp. 58–61) may be
substantially outlined as follows:

Fig. 1 Geometrical demonstration of jı̄vepaspara-nyāya as outlined by Nı̄lakan. t.ha
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In Fig. 1 (East direction is upwards).

arc EP = A

arc PQ = arc PG = B (being less than A).

So that

arc EQ = A + B

arc EG = A − B.

Here OP and QG intersect at Z and

PL = R sinA = TO

OL = R cosA

QZ = R sinB = ZG

OZ = R cosB = OP − PZ

QM = R sin(A + B),which is required to be found out.

In order to find QM , we determine its two portions QD and DM , made by the line
ZC (drawn westwards from Z), separately and add them. Now to find the southern
portion DM (which is equal to KZ) we have, from the similar right triangles OZK
and OPL,

ZK

OZ
= PL

OP

or
DM

(R cosB)
= (R sinA)

R

giving

DM = (R sinA) · (R cosB)

R
. (19)

Again, to find the northern portion DQ, we have, from the similar right triangles
DQZ and OLP

DQ

ZQ
= OL

OP

or
DQ

(R sinB)
= R cosA

R

giving

DQ = (R cosA) · (R sinB)

R
. (20)
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By adding (19) and (20) we get QM which represents R sin(A + B). Thus is proved
the Addition Theorem for the Sine.

For proving the Subtraction Theorem, drop perpendicular GU from G on ON .
It divides ZK , which is equal to DM given by (19), into two portions V Z and V K .
The northern portion V Z is equal to DQ given by (20) because the hypotenuse ZG
is equal to the hypotenuse ZQ. Hence the southern portion

V K = ZK − DQ

or
GH = DM − DQ.

That is,

R sin(A − B) = (R sinA) · (R cosB)

R
− (R cosA) · (R sinB)

R

the required Subtraction Theorem.
Again, since

(R sinA) · (R cosB)

R
= (R sinA) · {√R2 − (R sinB)2}

R

=
√

(R sinA)2 −
{
(R sinA) · (R sinB)

R

}2

=
√
(R sinA)2 − (lamba)2

we can easily get the form (7) from the form (5) mathematically (see NAB, part I,
pp. 86–87).

The NAB (part I, pp. 87–88) has also given some further geometrical interpreta-
tions and computations which we now indicate. In Fig. 1, R sin (A + B), that is,
QM , is the base of the triangle ZQM . The second (or smaller) Sine, R sinB, that is,
QZ is the left side. The greater Sine, R sinA, is the right side ZM (How?).

The foot of the perpendicular (lamba), D, divides the base into two segments
(ābādhās) DQ and DM which have been already found out. So that the lamba, given
by (8), can be easily identified with the length ZD, the altitude of the triangle ZQM
(this follows from ZD2 = ZQ2 − DQ2). Then, from (see NAB part I, p. 88)

√
DM 2 + ZD2 = ZM

we get, using (8) and (19),
ZM = R sinA.



380 Addition and Subtraction Theorems for the Sine and the Cosine …

5 A Proof Based on Ptolemy’s Theorem

Jyes.t.hadeva (circa 1500–1610)
14 wrote Yuktibhās. ā (=YB) in Malayalam. Part I of

the work presents an elaborate and systematic exposition of the rationale of the
mathematical formulas.15

YB, (pp. 206–208 and212–213) explainsMādhava’s rules concerning theAddition
and Subtraction Theorems for the Sine more or less on the same lines as given in the
NAB. However, the YB (pp. 237–238) also indicates a proof of the Addition Theorem
for the Sine by applying the so-called Ptolemy’s theorem, namely:

‘In a cyclic quadrilateral the sum of the products of the opposite sides is equal to
the product of the diagonals’.

Of course, before indicating this use of the Ptolemy’s theorem, the YB (pp. 228–
236) has given a proof of it. According to Kaye,16 a proof of the Ptolemy’s theo-
rem was also given by a commentator (Pr.thūdaka?, ninth century) of Brahmagupta
(ad 628), the famous Indianmathematicianwho knew the correct expressions (which
immediately yield the Ptolemy’s theorem on multiplication) for the diagonals of a
cyclic quadrilateral.17

Fig. 2 Geometrical demonstration for jı̄vepaspara-nyāya as outlined in Yuktibhās. ā

The proof indicated in the YB and as explained by its editors (pp. 237–239) may
be outlined as follows:
In Fig. 2

arc PE = A

arc QP = arc QG = B.

The radius OQ intersects PG in U. Thus PL and OL are the Sine and the Cosine of
A and PU and OU those of B. From the cyclic quadrilateral LPUO, we have, by
applying the rule of bhujā-pratibhujā etc. (that is, the Ptolemy’s theorem),

PL. OU + OL · PU = LU · OP
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or
(R sinA) · (R cosB) + (R cosA) · (R sinB) = LU · R (21)

The relation (21) will establish the Addition theorem for the Sine provided we are
able to identify that LU represents the Sine of (A + B). For seeing this, it may be
noted that LU is the full chord of the arc (LP + PU ) in the circlewhich circumscribes
the quadrilateral in question and whose radius is R

2 (as the centre of this smaller circle
will be at H . The middle points of the radius OP equal to R). Thus

LU = 2

(
R

2

)
sin

{
(2A + 2B)

2

}

= R sin(A + B)

We can also prove this by observing that LU is parallel to and half of the side FG
in the triangle PFG. But FG itself is the full chord of the arc GPF in the bigger
circle, so that

FG = 2R sin

{
(2A + 2B)

2

}
.

6 A Geometrical Proof Quoted in theMC (1638)

The MC (pp. 154–155) contains a geometrical proof, ascribed to others (kecid),
which is only slightly different from that found in the NAB (see Sect. 4). It may be
outlined as follows:

Firstly, the MC asks us to draw a figure similar to Fig. 1 which may be referred
now. In the triangle ZQM , the base QM is the desired Sine of the combined arc
(A + B). The smaller side QZ is R sinB. The distance between Z and M , that is, the
larger (lateral) side ZM is equal to R sinA evidently (pratyaks. a-pramān. āvagatā?) In
order to know the base QM , its two segments QD and DM should be found out.

Now the MC finds QD exactly in the same manner as NAB (see the derivation of
the relation (20)). Similarly, from the similar right triangles DMZ and OZQ, we have

DM

MZ
= OZ

OQ

or
DM

(R sinA)
= (R cosB)

R

which gives the bigger segment DM and hence their sum (QD + DM ) proves the
Addition Theorem for the Sine.
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After this, the MC also indicates the method for proving the Subtraction Theorem
for the Sine.

We note that, in proving the Addition Theorem above, the MC does not give any
theoretical details to demonstrate that the length ZM is equal to R sinA. One way of
proving this could be by noting that ZM is parallel to and half of the side GJ in the
triangle QGJ ; and GJ is itself the full chord of the arc GEJ which is easily seen to
be equal to 2A, so that GJ = 2R sinA.

Alternately, we can see that a circle, of radius R
2 , drawn on OQ as the diameter

will pass through the points Q,Z,M and O and ZM will be a full chord (subtending
angle 2A at the centre) of this smaller circle. So that we have

ZM = 2

(
R

2

)
sinA.

Once the flank sides of the triangle ZQM are thus identified, the perpendicular ZD
could also be obtained directly by using a well-known geometrical rule equivalent
to18

perp. = product of flank sides

twice the circum-radius

giving

ZD = ZQ · ZM

2 · (
R
2

)

= (R sinB) · (R sinA)

R
.

Thus, knowing ZQ,ZM and ZD, we can easily get the segments QD and DM and
hence the required length QM . This provides an alternate and independent rationale
of the Addition Theorem for the Sine in the form (7).

7 Proofs Found in STVC

We have already mentioned the observation of ST V , III, 71 that several proofs of
these Theorems were given by the previous writers. One set of derivations as given
in the ST V C (pp. 125–129) may be briefly outlined as follows:

In Fig. 3 arcs EP and EQ are equal to A and B, respectively. Other constructions
are obvious from the figure. It can be easily seen that

PK = PL + MQ = R sinA + R sinB

QK = OM − OL = R cosB − R cosA
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Fig. 3 Proof given in Siddhānta-tattvaviveka of Kamalākara

Therefore,

PQ2 = (R sinA + R sinB)2 + (R cosB − R cosA)2

= 2R2 + 2R sinA · R sinB − 2R cosA · R cosB (22)

But PQ is the full chord of the arc (A + B), so that

PQ

2
= R sin

{
(A + B)

2

}
(23)

Now from a rule given in the Jyotpatti, 10 (p. 282), which the ST V C (p. 126) quotes,
we have

R sin
(A + B)

2
=

√(
R

2

)
· R vers (A + B) (24)

That is,

R vers (A + B) =
(
2

R

)
·

{
R sin(A + B)

2

}2

=
(

1

2R

)
· PQ2, by (23)

Using (22), we easily get
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R vers (A + B) = R + (R sinA · R sinB − R cosA · R cosB)

R

from which the required expression for R cos(A + B) follows, since

R cos (A + B) = R − R vers (A + B).

Here it may be pointed out that the ST V C (p. 126) also states that PQ, which we
have found above from the triangle PQK , is also the hypotenuse for the right-angled
triangle PQH (PH being perpendicular to the radius OQ). Incidentally, this gives an
alternate procedure for proving the Addition Theorem for the Cosine. For, we have

PK2 + QK2 = PQ2 = PH 2 + QH 2

or

(R sinA + R sinB)2 + (R cosB − R cosA)2 = {R sin(A + B)}2 + {R − R cos(A + B)}2

or

2R2 + 2R sinA · R sinB − 2R cosA · R cosB = 2R2 − 2R · R cos(A + B)

giving the required expansion of R cos(A + B).
Anyway, after getting the expression for R cos(A + B), the ST V C (pp. 127–128)

derives the corresponding expression for R sin(A + B) by using the relation

{R sin(A + B)}2 = R2 − {R cos(A + B)}2.

Again, in the same figure the arc QF represents (A − B). Also we have

FQ2 = FK2 + QK2 = (PL − QM )2 + (OM − OL)2

or {
2R sin

(A − B)

2

}2

= (R sinA − R sinB)2 + (R cosB − R cosA)2 (25)

If we proceed as we did in the case of proving R cos(A + B) above, we easily get
the desired expression for R cos(A − B). Alternately we get the same expansion by
starting with the relation

FK2 + QK2 = FU 2 + QU 2

and proceeding as before.
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Finally, the corresponding Subtraction Theorem for the Sine can be derived from
that for the Cosine.

It is interesting to note that an equivalent of the identity (25) already occurs in the
jyotpatti, 13, (p. 282). Thus Bhāskara II’s familiarity with the relation (25) and that
implied in (24) (where A − B should be used for A + B) was enough to derive the
Subtraction Theorems by this method (if he wanted to do so).

Fig. 4 Another proof given in Siddhānta-tattvaviveka

Another proof given in the ST V C (pp. 130–135) may be briefly outlined as fol-
lows: In Fig. 4

arc EP = arc EF = 2A

arc EQ = 2B

It is important to note that the ST V C says that the radius of the circle drawn is R
2

where R is the Sinus totus, so that the full chords EP,EQ etc., will themselves behave
as the Sines. That is, we have

EP = 2

(
R

2

)
sinA = R sinA

EQ = R sinB

PW = R cosA

QW = R cosB

etc., and, of course
EW = R
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Now, by the methods of finding the altitude and segments of the base in a triangle,
we have

segment EM = (R sinB)2

R

segment W M = (R cosB)2

R

perpendicular QM = (R sinB) · (R cosB)

R

segment EL = (R sinA)2

R

segment W L = (R cosA)2

R

perp PL = perp LF = (R sinA) · (R cosA)

R
.

(Of course, all these results also follow from similar right triangles in the figure.)
Now we have

PQ2 = PK2 + QK2

= (PL + QM )2 + (EL − EM )2

On substituting from the above expressions, simplifying, and taking the square-roots
we easily get the required expression for R sin(A + B) represented by PQ.

Again we have

FQ2 = FK2 + KQ2

= (PL − QM )2 + (EL − EM )2

Thus, following the same procedure, we get the required expression for R sin
(A − B) represented by QF .

However, before closing this article, it may not be out of place to mention that by
using the Ptolemy’s theorem in Fig. 4, we get the expressions for PQ and QF almost
in one step. For, Ptolemy’s theorem applied to the quadrilateral EPW Q yields

EP · QW + PW · EQ = PQ · EW

which gives the desired PQ; and Ptolemy’s theorem applied to the quadrilateral
EQFW yields

EQ · FW + QF · EW = EF · QW

which gives the desired QF .
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Parameśvara’s Rule for the
Circum-radius of a Cyclic Quadrilateral

The expression for the circum-radius of a cyclic quadrilateral in terms of its sides, usually
attributed to L’Huilier in 1782, was known in India to Parameśvara (circa 1430). The present
paper contains the original Sanskrit text of the rule, its English translation, and a discussion
of its derivation as given by Saṅkara Vāriar in his Kriyākramakarī (sixteenth century) along
with relevant historical remarks.

Let ABCD be a cyclic quadrilateral with sides AB,BC,CD, and DA; equal to
a, b, c, and d , respectively. Smith [1958, II, 287] stated that S. A. J. L’Huilier dis-
covered and published in 1782 a formula which reduces

R = 1

4

√
(ab + cd)(ac + bd)(ad + bc)

(s − a)(s − b)(s − c)(s − d)
(1)

where R is the radius of the circle circumscribing the quadrilateral and s is its semi-
perimeter. The formula (1) was already known about 350 years earlier in India and is
given verbally by Parameśvara (circa 1360–1455) in his commentary (before 1432)
on the Lı̄lāvatı̄ (circa 1150) of Bhāskara II [Saraswathi 1969, 69; Sarma 1972, 19].

The purpose of the present paper is to bring to the notice of scholars the San-
skrit verse and the Indian derivation of the rules as found in another commentary,

Historia Mathematica 4 (1977), pp. 67–74.
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calledKriyākramakarı̄ (sixteenth century), on the Lı̄lāvatı̄ recently published [Sarma
(editor) 1975].

The composition of the Kriyākramakarı̄ (=KKK) commentary was started by
Saṅkara Vāriar (c. 1500–1560) and, after his death, finished by Mahis.amaṅgalam
Nārāyan. a (1540–1610). The rule and its rationale are found in the portion (c. 1534)
which was written by Saṅkara [Sarma (ed.) 1975, xxii].

The original Sanskrit text of the rule as found in the KKK (p. 363), and which is
almost the same as that given by Parameśvara, is

This may be translated almost literally thus:

The three sums of the products of the sides taken two at a time are to be multiplied together
and divided by the tetrad formed by diminishing one (of the sides) at a time from the sum
of the other three. If a circle is drawn with the square-root of the quotient (just obtained) as
semi-diameter, the whole quadrilateral figure will be located therein.

That is,

R =
√

(ab + cd)(ac + bd)(ad + bc)

(b + c + d − a)(c + d + a − b)(d + a + b − c)(a + b + c − d)
(2)

which is equivalent to (1). After explaining the rule, the KKK gives (pp. 364–365)
its rationale (upapatti), using the following three results.

Lemma I The product of the flank sides of any triangle divided by the diameter
of its circumscribed circle is equal to the altitude of the triangle.

Lemma II The area of the cyclic quadrilateral is given by

S = √
(s − a)(s − b)(s − c)(s − d) (3)

Lemma III (cf. Ptolemy’s theorem): Let ABCD′ be the quadrilateral formed from
ABCD by interchanging the sides AD and CD, that is, by taking
AD′ = CD = c andCD′ = AD = d . If x, y, z denote the three diagonals
AC,BD, andBD′, respectively, then yz = ab + cd , zx = bc + da, xy =
ca + bd .

Lemma I was known to Indians for about a thousand years before the date of

the KKK. In the equivalent form circum-radius = (product of flank sides)
(twice the altitude), ...... it is

implied in a rule given by Brahmagupta (ad 628) in his Brāhmasphut.a-siddhānta,
XII, 27 [Sharma (ed.) 1966, III, 834; Gupta 1974b, 173]. (The KKK itself proves it
separately (pp. 365–366). It is also used and proved in another Indian work called
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Yuktibhās. ā (=YB) which is attributed to Jyes.thadeva (c. 1500–1610) [Sarma 1972,
59–60; Thampuran and Aiyar 1948, 231, 243–246].

Lemma II has been very popular in India since it was first stated by Brahmagupta
in his Brāhmasphut.a-siddhānta (=BSS), XII, 21 [Sharma (ed.) 1966, III, 816; Gupta
1974a, 34–35]. According to Dr. K.S Shukla (a great authority on Hindu astronomy
and mathematics), Brahmagupta and other early Indian Mathematicians have com-
mitted an error in declaring the formula (3) “as applicable to all quadrilaterals (with
unequal altitudes), when in fact it is applicable to cyclic quadrilaterals only” [Shukla
(ed.) 1959, p. 90 (translation)]. However, a recent scholar has been “unable to accept
that Brahmagupta could have imagined that his rules would apply to all quadrilater-
als whatsoever” [Pottage 1974, 354]. The whole difficulty arises out of the fact that
Brahmagupta himself has neither explicitly specified the correct range of application
of his rule (3) nor given any derivation for it. But this state of affairs was not an
unusual feature of ancient Indian mathematical texts.

Gan. eśa in his commentary (ad 1545) on the Lı̄lāvatı̄ [Apte (ed.) 1937, 156–157]
attempted to prove the rule (3) but the demonstration is incorrect [Inamdar 1946,
36–42].

A detailed proof of Lemma II is found in the YB (pp. 247–257). When the product
of the two diagonals is needed in the course of this proof, it is derived by making use
of the following (the so-called Brahmagupta’s expressions for diagonals of a cyclic
quadrilateral):

x =
√
(ac + bd)(ad + bc)

(ab + cd)
(4)

y =
√
(ac + bd)(ab + cd)

(ad + bc)
(5)

These results are given by Brahmagupta in his BSS, XII, 28 [Sharma (ed.) 1966,
III 836] and are considered to be the “most remarkable in Hindu Geometry and
solitary in its excellence” by a recent historian of mathematics [Eves 1969, 187].
The formula (5) is stated to be rediscovered in Europe by W. Snell who gave it in
his edition (1619) of Van Ceulen’s work [Smith 1958, 287]. In fact the expressions
(4) and (5) are separately derived in the YB (p. 233) from Lemma III which we now
consider.

The Indian discussion of Lemma III is quite interesting because of the concept of
the third diagonal of a cyclic quadrilateral. Bhāskara II had shown that the interchange
of two adjacent sides of a (cyclic) quadrilateral alters the length of one of the diagonals
(thereby getting a third diagonal), and this area and perimeter preserving construction
appears in his Lı̄lāvatı̄ [Apte (ed.) 1937, II, 187; Colebrooke (tr.) 1967, 110; Pottage
1974, 306].

The geometry of the three diagonals of a cyclic quadrilateral is discussed in greater
detail by Nārāyan. a Pan.d. ita (not to be confused with Mahis.amaṅgalam Nārāyan. a
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mentioned above) in his Gan. ita-kaumudı̄ (c. 1356). For instance, Rule 52 from the
Kśetravyavahāra portion of the work runs as follows [Dvivedi (ed.) 1942, 59]:

The product of the three diagonals divided by twice the diameter (of the circumscribed
circle) is the area of a triangle or quadrilateral; half of the diameter becomes the hr. dayam
(circum-radius).

That is, Area S = xyz
4R for a cyclic quadrilateral as well as a triangle (in which case

the three sides themselves will be its three diagonals).
Rule 1371

2 from the same portion of the work gives the above relation in the form
R = xyz

4 (area). It is interesting to note that, after stating this rule, Nārāyan. a criticized
Brahmagupta’s rule for the circum-radius [BSS, XII. 26; Pottage 1974, 334–335] as
being avyāpaka (‘not universal’) and further said that Lalla (c. 748 ad) and Śrı̄pati
(c. 1039) blindly followed Brahmagupta in this respect [Dvivedi (ed.) 1942, 175].

The discussion of the three diagonals as found in the KKK is more subtle. Firstly,
it shows that in a cyclic quadrilateral more than three diagonals are not possible. The
arguments given are substantially as follows (p. 351):

Let α,β, γ, δ be the angular measures of the arcs corresponding to the sides
a, b, c, d (respectively) of a cyclic quadrilateral. Now a sum of any two arcs can be
made to define a diagonal. Hence there can be six cases. But because α + β + γ +
δ = 360◦ therewill be only threefinal possibilities (e.g. ifα + β defines one diagonal,
γ + δ will define the same diagonal). Hence only three diagonals are possible (our
x, y, z will be found to correspond to α + β,β + γ, γ + α respectively).

The complete proof of Lemma III as given in the KKK (pp. 349–351) may be
briefly mentioned in terms of modern symbols as follows.

Simple geometrical proofs of the following two preliminary results are given

ch2θ − ch2φ = ch(θ + φ) · ch(θ − φ) (6)

chλ · chμ = ch2
{
(λ + μ)

2

}
+ ch2

{
(λ − μ)

2

}
, (7)

where ch stands for the chord of the arc (for the sine function also, similar results
hold good). Now we have, with reference to the accompanying figure,

ab + cd = ch α · ch β + ch γ · ch δ

= ch2
{
(α + β)

2

}
− ch2

{
(β − α)

2

}
+ ch2

{
(γ + δ)

2

}
− ch2

{
(γ − δ)

2

}
.

(8)

by one of the above results.
If E and W be the mid-points of the arcs ABC and ADC, respectively, then
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ch

{
(α + β)

2

}
= AE, and ch

{
(γ + δ)

2

}
= AW.

Also AEW is a right-angled triangle with hypotenuse EW equal to the diameter of
the circle. Hence (8) gives

ab + cd = (2R)2 − ch2
{
(β − α)

2

}
− ch2

{
(γ − δ)

2

}

= ch2
(
180◦ − β − α

2

)
− ch2

{
(γ − δ)

2

}

= ch

(
180◦ − β − α

2
+ γ − δ

2

)
· ch

(
180◦ − β − α

2
− γ − δ

2

)

by the formula (6). Because α + β + γ + δ = 360◦, we finally get

ab + cd = ch (α + γ) · ch (α + δ)

= (chord of the arc BAD′) · (chord of the arc BAD)

= BD′ · BD = z · y

which is the first equation of Lemma III. The other equations can be derived similarly,
and the proof of the Lemma III is thus completed. The proof given in the YB (pp. 228–
233) is somewhat similar to this.

These Indian proofs of the so-called Ptolemy’s theorem are radically different
from that given about 1500 years earlier by Ptolemy in his Almagest [Taliaferro
1952, 16–17].

After proving Lemma III, theKKK (p. 351) derives the expressions for the squares
of the two diagonals (x and y ) from it, that is, from the equation in Lemma III. These
expressions are equivalent to the famous Indian formulas (4) and (5). Finally, a similar
expression for the third diagonal is also derived but “it is not given here (that is, in
the original text) because of its non-utility (anupayoga)”, the KKK says. Almost
the same discussion is found in the YB (p. 233). These Indian derivations may be
contrasted with the conjectural Brahmaguptan proofs as suggested by Pottage [1974,
344–349].

The derivation of the main result (1) may now be presented briefly.
TheKKK starts (p. 364) by asking us to draw a diagram similar to the accompany-

ing figure. In it EW and NS are east-west and north-south lines (east was represented
upwards by Indians). BK is drawn perpendicular to DD′ (which is parallel to AC).
Other details are self-evident in the figure.

By Lemma I, applied to the triangle BDD′, we get

perp. BK = yz

2R
. . . (9)
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Three diagonals of a cyclic quadrilateral

This perpendicular BK will be the sum of the altitudes of the two triangles BAC
and DAC into which the quadrilateral ABCD is divided by the diagonal AC (which
becomes their common base). Thus, the area of the quadrilateral

s =
(
1

2

)
BK · x . . . (10)

Therefore, by (9) and (10), we get

R = xyz

4S
. . . . (11)

As stated above, this result was already known to Nārāyan. a Pan.d. ita (c. 1356).
Parameśvara’s rule (1) now immediately follows from (11) by using Lemma II

and Lemma III, that is, by multiplying the equations in Lemma III to get xyz as
needed in (11).

Just after completing the proof, theKKK (p. 365) adds an intelligent remarkwhich
renders unnecessary the alternate reading (involving the work vadha or ghāta, that
is, ‘product’) of the original Sanskrit stanza, as mentioned by the editor and found
quoted elsewhere [Saraswathi 1969, 69; Sarma 1972, 19].
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Sanskrit commentary, Lucknow, (Dept of Math. and Astronomy, Lucknow University).

14. Taliaferro, R.C., (translator) 1952, Ptolemy’s Almagest in R.M. Hutchins (editor) Great Books
of the Western World, Vol. 16, Ptolemy, Copernicus and Kepler, 1–478, Chicago.

15. Thampuran, R.M., and Aiyar, A R A (editors) 1948, Yuktibhās. ā, Part I (in Malayalam) Edited
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Indian Values of the Sinus Totus

Unlike the modern trigonometric sine of an angle which is defined as the ratio of the side
(facing that angle) to the hypotenuse in a right-angled triangle, the ancient Sine of an arc was
defined (apparently in India for the first time) as half the chord of double the arc in a circle
of reference. The radius of this circle thus became the Trijyā (the Sine of the three signs) or
the sinus totus (the total or complete Sine).

It is curious as well as interesting to know that Indians, through the ages, used a variety of
values for the sinus totus such as, 45, 60, 120, 150, 200, 300, 500, 1000, 3270 and 3600
beside those typically Indian values which were based on the relation

R = 21600

2π
minutes.

The value 3438 has been the most popular for Indian standard tables of the Sines and 120
was frequently used for shorter tables.

Detailed discussions of the various values are presented in the paper along with full refer-
ences. Terminology and some instances of transmission are also described. The value 150
whichwas used in India by Brahmagupta (seventh century ad) and Lalla (eighth century) has
been found to be used later on in several foreign works obviously under Indian influences.

1 Introduction

The predecessor of the modern trigonometric function known as the sine of an angle
was born, apparently, in India.1 The Greek trigonometry had been based on the
functional relationship between the chords of a circle and the central angles they
subtend. The Indians, on the other hand, used half of a chord of a circle as their basic
trigonometric function. The Indian (or Hindu) Sine (usually written with a capital
letter to distinguish it from the modern Sine) of an arc in a circle is defined as half
the length of the chord of double the arc. Thus the (Indian) Sine of an arc α is equal
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398 Indian Values of the Sinus Totus

to R sin θ where R is the radius of the circle of reference and sin θ is the modern sine
of the angle θ subtended at the centre by the arc α.

The relations between (Indian) Sine, modern sine and the Greek chord (=crd)
functions may be expressed as

sinα = R sin θ = 1

2
crd 2α (1)

crd α = 2R sin

(
θ

2

)
= 2 sin

(α

2

)
. (2)

In these relations the angular measure α of the arc is exactly equal to the angle θ.
The Āryabhat. ı̄ya (AB) of Āryabhat.a I (born 476 ad) is the earliest extant Indian

work of the historical or dated type in which the Indian Sine is definitely used.
However, there seems to be some evidence for earlier and possible use of Sine
in India in some of the old Siddhāntic works which have been summarized later
on by Varāhamihira (c. 550 ad) in his Pañcasiddhāntikā (= PS).2 Hereafter such
abbreviations will be used for standard Sanskrit works; all of them are listed in
Appendix 1.

From the definition of the Sine, it is clear that its greatest value will be equal to
R when the arc is equal to 90 degrees. That is why the norm R is called Sinus Totus*

(‘total or complete Sine’), the Sines corresponding to other arcs being regarded as
parts or fractions of this.

The ancient length-definition (even with R equal to one) has thus at least one
advantage over the modern definition of the Sine, as the ratio of perpendicular to the
hypotenuse in a right-angled triangle, because in the case of 90◦ the former definition
presents no difficulty, while the latter can yield the sine of 90◦ only by considering
it as a limiting case.

For the parametric norm R, a variety of values were used by the Indians during
the ancient and medieval periods of their trigonometry. The purpose of this paper is
to present and discuss those values along with some other related aspects.

2 Values of the Sinus Totus

The constancy of the ratio of the circumference of any circle to its diameter was
known in the ancient world. So that when circumference C is known, the diameter
D (=2R) can be written down, their ratio being π.

The most typically Indian values of the Sinus Totus R were obtained from the
relation

*The term sinus totus was introduced for the first time by Gerhard of Cremona (1114–1187) in his
translation of Al-Zarqālı̄’s astronomical tables. (information given in the reference).
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R = C

2π
(3)

after having first chosen the value of C. Now C is a linear quantity and should be
specified in linear units. But the Indians took a different attitude. They took the
angular measure of the circumference (equivalent to the measure of 360◦ angle
subtended by it at the centre) itself to represent its linear measure.

However, this attitude is in itself not sufficient to fix the size of the circle because
we cannot associate any absolute length to an angular unit, say a degree or a minute.
For example, two arcs, one of a smaller and other of a bigger circle, can both be said
to be of equal length (say 1800min) in angular units when each of them subtends
the same angle (30◦ in said case) at their centres although their linear sizes, that is
lengths, are different.

Another difficulty created by first specifying C in ordinary angular units and then
calculating R by (3) is that the latter cannot be found exactly since the number π is
transcendental. Even if we use an approximate value of π, we may be compelled to
involve another approximation in deciding the value of R from (3) in a nice form, for
example, in whole number of minutes, seconds, depending on the accuracy desired.

Even with all these choices when we determine and accept a particular value of R
specified in the angular units, we cannot still draw the circle of a definite size because
the value of R is not in the absolute units of length (What is the size of one degree
or one minute length?).

Of course, this difficulty of drawing the circle will come even if R is specified
directly in angular units (sayminutes) or as an absolute number insteadof determining
it from (3). To overcome this theoretical difficulty, an angular unit was taken to be
equivalent to some known unit of length (This practice is similar to what we do when
we have to draw, for example, a force diagram where we decide that so many units
of force are represented by so many units of length).

Thus in connection with the description of a ‘shadow-instrument’ (chāyā-yantra,
the lost work of) Āryabhat.a I asks us to draw a circle of radius 57 aṅgulas (finger-
breadth) to represent the 57◦ of the Sinus Totus (when the circumference is taken to
be equal to 360◦).3

Again, while giving the details of the graphical method of finding the Sines as
described in the Brāhmasphut.a-siddhānta (=BSS) of Brahmagupta (628 ad), the
commentator Pr.thudaka (c. 860) asks us to draw, by a pair of compass (karkat.a), a
circle of radius 3270 aṅgulas on a level ground, the number being the Sinus Totus
used in the above work.4 If the aṅgula mentioned be taken to be equivalent to about
three-fourths of an inch, then the radius will measure more than 200 feet. We may
have a level ground to draw the said circle butwherefrom such a big compass (ofmore
than 100 ft arm) is to be obtained. Or we have to give some different explanations.
Bhāskara II (1150) also, in a similar context, talks of drawing a circle with desired
radius in aṅgulas.5
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Anyway, whether be the practical difficulties or conventions in drawing the circle
of reference, the values of the Sinus Totus (and so of all other Sines) were not
represented in absolute units of length. The same may be said of Ptolemy who took
a diameter of 120 parts for his table of chords. All this shows that the ancient Sines
were defined as lengths but not as absolute lengths.

In spite of all these defects, the Indians have been praised for their practice of
taking the circumference and radius in the same angular units. Thus Otto Neugebauer
remarked6

....The Hindus took the reasonable attitude that the radial distances should be measured in
the same units in which the length of the circumference is measured, an approach which
would have led to the modern concept of radians. Had they not retained the Babylonian
sexagesimal division of a circle into 360 parts.

Now according toAB, II, 10 the circle of diameter 20,000 is nearly equal to 62,832
units.7 This implies the approximation

π = 62,832

20,000
= 3.1416. (4)

Using this and taking 360◦ (or 21,600min) as the measure of C, the relation (3) gives

R = 75000

1309
= 57 + 387

1309
degrees (5)

= 4500000

1309
= 3437 + 967

1309
minutes (6)

= 206264 + 424

1309
seconds (7)

= 12375859 + 569

1309
thirds (8)

= 57◦17′44′′19′′′ + 569

1309
(9)

= 57.2956, 4553 nearly (10)

The value (6), inclusive of the fractional part as such, is mentioned or quoted in
the Utpala’s commentary (tenth century) on the Br. hat-sam. hitā.8 Also we see that,
depending on the degree of accuracy desired, the value of the Sinus Totus can be
taken to nearest degree, minute, second, third, etc. We discuss these individually.

(I) From (5) we get (to the nearest degree)

R = 57 degrees (11)

We have already pointed out that the lost work, called Āryabhat.a-siddhānta (=AS), of
Āryabhat.a I talks of drawing a circle with trijyā (sinus totus) or radius 57 units which
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represent the 57◦ (in a radian). However, we have not come across any evidence to
show that this lost AS had used a sine table with R equal to 57◦.

According to the Hayata (1764), a very late Sanskrit work on Arabic astronomy,
some Sūrya-siddhānta (= SS) also used a radius of 57 units.9 Which SS is referred
to here is not clear, but it may be pointed out that the lost AS (which used the same
radius) was based on the old SS.10

Moreover it may also be pointed out that the Hayata (p. 16) roughly derives the
radius 57 by using the approximation

π = 22

7
(12)

instead of (4). Although this does not matter much, it should be noted that the value
(12) is the first fractional approximation of the value (4) when the latter is expressed
in continued fraction.11

The PS, IV, 1 (see Sect. 3) gives the rule

diameter =
√
3602

10

which implies the radius (11) to the nearest degree of (22) below.

(II) The relation (6) shows that we shall have (to the nearest minute)

R = 3438minutes (13)

By far this is themost commonly used value of the sinus totus in Indian trigonometry.
Sine-differences12 stated in AB, I, 10 (pp. 16–17) imply it. These tabular differences
have been referred13 and used by Bhāskara I in his works (early seventh century).
The resulting 24 tabular Sines are given14 by Lalla (c. 748) who rightly calls them
Bhat.oditā (i.e. as computed by Āryabhat.a), the last Sine being equal to the Sinus
Totus given by (13). Moreover, Lalla has also given the value15

R2 = 1181, 9844 (squareminutes) (14)

which is obviously derived from (13).
The tabular Sines as given16 in the extant SS, II, 17–22, also imply the value (13).

The same is the case with the Soma-siddhānta, II, 4–8 (p. 7)17a Sumati of Nepal
(before 950 ad) also used the value (13) in the Sumati Mahātantra as well as in his
Sumati-Karan. a.17b

Āryabhat.a II (950) has employed the value (13) in his Mahā-siddhānta (MS)18,
but one of his tabular Sine is different from the corresponding value found in Lalla or
SS. Bhāskara II has followed Āryabhat.a II for his standard table of the Great Sines

19
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although author’s own accompanying commentary states that the same values are
given in the SS (?) and the Āryabhat.a Tantra (=AB?).

The use of the value (13) for a radius by Puliśa is also attested.20

(III) The relation (7) shows that, to the nearest second of the angular arc, we have

R = 206264 seconds

= 3437′44′′ (15)

The value (15) for the sinus totus (to the nearest second) is given by Vat.eśvara (early
tenth century) in his Vat.eśvara-siddhānta (=VS)21 just after stating the minutes and
seconds of his tabular Sines and Versed Sines. Immediately after stating the value
(15), the VS gives

R2 = 1181, 8047′35′′. (16)

Now (15) will give

R2 =
(
3437 + 44

60

)2

= 1181, 8010 + 28

60
+

(
16

602

)
, (17)

which does not agree with (16) to the nearest sixtieth part. However, the original
relation (6) gives

R2 = 4, 500, 0002

13092

= 2025 × 1010

1, 713, 481

= 1181, 8047 + (35.3)

60
nearly (18)

which agreeswith theVS value (16) to the nearest second. ThusRai22 need not remark
that there is an error in the VS value of the square of the radius nor his suggested
emendation of the printed reading jala (=4) to jalada (=0), thereby getting

R2 = 1181, 8007′35′′

in place of the correct value (16), is necessary.
Parameśvara23 in his commentary (c. 1408) on the Laghu-bhāskarı̄ya (=LB) gives

a table of Sines in which the last value (representing the Sine of 90◦) is same as (15).
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(IV) From the relation (8) and (9) we have (to the nearest third)

R = 3437′44′′19′′′ (19)

= 1237, 5859 thirds (20)

Govindasvāmin (c. 800–850) in his commentary on theMB, IV, 22 (pp. 199–201) has
given fractional parts meant for improving the AB Sine-differences and the resulting
sine table24 imply the radius (19).

For the value of the Sinus Totus in the form (20), a set of tabular Sines and their
differences is found in the Sundarı̄ commentary25 by Udaya Divākara (c. 1073) on
the LB.

It is well-known that, for finding the circumference of a circle, the Indians often
used the rough formula

C =
√
10D2 (21)

which gives

D =
√

C2

10
. (22)

By comparing this with (3), we may say that (22) implies

π = √
10. (23)

Instead of (4) with C equal to 21600min the relation (22) gives

D =
√
4665, 6000 = 6830.52 nearly. (24)

Thus (to the nearest minute)

R = 3415. (25)

The value (25) has been worked out by Pr.thūdaka in his commentary on the
BSS, XXI, 15 (Vol. IV, p. 1626) which contains the rule (22). For the square-root in
(24), he gives 6830 which is correct if we disregard the fractional part though greater
than half.

The sine table given in the Laghu Vasis. t.ha Siddhānta26 implies the radius (25).
Same is the case with the Siddhānta-śekhara of Śripati (c. 1040) who adds that his
sinus totus is the radius of the circle whose circumference is equal to minutes in one
revolution and also gives27

R2 = 1166, 225 (26)
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which is exactly the square of the value (25).
The famous Mādhava’s (c. 1340–1425) sine table which is quoted by Nı̄lakan. t.ha

Somasutvan (c. 1500) in his commentary (NAB) on the AB imply the radius28

R = 3437′44′′48′′′. (27)

The NAB (Part I, p. 55) states that the value (27) was obtained by Mādhava by using
a (very accurate) relation, between the circumference and diameter of a circle, which
is expressed by the rule vibudhanetra, etc. The full Sanskrit stanza29 giving this rule
of Mādhava is quoted by NAB at another place (Part I, p. 42) and imply a value of
π correct to 11 decimals. Thus we get (27) by using (3) with C equal to 21600min
and a more accurate value of π than (4).

The value (27) when rounded off to the nearest second becomes

R = 3437′45′′ = 3437.75

= 13751

4
(28)

which is implied in another rule (NAB, part I, pp. 54–55), given by Mādhava, that
contains the Taylor series expansions of the Sine and the Cosine upto the second-
order.30

We note that, even with adoption of submultiple units of seconds and thirds,
the various values of the Sinus Totus considered above were obtained by neglect-
ing smaller fractional parts or by rounding off. That is why Brahmagupta in his
BSS, XXI, 16 (Vol. IV, p. 1626) states that by taking the circumference equal to
21,600 min, we do not get the radius fully represented in terms of minutes or its
(sexagesimal) parts; hence the corresponding computed tabular Sines will not be
accurate (or exact), and consequently he took a different radius. For his standard
table of Sines he took, BSS, II, 9 (Vol. II, p. 141.)

R = 3270. (29)

However, Brahmagupta has not explained as to how he selected the number 3270
for the radius. Whether this number was picked up at random or whether there was
some basis for the choice seems to be a difficult problem. Anyway, I may submit the
following facts in this connection:

Brahmagupta’s BSS, XII, 40 (Vol. III, p. 857) gives the rule (2) and BSS, XXII,
15 (Vol. IV, p. 1626) gives the rule (22). If we use the very crude approximation

√
10 = 3.3 (30)

for this implied value of π, then we get from (3),
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R = 21600

6.6
= 36000

11
= 3273 nearly (31)

which is conveniently near (29). The crude value (30) can be obtained, roughly, by
using the approximation

√
N =

√
a2 + x = a +

( x

a

)
(32)

so that

√
10 =

√
32 + 1 = 3 +

(
1

3

)

= 3.3 roughly.

The unusual gross rule (32) occurs as an intermediate step in the Babylonian Hernian
algorithm31 according towhich, if a1, equal to a, be the first approximation (in defect)
to the square-root of N, then

b1 = N

a1
= a +

( x

a

)

will be the second approximation (in excess), etc.
The gross approximation (32) seems also to be implied in a verbal rule found

stated in the Arithmetic in Nine Sections, an ancient Chinese work, for finding the
fractional part ( x

a ) of the root.
32

However, these facts and our derivation of the value (31) are not meant here as
any possible explanation for the true reason, if any, for Brahmagupta’s supposition
or imagination (kalpanā, according to Pr.thūdaka, his commentator, BSS, Vol, IV,
p. 1626) of the value (29).

Mahendra Sūri (c. 1370), a court Pan. d. ita of Firoz Shah Tugalaq, wrote the
Yantrarāja (=YR) which is based on foreign material and is commented upon by
the author’s own pupil. This work contains a sine table based on the radius33

R = 3600 = 602. (33)

Although this value can be easily derived from the relation (3) by using the simplest
approximation

π = 3, (34)

it is better to consider the choice of (33) as based on the convenience it provides for
calculations with sexagesimal fractions which have been in common use throughout.
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A short sine table for the radius

R = 1000, (35)

which is more suitable for the decimal rather than the sexagesimal system is found34

in the Vr. ddha-vaśis. t.ha-siddhānta (=VVS), III, 9–10, whose date cannot be given
with certainty.

Another conveniently or arbitrarily chosen value, namely,

R = 500 (36)

is implied in the tabular Sines and their differences which are found in the
Karan. akaustubha composed about 1650 by Kr.s.n. a Daivajña.

35

Still another such value, namely

R = 700 (37)

was used in Karan. a Vais. n. ava of Śaṅkara (eighteenth century).36

3 Smaller and Miscellaneous Values

For convenience, the Indians also used some smaller values of Sinus totus which we
take up now.

(I) The following radius was used as early as the sixth century ad

R = 120 (38)

For this purpose we quote the PS, IV-1 which states37

Take the square-root of the tenth part of the square of the circumference (which is) three
hundred and sixty (degrees); it is the diameter. Here (in this work), assuming that (that is,
the diameter) to be four degrees, the Sines are given at the (interval of) eighth part of a sign.

The first part of the rule gives the relation (22) with C equal to 360◦, and the
second part implies a radius of 2◦ or the value (38) in minutes.

The referred tabular Sines are given PS, IV, 6–15. But due to a wrong amendation
by Thibaut and Dvivedi of the otherwise correct original Sanskrit reading, these two
scholars were led to the erroneous value38
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R sin 90◦ = 120′1′′ (39)

instead of (38). The Sine differences given by Brahmadeva (1092) in his
Karan. aprakāśa39 imply the radius (38).

The same radius is used by Bhāskara II for his shorter table of Sines whose
differences he has given in his SSGG, II, 13 (p. 41) and also in his Karan. akutūhala40

which was composed about 1183 ad The printed Marı̄ci commentary (1638) in the
SSGG gives a better sine table for the same radius.41

The Yantra-śiroman. i42 of Viśrāma (1615) contains a set of Sines, directly in a tab-
ular form, for the radius (38). A similar table also appears in the Marı̄ci commentary
(p. 140) on the SSGG.

(II) Instead of (38), Brahmagupta took

R = 150 (40)

for his short sine table. The Sanskrit stanza containing the related tabular differences
is given by him in his Dhyānagrahopadeśa (verse 16)43 as well as in his Khan. d. a-
khādyaka (=KK) III, 6 which44 was composed about 37years after his BSS (wherein
is quoted the first of the above two works).45

Another short sine table for the radius (40) is given by Lalla in his SVGG, XIII,
2–3, (p. 48.)

(III) The use of the following two values for the sinus totus has come to light now.

R = 200 (41)

R = 300 (42)

According to Al-Bı̄rūnı̄ (died 1048)46 the first value was used by Vijayanandin in his
Karan. atilaka and the second by Vitteśvara (=Vat.eśvara?) in his Karan. asāra.

(IV) It is surprising that the use of the simplest sexagesimal value

R = 60 (43)

which is used by the Greek astronomer Ptolemy (second century ad) for his table
of chords and frequently by medieval Arab authors is found quite late in India.
It is used by Kamalākara in his Siddhānta-tattva-viveka (=STV)47 which contains
sexagesimally five-figured sine table (p. 168).
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The work Samrāt-siddhānta (1st half of the eighteenth century)48 is a Sanskrit
translation of Ptolemy’s Almagest made by Jagannātha from an Arabic version. In
addition to Ptolemy’s table of chords (Vol. I, pp. 30–40), the work contains a Sine
table (pp. 55–57) for the same radius (43). The printed edition of the work contains
some additional material on trigonometry (apparently by Jagannātha) which is also
based on the same value of the radius.

(V) Of the various miscellaneous values, we first take

R = 8◦8′ = 8 + 2

15
= 488′. (44)

This Sinus totus is arrived at by interpreting a rule49 given by Muñjāla (c. 932) in his
Laghumānasam, II, 12. However, according to another interpretation found50 stated
by Mukhopadhyaya, we have

R = 8◦11′ = 491′ (45)

instead of (44).
The set of six tabular Sine differences found in the Vākya-karan. a (c. 1300)51 III,

2–3, implies the value

R = 43 parts (46)

which, according to the editors of the work (p. xxi), is obtained from (13) by dividing
it by 80 for convenience.

Another peculiar Indian value of the sinus totus is

R = 191. (47)

This was used by Gaṅgādhara (c. 1434) in hisCandramāna.52 The two sets of tabular
Sines given by Muniśvara in his Siddhānta-sārva-bhauma (1946) are also based on
the same radius.53 Although awkward, the value (47) might have been obtained from
(13) by removing the simple factors or divisors 2, 3 and 3.

Lastly, we mention that the value

R = 24 (48)

is stated to be used in the Karan. a-Vais. n. ava of Śaṅkara (eighteenth century).54

We present the various Indian values of the Sinus totus in a consolidated form in
the accompanying table.
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Sl. No. Sinus totus Reference

1 2 parts or degrees Pañca-siddhāntikā (c. 550), IV, 1; cf. No. 7 below

2 8◦8′(= 488′) Laghu-mānasa of Muñjāla (932)

3 24 Karan. a-vais. n. ava of Śaṅkara (1766)

4 43 Vākya-karan. a (c. 1300)

5 57◦ Old Sūrya-siddhānta (?); Āryabhat.a I’s lost work (c. 500); Some
Sūrya-siddhānta according to Hayata (1764)

6 60 Siddhānta-tattva-viveka of Kamalākara (1658); Samrāt-siddhānta of
Jagananātha (c. 1730). Siddhānta-rāja of Nityānanda (1639)

7 120 (min) Pañca-siddhāntikā of Varāhamihira (c. 550); Karan. a-prakāśa of
Brahmadeva (1092); Siddhānta-śiroman. i (1150) and Karan. akutūhala
(1183) ofBhāskara II;Yantraśiroman. i ofViśrama (1615);Karan. endu-
śekhara

8 150 Dhyāna-grahopadeśa, (c. 625) and Khan. d. a-khādyaka (665) of Brah-
mgupta; Śis. ya-dhı̄vr. ddhida of Lalla (c. 748)

9 191 Cāndramāna of Gaṅgādhara (1434); Siddhānta-sārva-bhauma of
Munı̄śvara (1646)

10 200 Karan. a-tilaka of Vijayanandi (before c. 1000)

11 300 Karan. a-sāra of Vitteśvara (c. 900). Karan. aratna of Deva (c. 689 ad)

12 491 Laghu-mānasa (cf. No. 2 above) (according toD.N.Mukhopadhyaya)

13 500 Karan. a-kaustubha of Kr.s.n. a-Daivajña (c. 1650)

14 700 Karan. a-vais. n. ava of Śañkara (1766)

15 1000 Vr. ddha-vaśis. t.ha-siddhānta (undated ?)

16 3270 Brāhmasphut.a-siddhānta of Brahmagupta (628)

17 3415 Laghu-vasis. t.ha-siddhānta (undated ?); Siddhānta- śekhara of Śripati
(c. 1039)

18 3437′44′′ Vat.eśvara-siddhānta of Vat.eśvara (904); Parameśvara’s commentary
(1408) on the Laghu-bhāskarı̄ya

19 3437′44′′19′′′ Govindasvāmin’s commentary (c. 800–850) on the Mahābhāskarı̄ya;
cf. No. 25 below

20 3437+ 967
1309 Utpala’s commentary (c. 966) on the Br. hat-sam. hitā.

21 3437′44′′48′′′ Sine table Mādhava (c. 1400) quoted by Nı̄lakan. t.ha (c. 1500) and
Śaṅkara Vāriar (1556)

22 3437′45′′ Implied in a rule ofMādhavawhich is quotedbyNı̄lakan. t.ha in his com-
mentary on the Āryabhat. ı̄ya (II, 12) and also in his Tantrasaṅgraha
(II, 10–13)

23 3438 Āryabhat. ı̄ya of Āryabhat.a I (born 476); extant Sūrya-siddhānta;
Mahābhāskarı̄ya of Bhāskara I (c. 625); Works of Sumati (before
950); Mahā-siddhānta of Āryabhat.a II (950?); Śis. ya-dhı̄vr. ddhida of
Lalla (c. 748); Siddhānta-śiroman. i of Bhāskara II (1150); Puliśa or
Pauliśa (?)

24 3600 Yantra-rāja ofMahendrasūri (c. 1370).Malayendu in his commentary
on YR

25 21600 Madanapāla in his commentary of SS (fourteenth century)

26 12375859′′′ Udayadivākara’s commentary (1073) on the Laghu-bhāskarı̄ya (cf.
No. 19 above)
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4 Terminology

From definition it is clear that the Sine of three signs or of 90◦ arc will be equal to
the radius of the circle of reference. Therefore this value of the radius is commonly
called trijyā which is a short form of the terms like tri-rāśi-jyā meaning ‘Sine of
three signs’ literally. Most of the sanskrit terms are based in this interpretation. Few
terms which literally mean sinus totus (total or complete Sine) and ‘greatest Sine’
are also used for obvious reasons. All these terms are listed along with at least one
reference of their use in Appendix 2.

Beside the listed one, many terms which mean radius or semi-diameter geomet-
rically have been used synonymous to trijyā. Conversely trijyā has been frequently
used for radius of any circle without confirming its use in the sense of ‘Sine of three
signs’. However, expressions like

(– Poona edition of Marı̄ci on Jyotpatti, part I, p. 154.)
clearly bring out the distinction between trijyā ‘(Sine of three signs)’ and vyāsārdha
(‘semi-diameter’ or radius).

The use of such a large number of synonymous terms was partly necessitated by
the fact that mathematical rules were to be given in verses which involved definite
number of syllables. Of course, the richness of the Sanskrit language easily provided
them.

5 Transmission of the Indian Values of the Sinus Totus

Below we give a few cases of the use of some Indian values of Sinus totus in the
works of foreign writers.

For example Yaqūb Ibn Tariq (2nd half of the eighth century) gives the following
rules.55 Radius of the diurnal circle

R cos δ = 3438 − V ers δ

and Sine of ascensional difference

= 3438
e (sin δ)

g(cos δ)

where e is the equinoctial noon-day shadow and g is the length of the gnomon. These
clearly imply a sinus totus which was used in India since, at least, about ad 500.
Indian table of 24 Sines for R = 3438 min was reproduced in the Chinese Chiu Chih
li calendar (A. D. 718).56
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For the smaller Sinus totus 150, which was used in India by Brahmagupta (seventh
century) and Lalla (eighth century), the following instances may be noted:

1. A radius of 150min is associated with al-Fazārı̄ (c. 750) by Bı̄rūnı̄,57a and also
with Yaqūb ibn Tāriq (eighth century) and Abū Ma‘shar (c. 850).57b

2. The same radius is stated to be associated with the Shāh-Zij (c. 790) according
to passage given by Bı̄rūnı̄.58

3. It is stated59 that the original Zij of al-Khwārizmı̄ (c. 840) had a sine table for R
equal to 150.

4. The Arab Az-Zarqālı̄ (Arzachel of the Latins), a celebrated astronomer of the
eleventh century Spain, also took a radius equal to 150min.60a

5. R = 150 is also used in an anonymousByzantine treatise of (eleventh century).60b

6. An anonymous thirteenth century Latin manuscript also assumes the radius of
150min for Sines.61

7. The same radius also appears in a fifteenth century Newminister (England)
manuscript.62

On the other hand, it may be pointed out that the Greek value 60 for the radius, which
was used by Ptolemy (150 ad), is found in India in the STV (1658) whose author
was familiar with foreign material.

Similarly, the radius 3600, used in the YR (c. 1370), is obviously due to Islamic
influence.

Appendix 1

The following abbreviations used in the paper for some works.

AB : Āryabhat. ı̄ya, see Ref. 7
AS : Āryabhat.a-siddhānta (lost). see Ref. 3
BSS : Brāhmasphut.a-siddhānta, see Ref. 4
KK : Khan. d. a-khādyaka, see Ref. 44
LB : Laghu-bhāskarı̄ya, see Ref. 23
MB : Mahā-bhāskarı̄ya, see Ref. 13
MS : Mahā-siddhānta, see Ref. 18
NAB : Nı̄lakan. t.ha’s commentary of the AB, see Ref. 28
PS : Pañca-siddhāntikā, see Ref. 37
SS : Sūrya-siddhānta, see Ref. 16
SSGG : Siddhānta-śiroman. i Graha-gan. ita , see Refs. 5 and 19
SSK : Siddhānta-śekhara, see Ref. 27
STV : Siddhānta-tattva-viveka, see Ref. 47
SVGG TS : Tantra-saṅgraha, see Ref. 28
VS : Vat.eśvara-siddhānta, see Ref. 21
VVS : Vr. ddha-vas. is. t.ha-siddhānta, see Ref. 23
YR : Yantra-rāja, see Ref. 33
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Appendix 2

List of Sanskrit Terms for sinus totus

Antyā or antya-jyā (last Sine) Soma-siddhānta, II, 3; YR, I, 42 and its commentary
(p. 30)

gagr. ha-maurvı̄ MS, III 36. (Note ga = 3)

gajyā MS, III, 1 etc.

gabha-maurvı̄ MS, IV, 21

trigun. a VVS, II, 16

trigr. ha-gun. a MB, III, 27

trigr. ha-jyā BSS, XVI, 11, KK, III, 9

trigr. ha-maurvı̄ Śis. yadhı̄-vr. ddhida, Golā, IX, 37

trigr. ha-śiñjinı̄ SSK, III, 50

trijaka Siddhānta-sārvabhauma. II, 57

trijı̄vā SS, II, 28.

trijyā the most common and popular term

tribhagun. a or bhatraya-gun. a SVGG, IV, 5 and II, 37

tribha-jı̄vā VS, II, iii, 2

tribha-jyā PS, IV, 5

tribha-maurvı̄ VS, II, i, 69

tribhavana-gun. a VS II, iv, 4

tribhavana-jyā or bhavanatraya-jyā SVGG, II, 18 and 20 ; Karan. a-prakāśa, III, 9 (p. 30)
uses bhavana-tritayottha-jı̄vā

tribhavanasya-gun. apratānam MB, III, 5

tribhavanasya-jı̄vā MB, III, 19

tribha-śiñjinı̄ SSK, III, 50

tri-maurvı̄ MB, III, 39 etc., LB, III. 12 etc.

trirāśi-gun. a SSK, IV, 119

trirāśi-jı̄vā LB, III, 29

trirāśi-jyā MB, III, 16

tri-śiñjinı̄ SSK, III, 14

padasamuttha-jı̄vā (Sine for one

quadrant) SSK, III, 63

parama-jyā (great Sine) VVS, II, 8 and II, 41, etc.

paramaśiñjinı̄ MS, III, 2

bhatraya-gun. a see serial No. 13 above

bhavana-traya-jyā see serial No. 18 above

vyāsa (=trijyā) MB, III, 20 and 38

vyāsa-khan. d. a MB, III, 7

vyāsa-khan. d. a-nicaya MB, III, 20

sakala-gun. a (total Sine or sinus totus) MB, II, 10 and III, 27
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South Indian Achievements in Medieval
Mathematics

1 Introduction

The development of Hindu mathematics did not come to a standstill after the famous
Bhāskarācārya or Bhāskara II (circa 1150 ad) although many scholars believed and
still believe that.

This is mainly because the historians failed to notice or take cognizance of the
findings published by C.M. Whish (as early as 1835),1 C.T. Rajagopal and others.2

Thus for quite some time the view that there was no progress in Indian mathemat-
ics and astronomy after Bhāskara II continued to prevail and still prevails in some
quarters due to ignorance. Of course one reason for this is that the important works
(some of which are inMalayalam and other regional languages) of the post-Bhāskara
II period have not been translated into English.

However, nice editions of several important south Indian works (original texts as
well as commentaries) are now available. They are Vyavahāra-ganịtam (in Kan-
nada of Rājāditya (c. 1190), a native of Puvina Bage (in North Karnataka); the
commentary by Sūryadeva Yajvan (born 1191) of Gangaikonda Colapuram on
the Āryabhat ̣īya (= AB); some works of Mādhava of Sanġamagrāma near Cochin
(c. 1340–1425), and of Parameśvara (between 1360 and 1460) of Alattur village in
Kerala; the Tantrasaṅgraha (= TS) and Āryabhat ̣īya-bhāsỵa (= NAB) by Nīlakanṭḥa
Somayāji (c. 1500) of Kundapura (near Tirur, SouthMalabar); theMalayalam Yukti-
bhāsạ̄ (= YB) of Jyesṭḥadeva (c. 1500–1610); the Kriyākramakarī (= KKK) which is
an elaborate commentary on Bhāskara’s Lī lāvatī and composed by Śankara Vāriyar
(1500–1560) and, after his demise, by Mahisạmanġalam Nārāyanạ (c. 1530–1610),
both of Kerala; and a host of others.

The purpose of the present paper is to give a topic-wise survey of the south
Indian achievements inmedievalmathematics (twelfth to seventeenth century) based
mostly on primary sources.

Ganịta Bhāratī , Vol. 9, Nos. 1–4 (1987), pp. 15–40; This paper is an extension of a talk delivered
at the Jodhpur University under INSA programme.
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2 Decimal Place Value Names

Śrīdhara in his Pāt ̣īganịta (= PG) (c. 750 ad), 7–8, gives names of 18 decimal no-
tational places,3 the last being Parārdha which stood for 1017. These names (some-
times with slight variations) are later on given by Śrīpati (c. 1040), Bhāskara II, and
Nārāyanạ Panḍịta (1356). This shows that the practice of 18 notational place-names
became more or less standard (especially in north India).

In south India, however, we find bigger lists of names of notational places. Thus
the Ganịtasārāsaṅgraha (= GSS), 1, 63–68 of Mahāvīra (850) written under the
Rāsṭṛakūtạ king Amoghavarsạ (who ruled in the Kanarese area of south), extends
the list to 24 places ending with4

महा ोभं चतुनय |
The twenty-fourth (place) is Mahāksọbha (= 1023).

Pāvalụ̄ri Mallikārjuna in his Ganịta-śāstra gives5 the list up to 36th place which
is called mahābhūri. The author seems to be same as Pāvalụ̄ri Mallana (c. 1100), son
of Sivanna, who wrote a Telugu version of the 𝐺𝑆𝑆6. But there was another south
Indian author called Mallikārjuna Sūri (c. 1178) who composed a Telugu commen-
tary on the Sūrya-siddhāntā (= SS) and some other works.7

Yallaya (c. 1480) of Skanda-somesvara (S.E. of Srisaila in Kurnool District of
Andhra Pradesh) restricts his list to 29 places. He gave the list in his commentary on
the AB, II, 2 where list of only 10 names occurs.8

The biggest south Indian list of notational places is found in the Kannada work,
Vyavahāra-ganịtam of the Jaina author Rājāditya (twelfth century). It extends to 40
places and the names are9

1 ekam 21 ksịti
2 dāham 22 mahāksịti
3 śatam 23 ksọbha
4 sābira 24 mahāksọba
5 dāsābira 25 nadī
6 laksạ 26 mahānadī
7 dālaksạ 27 naga
8 kot ̣i 28 mahānaga
9 dākot ̣i 29 ratha

10 śatakot ̣i 30 mahāratha
11 arbuda 31 hari
12 nyarbuda 32 mahāhari
13 kharva 33 phanị
14 mahākharva 34 mahāphanị
15 padma 35 kratu
16 mahāpadma 36 mahākratu
17 ksọnị̄ 37 sāgara
18 mahāksọnị̄ 38 mahāsāgara
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19 śaṅkha 39 parimita
20 mahāśankha 40 mahāparimita= 1039

3 Geometrico Algebra

Inheriting the tradition of the Śulba-sūtras, the full bloom of the elementary geomet-
ric algebra is found developed in the works of the late Āryabhatạ School in South
India.

The Yuktibhāsạ̄ (= YB)10 demonstrates geometrically the multiplication identity

𝑎𝑏 = (𝑎 + 𝑐)[𝑏 − 𝑏.𝑐
(𝑎 + 𝑐)]

for
𝑎 = 12, 𝑏 = 20, and 𝑐 = 4.

If one side of a rectangle is increased arbitrarily, in what proportion the other
side should be decreased in order to preserve the area unchanged. The above identity
provides the answer to the question. Such questions were relevant to construction of
altars.

An algebraic rule from the Lī lāvatī says that 𝑎2 ± 𝑏2 − 1 will be a perfect square
if 𝑎 = 8𝑐4 + 1, and 𝑏 = 8𝑐3, 𝑐 being arbitrary.

The Kriyākramakarī (=KKK) (c. 1534) commentary on this rule presents an in-
teresting graphical demonstration which may be outlined as follows.11

The quantity (8𝑐4)2 can be represented as a square 𝑃 𝑄𝑅𝑆, and 𝑏2 = (8𝑐3)2 =
(8𝑐4) ⋅ (8𝑐2) as a rectangle 𝐴𝐵𝐶𝐷 (see the accompanying Fig. 1) of sides 8𝑐4 and
8𝑐2.

Fig. 1 Geometrical demonstration (case I)

𝐴𝐵𝐶𝐷 is divided into two equal rectangular strips each of sides 8𝑐4 and 4𝑐2.
Applying these strips to the square 𝑃 𝑄𝑅𝑆 so as to form a square of side (8𝑐4 +4𝑐2)
but with a square of side 4𝑐2 remaining unfilled at one corner. However,

𝑎2 = (8𝑐4 + 1)2 = (8𝑐4)2 + 16𝑐4 + 1
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Hence (16𝑐4 + 1) is still to be used. The part 16𝑐4 can be used to fill the empty
corner square of side 4𝑐2 needed above. Hence when unity is subtracted from the
sum of their squares, the result is a perfect square. Or

अत योवगयोगो, केो मूल कत एव

as the 𝐾𝐾𝐾 (p. 139) puts it. That is,

(8𝑐4 + 1)2 + (8𝑐3)2 − 1 = (8𝑐4 + 4𝑐2)2.

A similar demonstration will hold for the other case (see Fig. 2).

Fig. 2 Geometrical demonstration (case II)

The geometrical demonstration of the formula

𝑆 = 𝑎(𝑟𝑛 − 1)
(𝑟 − 1)

for the sum of a geometrical progression is more interesting. The 𝐾𝐾𝐾 (pp. 263–
264) gives it for the case when 𝑟 is equal to 4 somewhat as follows.

Let a long rectangular strip 𝐴𝐵𝐶𝐷 (see the Fig. 3) be taken to represent the
(𝑛 + 1)th term, 𝑇𝑛+1, of the series. Let it be divided into 3 (i.e. 𝑟 − 1) equal parts.

Fig. 3 Sum of a G.P.
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One of these parts is 𝐴𝐸𝐹 𝐷 which is further divided into 4 (i.e. 𝑟) equal parts. Three
(i.e. 𝑟 − 1) of these smaller divisions will be equal to

(
3
4) ⋅ (

1
3) ⋅ 𝑇𝑛+1 = (

1
𝑟 ) ⋅ 𝑇𝑛+1 = 𝑇𝑛

Thus, the rectangle 𝐴𝐺𝐻𝐷 represents the nth term of the series and the rectan-
gle 𝐺𝐸𝐹 𝐻 is one-third of 𝐴𝐺𝐻𝐷, just as the rectangle 𝐴𝐸𝐹 𝐷 was one-third of
𝐴𝐵𝐶𝐷 which represented 𝑇𝑛+1.

So we repeat the above process of dividing 𝐺𝐸𝐹 𝐻 into 4 equal parts and choose
3 of them to get the rectangle 𝐺𝐽𝐾𝐻 to represent 𝑇𝑛−1.

The remaining rectangle 𝐽𝐸𝐹 𝐾 can be similarly treated. This process is repeated
till first term is reached. The part ultimately left will be thus one-third of 𝑇1, Hence

(
1
3)𝑇𝑛+1 = rectangle 𝐴𝐸𝐹 𝐷

= 𝑇𝑛 + 𝑇𝑛−1 + … + 𝑇1 + (
1
3) ⋅ 𝑇1

= (sum of 𝑛 terms)+ (
1
3). 𝑇1

which gives the required 𝑆. With the general common ration 𝑟, the above implies

(𝑎𝑟𝑛)
(𝑟 − 1) = 𝑆 + 𝑎

(𝑟 − 1)

giving the general formula for 𝑆.
The enunciation of the general formula for the sum of an infinite geometrically

progressing convergent series and its proof in particular cases seems to be first (?)
given by Nīlakanṭḥa Somayāji (c. 1500) of Kerala.12

4 Solution of Algebraic Equations

Citrabhānu (1475–1550) of the village Covvaram (or Sivapuram) near Trichur in
Central Kerala has not yet found place in books on Indian mathematics. His work on
solution of equations is quoted in that portion of the 𝐾𝐾𝐾 which was composed by
Śank̇ara Vāriar who not only provides detailed explanations of the rules but speaks
as if he had received instructions from the former.

Citrabhānu gave method of solving each of a set of 21 pairs of simultaneous
equations in two unknowns, say 𝑥 and 𝑦. The 21 pairs arise by taking, at a time, any
two of the following seven quantities as known:13

(i) 𝑥 + 𝑦 = 𝑎, say;
(ii) 𝑥 − 𝑦 = 𝑏
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(iii) 𝑥𝑦 = 𝑝
(iv) 𝑥2 + 𝑦2 = 𝑚
(v) 𝑥2 − 𝑦2 = 𝑛
(vi) 𝑥3 + 𝑦3 = 𝑟
(vii) 𝑥3 − 𝑦3 = 𝑠

Thus there will be 7𝐶2 = 21 cases all of which are dealt by Citrabhānu in his work
called Ekavimṣ́ati-praśnottara (“Twenty-one Question-Answers”). They are

1. 𝑥 + 𝑦 = 𝑎, 𝑥 − 𝑦 = 𝑏
2. 𝑥 + 𝑦 = 𝑎, 𝑥𝑦 = 𝑝
3. 𝑥 + 𝑦 = 𝑎, 𝑥2 + 𝑦2 = 𝑚
4. 𝑥 + 𝑦 = 𝑎, 𝑥2 − 𝑦2 = 𝑛
5. 𝑥 + 𝑦 = 𝑎, 𝑥3 + 𝑦3 = 𝑟
6. 𝑥 + 𝑦 = 𝑎, 𝑥3 − 𝑦3 = 𝑠
7. 𝑥 − 𝑦 = 𝑏, 𝑥𝑦 = 𝑝
8. 𝑥 − 𝑦 = 𝑏, 𝑥2 + 𝑦2 = 𝑚
9. 𝑥 − 𝑦 = 𝑏, 𝑥2 − 𝑦2 = 𝑛
10. 𝑥 − 𝑦 = 𝑏, 𝑥3 + 𝑦3 = 𝑟
11. 𝑥 − 𝑦 = 𝑏, 𝑥3 − 𝑦3 = 𝑠
12. 𝑥𝑦 = 𝑝, 𝑥2 + 𝑦2 = 𝑚
13. 𝑥𝑦 = 𝑝, 𝑥2 − 𝑦2 = 𝑛
14. 𝑥𝑦 = 𝑝, 𝑥3 + 𝑦3 = 𝑟
15. 𝑥𝑦 = 𝑝, 𝑥3 − 𝑦3 = 𝑠
16. 𝑥2 + 𝑦2 = 𝑚, 𝑥2 − 𝑦2 = 𝑛
17. 𝑥2 + 𝑦2 = 𝑚, 𝑥3 + 𝑦3 = 𝑟
18. 𝑥2 + 𝑦2 = 𝑚, 𝑥3 − 𝑦3 = 𝑠
19. 𝑥2 − 𝑦2 = 𝑛, 𝑥3 + 𝑦3 = 𝑟
20. 𝑥2 − 𝑦2 = 𝑛, 𝑥3 − 𝑦3 = 𝑠
21. 𝑥3 + 𝑦3 = 𝑟, 𝑥3 − 𝑦3 = 𝑠

The exact solution in 15 of the above 21 cases is more elementary. As a sample,
Citrabhānu’s rule for solution in the 5th case starts with (𝐾𝐾𝐾 , p. 112) the stanza

योगघना घनयोगे े गुणेन रा शयोगेन | श े तेऽथ रा ो योभवे द योघ तः ||
From the cube of the sum, subtract the sum of the cubes and divide the remainder by three
times the sum of the quantities. The result is the product of the two quantities.

That is,
[(𝑥 + 𝑦)3 − (𝑥3 + 𝑦3)]

3(𝑥 + 𝑦) = 𝑥𝑦.

In this way the problem reduces to case 2 and the solution is easily obtained.
To take a sample of non-elementary type, the second equation in case 6 can be

written as
(𝑥 − 𝑦)[3(𝑥 + 𝑦)2 + (𝑥 − 𝑦)2] = 4𝑠
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or, with 𝑥 − 𝑦 = 𝑢, as
𝑢(3𝑎2 + 𝑢2) = 4𝑠

The exact solution, therefore, depends on the method of solving a general cubic
which does not seem to be discussed by ancient or medieval Indians. Citrabhānu’s
procedure (𝐾𝐾𝐾 , p. 112) may be translated as:

The (given) difference of the cubes (of the unknowns), multiplied by four, be divided by
three times the square of the (given) sum (of the unknowns). The quotient (thus determined)
is the (estimated) difference of the (desired) quantities, if the remainder (left in the above
division) is capable of being cancelled by the cube of the (estimated) difference.

This rule is easily seen to be based on the identity

4(𝑥3 − 𝑦3)
3(𝑥 + 𝑦)2 = (𝑥 − 𝑦) + (𝑥 − 𝑦)3

3(𝑥 + 𝑦)2

= 𝑄 + 𝑅
3(𝑥 + 𝑦)2 , say.

We shall get the exact result, if, as the commentary states, the remainder 𝑅 is
equal to the cube of the quotient 𝑄. This is illustrated by taking an example in which
𝑎 = 25 and 𝑠 = 2375. We get (𝑥 − 𝑦) = 5 exactly, and so 𝑥 = 15 and 𝑦 = 10.

It can be easily seen that the method will also be useful for the integral values of
the involved quantities if

(𝑥 − 𝑦)3 is less than 3(𝑥 + 𝑦)2.

In other situations, this empirical method will be rather impractical, e.g. when
one tries to solve

𝑥 + 𝑦 = 11, 𝑥3 − 𝑦3 = 999.

We have to follow trial-and-error method to get correct solution. Anyway, the ef-
fort to discuss all the 21 possible cases indicates south Indian interest in pure math-
ematics in medieval times.

5 Values of 𝜋

The best ancient Indian approximation, as given in the 𝐴𝐵, II, 10, is14

𝜋 = 𝐶
𝐷 = 62832

20000
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This is later on put by the Andhra Pradesh commentator Yallaya (fifteenth cen-
tury) in the popular south Indian alphabetic system, called Katạpayādi Nyāya, as15

र ेहिर पुिरधे व ो ा ननोनर: |

The Chinese value 355
113 for 𝜋, which was given by Tsu Chhung-chih (fifth cen-

tury ad), occurs in India explicitly in the Tantra-samuccaya of Nārāyanạ (fifteenth
century),16 a priest of Travancore for temple construction. The same approximation
is given by Nīlakanṭḥa (c. 1500) in his 𝑇 𝑆, II, 7; as well as in his Golasāra, III, 12
where the rule is17

व ैकसमो ासः पिरधेः ायोऽथबाणगुणभागः |
(When) the diameter equals 113, the circumference has 355 parts nearly.

It is interesting to note that the 𝐾𝐾𝐾 (p. 377) quotes a variant reading of a rule
from Bhāskara II in order to credit him with the above value.

A very good value is given by Mādhava (c. 1340–1425) in the verse18

वबुधने गजा ह ताशन गुणवेदभवारणबाहवः |
नव नखव मते वृ त व रे पिर धमान मदं जग बुधाः ||
In a circle of diameter nine nikharva (that is, 9 × 1011), the measure of the circumference is
taken to be 2827, 4333, 88233 by the learned.

That is,

𝜋 = (2827433388233)
9 × 1011

which yields a value correct to 11 decimal places (after rounding off).
When expressed as a continued fraction, Mādhava’s value yields the Chinese

approximation 355
113 as its fourth convergent. The six convergent comes

104348
33215

for which a Sanskrit stanza is quoted in the 𝐾𝐾𝐾 (p. 377) but with a wrong remark
that this value is a closer approximation than Mādhava’s (ato’api suksṃatama).

The Karanạpaddhati (=KP), VI, 7 composed by Putumana Somayāji (c. 1600–
1740) of Sivapuram (Trichur) gives a value of 𝜋 which is correct to 10 decimal
places.19 It might have been obtained from that of Mādhava.

A value correct to 17 decimal places is found in a late south Indian work, namely,
the Sadratnamālā of Śank̇ara Varmā (1800–1838) who belonged to a royal house of
north Malabar.20

Before going on to next topic it may be worthwhile to quote the 𝑁𝐴𝐵 on the
incommensurability of 𝜋 as follows:21
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...इ केेनैवमानेन मीयमानयो भयोः ा प न नरवयव ं ा |
महा म ानं ग ा प अ ावयव मेव ल | नरवयव ं तु ा प न ल |…
…Hence the two (that is, the diameter and the circumference of a circle) measured by the
same unit will never be without remainder. By carrying out the process further, smallness
in the remainder may be obtained. But remainderlessness can never be achieved.…

Thus irrationality of 𝜋 is clearly stated. Series for 𝜋 are dealt below.

6 Cyclic Quadrilaterals

The cyclic quadrilateral has significant place in the history of Indian mathemat-
ics. The concept of the third diagonal is quite interesting and reflects a sort of ab-
stract mathematical thinking. When two adjacent sides of a (cyclic) quadrilateral are
interchanged, the length of one diagonal is altered (thereby we get the third diago-
nal). This area and perimeter preserving property is mentioned by Bhāskara II, and
the geometry of three diagonals of a cyclic quadrilateral is discussed in greater de-
tails by Nārāyanạ Panḍịta (fourteenth century)22.

The discussion of the three diagonals as found in the 𝐾𝐾𝐾 is more subtle. It
shows that in a cyclic quadrilateral, more than three diagonals are not possible. The
arguments given are substantially as follows (𝐾𝐾𝐾 , p. 351).

Let 𝛼,𝛽,𝛾,𝛿 be the angular measures of the arcs corresponding to the sides
𝑎,𝑏,𝑐,𝑑 (respectively). Now a sum of any two arcs can be made to define a diagonal.
Thus there will be six cases. But because of

𝛼 + 𝛽 + 𝛾 + 𝛿 = 360∘

there will be only three final possibilities (for example, if 𝛼 +𝛽 defines one diagonal,
𝛾 + 𝛿 will define the very same diagonal). Hence only three diagonals are possible.

The 𝐾𝐾𝐾 also proves the following beautiful generalization of the so-called
Ptolemy’s theorem:

THEOREM: Let 𝐴𝐵𝐶𝐷′ be the quadrilateral formed from the cyclic quadrilat-
eral 𝐴𝐵𝐶𝐷 by interchanging the sides 𝐴𝐷 and 𝐶𝐷. That is, by taking 𝐴𝐷′ = 𝐶𝐷 =
𝑐, and 𝐶𝐷′ = 𝐴𝐷 = 𝑑, and 𝐴𝐵 = 𝑎, 𝐵𝐶 = 𝑏. If 𝑥,𝑦,𝑧 denote the three diagonals 𝐴𝐶 ,
𝐵𝐷 and 𝐵𝐷′, respectively, then

𝑦𝑧 = 𝑎𝑏 + 𝑐𝑑
𝑧𝑥 = 𝑏𝑐 + 𝑑𝑎

and 𝑥𝑦 = 𝑐𝑎 + 𝑏𝑑

We have already published23 the 𝐾𝐾𝐾 (pp. 349–351) proof in modern language
and notation and pointed out that it is different from Ptolemy’s proof.
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The 𝐾𝐾𝐾 (p. 351) then obtains the expressions for the three diagonals from the
above theorem. The resulting expressions for the diagonals 𝐴𝐶 and 𝐵𝐷 were already
known to Brahmagupta (628 ad) who24 gave them in his Brāhmasphutạ-siddhānta
(= BSS), XII, 28. These two expressions are considered to be the “most remarkable
to Hindu geometry and solitary in its excellence” by a modern historian and one of
them was rediscovered in Europe by W. Snell (seventeenth century).25

The usual expressions for the area of a cyclic quadrilateral in terms of its sides,
namely,

𝑆 = √(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑑)

were first stated in 𝐵𝑆𝑆, XII, 21 by Brahmagupta who did not, as usual, prove it.26

And the proof attempted by Ganẹśa (c. 1545) of Nandigram (Nanded, Gujarat) is
found to be incomplete.27

Adetailed and complete proof is given in theMalayalam 𝑌 𝐵 (pp. 247–257)which
may be briefly outlined as follows:

By adding the areas of the triangles 𝐵𝐴𝐶 and 𝐷𝐴𝐶 (see Fig. 4) and squaring, we
easily get

𝑆2 = (𝐴𝐶)2(𝐵𝐸 + 𝐷𝐹 )2

4

= (𝐴𝐶)2(𝐵𝐷2 − 𝐸𝐹 2)
4

Now from the individual triangles 𝐵𝐴𝐶 and 𝐴𝐷𝐶 we can show that

𝐸𝑀 = (𝑏2 − 𝑎2)
2 ⋅ 𝐴𝐶

𝐹 𝑀 = (𝑐2 − 𝑑2)
2 ⋅ 𝐴𝐶

where 𝑀 is the mid-point of 𝐴𝐶 . Thus, the lambanipātāntara is given by

𝐸𝐹 = [(𝑎2 + 𝑐2) − (𝑏2 + 𝑑2)]
2.𝐴𝐶

Hence we get

𝑆2 = (
1
4) ⋅ (𝐴𝐶)2 ⋅ (𝐵𝐷)2 − [(𝑎2 + 𝑐2) − (𝑏2 + 𝑑2)]

2

16
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Fig. 4 Area of a cyclic quadrilateral

Using Brahmagupta’s expressions for the diagonals 𝐴𝐶 and 𝐵𝐷 (or using the
expression for 𝑥𝑦 from the above Theorem) and simplifying, we get the required
result in terms of sides only.

Another glorious achievement of medieval south Indian mathematics is the
expression for the circum-radius of the cyclic quadrilateral. This is given by
Parameśvara in his commentary (before 1432) on the Lilāvatī and the rule is also
quoted in the 𝐾𝐾𝐾 (p. 363). The rule is28

दो यो योघ तयुतीन तसृण वधे | एकैकोनेतर ै चतु े ण वभा जते ||
ल मूलेन य वृ ं व ाधन न मत | सव चतुभुजं े ं त वेाव त ते ||
The three sums of the products of the sides taken two at a time are to be multiplied together
and divided by the tetrad formed by diminishing one (of the sides) at a time form the sum
of the other three. If a circle is drawn with the square-root of the quotient (just obtained) as
semi-diameter, the whole quadrilateral figure will be located therein.

That is

𝑅 = √
(𝑎𝑏 + 𝑐𝑑)(𝑎𝑐 + 𝑏𝑑)(𝑎𝑑 + 𝑏𝑐)

(𝑏 + 𝑐 + 𝑑 − 𝑎)(𝑐 + 𝑑 + 𝑎 − 𝑏)(𝑑 + 𝑎 + 𝑏 − 𝑐)(𝑎 + 𝑏 + 𝑐 − 𝑑)

This formula for the circum-radius was rediscovered in Europe about 350 years
later on by S. A. J. L’Huilier (c. 1780).29 The 𝐾𝐾𝐾 (pp. 364–365) has an elegant
derivation. Applying a well-known result to triangle 𝐵𝐷𝐷′ (see Fig. 4), it gets

perpendicular 𝐵𝐾 = 𝑦𝑧
2𝑅
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Also
𝑆 = (

1
2)𝐵𝐾.𝑥

Hence
𝑅 = 𝑥𝑦𝑧

4𝑆

whichwas already known toNārāyanạ Panḍịta (c. 1356) and fromwhich the required
result follows.30

7 Sine Tables

The𝐴𝐵, I, 10 contains differences corresponding to a set of 24 tabular Sines (ℎ = 225
minutes) for the radius31

𝑅 = 21600
2𝜋

= 3438 to nearest minute,

which can be derived by using the value of 𝜋 given in the 𝐴𝐵 itself (see above).
The fractional parts beyond minutes are either left out or rounded off. The fractional
parts consisting of (sexagesimal) seconds and thirds are given by a south Indian,
Govindasvāmin (c. ninth century), who lived in a place which had a latitude of about
10∘ (in his gloss on the Māhā-Bhāskarīya).32 Parameśvara in his commentary (1408)
on the Laghubhāskarīya quotes a sine table in which the sinus totus is 3437; 44
minutes.33

Employing a better value of 𝜋, Mādhava (c. 1400) obtained, from the above re-
lation, the value

𝑅 = 3437;44,48 (to nearest second).

Mādhava’s tabular Sines given in the Katạpayādi system are contained just in six
couplets which are quoted in 𝑁𝐴𝐵 (Part I, p. 55) and in a commentary on 𝑇 𝑆.34

We reproduce the Sines in the accompanying Table.

Table: Mādhava’s Mahājyā (𝑅 = 21600
2𝜋 and ℎ = 225′

)

(Note: Here ळ, ळा, that is, lạ, lạ̄, denote 9.)
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n in Devanāgarī in Transliteration Implied 𝑅sin𝑛ℎ
1 े ं नाम विर ाना śresṭḥaṃ nāma varisṭḥānām 0224; 50, 22

2 हमा वदभावनः himādrirveda bhāvanah ̣ 0448; 42, 58

3 तपनो भानुसू ो tapano bhānusūktajño 0670; 40, 16

4 म मं व दोहन madhyamaṃ viddhi dohanam 0889; 45, 15

5 धगा ो नाशनं क dhigājyo nāśanaṃ kasṭạm 1105; 01, 39

6 छ भोगाशया का channabhogāśayāmbikā 1315; 34, 07

7 मृगाहारो नरेशोऽय mrg̣āhāro nareśo’yam 1520; 28, 35

8 वीरो रणजयो कुः vīro ranạjayotsukah ̣ 1718; 52, 24

9 मूलं व ं नाळ mūlaṃ viśuddhaṃ nālạsya 1909; 54, 35

10 गानेषु वरळा नराः gānesụ viralạ̄ narāh ̣ 2092; 46, 03

11 अ गु ा चोर ीः aśuddhiguptā coraśrīh ̣ 2266; 39, 50

12 श ु कण नगे रः śaṅkukarnọ nageśvarah ̣ 2430; 51, 15

13 तनुजो गभजो म tanujo garbhajo mitram 2584; 38, 06

14 ीमान सुखी सखे śrīmānatra sukhī sakhe 2727; 20, 52

15 शशी रा ौ हमाहारो śaśī rātrau himāhāro 2858; 22, 55

16 वेग ः प थ स रुः vegajñah ̣pathi sindhurah ̣ 2977; 10, 34

17 छायालयो गजो नीलो chāyālayo gajo nī lo 3083; 13, 17

18 नमलो ना स ु ले nirmalo nāsti satkule 3176; 03, 50

19 रा ौ दपणम ा rātrau darpanạmabhrāṅgam 3255; 18, 22

20 नग ु नखो बल nagastuṅganakho balī 3320; 36, 30

21 धीरो युवा कथालोलः dhīro yuvā kathālolah ̣ 3371; 41, 29

22 पू ो नार जनैभगः pūjyo nārī janairbhagah ̣ 3408; 20, 11

23 क ागारे नागव kanyāgāre nāgavallī 3430; 23, 11

24 दवेो व ल भृगुः devo viśvasthalī bhrg̣uh ̣ 3437; 44, 48

8 Second-Order Differences of Sines

It can be easily seen that
𝐷𝑛 − 𝐷𝑛+1 = 𝐹 .𝑆𝑛 (1)

where (for positive integral values of 𝑛)

𝑆𝑛 = 𝑅sin𝑛ℎ
𝐷1 = 𝑆1

𝐷𝑛+1 = 𝑆𝑛+1 − 𝑆𝑛
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and 𝐹 is the proportionality factor, a constant independent of 𝑅 and 𝑛. The relation
(1) expresses the simple property that second-order differences of sines are propor-
tional to sines themselves, a fact which was known to Indians from almost the begin-
ning of their trigonometry, e.g. see the 𝐴𝐵, II, 12 and the 𝑆𝑆, II, 15–16 (according
to the interpretations of Mallikārjuna Sūri and Rāmakrṣṇạ), Golasāra, III, 13–14,
and 𝑁𝐴𝐵 (Part I, p. 53).35 The 𝑇 𝑆, II, 4 gives the value of the reciprocal of 𝐹 as
233.5 and the commentator thereof even gives this as

233 + 32
60

which is almost equal to the actual value.36

More details of the rule (1) are given in 𝑁𝐴𝐵 (part I, 48–53) which contains
a beautiful simple geometrical proof of it. We have already published the proof in
modern language and notation37 but a condensedmathematical versionmay be given
as follows:

From the similar triangles 𝑂𝐴𝑄 and 𝑁𝐾𝑀 (see Fig. 5), we have

Fig. 5 Second order Sine-difference

𝑁𝐾 = 𝑂𝐴 ⋅ 𝑀𝑁
𝑂𝑄 (2)

and

𝑀𝐾 = 𝑄𝐴 ⋅ 𝑀𝑁
𝑂𝑄 (3)

That is,

𝐷𝑛+1 = 𝑅cos(𝑛ℎ + ℎ
2 ) ⋅ (crd ℎ)

𝑅 (4)
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and

𝐸𝑛+1 = 𝑅sin(𝑛ℎ + ℎ
2 ) ⋅ (crd ℎ)

𝑅 (5)

where

𝐶𝑛 = 𝑅cos𝑛ℎ
𝐸𝑛+1 = 𝐶𝑛 − 𝐶𝑛+1

and

𝐸1 = 𝐶1; arc 𝑀𝑋 = 𝑛ℎ; arc 𝑀𝑁 = ℎ;
crd ℎ = chord of arc ℎ

Now, using (2),

𝐷𝑛 − 𝐷𝑛+1 = 𝑂𝐵 ⋅ (crd ℎ)
𝑅 − 𝑂𝐴 ⋅ (crd ℎ)

𝑅

= (crd ℎ)(𝑂𝐵 − 𝑂𝐴)
𝑅

But by (5) applied to the elemental arc 𝑇 𝑄, we get

𝑂𝐵 − 𝑂𝐴 = (Sine at the middle of 𝑇 𝑄) ⋅ (crd ℎ)
𝑅

= 𝑀𝐶 ⋅ (crd ℎ)
𝑅

Hence

𝐷𝑛 − 𝐷𝑛+1 = (crd ℎ)2𝑀𝐶
𝑅2

= (crd ℎ)2 ⋅ (𝑆𝑛)
𝑅2

which proves the required property (1).

9 Addition and Subtraction Theorems for Sine

Although these were already known to Bhāskara II, in theĀryabhatạ School of South
India these theorems, called Jīveparaspara-nyāya, were attributed to the famous
Mādhava (c. 1400) who gave two forms, namely38
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𝑅sin(𝐴 ± 𝐵) = (𝑅sin𝐴) ⋅ (𝑅cos𝐵)
𝑅 ± (𝑅cos𝐴) ⋅ (𝑅sin𝐵)

𝑅 (6)

and
𝑅sin(𝐴 ± 𝐵) = √(𝑅sin𝐴)2 − (𝑙𝑎𝑚𝑏𝑎)2 ± √(𝑅sin𝐵)2 − (𝑙𝑎𝑚𝑏𝑎)2

where

𝑙𝑎𝑚𝑏𝑎 = (𝑅sin𝐴)(𝑅sin𝐵)
𝑅

Geometrical proofs of the theorems are found in the 𝑁𝐴𝐵 (Part I, pp. 58–61) and
the Malayalam 𝑌 𝐵 (pp. 206–208, 212–213, 237–238). We have already brought out
these in modern notation in a paper39 from which one proof (𝑌 𝐵, 237–238) may be
briefly extracted as follows:

Referred to Fig. 6, arc 𝑃 𝐸 = 𝐴; arc 𝑃 𝑄 = 𝐵

Fig. 6 Proof of addition theorem for Sine

Thus 𝑃 𝐿 and 𝑂𝐿 are Sine and Cosine of 𝐴, and 𝑃 𝑈 and 𝑂𝑈 those of 𝐵. By
applying the bhujā-pratibhujā rule (i.e. Ptolemy’s theorem) to the cyclic quadrilat-
eral 𝐿𝑃 𝑈𝑂, we get

𝑃 𝐿 ⋅ 𝑂𝑈 + 𝑂𝐿 ⋅ 𝑃 𝑈 = 𝐿𝑈 ⋅ 𝑂𝑃

or
(𝑅sin𝐴) ⋅ (𝑅cos𝐵) + (𝑅cos𝐴) ⋅ (𝑅sin𝐵) = 𝐿𝑈 ⋅ 𝑅.

Now 𝐿𝑈 is the full chord of the arc (𝐿𝑃 +𝑃 𝑈) in the circle which circumscribes
the quadrilateral 𝐿𝑃 𝑈𝑂 whose radius is 𝑅

2 . Thus

𝐿𝑈 = 2 ⋅ (
𝑅
2 ) ⋅ sin{

(2𝐴 + 2𝐵)
2 }

= 𝑅sin(𝐴 + 𝐵)

Hence the theorem follows from the above relation.
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10 Solution of Spherical Triangles

Consider the spherical triangle 𝑆𝑃 𝑍 on the celestial sphere, where 𝑆,𝑃 ,𝑍 are the
positions of the sun, north pole and the zenith. It has following five useful elements:

(i) side 𝑃 𝑍, the co-latitude, 90∘ − 𝜙
(ii) side 𝑍𝑆, the co-altitude, 90∘ − 𝛼
(iii) side 𝑆𝑃 , the co-declination, 90∘ − 𝛿
(iv) angle 𝑆𝑃 𝑍, the hour angle, 𝐻
(v) angle 𝑃 𝑍𝑆, the azimuth (measured from the north), 𝐴 = 90∘ ± 𝛾 .

When any three out of the above five elements are given, the remaining two can be
found out. This leads to ten different cases all of which are discussed systematically
in the 𝑇 𝑆 (Chapter III).40 The rules are fully explained and the examples worked
out in the commentary of 𝑇 𝑆.41

The solutions given are equivalent to what one will get by using modern spherical
trigonometry. We have already shown this in our detailed paper.42 Here we take, as
a sample, the case II, namely, given 𝐻,𝐴 and 𝜙, to find 𝛼 and 𝛿. For finding the
altitude 𝑇 𝑆, III, 68–71, says:

The product of the Sine of the hour angle and Cosine of the latitude divided by the radius
is the Sine of the local hour angle. Divide the product of the Sines of the hour angle and
the latitude by the Cosine of the local hour angle and multiply by the Sine of the directional
amplitude (azimuthal angle measured from the east). The result should be added to, in case
the directional amplitude is towards north, or subtracted from, in case the directional ampli-
tude is towards south, the product of their ‘kot ̣is’ (i.e. their uprights when they are taken as
bases and the radius is taken as the hypotenuse in each case). The result (now obtained) be
divided by the radius and the quotient (thus obtained) multiplied by the Cosine of the local
hour angle be put separately (at two places).

At one place divide (the quantity) by the radius and add the square (of the result) to the square
of the sine of the local hour angle. By the square root of that (the sum of the squares just
obtained) divide the quantity (placed) separately. (The final result) becomes the Gnomon
(the Sine of the altitude)....

That is

Sine of the local hour angle = (𝑅sin𝐻) ⋅ (𝑅cos𝜙)
𝑅 = 𝐽, say

Cosine of the local hour angle = √𝑅2 − 𝐽 2 = 𝐶, say

Then we form the quantity

(
𝐶
𝑅 ) ⋅

⎡
⎢
⎢
⎣
𝑅cos𝛾 ⋅ √𝑅2 − {

(𝑅sin𝐻) ⋅ (𝑅sin𝜙)
𝐶 }

2
± 𝑅sin𝛾 ⋅ (𝑅sin𝐻) ⋅ (𝑅sin𝜙)

𝐶
⎤
⎥
⎥
⎦

= 𝑄,say

The rule then gives

𝑅sin𝛼 = 𝑄

√𝐽 2 + (
𝑄
𝑅 )

2
.
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By combining the various steps, the solution given can be seen to be equivalent
to

sin𝛼 = sin𝐴 ⋅ cos𝐻 + cos𝐴 ⋅ sin𝐻 ⋅ sin𝜙
√(sin𝐻 ⋅ cos𝜙)2 + (sin𝐴 ⋅ cos𝐻 + cos𝐴 ⋅ sin𝐻 ⋅ sin𝜙)2

which is a transformed form of the following result obtained by using the modern
cotangent formula of spherical trigonometry:

tan𝛼 ⋅ cos𝜙 = sin𝐴 ⋅ cot𝐻 + cos𝐴 ⋅ sin𝜙.

The complicated Indian solution does notmake use of tangent and cotangent func-
tions. Another complication results by deriving the rules from working ‘inside’ the
celestial sphere instead of ‘on its surface’.

We have brought out these complicated rules into modern forms but the more
challenging task of publishing, in modern forms, their ancient rationales from the
south Indian elaborate commentary of 𝑇 𝑆 still remains to be done.43

11 Series for 𝜋

Several such series were known to medieval south Indians. We shall give a few
of them here. One verse, which is found in the Ganịta-Yuktibhāsạ̄ (= GYB), the
Yuktidīpikā commentary or Vyākhyā on 𝑇 𝑆 (= 𝑇 𝑆𝑉 ), and in the 𝐾𝑃 , says:44

ासा ािर ध नहता पृथगा ं ा यु मूलघनैः |
ासे मृणं मशः कृ ा प पिर धरानेयः ||

The circumference is likewise obtained when four times the diameter is (successively) di-
vided by the cubes of the odd numbers, beginning with 3, diminished by these numbers
themselves, and the (respective) quotients are alternately added to, and subtracted from, the
diameter multiplied by three.

That is,

𝐶 = 𝜋𝐷 = 3𝐷 + 4𝐷
33 − 3

− 4𝐷
53 − 5

+ 4𝐷
73 − 7

− …

Another Sanskrit text says45

The fifth powers of odd numbers are increased by 4 times themselves; 16 times the diameter
is successively divided by all such numbers (so obtained); the results (of division) of odd
rank are added and those of even rank are subtracted. The circumference corresponding to
the diameter is (thereby) obtained.

That is
𝜋𝐷 = 16𝐷

15 + 4 ⋅ 1
− 16𝐷

35 + 4 ⋅ 3
+ 16𝐷

55 + 4 ⋅ 5
− …

Now to give a sample of finite series, we have Sanskrit stanzas which contain
series46
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𝜋𝐷 ≈ 4𝐷 − 4𝐷
3 + 4𝐷

5 − … ∓ 4𝐷
𝑛 ± 4𝐷 ⋅ 𝑓(𝑛)

where

𝑓(𝑛) =
(𝑛+1)

2
(𝑛 + 1)2 + 1

or, more accurately,

𝑓(𝑛) =
[ (𝑛+1)

2 ]2 + 1
[(𝑛 + 1)2 + 5] (𝑛+1)

2
.

These two closer approximations are also stated in the sixteenth century Malay-
alam work 𝑌 𝐵 which is said to have given a third form of the closing term but as an
intermediate step (see 𝐴𝐻𝐸𝑆, Vol 18, pp. 89–90; cf. ref. 44). All these can be put
in an alternative modern form as

𝜋
4 ≈ 1 − 1

3 + 1
5 − 1

7 + … ± 1
𝑛 ∓ 𝑓𝑖(𝑛 + 1)

where

𝑓1(𝑛) = 1
(2𝑛)

𝑓2(𝑛) =
(

𝑛
2 )

(𝑛2 + 1)

and 𝑓3(𝑛) =
(

𝑛2

4 ) + 1

(
𝑛
2 ) ⋅ (𝑛2 + 5)

It is said that Prince Rāma Varma of Cochin had verified, by taking 𝑛 = 55, that 𝜋
obtained by 𝑓1,𝑓2 and 𝑓3 is correct to 1, 6 and 10 decimal places, respectively.

Rounding off 𝑓𝑖(𝑛) enormously improves slowness of convergence of the series
used. It is therefore rightly remarked that apparently “we have lost somewider theory
of accelerating the convergence of singly infinite series by applying such corrections
as have now come down to us in medieval Hindu texts the 𝑇 𝑆 and 𝑌 𝐵” (AHES,
Vol. 35, p. 99).

12 Series for Sine and Cosine

For the Sine series we quote the following stanzas (nos. 440–441) from the 𝑇 𝑆𝑉 of
Sank̇ara Vāriar (1st half of sixteenth century)47.
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नह चापवगण चापं त ला न च |
हरे समूलयु ग ावगहतैः मा ||
चापं फला न चाधोऽधोऽ ोपयुपिर जे |
जीवा ै सं होऽ ैवं ` व ा ' इ ा दनाकृतः ||
The arc is to be repeatedly multiplied by the square of itself and is to be divided (in order) by
the square of each even number increased by itself andmultiplied by the square of the radius.
The arc and the terms obtained by these repeated operations are to be placed in sequence in
a column and any last term is to be subtracted from the next above, the remainder from the
term then next above, and so on, to obtain the Sine of the arc. It was this procedure which
was briefly mentioned in the verse starting with ‘Vidvān’.

That is,

sin𝑠 = 𝑠 − 𝑠 ⋅ 𝑠2

(22 + 2)𝑟2 + 𝑠 ⋅ 𝑠2

(22 + 2) ⋅ 𝑟2 ⋅ 𝑠2

(42 + 4) ⋅ 𝑟2 − …

The interesting reference to another set of rules starting with ‘Vidvān’ points out
to a pair of famous stanzas which contain the rule48

sin𝑠 = 𝑠 − 𝑡3[𝑄5 − 𝑡2[𝑄4 − 𝑡2{𝑄3 − 𝑡2(𝑄2 − 𝑡2𝑄1)}]]

where

𝑡 = 𝑠
ℎ

ℎ = 5400;0,0
𝑅 = 3437;44,48

𝑄1 = 0;00,44
𝑄2 = 0;33,06
𝑄3 = 16;05,41
𝑄4 = 273;57,47
𝑄5 = 2220;39,40.

The important point to note is that the ‘Vidvān’ stanzas are attributed to the
famous Mādhava (c. 1400) of Sanġamagrāma (near Cochin) in the 𝑁𝐴𝐵 (Part I,
p. 113). This shows that the power series expansion of sine was known already in
India more than 200 years before it was known in Europe.

There are corresponding stanzas49 for the cosine series which are given side by
side with the above rules.

South Indian medieval derivations of these series have been published and to
reproduce them here will take us too far.50
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13 The Mādhava-Gregory Series

Three and a half Sanskrit couplets containing series for inverse tangent function have
been translated as:51

The product of the given Sine and the radius divided by the Cosine is the first result. From
the first, (and then, second, third), etc., results, obtain (successively) a sequence of results
by taking repeatedly the square of the Sine as the multiplier and the square of the Cosine as
the divisor. Divide (the above results) in order by the odd numbers one, three, etc., (to get
the full sequence of terms). From the sum of the odd terms, subtract the sum of the even
terms. (The result) becomes the arc. In this connection, it is laid down that the (Sine of the)
arc or (that of) its complement, whichever is smaller, should be taken here (as the ‘given
Sine’); otherwise, the terms, obtained by the (above) repeated process will not tend to the
vanishing-magnitude.

That is,

𝑅𝜃 = 𝑅 ⋅ (𝑅sin𝜃)1

1 ⋅ (𝑅cos𝜃)1 − 𝑅 ⋅ (𝑅sin𝜃)3

3 ⋅ (𝑅cos𝜃)3 + 𝑅 ⋅ (𝑅sin𝜃)5

5 ⋅ (𝑅cos𝜃)5 − …

or

tan−1 𝑥 = 𝑥 − 𝑥3

3 + 𝑥5

5 − ….

The Sanskrit text translated is found in the 𝐾𝐾𝐾 as well as 𝑇 𝑆𝑉 both of which
belong to the first half of sixteenth century while James Gregory knew the series
about 1670 in Europe.

But there are reasons to believe that the series was known still one more century
earlier to Mādhava (c. 1340–1425). First, the 𝐾𝐾𝐾 (p. 379) expressly attributes to
him certain Sanskrit stanzas which contain the series52

𝜋𝐷 = 4𝐷 − 4𝐷
3 + 4𝐷

5 − … ∓ 4𝐷
𝑛 ± 4𝐷 ⋅ 𝑓(𝑛)

where (see Sect. 11)

𝑓(𝑛) =
(𝑛+1)

2
(𝑛 + 1)2 + 1

.

This shows that Mādhava knew the Gregory series for 𝜃 = 𝜋
4 . Also the 𝑌 𝐵

(pp. 113–116) proves both these (the general and the particular cases) without mak-
ing any distinction between them by essentially same approach.53

This south Indian proof starts with a geometrical derivation of a rule which is
basically equivalent to

𝑑𝜃 = 𝑑(tan𝜃)
1 + tan2 𝜃

.

Then it consists of steps which are equivalent to expansion and term-by-term
integration in modern analysis. Since the details of the proof (from the Malayalam
𝑌 𝐵) which belongs to pre-calculus period have been already brought out in modern
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notation, it is not necessary to reproduce it here.54 The Indian proofs of sin𝑥,cos𝑥,
and tan−1 𝑥 show that the seeds of modern analysis were first sown in India.

14 Taylor Series for the Sine and Miscellaneous Matters

Rules equivalent to second-order Taylor series expansions of the sine and the cosine
were known to Mādhava whose Sanskrit stanzas are given in the 𝑇 𝑆, II, 10–13
(p. 112) and quoted in the 𝑁𝐴𝐵 (Part I, pp. 54–55).55

A sort of third-order Taylor series expansion of the sine is implied in the following
verses which are quoted anonymously by Parameśvara of Kerala (c. 1360–1460) in
his supercommentary on the Mahābhāskarīya.56

दो ापख -संभ ं ासाध भाजको भवे |
दो मतीतचापा े को ट च से पुनः ||
को ट ातो भाजकेन ल ाधन संयुता |
दोगुणा , भाजका ाध ह ा को टगुणा पुनः ||
त ादा ं भाजकेन दो ख ः ु टो भवे |
चापा दो त ु ा ा द ा भुजो वा ||
The semi-diameter divided by the residual arc becomes the divisor. Put down the Sine and
again the Cosine at the end of the arc traversed. From the Cosine, subtract half the quotient
obtained from the divisor-divided Sine (which is) increased by half the quotient obtained
from the Cosine by the divisor. Again (the quotient) obtained from that (above difference)
by dividing by the divisor becomes the true Sine-difference. The Sine at the end of the arc
traversed increased by that (true Sine-difference) becomes the desired Sine for a (given) arc.

That is, let

divisor = 𝑅
𝜃 = 𝐷, say;

true Sine-difference = 𝑅sin(𝛼 + 𝜃) − 𝑅sin𝛼.

Then the above rule gives57

𝑅sin(𝛼 + 𝜃) = 𝑅sin𝛼 + [𝑅cos𝛼 − {𝑅sin𝛼 + 𝑅cos𝛼
2𝐷 }

1
2𝐷 ]

1
𝐷

which on simplification becomes

𝑅sin(𝛼 + 𝜃) = 𝑅sin𝛼 + (
𝜃
𝑅) ⋅ 𝑅cos𝛼 − (

𝜃
𝑅)

2
⋅ (𝑅sin𝛼)

2 − (
𝜃
𝑅)

3
⋅ (𝑅cos𝛼)

4 .

Putting 𝑅 = 1, this becomes the third-order Taylor Series approximation of the
sine function except that we have 4 instead of 6 in the last term.

No doubt the Indian form is far from being the true Taylor series expansion of
4 terms; the fact that it was given more than two centuries before Taylor expansion
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was discovered by Gregory (about 1668) is interesting.58 Parameśvara’s supercom-
mentary, called Siddhānta-dīpikā, contains several other rules for computations of
trigonometric functions.

The 𝑇 𝑆𝑉 verses 455–456 (p. 119) contain the series for the square of the sine
function equivalent to

sin2 𝑥 = 𝑥2 − 𝑥4

(22 − 2
2 )

+ 𝑥6

(22 − 2
2 )(32 − 3

2 )

− 𝑥8

(22 − 2
2 )(32 − 3

2 )(42 − 4
2 )

+ …

This topic of jyā-vargānayanam is also found treated in the sixteenth century
Malayalam work 𝑌 𝐵 (Part I, pp. 203–206) as has been mentioned elsewhere.59

Lastly, it may be pointed out that the possibility of a principle to frame the tran-
scendental number 𝑒 (the base of natural logarithms) in the medieval Indian math-
ematics has been discussed. More than a decade ago scholars have exemplified the
mechanism of the motivational kinetics by examining the possibility that the basic
constant 𝑒 of mathematical analysis would have appeared as a definite object at the
horizon of mathematical thinking of medieval India.60
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Munīśvara’s Traditional Sine Table

1 Introduction

Munīśvara’s another name was Viśvarūpa. He was born in 1603 ad and his father
was Ranġanātha (a commentator of Sūryasiddhānta). He resided at Varanasi and
wrote the following works (in Sanskrit) related to Indian astronomy and mathematics
(Census of Exact Sciences in Sanskrit, Vol. 4 of Series A, pp. 436–441; Philadelphia,
1981):

1. A commentary called Marīci on the Siddhāntaśiromanị in 1635/1638. It has been
published in the edition of various scholars from various institutions from 1908
to 1988.

2. Siddhānta-sārva-bhauma (1646) with auto-commentary (1650). The pūrvārdha
of this has been published in 3 volumes, Varanasi, 1932, 1935, and 1978.

3. A commentary on the famous Lī lāvatī .
4. Pāt ̣īsāra on traditional arithmetic, algebra, and geometry.
5. Ganịtaprakāśa.
6. Commentary on Cābukayantra of Ganẹśa.
7. Ekanātha-mukha-bhañjana on krāntipātāryātraya from the Siddhāntaśiromanị

(separate from Marīci).

The Siddhānta-sārva-bhauma (= 𝑆𝑆𝐵) is composed in the style and pattern of other
traditional siddhāntic works of India. It has some new things and features. The
work is comparable to the Siddhānta-tattva-viveka (1657) composed by his rival
Kamalākara in some respect.

2 The Sine Table of Munīśvara

The second chapter (called spasṭạ̄dhikāra) of the 𝑆𝑆𝐵 contains a sine table, with the
Sinus Totus 𝑅 = 191 and tabular interval of one degree, given verbally in 16 Sanskrit
verses (II, 3–18). The classical value of the Sinus Totus is 3438 = 2 × 3 × 3 × 191,

Ganịta Bhāratī , Vol. 25, Nos. 1–4 (2003), pp. 119–123.
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and Munīśvara’s 𝑅 comes by omitting the simple factors 2, 3, 3. Another con-
nection may be the value 𝜋 = 600

191 quoted by him (I. 134) from ancient tradition
(Vasisṭḥa, etc.). Described by profusely using word-numerals, the 90 tabular Sines
are expressed in a peculiar mixture of the whole parts with their positive or negative
fractions (both vulgar and sexagesimal). In effect each verbal value can be expressed
in an integral number (rūpah)̣ and his sexagesimal part (adhah-̣avayava) called kalā,
liptā, etc. For example, the 4th and the 8th Sines are:

सराम शगुणे वः = 13 + 1
3 = 13;20 (usual notation);

and त कलोनभा न = 27 − 25′ = 26;35
= 191sin8∘ (= Sin 8∘).

Munīśvara was aware of the inaccuracy of his traditionally described verbal table
of 90 Sines. (II. 20). So he also gave a set of 90 Sines in a direct tabular form in which
each numerical value is conveniently expressed in figures (not words) upto the 3rd
sexagesimal part. We described his both sets of Sines in the accompanying table. In
expressing numerical values, the usual notation for sexagesimal system (fractions)
is followed here, i.e. 𝑎,𝑏,𝑐,𝑑, ……stands for

𝑎 + 𝑏
(60) + 𝑐

(60)2 + 𝑑
(60)3 + …

We have made a few minor changes and corrections in the text and table found in
the printed edition of the 𝑆𝑆𝐵 (Vol. I, Varanasi, 1932, pp. 119–124). He also gave
a direct table (Ibid., 125–126) of Utkramajyās (Versed Sines) for the same 𝑅 and
interval (ℎ = 1∘). This table can be derived from the corresponding table of Sines
since

Vers 𝑛∘ = 𝑅 − Cos 𝑛∘ = 191 − Sin (90 − 𝑛)∘.

This relation helped in checking some tabular entries.

Arc in
deg.

Verbal value of the Sine
Symbolic

form
Sexagesi-
mal form

From his 4-fig
sine table

1
स शंरामाः

satryamṣ́arāmāh ̣ 3 + 1
3 3; 20 3; 20,00,17

2
लवो नतागाः

trilavonitāgāh ̣ 7 − 1
3 6; 40 6; 39,56,54

3
दशः

diśah ̣ 10 10; 0 9; 59,46,12

4
सराम शगुणे वः

sarāmāmṣ́agunẹndavah ̣ 13 + 1
3 13; 20 13; 19,24,33
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5
व शंमेघाः

vitryamṣ́ameghāh ̣ 17 − 1
3 16; 40 16; 38,48,17

6
खयमाः

khayamāh ̣ 20 20; 0 19; 57, 53,46

7
पादगुणा नः

svapādagunạ̄śvinah ̣ 23 + 1
4 23; 15 23; 16,37,22

8
त कलोनभा न

tattvakalonabhāni
27 − 25′ 26; 35 26; 34,55,25

9
शं गाधोऽवयवो नताः

trimṣ́annagādho’vayavonitāh ̣ 30 − 7′ 29; 53 29; 52, 44,20

10
सषडशंदवेाः

sasạdạmṣ́adevāh ̣ 33 + 1
6 33; 10 33; 10,00,29

11
सभा अ गुणाः1

sabhā aṅgagunạ̄h ̣ 36 + 27′ 36; 27 36; 26,40,16

12
मेघ ल ोन ा मताः

meghaliptonaśūnyābdhimitāh ̣ 40 − 17′ 39; 43 39; 42,40,5

13
वेदाः

trivedāh ̣ 43 43; 0 42; 57,56,21

14
सप शतक यः

sapañcāmṣ́atarkābdhayah ̣ 46 + 1
5 46; 12 46; 12,25,30

15
ष ल ायुता ा यः2

sadḍviliptāyutāṅkābdhayah ̣
49 + 26′ 49; 26 49; 26,3,58

16
शंह ना बाणाः

tryamṣ́ahīnāgnibānạ̄h ̣ 53 − 1
3 52; 40 52; 38,48,5

17
वय ागष प

viyadbhāgasạdp̣añca
56 + 0 56; 0 55; 50,34,15

18
गोऽ ाः

go’ksạ̄h ̣ 59 59; 0 59; 1,20,6

19
सष ागप ारयः

sasạdḅhāgapaksạ̄rayah ̣ 62 + 1
6 62; 10 62; 11,00,40

1The reading found in the printed version of the paper is sabhānyaṅgagunạ̄h.̣ According to this
reading, the word has to be split as sabhāni + aṅgagunạ̄h.̣ This is grammatically incorrect, as the
gender of the qualifier is neuter, whereas that of the qualified in masculine. Hence the reading has
been altered as above. It may also be added here that the printed version of the text SSB edited
by Gopinatha Kaviraja, and published Benares—as a part of Saraswati Bhavana Texts, No. 41, in
1935 (p. 119)—presents the reading as सभा गुणाः, which is obviously incorrect. – Editor.
2Here again the reading ष ल ा युता ा यः presented in the printed version of the text SSB (cited
in the previous footnote), is incorrect. The Sanskrit phrase quoted by Prof. RC Gupta in his paper,
as well as the numerical values decoded by him contained inaccuracies. These inaccuracies have
been rectified above. – Editor.
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20
शंयु े षुतक ः

tryamṣ́ayuktesụtarkāh ̣ 65 + 1
3 65; 20 65; 19,33,4

21
सभा अ रसाः

sabhā asṭạrasāh ̣ 68 + 27′ 68; 27 68; 26,53,48

22
सदवेकला गाः

sadevakalākvagāh ̣ 71 + 33′ 71; 33 71; 32,59,30

23
सा कला स

sārddhakalābdhisapta
74 + 1

2 (74′) 74;37′ 74; 37,14,53

24
व शंनागा मताः

vitryamṣ́anāgādrimitāh ̣ 78 − 1
3 77; 40 77; 41,12,7

25
घनोनकला वगः

ghanonakalāṅkavargah ̣ 92 − 17′ 80; 43 80; 43,12,19

26
वतद नागाः

vitadabdhināgāh ̣ 84 − 17′ 83; 43 83; 43,44,00

27
मेघोन ल ा गजाः

meghonaliptādrigajāh ̣ 87 − 17′ 86; 43 86; 42,43,52

28
वरामभागा न ाः

virāmabhāgābhranandāh ̣ 90 − 1
3 89; 40 89; 40,8,39

29
जन ल कोनाः ाः

jinaliptikonāh ̣ tryaṅkāh ̣ 93 − 24′ 92; 36 92; 35,55,6

30
शरा ाः सदलाः

śarāṅkāh ̣sadalāh ̣ 95 + 1
2 95; 30 95; 30,00,00

31
सजा त ल ा न ाः

sajātiliptāsṭạnandāh ̣ 98 + 22′ 98; 22 98; 22,20,11

32
सशर शभू द

saśarāmṣ́abhūdik
101 + 1

5 101; 12 101; 12,52,29

33
वेदा च ाः

vedābhracandrāh ̣ 104 104; 0 104; 1,33,48

34
वशर शस दशः

viśarāmṣ́asaptadiśah ̣ 107 − 1
5 106; 48 106; 48,21,2

35
तल ा युता द ाः

talatryāgniyutāṅkadikkāh ̣ 109 + 33′ 109; 33 109; 33,11,9

36
सा कच ाः

sāṅghryarkacandrāh ̣ 112 + 1
4 112; 15 112; 16,1,8

37
वनख शप ेशाः

vinakhāmṣ́apañceśāh ̣ 115 − 1
20 114; 57 114; 56,48,1

38
स ाः सशरा ल ाः

saptarudrāh ̣saśarāgniliptāh ̣ 117 + 35′ 117; 35 117; 35,28,50
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39
सप शखाक ः

sapañcāmṣ́akhārkāh ̣ 120 + 1
5 120; 12 120; 12,00,41

40
वप शरामा च ाः

vipañcāmṣ́arāmādvicandrāh ̣ 123 − 1
5 122; 48 122; 46,20,46

41
सराम शप च ाः

sarāmāmṣ́apañcadvicandrāh ̣ 125 + 1
3 125; 20 125; 18,26,11

42
वप शनागाकसं ाः

vipañcāmṣ́anāgārkasamḳhyāh ̣ 128 − 1
5 127; 48 127; 48,14,12

43
सपादखरामे वः

sapādakharāmendavah ̣ 130 + 1
4 130; 15 130; 15,42,4

44
शंह ना व े

tryamṣ́ahīnāgniviśve
133 − 1

3 132; 40 132; 40,47,6

45
सनख शा व े

sanakhāmṣ́āksạviśve
135 + 1

20 135; 03 135; 3,26,37

46
स जन ल ाग व काः

sajinaliptāgaviśvakāh ̣ 137 + 24′ 137; 24 137; 23,38,3

47
व शंखे ाः

vitryamṣ́akhendrāh ̣ 140 − 1
3 139; 40 139; 41,18,48

48
त ंशह न ी ाः

tithyamṣ́ahīnadvīndrāh ̣ 142 − 1
15 141; 56 141; 56,26,23

49
कृते काः सा शाः

krṭendrakāh ̣sāṅgāmṣ́āh ̣ 144 + 1
6 144; 10 144; 8,58,18

50
स भागा श ाः

satribhāgāṅgaśakrāh ̣ 146 + 1
3 146; 20 146; 18,52,10

51
त कला धकाः गजे ाः

tattvakalādhikāh ̣gajendrāh ̣ 148 + 25′ 148; 25 148; 26,5,34

52
सा खा ाः

sārddhakhāksạksṃāh ̣ 150 + 1
2 150; 30 150; 30,36,12

53
त ोऽधो रदयुैताः

dvitithyo’dho radairyutāh ̣ 152 + 32′ 152; 32 152; 32,21,47

54
सा त ः

sārddhābdhitithyah ̣ 154 + 1
2 154; 30 154; 31,20,5

55
सभ ल का त ः

sabhaliptikāṅgatithyah ̣ 156 + 27′ 156; 27 156; 27,28,57

56
सराम शगजा च ाः

sarāmāmṣ́agajāksạcandrāh ̣ 158 + 1
3 158; 20 158; 20, 46,14

57
प शयु ा नृपाः

pañcāmṣ́ayuktābhranrp̣āh ̣ 160 + 1
5 160; 12 160; 11,7,53
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58
भूपाः

dvibhūpāh ̣ 162 162; 0 161; 58,37,52

59
घनोन ल ा युगतकच ाः

ghanonaliptā yugatarkacandrāh ̣ 164 − 17′ 163; 43 163; 43,8,14

60
सत ल ा नृपाः

satattvaliptāksạnrp̣āh ̣ 165 + 25′ 165; 25 165; 24,58,10

61
नख शयु ागभूपाः

nakhāmṣ́ayuktāgabhūpāh ̣ 167 + 1
20 167; 03 167; 3,8,31

62
लवेन ह नाः नवा च ाः

trilavena hīnāh ̣navāṅgacandrāh ̣ 169 − 1
3 168; 40 168; 38,34,46

63
सशर शखा यः

saśarāmṣ́akhātyasṭạyah ̣ 170 + 1
5 170; 12 170; 10,56,5

64
भागोनयमागच ाः

tribhāgonayamāgacandrāh ̣ 172 − 1
3 171; 40 171; 40,10,47

65
दगंशयु ा घनाः

digamṣ́ayuktāgnighanāh ̣ 173 + 1
10 173; 06 173; 6,14,3

66
दला ा गे वः

dalādḥyābdhyagendavah ̣ 174 + 1
2 174; 30 174; 29,13,51

67
लवा मेघाः

vyaṅgalavāṅgameghāh ̣ 176 − 1
6 175; 50 175; 48,59,8

68
दगंशयु ागघनाः

digamṣ́ayuktāgaghanāh ̣ 177 + 1
10 177; 06 177; 5,31,37

69
सराम शा ागच ाः

sarāmāmṣ́āsṭạ̄gacandrāh ̣ 178 + 1
3 178; 20 178; 18,49,54

70
सदला मेघाः

sadalāṅkameghāh ̣ 179 + 1
2 179; 30 179; 28,53,42

71
जनोन ल े धुृ तः

jinonaliptendudhrṭih ̣ 181 − 24′ 180; 36 180; 35,38,14

72
भागह ना ह ाः

tribhāgahīnāśvyahiksṃāh ̣ 182 − 1
3 181; 40 181; 39,6,28

73
लवेन ह नाः े वः

trilavena hīnāh ̣ tryasṭẹndavah ̣ 183 − 1
3 182; 40 182; 39,15,9

74
स कलोनवेदा ाः

siddhakalonavedāsṭạksṃāh ̣ 184 − 24′ 183; 36 183; 36,3,33

75
दला ा गजे वः

dalādḥyābdhigajendavah ̣ 184 + 1
2 184; 30 184; 29,30,35

76
स शंप ा भुवः

satryamṣ́apañcāsṭạbhuvah ̣ 185 + 1
3 185; 20 185; 19,35,20
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77
दगंशा ा ा च ाः

digamṣ́ādḥyāṅgāsṭạcandrāh ̣ 186 + 1
10 186; 06 186; 6,16,51

78
रसभागह नाः स ा च ाः

rasabhāgahīnāh ̣saptāsṭạcandrāh ̣ 187 − 1
6 186; 50 186; 49,34,17

79
सदलागनागच ाः

sadalāganāgacandrāh ̣ 187 + 1
2 187; 30 187; 29,26,51

80
दगंशा गजा च ाः

digamṣ́ādḥyagajāsṭạcandrāh ̣ 188 + 1
10 188; 06 188; 5,53,49

81
शंोनन धृतयः

tryamṣ́onanandadhrṭayah ̣ 189 − 1
3 188; 40 188; 38,54,30

82
अ कला गोऽ च ाः

asṭạkalādḥyago’sṭạcandrāh ̣ 189 + 8′ 189; 08 189; 8,20,29

83
वत क लका नवे सुं ाः

vitattvakalikābhranavendusamḳhyāh ̣ 190 − 25′ 189; 35 189; 34,34,44

84
खा शंह नखनवे ु मताः

khāśvyamṣ́ahīnakhanavendumitāh ̣ 190 − 1
20 189; 57 189; 57,13,15

85
सपादखा े वः

sapādakhāṅkendavah ̣ 190 + 1
4 190; 15 190; 16,23,28

86
रदकला नभोऽ च ाः

radakalādḥyanabho’ṅkacandrāh ̣ 190 + 32′ 190; 32 190; 32,5,2

87
पादोनभूनवभुवः

pādonabhūnavabhuvah ̣ 191 − 1
4 190; 45 190; 44,17,40

88
वदश शभूगोच ाः

vidaśāmṣ́abhūgocandrāh ̣ 191 − 1
10 190; 54 190; 53,1,8

89
यमोनक लकाव नन च ाः

yamonakalikāvaninandacandrāh ̣ 191 − 2′ 190; 58 190; 58,15,17

90
भून भूपिर मताः

bhūnandabhūparīmitāh ̣ 191 191; 0
191; 00,00,00

= 𝑅
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Bio-bibliographical Sketches of Some
Historians of Mathematics



Prabodh Chandra Sengupta (1876–1962):
Historian of Indian Astronomy
andMathematics

1 Introduction

Prabodh Chandra Sengupta, the younger son of Ram Chandra Sengupta, was
born in a village near Tangail inMymensingh district (now inBangladesh) on 21 June
1876. He had his early education in the Santosh Jahnavi H. E. School and passed the
Entrance (Matric) examination with sufficient merit to obtain a scholarship. Subse-
quently he studied in Calcutta passing the First Arts (Intermediate) examination from
the PresidencyCollege, theB.A. examinationwith first class honours inMathematics
from the General Assembly’s Institution, and the M. A. examination in Mathematics
from the Presidency College in 1901.

Professor Prabodh Chandra Sengupta (1876–1962)

Gan. ita Bhāratı̄, Vol. 1, (1979), pp. 31–35.
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Professor Sengupta entered the educational service under the Government of
Bengal in July 1902 and worked as a teacher in various government schools till
1914. Several renowned scholars like M. N. Saha and R. C. Majumdar were his
students during their school days in Dacca.

Shortly after passing the B. T. examination, Prof. Sengupta was appointed as a
Lecturer in Mathematics at the Chittagong College in 1914. Later on in 1916, he
joined the Bethune College, Calcutta, which he served till his retirement from the
government service in January 1934. Hewasmade Professor ofMathematics in 1921
under Bengal Educational Service.

2 Research Contributions

Professor Sengupta is best known for his researches and publications in the field of
Indian astronomy and chronology which date from 1916 and lasted for a long period
of 40 years. He also delivered lectures in Indian Mathematics and Astronomy at
the Calcutta University. The arrangement of teaching Indian Astronomy (2 papers)
and Indian Mathematics (2 papers) in M. A. Course (Group IV) was there under
the University Department of Ancient Indian, History and Culture (see Journal of
Ancient Indian History, Vol. II, 1968–1969, p. 3).

Besides translating (1927a) the Āryabhat. ı̄yam of Āryabhat.a I (born 476 ad).
Professor Sengupta gave us his famous translation (1934) and edition (1941) of
Brahmagupta’s Khan. d. akhādyaka (665 ad). These two parts were dedicated to Sir
AshutoshMukherjee (1864–1924), the Founder of Research Studies in theUniversity
of Calcutta, who had nicely utilized the handsome donation from Maharaja Manin-
dra Chandra Nandy of Cossimbazar for the promotion of researches in the domain
of ancient Indian Mathematics and Astronomy. Professor Sengupta got inspiration
also from others like Professor Ganesh Prasad (1876–1935), Hardinge Professor of
Pure Mathematics, Calcutta University, whose two students, B. Datta (1888–1958)
and A. N. Singh (1901–1954), turned out be famous historians of Indian Mathe-
matics. Professor Sengupta’s numerous papers on various aspects of ancient Indian
Mathematics and Astronomy including comparison with Greek methods are the
result of his deep research and labour. His introductions attached to his translation
of Khan. d. akhādyaka, to the Calcutta edition (1935) of Burgess’s translation of the
Suryasiddhānta and to B. Misra’s edition of the Siddhāntaśekhara (see [1944/47])
are equally valuable.

By applying the so-called ‘astronomical method’, Professor Sengupta determined
the dates of a number of events and works related to Indian history, culture and civ-
ilization and published several papers on the subject. At the suggestion of Professor
M. N. Saha, FRS, Professor Sengupta submitted a scheme of research work to the
Calcutta University which was duly approved. Mr. Nirmal Chandra Lahiri worked
as a research assistant in the scheme which was carried out from 1939 to 1941. The
result is the famous work Ancient Indian Chronology (Calcutta 1947) which reflects
profound knowledge of Astronomy, Mathematics and Sanskrit.
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Professor Sengupta was the President of the Technical Sciences Section of the
XIIth All-India Oriental Conference (Benares, 1944). His publications continued to
come out when he was well over 80 years. He died in Calcutta on 6 August 1962
leaving his widow, five sons and three daughters and grandchildren to mourn his loss.
In his passing, India lost a pioneer worker in the field of ancient Indian exact sciences.
A very good way to cherish his work and memory will be to bring out in a book form
a collection of his numerous papers on Indian Mathematics and Astronomy.

3 Bibliography of P. C. Sengupta

The following abbreviations are used:

BCMS = Bulletin of the Calcutta Math. Society.
JASP[L] = Journal of the Asiatic Society of Bengal (Letters). Was called Journal

of the Royal Asiatic Society of Bengal earlier.
JDL/JDS = Journal of the Department of Letters/Science (University of Calcutta).
YB = Year Book of the Asiatic Society of Bengal.

[1912] A Text-book on Graphs for Schools and Colleges, Albert Library, Dacca.

[1916] Papers on Hindu Mathematics and Astronomy, Part I, Cotton Press, Calcutta.

[1916a] ‘Parallax in Hindu Astronomy’, In the Report of the Indian Association for the
Cultivation of Science (Calcutta) for the Year 1916, pp. 15 ff.

[1918–19] ‘Origin of the Indian Cyclic Method for the Solution of N x2 + 1 = y2’, BCMS
10, pp. 73–80. Reprinted in JDS 2 (1920), 69–76.

[1920–21] ‘Āryabhat.a’s Method of Determining the Mean Motions of Planets’, BCMS 12,
183–188. Reprinted in JDS, 4 (1922), 237–242.

[1927] ‘Time by Altitude in Indian Astronomy’, BCMS 18, 25–28.

[1927a] ‘The Āryabhat. ı̄yam (a translation)’, JDL 16, Article 6, 1–56.

[1929] ‘Āryabhat.a, the Father of Indian Epicyclic Astronomy’, JDL 18, Article 3, 1–56.

[1929a] ‘Date of Composition of the Ramayana’, JDL 19, 43.

[1930] ‘Āryabhat.a’s Lost Work’, BCMS 22, 115–120.

[1931] ‘Brahmagupta on Interpolation’, BCMS 23, 125–128.
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[1931a] ‘Greek and Hindu Methods in Spherical Astronomy’, JDL 21, Article 4, 1–25.
Also in his [1934], 172–193.

[1931b] ‘History of the Infinitesimal Calculus in Ancient and Medieval India’, Jahr. Deut.
Math-Verein 40, 223–227.

[1932] ‘Hindu Luni-Solar Astronomy’, BCMS 24, 1–18. Also in his [1934], 154–171.

[1932a] Infinitesimal Calculus in Indian Mathematics: Its Origin and Development’, JDL
22, Article 5, 1–17.

[1932b] (An opinion on Sripati’s Siddhāntaśekhara and its Calcutta edition). Attached to
B. Misra’s edition of the work, Part I, p. 522 (Calcutta University).

[1934] The Khan. d. akhādyaka (of Brahmagupta). A translation with Introduction, Calcutta
University, Calcutta. Appendices I, II, III are, respectively, [1932], [1931a], and
‘Hindu Epicyclic Theory’, pp. 194–200.

[1934a] ‘Age of the Brahmanas’, Indian Hist. Quart. 10, 533–540.

[1935] Introduction to Calcutta University Edition (by P. Gangooly) of E. Burgess’s Trans-
lation of the Sūryasiddānta, pp. VII–L.

[1937] ‘Hindu Astronomy’, In Cultural Heritage of India, Vol. III, pp. 341–377 (Ramakr-
ishna Centenary Committee, Calcutta).

[1937a] ‘Some Astronomical References from the Mahābhārata and their Significance’,
JASB (L) (3) 3, 101–119. Also YB, 3, 157–158; and [1947], 1–33.

[1938] ‘Bharata Battle Tradition’, JASB (L) (3), 4, 393–413. Also YB, 3, 158; and [1947],
34–59.

[1938a] ‘Solstice Days in Vedic Literature’, Ibid. 415–435. Also YB, 3, 158; and [1947],
155–174.

[1938b] ‘Madhu-Vidya or Science of Spring’, Ibid., 435–443. Also YB, 6, 158–159; and
[1947], 60–71.

[1938c] ‘When Indra Became Maghavan’, Ibid, 445–453. Also YB, 6, 150; and [1947],
72–81.

[1938d] (About whether the Mahābhārata references are later interpolations). Science and
Culture (of July 1938), 26–29.

[1940–41] ‘Kanishka Era’, Indian Culture 7, 457–462.
[1941] The Khan. d. akhādyaka byBrahmagupta. Editedwith theCommentary ofCaturveda

Pr. thūdaka, Calcutta University, Calcutta.

[1941a] ‘The Solar Eclipse in the R. gveda and the date of Atri’, JASB (L) (3), 7, 91–113.
Also YB, 8, 165–166; and [1947], 101–131.

[1941b] ‘Time Indications in Baudhāyana Srautasūtra’, JASB (L) (3), 7, 207–214. Also
YB, 8, 180; and [1947], 198–207.
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[1942] ‘The Gupta Era’, JASB L (3), 8, 41–57. Also YB, 8, 179–80, and [1947], 244–262.

[1944] ‘Hindu Astronomy’, Science and Culture, 9, 522–526.

[1944/47] (With N. C. Lahiri): Introduction (dated 1944) to B. Misra’s Edition of
Siddhāntaśekhara Part II (Calcutta, 1947), pp. VII–XLI.

[1945] ‘Astronomical Time Indications in Kalidāsa’, JASB (L) (3), 11, 14–23. Also YB,
11, 109–110; and [1947], 263–278.

[1945/48] H. Sastri’sA Descriptive Catalogue of Sanskrit Manuscripts in the Collection of the
Royal Asiatic Society of Bengal, Vol. 10 (Jyotisa); revised and edited by Sengupta,
2 Parts, Calcutta.

[1947] Ancient Indian Chronology, Calcutta University, Calcutta.

[1949] ‘On theMeaning of the Kali-ahargana as to the Date of Yuktibhās. a (Special Note).
JASB (Science) (3), 15, 12–13.

[1950] ‘Researches in Ancient Indian Chronology’, JASB (L) (3), 16, 1–13.

[1950/53] ‘Date of Bharata War: ‘A Rejoinder’, J. Ganganatha Jha Res. Inst. 8 (1950–51),
203–214; and 10 (1952–53), 21–38.

[1951] ‘The Danavas in Mahābhārata’, JASB (L) (3), 17, 177–185.

[1952] ‘Note on Dr. N. Sen’s Criticism of a Chapter in Ancient Indian Chronology’, JASB
(L), (3), 18, 7.

[1954] ‘A Note on Bhismastami or the Anniversary of Bhisma’s Expiry’, JASB (L), (3),
20, 39–41. Also YB, 20, 182.

[1955] A Short Note on Khana’s Time’, JASB (L), (3), 21, 59–61. Also YB, 22, 226.

[1955a] ‘Shifting of the Date of the Bharata Battle from 2449 B.C: A Possibility?’ Science
and Culture 21, 5–8.

[1956] ‘The Historicity of the Mahābhārata on the Basis of Astronomical Data’, JASB
(L), (3), 22, 75–84.

Note: Prof. Sengupta also authored numerous contributions on Indian chronology
in Bengali which appeared in Bengali periodicals like Sri Bharati, Bharatavarsa, etc.

Acknowledgements I am grateful to Dr. P. C. Sengupta, M. B., D. Phil, son of Professor P. C. Sen-
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Bibhutibhusan Datta (1888–1958):
Historian of Indian Mathematics

Born to a poor Bengali family, Bibhutibhusan Datta (1888–1958) was indifferent to worldly
pleasures and gains. He never married. His doctoral thesis was on hydrodynamics, but he
is best known for his work on the history of mathematics. He retired voluntarily from the
University of Calcutta at the age of 45 and in 1938 took sanyāsa (literally, renunciation) to
become known as Swami Vidyāran.ya. He also wrote on Indian religion and philosophy.

Bibhutibhusan Datta (1888–1958), Sohn einer armen Bengali-Familie, war an weltlichen
Vergnügungen und Reichtümern nicht interessiert und blieb unverheiratet. Er promovierte
auf dem Gebiet der Hydrodynamik, doch erwarb er sich vor allen Dingen durch sein werk
über die Geschichte der indischen Mathematik grosse Verdienste Im Alter von 45 Jahren
zog er sich aus freier Entscheidung von der Universität Calcutta zurück, nahm 1938 sanyāsa
an und wurde unter dem Namen Swami Vidyāran.ya bekannt. Er schrieb auch über indische
Religion und Philosophie.

Historia Mathematica 7 (1980), pp. 126–133. A Bengali translation appeared in Ganit Charcha
8(1–2) (1989), pp. 73–78.
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Dr. Bibhutibhusan Datta D.Sc. (Swami Vidyāran.ya), 1888–1958

Bibhutibhusan Datta was born on Thursday, June 28, 1888, in Kanungoyapara
village ofChittagong (now inBangladesh) [1]. His father, RasikacandraDatta (1854–
1926), was a poor but honest and religious man who worked in the office of the
subjudge. His mother, Muktakeśı̄ Datta (1861–1958), was a kind person, rendering
help to her neighbours during the famine of 1943. Bibhutibhusan was their third son
(of 11) and, like his brothers, was handsome [2].

From the beginning Bibhutibhusan exhibited saint-like qualities. Even as an ado-
lescent, he told his parents that he would never marry and would become a sanyāsı̄
(one who renounces the world and worldly pleasures in order to realize Brahman, the
Infinite Self). During his school days, he wore nothing more than kopı̄na (loincloth).
He studied religious books andwas deeply influenced by thewritings of Ramakrishna
and Vivekananda. He had an analytical view of philosophy, even from his youth.

In 1907, B. Datta passed thematriculation examination of Calcutta University and
was awarded a scholarship. He received a Bachelor of Science degree at the Presi-
dency College (under Calcutta University) in 1911–1912. In November of 1913 (a
fewmonths before his master’s examination), he left home (very likely he intended to
become sanyāsı̄) andwas reportedmissing. His eldest brother found him inHaridwar
(near the Himalayas) and brought him home, taunting him that he had run away for
fear of failing the examination. But Datta said he would receive a first class, which in
fact he did in 1914 when he passed the master’s examination in Mixed Mathematics
(a course which involved pure as well as applied mathematics).

Thereafter he was awarded a scholarship to do mathematical research at Cal-
cutta University. (He had already written a paper before the results of the master’s
examination were known.) He was appointed lecturer in Mixed Mathematics at the
University Science College, where he taught planetary theory. Later he was awarded
the Premchand Roychand Scholarship and the Elliot Prize. After defending his thesis
on hydrodynamics (circa 1920), he received the degree of Doctor of Science.

Datta always retained his religious beliefs and saint-like nature. He completed
critical studies and reviews of the upanis. ads and other philosophical works, always
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remaining aloof from worldly pursuits. So unconcerned was he for personal gain
that when the Rashbehari Ghosh Professorship of the Science College fell vacant
and was offered to him, he rejected the honour, saying: “After a couple of days I
shall become sanyāsı̄ (and so) I have no need for the promotion.” However, since
no other suitably qualified person was available for the post, he took the assignment
and carried out the job successfully for three years without accepting any additional
allowance (Dutt 1963, 6).

Throughout his life, Datta was a follower of Shankaracharya, the Vedantin, and
believed in the Viśuddha-advaitavāda (pure non-dualism). He was initiated in 1920,
and his guru was Swami Vis.n.utı̄rtha Mahārāja. Datta never ate meat in his life. His
serenity was not disturbed by worldly pains and sorrows, not even by the death of
his father in 1926.

In 1923, Ganesh Prasad (then Principal of the Central Hindu College, Benares)
was appointed Hardinge Professor of Higher Mathematics at Calcutta University [3]
who deserves credit for creating interest in the history of mathematics in India. He
was himself a historian of mathematics, and two of his students, A. N. Singh and
B. Datta, became pioneers in the history of Hindu mathematics.

Datta’s writings in the history of mathematics date from the mid-1920s. He deliv-
ered an address, “Contribution of the Ancient Hindus to Mathematics,” to the Alla-
habad University Mathematical Association on December 20, 1927. This was pub-
lished in Volumes I and II of the Association’s Bulletin and later became the nucleus
of Datta’s major work (with A. N. Singh), History of Hindu Mathematics (1935–38).

By now Datta had become even more uninterested in the routine work of a pro-
fessional mathematician, and in 1929 he resigned from Calcutta University (Jones
1976, 77). However, his retirement was brief. In 1931, by special invitation, he deliv-
ered the readership lectures at Calcutta University. Datta states (1932a, viii) that he
delivered these lectures on “The Science of the Śulba” in deference to the wish of
his teacher (Professor Ganesh Prasad). In April of 1932, he wrote a short review of
the edition of Siddhānta-śekhara edited by Babua Misra (1932, 521).

But Datta was not anxious to remain at the University, and in the Preface (dated
July 28, 1932) to The Science of the Śulba (1932a, viii) he writes, “I tender grateful
thanks to Mr. A. C. Ghatak, Superintendent, and to the staff of Calcutta University
Press for kindly expediting publication of the book in order to help me to go back to
my retirement earlier.” In 1933, at the age of 45, he finally retired from the University
(Dutt 1972, 8). He then became an itinerant wanderer, moving here and there, living
on the charity of others, and was seen at the Dharmasindhu Ashram during March
of 1934 (Jones 1976, 77–78). During this period he continued to write on the history
of mathematics.
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In 1938, Datta took sanyāsa (Dutt 1934, 14). As a sanyāsin he became known as
Swami Vidyāran.ya. In the same year Part II of his History of Hindu Mathematics
appeared [4]. In the last years of his life, Swami Vidyāran.ya lived mainly at Pus.kara
(in Rajasthan). On March 24, 1958, his mother died, and his own death followed
shortly thereafter, on October 6.

1 Bibliography of Bibhutibhusan Datta

The work done by B. Datta falls into three distinct categories according to subject
matter. These three categories—namely Applied Mathematics, History of Mathe-
matics, and Religion and Philosophy—also mark the three phases or periods of his
work.

1.1 Applied Mathematics

Datta’s papers in this category are devoted to hydrodynamics, which was his area of
research as a university scholar. As a sample we cite his paper, “On the Periods of
Vibrations of a Straight Vortex Pair,” (1921), Proceedings of the Benares Mathemat-
ical Society 3, 13–24.

These writings, completed before 1925, represent the first phase of his work.
They are little known, and since they contain no historical treatment, we will not list
them here. For a list of seven published and a dozen unpublished papers on Applied
Mathematics, see Pioneer Mathematicians of Calcutta University (Kolkata, 2014),
pp. 40–42.

1.2 History of Mathematics

This is the most well-known category of Datta’s writings. His reputation rests mainly
on original research in this area. These publications date from 1925 to 1947. They
are listed below in chronological order, with the following abbreviations used:

AMM American Mathematical Monthly.
BCMS Bulletin of the Calcutta Mathematical Society.
B. S. Bengali San (i.e. Bengali Year).
BSPP Baṅgı̄ya Sāhitya Paris. ad Patrikā (Calcutta).
IHQ Indian Historical Quarterly (now defunct).
JA Jaina Antiquary (Arrah).
JASB Journal of the Asiatic Society of Bengal (Calcutta).
PBMS Proceedings of the Benares Mathematical Society.
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[1925–26] “Al-Bı̄rūnı̄ and the origin of Arabic numerals,” PBMS 7–8, 9–23.
1926a “A note on Hindu-Arabic numerals,” AMM 33, 220–221.
1926b “Two Āryabhat.as of Al-Bı̄rūnı̄,” BCMS 17, 59–74.
1926c “Hindu (non-Jaina) values of π,” JASB (n. s.) 22, 25–42.
1926–31 “Early literary evidence of the use of zero in India,” AMM 33, 449–454, and 38,

566–572.
1927a “On mūla, the Hindu term for ‘root,” AMM 34, 420–423.
1927b “On the origin and development of the idea of percent,” AMM 34, 530–531.
1927c ‘Āryabhat.a, the author of Gan. ita,” BCMS 18, 5–18.
1927d “Early history of the arithmetic of zero and infinity in India,” BCMS 18, 165–176.
1927e “The present mode of expressing numbers,” IHQ 3, 530–540.
1927f “The Hindu method of testing arithmetical operations,” JASB (n. s.) 23, 261–267.
1927–29 “Hindu contributions to mathematics,” Bulletin of the Allahabad University Math-

ematical Association, 1, 49–73, 2, 1–36. Part one reprinted, 12, 1–36.
1928a “The science of calculation by the board,” AMM 35, 520–529.
1928b “The Hindu solution of the general Pellian equation,” BCMS 19, 87–94.
1928–29a “On Mahāvı̄ra’s solution of rational triangles and quadrilaterals,” BCMS 20, 267–

294 (1930).
1928–29b “Śabda-sam. khyā-pran. ālı̄” (Theword numeral system) (inBengali),BSPP for B. S.

1335, 8–30.
1929a “The Bakshali mathematics,” BCMS 21, 1–60.
1929b “The Jaina School of mathematics,” BCMS 21, 115–145.
1929c “The scope and development of Hindu Gan. ita,” IHQ 5, 479–512.
1929d “A short review of G. R. Kaye, The Bakhshali Manuscript—A study in Mediaeval

mathematics (Calcutta, 1927),” Bulletin of the American Mathematical Society 35,
579–580.

1929–30 “Aks. ara-sam. khyā-pran. ālı̄” (Alphabetic numeral system) (in Bengali), BSPP for
B. S. 1336, 22–50.

1929–31a “Origin and history of the Hindu names for geometry,” Quellen und Studien zur
Geschichte der Mathematik, B I, 113–119 (1930).

1929–31b “Geometry in Jaina cosmography,” Quellan und Studien zur Geschichte der Math-
ematik, B I, 245–254.

1930a “On the supposed indebtedness of Brahmagupta to Chiu-chang Suan-shu,” BCMS
22, 39–51.

1930b “The two Bhāskaras,” IHQ 6, 727–736.
1930c “On the Hindu names for rectilinear geometrical figures,” JASB (n.s) 26, 283–290.
1930–31a “Nāma-sam. khyā” (Nominal numerals) (in Bengali), BSPP for B. S. 1337, 7–27.
1930–31b “Jaina-sāhitye nāma-sam. khyā” (Nominal numerals in Jaina literature) (in Ben-

gali), BSPP for B. S. 1337, 28–29.
1930–31c “An. kānām. vāmato gatih. ” (in Bengali), BSPP for B. S. 1337, 70–80.
1931a “On the origin of the Hindu terms for ‘root,” AMM 38, 371–376.
1931b “The origin of Hindu indeterminate analysis,” Archeion 13, 401–407.
1931c “Nārāyan. a’s method for finding approximate value of a surd,” BCMS 23, 187–194.
1931d “Early history of the principle of place value,” Scientia 50, 1–12.
1932a The Science of the Śulba, Calcutta.
1932b “Elder Āryabhat.a’s rule for the solution of indeterminate equations of the first

degree,” BCMS 24, 19–36.
1932c “Testimony of early Arab writers on the origin of our numerals,” BCMS 24, 193–

218.
1932d “On the relation of Mahāvı̄ra to Śrı̄dhara,” ISIS 17, 25–33.
1932e “Introduction of Arabic and Persian mathematics into Sanskrit literature,” PBMS

14, 7–21.
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1933 “The algebra of Nārāyan. a.” Isis 19, 472–485.
1933a “Ancient Bengali Astronomer: Mallikārjuna Sūri”, BSPP for B. S. 1340, 83–94;

Reprinted in Proceedings of the Radhanagar Seminar on History of Mathematics,
Radhanagar, 2013, 18–29.

1933–34 “Ācārya Āryabhat.a and his disciples and followers” (in Bengali), BSPP for B. S.
1340, 129–158.

1935 “Mathematics of Nemicandra,” JA 1, 25–44.
1935–36 “Āryabhat.a and the theory of the motion of the earth” (in Bengali), BSPP for B. S.

1340, 167–183.
1935–38 History of Hindu Mathematics. A Source Book (with A. N. Singh). Parts I, II,

Lahore, 1935, 1938. Reprinted as two parts in one, Bombay, 1962. Part I translated
into Hindi by K. S. Shukla, Lucknow 1956 (2nd ed. 1963). For part III, see note
[4] below.

1936 “A lost Jaina treatise on arithmetic,” JA 2, 38–41.
1937 “VedicMathematics,” In Cultural Heritage of India,Vol. III, pp. 378–401,Calcutta.
1938–39 “Application of indeterminate analysis to astronomical problems,” Archeion 21,

28–34.
1941 “Chronology of the history of science in India during sixteenth century,” Archeion

23, 78–83.
1946–47 “Some instruments of ancient India and their working,” Journal of the Ganganatha

Jha Research Institute 4, 249–270.
1983–1987 Prācı̄na Hindu Jyotisı̄ (in Bengali). Published serially in Ganit Charcha from Vol.

2, No.1 (March 1983) to Vol. 6, No. 4 (Dec.1987).

1.3 Philosophy and Religion

Datta’s writings on the historical aspects of Indian philosophical and religious system
form the third and the last phase of his work. They are not widely known (doubtless
because they are all in Bengali). Two works published posthumously are:

1963–66 Bhāgavata-dharmer prācı̄na itihāsa (Ancient History of Bhagavata Religion) (in
Bengali). 4 vols., Calcutta.

1972 Advaitavāder prācı̄na kahānı̄ (Ancient Story of Advaita Philosophy) (in Bengali).
Vol. I, Calcutta. Other parts not published.

Datta left a work on Jaina philosophy and another on Buddhist philosophy in
addition to several incomplete essays (Dutt 1963, 11).

2 Notes

1. The date of birth as recorded in the local system is Thursday, the 15th of Ās. ād. ha
in Śaka 1810 (Dutt 1963, 5), which is taken to be the 28th of June, 1888. This
Gregorian date of birth is also recorded in the list of members of the comit é
Internationale d’ Histoire des Sciences of May 15, 1931 (Jones 1976, 78). The
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citation on a plate included in some of the copies of (1963–66) of June 29, a
Friday, as Datta’s birth date is incompatible with the officially recorded date.

2. The names of the ten brothers, in order of seniority, are: Rebati Raman Dutt,
Bhupati Mohan Dutt, Nirode Lal Dutt, Binode Behari Dutt, (Ex-Registrar and
Controller of Examinations, University of Calcutta), Harihar Dutt, Pramatha
Ranjan Dutt, Subimal Dutt (former Ambassador to USSR), Sukomal Dutt, Pari-
mal Dutt, and Ranjit Dutt. These names have been kindly communicated by
Professor Bhupal K. Dutt (son of Rébati Raman). Bibhutibhusan wrote the fam-
ily name as Datta, which is the proper transliteration.

3. This was the second time he joined the Calcutta University. From 1914 to 1917
he had been the Rashbehari Ghosh Professor of Applied Mathematics [Narayan
1939, 108].

4. Part III (Geometry, Trigonometry, Calculus, etc.) of the History of Hindu Math-
ematics by Datta and A. N. Singh (died 1954) has never been published although
more than 40years have passed since the appearance of Part II. The informa-
tion given by the late Binode Bihari Dutt in a personal communication dated
September 11, 1966 [also see his (1963, 12)], that Part III has been lost, turned
out to be wrong. Manuscripts of Part III exist at Lucknow with Dr. K. S. Shukla
(1976, 52) and with the writer (R. C. G.) of the present article who received it
from (and due to kindness of) Dr. S. N. Singh (son of A. N. Singh). It is unfortu-
nate that the authors (particularly A. N. S.) could not ensure the publication of
Part III (Sinvhal 1954, iii), although they lived long enough after the appearance
of Part II to have perhaps done so. It is also unfortunate that when Parts I and
II were reprinted, no attempt was made to bring the work up-to-date. Part III
is expected to appear shortly, in serialized form, in the Indian Journal of the
History of Science.
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Review of Pingree’s Census of Exact
Sciences in Sanskrit (1992)

[Series A, Volume 4, by David Pingree; American Philosophical Society, Philadelphia, 1981
(Memoirs of the A.P.S., Vol. 146); Pages 447, List Price U.S. $ 30.00.]

While reviewing C. N. Srinivasiengar’s The History of Ancient Indian Mathematics
(Calcutta 1967), the late E. B. Allen of New York has remarked that “an adequate
history of mathematics of India can be written only after a comprehensive survey
has been made of manuscripts available in Sanskrit and vernacular languages, the
dates and authors of manuscripts, and the studies bearing on their place in the history
of mathematics” (Math. Reviews, Vol. 36, p. 269). S. N. Sen’s A Bibliography of
Sanskrit Works on Astronomy and Mathematics, Part-I (New Delhi 1966), according
to Allen (ibid)., “attempts to fulfil these requirements but does not do so” (other parts
of Sen’s work never appeared).

It is therefore a very happy affair to find thatDr.DavidB. Pingree (born 1933), now
Professor of the History of Mathematics at the Brown University (USA), undertook
single-handed a giant project of surveying all the Sanskrit works and all the authors
that can be identified in the field of jyotis. a-śāstra and allied disciplines. The useful-
ness of the project is to lie, as Pingree himself points out, “in providing a preliminary
exploration and organisation of the vast mass of Sanskrit and Sanskrit-influenced
literature devoted to the exact sciences (including astronomy, mathematics, astrol-
ogy, and divination), and in detailing under each item not only what preceding work
has been done, but what manuscript material is known to be available for future
investigations” (Introduction to Vol. I).

To achieve the desired utility of his project, the author has been collectingmaterial
since 1955 from libraries in America, Europe and India (which he visited in 1965
under a grant from the A.P.S.). Due to the tremendous labour done in this way, the

Gan. ita Bhāratı̄, Vol. 4, Nos. 3–4 (1982), pp. 157–161.
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cooperation and help received by the searching author, and also due to his own high
scholarly calibre, the author has been successful in providing the above laid down
utility of the project. As a result, we have theCensus of the Exact Sciences in Sanskrit
(= CESS) which may very well be said to be author’s magnum opus. The plan is to
issue the CESS in two series (of 6 volumes each). Series A has articles on authors
arranged in Sanskrit alphabetic order, and Series B is to have articles on works
arranged similarly. An extra volume containing tables of astronomical parameters,
genealogy of authors and scribes, and indexes of scribes and proper names, is also
promised.

Up to now we have four volumes of Series A as follow:

Vol. I: Philadelphia, 1970 (MAPS 81) devoted to authors whose names begin with
a vowel.

Vol. II: 1971 (MAPS 86) for names which begin with a guttural (kavarga).
Vol. III: 1976 (Introduction is dated 1974) (MAPS 111) for names which begin with

a cerebral (cavarga) or reflexive (t.avarga) or dental (tavarga).
Vol. IV: 1981 (Introduction dated 1979) MAPS 146 for names which begin with a

labial (pavaraga p, ph, b, bh and m) which is being reviewed here.*

However, it must be noted that, starting with Vol. II, each volume has a substantial
amount of material which is supplemental to all the preceding volumes. This fine
scheme enables the entries to become up-to-date (though not consolidated).

In series A, the bio-bibliographical information on each author is presented in an
orderly sequence. These include dates of birth and death, names of ancestors, parents
and other relatives (including teachers and taughts), places of birth, work, and death,
religious and social status. Then follows information about the author’s works on
exact sciences. Under each work is given its short review, list of commentators
(whose entries themselves may be consulted for more details), manuscripts, editions
and translations and references to its studies already done. Frequently the chapter-
headings of listed works and extracts containing information on the author are also
given.

Full details of the Studies andDiscussions referred are found in the comprehensive
bibliography given inVol. I (pp. 3–25) and supplemented in others. This bibliography
of about 3000 items (books, articles, translations, etc.) in various languages is the
most comprehensive in the field available so far. The main basis of information about
works of each author is the catalogues of Sanskrit manuscripts and books which are
listed in Vol. I (pp. 26–32) and supplemented in others.

In comprehension the general purpose and value of the CESS in the field of exact
sciences may be compared to those of the New Catalogus Catalogorum (=NCC) in
the field of Sanskrit literature in thewider sense (hence including exact sciences also).
In fact, Prof. Pingree himself has indicated (see preface toVol. II) this comparison and
acknowledged his debt to Prof. V. Raghavan (died 1979) whose name is invariably
associated with the NCC (being published by the University of Madras). Ironically,
there is another similarity between the CESS and the NCC. It is the slowness of their

*Vol. V appeared in 1994.
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printing. Vol. I of the NCC (to be completed in 40 Volumes) was published in 1949
(revised edition, 1969), and Vol. X (the last so far?) was brought out in 1978. The
entries in NCC cover both authors and works in Sanskrit alphabetic order. Of course,
itmust be noted that the task of either of the projects is very difficult and encyclopedic.
The number of Sanskrit authors on exact sciences is quite large (about 2500 so far).
Mentioning the Indian Concept of an ocean of knowledge, Pingree has compared his
CESS to a “raft to rescue those in danger of drowning in it” (Introduction to Vol. II).

To give more details of Vol. IV, it comprises of Introduction (p. 1), additional
abbreviations of journals and serials (p. 2), additional Bibliography (pp. 3–7), addi-
tional List of Catalogues and Sanskrit Manuscripts and Books (p. 8), Census entries
supplemental to Vol. I (11–31), to Vol. II (32–88), to Vol. III (88–164) and the authors
of Vol. IV (164–447) from Paūman. andi (= Padmanandin, tenth century ad), author
of the Prakrit Jambūdı̄va-pan. n. ati-sam. gaho toMhālugi (son of Vāsudeva) who wrote
a Jātaka-paddhati (whose one manuscript was copied in Śaka 1350 = ad 1424). For
additions to the Bibliography, the author is “deeply indebted to R. C. Gupta of Ranchi
and to A. Volodarsky of Moscow” (p. 1).

About 1000 authors are covered in the present volume. These include some very
famous ancient and medieval astronomers and mathematicians like Parameśvara
of Vat.aśrenı̄ (c. 1380/1460) (pp. 187–192), Brahmagupta (b. 598 ad) (254–257),
Bhāskara I (fl.629 ad) (297–299), Bhāskara II (b. 1114) (299–326), Mahāvı̄ra
(fl. ca. 850ad) (388–389)Mādhava of Saṅgamagrāma (fl. ca. 1380/1420) (414–415),
Muñjāla (fl. 932 ad) (435–436), Munı̄śvara alias Viśvarūpa b. 1603 ad) (436–441).
The modern authors treated include Bāpūdeva Sāstrin (b. 1821) who was “invited
by Lancelot Wilkinson to study with Sevārāma at the Sam. skr.ta Pāt.haśālā at Sihora”.
Bāpūdeva is stated to be “especially influential in spreading the knowledge of Euro-
pean mathematics in India” (p. 241).

The following points mentioned in Vol. IV may be interesting to note. The Lı̄lāvatı̄
(of Bhāskara II), the most popular work of Hindu mathematics, was translated into
Persian by Fayd. ı̄ (1587 ad), by Medinı̄malla (1663/64) and by Muh.ammad Amı̄n
(1678) (p. 300). It was translated into Hindi/Rajasthani by Amı̄candra (c. 1842)
who also translated Mahāvı̄ra’s Gan. ita-sāra-saṅgraha into Rajasthani (p. 23). The
Manuscript No. 45 (100 folios) entitled Jı̄ca Ulugbegı̄, in Mahārāja’s Museum
Library at Jaipur is the Sanskrit translation of Ulugh Beg’s famous Persian Zij-i
Ulugh Beg (fifteenth century) (p. 31), although the Indian version may not be com-
plete (cf. J. Hist. Arabic Science, Vol. 4, No. 1, p. 84). The anonymous Sanskrit
Hayata-grantha (c. 1700) “appears” to be the translation of the Persian Risālah dar
hay’at (also called Fārsı̄ hay’at) by al-Kūshjı̄ (or al-Qūshjı̄) who died at Istanbul in
1474 (p. 57). Pingree considers al-Bı̄rūnı̄’s (b. 973 ad) claims of translating Euclid’s
Elements and Ptolemy’s Almagest into Sanskrit to be “implausible” (p. 248).

The area covered by CESS is really very vast and scope of its utility tremen-
dous. Besides dealing with the three branches (skandhas) of Jyotis. a-śāstra, namely
gan. ita (mathematics and mathematical astronomy), hora (horoscopic astrology),
and sam. hitā (of encyclopedic nature), the CESS treats several related fields such
as cosmology, chronology, geography, and rituals (which need properly determined
times). The scope may further increase, e.g. by including relevant tantric literature.
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This oceanic coverage changed the tone from the intention “to include all of the
works and all of the authors” (Introduction to Vol. I) to the admission that such a
work “can never be complete” (Introduction to Vol. IV). Pingree also grossly under-
estimated the task when he stated the successive volumes of the CESS will appear at
the interval of about one year (Vol. I, Introd.).

To be more specific, there are several libraries which have not been catalogued
at all, and hundreds of family-collections of manuscripts which have not seen the
light of the day since long. In fact, some of the owners of private collections are very
hesitant to even show the manuscripts which, therefore, cannot reach CESS, nor the
CESS project can reach them!

Moreover, the scope of the CESS is to cover entries even about living Sanskrit
authors of exact sciences and this is a never-ending process. Regular supplements
will keep the information complete and up-to-date but only to a certain degree.

Another point is that when more detailed surveys of manuscripts are done on
regional basis, some still new authors and works come to light. For instance this will
be clear from the A History of the Kerala School of Hindu Astronomy by K. V. Sarma
(Hoshiarpur 1972) which escaped Pingree’s notice earlier. In fact while reviewing the
first three volumes of the CESS in Vishveshvaranand Indological Jour., 17 (1979),
362–364, Sarma has already mentioned about 25 authors not found in those volumes
of the CESS. Fortunately, Pingree promptly rectified this lacuna in the present vol-
ume. In fact he is too good to miss any such opportunity. Herein lies his greatness.
And the monumental CESS will ever remain not only a masterpiece of Pingree’s
scholarship but also that of American scholarship. In fact there is no surprise to
find that more serious studies of Indian mathematics and astronomy are being done
outside than in India itself.

The American Philosophical Society is to be congratulated for bringing out the
CESS. The printing and other errors are minimum for such a boring work. The
price is relatively low to enable even the individual scholars to have personal copies.
No serious work on Indian exact sciences can be done without the CESS which
symbolizes both—the labour of love and love of knowledge.



Homage to Professor Abraham
Seidenberg (1916–1988)

Professor Abraham Seidenberg died onMay 3, 1988. He belonged to the Department
of Mathematics, University of California, Berkeley, USA, and was a member of the
Editorial Board of the Gan. ita Bhāratı̄. He was a great scholar and was actively
involved in research work on history of ancient mathematics. A few months before
his death, he had sent his manuscript “On the Volume of a Sphere” for publication in
the Archive for History of Exact Sciences (= AHES). He could not correct the proofs
of the article which was published posthumously in December 1988. Perhaps this
may be his last paper.

Professor Abraham Seidenberg (1916–1988)

Gan. ita Bhāratı̄, Vol. 11, Nos. 1–4 (1989), pp. 57–59.
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Professor Seidenberg was a pioneer in the field of real Vedic mathematics, i.e.
the one which is found in the genuine Vedic literature or was known to the Vedic
seers. He has successfully shown that the mathematics as found in the Śulba-sūtras
“already existed before 1700 bc” He has published a number of significant papers
on the subject.

Professor Seidenberg has given us not only new findings but also some great
ideas as applied to history of ancient mathematics. One of them is the hypothesis
of diffusion, i.e. the view that great and important ideas arise only once and spread
from a centre. In other words, when significant theorems and formulas are found in
several culture areas, it is sound to assume a theory of dependence through some
links.

1 Major Contribution of Seidenberg

A more original hypothesis of Seidenberg is that of ‘ritual origin’ of mathematics.
For example, the ancient texts that describe geometrical constructions clearly specify
ritual purpose such as the construction of altars of specified form and size for fulfilling
specific ends.

If we combine diffusion theory with the hypothesis of ritual origin, we are led
somewhat to the assumption that many geometrical and religious ideas must have
had a common origin and source. Similar stand for counting practices is found to
be valid. In fact, all such considerations imply a real historical common origin for
mathematics. Convinced about Seidenberg’s views, Professor B. L. van derWaerden
has put forward his bold hypothesis of the common origin of mathematics in the
Indo-European people before their dispersal (about 3500 bc to 2500 bc).

The passing away of Professor Seidenberg is a great loss to the historians of
mathematics. But he will ever be remembered for his new and deep researches in
the field. The Indian historians of science should take lessons from his comparative
methodology, ritualistic analysis and diffusion theory and carry on the work further.

2 Selected Publications of Abraham Seidenberg

1. “Peg and Cord in Ancient Greek Geometry”, Scripta Mathematica, 24 (1959),
107–122.

2. “On the Eastern Bantu Root for Six”, African Studies, 18 (1959), 28–34, and 22
(1963), 116–117.

3. The Diffusion of Counting Practices, Univ. of California Publication in Math.,*

Vol. 3, 1960.
4. “The Ritual Origin of Geometry”, AHES, 1(5) (1962), 488–527.

*His papers are preserved in the Bancroft Library at the University of California, Berkeley, U.S.A.
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5. “The Ritual Origin of Counting”, AHES, 2(1) (1962), 1–40.
6. “The Sixty System of Summer”, AHES, 2(5), (1965), 436–440.
7. “Remarks on Nicomedes’ Duplication”, AHES, 3(2) (1966), 97–101.
8. “On the Area of a Semi-Circle”, AHES, 9(3) (1972), 171–211.
9. “Did Euclid’s Elements, Book I, Develop Geometry Axiomatically?”, AHES,

14(4) (1975), 263–295.
10. “km, a widespread root for ten”, AHES, 16(1) (1976), 1–16.
11. “Pappus implies Desargues”, Amer. Math. Monthly, 83 (1976), 190–192.
12. “The Origin of Mathematics”, AHES, 18(4) (1978), 301–342 (This has an
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1 Introduction

Once a king wanted to know as to why the Moon (candā) is addressed च ामामा
(candāmāmā) or “Moon, the Maternal Uncle” in India. Most of the people were
puzzled at the question. But one man could find an answer. He said that goddess
Laksṃī (the consort of Lord Visṇụ) is universally accepted as Mother by all, and the
Moon was her brother, since both were born out of the sea when it was churned in
remote antiquity (So says the story of sāgara-manthana or Sea-Churning, according
to Hindu mythology). The reply was quite witty.

MM. Sudhākara Dvivedī (1888–1910)
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The man who frequently showed such wit was no other than Sudhākara Dvivedī.
He was an intelligent person and a reputed scholar of his time well known for his
exposition of ancient as well as modern astronomy and mathematics, both in Hindi
and Sanskrit. He was a great educationist and an eminent writer. His prolific works
provided not only a synthesis of Eastern (Indian) and Western (European) sciences
but also played a significant role in introducing modern astronomy and mathematics
in India through the national media of Sanskrit and Hindi. The British Government
awarded the title ‘Mahāmahopādhyāya’ (abbreviated as M. M.) for his distinguished
scholarship and educational service. Judged by any standard, he was a man of ex-
traordinary talent and capacity.

Sudhākara Dvivedī was born in Vikrama Samṿat 1912 (or ad 1855) in the village
Khajurī near Vārānasī. Dvivedī (also written as Dube or Dvivedīn) was his family
name. It is said that the news of the child’s birth was given to his uncle (father was
away from home) at the time when a local newspaper called “Sudhākara” was being
delivered to him. So he eventually named the child also as Sudhākara which literally
means “maker or store of nectar”. There were some disruptions in the family in
those days at the time of Sudhākara’s birth, his father Krp̣āludatta was also not at
home. Due attention was not paid to record accurately the event of the child’s birth.
According to Joshi,1 the date of Sudhākara’s birth was back-calculated at the time
of his marriage, and was fixed at 4th day of the light half of the month of Caitra
of Samṿat 1912 (or Śaka 1777). The same date of birth (recorded according to the
Indian calendar) is also found—given, 20 years earlier than Joshi’s work, in another
source which seems to be quite reliable.2

However, Dikshit in his famous work on history of Indian astronomy has given3

Sudhākara’s birth date as Monday the 4th day of the light half of Caitra in Śaka
1782 (or ad 1860). So there is a confusion as to whether the year of birth is Śaka
1777 (ad 1855) or 1782 (ad 1860). In this connection it may be pointed out that
Sudhākara wrote a Sanskrit work called Pratibhābodhakam in Śaka 1795. Dikshit
knew this,4 and if his statement of Sudhākara’s birth year Śaka 1782 is correct, then
it would mean that the above-mentioned work was composed at the age of 13. Since
Sudhākara started getting education late when he was 8 years old, his authoring
the Pratibhābodhakam at the age of 13 seems unlikely (although not impossible).
Anyway, the year ad 1860 for Sudhākara’s birth has been given, apparently on the
authority of Dikshit, by G. Prasad,5 R. C. Jha,6 B. Mohan,7 S. Shukla,8 and Krishna-
murthy.9 The writer of the present article has come across some other dates also, but
the year ad 1855 for Sudhākara’s birth seems to be somewhat authentic and reliable.
Of course, it should be corroborated and checked from other sources.

Sudhākara’s mother, Lācī, left for heaven quite early leaving the child to be
looked after by others who showed more than enough affection to him. They al-
ways tried to keep the child within the range of their sight. Also his father’s place of

2 Birth and Education
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work was away from home, and he came only occasionally. As a result, the boy’s
early education was delayed. Sudhākara was quite intelligent and had sharpmemory.
So, although he started education at the age of 8, he soon learnt reading and writing.
Later on he studied Sanskrit grammar under Panḍit Devakrṣṇạ. These subjects were
enough to make him fit to work as a priest (purohita) and astrologer (jyotisị̄) in his
native and nearby villages. He was married at the age of 14.

Actually Sudhākara was more interested in the study of mathematics which at-
tracted him. He made serious studies of the subject along with astronomy under
Panḍịt Devakrṣṇạ (born 1818 ad) who was the Professor of Jyoisạ at the Benares
Sanskrit College and a worthy disciple of Panḍịt Lajjāśank̇ara (who had earlier
served the College in the same capacity). During those days there was another fa-
mous Indian astronomer, mathematician and educationist, Prof. Bāpudeva Śāstrī
(born 1821 ad) who was teaching mathematics (especially Rekhāganịta or geome-
try) in the same institute. Sudhākara had the benefit of his knowledge and experience
as well, although they developed some differences later on.

3 Professional Career

As already mentioned, Sudhākara Dvivedī had deep interest in mathematics and
mathematical astronomy. For more satisfaction and greater insight, he also studied
the then available modern exposition of mathematical topics through European text-
books. Being inspired by higher educational objective he devoted more and more
time to gain and disseminate knowledge of the exact sciences and neglected the
profession of priesthood. That created some temporary financial difficulty, but he
gained eminences as a great scholar and teacher especially through scores of stu-
dents whom he taught free.10 It is stated that his spreading reputation impressed King
Laksṃīśvara Simḥa of Darbhanga who recognized his talent and appointed him as
a teacher of Jyotisạ-śāstra in a school in Varanasi.11 Thus the financial constraints
were eased and he could devote more efficiently to his pet subjects. Learning and
teaching as well as writing and publishing went on side by side. Even the European
scholars such as George Thibaut were greatly impressed by his work and knowledge.

In 1883, Sudhākara Dvivedī was appointed Chief Librarian Pustakālaya-
adhyaksạ of the Govt. Sanskrit College Library, Benares. This library, called Saras-
vatī Bhavan, was very rich especially in manuscripts of Sanskrit works. It provided
easy opportunity to S. Dvivedī to further widen his knowledge and scope of writing
as well as editing (by collation of manuscripts). And, in fact, he did all that sin-
cerely. For instance, he soon edited and published (1884/85) the Siddhānta-tattva-
viveka ofKamalākara (ad 1658). His famous treatise on differential calculus inHindi
appeared in 1886, and the very next year the title ‘Mahāmahopādhyāya’ was con-
ferred on him. At the retirement of Bāpudeva Śāstrī in 1889, Dvivedī was appointed
to succeed him as Professor of Mathematics and Astronomy at the Govt. Sanskrit
College, Benares. During the same year appeared his Sanskrit commentary on the
Pañcasiddhāntikā of Varāhamihira (sixth century ad). He also taught Mathematics
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and Indian Astronomy to the postgraduate students. It is stated12 that earlier these
classes were taken byMr.M. N. Datta who had to leave the assignment due to his ap-
pointment as District Inspector of Schools. It should be noted that although Dvivedī
did not himself have any formal postgraduate degree, he did the job quite success-
fully.

Benares (now called Varanasi) was a famous centre for traditional learning es-
pecially for north Indian scholars. Hence the pupils of Dvivedī were soon found
scattered in the United Province (now called Uttar Pradesh), Bihar and Bengal.
Among them some became quite famous such as Baladeva Pātḥaka, BaladevaMiśra,
Genālāla Caudharī, Buddhinātha Jhā, Dayānātha Jhā andMuralīdhara Jhā. A student
named Śaśipāla Jhā translated Euclid’s Elements, BookXV into Sanskrit and another
named Gaurī Śank̇ara Prasāda donated money to institute a medal in Dvivedī’s name
(see below).

4 Service to Hindi

As a classical and sacred language, Sanskrit had been always enjoying a respectful
place among learned people in India. Urdu was already being used as an official lan-
guage in north India in those days (nineteenth century). But this was not the case with
Hindi. Dvivedī did a lot to propagate the cause of Hindi language whose fuller rec-
ognized form and status were being slowly evolved. In this regard the Kashi Nagari
Pracharini Sabha (founded in 1893) was a leading organization at Varanasi. Dvivedī
played his due role in it as an official as well as the editor of the Nagari Pracharini
Granthamālā (Book-Series) from 1905 to 1908. He was its President from 1902 to
1910. Dvivedī composed a work on Hindi grammar and several other works in that
language including Rāmakahānī and Rādhākrṣṇạ-rāsalī lā. He edited the Rāmāyanạ
of Rudrasimḥa, and also edited (in collaboration with G. A. Grierson) the Padmāvata
of Malika Muhammada Jāyasī along with his own commentary.13

However, it must be noted that Dvivedī was not in favour of ‘Sanskritization’ of
Hindi. He used the commonly spoken language employing even domestic terms. His
style was simple and lively. He was very fond of composing easy Hindi couplets
(dohās). As a sample we quote the following two colophonic from his History of
Mathematics (in Hindi), Part I (1910):

ऐ ह अं जेी-राज-बल सब दशेन क र त |
समु झ बूझ ल ख मनन किर भइन पर कर ी त || 1 ||
अंकग णत क कछु कथा लखी सुधाकर धीर ||
ता ह ब च पुरब कसर नज बु ध-बल ल ख ह र || 2 ||

In the field of scientific education, his most significant service to Hindi was the
writing of text-books on modern mathematics which we now take.
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S. Dvivedī believed in propagating correct and current astronomical theories based
on modern mathematical treatment. Through his expository works, he wished to in-
cite and encourage his own countrymen “towards the cultivation ofWestern science”
as he put it.14 As a sort of synthesis of Eastern andWestern science, Bāpudeva Śāstrī
had already started putting Indian traditional knowledge and material from classical
Sanskrit works (such as those of the twelfth century Bhāskara II) in modern style.
Thus text-books on elementary arithmetic, geometry, and trigonometry were avail-
able in new mathematical treatment and notation. It may be recalled that Euclidean
geometry was already there in India, e.g. in the eighteenth century Sanskrit trans-
lation called Rekhāganịta which was made by Jagannātha (1718) from an Arabic
version. Dvivedī not only followed similar modern exposition but made original
contributions by extending the treatment to cover higher topics of mathematics and
mathematical astronomy based on new theories. These included conic sections, the-
ory of equations, differential and integral calculus. His earliest expository work was
Pratibhābodhakam (in Sanskrit) which was composed in 1873. The central subject
matter of the tract is the determination of the shape and size of the various sections
(pratibhā-s) of a general conical surface.

A better known and typical Sanskrit work of Dvivedī is the Dīrghavrṭtalaksạnạm
which is a treatise on the properties of an ellipse (dīrghavrṭta). Properties have been
expressed verbally but symbolic mathematical language has been used in giving the
derivations. Without using coordinates and analytical geometry, this was a heroic
venture. The work was published in 1881. In a year’s time appeared his another
similar tract called Bhābhramarekhā-nirūpanạ in which the path of the tip of the
shadow of a gnomon was discussed. More praiseworthy are Dvivedī’s text-books on
higher mathematics in Hindi. These include the Calanakalana on differential calcu-
lus (1886), Calarāśikalana on integral calculus (1895) and Samīkaranạ-mīmāmṣā
on the theory of equations (1897). These new attempts can be regarded as commend-
able successes especially keeping in view the difficulty of technical terminology to
be used in Indian languages. It was just not available.

The differential calculus book covered all topics of a classical degree level course
including Maclaurin and Taylor series expansions, indeterminate forms (luptab-
hinna), functions of several variables and the theory of maxima and minima. The
surprising thing is that there is no mention of limit or any concept of it in the whole
work. The integral calculus book covered even such topics as change of order of
integration (kramaparivartana), calculus of variation (vaiśesịka-kalana) and differ-
ential equations (calana-samīkaranạ). The author has cited the works of Todhunter,
Williamson, Hymers, Cox and De Morgan. But he has also given some methods of
his own.

Of course, we cannot expect very high rigorousness of treatment in these new
native attempts. Thus, while finding the derivative of sin𝑥, the expression

5  Mathematics Text-Books in Sanskrit and Hindi
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is coolly equated to cos𝑥 without saying a word about
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which could not be explained (since concept of limit was avoided). However, it will
not be fair to judge those books by modern standards. Dvivedī’s algebraic book
discussed lot of topics including cubics, quartics, determinants kanisṭḥaphala and
elimination. The Newton–Raphson method is shown by Dvivedī, to be an extension
of Kamalākara’s method (p. 287).

A great contribution of S. Dvivedīwas tomake available authentic editions of several
important Sanskrit works on astronomy and mathematics. These provided reliable
primary sources for studying and writing the history of mathematics and mathemat-
ical astronomy in India during ancient and medieval periods. Frequently, the edited
works were accompanied by commentaries (by author, by other ancient writers or
by editor), notes and rationales. These explanations and expositions themselves con-
tributed to valuable interpretations of ancient theories and methods which were often
hidden obscurely in ancient sūtras, verses and passages.

It was but natural that the first work which attracted him was Lī lāvatī , the most
popular work of ancient Indian mathematics and the standard text-book on the sub-
ject (for Sanskrit medium courses) through the ages and throughout India ever since
it was composed by Bhāskara II in ad 1150. Dvivedī’s edition (1878) contained his
derivations (upapatti) of the rules. A few years later he edited, with his own com-
mentary, the Karanạkutūhala, an astronomical manual of the same author.

The Siddhānta-tattva-viveka (1658) was composed by Kamalākara when the fa-
mous Newton was just a boy of 16. Dvivedī edited it in 1884 along with his valuable
notes. He considered the work to be the best among the Indian siddhāntas (astro-
nomical treatises) although Kamalākara still adhered, due to orthodoxy, to the ap-

proximation 𝜋 = √10. A couple of years later, Dvivedī brought out his edition of
Lalla’s Śisỵadhī-vrḍdhida-tantra (eighth century ad). There is no commentary, pos-
sibly because the text itself was simple and expository, or more probably because the
editor was lacking peace of mind due to the sad loss of his father which he mentioned
in the words15

याते दवं पतिर त रह रेण स ापत दयेन सुधाकरेण । संशो धत ..........

6 Editions of Ancient Works on Astronomy
and Mathematics
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After normalization, Dvivedī took up more important works. His edition of
Bhāskara’sBī jaganịta (“Algebra”) was suppliedwith his derivations (1888). He also
completed his valuable Sanskrit commentary Prakāśikā on the Pañcasiddhāntikā of
Varāhamihira. This was a difficult task in the absence of any ancient commentary
on the Pañcasiddhāntikā (c. 550 ad). Nevertheless, this work is a very important
primary source for history of ancient astronomy not only in India but in the whole
world. The text along with the Sanskrit commentary and an English translation be-
came available to scholars in 1889 due to joint efforts of Dvivedī and G. Thibaut.
A few years later, Dvivedī brought out his edition of Varāhamihira’s another work
the Brḥat-samḥitā which is equally important for history of astrology. In fact, it is
an encyclopedic work and Dvivedī’s edition contained the equally important an-
cient commentary of Bhatṭọtpala (tenth century). The versatility of Dvivedī is fur-
ther illustrated by the fact that in the 12 years period from 1899 to 1910, he edited
several other important works after supplying with his own detailed commentary
and notes. These include Karanạprakāśa (1899), Triśatikā (1899), Brāhmasphutạ-
siddhānta (1901/1902), Grahalāghava (1904), Sūrya-siddhānta (1906), Vedāṅga-
Jyotisạ (1907/1908) and Mahā-siddhānta (1910). During the last days of his life,
he wrote a commentary on the Ganịta-kaumudī of Nārāyanạ Panḍịta (1356 ad).16

More information about above works is given in the chronological bibliography at
the end of this article.

Besides the two categories of works (text-books and editions) which we have
discussed under the present and the last section, there were many others which may
be considered under different categories. For instance, works which are stated to
contain mathematical and astronomical tables include17

(i) Laghurikta-sārinị̄ (Logarithmic Tables).
(ii) Candrasārinị̄ , etc. (Tables for the Moon and Planets) (translated from French).
(iii) Sūrya-siddhānta-sārinị̄ (Tables, based on the Sūrya-sidhānta).

Dvivedī’s scores of students often helped him in working out these tables. Then
there was a book by him on magic squares (yantras) in Hindi, some others on
pañcāṅga (Almanac) and still others on minor topics like rotation of the earth and
construction of a regular polygon of 17 sides in a circle, etc. (see bibliography at the
end).

7 Contribution to History and Historiography
of Mathematics

The valuable contribution of S. Dvivedī to history and historiography of Mathe-
matics and Astronomy in the form of a large number of primary sources has been
already discussed above. The material in the form of his interpretations and expla-
nations of ancient Indian mathematical and astronomical methods is equally signif-
icant. In Vikrama Samṿat 1947 (or ad 1890), he completed his Ganạka-taraṅginị̄
(in Sanskrit) which is on the lives and works of important Indian astronomers and
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mathematicians (ganạkas) from antiquity to his own time presented chronologi-
cally. Thomas Carlyle (1795–1881) had said that “the history of the worlds is but
the biography of great men”. If that is so, we can regard Ganạka-taraṅginị̄ as a
history of Indian astronomy and mathematics written through biographies of those
who contributed significantly to the development of the twin-disciplines. The work
shows author’s vast knowledge of the history and sources of Indian exact sciences.
Although a century old, much of its material will be found to be still useful.

Dvivedī seems to have fully realized the value and usefulness of history of math-
ematics in teaching and learning to mathematics. He tried to incorporate relevant
historical information in his text-books to make them more interesting and to bring
out the human side of mathematics. For example, one of his calculus book contains
a footnote which states that in 1711 Leibnitz filed a case with the Royal Society of
London against Dr. Keil who had charged Leibnitz of plagiarizing Newton’s work,
etc. (read the book of history of mathematics to know as to what happened sub-
sequently). Dvivedī accepted mathematics as a universal subject in which contri-
butions were made by different countries, nations and cultural groups from time to
time. In fact in 1910, he published his A History of Mathematics, Part I (Arithmetic),
in Hindi, in which he dealt with the history of the world arithmetic paying special
attention to numbers and numerals. It was a unique work of its kind in India, and he
deserves all praise for the rich material it contains. According to the Preface, he had
desired to write three more parts of the work devoted respectively to Algebra, Ge-
ometry and Mensuration, and Trigonometry and Astronomy. But perhaps he could
not do this due to his early death.

It is to be noted that in his view the history of mathematics (or of science in
general) is to be studied honestly and to bring out the facts to light impartially.

8 Epilogue

According to Jha,18 S. Dvivedī left for heaven in January 1910. But this conflicts
with the date 29-10-1910 on which Dvivedī apparently wrote the Bhūmikā to his
History of Mathematics Part I (In Hindi). However, the year 1910 (or 1911) for
Dvivedī’s expiry seems to be correct, being corroborated by Samṿat 1967 found
in an earlier source.19 Nevertheless, to worsen the confusion another year, namely,
ad 1922, is also foundmentioned in someworks.20 However, this seems to bewrong.

Dvivedī had a daughter named Sītā Priyājī (who had already died young) and
three sons of whom Padmākara followed the footsteps of his father. He was a scholar
in the same field and edited some of the works of his father. He was also Professor
of Mathematics and Astronomy in the Government Sanskrit College, Benares.

So we are coming to the end of this short sketch of the life and work of M. M.
Sudhākara Dvivedī. He was a uniqueman and a great scholar. He often demonstrated
that Hindi can be written rapidly in a good hand. He took part in a movement which
ultimately resulted in the introduction of Nāgarī script in the official work of U. P.
Government (ad 1900).21 In the field of education Dvivedī had a burning zeal to
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see that his countrymen and students learn modern exact sciences quickly. So he
wrote expository books on higher mathematics in Sanskrit and Hindi. Being gifted
with talent and sense of devotion, he could devise new terminology which was sim-
ple and elegant. Because of his text-books it was possible to raise the standard of
mathematics students graduating through the medium of Sanskrit at least in north
India.

He had proposed to write similar books on even advanced topics such as ana-
lytic geometry and quaternions.22 However, subsequent Hindi and Sanskrit schol-
ars and teachers of mathematics could not carry on the task with similar enthusi-
asm. In this respect Dvivedī was much ahead of his times. It was only towards the
last days of his life that he realized the need to replace Lī lāvatī by the better and
more advanced Ganịta-kaumudī (of Nārāyanạ Panḍịta) as a text-book for mathe-
matics courses through Sanskrit.23 But the many years needed to achieve this were
not granted to him by God. At present some educational institutions are named af-
ter Dvivedī. The Nagari Pracharini Sabha awards a medal in his name.24 It is called
‘Sudhākara-padaka’. Recently a new series of monographs, calledM.M. Sudhākara
Dvivedī Granthamālā, has been started by the Sampurnanand Sanskrit University to
commemorate his memory.

May this brief sketch inspire others to take up the writing of a fuller and more
authentic biography of this remarkable man:

सुधाकर सुधाव ष वा ूषण वभू षते | भारते ग णत ानामादश उप त ||

1873 Pratibhābodhakam (in Sanskrit):

(i) According to Dikshit (p. 421), a work of this name was published
as Dvivedī’s commentary (dated 1873) on Yantrarāja in 1882 (see
below).

(ii) Edited with his own commentary by Ganġādhara Miśra, Varanasi,
1942. This edition also contains author’s later additions to the
work. The year of composition of the original work appears on
page 35 as ‘śarāṅkasaptenduśake’ or Śaka 1795 (=ad 1873).

1878 (editor) Lī lāvatī with his own Notes, Benares, Śaka 1800 (= ad 1878). Also
posthumously published as Benares Sanskrit Series No. 39 (Benares, 1912).

1878/1881 Dīrghavrṭta-laksạnạm (in Sanskrit):

(i) Stated to be composed in Śaka 1800 or ad 1878 (Dikshit,
p. 420) and published in 1881 (Joshi, p. 72).

(ii) A second edition was brought out by Baladeva Miśra in 1943
from Varanasi.

A Selected Scientific Bibliography of Sudh kara Dviveda
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(iii) Now edited by K. C. Dvivedī, Varanasi, 1981. The colophonic
verse no. 4 says that it was composed by Sudhākara at the age
of 18 which means either in 1873 or in 1878.

1879 Vicitra-praśna (in Sanskrit): Composed in Śaka 1801 or ad 1879, this work
contains 20 difficult mathematical problems with solutions (Dikshit, p. 420).

1880 Vāstava-candra-śrṇ̇gonnati-sādhanam (in Sanskrit): Edited by Ganġādhara
Miśra with his own Commentary and proof, Allahabad 1923. Verse 91
(p. 81) states that it was completed in Vikrama year ‘Nagalokāṅkabhū’
(1937) or ad 1880.

1881 (editor) Karanạ-kutūhala (of Bhāskara II) with his own commentary,
Benares, 1881.

1882 Dyucaracāra (in Sanskrit): It is work on planetary orbits according to Euro-
pean astronomy.

1882 Bhābhramarekhā-nirūpanạm (in Sanskrit): Recent edition byK. C. Dvivedī,
Varanasi, 1981. The data of composition is given to be Vikrama year
‘Navarāmanavendu’ (i.e. 1939) or ad 1882. There was an earlier edition
by Padmākara Dvivedī in 1933.

1882/1883 (editor) Yantrarāja (of Mahendra Sūri, ad 1370) with the commentary
of Malayendu and with his own commentary, Benares, Śaka 1804 vedan-
abho’sṭạrūpa.

1883/1884 बाबू हिर जी क ज प ी or The Horoscope of Babu Harishchandra
(in Hindi). Composed in 1883 and printed in 1884 (Medical Hall Press,
Benares).

1884/1885 (editor) Chādaka-nirnạya (of Krṣṇạ): Benares, Śaka 1806. It is on
eclipses in the form of a dialogue between a couple.

1885 (editor) Sidhānta-tattva-viveka (of Kamalākara, ad 1658), with his own
notes, Benares, 1885. The edition was completed in Śaka 1806 ‘rasanab-
hogajabhū’. A revised edition byMuralidhara Jha andMuralidhara Thakkura
was published at Benares, 5 fasciculi, 1924–1935. It includes author’s
Śesạvāsanā.

1886 (editor) Śisỵadhīvrḍdhida-tantra (of Lalla), Benares, 1886. The Bhūmikā
(Preface) is dated Samṿat 1943.

1886 चलनकलन (Calana-kalana) (Differential Calculus, in Hindi), Benares, 1886.
There is an edition of Chapters I to VIII by Padmākara Dvivedī, Benares,
1941.

1888 (editor) Bī jaganịta (Algebra) of Bhāskara II with his own notes, Benares,
1888. A posthumous edition was brought out by Muralidhara Jha, Benares,
1927.

1888/1889 (with G. Thibaut) (editor and translator): Paṅcasiddhāntikā of
Varāhamihira (sixth century) edited with his own Sanskrit commentary
called Prakāśikā (Śaka 1810) and English translation, Benares 1889
(Thibaut’s preface is dated 1888). Reported subsequent reprints are Lahore,
1930 and Varanasi, 1968.



8 Epilogue 485

1890/1892 Ganạka-taraṅginị̄ (in Sanskrit), on the lives and works of Indian as-
tronomers and mathematicians. Originally composed in Samṿat 1947 (‘na-
gasāgararatnabhū’) or ad 1890, serially it first appeared in the monthly
journal The Panḍịt in 1892 and then published in a book form, Benares,
1892. Posthumous editions include one by Padmākara Dvivedī (Benares,
1933) and another by Sadananda Shukla (Varanasi, 1986).

1895 चलरा शकलन (Calarāśi-kalana) (Integral Calculus, in Hindi), Benares, 1895.
Posthumous editions by Baladeva Miśra, Benares, 1941 (Part I) and 1943
(Part II).

1895/1897 (editor) Brḥat-samḥitā of Varāhamihira with the commentary vivrṭi
of Bhatṭọtpala (tenth century), 2 Vols., Benares, 1895, 1897. Posthumously
edited by Avadhavihari Tripathi. Varanasi, 1968.

1897 Samīkaranạ-mīmāmṣā (in Hindi) completed in Samṿat 1954 (or ad 1895).
Posthumously edited by Padmākara Dvivedī, 2 Vols., Allahabad (undated).

1898/1899 Diṅmīmāmṣā (in Sanskrit), Benares, 1899. It was completed in Samṿat
1955 (Joshi, p. 63) or ad 1898.

1899 (editor) Karanạ-prakāśa (of Brahmadeva, 1192 ad) with his own commen-
tary (called Sadvāsanā) and supplementary material on Ksẹpasādhanam,
Āsannamānam (Approximations) and Prime Numbers Drḍḥāṅka. Benares,
1899.

1899 (editor) Triśatikā (of Śrīdhara, about 750 ad), Benares, 1899.
1901/1902 (editor) Brāhmasphutạ-siddhānta (of Brahmagupta, ad 628) with his

own Sanskrit commentary (called Tilaka), Benares, 1902. First the work was
published serially in The Panḍịt, Vol. 23 (1901) and Vol. 24 (1902).

1904 (editor) Grahalāghava (of Ganẹśa, 1520), with the commentaries of Mallāri
and Viśvanātha, and of his own, Benares, 1904. Reprinted, Bombay, 1925.

1906 (editor) Sūryasidhānta with his own commentary called Sudhāvarsịnị̄ (com-
pleted in 1906), Calcutta, two parts, 1909, 1911 (Second edition, Calcutta,
1925 ?). Recently edited by K. C. Dvivedī, Varanasi, 1987. The colophonic
verse No. 3 (p. 256) states that the commentary was completed in Vikrama
year 1963 ‘lokāṅganandavidhu’ or ad 1906.

1906/1908 (editor) Vedāṅga-jyotisạ (of Lagadha) with his own commentary,
Benares, 1906. Another edition with the commentary of Somākara (on
Yājusạ version) and with his own commentary (on Yājusạ as well as Ārca
versions) etc., Benares, 1908.

1910 (editor) Mahā-siddhānta of Āryabhatạ II with his own commentary, 3 fas-
ciculi, Benares, 1910.

1910 A History of Mathematics, Part I (Arithmetic) (in Hindi), Benares, 1910. No
other part has come to light.

There is a work in Sanskrit called Dharābhramah ̣ which was written by
S. Dvivedī. It has been edited by his son P. Dvivedī with his own commentary
(Benares, 1940) but the date of original composition could not be found. It is also
called Bhūbhramanạ and is on the two views regarding the rotation of the Earth
( ाचीननवीनयॊ ववादः). There is a recent edition by S. Shukla.
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Many other mathematical works by S. Dvivedī are found reported in various
sources but details are not known. These include poetical Sanskrit translation of
Euclid’s Elements, Books VI, XI and XII Spherical Geometry (in Sanskrit), and
Grahanạkaranạ (in Sanskrit) on eclipses (Dikshit, pp. 420–421). His book on magic
squares is called Vargakosṭḥa-pūrnạrī ti (in Hindi) and that on the heptadecagon as
Vrṭtāntargata-samasaptadaśabhujaksẹtra-racanāprakāra (Jha, pp. 69–70).

Titles of the reported works of S. Dvivedī on calendar or almanac are Pañcāṅga-
Prapañca (in Hindi, Joshi, p. 16) and Pañcāṅga-Vicāra (Jha, p. 69). An edition of
Śatānanda’s Bhāsvatī by Dvivedī is mentioned by S. N. Sen in his Bibliography
of Sanskrit Works, etc. (New Delhi, 1966, p. 194) but I have not come across cor-
roborative information elsewhere. Dvivedī’s writings dealing with tables have been
already mentioned in the main paper (Sect. 6).
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Clas-Olof Selenius (1922–1991):
An Expert in Indian Cyclic Method

“The cyclic method (cakravāla) was in fact a very natural, effective and labour-saving method

with deep-seated mathematical properties. It anticipated the European methods by more than a

thousand years and surpassed all other oriental performances. Since it did not occur in China at all,

it must be regarded as a purely Indian creation. The cyclicmethod is the absolute climax of the Indian

mathematics. Inmyopinion, noEuropean performance at the time ofBhāskara (ad twelfthCentury),

nor much later, came up to this marvellous height of mathematical complexity.”

–C.-O. Selenius (1971)

Dr. Clas-Olof Selenius (1922–1991)

A great scholar as he was, Clas-Olof Selenius could successfully illustrate the use
of modern mathematics in highlighting the significance of the ancient Indian master-
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piece called Cakravāla ( ) or cyclic method in solving certain indeterminate
equations. As a historian of mathematics, he corrected some misconceptions about
the method and gave better interpretations. As a researcher, he developed a theory of
ideal continued fractions, being motivated by the investigation into that method. In
fact, his work shows that a study of history of mathematics can enrich modern stock
of mathematics by inducing new researches.

Selenius was born in Helsinki, Finland, on September 28, 1922, and had his early
schooling there. He obtained his M.Sc. degree from the University of Helsinki. His
further studies were continued at the Åbo Academy, the Swedish University at Turku
on the Baltic Sea in S. W. Finland. The Academy awarded him a doctorate degree in
mathematics in 1961 for his thesis on “Konstruktion und Theorie half-regelmässiger
Kethenbrüche mit idealer relativer Approximation” (1960). In this work he made a
thorough study of the various types of semi-regular continued fractions. In particular
he investigated the special ideal continued fraction expansions (of real numbers)
originating in the cyclic method. A couple of years later he gave a table of the
ideal expansions of all the quadratic surds from

√
2 to

√
1000 and thus provided

all the cakravāla cycles leading to the solution of the corresponding varga-prakr. ti
indeterminate equations.

Selenius had started his teaching career in Helsinki (1945–1949) and then con-
tinued in Ekenäs (1949–1960), about 60 miles west of the former. He was also the
town councillor of Ekenäs from 1957 to 1960. Later on he was awarded a medal for
his services to this town.

In 1963, he becamedocent at theÅboAcademy.Three years later hewas appointed
a lecturer at Uppsala University, Sweden. During 1963, he visited the Cambridge
University, UK, and worked there for some time with Prof. J. W. S. Cassels. He
continued to lecture at the Uppsala University till his retirement in 1983, but he also
held professorship of the Åbo Academy from 1975 to 1979 simultaneously. After
retirement, he continued lecturing at the Academy as docent till 1990. The subject
of his lecturing included history of mathematics.

To mention his profession activities, he was one of the editors of the journal of
Nordisk Matematisk Tidskrift for several years, and in 1975, he became a member of
the International Commission on History of Mathematics. He participated in many
international conferences on history of mathematics, especially those held at the
Mathematical Research Institute, Oberwolfach, Germany.

The most important contribution of Dr. Selenius to history of mathematics is his
deep study of the Indian cyclic method for solving the varga-prakr. ti equation (in
intergers, N being non-square)

N x2 + 1 = y2

He brought to light many hidden aspects of the method. In his extensive paper on the
subject (1963), he showed that the cyclic process produces quantities all of which
have their simple counterparts in the ideal continued fraction algorithm. He fully
demonstrated that the Indian cakravāla method
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(i) represents one of the shortest possible algorithms,
(ii) always produces the least positive integral solution,
(iii) involves rules which are quite sophisticated,
(iv) can be extended to cover other equations like

N x2 + 1 = xy + y2 and N x2 + 1 = y3

In fact, Selenius was able to highlight the ingenious core of the method. His
exposition of its secrets is far illuminating than given by previous scholars both
Indian as well as foreign.

Besides being a sincere scientific worker, Prof. Selenius had many other remark-
able qualities. He not only liked music and poetry but had talent to compose them.
In 1971 he won the first prize in a national poetry competition. He was a thorough
gentleman and an unforgettable human being. When the author of the present article
first contacted him through a letter, he paid great attention to it and sent a long reply.
Since it will be of interest to historians of mathematics, his reply dated 7 February
1973 is being reproduced here (with only minor corrections).

Uppsala 07.02.73
Professor R. C. Gupta, Ph.D.
Birla Institute of Technology
P. O. Mesra, Ranchi.

Dear Colleague,
Many thanks for your kind letter. I am delighted at your interest in ancient and

medieval Indian mathematics. Therefore I have sent you my foremost paper (1963)
about the cyclic method and also my doctoral thesis (1960). All my papers written
in German, but I assume you read German well.

The subject of my historical research was at first the cyclic method of Bhāskara
to solve the so-called Pellian equation. I found two very remarkable facts: (1) no one
had interpreted (defined) the continued fraction expression that corresponds to the
completely continued-fraction-like cyclic method (the expression in question is not
an usual c.f. expression, but a halvregular expression), (2) a type of such continued
fractions (ideal c.f.) constructed in my doctoral thesis was in fact equivalent with the
cyclic method.

InOctober last year, Iwas invited to give a lecture atMathematisches Frschungsin-
stitut in Oberwolfach. There I lectured about the two facts mentioned, and (3) about
the fact that I later (not yet published but announced inMoscou byme, 1971) proved:
Bhāskara’s method surprisingly could be generalized to (a) the case x3 − Dy3 = 1,
and (b) case x2 − Dy2 = 1, D εZ(i). In the planned new journal Historia Mathe-
matica I will publish these results.

If you are interested in these problems, demonstrating the high value of the old
Indian mathematics and culture (my paper in 1963 I dedicated to the Indian mathe-
matics) I should like to inform you about these theories, connections, interpretations,
results etc.
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Naturally, I, as an European far away from the centre of my subject, have had
great difficulties to find the right sources, texts, communications, contacts, libraries,
etc., and to publish papers there. I have not had opportunity to travel to India and
explore there these circumstances.

I am very interested in getting your papers, especially your doctoral thesis but also
all other papers. I was very thankful for your information about the latest (recent)
editions of the works of Āryabhat.a, Brahmagupta and Bhāskara (and other). Also, I
have got only sparse information about papers of Indian (or non-Indian) authors in
Indian journals.

I wish to express my appreciation of the achieved contact between us. My admira-
tion for Indian (Asian) mathematics is very deep. As I said in Moscou, “no European
performance at the time of Bhāskara, nor much later, came up to this marvellous
height of mathematical complexity”.

Yours sincerely,
(signed)

Clas-Olof Selenius

Address:
Docent Dr. Phil. Clas-Olof Selenius,
Dagermansgatan 8
75428 Uppsala (Sweden)

In spite of great difficulties (which Selenius mentions), it is to be appreciated that
he could consult a lot of Indian publications relevant to his work including those
of A. A. Krishnaswami Ayyangar. This shows his sincere and determined efforts.
In fact the bibliography in his 1975 paper is quite rich and shows the thoroughness
and up-to-dateness of his knowledge. This should be contrasted with the writings of
many Indians who are ignorant (often intentionally) of the current researches and
publications. For instance, an article in the recent issue of Mathematical Education
(Vol. 8, 1991, 23–27) does not mention the contributions of Jayadeva (who already
knew cakravāla a century before Bhāskara or even earlier), K. S. Shukla (1954), or
Selenius, and repeats older writings.

The work of Selenius is of paramount importance to historians of mathematics
because the cyclic method is, in the words of H. Hankel (1874), “ohne Zweifel der
Glanzpunkt” of ancient Indian exact science.

Acknowledgements The author is grateful to Mm. Singe Selenius, wife of
Prof. C. -O. Selenius, for sending material including his photographs.
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Kripa Shankar Shukla (1918–2007):
Veteran Historian of Hindu Astronomy
and Mathematics

Kripa Shankar Shukla’s birth took place at Lucknow on July 10, 1918. From the very
early years, he was a brilliant student of Mathematics and Sanskrit. He passed the
High School Examination of U.P. Board in 1934 in First Division with Distinction
in Mathematics and Sanskrit and the Intermediate Examination of that Board again
in First Division with Distinction in Mathematics.

He had his higher education at Allahabad, passing the B. A. examination in the
second division from Allahabad University in 1938. From the same University, he
obtained his Master of Arts degree in Mathematics in the first division in 1941.
During his M. A. studies in Allahabad, Pan.d. it Devi Datta Shukla (editor of the Hindi
monthly Sarasvati) greatly helped K. S. Shukla like his own son and taught him the
full pūja-paddhati (ritual worship) of Śrı̄ Bālā Devı̄.

Professor Kripa Shankar Shukla (1918–2007)

Dr. Avadhesh Narain (or Narayan) Singh (1905–1954), a student of Prof. Ganesh
Prasad, was quite enthusiastic about the study of history of mathematics and was
associated with Dr. B. B. Datta (1888–1958) in that field. The History of Hindu
Mathematics, part II, by Datta and Singh, was published in 1938 from Lahore (then
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in India). Dr. Singh, although still a Lecturer in the Department of Mathematics
and Astronomy, Lucknow University, was very sincerely interested in promoting the
study of history of Indian mathematics. In 1939 he started a Scheme of Research in
Hindu Mathematics in the Department. Dr. Oudh (i.e. Avadha) Upadhyaya (1894–
1941) who had just returned from France with a D.Sc. (Math.) was appointed in the
Scheme (see P. D. Shukla’s note on Upadhyaya in Proc. Benaras Math. Soc, N.S.,
III, 95–98).

Dr. K. S. Shukla joined the Department and the Scheme in 1941, and his whole-
hearted devotion in the field of study and research in ancient Indian astronomy and
mathematics proved very fruitful. His very first research paper on “The Eviction and
Deficit of Moon’s Equation of Centre” (1945) showed his talent. He concentrated
more in studying the works of Bhāskara I, a follower (but not a direct pupil) of
Āryabhat.a I (born ad 476). As early as in 1950, Dr. Shukla studied Bhāskara I’s
commentary (ad 629) on the Āryabhat. ı̄ya and prepared a full Hindi translation of it
(see Introduction, p. cxiii, in Shukla’s 1976 edition of the commentary).

Dr. Shukla investigated thoroughly the works of Bhāskara I and studied other
relevant primary and secondary materials. Under the supervision of Dr. A. N. Singh,
Shukla prepared a thesis on “Astronomy in the Seventh Century India: Bhāskara I
and His Works”. But Dr. Singh died before the Lucknow University awarded the
D.Litt. degree on the thesis to Dr. Shukla in 1955. Perhaps by divine plan Singh’s
death occurred on July 10 which is the date of Shukla’s birth in Gregorian Calendar.

Shukla’s doctoral thesis was in four parts:

(i) Introduction;
(ii) Edition and Translation of the Mahābhāskarı̄ya;
(iii) Edition and Translation of the Laghu-Bhāskarı̄ya; and
(iv) Bhāskara I’s commentary on the Āryabhat. ı̄ya with English Translation of

Āryabhat. ı̄ya.

The significance of the Thesis lies not only in providing a genuine additional source
for the history of early Indian exact sciences but also in bringing to light many new
historical and methodological facts. By now most of the material from the thesis has
been published in various forms.

In fact, Dr. Shukla proved to be a worthy successor in carrying on the study
and research in the field of Hindu astronomy and mathematics. With the help of
research assistants like Markandeya Mishra, Dr. Shukla brought out the editions of
several Sanskrit texts which were published under the “Hindu Astronomical and
Mathematical Texts Series” (= HAMTS) of the Department of Mathematics and
Astronomy of Lucknow University. Dr. Shukla supervised the research work of
a number of theses. Under his guidance the following scholars got their doctoral
degree.

(i) Usha Asthana, Ācarya Śrı̄dhara and His Triśatikā (LucknowUniversity, 1960)
(She started her research under A.N. Singh’s guidance).

(ii) Mukut Bihari Lal Agrawal, Contribution of Jaina Ācaryas in the development
of mathematics and astronomy (in Hindi) (Agra Univ. 1973).



Kripa Shankar Shukla (1918–2007): Veteran Historian of Hindu … 497

(iii) Paramanand Singh, A Critical Study of the Contributions of Nārāyan. a Pan. d. ita
to Hindu Mathematics (Bihar Univ. 1978).

(iv) Loknath Sharma, A study of Vedāṅga-jyotis. a (L. N. Mithila Univ. 1984).
(v) Yukio Ohashi, A History of Astronomical Instruments in India (Lucknow

Univ. 1992).

After serving the Lucknow University department with distinction for 38 years,
Professor Shukla retired formally under rules on June 30, 1979. But he continued his
outstanding and creative works actively in his cherished field for many more years,
and scholars still continue to get ideas, suggestions and encouragement from him.
One of the tasks he completed after retirement was to bring out a revised edition of
the manuscript of Part III of Datta and Singh’s History of Hindu Mathematics. The
manuscript was lying with Dr. Shukla since long (see Gan. ita Bhāratı̄, Vol. 10, 1988,
pp. 8–9) but now he found time to publish it in the form of a series of eight articles on
Geometry, Trigonometry, Calculus,Magic Squares, Permutations andCombinations,
Series, Surds and Approximate Values of Surds in the IJHS, Vols. 15 (1980), 121–
188; 18 (1983), 39–108; 19 (1984), 95–104; 27 (1992), 51–120; 231–249; and 28
(1993), 103–129; 253–264; 265–275, respectively. It is unfortunate that parts I and II
of HHM were reprinted (Bombay, 1962) without any revision. Anyway, there is an
urgent national need to bring out a consolidated edition of all the three parts possibly
after making them up to date, and also to take up the writing of a national history of
mathematics in India as team work.

Workingwholeheartedlywith singleminded devotion formore than half a century,
Dr. Shukla’s contribution in the field of history of ancient and medieval Indian math-
ematics forms a pioneer work which will continue to motivate future research and
investigations. He gave new interpretations of many obscure Sanskrit passages and
corrected misinterpretations and other errors committed by others. He has worked
diligently and is proud of India’s scientific heritage. He has been working silently
without caring for publicity. Yet he is greatly reputed for his in depth research among
the scholars, and the merit of his work is widely recognised as shown by various cita-
tions.

Dr. Shukla was awarded the Banerji Research Prize of the Lucknow University.
Hewas associated with the editorial work of the JournalGan. ita of the Bhārata Gan. ita
Paris.ad (formerly the BenarasMathematical Society) for many years. Hewas elected
Fellow of the National Academy of History of Science, Paris, in 1988. He Served as
a member of several national and international committees.

As a student of the Lucknow University, the writer of the present article (RCG)

attended B.Sc. andM.Sc. courses in the Department of Mathematics and Astronomy
during 1953–1957; and Dr. Shukla taught him the subject of a paper in M.Sc. Part I.
But there was no course available in History of Mathematics or Hindu Mathematics
then (and even now). It is a tragedy that our educational set-up is deficient in this
respect. A course in the history (in wide sense) of any subject should form a part
of postgraduate curriculum to justify the award of “Master’s” title in that subject. It
is also hoped that the glorious tradition of study and research in the field of ancient
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Indian Mathematics and Astronomy will be maintained in the concerned Lucknow
University Department.

A Preliminary note on Dr. Shukla’s work appeared in “Two Great Scholars”,
Gan. ita Bhāratı̄, 12 (1990), 39–44 and Dr. Yukio Ohashi discussed “Prof. Shukla’s
contribution to the study of history of Hindu astronomy”, in the same journal, Vol. 17
(1997, 29–44). The present article is a humble tribute and felicitation on the occasion
of the 80th birth-anniversary of respected Shuklaji. May God grant him best health,
happiness and long life.

Dr. K. S. SHUKLA’S PUBLICATIONS

(I) Edited, Translated and Other Books:

1. Hindu Gan. ita-Śāstra kā Itihāsa being a Hindi translation of B. B. Datta and
A. N. Singh’s History of Hindu Mathematics Part I (Lahore 1935), Hindi Samiti,
Lucknow, 1956. Reprinted many times.

2. The Sūrya-siddhānta with the commentary of Parameśvara (1431). Edited with
an introduction in English. HAMTS No. 1 Lucknow, 1957.

3. Pāt. ı̄gan. ita of Śrı̄dharācārya edited with an ancient commentary, introduction,
and English translation. HAMTS No. 2, Lucknow, 1959.

4. Mahābhāskarı̄ya (of Bhāskara I) edited with introduction and tranlsation.
HAMTS No. 3, Lucknow, 1960.

5. Laghubhāskarı̄ya (of Bhāskara I) edited with introduction and translation.
HAMTS No. 4, Lucknow, 1963.

6. Dhı̄koṫida-karan. a (of Śrı̄pati) edited with introduction and translation. Akhila
Bharatiya Sanskrit Parishad, Lucknow, 1969.

7. Bı̄jagan. itāvatam. sa (of Nārāyan. a Pan.d. ita) edited with introduction. Akhila
Bharatiya Sanskrit Parishad, Lucknow, 1970.

8. Āryabhat.a, Indian Astronomer and Mathematician (fifth century). INSA, New
Delhi, 1976.

9. Āryabhat. ı̄ya of Āryabhat.a I edited (in collaboration with K. V. Sarma) with
introduction and translation. INSA, New Delhi, 1976.

10. The Āryabhat. ı̄ya with the commentary of Bhāskara I (629 ad) and Someśvara,
edited with introduction and appendices. INSA, New Delhi, 1976.

11. Karan. a-ratna of Devācārya (689 ad) edited with introduction and translation,
HAMTS No. 5, Lucknow, 1979.

12. Late Bina Chatterjee’s edition and translation of Lalla’s Śis. yadhı̄-vr. ddhida-
tantra completed and edited. Two volumes, INSA, New Delhi, 1981 (Chat-
terjee’s edition contains the commentary of Mallikārjuna Sūri in Vol. 1 and 17
appendices after the translation in Vol. 2).

13. Vaṫeśvara-siddhānta and Gola edited with introduction and translation. Part I
(text) and Part II (translation), INSA, New Delhi, 1985–1986.
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14. History of Astronomy in India edited by S. N. Sen and K. S. Shukla, INSA, New
Delhi, 1985 (also issued as IJHS Vol. 20).

15. History of Oriental Astronomy edited by G. Swarup, A. K. Bag and K. S. Shukla,
Cambridge Univ. Press, Cambridge, 1987 (The book constitute Proceeding of
IAU Colloquium No. 91, New Delhi, 1985.

16. A Critical Study of Laghumānasa of Mañjula (with edition and translation of the
text). INSA, New Delhi, 1990. (It was issued as supplement to IJHS, Vol. 25).

17. A Text book on Algebra (for B.A. and B.Sc.) by K. S. Shukla and R. P. Agarwal,
Kanpur, 1959.

18. *A Text book on Trigonometry (for B.A. and B.Sc.) by Shukla and R. S. Verma,
Allahabad, 1951.

19. Avakalan Gan. ita (in Hindi) by M. D. Upadhyay, revised by Shukla, Hindi
Sansthan, Lucknow, 1980.

(II) Research Papers and Other Articles:

1. “The evection and the deficit of the equation of the centre of the Moon in Hindu
Astronomy”. Proc. Benaras Math. Soc. (N. S.), 7(2) (1945), 9–28.

2. “On Śrı̄dhara’s rational solution of Nx2 + 1 = y2”. Gan. ita, I(2) (1950), 1–12.
3. “Chronology of Hindu Achievements in Astronomy”. Proc. National Inst. Sci.

India, 18(4) (July–Aug. 1952), 336–337 (Summary of a 1950 symposiumpaper).
4. “The Pāt. ı̄gan. ita of Śrı̄dharācārya” (in Hindi). Jñānaśikhā (Lucknow), 2(1)

(Oct. 1951), 21–38.
5. “Ācārya Jayadeva, the mathematician”, Gan. ita, 5(1) (1954), 1–20.
6. “On the three stanzas from the Pañca-siddhāntikā of Varāhamihira,” Gan. ita,

5(2) (1954), 129–136.
7. “A note on the Rājamr. gāṅka of Bhoja published by the Adyar Library,” Ibid.,

149–151.
8. “Indian Geometry” (in Hindi). Svatantra-Bhārata (Lucknow), dated 24 Nov.

1957, pp. 1 and 11.
9. “Hindu methods of finding factors or divisors of number”. Gan. ita, 17(2) (1966),

109–117.
10. “Ācārya Āryabhaṫa’s Ārdharātrika-Tantra” (inHindi)C. B. Gupta Abhinandana

Grantha, New Delhi, 1966, 483–494.
11. “Āryabhat.a I’s astronomy with midnight day reckoning.” Gan. ita, 18(1) (1967),

83–105.
12. “Early Hindu methods in spherical astronomy.” Ganita, 19(2) (1968), 49–72.
13. “Astronomy in Ancient andMedieval India.” IJHS, 4 (1969), 99–106. (cf. no. 15

below).
14. “Hindumathematics in the seventh centuryad as found inBhāskara I’s commen-

tary on the Āryabhat. ı̄ya.” Gan. ita, 22(1) 1971, 115–130; 22(2) (1971), 61–78;
23(1) (1972), 57–79; and 23(2), 41–50.

*Information about text-books (serial No. 17, 18, 19) has been provided by Shri Ratan Shukla (Son
of KSS).
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15. “Ancient and Medieval Hindu Astronomy” (in Hindi) Jyotish-Kalp (Lucknow),
3(6) (March 1972), 32–37. (cf. no. 13).

16. “Characteristic features of the six Indian seasons as described by astronomer
Vaṫeśvara”. Jyotish-Kalp, 3(11) (Aug. 1972) 65–74.

17. “Hindu astronomer Vaṫeśvara and his works”. Ganita, 23(2) (1972), 65–74.
18. “Use of hypotenuse in the computations of the equation of the centre under the

epicyclic theory in the school of Āryabhat.a”. IJHS, 8 (1973), 43–57.
19. “The Pañca-siddhāntikā of Varāhamihira (I)”.Gan. ita, 24(1) (1973), 59–73; also

same in IJHS, 8 (1974), 62–76. (cf. no. 22 below).
20. “Āryabhat.a”. In Cultural Leaders of India: Scientists (edited by V. Ragha-

van), Ministry of Information and Broadcasting, Delhi, 1976, reprinted 1981,
pp. 83–99.

21. “Astronomy in India before Āryabhat.a”. Paper read at the Symposium on Hindu
Astronomy, Lucknow, 1976, 11 pages (cyclostyled).

22. “The Pañca-siddhāntikā of Varāhamihira (II)”. Gan. ita, 28 (1977), 99–116.
(cf. no. 19).

23. “Glimpses from the Āryabhat.a-siddhānta”. IJHS, 12 (1977), 181–186.
24. “Series with Fractional Number of Terms” Bhāratı̄ Bhavanam (K. V. Sarma

Felicitation Volume) = Vishveshvaranand Indolog. Jour. 18 (1980), 475–481.
25. “Astronomy in ancient India”. In Bhāratı̄ya Sam. skriti, Bharatı̄ya Sam. skriti

Sam. sad, Calcutta, 1982, pp. 440–453.
26. “A note on R. P. Mercier’s review of Karan. aratna of Devācārya.” Gan. ita

Bhāratı̄, 6 (1984), 25–28.
27. “Phases of the Moon, Rising and Setting of Planets and Stars and Their Con-

junctions”. IJHS, 20 (1985), 212–251.
28. “Main characteristics and Achievements of Ancient Indian Astronomy in His-

torical Perspective” In History of Oriental Astronomy (edited by G. Swarup
et al), Cambridge 1987, 7–22.

29. “The Yuga of the Yavana-jātaka: David Pingree’s Text and Translation
Reviewed”. IJHS. 24 (1989), 211–223.

30. “Vedic Mathematics the illusive title of Swamiji’s book”. Mathematical Educa-
tion 5(3) (1989), 129–133. (cf. next item).

31. “Vedic Mathematics: The Deceptive Title of Swamiji’s book”. Pages 31–39 in
Issues in Vedic Mathematics (edited by H. C. Khare), Delhi, 1991.

32. “GraphicMethods andAstronomical Instruments” being translation (with notes)
of Chapter XIV of the Pañcasiddhāntikā of Varāhamihira. Pages 261–281 in
K. V. Sarma’s edition of Pañcasiddhāntikā with Translation of T. S. Kuppanna
Sastry, Madras 1993.

(III) Book Reviews:

1. Review of the Pañcasiddhāntikā of Varāhamihira (ed. by O. Neugebauer and
D. Pingree, Two Parts, Copenhagen), 1970–1971 Journal of the American Ori-
ental Society Vo. 93 (?), 1973, pp.?

2. Review of Census of Exact Sciences in Sanskriti Series A, Vol. 3. (by D. Pingree,
Philadelphia, 1976) IJHS, 13, (1978), 72–73.
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3. Review of Candracchayagan. itam of Nı̄lakan. ṫha Somayājı̄, (edited by K. V.
Sarma, Hosiarpur, 1976) IJHS, 13, (1978), p. 73.

4. Review of Siddhānta-darpan. am of Nı̄lakan. ṫha Somayājı̄, (edited by K. V. Sarma,
Hosiarpur, 1976), IJHS, 13 (1978), p. 73–74.

5. Review of Rāśigolasphuṫanı̄tiḣ of Acyuta Pis.araṫi, (in Hindi) ed. by K. V. Sarma,
Hosiarpur, 1977, IJHS, p. 74.

6. Review of A. K. Bag, Mathematics in Ancient and Medieval India (Varanasi,
1979), Gan. ita Bhāratı̄, 3 (1981), 107–108.

7. Review of R. C. Pandeya (editor), Grahalāghavam. Karan. am (Parts 1 and 2,
Jammu, 1976 and 1977), Ibid. 108–109.

8. Review of Census of Exact Sciences in Sanskrit Series, A. Vol. 4, (by D. Pingree,
Philadelphia, 1981). Jour. Hist. Astron. Vol-13 (1982), 225–226. Also IJHS, 18
(1983), 221–222.

9. Review of ‘Prāchı̄n Bhārat Mein Vijñān’ (in Hindi) (by S. L. Dhani, Panchkula,
1982). IJHS, 19 (1984) 86–87.

10. Review of Rahman, A. et. al, Science and Technology in Medieval India—A
Bibliography of Source Materials in Sanskrit. Arabic and Persian (INSA, New
Delhi, 1982). IJHS, 19 (1984), 412–413.



Obituary—T. A. Sarasvati Amma

Dr. T. A. Sarasvati Amma was born as the second daughter of her mother Kuttimalu
Amma and fatherMarath AchuthaMenon. The year of her birth was apparently 1094
of the Kollam (Kolamba) era which is prevalent in Kerala and which corresponds to
ad 1918–1919. The initial letters in her name indicate the place of her birth which
was Tekkath Amayankoth Kalam (Cherpulassery) in the Palakkad district of Kerala.
In correspondence, Dr. Sarasvati always signed her letters as T. A. Saraswathi which
is spelled in the usual south Indian style and which appear in some of her papers.

T.A. Sarasvati Amma (1918–2000)

Dr. Sarasvati graduated from the University of Madras with first class in Part
II (Sanskrit) and Part III (Physics and Mathematics). She obtained M.A. degree in

Indian Journal of History of Science, 38.3 (2003), pp. 317–320.
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Sanskrit from the Banares Hindu University in 1st class and secured 2nd rank. Later
on she took M.A. degree in English Literature from Bihar University.

Smt. Sarasvatiworked as aGovernment of India (Ministry of Education) scholar in
the SanskritDepartment of theMadrasUniversity for three years (apparently between
1957 and 1960). She worked under the great Sanskrit scholar Dr. V. Raghavan who
asked her to specialise in the field of Indian contribution to mathematics.

For brief periods, Sarasvati worked as a teacher in the Sree Kerala Varma Col-
lege, Thrissur, and the Maharaja College, Ernakulam. She was appointed Lecturer in
Sanskrit in 1961 for the Ranchi Women’s College which was a constituent college
of Ranchi University. She served in that capacity for about a dozen years.

She submitted her doctoral thesis (prepared under the guidance of Dr. Raghavan)
on “Geometry in Ancient and Medieval India” (about 300 pages) to the Ranchi
University in January 1963. It was examined by an eminent mathematician of north
India (Dr. R. S. Mishra at Allahabad) and another of south India (Dr. A. Narasinga
Rao).

Viva voce was held inMadras in February 1964 and it was approved for the award
of Ph.D. degree by the Ranchi University soon. While in Ranchi, Dr. Sarasvati also
supervised the doctoral thesis of R. C. Gupta (who was then serving B.I.T. Mesra,
Ranchi) on “Trigonometry in Ancient and Medieval India” (Ranchi University,
1970–71).

Dr. Sarasvati was the Principal of the Shree Shree Lakshmi Narain Trust Mahila
Mahavidyalaya, Dhanbad, Bihar, from 1973 to about 1980. This administrative
assignment did not allow her any time for research which she enjoyed. In her letter
of April 16, 1973, to R. C. Gupta, she wrote:

I do not do any useful work now-a-days, immersed as I am in the squabbles and problems
of an affiliated college accustomed to tactics to which I am not accustomed.

Dr. Sarasvati tried to publish her doctoral thesis privately at Ranchi. In fact, the
whole thesis was printed (240 pages) at the G. E. L. Church Press, Ranchi. But due
to presence of a very large number of printing errors (which escaped proof-reading),
the whole lot was abandoned (R. C. G. has a copy of this).

Luckily, the thesis was published later on by the famous Motilal Banarsidass
(Delhi, 1979; Revised edition, 1999). The delay in publishing was caused because
the Ranchi University took a long time in releasing the financial aid it had sanctioned
for the purpose.

The Delhi print of Dr. Sarasvati’s Geometry in Ancient and Medieval India was a
great welcome. It was praised by scholars and reviewers. One of them says that the
book “is an almost exhaustive survey of geometry in Sanskrit and Prakrit literature
right from the Vedic times down to the early part of the seventeenth century ad”
(Deccan Herald dated 21 October, 1979). Dr. Michio Yano of Japan writes that
“Sarasvati’s discussion of the cyclic quadrilaterals treated by Brahmagupta (ad 628)
reveals her remarkable competence in dealing with mathematical Sanskrit texts”
(Historia Mathematica,Vol. 10, p. 469).Another reviewer remarks that “an admirable
feature of the book is the impartial scholarly attitude to the study and a complete
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absence of parochialism” (Annals of the Bhandarkar Oriental Research Institute,
Vol. 69, 1988).

After retirement from the Principal’s post at Dhanbad, Dr. Sarasvati went back to
her home town Ernakulam in Kerala. She wanted to continue her study and research
but could not do much due to domestic and family work (her ailing aged mother
needed care and attention). In 1986 she moved to a smaller house in Ottappalam.

Dr. Sarasvati breathed her last on August 15, 2000. Her only son (an engineering
graduate) is living with his family in Australia (Dr. Sarasvati was separated from her
husband soon after the birth of the only child). Her younger sister T. A. Rajalakshmi
was a famous story writer and novelist but committed suicide in 1965.

Dr. Sarasvati was a simple lady but a great scholar. Her book on Geometry,
in the words of Dr. Yano, “has established a firm foundation for the study of
Indian geometry”. It will continue to stimulate and inspire students of history of
mathematics. The Kerala Mathematical Association has started a regular
Prof. T. A. Sarasvati Amma Memorial Lecture in its annual conference to honour
her memory (the 1st lecture was delivered by P. Rajasekhar in March 2002 on the
“Golayantra according to Nı̄lakan. t.ha”).
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The India-Born First President
of the London Mathematical Society
and His Discovery of Ramachandra

Augustus De Morgan (1806–1871), the founder President of the London Mathemat-
ical Society was born in Madurai of Madras Presidency (South India) on Friday, the
27th June, 1806. His father was associated with the East India company. His great-
grand father James Dodson (died 1757) was the author of Anti-Logarithmic Canon
(1742) and Mathematical Repository (1755).

Professor Augustus De Morgan (1806–1871)

Due to an early infection, Augustus De Morgan lost the sight of his right eye
from the very beginning of his life. This deficiency, however, could not prevent him

The Mathematics Teacher (India), Vol. 41 (1–2) (2005), pp. 100–115; This article is a humble
homage to De Morgan on the eve of the bicentenary year of his birth.
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from attaining excellence in intellectual activities and achievements. His birth in
the spiritual land of India (famous for religious tolerance and intellectual freedom)
perhaps provided the sam. skāras to infuse in him pious qualities such as free and
secular thinking. Universal catholicity of ideas and morality in character.

1 Education and Professional Life

The early education of Augustus De Morgan took place in England, and in February
1823 he entered the famous Trinity College, Cambridge. There, he was introduced to
continental analytic mathematics from the very start. He was a brilliant student and,
under the influenceof good tutors such asGeorgePeacock (algebraist),GeorgeBiddel
Airy (astronomer) and William Whewell (philosopher and historian of science), his
talents were further developed.

De Morgan graduated from the Trinity College in 1827 as a wrangler. He was
a free thinker and his conscience made him reluctant to blindly accept everything
of orthodox religion. He was often hesitant to act according to the doctrines of
the established church, especially in academic matters. This prevented him from
proceeding to the M.A. degree. Earlier, in 1788, his father-in-law (see below) was
deprived of tutorship (also the Jews were debarred from University education!).

In 1837, De Morgan was married to Sophia Elizabeth, daughter of William Frend
(1757–1841) who, himself, was a mathematician. Frend’s The Principles of Algebra
was published from London in two parts (1796 and 1799). The married life of the
De Morgan couple was fruitful, both socially and academically. Their first son was
born in 1839. Sophia Elizabeth posthumously compiled and edited her husband’s A
Budget of Paradoxes (London, 1872) a collectionof anecdotes, reviews andhumorous
writings which DeMorgan had published in the journal Atheneum from time to time.
Her Memoir of Augustus De Morgan by His Wife with a selection from His Letters
(London, 1882) contains valuable information and useful bibliography.

A. De Morgan was a man of principles, and far above the narrow thinking of
sectarian religions. He cared more for his principles than for superfluous orthodox
doctrines. To him the spirit of liberality appealed more than the rigid articles of the
Anglican episcopal church. Thus he could not hold a fellowship at Cambridge (or
Oxford) because he declined to undergo the prescribed religious test for the sake of
that academic gain.

Nevertheless, due to his excellent merit, De Morgan was unanimously selected
as founder Professor of Mathematics in February 1828 at the newly founded ‘The
London University’ which was subsequently called the University College of Lon-
don. It may be mentioned that at the time of selection, he was the youngest of the
thirty-one aspiring candidates and had no teaching experience! The University Col-
lege offered good intellectual freedom so necessary for academic development. This
secular nature (of “godless institution”) may be contrasted with that of the King’s
College, London (established in 1829), where attendance in lectures on theology was
compulsory.
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De Morgan held the position (up to 1866) for most of his remaining life except
for a short period of five years (1831–1835) when he had resigned in protest against
the unfair dismissal of one of his colleagues as a matter of principle.

De Morgan was a dedicated teacher and discharged his duties conscientiously.
His extensive course trained students from elementary arithmetic to calculus of vari-
ation. He was so confident in making his teaching of mathematics interesting to
students that they needed no stimulus “beyond their own pleasure in learning”, he
believed. He was a brilliant mathematician and made new discoveries in the field
of advanced algebra, series, logic, etc. Yet he spent considerable time in devising
better ways of teaching mathematics. He encouraged students to carry out long arith-
metical computations for the sake of acquiring the art, power and skill of rapid and
accurate computation (in those pre-computer days). But he discouraged cramming
for examinations. Examination questions should be for eliciting the thinking power
of the examinees and for testing real understanding of the subject (and not merely for
showing the mathematical gymnastics of the setters). Many students of De Morgan
became famousmathematicians, such as J. J. Sylvester (1814–1897), Isaac Todhunter
(1820–1884), and Francis Guthrie (1831–1899) (originator of the famous four colour
problem in 1852).

The idea of forming the LMS or London Mathematical Society (“to which all
discoveries in mathematics could be reported”) first came during a talk between two
ex-students of the University College of London—Arthur Cowper Ranyard (1845–
1894)whowas elected Fellowof theRoyalAstronomical Society in 1863 andGeorge
Campbell De Morgan (1841–1867), who was a University of London Gold Medalist
of 1863, and a son (not the eldest) of Augustus DeMorgan. A meeting was convened
on November 7, 1864 with Prof. A. De Morgan in chair. It was quite natural and
befitting that Prof. DeMorgan became its first President. His speech at the first regular
meeting of the LMS (held on January 16, 1865) was published in the Proceedings
of the LMS, Vol. 1, 1866, pp. 1–9.

Under the presidentship of Prof. De Morgan, the LMS was “very high in the
newest developments”, and there was “no penny fine for reticence or occult science”.
It may be pointed out that the old Spitalfields Mathematical Society (SMS which
flourished from 1717 to 1845) held that “it is the duty of everymember, if he be asked
any mathematical or philosophical question by another member to instruct him in
the plainest and the easiest manner he is able”. Another point to note is that while
smoking and drinking were permitted at the meetings of the old SMS, “not a drop
of liquor is seen at our (LMS) meetings” (claimed De Morgan).

De Morgan had hoped that the LMS would cultivate and support every branch
of mathematics (and its application) including the then neglected areas of Logical
Mathematics (i.e. connection between logic and mathematics) and History of Math-
ematics. He was re-elected President of the LMS at its Annual Meeting of January
1866.

In November 1866, De Morgan resigned from professorship, again on a matter
of principle, because the policy of religious secularism (equality or neutrality) was
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betrayed by the council in appointing a candidate. The last years of De Morgan were
not happy. The deaths of his son George (1867) and daughter Helen (1870) gave
him further shocks. His health was badly affected. He breathed his last on March 18,
1871.

2 Contribution to Logic, Mathematics and Its History

It is said that in the nineteenth century, professors were appointed and paid solely
for teaching. Research was not taken to be included in their formal duties. Thus
academics with interest in research only found it difficult to support by pursuit of
research alone. Of course, it is natural that a professor sincerely devoted to the
exposition of subtleties of a subjectwill have ideaswhich can lead to its advancement.

Augustus De Morgan contributed to the development of mathematics as well as
of logic. He believed that the two disciplines are connected closely, but complained
that their followers are not paying adequate mutual attention to the twin disciplines.
He said: “We know that mathematicians care no more for logic than logicians for
mathematics. The two eyes of exact science are mathematics and logic: the mathe-
matical sect puts out the logical eye, the logical sect puts out the mathematical eye,
each believing that it sees better with one eye than with two (eyes)”.

De Morgan’s famous formula related to duality may be stated as follows:

If A and B are subsets of a set S, then the complement of the union of A and B is the
intersection of the complements of A and B; and the complement of the intersection of A
and B is the union of the complements of A and B.

In the modern Boolean symbology, De Morgan’s (above) Laws can be expressed
as follows:

(A ∪ B)′ = A′ ∩ B ′

and
(A ∩ B)′ = A′ ∪ B ′.

The truth of these laws can be easily verified by drawing theVenn diagrams of the sets
A and B, their union A ∪ B, their intersection A ∩ B, also then drawing diagrams
of their complements A′, B ′, etc.

De Morgan was an outstanding mathematician and an inspiring teacher. He had
a particularly important role to play in the revival of mathematics in Britain. Florian
Cajori writes (History of Elementary Mathematics, p. 208):

Think of the pains taken byAugustusDeMorgan to reform elementarymathematical instruc-
tion. Themanwho could write a brilliant work on Calculus, who couldmake new discoveries
in advanced algebra, series, and in logic, was the man who translated Bourdon’s arithmetic
from French, composed an arithmetic and elementary algebra for younger students and
endeavoured to simplify, without loss of rigour, Euclidean geometry.
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To secure rightful place for algebra in liberal education was also a task of De
Morgan. George Peacock (1791–1858) was among the earliest mathematicians to
recognize fully the purely abstract nature and symbolic character of algebra. In his
Algebra (1830) he defined symbolic algebra as “the science which treats of the
combinations of arbitrary signs and symbols by means of defined, though arbitrary,
laws”.

De Morgan clearly saw that the laws of algebra could be created without using
those of arithmetic. He believed that an abstract algebraic system could be created
with arbitrary symbols and a set of laws under which these symbols are operated on.
Only afterwards would one need to provide interpretations of these laws. Thus he
asserted the freedom to create algebraic axioms for symbols and even realized that the
symbols could represent things other than quantities, magnitudes or numbers. Soon
systems were created which obeyed laws different from those obeyed by numbers in
arithmetic (e.g. non-commutative algebras).

De Morgan’s work greatly advanced that of Peacock in the area of foundation
of algebra and encouraged W. R. Hamilton’s on quaternions and George Boole’s on
algebraic logic and Ernst Schroeder’s on algebraic logic and lattices. He established
the logarithmic criteria for testing the convergence of series although the subject was
discussed by others also.

A scholar of any science cannot be a full authority of the discipline without
a knowledge of its history. According to De Morgan “the history of most of the
sciences resembles a river which sinks underground at a certain part of its course,
and emerges again at a distant, spot, swelled by certain tributaries, which have joined
it in the tunnel” (Introduction toArithmetic Books). Hewas a great lover of History of
Mathematics and studied it with zeal and scholarly attitude. He acquired a profound
knowledge of the subject andmade significant contribution in the area. He said: “The
early history of the mind of men with regard to mathematics leads us to point out our
own errors; and in this respect it is well to pay attention to history of mathematics”.

In fact, a study of history of mathematics is not only instructive and enlightening
but is charming in itself. J. W. L. Glaisher even said that “no subject loses more
than mathematics by any attempt to dissociate it from its history”. According to the
opinion of the famous historian ofmathematics, FlorianCajori, “Few contemporaries
were as profoundly read in history of mathematics as was De Morgan” (History of
Mathematics, p. 331).

The Arithmetical Books from the invention of Printing to the Present Time
(London, 1847) of DeMorgan is a chronologically arranged descriptive catalogue of
a very large number of works made from “actual inspection”. It is a comprehensive
and unique bibliographical work which is useful also for the study of the spread
of Indian decimal place-value notation and the arithmetic based on the system. His
celebrated Budget of Paradoxes (1872) is a mine of historical information.

Regarding the infamous calculus priority dispute between Newton and Leibnitz,
De Morgan felt it his duty to examine various documents and publish his new find-
ings. The result was the rehabilitation of Leibnitz among the British historians of
mathematics. De Morgan paid attention to historical writings of earlier mathemati-
cians such as Wallis (1657), Dechales (1690), Heibronner (1742), etc.
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De Morgan was a lover of mathematical puzzles and conundrums. For his birth
year (= y, say) he declared: “I was x years old in the year x2”. So that we have the
relation

y + x = x2.

Now, in the seventeenth to nineteenth centuries, the possible values of x2 are 1681
(= 412), 1764 (= 422) and 1849 (= 432). Of these, the last 432–43 gives the birth-
year y = 1806 of De Morgan. In printing mathematical symbols, De Morgan pro-
posed the use of the slant line or ‘solidus’ for printing fractions in the text.

3 De Morgan’s Writings and Publications

Augustus De Morgan had wide knowledge of mathematics, logic, philosophy and
history of mathematics. He was a prolific writer throughout his career. He wrote
about a score of books and about two hundred articles on various topics. Some
of his more important books may be mentioned here. His writings show a balanced
attention to professor’s twin duty of teaching (dissipation of knowledge) and research
(advancement of knowledge).

DeMorgan had begun his career, as an author, by a translation of part of Bourdon’s
work on algebra (Arithmetic Books, p. 91). The first edition of his The Elements
of Arithmetic appeared in 1830. His On the Study and Difficulties of Mathematics
(London, 1831) is devoted to pedagogy. Then there is his The Elements of Algebra
Preliminary to Differential Calculus, etc., (London, 1835). A year later he published
The Connexion of Numbers and Magnitudes: An attempt to Explain the Fifth Book
of Euclid which is in dialogue form.

De Morgan’s famous Treatise on the Differential Calculus appeared in 1842. It
was a work of great ability, especially in clarifying the concept of limit and in the
treatment of infinite series which were considered “very perplexing” by the students.
His equally famousArithmetical Books (1847) has beenmentioned above.HisFormal
Logic or Calculus of Inference (1847) sets forth the algebra of logic or algebra of
sets.

De Morgan’s Trigonometry and Double Algebra (London, 1849) has a peculiar
title. In 1851, he published The Book of Almanacs in which were provided 35 rig-
orously constructed charts (“almanacs” he called them) for any year upto 2000 ad
These charts were based on the tables of Louis Benjamin Francoeur who published
them in 1842 from Paris (see Gan. ita Bhāratı̄, Vol. 17, p. 63).

DeMorgan’sContents of the Correspondence of Scientific Men of the Seventeenth
Century (Oxford University Press, 1862) is useful for the historical study of the cru-
cial century.His remarkableA Budget of Paradoxes (1872) a posthumous compilation
by his wife is already mentioned. It is his collection of eccentrics (including circle-
squarers) which were featured in a magazine. The second edition (by D. E. Smith) of
this work was published in two volumes (Chicago, 1915), of which the first volume
has been reprinted as The Encyclopedia of Eccentrics (Open Court, La Salle, 1974).
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De Morgan’s variety of articles on the history of mathematics were published in
Penny Cyclopedia, English Cyclopedia, Companion to (British) Almanac, Philosoph-
ical Magazine, etc. Profuse use of his historical writings was made by W. W. Rouse
Ball, Florian Cajori and others in their historical writings. Large space will be needed
to enlist his articles which have still historical, educational and mathematical signif-
icance and relevance. Some of these are

1. “On the Foundation of Algebra”, Transac. Cambr. Philos. Soc., 7, 1839–43,
pp. 287–300.

2. “Table”, Penny Cyclopedia, 23 (1842), pp. 496–501, and supplement 2, (1846),
pp. 595–605.

3. “On the almost total disappearance of the earliest trigonometrical canon”, Philos.
Magazine, Series, 3, Vol. 26 (1845), pp. 517–526.

4. “On the Early History of Infinitesimal Calculus in England”, Philos, Magazine
Ser. IV, Vol. 4 (1852), pp. 321–330.

4 De Morgan’s Discovery of Ramachandra

Ramachandra (1821–1880) was a science teacher at the Delhi College (now called
ZakirHussainCollege).Hewasborn at Panipat in aHinduKayastha family.His father
Rai Sunder Lal Mathur (died 1831) worked in the East Indian Company’s revenue
department. The early formal education of Ramachandra took place in an English
government school (1833–1839) where he showed his talent as a bright student of
mathematics. Khushal Rai, a reputed rich man (rais), succeeded in arranging the
marriage of his deaf and dumb daughter Sita with Ramachandra even before the
latter attained teenage (pandits and purohits had been lobbying for Rai since 1832,
and enquiries about the girl were considered taboo in those days of arranged child
marriages).

While teaching in the Delhi College (from 1843 onwards), Ramachandra was
also involved in translating European scientific works into Urdu as undertaken by the
Vernacular Translation Society. These includedHutton’s Trigonometry, Boucharlet’s
Conic Sections, Simon’s Analytic Geometry and some books of I. Todhunter. His
Urdu mathematical primer Sari-ul-Fahm was published from Delhi in 1849. It was
said to be written in 1845 in which year his two other Urdu books, namely Asool-i-
Jabr-O-Muqabal (Principles of Algebra) and Asool-i-Ilm-i-Hisab-Juziat-O-Kuliyat
(Principles of Maxima and Minima), were published from the same place.

Above all, Ramachandra could alsofind time to complete hismathematical investi-
gations and writing of his famous book Treatise on Problems ofMaxima andMinima
Solved by Algebra.1 It was published from Calcutta in 1850 and created stir in math-
ematical circles. It made him a reputed mathematician but some native educationists
had rebuked the author’s ‘temerity in publishing the book in English’ (instead of

1AMTI has now published this book as edited by Prof. M. S. Rangachari with his comments.
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vernacular language). It was meant to advance the educational standard and to serve
cause of science.

Ramachandra was a believer in rationalism and in the neutrality of science. He
was against the blind religious practices (cf. reformists like Raja Rammohan Roy and
Swami Dayananda Saraswati). In fact, it was the time of encounter between science
and religion, between eastern and western, and also between traditional or old and
new ideas and systems.

Anyway, Ramachandra’s perception of the then prevailing Hindu religion and
culture, his administration of the emerging scientific West and, possibly, prospect of
a brighter future career were factors which caused a great change in his faith. He was
baptized in 1852 and thus became known as Yesudas Ramachandra.

It is said that Drinkwater Bethune, Chairman of the Education Commission, Cal-
cutta, forwarded a copy of Ramachandra’s Treatise on Problems of Maxima and
Minima to Augustus De Morgan, the Professor of Mathematics at the University
College, London, for comments. In this way De Morgan discovered Ramachandra
(Just as Hardy was to discover the famous Ramanujan later on).

DeMorgan arranged the re-publication ofRamachandra’s book inEnglandwith an
Introduction for distribution in Europe. He had said: “I would point out how to bring
Ramachandra under the notice of scientific men in Europe”. Thus the second edition
of the book was published from London in 1859. It was done so “by the order of the
honourable court of directors of the East India Company … in acknowledgement of
the merit of the author (Ramachandra)”. The book showed to English men of science
that “the Hindu mind masters problems without the aid of Differential Calculus”.

In 1863, Ramachandra’s A Specimen of a New Method of Differential Calculus
called the Method of Constant Ratios was published from Calcutta. Towards the end
of his life, he wrote on some religious topics includingAitaraz-i-Quran (Delhi, 1876)
which is critical of Islam.

5 Miscellany

In Latin, the word ‘augustus’ means ‘grand’. Indeed Augustus De Morgan was a
grand mathematician of his time. He was an outstanding teacher, an eminent scholar,
a prominent historian and a veteran writer in mathematics. Recently Dr. Adrian Rice
reported to have successfully completed his doctoral thesis on “De Morgan and the
Development of University Level Mathematics in London During the nineteenth
century” (Middlesex University, 1997).

To cherish the loving memory of the first and founder professor of mathematics,
the alumni of the Department of Mathematics, University College of London, call
their association as the ‘De Morgan Association’. Similarly, to commemorate its
founder president, the London Mathematical Society awards the De Morgan Medal
every three years for outstanding achievements in mathematics.

Professor De Morgan had great love especially for rare and ancient books and in
their history. He had collected more than 3000 books. After his death, the collection
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was purchased by Lord Overstone (1796–1883), who presented it to the University
Librarywhere it is called theDeMorganCollection.DeMorgan had a habit of pasting
letters (he received) and pictures (cut out from magazines) in suitable places in the
books he possessed. The numerous DeMorgan’s manuscripts, nearly 200 notebooks,
items of correspondence, etc., were given to the University Library by his eldest son.

A man of principle, DeMorgan also depicted his eccentric nature. He never voted
at an election, declined the offer of an honorary L. L. D. degree and even refused
to be proposed for fellowship of the Royal Society although he was a Fellow of the
Cambridge Philosophical Society (Astronomer T. I. M. Forster who discovered a
comet in 1819 also refused the offer of FRS because he “disapproved of certain of
its rules”).
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M. Rangacharya and His Century Old
Translation of the Gan. ita-sāra-saṅgraha

Lots of Achievements in ancient Indian Mathematics as reflected in the works of
Āryabhat.a I (born 476 ad), Brahmagupta (seventh century ad) and Bhāskara II
(twelfth century) were freshly made known in modern form to the Western world
during the nineteenth century. Leading role in this regard was displayed by Western
scholars such asR.Barrow,H.T.Colebrooke, S.Davies,C.Hutton,H.Kern,L.Rodet,
E. Strachey and John Taylor.

Often some Indian scholars (e.g. Bapudeva Sastri and Sudhakara Dvivedi) were
also involved and associated in this academic and educational propagation. However,
according to the then well-known historian of mathematics, D. E. Smith, “native
scholars under the English supremacy have done so little to bring to light ancient
mathematical material known to exist and to make it known to the Western world”.
Nevertheless, he had soon found a sort of exception in Prof. M. Rangacharya whom
hemet inMadras (about 1905). He came to know about latter’s edition and translation
of the Gan. ita-sāra-saṅgraha (=GSS) then contemplated to be published for the first
time. With Smith’s introduction, the fruitful work appeared a century back (Madras
1912).

Prof. M Rangacharya (1861–1916)

Indian Journal of History of Science, 48.4 (2013), pp. 643–648.
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Rangacharya was born in 1861 in Melkote† (of the then Mysore State) where
he also received his early education. In 1881, he passed the B.A. and worked in
Madras Christian College. Soon, the Government College, Kumbakonam offered
him a lecturership in science. On completing M.A. in Physical Sciences, he served
the Govt. College, Rajahmundry, the Presidency College, Madras (1890), and the
Maharaja College, Trivandrum after which he returned to the Presidency College.
Here, he became professor of Sanskrit and Comparative Philosophy in 1901. It was
the result of the great impression, influence and impact which he had already made
by his scholarly lectures and publications. He also became Curator of the Govt.
Oriental Manuscripts Library which was a literary ‘Laboratory’ for him. In 1903, the
title “Rao Bahadur” was awarded to him. He died in 1916 and thus a brilliant career
ended.

It is interesting to note that Rangacharya’s interest in GSS was initiated by the
then Director of Public Instruction, G. H. Stuart who had asked him to find out if
the G. O. M. Library has “any work of value capable of throwing new light on the
history of Hindu mathematics, and publish it, if found with English translation etc.”
A search yielded three incomplete manuscripts of GSS in the Library. On the advise
of Stuart, some other mss (luckily found to be complete) were procured. The tough
job of editing and translating could be taken to final stage due to Rangacharya’s
labour of love. Unfortunately, Stuart did not live long enough to enjoy the delight of
seeing the final form.

Rangacharya was a remarkable scholar, scientist and educator. He enriched his
formal routine knowledge further by self study of various branches of learning. As
a result, he could successfully teach a variety of subjects such as biology, chemistry,
physics, mathematics, history, philosophy, Sanskrit and Indology. The variety and
depth of his scholarship is well reflected in his studies, researches and publications
which cover scientific as well as humanity topics. We take an example.

The cyclic division of time is peculiar feature of ancient Indian Chronology. But
the four yugas (called kr. ta, tretā, dvāpara and kali) have also been given a variety
of interpretation in Indology. For instance, the Aitareya Brāhman. a is said to have
stated that “one who sleeps is kali, one who gets up is dvāpara, one who stands up
is tretā and one who moves is kr. ta” (Rajneesh, p. 18). Rangacharya interpreted the
four yugas in terms of historical periods. According to him, the kr. ta (“deed”) yuga
refers to the period when the Āryans performed heroic deeds in conquering lands and
establishing their supremacy in the Indian subcontinent, the tretā i.e. the (“three” i.e.
the three nitya-agnis dealt so frequently in Śulba-sūtras), yuga refers to the period
when the Aryans were concentrating on the vedic sacrifices and priesthood, etc.
(1909). He mentioned the Sanskrit Sūrya-siddhānta for giving the life of Brahmā
as 31104× 1010 solar years which are taken to form the life of universe according
to Hindu theory of cycles of creation and pralaya (destruction). But some Purān. as
consider even Brahmā’s whole life just as twinkling of the eye of Lord Kr.s.n. a or Śiva
(Gangooly, p. 12)!

†For obvious reasons, the reading: ‘Malkota’ in the published article has been changed as above.
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The GSS is a very significant work not only of the Jaina School but of ancient
Indian Mathematics in general. However, due to religious bias, it did not find the
mention it deserved in the works of Hindu mathematical writers belonging to ancient
and medieval periods. Although entitled saṅgraha (“collection”) it contains many
original contributions of the author Mahāvı̄ra who was a Digambara Jaina belonging
to the ninth century.

The translation of GSS into English is Rangacharya’s greatest contribution to
history of mathematics and by doing so he has made, in the words of Smith, “the
mathematical world his perpetual debtor”. The interest shown by Smith in GSS also
helped in its quick worldwide publicity. Rangacharya’s work has useful appendices.
During the last 100years, scholars in the field have been benefited by his clear edition
of the Sanskrit text, faithful translation and accompanying notes. Scores of research
papers, essays and popular articles onGSS aswell as on its author have been published
(see a brief bibliography at the end). There is a need to make a fresh and deep critical
study of the GSS. It will not be out of place to mention a few things.

The GSS 1.49 gives the wrong rule N
0 = N

possibly because division by zero was looked upon as of no effect (cf. distribution of
N things among zero persons). Mahı̄dhara’s commentary (1587) on Lı̄lāvatı̄ contains
the above rule numerically with N = 9 (Ganitanand, p. 139). A simple and practical
algorithm to express a given fraction p

q into unit fractions is the Mahavira–Fibonacci
method (Gupta 2010, pp. 87–88). A typically Jaina formula for finding the arcual
length s of a circular segment of chord c and height h is their very ancient empirical
rule (Ibid., pp. 66–68)

s =
√

c2 + 6h2.

Its history, rationale and related forms are interesting. GSS (VII. 63) appears to
have used it for accurate rectification of the ‘elongated circle’ or ellipse (Gupta 1974).

Takao Hayashi has discussed several mathematical formulas and aspects of GSS.
He [1987] gives a new interpretation of the Quiver Problem and [1992] deals with
the Conch-like plane figure. Links between Mahāvı̄ra and the non-Jaina Nārāyan. a
Pan.d. ita (1356) are clearly reflected in many ways. For finding the area of the curved
surface of spherical segment, GSS (VII. 25) prescribes.

A = p · w
4

where p is the perimeter of the base circle andw is the curvilinear width of the bulged
surface (Gupta 1989). This empirical rule easily leads to the expressions

S = C2

4
=

(
C

2

)2

for the full surface S of a sphere where C is the circumference of any great circle.
Interestingly such a rule for finding S (in form of above expressions) was known to
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T. hakkura Pherū (c. 1300) in India and to the seventeenth-century Japanese mathe-
maticians as old method (Gupta 2011). Surprisingly, S = ( c

2 )
2 also appears in some

Italian manuscripts of the fourteenth and fifteenth centuries (Simi and Rigatelli.,
p. 469). GSS rules for volume of a sphere and frustum like solids have been given a
new look (Gupta 1986 and 2011).

Rangacharya’s endeavour could procure only a few manuscripts of GSS for con-
sultation. Now D. Pingree’s Census, Vol. 4 (1981), pp. 388–389, lists about 50
manuscripts. Daivajña Vallabha’s Kanarese commentary on GSS is known and he is
also claimed to be the author of a Telugu commentary on the same work. Other Com-
mentators of GSS include Varadarāja and Sumatikı̄rti who belong to the sixteenth
century (?). In the eleventh century, GSS was translated into Telugu by Pāvul.ūri Mal-
lana, son of Sivanna. But he also made some changes and additions and the whole
work is popularly called Pāvul.ūri Gan. itamu. His grandfather was also named Mal-
lana whom some scholars regard the real author of the Telugu work (Arunachalam
p. 149).

It so happened that, about two centuries, a keen scholar-officer named Benjamin
Heyne studied the Pāvul.urı̄ Gan. itamu and translated its ks. etragan. ita chapter into
English. This was published as “A free translation of the Chetri Ganitam or Field
Measuring of the Hindoos” in Tracts of India (London 1814) [Gupta 2002].

According to Pingree (p. 388), GSS was translated into Rajasthani by Amı̄candra
in 1842. L. C. Jain’s edition with Hindi translation (Sholapur, 1963) is based on Ran-
gacharya’s version. B. B. Bagi’s Introduction says that “a new edition with English
translation by an experienced mathematician who knows Sanskrit well is an urgent
need”. In 2000, Sri Hombuja Jain Math published the GSS with Rangacharya’s
translation along with a Kannada.

The relation and relative chronology of Mahāvı̄ra (c. 850) and Śrı̄dhara
(eighth century) has been often discussed by scholars. Although K. S. Shukla’s intro-
duction to Śrı̄dhara’s Pāt. ı̄gan. ita (Lucknow, 1959) placed Śrı̄dhara after Mahāvı̄ra,
later on he accepted the usual dates (see Gan. ita Bhāratı̄, Vol. 9, 1987, pp. 54–56,
and Vol. 25, 2003, 146–149).

A critical edition ofGSS based onmoremss along with some ancient commentary
will be a tribute to Rangacharya on the occasion of his coming death centenary.
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(= MT) 47 (1954) 528–533.

3. P. V. Arunachalam: “Mathematics in Telugu”. MT (India) 40 (2004) 148–173.
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29. T. A. Sarasvati: “Mahāvı̄ra’s Treatment of Series”. Ranchi University Journal I (1962) 39–50.
30. S. R. Sarma: “Mathematical Literature in the Regional Languages of India”. pp. 201–211 in

Ancient Indian Leaps into Mathematics (ed. by B. S. Yadav and M. Mohan), New York, 2011.
31. A. Simi and L. Toti Rigatelli: “Some Fourteenth and Fifteenth Centuries Texts on Practi-

cal Geometry” 453–470 in Vestigia Mathematica, (ed. by M. Folkerts and J. P. Hogendijk),
Amsterdam, 1993.
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Part IX

Transmission of Mathematics
and Astronomy Between India

and Other Civilizations



Indian Astronomy and Mathematics
in the Eleventh-Century Spain

According to Ibn al-Ādamı̄ (c. 950ad) as quoted byQād. ı̄ S. ā’id al Andalūsı̄ (d. 1070),
Caliph al-Mans.ūr of Baghdad (755–775 ad) ordered a Sanskrit astronomical work to
be translated into Arabic.1 This translation wasmade by al-Fazārı̄ with the help of the
Indian astronomer who had brought the said Sanskrit astronomical (i.e. Siddhānta)
work to the Abbasid Court (in 771 or 773), and the Arabic version was called Zij al-
Sindhind fromwhich descended a long tradition within Islamic astronomy extending
upto Spain for several centuries.2

Al-Fazārı̄ also composed (c. 780) the ZIj al-Sindhind al-Kabı̄r (The Great Sind-
hind) which was based on the Zij al-Sindhind, and in which three Indian values,
namely 3270, 3438 and 150, were used for the Sinus Totus (i.e. trijyā) or radius. A
similar Arabic work called Zı̄j mah. lūl fı̄ al-Sindhind li daraja daraja (“Astronom-
ical Tables in the Sindhind Resolved for every Degree”) was composed by Ya’qūb
ibn T. āriq who had collaborated personally with the Indian astronomer who went to
Baghdad in 771 or 773 (as mentioned above).3

Al-Khwārizmı̄ who flourished under the region of Caliph al-Ma’mūn (813–833),
made extensive use of the Zı̄j al-Sindhind and its derivative works in composing
his Zı̄j (Astronomical Tables) which became famous through out the Islamic world
upto Spain and in Europe through subsequent Latin translations. It is said for his
astronomical work, al-Khwārizmı̄ was fār more heavily indebted to Indian work than
to other sources.4 His Astronomical Tables were redacted by Masalama al-Majrı̄t.ı̄
who flourished in Spain and died there about 1007 (or later).5 This was one of the
channels through which Indian astronomy and mathematics penetrated Spain and
the influence of Indian astronomy represented by the tradition of Sindhind continued
there even after Ptolemy’s Almagest (on Greek astronomy) came to be known.6

In the Astronomical Tables of al-Khwārizmı̄, the corrections for the planets and
the reckoning of time are made with reference to the central place of the earth,

Gan. ita Bhāratı̄, Vol. 2, Nos. 3–4 (1980), pp. 53–57; Paper presented at the Symposium on History
and Philosophy of Mathematical Sciences held at the Osmania University, Hyderabad, on January
2, 1979, under the joint auspices of the Indian Society for Histroy of Mathematics and the Indian
Association for the History and Philosophy of Science.
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called Arin, i.e. Ujjain which is the zero meridian of Hindu astronomy.7 However,
it was but natural for al-Majrı̄t.ı̄ to work out his adaptation of these Tables for the
longitude of Córdoba (Spain) where he flourished.8 Thus the crescent visibility table
was computed on the basis of Indian visibility theory for the latitude of northern
Spain.9

Al-Majrı̄t.ı̄ had several disciples who made his work known throughout the
peninsula and through them exercised considerable influence on the work of later
scientists.10 For instance, one of the disciples was Ibn al-Samh. (d. 1035) of Granada
(Spain) who followed Indian astronomical techniques and about 1010 ad wrote a zı̄j
(not extant) which is reported to be based on the methods of the famous Sindhind.11

Such was the impact of Indian scientific achievements in Spain that Qad. ı̄ Sā’id
(d. Toledo, Spain, 1070) included Indians among the nations which have cultivated
the sciences in his T. abaqāt al-Umam (“Category of Nations”) which he wrote there
in 1062. He says:12

The first nation (that has cultivated the sciences) is the people of India who form a nation
vast in numbers, powerful, within great dominations. All former kings and past generations
have acknowledged their wisdom and admitted their pre-eminence in various branches of
learning....

The king of India was called King of Wisdom because of the concerns of the Indians for the
sciences and their distinction in all branches of knowledge....

Among all nations, during the course of centuries and throughout the passage of time, India
was known as the mine of wisdom,... and the Indians were credited with excellent intellects,
exalted ideas, universal maxims, rare inventions and wonderful inventions.

.... they (the Indians) have studied arithmetic and geometry. They have also acquired copious
and abundant knowledge of the movements of the stars, the secrets of the celestial sphere
and all other kinds of mathematical sciences.

About the systems of astronomy followed in India Qād. ı̄ Sā’id says:
13

Among the Indian systems of astronomy, there are three famous schools, i.e. those of Sind-
hind, Arjabhar and Arkand. Exact information has reached us only about the school of
Sindhind (Siddhānta) which has been adopted by a group of Muslim scholars who have used
it for the compilation of astronomical tables ....

The followers of Sindhind state that the apogee (awjāt) and nodes (Jawzahrāt) of seven
planets are all assembled at the head ofAries once in 4320,000,000 solar years, and they name
this period as ‘world-period’ [cf. kalpa]. . . . As for the followers of Arjabhar [Āryabhat.a],
they are in agreement with the followers of Sindhind except with regard to the length of the
‘world-period’ [which is taken to be 4320,000 solar years in this system]. . . . As regards the
followers of Arkand school, they differ from the former schools in respect of movements of
planets and the ‘world-period’ but exact nature of this difference is not known to us.

Al-Zarqālı̄ or Al-Zarqāll (Azarchiel of the Latins), themost celebrated astronomer
of his time, lived in Toledo and Córdova (both in Spain) where he died in 1100 ad
His name is associated with the famous Toledo Tables which enjoyed an enormous
circulation. They were extraordinarily successful in the Latin world, and by the
twelfth century they were used throughout Europe.14
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The Toledo Tables have lot of material on Indian astronomy. It has a set of tables,
of Indian origin, for computing oblique ascensions in terms of right ascensions.15

Its table of Sines (with R = 150′) and the table of Solar declinations (with e = 24◦,
the Hindu value of the obliquity of the ecliptic) are identical with the corresponding
tables in the Sanskrit Khan. d. a-khādyaka (665 ad) of Brahmagupta.16

Like Indian, al-Zarqāli assumed circumference equal to 360◦ and diameter equal
to 300′, and defined kardaga as arc of 15◦ (cf. gr. hārdha or half sign which is used
as a tabular interval by Brahmagupta).17 He defined Sinus Rectus and Sinus Versus
like the Indian Kramajyā and Utkramajyā, and gave the usual Indian methods for
computing the tabular Sines.18 Using the standard Hindu gnomon of 12 units and the
Indian radius of 150 minutes, al-Zarqālı̄ found the shadow of the sun from its altitude
and vice versa. For π , he gave the approximation 22

7 ,
√
10 and 62832

20000 , the last two
of which are obtained from Indian sources.19 The value

√
10 is found in old Jaina

Canonical works, and 62832
20000 is exactly the approximation given by Āryabhat.a I (born

476 ad).20

In 1089, al-Zarqālı̄ elaborated the Almanac of Ammonius in which the trigono-
metrical portion presents the mingling of the Indian material with that from other
sources.21

Regarding the knowledge of Indian arithmetic in the eleventh-century Spain, we
again quote the words of Qād. ı̄ Sa’id who says:22

In the domain of numerical sciences, we have their (i.e. of Indians) hisāb al-ghubār which
was explained by al-Khwārizmı̄. It is a very compendious and quick system of calculation,
easy to understand, simple to adopt, and remarkable in its composition, bearing testimony
to the sharp intelligence, creative power and remarkable faculty of invention of the Indians.

Unfortunately, like his Zı̄j, the Arabic original of al-Khwārizmı̄’s work on Indian
arithmetic is lost, one of its suggested titles is Kitāb H. isāb al-‘Adad al-Hindi (“Trea-
tise on Calculation with Hindu Numerals”).23 However, its Latin version entitled
Algoritmi De Numero Indorum is well known, and this played a very important role
in introducing the Indian decimal place-value system of numerals and the corre-
sponding computational methods in Europe.24

Similarly, the first serious Latin work on astronomy was a translation (via Arabic)
of a redaction of Sindhind which was a translation of an Indian astronomical work
in Sanskrit.25

We have already mentioned al-Majrı̄t.ı̄’s redaction (made in Spain) of al-
Khwārizmı̄’s Zı̄j which had strong influence of Sindhind.26 Ibn al-Muthannā wrote a
commentary (lost) on the original Zı̄j of al-Khwārizmı̄, but a Hebrew translation (of
this lost commentary) by Ibn Ezra (born in Toledo, ca. 1090 and died at Calahorra,
Spain, c. 1165) is extant. In some of the matters, e.g. table of ascensional difference
which is missing in al-Majrı̄t.ı̄’s version, Ibn al-Muthannā’s version shows further In-
dian influence by the use of Indian Sinus Totus of 150’ and an interval of a kardaga
of 15◦.27
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Ibn Ezra himself composed Sefer ha-Mispar (“Book of the Number”) which de-
scribes the decimal system of numerals with zero showing a deep influence, although
he often used the letters of the Hebrew alphabet as numeral-signs.28 Just a few years
before and after Ibn Ezra put the material, containing Indian techniques and param-
eters, into Hebrew, a host of other scholars, like Adelared of Bath (fl. 1116–1142),
Plato of Tivoli (fl. 1132–1146) and Gerard of Cremona (d. Toledo, 1187), translated
Graeco-Arabic and Indo-Arabic scientific literature into Latin. There were several
centres where this translation work was done but Spain had major share in the ac-
tivity. And it was through these Latin translations that astronomy and mathematics
flowed wider into Europe causing a step towards renaissance.
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Centaurus, 11, 73.
10. Vernet, op. cit.(ref. 5), p. 39.
11. Ibid., and Kennedy, op. cit. (ref. 6), p. 129.
12. M. S. Khan (1975), “An eleventh century Hispano—Arabic source for ancient Indian science

and culture”, Studies in the Foreign Relations of India, Calcutta, pp. 358–359.
13. Ibid., p. 360.
14. Juan Vernet (1976), “Al-Zarqālı̄”, DSB, XIV, N.Y., p. 593.
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Indian Astronomy in West Asia

1 Upto the Middle of Eighth Century AD

It is difficult to gather trustworthy knowledge of astronomy in Iran before the reign
of Ardashı̄r I (ad 226–240) and Shāpūr I (241–272)1 who encouraged the spread of
Indian Science in the region. The ninth century Pahlavi (Middle Persian) Dēnkart
informs us authoritatively that the two kings had Indian and Greek works translated
into Pahlavi and that they were revised under Khusro Anūshirwān (sixth century)
(Pingree, 1964–66, p. 119).

According to Abū Sahl ibn Nawbakht who worked in the library of Hārūn al-
Rashı̄d (786–809), there wasmade then a translation of a Sanskrit work composed by
an Indian whose name was Farmāsb which has been taken equivalent of Parameśvara
(Pingree 1976a, p. 146).

In Iran, about the middle of the fifth century, an official royal handbook on
astronomy was compiled. It is generally called Zı̄j al-Shāh (Royal Astronomical
Table). It used Indian parameters from the Sanskrit Paitāmaha Siddhānta of the
Vis. n. udharmottara Purān. a (Haddad, p. 213). The tenth century Cairo astronomer
Ibn Yūnis says that, about 450 ad, the solar apogee was placed by Persians in Gem-
ini 17; 35◦ which is precisely the longitude it had at that date in the above Sanskrit
work (Pingree 1963–64, pp. 3–4; and 1967–68 for the work).

Māshā ‘allāh (fl. 750–815), a Persian Jew from Bas.ra has been quoted by ‘Ali ibn
Sulaymān al-Hāshimı̄ in his Kitab fi‘ı̄lal al-zı̄jāt (The Book of the Reasons Behind
Astronomical Tables). He says:

1All dates are in ad unless otherwise stated.

Revised version of a paper published in the Vishveshvaranand Indological Journal Vol. XX, 1982,
pp. 219–236.Originally thiswas author’s lecture delivered on 19th September 1979 at theUniversity
of Jodhpur under the INSA Programme in History of Science.
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Khusro Anūshirwān, when he beheld the difference between the Arkand and what Ptolemy
asserted, he gathered together the people learned in computation and in (astrological)
judgements, and he looked over these two books. He found the Arkand (based on Indian
material) to be the most accurate by observation and eyesight, and judgements based on its
planets more accurate. So he worked out a Zı̄j called The Shāh (Haddad, p. 95).

Thus a new version of the Royal Astronomical Table was written which is called the
Zı̄j Shahriyārān of ad 556. Another version of the Zı̄j al-shāh was written during the
reign of Yazdigird III (632–652) but the source was still Arkand (Haddad, p. 212–
213).

The midnight system of Āryabhat.a I (b. 476) is not extant. Its parameters are
same as found in the Old Sūryasiddhānta (in the redaction of Lāt.adeva) which is
summarized by Varāhamihira in his Pañcasiddhāntikā and whose epoch is ad 505.
Kennedy has been able to demonstrate that Zı̄j al-Shāh contains the same parameters
(Kennedy 1956, p. 130 and Pingree 1963, p. 242).

The standard Arabic alphabet has no characters to render the guttural sound of
the Sanskrit letter g ( , as in get) which is therefore usually transliterated in Arabic
by guttural letter k (kāf) as done by al-Birūnı̄ when he wrote ankula in Arabic for
aṅgula in Sanskrit (Kennedy 1976, II, p. 27). Thus it is generally accepted that the
Arabic word arkand comes from the Sanskrit word ahargan. a (heap of days).

For calculating planetary positions, the concept of ahargan. a is basic in the Indian
astronomy. It has been suggested that the midnight system (of about ad 500) as
expounded by Āryabhat.a I, “could easily have been translated into Pahlavi as the
Zı̄j al-Arkand by about 550” (Haddad p. 212). A better surmise will be that the
translation could have been done of the Old Sūryasiddhānta which had the same
system.

The last version (seventh century) of the Zı̄j al-Shāh was translated into Arabic
in about 790 perhaps by Abū-al-H. asan ‘Alı̄ bin Ziyād al-Tamimı̄ from a Pahlavi
(Haddad, p. 216). Bı̄rūnı̄ states (Sachau, II, p. 7) that the Khan. d. akhādyaka (ad 665)
of Brahmagupta is known among the Muslims as Al-Arkand. Of course, both belong
to the same astronomical tradition, the old midnight Indian system.

Bı̄rūnı̄ had come across an Arabic al-Arkand (of about 735 ad) which was a bad
translation of theKhan. d. akhādyaka (Haddad, p. 207). In the true spirit of scholarship,
he himself made a corrected version of the Arabic translation in which the Sanskrit
technical terms were properly translated. It is called Tahdhib Zı̄j al-Arkand (MAIC,
p. 153) and (Haddad, p. 211).

According toBı̄rūnı̄, themaximumequations for the Sun (2◦14′) andmoon (4◦56′)
in the Zı̄j al-Shāh are derived from the Hindus (Saffouri and Ifram, p. 28). Elsewhere
he gives other informations about the same Zı̄j such as (Kennedy 1956, p. 130,
Pingree 1970a, p. 118):

1. Use of midnight epoch in contrast to the general practice of using noon.
2. Use of Hindu methods and parameters at least with regard to planetary equations.
3. Use of the standard Hindu gnomonic height of 12 digits in connections with

shadow problems.
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Now we briefly discuss about the origin of an Arabic word frequently used in Zı̄jes.
It is kardaja which is the interval employed in the column of arguments in tables of
sines and etc. (Haddad, p. 214). Scholars (D. Pingree etc.) think that the above word
comes from the Sanskrit Kramajya (Ibid). An objection to this is that this Sanskrit
word stands for sine, which is the function and not the argument (arc or degree). In
my view kardaja comes from the Sanskrit gr. hārdha (“half rāśi” or 15◦) by the basic
change of Sanskrit g to Arabic k, etc. In fact, al-Hāshmı̄ says “each kardaja is 15◦
which is 900minutes” (Haddad p. 153). Even in Latin works it is so. Regiomontanus
(ed. by D. Santbech, Basle 1561) explains “Kardaja portio arcus 15 gr. appellatur”
i.e. Kardaja is arc of 15◦.

Of course, as it happens usually, slowly kardaja was used for any argumental
measure or interval of argument (not simply 15◦). No doubt it acquired even wider
and more general meanings but originally it sprang from gr. hārdha.

2 Arabs and the Second Half of the Eighth Century

Before the rise of Islam, no scientific literature existed in Arabia beyond a few
magical, meteorological and medical formulas (Hitti, pp. 91 and 307). After the
historic hegira flight (ad 622), Prophet Muḣammad united all Arab tribes under the
flag of Islam to launch jihād. About 637 ad, the might of Persians was broken and the
Sasanian empire ended. Arab Chronicles estimate the booty and treasures captured
to billions of dirhams (silver coins).

An anecdote from them says that when an Arab warrior was blamed for selling
a noble man’s daughter who fell as his share of booty, for only 1000 dirhams, his
reply was that he “never thought there was a number above ten hundred” (Hitti,
pp. 156-7). Caliph ‘Ali ibn Abı̄ T. alib (656–661) who himself was a mathematician
and astronomer, was influenced by mathematicians of the Pre-Islamic Iranian Centre
at Fars (Gundishpur) (MAIC, p. 13).

In 662 ad, the Syrian Christian bishop Severus Sēbōkht (died 667) composed a
book which contains information about Indian decimal place-value numeration and
arithmetic (Ibid.).

Better knowledge of Hindu astronomy spread among the Arabs in the eighth
century when direct contact with India took place. An Indian astronomer visited
Baghdad as a member of an embassy from Sind. The story was told by Ibn al-Adamı̄
(Baghdad, about 920) and is quoted by Qād. ı̄ S. ā‘id al-Andalusı̄ (d. 1078) some what
as follows (Pingree 1970a, pp. 105–106):

…Ibn al Adamı̄ in his large Zı̄j calledNazm al-‘iqd says that in the (Hijri) year 156 (=ad 772–
773) there came to the Caliph al-Mans.ūr (755–775) a man from India, an expert in the cal-
culation (ḣisāb) called al-Sindhind concerning the motions of planets…Al-Mans.ūr ordered
the translations of this book into Arabic, and that there should be written from it a book
which the Arabs might use as a basis for the motions of the planets. For this al-Fazārı̄ was
made incharge. He made of it a book which is called al-Sindhind al-kabı̄r.
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According to Pingree (DSB IV, p. 555), the Sanskrit text translated belonged to the
Brahmapaks. a (school of Indian astronomy) whose most immediate cognates were
the Paitāmahā Siddhānta of the Vis. n. udharmottara Purān. a and the Brāhmasphuṫa
Siddhānta of Brahmagupta (ad 628). The name of the visiting astronomer is given
as Kanaka (or kankah) by Abraham ibn Ezra (c. 1090–1167) in the preface of his
translation of the Ibn Muthannā’s Fi‘ilal Zı̄j al-kwārizmı̄ and his Liber de Rationibus
Tabularum (DSB VII, 223). In the latter work he says (Pingree 1968, p. 215):

The Indians said that the (maximum) declination of the Sun is 24◦ as Iacob Abentaric
(=Ya‘qūb ibn T. āriq) transmitted from the words of chenche (= Kanaka) the most learned of
the Indians.

Al-Bı̄rūnı̄ in his Chronology states that Kanakah was an astrologer at the court
of Hārūn al-Rashid (786–809) while Abū Ma‘shār in his Kitāb al-ulūf (Book of
Thousands) (c. 850) says that Kanaka was an authority in Indian astronomy “in
ancient times”.

In my opinion the name Kanaka (kankah) among the Arabs in this context came
from the Sanskrit gan. aka (gan. akah. ) and stood for an astronomer in general. Different
gan. akas visited Baghdad at different times. Nevertheless an Indian teacher named
Kanakācārya is quoted by Kalyan. a Varman (800 ad or so) in his Sārāvalı̄ (Jha,
p. 426).

3 Al-Fazārı̄ and Ya‘qūb

We have already mentioned that al-Fazārı̄ was asked to work with the Indian
astronomer on an Arabic translation of a Sanskrit astronomical text brought by the
latter toBaghdad in 772/773.AnotherMuslim scholarwho collaborated in the project
at theAbbasid court wasYa‘qūb ibn T. āriq. TheseArab scholars played the significant
role of introducing a large body of Indian parameters and computational techniques
to Islamic scientists. The Arabic translation was entitled Zı̄j al-Sindhind from which
descended a long tradition in Islamic astronomy that survived in the ‘East’ until the
tenth century and the ‘West’ (i.e. Spain) till the twelfth century. Kennedy (1956,
p. 129) has listed about a dozen zı̄jes which were computed by the method of the
Sindhind or strongly affected by it. Unfortunately most of these have not come to
light.

The first work derived from the Sindhind was evidently the Zı̄j al-Sindhind al-
kabı̄r (The Great Sindhind) of al-Fazārı̄ himself. In this, the system of the kalpa, the
mean motions of the planets, their apogees and their nodes were all according to the
Brahmapaks. a. Two Indian values of the sinus totus namely 3438 and 3270 are found
in the work (Pingree 1971, p. 555).

Probably about 790, al-Fazārı̄ composed his Zı̄j ‘alā sinı̄ al-‘Arab (“Astronomical
Tables according to the years of the Arabs”) in which he apparently tabulated the
mean motions of planets from 1 to 60 saura days and added tables for converting
kalpa ahargan. as to Hijra dates (Ibid.)
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Ya‘qūb ibn T. ariq composed the Zı̄j mah. lūl fı̄ al-sindhind li daraja daraja (“Astro-
nomical Tables of the Sindhind Resolved for Every Degree) in which the basic
parameters were very similar to those of Zı̄j al-sindhind al-kabı̄r of al-Fazāri (DSB
XIV, p. 546). In his Tarkı̄b al-aflak (c. 777), Ya‘qūb drew upon the Zı̄j al Sindhind
and the Zı̄j al-Arkand (based on the midnight system) as well as on his conversation
with the Indian astronomer who visited Baghdad in his time. In the same work, he
gives the following (Sachau, I, 316, 353; II, 35):

1. Latitude of Ujjain, given as 4.4 digits which is equinoctial noon shadow length
for the Indian gnomonic height of 12 digits. Another value is 4.6 digits.

2. The 4 kinds of measure namely sauramāna, sāvanamāna, cāndramāna and
nāks. atramāna.

3. Hindu method of finding the adhimāsa (intercalary month).

Bı̄rūni says (Sachau I, 169 and II, 67–68) that Yā‘qūb in the same work gave the
Hindu planetary distances and the circumference of the zodiac which he had drawn
from the well-known scholar who accompanied with the embassy to Baghdad in the
(Hijri) year 161 (=ad 777/778) (was this another delegate?). Ya‘qūb’s diameter of
the earth (given in the same book) is precisely that of Āryabhat.a I (=1050 yojanas or
2100 farsakh) (Pingree 1968, p. 109). Ibn al-Nadı̄m (c.987) in his Fihrist mentions
Ya‘qūb’s Kitāb taqt. ı̄ kardajat al-jayb which deals with table of sines (Ibid. p. 98).
The Arabic jayb or jyb (for Sine) comes from the Sanskrit jı̄vā (jı̄bā) (Plofker, 257).

Another important work of Ya‘qūb is the Kitāb al-‘ilal (book of Reasons) which
explained the rationale formathematical procedures followed by astronomers.Unfor-
tunately this book is not extant but fragments are found quoted by Bı̄rūnı̄ who, for
example, quotes in his book On Shadows Yaqūb’s rule regarding the equation of
daylight etc. (Kennedy 1976, Vol. I, pp. 175–76). The verbal rule may be expressed
in modern way as follows:

Day-radius = 3438 − Vers δ,

and Carārdhajyā = (sin δ. e. 3438)

(g. cos δ)

where δ is Sun’s declination, e is equinoctial noon shadow, and g in gnomonic
height. Bı̄rūnı̄ mentions Arjabhar (or Āryabhat.a) for using 3438 as sinus totus. It is
a common Indian value and is also found in the Sūryasiddhānta which in fact also
contains (II. 59–60) the above rule (Shukla 1957, pp. 36–37).

4 Al-Khwārizmı̄ (Ninth Century AD)

Muh.ammad ibn Mūsa al-Khwārizmı̄ (780–c.850) was one of the greatest scientific
minds of Islam.He influencedmathematical thought to a greater extent than any other
medieval writer (Hitti, p. 379). Based on the famous Sindhind (Arabic translation
of a Sanskrit work), al-Khwārizmı̄ composed about 820 ad his work which was
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appropriately called Zı̄j al-Sindhind according to the Fihrist of al-Nadı̄m (c.987)
(Toomer, p. 360). Most of the basic parameters in his Tables (=Zı̄j al-Sindhind)
are derived from Hindu astronomy. For all seven bodies, the mean motions, mean
positions at epoch and the positions of the apogee and node all agree with what can
be derived from Brahmagupta’s Brāhmasphuṫasiddhānta.

Chapter29 in Zı̄j al-Sindhind is on elbuht (true motion) which comes from the
Sanskrit bhukti. The maximum equations for the sun (2; 14◦) and moon (4; 56◦)
although stated to be derived from Zı̄j al-Shāh, they ultimately are Hindu values.
Bı̄rūnı̄ says that these numbers “passed from India to the Persians” (Toomer, p. 361;
Kennedy 1956, p. 148 & 1963, p. 326).

Al-Khwārizmi’s maximum latitude of the moon is 4; 30◦ as in Sūryasiddhānta
(Shukla, p. 22) (Ptolemy’s value being 5◦). His rules yield a sidereal year of 365;15,
30, 22, 30 days which is same as in a work of Brahmagupta (Haddad, p. 218).

It is a long established fact that al-Khwārizmı̄’s planetary theory is based onHindu
procedures. According to Toomer (p. 363), his method by ‘halving the equation’ is
purely a Hindu procedure. It has been shown that the crescent visibility table found in
al-Khwārizmı̄’s Zı̄j was computed on the basis of Indian visibility theory according
to which the crescent will be visible when the difference in setting time between
Sun and Moon is 12◦ or more (Kennedy 1965, p. 73). Similarly a set of planetary
latitude table found in the same work corresponds completely to the demands of
Indian model (Kennedy 1969, p. 86).

The rule given by al-Khwārizmı̄ in his Zı̄j for finding the apparent diameter of the
solar disc (in connection with eclipse) occurs in Khan. d. akhādyaka I.31 (Sengupta
p. 32) and that for finding the radius of the shadow at Moon’s place is same as in
Khan. d. akhādyaka I V .2 (Ibid. p. 83) (Neugebauer, pp. 58–59, and 107). Bı̄rūnı̄ adds
that the same rules are also found in Indian Karan. asāra (Sachau II, 79), Same thing
can be said about al-Khwārizmı̄’s table of parallax in latitude inwhich case the theory
and parameters are found in Hindu sources (Neugebauer p. 122 and Kennady 1956,
p. 150).

Al-Khwārizmı̄’s Zı̄j al-Sindhind was used as a classroom text book in the ninth
and tenth centuries and continued to be used, studied and commented on. In fact, it
was the first such work to reach the West in the Latin translation of Adelard of Bath
(twelfth century). In addition to astronomical Tables (= above Zı̄j), al-Khwārizmı̄
also wrote on arithmetic and algebra. These writings were also popular. He helped
in popularizing Indian decimal place-value system of numerals as well as Indian
arithmetic in Europe through his Kitāb al-h. isab al-hindi (MAIC, p. 22).

According to al-Hāshimı̄, during the days of (Ja‘far) al-Mutawakkil (2nd half of
ninth century) a delegation presented itself from India and informed about practice
and parameters of astronomy in India (Haddad, p. 96). H. abash al-H. āsib al-Marwazı̄
(d. 864/74) worked at Baghdad under the Abbasid Caliphs and took astronomical
observations from 825 to 835. His works include a reworking of the famous al-
Sindhind (Tekeli, p. 612).

http://dx.doi.org/10.1007/978-981-13-1229-8_29
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5 Al-Bı̄rūnı̄ (973–1048 AD)

Abū’l-Rayhan al-Bı̄rūnı̄ is the most famous scholar of Science of Medieval Islam.
He was an encyclopedist and knew many languages including Arabic, Persian and
Sanskrit. His interest in Indian civilization is due to his being part of an empire that
had extended then to India. But his respect and admiration for the people of India
which kept high traditions of learning, must have been an additional incentive for
him to visit India (1017 to 1030) (Kennedy, DSB II, p. 150). During his stay in India,
he not only acquired knowledge of Indian Sciences but also recorded them in his
works. His Kitāb fi Tah. rı̄r mā li’l Hind…(= India in short) was completed in 1030
and contains mine of information about Indian astronomy. A few of his works related
to Indian astronomy are (MAIC, pp. 152–153):

1. Jawāmı̄ al-mawjūd li-khowāt.ir al-Hunud fı̄ al-h. isāb al-tanjı̄m (Collection of Ideas
of Indians on astronomical calculations). It is a book on Indian siddhāntas exposed
in the “Sindhind”.

2. Tahdhı̄b Zı̄j al-Arkand (Correction of Zı̄j al-Arkand). Already mentioned (see
Section I above).

3. Khayāl al-Kusufayn inda’l-Hind (Representation of Both [Kinds of] eclipses by
the Indians).

4. Al-Jawābāt an al-masa’l al-wārids min munajjimı̄ al-Hind (Answers toQuestions
asked by Indian Astronomers).

5. Arabic translation of Vijayanandin’s Sanskrit Karan. atilaka. The Arabic title is
Ghurra al-zı̄jāt.*

On the other hand he was also keen of translating into Sanskrit some foreign
works which included Euclid’s Elements and Ptolemy’s Almagest (MAIC, pp. 147,
154). Sachau (p. II, 303) states Bı̄rūnı̄ was translating Brahmagupta’s Brāhmasphut.a
Siddhānta into Arabic about 1030 ad. It is doubtful whether he could complete this
tough task.

ThroughhisArabicwritings on and about India and throughhisArabic translations
of original Sanskrit works, Bı̄rūnı̄ can be credited for spreading the knowledge of
Indian astronomy in West Asia. But for his researches, translations, and studies of
Indian works, the Islamic world (especially the Arabic knowing people of the time)
would have remained ignorant of the achievements of India in the field of astronomy
etc. (Ahmad, pp. 7–9).

In his treatise On Shadows, he gives several rules for finding equation of daylight,
rising times of the signs etc. from theworks ofBrahmagupta,Vat.eśvara,Vijayanandin
and one Yaltabān whom we cannot identify (Kennedy 1976, I, pp. 173–83 and II,
pp. 98–113).

Bı̄rūnı̄ in his On Transits says that the Hindus originated the maximum equation
of the Sun and Moon and that these parameters passed from India to the Persians
whence to others (Saffouri, p. 28). In the same work (Ibid, pp. 30–32), he correctly
mentions the sinus totus used by Āryabhat.a I as 3438 and by Brahmagupta as 3270.

*The title occurs as Ghurrat uz-zījāt also.
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He further says that the sinus totus used by Vat.eśvara in his Karan. asāra is 300 and
that by Vijayanandin in his Karan. atilaka in 200. The latter work is not extant in
original Sanskrit and so we should thank Bı̄rūnı̄ for his Arabic translation of it. This
Arabic translation of a lost Sanskrit work has been studied, edited, translated into
English, and even revised by Saiyid Samad Husain Rizvi in various publications
from 1963 to 1979 (MAIC, pp. 152 and 672).

In his book On Coordinates (completed in 1025), Bı̄rūnı̄ says that Indians pos-
sessed a book in which determination of distance between two global places is dealt.
He calls the book as Kitāb tah. did al-ard. wal-falak whose author is not named. But
the mentioned rule may be compared with that found in Mahābhāskarı̄ya (II. 3–4 of
Bhāskara I) (c. 625 ad) (Ali, p. 193).
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Beirut, 1967.
3. DSB = “The Dictionary of Scientific Biography”, Vols I to XV, Charles Scribner’s Sons, New

York, 1970–78.
4. “Gan. itānanda: Selected Works of Radha Charan Gupta on History of Mathematics”, ed. by

K. Ramasubramanian, Indian Society for History of Mathematics, New Delhi, 2015.
5. F. I. Haddad (et al), “The Book of the Reasons Behind Astronomical Tables (al-Hāshimı̄’s
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29. K. Plofker, “Mathematics in India”, Princeton, 2009.
30. K. Ramasubramanian, See “Gan. itānanda”.
31. B. A. Rosenfeld and E. Insanoghu, see MAIC.
32. E. C. Sachau (translation), “Alberuni’s India”, two parts in a single vol. edition, Delhi, 1964.
33. M. Saffouri and A. Ifran (translation), “Al-Bı̄rūnı̄ on Transits, Beirut, 1959.
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Spread and Triumph of Indian Numerals

According toMenninger,1 it is quite probable that due to active commercial relations
with India, the first Indian numerals became known in Alexandria sometime in the
fifth century ad and from there they might have penetrated farther westward.

Menninger says that the Indian numerals did not arrive in Egypt as a scientific
treasure, but rather like the numerals of alien peoples that become known in the
harbours and ports. However, we may point out that some Brahmins (who are not
supposed to be traders) who visited Alexandria in ad 470 were the guests of Consul
Severus.2

Hindu numerals are found in several manuscripts of the Geometry of Boethius (c.
500), and if the relevant portions of the manuscripts are regarded as genuine, it will
show that Indian numerals had reached southern Europe about the close of the fifth
century.3

The Mayan vigesimal abstract place-value notation contains the oldest zero in
the New-World. Although the Mayan system occurred in apparent isolation, Men-
ninger (CHN, 405) suspects a possible borrowing from India, theMayan culture (now
extinct) being at its height during the period from the sixth to eleventh centuries ad

According to Werner,4 the Chinese adopted the Indian decimal system and nota-
tion introduced by the Buddhists and changed their custom of writing figures from
top to bottom for the Indian custom from left to right.

WeiChih’s (died 643) Sui-shu (Records of the SuiDynasty, 581–618ad)mentions
the Chinese translations of Indian works like5

1. Brahman Suan-fa (Brahman Arithmetical Rules) in one book.
2. Brahman Suan-ching (Brahman Arithmetical Classic) in 3 books.
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This shows that Indian calculation methods and numerals (?) were known in China
already about the end of the sixth century. It is unfortunate that these Chinese trans-
lations are lost.

That the fame of the Indian numerals had already reached the banks of Euphrates
in the seventh century, is shown by passage in a work of the Syrian monk Severus
Sebokht (ad 662) who lived in a monastery at Kenneshre (HHM, I, 95–96). He6

refers to the Hindus and “their valuable methods of calculation; and their computing
that surpasses description. I wish only to say that this computation is done by means
of nine signs.”

This clearly shows that the Syrian scholars understood the full significance of the
Indian numerals although, like so many others, he mentions only the nine Indian
numbers signs which, of course, without a zero symbol would not have been consid-
ered at all remarkable. Karpinski7 is also of the opinion that the numerals referred
by the Syrian Bishop are those “which we now use.”

The Khmere inscription at Sambor (683 ad) and the Malay inscription (684 ad)
at Palembang (Indonesia, Sumatra) give their dates (in Śaka years) by employing
Indian decimal place system of numerals with zero.8

The Malay inscription at Kotakapur (716 ad) also gives its Śaka year 608 in the
same system.9

In the Khai-yuan Period (713–741), Chhüthan Hsita (Gautama Siddhārtha) was
appointed Royal Astronomer of China. Under imperial order he made the Chinese
translation, calledChiu-chih li (NavagrahaCalendar), of an Indianwork. TheChinese
version contained the Indian numerals following decimal place value notation and
using a dot (instead of a circle) for zero, and further remarked10 that “with these
numerals, calculation is easy to the eyes.” Of course, it is.

The Dinaya Sanskrit inscription (760 ad) at Java gives the Śaka year both in
Indian place value notation and in Indian word numerals.11

During the reign of Caliph al-Mans.ūr (755–775), works on Indian mathematics
and astronomy (including those of Brahmagupta of seventh century) were translated
into Arabic at Baghdad (HHM, I, 89). It is believed that it was at that time that
the Hindu numerals were definitely introduced amongst the Arabs and the Baghdad
scholars greatly appreciated the Indian system.12

An inscription (813 ad) at Po-nagar, Champa, gives the Śaka year in two slightly
different forms employing the Indian system of positional numerals.13

The famous Abū Jafar Muh. ammad al-Khwārizmı̄ (c. 800–850) wrote about 820
a work on Indian numerals. The original in Arabic is not extant but we have its Latin
version, entitled Liber Algorismi de numero Indorum (The Book of al-Khawārizmı̄
on Indian numerals), possibly by Adelard of Bath (c. 1120)14 or by Robert of Chester
(CHN, 411). Menninger thinks (CHN, 411) that al-Khwārizmı̄ had probably learned
the numerals himself from the Indian writings (several of which were available in
Arabic translations.)

According to Ibn al-Qift.ı̄’s indication, the title of the Arabic original may have
been likeKitāb hisāb al-adad al-h. indı̄ (Treatise on calculationwithHinduNumerals)
but J. Ruska15 conjectures its title equivalent to “Book of Addition and Subtraction
by the Method of Calculation of the Hindus.”
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The treatise of al-Khwārizmı̄, as we have it, expounds the use of the Hindu (or
as they are misnamed “Arabic”) numerals 1–9 and 0 and the place-value system and
then explains various applications. It is an elementary arithmetic treatise using Indian
numerals.

Arabs were already using alphabetic numerals system (as shown by an eighth-
century Arabic Papyrus from Egypt) similar to Greek. The Indian decimal place
value system was also already known, but al-Khwārizmı̄’s work was the first to
expound it systematically. Unfortunately, even with this important introduction of
useful symbols into more general use in Islamic lands, there was delay in adopting
them quickly in all spheres of life. And the treatise achieved greatest success only
when introduced to the West through Latin translations in early twelfth century.16

As regards the forms of the number symbols, al-Khwārizmı̄ stated that the new
numerals, particularly 5, 6, 7 and 8 were written differently by different peoples but
that this circumstance was no obstacle to their use as a place-value notation (CHN,
413).

Another example of the use of Indian numerals in S. E. Asia is provided by the
inscription at Bakul (839 ad) in which the corresponding Śaka year is mentioned in
decimal place value system.17

In his work, Ancient Alphabets and Hieroglyphic Characters Explained etc. the
Syrian IbnWahsh. ı̄ya (c. 855) gives three forms of Hindu numerals as three species of
Hindu alphabets which shows that the forms were well known in his time in Arabia
(HHM, I, 96–97).

The Indian numerals are alsomentioned by the Arab philosopher al-Jāh. iz. (d. 868–
869), who calls them ‘figure of Hind’ and observes that with these numerals large
numbers can be represented with great facility (HHM, I, 97).

A concrete example of the use of the decimal place value system is provided by
an Egyptian Papyrus (written in the year 873) in which the year 260 is expressed in
Indian numerals (CHN, 414).

Abū Yūs.uf al-Kindı̄ (died c. 873) and al-Dı̄nawarı̄ (died c. 895) each wrote a tract
on Indian Computation (His.ābul Hindı̄).

18 Al-Dināwarı̄ was a lawyer and attempted
to introduce Hindu methods in business.

Abū Sahl Ibn Tamim (d. 950), a native of Kairwān a village in Tunis in the north
of Africa (HHM, I, 98), wrote in the Sefer Yezirah that he had used the Indian nine
signs in his work on Hindu calculation, H. isāb al-ghubār.19

Abul-H. asan-Masaūdı̄ (d. 956–957) visited India about 915 and later onmentioned
the Indian numerals in his work (c. 943) with the remark that “a congress of sages
at the command of the Creator Brahmā invented the nine figures” which shows that
no inventor was known in India even at that time (HHM, I, 97).

Abul-H. asan al-Uqlı̄disı̄ wrote his Kitāb al-Fus. ūl fı̄ al-H. isāb al-H. indı̄ (Book on
Principles of Hindu Computation) in Arabic at Damascus in 952–953 ad.20 It is said
to be the earliest extant Arabic book that presents Indian system.

In the introduction al-Uqlı̄disı̄ states that he has travelled extensively and read all
books on Indian arithmetic that he found. Hindu numerals and place-value notation
is discussed in the first part of the work.

He has made several interesting suggestions such as21
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1. Modifications of Indian schemes whereby the (dust) abacus can be dispensed
with, and ink and paper used instead. (This was the first step in discarding abacus
slowly).

2. Greek letters might replace the nine Indian numerals. (This was, in fact, done
sometimes).

3. The Indian numerals with superimposed dots might form a newArabic alphabet.

Gerbert (c. 940–1003) visited Spanish border country around 967 and enriched
his mathematical knowledge. It was probably here that he first became acquainted
with the Indian numerals, for the Arabs had been in Spain since 713 (CHN, 322).

He carried the ghubār forms of Indian numerals (learned in Spain) back to his
home place (Auvergne, France) and inscribed them on the counters of the monastic
abacus in the form of apices. In this form the Indian numerals (without zero, as
columns with no digits were simply left vacant) made their first definite excursion
into the West towards the end of the tenth century.

But Europe was not ready for them; neither their nature nor their advantages were
appreciated, and they soon retreated into the cells of learned monks as they failed to
survive in ordinary use (CHN, 417).

However, it must be pointed out that the full set of the ghubār forms of Indian nu-
merals (including the zero symbol) is found in an Arabic manuscript dated 970 ad.22

Although Indian numerals were known and appreciated by the Baghdad scholars
as early as the eighth century, yet when Abūl Wafā (died 997–998 at Baghdad) wrote
his Arabic text book on practical arithmetic, called Book on What Is Necessary From
the Science of Arithmetic for Scribes and Businessmen (written between 961 and
976), he avoided the use of numerals by writing the numbers in words.23

Some historians (such as M. Cantor and H. Zeuthen) explain the lack of Indian
numerals by presuming the existence of two opposing schools among the Arabic
mathematicians one following Greek models and the other Indian models. However
M. I. Medovy24 shows that such a hypothesis is not supported by facts (as some
writers/scholars are found to use both the systems).

It is more probable that the use of Indian numerals simply spread very slowly
among the businessmen, scribes and general public whose needs were heeded by the
text-book writers. Whatever be the reason, the victory of Indian numerals, though
delayed, was unavoidable.

A good example of Indian numerals is found in an European manuscript written
in Spain in 976 ad.25

Alı̄ Ibn Ah.mad al-Mujtabā, who lived in Baghdad and died in 987, wrote the
Kitāb al-takht al-kabı̄r fı̄ al-h. isāb al Hindı̄ (The Great Book of the Board on Hindu
Arithmetic); and his contemporary, al-Kalwādānı̄, (living at Baghdad) also wrote
a similar work, The Book of the Board on the Hindu Arithmetic.26 Both the works
employ the dust or ghubār form of Indian numerals and are among the several Arabic
books written by the Eastern Muslim scholars on the subject in the tenth century.

The Indian numerals are mentioned by al-Nadı̄m (d. 995) in his Kitāb al-Fihrist (c.
987) and are called hindisah (HHM, I, 98). Ibn Nadı̄m reports of custom of writing
the zeros beneath the figures.27
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The Indian numerals of the ghubār type (butwithout zero) are given, as an addition
(992 ad) in a Spanish copy of the Origines by Isidorus of Seville (d. 636).28

The Indian numerals (with dot for zero) are found in the philosophical treatises
of the brothers Ikwān as-S. afā (c. 1000) along with their Arabic names and the old
Arabic alphabetic numerals following the abjād system.29

A similar set of Indian numerals (but with different form of 5) is found in a
treatise on Hindu arithmetic written about 1000 ad by the famous Arabic scientist
al-Bı̄rūnı̄.30

In his Āthār al-Baqiyah (Vestiges of the Past), written in 1000 ad, Bı̄rūnı̄ calls the
then modern numerals as ‘al-arqam al-hind’, i.e. ‘the Indian Ciphers’ distinguishing
them from other systems (HHM, I, 99).

Kūshyār Ibn Labbān (c. 1010) wrote his Kitāb fı̄ Us. ul H. isāb al-Hind (Book of
Principles of Hindu Reckoning) in Arabic and is based on Indian system of numerals
including zero which is represented by a circle.31 His importance lies in his having
written the work to introduce the Hindu methods into astronomical calculations.

Abu Bakr al-Karkhı̄ (d. 1029) wrote (Probably between 1010 and 1016) his
kāfi fı̄ al-H. isāb (Sufficient of the Computation) which was largely based on Hindu
sources.32 His other work using Indian numerals is the Kitāb fı̄ al-H. isāb al-Hindı̄
(Book of Indian Computation) which is cited in his Algebra.33

Al-Bı̄rūnı̄ (whom we have already mentioned) visited India and studied Indian
sciences between1017 and1030 and sohewasmore qualified thanhis predecessors to
speak with authority about Indian numerals (HHM, I, 98). Two of his works, namely
Kitāb al-arqam (Book of Ciphers) and another called A Treatise on Arithmetic and
the system of Counting with the Ciphers of Sindh and India are quite relevant in the
matter (Ibid).

His knowledge and opinion about Indian numerals are expressed in the following
words:34

As in different parts of India the letters have different shape, the numeral signs too, which
are called aṅka, differ. The numeral signs which we use are derived from the finest forms of
Hindu signs.

For some nice examples of the actual use of Indian numerals by al-Bı̄rūnı̄, reference
may be made to facsimile of pages from his original Arabic work as reproduced in
L. C. Karpinaski’s The History of Arithmetic (New York, 1965), pp. 47 and 51 (vide
ref. No. 7). These show the use of Indian form of several numbers up to 1000.

Abu’l-H. asan al-Nasawı̄, who lived in Baghdad (1029–1044), wrote hisAl-Muqni’
fı̄ al-H. isāb al-Hindı̄ (An Account of Indian Computation) which employs the nu-
merical symbols obtained from the Indians. Introduction of the book shows that
al-Nasawı̄ wrote in Persian a book on Indian arithmetic for presentation to Magd
al-Dawla, the Buwayhid ruler (who was dethroned in 1029–1030). Later on it was
presented to Sharaf al-Mulūk, vizier of Jalā al-Dawala, ruler of Baghdad. But the
vizier ordered al-Nasawı̄ to write it in Arabic and the result was the above work
al-Muqni.35



546 Spread and Triumph of Indian Numerals

In the Islamic astronomical literature, sexagesimal digits were written from right
to left in Arabic alphabetic numerals. But al-Nasawı̄ placed successive digits in a
vertical column and used Indian numerals only.

A nice detail about the transmission of Indian numerals to the Islamic world is
accidentally preserved in the autobiography of Ibn Sı̄nā or Avicenna (c. 980–1037).
When he was about 10 years old, missionaries of an Islamic sect, called Ismaelites,
came to his native place, Bukhara (then under the Iranian Dynasty of the Samanids)
from Egypt. Through the teachings of these missionaries, Ibn Sı̄nā learned the Hindu
method of computing. Without this explicit bit of information, no body would have
dreamt that Indian influence (and numerals) reached southern Russia via Egypt.36

It has been stated by Ali bin Abil-Regal Abul-Hasan, called Abenragel (1048),
in the preface to his treatise on astronomy, that the invention of reckoning with nine
ciphers is due to Hindu philosophers (HHM, I, 99).

Abu Jafar al-T. abarı̄, who lived in the town of Āmul (south-east of the Caspian)
in the last half of the eleventh century, wrote the Shumār-nāme (Reckoning Book).
It is a text-book on Hindu computation and is said to be earliest extant book on the
subject in Persian.37

We have already mentioned that al-Khwārizmı̄’s book on Indian computation
was translated into Latin in the early twelfth century by Adelard of Bath or by
Robert of Chester. In fact the book quickly spawned a number of adaptations and
off-shoots such as the Liber alghoarismi of John of Seville (c. 1135), theAlghorismus
of John of Sacrobosco (thirteenth century) and the twelfth century work Ysagogarum
Alchorizmi.38 Other twelfth century epitomes exist in manuscripts form in the Royal
Library, Vienna and the University Library, Heidelberg (CHN, p. 411). (Also see
Math. Reviews 44, 481–482.)

Two more such Latin ‘algorisms’ are reported to exist in the British Museum, the
one is the Royal MS. 15B. IX and the other is the Egerton MS. 2261. The Royal
Manuscript begins:39

The intention of al-Khwārizmı̄ in this work is to present the teaching of numeration, addition,
subtraction, duplication and mediation, multiplication, and division by the ten characters of
the Hindus (per X karacteres indorum).

In fact al-Khwārizmı̄’s name became so closely associated with the ‘new arith-
metic’ using the Hindu numerals that the Latin form of his name, algorismus, was
given to any treatise on that topic. Hence by a devious path, is derived the modern
word ‘algorism’ (corrupted by false etymology to algorithm’).40

The oldest year-date to appear in Europe in the new Indian numerals occurs on
a Sicilian coin of the Norman King Roger II (CHN, 439). The year marked is 533
A. H. (= 1138 ad).

Out of several works on number written by Abraham Ibn Ezra (d. 1167), the most
important is his Sefer ha-Mispar (Book of the Number). It is based on the Indian
system of positional numerals but uses the first nine Hebrew letters for the figures
1–9 and the zero as in algorism.41 The zero symbol is given as galgal (‘wheel’ or
‘circle’).
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Saraf Eddin (c. 1172) ofMeccawrote a treatise entitledFi al-handasa wa al-arqam
al-hindi (On Geometry and the Indian Ciphers) (HHM, I, 99).

Al-Samaw’al (died c. 1180) was a native of Baghdad and studied the Hindu
computational methods. In writing polynomials, he assigned to each power of x a
place in a table in which the polynomial was represented by the sequence of its
coefficients, written in Indian numerals. Only by employing the new numerals, he
could easily handle large number of equations. His techniques helped development
of symbolism necessary for the progress of algebra.42

Leonardo of Pisa or Fibonacci (c. 1170–1250) wrote his great work, The Liber
Abaci (Book of Computation), in 1202 fully based on Indian numerals. The work
prepared the ground for the widespread adoption of the Indian numerals in the West
(CHN, 425).

As a young man he travelled about the Mediterranean visiting Egypt, Syria,
Greece, Sicily and southern France, meeting the scholars and becoming acquainted
with the various computational systems in use among the merchants of different
lands. But he reports that all systems appeared to him in error as compared to the
Indian mode (“quasi errorem computavi respectu modi indorum”).43

He introduced the new numerals in the following words (CHN, 425):

The nine Indian numerals (figure indorum) are 9, 8, 7, 6, 5, 4, 3, 2, 1. With them and with
the sign 0, which in Arabic is called zephirum (cipher), any desired number can be written.

Fibonacci’s works did pioneering service in bringing Indian numerals into ordinary
use. With him a new epoch in Western mathematics began. Although all his ideas
were not taken up immediately, great influence was exerted by those portions of his
work that served to introduce Indian numerals and methods.44

It is unfortunate that two of his works, namely Dimmor Guisa (A book on Com-
mercialArithmetic) and a tract on bookXofEculid’s Elements (inwhich he promised
a numerical treatment of irrationals instead of Euclid’s geometrical presentation), are
lost.

We have already mentioned the name of John of Sacrobosco who was educated
at Oxford and later on taught mathematics in Paris where he died in 1244 or 1256.
His Algorismus or Tractatus de Arte Numerandi was the first arithmetic, based on
Indian numerals, written by an Englishman. His work was widely used all over
western Europe for centuries and thus he did much to spread the Indian numerals
and computation.45

But themost interesting among the computationalworks based on Indian numerals
is the Carmen de Algorismo (Song of Algorisums) by the French monk Alexandre
De Ville Dieu who taught in Paris about 1240. In his version, an Indian king named
Algor figures as the inventor of the new art which itself is called algorismus (CHN,
412).

The opening lines from a thirteenth centurymanuscript (at Darmstadt) of his work
may be translated thus (CHN, 412):

Here begins the alogorismus. This present art is called algorismus, in which we use twice
the five figures of the Indians (bis quinque figuris indorum).
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These lines and the myth of king Algor again appear in the first English arithmetic (c.
1300), the anonymous The Crafte of Nombryng whose manuscript is in the British
Museum (Egerton MS. 2622).46

We find that the nine Indian numerals were called figure in the thirteenth century
and the name was retained in English and French. Thus zero, the ‘figure of nothing’
was no numeral or no figure at all, nulla figura in Latin whence came the name ‘null’
for zero (CHN, 403).

In the eighth century, when Indian numerals were definitely introduced in China,
a dot was used for zero (see above). A small circle as the symbol for zero is first
found in print in the Chinese work Su Shu Chiu Chang (Mathematical Treatise in
Nine Sections) of Chhin Chiu-Shao (1247. ad) but many believe in its use in the
earlier period of the Sung Dynasty (950–1280) after its arrival from India.47

It is stated that The Comprehensive Work on Computation with Board and Dust
(in Arabic) by Nas.ir al-Dı̄n al-Tūs. ı̄ (1201–1274) marks an important stage in the
development of the Indian numerals.48

A thirteenth century monastic manuscript (State Library, Munich) contains the
Indian numerals along with Roman (CHN, 282).

Towards the end of the thirteenth century, an enemy suddenly appeared from an
unexpected direction. As numbers began to be written in the new Indian numerals
by some Italian trading houses, the City Council of Florence in 1299 issued an
ordinance which forbade to enter the amounts of money in the accounts book in
Indian numerals. (CHN, 426).

The argument was that the new numerals were more easily forged or changed
than Roman numerals. People were still too insecure about the new numerals. It was
not only their forms that were unfamiliar but also the method of writing them. It is
not therefore surprising that the local chambers of commerce in Italy resisted the
adoption of Indian numerals.

Thus, although computations with Indian numerals were known to commercial
and trading establishments in the thirteenth century, book-keeping continued in old
manner. This, of course, was a serious obstacle to the spread of the Indian numerals.
However, the teachers and students of universities at Paris, Oxford, Padua andNaples
kept alive the knowledge of Indian numerals.

Gregory Chioniades, who studied astronomy in Tabriz (in Azerbaijan) around
1290, used the Eastern Arabic forms of Indian numerals while he was in Byzantium
(from 1298 to 1302).49 These forms of Indian numerals may have been learned from
him by Planudes (see below) who also used them.

Like Abraham Ibn Ezra (twelfth century), Levi ben Gershon used, in his Sefer
Maasei Hoshev (Book of the Calculator) (completed in 1321), the Indian place-value
numeration but employs the first nine letters of the Hebrew alphabet for numerals
1–9 (and a circle for zero).50

About 1330 (?), the Byzantine scholar Maximus Plandudes (a Greek monk and
Constantinople ambassador to Venice in 1327?) wrote the Psēphophoria kat’ Indous
e Legomenē Megalē (Computation According to the Indians, Which is Great) based
on Indian numerals. It sets forth the system of notation by the “nine figures received
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from the Hindus” together with the zero, and is the first of the Greek works to give
any attention to Indian methods.51

T. L. Heath (Hist. of Greek Math. Oxford, 1965; II, 547) quotes Planudes more
fully as follows:

(The symbols were) invented by certain distinguished astronomers for the most convenient
and accurate expression of numbers. There are nine of these symbols (our 1, 2, 3, 4, 5, 6, 7,
8, 9), to which is added another called zifra (cypher), written 0 and denoting zero. The nine
signs as well as this are Indian.

Heath mentions an earlier Greek work, with similar title, written in 1252 (extant as
Paris MS. Suppl. Gr. 387) and believes that Plaundes may have raided it. But the
forms of numerals are stated to be different in the two works. Planudes is placed
earlier by Heath and still earlier by Pingree (ref. 49).

Al-Umawı̄ taught arithmetic in Damascus in fourteenth century. He wrote about
1373 the Marāsı̄m al-intisāb fı̄’ilm al-h. isāb which represents a trend of Arabic arith-
metic in which the Indian dust board calculations had began to be modified to suit
paper and ink.52 In a table of sequences he used the Western Arabic forms of Indian
numerals.

Indian numerals appear also on several manuscripts such as:53

1. Latin manuscripts (c. 1294) of Boethius arithmetic.
2. Latin manuscripts (c. 1294) of Euclid.
3. Italian manuscripts (c. 1339) of the Trattao d’ Abbaco, etc. by Paolo Dagomari

(d. 1373/1374.)
4. French manuscript (fourteenth century) of Algorismus Proportionum by Nicole

Oresme (c. 1323–82).

In spite of widespread use of Indian numerals, a class of arithmetical works, called
Computi (which were treatises on Church Calendar), was mostly confined to Roman
numerals. Was it due to orthodoxy or prejudice? However, Indian numerals were
known to the authors who occasionally used them—sometimes in a peculiar way.
For instance a Latin manuscript (dated ad 1384) of an anonymous computus gives
its date as (Rara, 443):

anno dnj 1000.300.80.4̊
As the Indian place-value notation penetrated deeper and deeper in the West,

it gradually displaced computations with alphabetic numerals which, like Roman
numerals, were deeply rooted. In the beginning there was a sort of “equilibrium”
(or compromise) between the two systems. The Greek alphabetic numerals for the
units (α to θ including the now obsolete ‘vau’, ‘stigma’ or ‘digamma’ which stood
for six) were used as “Indian numerals”. Of course a zero symbol had to be adopted
for there was no such thing in the alphabetic system. Thus a fifteenth century Greek
manuscript of a text-book on arithmetic contains the following (CHN, 274):

αε for 15

δγ• for 430

γβθ• for 1290
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It may be recalled that such a compromise with the Hebrew alphabetic numerals was
already employed by Abraham Ibn Ezra (twelfth century) and Levi Ben Gershon
(fourteenth century). The oldest German coin which gives the date of the year in
Indian numerals is a silver medallion struck by the town of St. Gall in 1424 (CHN,
439).

The progress in the use of Indian numerals in the accounts books of the imperial
free city of Augsburg (West Germany) may be summarised as follows (CHN, 289–
293):

Sl. no. Year Use of numerals

(i) 1410 iiijM lb vi j c lxxxx viij lb for 4798 lb
(ii) 1430 i i i jC for amount 400; but year in Indian numerals
(iii) 1470 amount as i i jC and lxiij which is repeated in Indian numerals as 363
(iv) 1500 amounts in both systems but their total in Indian numerals only
(v) 1533 all entries in Indian numerals only

Before their regular appearance in printed arithmetical books, the Indian numerals
were extensively used in several computational treatises of which the following
fifteenth century manuscripts may be noted (Rara, pp. 443–465):

1. Italian Ms. (1422) of Trattato di aritmetica by Giovanni son of Luca da Firenze.
2. LatinMs. (1424) of Scientia de namero ac virtue numeri by Rollandus (c. 1425).
3. ItalianMs. (c. 1430) of an anonymousworkonFlorentine commercial arithmetic.
4. Latiin Ms. (c. 1442) of a work on algorismus by John of Sacrobosco (thirteenth

century).
5. Italian Ms. (c. 1456) of anonymous work on business arithmetic.
6. Italian Ms. (c. 1460) of a work on mathematics possibly by Raffaele Canacci (of

Florence).
7. ItalianMs. (c. 1460) of a work onmercantile arithmetic by Benedetto da Firenze.

The work on Etymologies (also called Origines) by Isidorus of Seville (d. 636 ad)
was printed at Augsburg in 1472. The subject of arithmetic is treated in its book III
(Rara, 8). It is not known whether this printed version contains the Indian numerals
which were added to chapter one of book III in some tenth century copies of the work
(HHM, I, 102). Indian numerals are profusely used in Regiomontanus’s Calendar
des Magister which was printed in Nuremberg in 1473 ad.54

The first truly dated computational work (using Indian numerals) to appear in print
in the West is called Treviso Arithmetic (Treviso, 1478) from its place of printing in
Italy, the author being unknown. The numerical 1 was printed as i generally (Rara,
3–7).

Wide penetration of Indian numerals and methods can be ascertained from the
fact that in Italy the very first computation text-books has no traces of counting
board (CHN, 441). In England, Indian numerals appeared on an illustration in an
English work printed about 1480 (see below). In Germany, the first printed arithmetic
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text-book employing Indian numerals is the Bamberg arithmetic of 1483 by the
Nuremberg rechenmeister Ulrich Wagner (CHN, 335 and 434).

Pietro Borghi’s Arithmetic (Venice, 1484) is more elaborate than Treviso arith-
metic and had far greater influence on education. Borghi first treats of the Indian
place value notation, carrying his numbers as high as ‘numero de million de million
de million’, and making nomention whatever of the Roman numerals (Rara, 16–19).

Abū’l-H. asan al-Qalas.ādı̄ (1412–1486) is the last known Muslim mathematician
of Spain who wrote several books on arithmetic. His Kashf al-asrār ‘an wad. ‘h. urūf
al-ghubār (Unfolding the Secrets of the Use of Dust letters, i.e. Indian Numerals)
was a text-book in school of North Africa.55

Even at this juncture when Indian numerals were marching to victorious triumph,
some setbacks did exist. For instance, the Frankfurt Mayor’s Book of 1494 ordered
the rechenmeister to abstain from calculating with Indian numerals (CHN, 427).

Great were the success which the Indian numerals achieved. Greater was the
revolution which they were creating. Opposition to them attracted more attention.

With the introduction of printing in the fifteenth century, the contest between
the old counting board and the few Indian place-value numerals in Europe becomes
visible in various ways. Thus the old and the new are symbolically represented in
the Margarita Philosophica of Gregor Reisch (1503 ad). Next to Pythagoras with
his sorrowful face working at a counting board sits a cheerful and serene Boethius
contemplating his computations in Indian numerals. Arithmetic (personified as a
female figure) hovers with her books between them, looking at the computer with
digits and indicates her approval of him by two geometric series in Indian numerals
on her garment (CHN, 350 and 431).

In another illustration, a woodcut by the Nuremberg artist Hans Sebald Beham
(d. 1550), Winged Arithmetic is shown to turn her back on the counting board and
point emphatically to the tablet with the new Indian numerals (CHN, 431).

Roman numerals were so deep rooted in Europe that it made exceedingly difficult
for the Indian numerals to replace the old numerals even from those situations where
the latter deserved no place. For some time they boiled in the same pot leading to
a sort of confusion and multiplicity as illustrated by the following examples (CHN,
287).

M.CCCC.8II for 1482

15× 5 f or 1515

I.O.VIII.IX for 1089

ICCOO or I.II. τ τ f or 1200

(τ f or zero f rom Greek word τζιφρα, i.e. t zi f ra or ci f ra)

As mentioned above, the Indian numerals appeared in England in an English work
printed as early as 1480 (Rara, 10) or 1481 by the Caxton Press.56 This was the
Mirrour of the World in which arithmetic is briefly discussed but the author is not
known and the numeral forms appear only on an illustration.
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The De Arte Supputandi (The Art of Computation) by Cuthbert Tonstall (London,
1522) is the first book wholly on arithmetic (using Indian numerals) that was printed
in England (Rara, 132–135). But the English treatise which was most influential in
popularizing the Indian numerals was Robert Recorde’s The Grounde of Artes. It
appeared first about 1542 and in 27 further editions up to 1699.57

In Germany the work of Jakob Köbel (died 1533) played similar role. He wrote
several books on arithmetic out of which his Rechenbiechlin first appeared at Augs-
burg in 1514. This has a table for learning the Indian numerals (Rara, 104) which
were still considered difficult. (In this table, the number 89 is wrongly shown as
LXXXXI).

Like Ibn Ezra (d. 1167), Elias Misrachi (d. 1526) used the Hebrew letters and O
in his arithmetic which was based on former’s work and bore same title (Rara, 521).

We have alreadymentioned the interesting illustration, contained inReisch’sMar-
garita Philosophica (1503 ad) in which Boethius is shown as the representative of
Indian numerals. In fact the Medieval Europe (among some circles at least) believed
erroneously that Boethius (c. 500 ad) was the inventor of ‘Indian’ computation
(CHN, 350). This belief may be partly due to the fact that Indian numerals are found
in the manuscripts of his Geometry as early as tenth century (HHM, I, 92) or may be
due to hero-worship.

Similarly some Latin writers, in their desire to exalt the classical (Greek) learning,
assigned the Indian numerals to the Pythagoreans. For instance, Valentin Nabod
did so in his De Calculatoria Numerorum (Cologne, 1556) which was written for
the classical schools of Germany (Rara, 281). But could such writers succeed in
misleading their readers and discredit the Indians?

Anyway, Indian numerals and computations continued to spread and hundreds of
books appeared in print in the sixteenth-century Europe on the subject.

Thefirst arithmeticalwork (based in Indiannumerals) printed inAmerica appeared
in Mexico in 1556. This was the Sumario Compendioso of Juan Diez Freyle.58

Towards the end of the sixteenth century, a book on arithmetic based on Indian
numerals was submitted to a deacon of the cathedral at Antwerp for his approval.
The decision was (CHN, 427):

These rules and procedures for computation and for finding the answers to problems are ad-
mittedly useful for merchants, and for their sake permission is granted for them to be printed;
but they (the merchants) must see to it that they avoid usury and other illicit transactions and
exchanges.

That is, the new numerals are not to be used for dealings that are not approved of.
Prejudice and suspicion continued to exist about the Indian numerals and the long
struggle between the ‘abacists’ and the ‘algorithmicists’ extended even beyond the
sixteenth century. Orthodoxy was hard but cases of prosecution (like that of Galileo
for his astronomical theories) have not come to light.

The duality of computation on the counting board and writing the numbers in Ro-
man numeralswere finally (in seventeenth century) replaced by single-step procedure
of written computations with Indian numerals.
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This was, no doubt, the victory of Indian culture; but it was also a victory for the
mind of man, who finally, in the long history of written numerals, arrived at a mature,
abstract decimal place-value notation.

The Indian numerals are now used all over the civilized world. In vain Charles
XII, King of Sweden (1682–1718), tried to abolish the Indian decimal system in
favour of duo-decimal.59 The decimal system is not the best but God favoured it by
giving us 10 fingers.
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rāshikāt al-Hind (The Book on Indian Rāśikās) devoted to composite proportions (see Math,
Reviews, Vol. 41, p. 3).

31. Levey and Petruck (serial No. 19), pp. 6, 86–92.
32. Smith (serial No. 14), Vol. I, p. 283.
33. Anbouba, A. (editor), The Algebra al-Badı̄ of al-Karajı̄ (=Kārkhi). University of Lebanon,
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Indian Mathematical Sciences Abroad
During Pre-modern Times

1 Introduction

Views regarding the origin of mathematics have been changing fast during the last
50 years. The publication of old Babylonian texts in the thirties has not only upset
the theory of the Greek origin of mathematics but rather gave rise to the view that the
Greekmathematics itself was a derivative of the Babylonianmathematics. According
to a tradition, Thales visited Egypt and Pythagoras is said to have even visited India.

The researches of A. Seidenberg during the last 25 years have been boosting the
thesis of a single origin for mathematics in ritual such as the construction of Vedic
altars in India. Recently he has shown that the Vedic mathematics cannot all be
derived from the Babylonian lot what to say of the Greeks.

These considerations combined further with the traditions of Chinese and Egyp-
tians and with European megalithic constructions led B. L. van derWaerden to argue
that the original mathematics had its source among the Indo-Europeans (Aryans)
before their dispersion (c. 3500 to 2500bc).1 However, a very recent study ofChinese
right-angled triangles (AHES, 30, 111, 1984) raises objection to van der Waerden’s
hypothesis.

As regards early transmissions to and from India are concerned, the problem
of dating early Indian texts and traditions accurately is a very serious difficulty.
There are quite divergent views. Relative chronology is useful but has its limitation.
Exaggerated claims by Indians are not unusual but cases of biased views of seeing
foreign origin in every Indian achievement are also not lacking; for instance, the
statement that the Indian value2

√
2 = 1 +

(
1

3

)
+

(
1

3 · 4
)

−
(

1

3 · 4 · 34
)

Indian Journal of History of Science, 22(3), (1987), pp. 240–246; Paper presented at the XVII
international Congress of History of Science, University of California, Berkeley, 1985.
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was derived from the Babylonian value

√
2 = 1 +

(
24

60

)
+

(
51

602

)
−

(
10

603

)
.

Some scholars are ready to twist the text and even prepared to give undue credit to
Indians just to show borrowing from the Greeks.3 So we take known periods.

2 Indian Mathematics in China

Following the introduction of Buddhism in China, a number of texts were translated
intoChinese ofwhich theMātaṅgāvadāna (third centuryad) has a list of 28naks. atras
and lengths of shadows for the Hindu gnomonic height of 12 units. Similar is the
case with the Sanskrit work Śārdūla-karn. āvadāna.4

In the sixth century, Indian astronomical works were translated into Chinese by
Bodhiruchi, Paramārtha, and by Upaśūnya whose translation of the Mahāratnakūt.a-
sūtra as Ta Pao Chi Ching (541 ad) had an Indian system of numeration. The Sui-
shu (636–656 ad) mentions the Chinese translations of at least seven Indian works
on mathematics and astronomy such as Po-lo-mên Suan Fa (Brahmin Arithmetical
Rules) in one book and Po-lo-mên Suan Ching (Brahmin Arithmetical Classic) in
three books. These works were in the Royal Library (c. 1150) but are lost now.

In the glorious Thang Period (618 to 907 ad), Indian mathematical astronomy
was taught in Chang-Nan, and Indians were employed in the Chinese Astronomical
Board with Gautama Siddhārtha (Hsia-Ta) becoming even its President, and Director
of the Royal Observatory. He translated an Indian calendar as the famous Chiu Chi
li (718 ad) which also had sections on Indian numerals5 (with a thick dot symbol
for zero) and Indian trigonometry (with 24 Hindu sines for R = 3438).

I-hsing, one of the greatest astronomers of China, constructed a tangent table
which “was clearly derived6 from Indian sine tables”. He, along with Nan Kung
Yueh, made full use of Indian trigonometrical tables in conducting an official survey
in 725 ad.

According to K. Yabuuti,7 “there can be no doubt that the Indian astronomy was
highly valued in Thang times for the superior results it achieved in the prediction
of solar and lunar eclipses”. Even the then contemporaries such as Sulaymāna al-
Tājir (ninth century) had recorded the impression that Indian astronomy was more
advanced than Chinese.

3 Transmission and Triumph of Indian Numerals

Whatever be the origins of the initial and separate concepts of place-value notion and
zero, it is well known that the present positional decimal system of numerals started
in India from where it spread to other parts of the world.8
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According toWerner, the Chinese adopted the Indian decimal system and notation
introduced by the Buddhists. The mention of several Indian arithmetical books in the
Sui-shu (c. 600 ad) imply that Indian numerals were possibly known in China quite
early. Chinese Buddhists, such as Hui Shun (c. 500 ad), also reached North America
and may have influenced the Mayan system. Menninger also suspects a borrowing
from India for the Mayan system. According to him, the Indian numerals reached
Alexandria some time in the fifth century ad.

That the fame of the Indian numerals had already reached the banks of Euphrates
in the seventh century is shown by a passage in a work of the Syrian monk Severus
Sebokht (662 ad) who has praised the Indian system. Several inscriptions from
Southeast Asia, such as the Khmere inscription at Sambor (683 ad), the Malay
inscriptions at Palembang (684ad) andKotakapur (716ad), show that Indian system
was in use there in the seventh century. The Chinese translation (c. 718) called
Chiu-chih li (Navagraha Calendar) of an Indian work contains the Indian system
of numerals using a thick dot (instead of a circle) for zero. The Dinaya Sanskrit
inscription (760 ad) in Java gives the Śaka year both in Indian place-value notation
and in Indian word numerals.

It is believed that Indian numerals were formally and definitely introduced among
the Arabs during the reign of Caliph al-Mans.ūr (755–775) when Indian works were
translated at Baghdad. Al-Khwarizmı̄ (c. 820) wrote an Arabic work on Indian
numerals and calculations, which is extant in the Latin version as Liber-Algorismi
de Numero Indorum (twelfth century) which quickly spawned a number of adapta-
tions and offshoots such as the Liber alghoarismi of John of Seville (c. 1135), the
Algorismus of John of Sacrobosca (thirteenth century), etc. In fact, following (and
improving) al-Khwārizmı̄, several works on arithmetical computations using Indian
numerals were written by Arabic, Persian, Latin and other European scholars such
as

(i) Abū Yūsuf al-Kindı̄ (died c. 873): H. isābul Hindı̄
(ii) Al-Dinawarı̄ (d. 895) who attempted to introduce Indian numerals in business.
(iii) Abū Sahl Ibn Tamim (d. 950); H. isāb al-ghubār.
(iv) Abū’l H. asan al-Uqlidisı̄ : Kitāb al-Fus. ūl fı̄ al-H. isāb al-Hindı̄ (952/953).
(v) Alı̄ ibnAh.mad al-Mujtabā (d. 987):Kitāb al-takht al-kabı̄r fı̄ al-h. isāb al-Hindı̄.
(vi) Kūshyār ibn Labbān : Kitāb fı̄ Us. ūl H. isāb al-Hindı̄ (c. 1000 ad).
(vii) Abu Bakr al-Karkhı̄ (d. 1029) : Kitāb fı̄ al-H. isāb al-Hindı̄ .
(viii) Abu’l-Hasan al-Nasawı̄ : Al-Muqni fı̄ al-H. is. āb al-Hindı̄ (both in Arabic and

Persian) (c. 1030/1040 ad)
(ix) Abraham Ibn Ezra (d. 1167) : Sefer ha-Mispar.
(x) Saraf Eddin (c. 1172) : Fi al-handasa wa al-arqam al-Hindı̄.

Earlier in his Āthar al-Baqiyah (Vestiges of the Past) of about 1000 ad, al-Bı̄rūnı̄
had called the then modern numerals as “al-arqm al-hind” (‘the Indian ciphers’)
distinguishing them from other systems. Later on, Fibonacci’s Liber Abaci (1202 ad)
was fully based on Indian numerals and it helped widespread adoption of the system.
About a century later, Maximus Planudes wrote his Greek work called Computation
According to the Indians, Which is Great. Similar and more advanced works were
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written in various parts of Europe thus furthering the cause of Indian numerals.
The first truly dated computational work using Indian numerals to appear in print is
the Treviso Arithmetic (1478 ad), and the first printed such work in America was
Sumario-compendioso (1556 ad).

4 Indian Mathematics and Astronomy Among the Arabs

According to Ibn al-Adamı̄ (Baghdad, c. 920) as quoted by Qād. i S. ā’id al-Andalusı̄
(d. 1078) and by al-Qift.ı̄ (d. 1248/49), Caliph al-Mans.ūr (755–775) ordered a Sanskrit
astronomicalwork (brought by an expert from India) to be translated intoArabic. This
translation was called Sindhind (from Sanskrit Siddhānta) from which descended a
long tradition within Islamic astronomy extending up to Spain for several centuries.
E. S. Kennedy has listed about a dozen Zı̄jes which were computed by the method
of Sindhind or strongly affected by it (TAPS, N.S., 46, Part 2, 1956).9

Based on the Indian Sindhind, al-Fazārı̄ (c. 775) composed his Zij al-Sindhind
al-kabı̄r in which he used three Indian values of the sinus totus, namely 3438, 3270
and 150. He also used the Hindu gnomonic length of 12 units. A similar work was
written byYa’qub ibn T. āriq. His diameter of earth as mentioned in his Tarkı̄b al-aflāk
is precisely the same as that of Āryabhat.a I (1050 yojanas or 2100 farasakh) and the
circumference of earth is 3298 plus 17

25 yojanaswhich precisely implies Āryabhat. ı̄ya’s
value of π (= 3.1416).

In Abū Ma‘shar’s (787–886) Zı̄j al-hazārāt, the mean motions of the planets are
computed by the Indian method of the Yuga and by using Indian parameters.

Al-Khwārizmı̄ composed his Zı̄j al-Sindhind about 820 ad in which most of the
parameters were derived from Hindu astronomy, e.g. maximum latitude for moon
as 4◦30′ (Ptolemy’s value being 5◦). His rules for finding true longitude of a planet,
apparent diameter of solar disc, radius of shadow at moon’s place, crescent visibility,
parallax in latitude, etc. are all based on Indian procedures.

H. abash al- H. āsib (d. 864/884), al-Sarakhsı̄ and al-Sizjı̄ also used Indian methods
and parameters. Al-Bı̄rūnı̄ (b. 973) visited India and acquired knowledge of Indian
sciences. Through his works this knowledge further spread among the Arabs.

Al-Khwārizmı̄’s Zı̄j al-Sindhind which is full of Indian material was redacted in
Spain by Masalama al-Majrı̄t.ı̄ (d.c. 1000 ad). This was one of the channels through
which Indian astronomy and mathematics penetrated Spain and the influence of
Indian astronomy represented by the tradition of Sindhind continued there even after
Ptolemy’s Almagest (on Greek astronomy) came to be known.

Such was the impact of Indian scientific achievements in Spain that Qād. ı̄ Sā’id
of Toledo included Indians among the “first” nation which cultivated sciences in his
T. abaqat al-Umam (1062 ad). He says further:

...they (the Indians) have studied arithmetic and geometry. They have also acquired copious
and abundant knowledge of the movements of the stars, the secrets of the celestial sphere
and all other kinds of mathematical sciences.....
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In the domain of numerical sciences, we have their (i.e. of Indians) h. isāb al-ghubār which
was explained by al-Khwārizmı̄. It is very compendious and a quick system of calculation,
easy to understand, simple to adopt, and remarkable in its composition, bearing testimony
to the sharp intelligence, creative power and remarkable faculty of invention of the Indians.

Unfortunately, the original Arabic versions of al-Khwārizmı̄’s Zı̄j al-Sindhind as
well as his work on Indian arithmetic are both lost but we have the Latin versions
of both available and they played important role in spreading Indian astronomy and
mathematics in the medieval Western world.

The Toledo Tables, associated with the name of al-Zarqālı̄ (d. 1100 ad), enjoyed
enormous circulation and were used throughout Europe by the twelfth century. They
have a lot ofmaterial of Indian origin, e.g. tables of sines (R = 150), solar declination
(ε = 24◦) and oblique ascensions. Al-Zarqālı̄ gave π = 22

7 ,
√
10, and 62832

20000 , the last
two of which are Indian and used Hindu gnomonic length of 12 units. Ibn Muthannā
wrote a commentary on al-Khwārizmı̄’s Zı̄j al-Sindhind, and Abraham Ibn Ezra (d.
c. 1165) translated that commentary into Hebrew and this version also shows Indian
influence.

In the twelfth century, a host of European scholars translated Graeco-Arabic and
Indo-Arabic scientific works into Latin. Through these translations oriental astron-
omyandmathematics flowedwider intoEurope causing a helpful step towards renais-
sance.

5 Indian Astronomy and Mathematics in Late Foreign
Works

According toW.Petri10, Tibetan astronomywas virtually Indian astronomypreserved
byBuddhistmonks.One of the books of theTibetan Tripitaka is ascribed to the Indian
astronomer Garga and contains a list of 28 lunar mansions mostly agreeing with the
Hindu tradition. Kālacakrāvatāra is an important Indo-Tibetan text based on the
kālacakra, the Indian yuga system of periodicity, the basic text for which is the
Kālacakra-tantra (c. 1000 ad).

The mKhas pa dga’byed (1356 ad) by Bu-ston is a Tibetan treatise on mathe-
matical astronomy based on the above tantra. Its recent study by Y. Ohashi11 shows
that its constants are very similar to those of Indian treatises, Sūrya-siddhānta and
Pañca-siddhāntikā. Similar works were written in 1447 and 1683 ad (Baid. ūrya
dkar-po).

This influence of Indian astronomy extended even beyond Tibet. In medieval
Uigur (Turkish) fragments from Turfan (Central Asia), the lunar mansions are listed
by their Sanskrit names. A study of a treatise of 1712 ad by L. S. Baranovskaya
revealed that Indo-Tibetan astronomical ideas and names were alive in Mongolia
until modern times (Vistas of Astronomy, Vol. 9, 164).

As an instance of Indian influence in Maghrib countries in late period, we may
mention the paper of Kennedy and King entitled “Indian Astronomy in fourteenth
century Fez (Morocco) : the Versified Zij of al-Qusunt.ı̄nı̄” (JHAS, 6, 3–45, 1982).
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It is said that this Zij “is the only known document extant in Arabic in which the
planetary theory is essentially Indian” (p. 4).

Similarly, a glimpse of Indian influence in the fifth-century England can be
obtained from the paper of Neugebauer and Schmidt on “Hindu Astronomy at New
minster in 1428” (AS 8, 221–228, 1952). It is shown that methods used in the Latin
manuscript are closely related to Sūrya-siddhānta. The parameters used are mostly
Indian, e.g. R = 150 and g = 12.

Astronomical calculations based on the Indian gnomonic height of 12 units are
also mentioned in the Altimetry portion of the twelfth-century Latin geometry Artis
Cuiuslibet Consummatio (1193), which also mentions some other Indian astronom-
ical notions. According to S. K. Victor, who has edited and translated the work
(Philadelphia, 1979), the method of finding oblique ascension in it is an Indian pro-
cedure (pp. 257–259). It is stated that Pratika de Geometric is a thirteenth-century
adaptation of the above work in old French and is considered to be “the oldest known
treatise on geometry in the French language” (Ibid., p. 27).

Cammann (HR, 1969, p. 188) suspects that yang Hui’s magic squares of order 8
and 10 were probably borrowed from India. He found that the magic square of order
5 on a fifth-century Latin manuscript is the exact Hindu form (pp. 291–292). He says
that Vincent learnt Hindu continuous method of making magic squares and taught it
to the French Loubere in 1688.

According to Imai (see Mathematical Reviews, 58, 3154, 1979) a seventeenth-
century Japanese formula for the rectification of the arc of the circular segment was
due to an old Indian mathematical rule. A Japanese bonze, Yentsu12, published the
Bukkoku Reki sho-hen in 1815 on the “Discussion on the Astronomy of Buddha’s
Country” (India).A computation for a possible eclipse based on theSindhind tradition
is said to be made even in the nineteenth-century Egypt.13
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Sino-Indian Interaction and the Great
Chinese Buddhist Astronomer-
Mathematician I-Hsing (AD 683–727)

1 Buddhism, the Medium of Interaction

The rock edicts of king Aśoka (third century bc) show that he had already paved the
way for the expansion of Buddhism outside India.1 Subsequently Buddhist mission-
aries took Buddhism to Central Asia, China, Korea, Japan and Tibet in the North, and
to Burma, Ceylon, Thailand, Cambodia and other countries in the South. This helped
in spreading Indian culture to these countries. It is well said that “Buddhism was,
in fact, a spring wind blowing from one end of the garden of Asia to the other and
causing to bloom not only the lotus of India, but the rose of Persia, the temple flower
of Ceylon, the zebina of Tibet, the chrysanthemum of China and the cherry of Japan.
It is also said that Asian culture is, as a whole, Buddhist culture”.2 Moreover, some
of these countries received with Buddhism not only their religion but practically the
whole of their civilization and culture.

The generally accepted view is that China received Buddhism from the nomadic
tribes of Eastern Turkestan towards the end of the first century bc, although there
is evidence to show that Indians had gone there earlier to propagate the faith.3 The
Chinese tradition narrates that the Han emperor Ming-Ti (first century ad) had sent
an embassy to India to bring back Buddhist priests and scriptures.4 Consequently
two Indian monks Kia-yeh Mo-than (Kāśyapa Mātaṅga) and Chu-fa-lan (probably
Dharmaratna or Gobharan. a) reached the Han capital Loyang. They learnt Chinese
and translated Buddhist books the 1st of which was Fo-shuo-ssu-shih-erh-cheng-
ching (the Sūtra of Forty-two Sections Spoken by Buddha).5 With the arrival of
more monks, both from India and Central Asia, the Loyang monastery became a
centre of Indian culture. A large number of Indian books were translated, and people
began to adopt Buddhist monastic rituals. Buddhism prevailed so extensively that by
sixth century, the number of monasteries rose to 30000 and the number of monks
and nuns to 2 million.6

Gan. ita Bhāratı̄, Vol. 11, Nos. 1–4 (1989), pp. 38–49; Invited talk delivered at the Symposium on
History of Mathematics and Astronomy, Lucknow University, on March 12, 1989.
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The tradition of Buddhist education system gave birth to large-scale monastic
universities. Some of these famous universities were Nālandā, Valabhı̄, Vikramśilā,
Jagaddala and Odantapurı̄. They attracted students and scholars from all parts of
Asia. Of these, the Nālandā University was most famous with about 10000 students
and 1500 teachers. The range of studies covered both sacred and secular subjects
of Buddhist as well as Brahminical learning. The monks eagerly studied, besides
Buddhist works (including Abhidharmakośa, the Vedas, medicine, arithmetic, occult
sciences and other popular subjects.7 There was a special provision for the study of
astronomy, and an astronomical observatory is said to be a part thereof.8

According to the findings of a modern Chinese historian (Liang Chi-Chao), more
than 160 Chinese pilgrims and scholars came to India from fifth to eighth cen-
turies.9 Of these Fa-Hien (fifth century) Yuan Chwang (seventh century), and I-tsing
(eighth century) are the most famous. Some of them stayed and studied in India for
several years. While going back, they took loads of Pali and Sanskrit works to China
where hundreds of these works were translated into Chinese.

2 Indian Astronomy and Mathematics in Ancient China

We have seen that Buddhism was the medium for mutual intercourse between India
andChina, and provided opportunities for exchange of ideas. Buddhism exerted great
influence invariousfields inChina andwas themainvehicle for transmissionof Indian
scientific ideals to that land. The influence was so high that even scientists embraced
the faith, e.g. astronomer Han Chai and mathematician Wang Fan (about ad 200)
both became Buddhists (Mikami, p. 57). Lot of Indian astronomy and mathematics
became known in China through the translation of Indian works and through the vis-
its of Indian scholars. We shall briefly outline the broad facts in this section now.

The Mātaṅga-avadāna was translated (or re-translated) into Chinese about the
third century ad although the original is believed to date earlier.10 It gives the lengths
of monthly shadows of a 12-inch gnomon which is the standard parameter of Indian
astronomy. The work also mentions the 28 Indian naks. atras.

Śārdūlakarn. āvadāna was translated into Chinese several times starting with the
second century. This work contains the usual Sanskrit names of the 28 naks. atras
starting with kr. ttikā, but the number of grahas mentioned are only 7, thereby exclud-
ing Rāhu andKetuwhichwere often added in themanuscripts and translations.11 The
measures of shadows for various parts of the day mentioned in the work (pp. 54–55)
are same as in the Atharva Vedāṅga Jyotis. a, verses 6 to 11.

Lalitavistara is another work which was translated into Chinese several times
from first century onwards. It is in this work that the famous Buddhist centesimal
scale counting occurs during dialogue between Prince Gautama and mathematician
Arjuna. The Ist series of count ends with tallaks. an. a (= 1053) beyond which 8 more
gan. anā series are mentioned.12 Atomic scale counting is also there (there being 710

paraman. us in one aṅgulaparva) (p. 104).



2 Indian Astronomy and Mathematics in Ancient China 565

Vasubandhu (fourth century) was so much honoured for his work that he was
known as the Second Buddha. His Abhidharma-kośa on which he wrote his own
commentary is an encyclopedic work and played a great role in propagating Buddhist
philosophy and thought in Asia. It was translated into Chinese and also in Tibetan. It
contains early Buddhist ideas in Cosmography (Jambūdvı̄pa being given the form of
a śakat.a) and astronomy (sun and moon revolving round the Meru).13 It is through
this work that we know that Buddhist school used 60 decuple terms in decimal
counting.14

The Mahāprajña-pāramitā Śāstra (of Nāgarjuna, second century) was translated
into Chinese by Kumārajı̄va in early fifth century.15 The astronomical parameters
mentioned in this translation are comparable to those given in the Vedāṅga-jyotis. a.16

Bodhiruci I arrived in China (from Central India) in ad 508 and said to have
translated quite a few Indian astronomical books into Chinese.17

An Indian system of numeration appeared in the Chinese work Tapao Chi
Ching (Mahāratnakūt.a-sūtra) translated by Upaśūnya (in ad 541).18 Paramārtha
(Po-lo-mo-tho), a native of Ujjain, arrived in China in ad 548 and translated
about 70 works including the Abhidarmakośa (vyākhyā)-śāstra and the Lokasthiti-
abhidhrmaśāstra (which is astronomical content).

There was a short setback to Indian activities in China when Wu-Ti came to
power in ad 557. But they were resumed during the role of Sui Dynasty (581–618).
The Indian pan.d. ita Narendrayaśas was called back from exile in 582. Among the
works he translated was the Mahāvaipulya Mahāsannipāta-sūtra from Sanskrit. It
containsnaks. atras, zodiacal cycle, calendricalmaterial andother Indian astronomical
theories.19

The Chinese translations of the following works are mentioned in the Sui Shu or
Official History of the Sui Dynasty (seventh century):20

1. Po-lo-mên Thien Wên Ching (Brahminical Astronomical Classic) in 21 books.
2. Po-lo-mên Chieh-Chhieh Hsien-jen Thien Wên Shuo (Astronomical Theories of

Brāhman. a Chieh-Chhieh Hsienjen) in 30 books.
3. Po-lo-mên Thien Ching (Brahminical Heavenly Theory) in I book.
4. Mo-têng-Chia Ching Huang-thu (Map ofHeavens in theMātāṅgı̄-sūtra) in I book.
5. Po-lo-mên Suan Ching (Brahminical Arithmetical classic) in 3 books.
6. Po-lo-mên Suan Fa (Brahminical Arithmetical Rules) in I book.
7. Po-lo-mên Ying Yong Suan Ching (Brahminical Method of Calculating Time) in

I book.

Although these translations are lost, they were also mentioned in other sources.
More vigorous contacts and activities took place during the glorious period of

Thangdynasty (618–907). In return to an envoy sent by the IndiankingHars.avardhana
in 641 to China, two missions came to India from there. Hiuen Tsang (or Yuan
Chwang) needed 22 horses to carry the works which he took from India to China in
645. He translated 75 of these including Abhidharmakośa.

The great influence which the Indian astronomy had at that time can be seen
by the presence of a number of Indian astronomers in the Chinese Capital Chang-
Nan where there was a school in which Indian siddhāntas were taught.21 In fact there
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were three clans of Indian astronomers, namelyKāśyapa,Gotama andKumāra. These
Indians were employed in the Chinese National Astronomical Bureau and helped in
improving local calendar.

The greatest of thesewasGotamaSiddha (orGautamaSiddhārtha). He became the
president of the Chinese Astronomical Board and Director of the Royal Observatory.
Under the imperial order (from Hsuan-tsung) he translated in ad 718 the famous
Chiu Chih Li (“Navagraha-karan. a”) from Indian astronomical material. A few years
later, he compiled theKhai-Yuan Chan Ching (TheKhaiYuanTreatise onAstronomy
and Astrology) in 120 volumes of which the 104th is the Chiu Chih Li. It includes
Indian sine table (R = 3438, h = 225 minutes) and Indian methods of calculations
with nine numerals and zero (denoted by thick dot • ). The astronomy was based
on 9 planets including Lo-hou and Chi-tu (which are Chinese forms of the Sanskrit
names Rāhu and Ketu).22

3 Earlier Chinese Parallels of Indian Mathematical Pieces

Before talking up the question of mutual transmission further, we shall first mention
the close resemblances which exist between some mathematical problems, rules and
formulas as found in China and India.

1 The Broken Bamboo Problem :

In China this is found in the famous Chiu Chang Suan Shu (Nine Chapters on the
Mathematical Art) whose present text is placed in the first century ad. Its ninth
chapter, entitled “kou ku” (Right-Angled Triangles), contains the following prob-
lem.23

Problem 13: A bamboo is 1 chang (= 10 chhih) tall. It is broken, and the top
touches the ground 3 chhih from the root. What is the height of the break?

The verbal solution given is equivalent to (see Fig. 1)

y =
(

h − x2

h

)

2
= 4

11

20
chhih

It is understood that the solution is based on the Pythagorean property, so that

y + z = h, and z2 − y2 = x2

One of the two similar examples given by Bhāskara I (ad 629) reads24

A bamboo of height 18 is felled by the wind. It falls at (a distance of) 6 from the root (thus)
forming a triangle. Where is the break?
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Fig. 1 Broken bamboo problem

Fig. 2 Bhāskara’s solution

Bhāskara’s solution is based on applying the relation (see Fig. 2)

G F · G E = G B2

which is given in Āryabhat. ı̄ya II, 17 (second half) on which he is commenting. He
gets

G E = x2

h
= 2 = z − y

The doing saṅkraman. a with z + y = 18, he found z and y to be 10 and 8.
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2 Problem of Reed in a Pond :

This is problem no. 6 in the 9th chapter of the Chiu Chang Suan Shu:25

There is a pond whose section is square of side I chang ( = 10 chhih). A reed grows in its
centre and extends 1 chhih above water. If the reed is pulled to the side (of the pond), it
reaches the bank precisely. What are the depth of the water and the length of the reed?

Solution given26 is x = (z2−e2)
2e , where z is half the side of the pond, and y = x + e

(see Fig. 3).
Bhāskara I’s first similar example (out of two) reads27

A full-blown lotus of 8 aṅgulas as visible (just) above the water. When carried away by the
wind, it submerges just as the distance of 1 hasta (=24 an. gulas). Tell quickly (the height of)
the lotus plant and (the depth of) the water.

Fig. 3 Reed problem

His solution is again based on the same property of chords, namely (see Fig. 4)

BC = B M2

AB
= z2

e

And, then applying sam. kraman. a to y + x = z2

e , and y − x = e, he gets lotus-
measure, y and water-measure, x as 40 and 32 (aṅgulas). On Simplification,
Bhāskara’s solution
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Fig. 4 Solution of reed problem

x =
(

z2

e − e
)

2

becomes same as the Chinese solution.

3 Approximate Volumes of a Sphere

The Chiu Chang Suan Shu (first century ad) uses the approximate rule

V =
(
9

2

)
r3 (1)

For calculating the diameter of a sphere when its volume V is known.28 In India
Bhāskara I quotes a rule which gives (1) directly29

The product of 9 and half the cube of the radius is ball’s volume.

Two centuries later Mahāvı̄ra (about ad 850) gave the same and regarded it, like
Bhāskara, only a vyāvahārika or practical (not exact) rule.30 The same is also found
in other Jaina works such as Tiloya-sāra (gāthā 19) of Nemicandra (about 975 ad)
and the Gan. ita-sāra (V. 25) of T. hakkura Pheru (about 1300 ad). This shows a Jaina
tradition for (1).

There is another interesting thing. In China, Liu Hui (third century) interpreted
(1) wrongly as equivalent to31

V =
(

π2

2

)
r3 (2)

In India also, Māhāvı̄ra seems to have thought that (1) was based on (2) with the
practical value π = 3, and he further derived a better formula by taking π = √

10
which he considered to be sūks. ma.32
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4 The Problem of 100 Fowls

In China, the earliest statement of this problem is found in the Chang Chhiu-Chien
Suan Ching (Arithmetical Classic of Chang Chhiu Chien) which is generally placed
in the 2nd half of the fifth century. It runs as follows:33

A cock costs 5 pieces (wên) of money, a hen 3 pieces, and 3 chickens 1 piece. If we buy,
with 100 pieces, 100 fowls, what will be their respective numbers (answers: 4+18+78; 8 +
11+81; 12+4+84).

A century later Chen Luan gave two similar problems with costs 5, 4, 1
4 (answer:

15 + 1 + 84) and 4, 3, 1
3 (answer: 8 + 14 + 78).34

In India, such problems appear in the Bakshālı̄ Manuscript (whose exact date
is uncertain or controversial). One problem relates to buying a total of 20 animals
(monkeys, horses and deer) for a total of 20 pan. as at costs 1

4 (say), 4 and
1
2 (answer:

2 + 3 + 15).35 Another similar example relates to prices or earnings of men, women
and śūdras or children at rates 3, 3

2 and 1
2 (answer: 2 + 5 + 13).36

Example of buying 100 birds (pigeons, cranes, swans and peacocks) with 100
rūpas (or pan. as) with rates 3

5 ,
5
7 ,

7
9 ,

9
3 occurs in the pāt. ı̄gan. ita (Exam. 78–79) of

Śrı̄dhara (eighth century) as well as in the Gan. ita-sāra-saṅgraha (VI, 152–153) of
Mahāvı̄ra (ninth century).37 This problem was quite popular in India, and one of the
many solutions is 15 pigeons, 28 cranes, 45 swans, 12 peacocks.38 Similar problems
were also popular in other parts of the world as shown by works of various authors
starting with Alcuin (ninth century).39

In simple matters, like the use of π = 3, we may accept independent discoveries
or inventions by different culture groups. But when specifically characteristic rules
and problems, such as (I) to (IV) considered above, are found to occur in different
culture areas, we have to favour a theory of diffusion. Of course an older common
source may have been there from which material was possibly transmitted to the
various culture areas. B. L. van der Waerden (p. 66) considers a pre-Babylonian
common source of Chinese and Babylonian algebra. In fact he has formulated the
thesis of a common Indo-European origin of mathematics which flowed to China,
India,Babylonia,Greece andEgypt (pp. 67–69).Wehave evidence that somepeculiar
rules such as the “surveyor’s rule” for the area of a quadrilateral,40 or the use of h(c+h)

2
(or its other derived forms) for the area of a segment of a circle, are found widely
diffused.

Regarding pieces (I) to (IV) discussed above, we have not come across specific
earlier instances where these are found as such. It is, therefore, to be presumed that
there was some interaction which ultimately led to transmission between China and
India. We have already noted above that even Chinese mathematicians such as Wag
Fan (about 200 ad) became Buddhist (Mikami, ref, 28, 57). Needham41 mentions
monk Than Ying (about 440) who could be a teacher of Chiu Chang Suan Shu and
its commentary by Liu Hui.

References to Buddhism and Buddhist works are found even in the mathematical
treatises of China such as the Sun Tzu Suan Ching or Arithmetical Manual of Master
Sun, which is placed42 between ad 280 and 473. Master Sun’s work is important
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for early indeterminate analysis, and he was an ardent believer in Buddhism. He
profoundly read the Buddhist works and mentioned them in his writings.

At least some of the Indian scholars who visited China,must have become familiar
to some extent, with the local mathematical traditions especially the more popular
common and recreational type of problems. A few of these Indians had often come
back to India (maybe even temporarily). Also Chinese pilgrims, scholars, and envoys
(including diplomats) who visited India, may have taken someChinesemathematical
classics, such as the famous Chiu Chang Suan Shu, with them. Books may have been
part of gifts which may have been presented to the kings or universities. All such
things indicate a strong possibility of mathematical interaction between China and
India. But while things were documented in Chinese sources, there is no similar
positive literary or other documentary evidence known from Indian sources which
specify clearly the arrival of any Chinese mathematical material in India.43

4 I-Hsing (683–727), the Great Chinese
Astronomer-Mathematician

By the end of the seventh century ad, a lot of Indian mathematics and mathematical
astronomy were known in China. The compilation of Chiu Chih Li in Chinese by
Gotama Siddha from Sanskrit sources represents the culmination of such transmis-
sions in ad 718. Through this work the Indian methods of computations based on
the decimal place-value system (with a zero symbol) and the Indian trigonometry
(based on Sines) were formally introduced in China. The analysis of the contents of
Chiu Chih Li by Yabuuti (ref. 22 at the end) shows that the mathematical astronomy
as found in Sūrya-siddhānta and in the works of Varāhamihira (sixth century ad)
and Brahmagupta (seventh century) was known in China in the beginning of the
eighth century.

At this time appears I-Hsing on the Chinese scene. He was an able mathematician
deeply learned in astronomy and was well versed in Sanskrit (Mikami, ref. 28, p. 60).
He combined in himself the traditions of Chinese as well as Indian mathematical
sciences. He became a Buddhist monk, attended conglomerations of monks and
śraman. as and travelled widely to acquire knowledge (Needham, ref. 17, p. 38).

I-Hsing won a great reputation for his combinatory calculations. Due to his Bud-
dhist training, he could easily handle large numbers such as 3361 or 10172. Hismethods
were capable of enumerating all possible changes and transformations occurring on
go board or chess board (Needham, Ibid., p. 139). He could also handle indetermi-
nate problems involving large numbers (Ibid., p. 119–120). In India similar problems
had already been solved by Bhāskara I (early seventh century). Some scholars have
confused him with I-tsing, the pilgrim.44

Between 721 and 727, I-Hsing prepared, by imperial order, a calendar known as
Ta Yen Li (Needham, ref. 17, p. 37) in which he had applied higher mathematics. Out
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of the 23 different systems of calendars known by that time, I-Hsing’s was found to
be accurate and stood the test of time (Mikami, ref. 28, p. 60).

GautamaChuan (of Kumāra clan) probably knew that one of his Indian colleagues
has taught I-Hsing method (say as given in the Sūrya-siddhānta) for relating gnomon
shadows and solar zenith distance (or altitude) by means of sine table of Chiu Chih
Li.45 I-Hsing fully used this knowledge.

Much influenced by Indian astronomy, I-Hsing made measurements in ecliptic
coordinates which played little role before (Needam, ref. 17, p. 202). He was associ-
ated in training the officials and observers for the great meridian survey of 724 ad46

The observed data was also analysed by him. He developed a tangent table which is
the earliest of its kind in the world. This development was based on Indian informa-
tion about the use and values of sines from which his tangent table was derived.47

He used methods of finite differences, fitting of polynomials and interpolations.48
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Indian Mathematical Sciences in Ancient
and Medieval China

1 Buddhism, the Vehicle of Transmission

The great Indian emperor Aśoka (usually called Devānām. priya, ‘Beloved of Gods’)
ruled from about 272–232 bc His missionary activities are recorded in Rock Edict
No. XIII as follows (Sircar, p. 54, and P. Thomas, p. 15).1

So what is conquest through Dharma is now considered to be the best conquest by the
Beloved of Gods. And such a conquest has been achieved by the Beloved of Gods not only
here in his own dominions but also in the territories bordering his dominions as far away as
the distance of 600 yojanas where the yavana king Antiyoka (Antiochus) is ruling; further
where four other kings named Turamāya (Tulamāya, Ptolemy), Antikini (Antigonas), Makā
(Magā, Magas), and Alikasundara (Alexander) are ruling ...

Subsequently, Buddhism was taken to various countries of Asia and this helped in
spreading Indian culture there. It is well said that “Buddhism was, in fact, a spring
wind blowing from one end of the garden of Asia to the other and causing to bloom
not only the lotus of India, but the rose of Persia, the temple flower of Ceylon, the
zebina of Tibet, the chrysanthemum of China, and the cherry of Japan. Asian culture
is, as a whole, Buddhist culture” (Bapat, p. 397). During the full first millennium
of the present era “all the countries of Asia from Persia to Japan, from Mongolia to
Ceylon formed one cultural commonwealthwith India as its centre and fountainhead”
(P. Thomas, p. 2).

It was in the reign of Ming Ti (first century ad) that Buddhism was for-
mally introduced in China with his imperial sanction (Chou, p. 66). According
to Chihpang’s Records of the Lineage of Buddha and Patriarchs (c. 1200 ad),
Ming Ti had sent envoys to bring Buddhist scriptures and priests to China (Ibid.,
66–67). Consequently two Indian monks Kia-yeh-Mo-than (Kaśyapa Mātaṅga) and
Chu-fa-lan (Dharmaraks.a or Dharmaratna, etc.)2 reached the Chinese capital Loyang
(in ad 64) where a monastery was built soon. They learnt Chinese and translated
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which was prepared by the author for his INSA project.
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Buddhist books the first of which was the Fo-shuo-ssu-shih-erh-cheng-ching (Sūtra
of Forty-Two Sections Spoken by Buddha) (Ibid., p. 67 and Mukherjee, pp. 2–3).

Buddhism spread in China steadily. More and more monks went there from India
and Central Asia and a large number of monasteries started working. By the end of
fourth century there were over 17,000 Buddhist institution in China (HCIP, Vol. III,
p. 615, and Varma, p. 137). Quoting from Records of Buddhism and Taoism of the
Book of the Wei Dynasty, Chou (p. 106), has given a table according which there
were more than 3000 monasteries and about two million monks and nuns in China
in ad sixth century. In fact by that time Buddhism had become China’s own religion
(Varma, p. 137), and that, according to T’ung Chien (Mirror of History), almost every
household had been converted (Chou, p. 106).

During prehistoric times, the Peking Man (whose bones were found in 1929) is
said to have lived about 5,00,000 year ago (Ibid., 14). During the historical period of
over 5000 years, the Chinese civilization and culture have been quite high and more
or less continuous. The remarkable history of China is the story of a large number
of dynasties which ruled variously as shown in the Table 1.3

During the last 2000 years there have been active cultural and civilizational inter-
action and vibrations (and even war) between India and China. The whole historical
period has been divided conveniently into five phases:

1. (Before 64 ad) Thoughts of Confucius (sixth century bc) prevailed. His Spring
and Autumn Annals is the political bible of China (Chou., p. 52).

2. (64–644 ad) Movement of Buddhism into China.
3. (645–1160) Building up of a Buddhist socio-political and cultural infrastructure

in China with Indian monks.
4. (1220–1765) Diplomatic and Commercial activities.
5. (After 1765) Matured political diplomacy involving even international consider-

ations.

Thus during the intermediary ancient and medieval periods Buddhism was the
medium first of transmission and then of interaction with a sort of regular exchange
of visitors. According to the findings of Liang Chi-chao (a modern Chinese his-
torian), more than 160 Chinese pilgrims and scholars came to India during fifth to
eighth centuriesad (Bapat, 163–164). The author of theChinese book She-Kia-Fang-
Che claims to have “studied all the biographies of monks (who went to the country
of Buddha) and heard many things personally.” But he adds that those who went and
came back in Sui and Tang periods “are too many to be mentioned” (Bagchi, p. 129).
Life sketches of 226 eminent Indian monks travelling to China and 118 Chinese
pilgrims travelling to India may be found in the India and China: 20 Centuries of
Civilizational Interaction and Vibrations by Tan Chung et al., Delhi, 2005 (MLBD
Newsletter, Vol. 27, No. 6, p. 2). Indian king Śrı̄gupta built a special temple for the
Buddhist priests who came from China (HCIP, Vol. 2, p. 649).

Many of the Chinese pilgrims had scholarly taste and studied in Buddhist uni-
versities in India. Such monastic universities (Vihāras) were at Nālandā, Valabhı̄,
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Table 1 Chronology of Chinese history

Name of dynasty period Time Remark

HSIA (Xiā) About 2200–1600 bc (2357–1767 bc)

SHĀNG About 1600–1100 bc (1767–1122 bc)

Chou (Zhou): Western Chou 1122–771 bc

Eastern Chou 770–256 bc

Spring and autumn
period

770–476 bc

Warring states period 475–221 bc

Ch’in
(Chhin or Qin)

221–201 bc (256–206 bc)

HAN (Han.): Western Han 206 bc–24 ad

Eastern Han 25–220 ad

Three kingdoms: Wei 220–265 ad

Shu Han 221–263 ad

Wu 222–280 ad

Chin (Tsin or Jin): Western Chin 265–316 ad

Eastern Chin 317–420 ad

Southern: Liu Sung 420–479 ad

Ch’i (Chhi or Qi) 479–502 ad

Liang 502–557 ad

Chen (or Chhen) 557–589 ad

Northern: Northern Wei 386–534 ad

Eastern Wei 534–550 ad

Western Wei 535–556 ad

Northern Ch’i 550–577 ad

Northern Chou 557–581 ad

Sui 581–618 ad

Tang (Thang) 618–907 ad

Five dynasties: (Later Liang, Tang, 907–960 ad

Chin, Han and Chou)

Sung (Song): Northern Sung 960–1279 ad (960–1126 ad)

Southern Sung 1227–1279 ad (1127–1279 ad)

Also: Liao 916–1125 ad

Hsia 1032–1227 ad

and Chin 1115–1234 ad

Yuan (Mongol) 1271–1368 ad

Ming 1368–1644 ad

Ching (Chhing or Qing
Manchu)

1644–1911 ad

The Republic of China 1912–1949 ad

Peoples Republic of
China

1949 onwards
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Vikramaśilā, Jagaddala andOdantapurı̄. They attracted students from various parts of
Asia (Bapat, 156). Of these the most famous and magnificent (and architecturally the
grandest) was the Nālandā Mahāvihāra with 1500 teachers and about 10000 students
(Ibid., 164). Subjects of study included even Brahmanical philosophy, mathematics,
astronomy and medicine (HCIP, Vol. 3, p. 618).

Several of the Chinese pilgrims were keen to personally see and know details of
Buddha’s country and toured various parts and kingdoms of India. Of such pilgrim-
scholars the names of Fa-Hien (fifth century ad), Hiuen Tsang or Yuan Chwang
(seventh century), and I-tsing (c. 700) are well-known. They wrote vivid accounts of
their travels. Their descriptions throw valuable light on the history of ancient India.

Some of the visiting Chinese scholars collected a large number of Buddhist and
other works especially copying those texts which were unknown in China. Thus they
took loads of Indian works to China for study and translation.

In fact the number of Indian works which were translated into Chinese by various
Indian and Chinese scholars (often jointly) was very enormous. For instance, Hiuen
Tsang, after going back to China, along with his associates, translated 600 Sanskrit
works into Chinese (Bapat, 241). Catalogues of the translated works were prepared
by ancient and medieval historians and scholars from time to time. A sixth century
catalogue lists texts numbering about 5400 volumes and the Sui catalogues list about
8000 Buddhist works (Mukherjee, 46–47). The famous modern B. Nanjio Catalogue
(1883) records 1962 Chinese translations of Indian texts.

Paradoxically, it often turns out that some works are now available only in foreign
translations (originals being lost!). More ironic is the fact that while India has prac-
tically no substantial records about her cultural conquests abroad, foreign literary
sources do tell about them. Early political and commercial relations between Indian
and China were also there.

2 Mātaṅgāvadāna, Lalitavistara and Śārdūla-karn. āvadāna

When the Buddhist monk Kāśyapa Mātaṅga arrived in China in ad 64, the Chinese
king honoured him. Mātaṅga (Mo-Than in Chinese) translated a number of Indian
works into Chinese and he soon became a legendary figure in China and his name
carried a great authority. In fact his name is associatedwith a large number of Chinese
translations of Indian works although some of these Chinese translations belong to
later periods (but a fewmaybe revised versions of translations started byMātaṅga and
his associates). Interestingly a French translation of theMongol version ofMātaṅga’s
Sūtra of the forty-two sections appeared in 1848 (Bapat, 354).

According to Yabuuti (1954, p. 585), the Mātaṅgāvadāna was translated into
Chinese about the third century ad although the original is believed to date a century
earlier (and attributed to Mātaṅga). It gives the lengths of monthly shadows of a
12-inch gnomon which is the standard parameter (12 aṅgulas) of Indian astronomy.
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According to Shinjo Shinzo, the data implies a place of observation at 43◦ north
latitude which may indicate the region from which Buddhism entered China (Ibid.).
Of course Mātaṅga went to China from Central Asia (Bapat, 110, and Chou, p. 67).

Needham (p. 710) states that the Chinese work Mo-téng-Chia Ching (Mātaṅgı̄-
Sūtra or The Book of Mātaṅga), supposed to be translated by Chu L-Yen from
Sanskrit, contains a list of hsiu (naks. atra) with the number of stars in each naks. atra.
It is ascribed to the period of Three Kingdoms or San Kuo (ad 220–265) although
Needham places it in the eighth century ad.

A work called Mo-téng-Chia-Ching Huang-Thu or ‘Map of Heavens in Mātaṅgı̄-
sūtra’ (one book) ismentioned in theOfficial History of the Sui Dynasty (seventh cen-
tury) (see Sect. 4).

Lalitavistara, a Buddhist Sanskrit work of first century bc (HHM, I, 10), contains
a biographical account of Buddha (Bapat, 124–127). It belongs to a class of nine
sacred texts called Vaipulya-sūtra or Nine Dharmas. It calls itself as Mahānidāna as
well as Purān. a (Vaidya, p. ix).

Lalitavistara was translated into Chinese several times. The Indian priest Chu-fa-
lan (first century ad) translated a few books into Chinese but these translations are
lost (Mukherjee, 1–3). The Chinese title of one of them is Fo-pan-hsin-chin which,
according to B. Nanjio and S. Julien, was a translation of the Lalitavistara although
there are other views (Ibid., p. 3). Two other translations were also lost by the year
730 when Khai-yuen-lu-Catalogue was compiled. Both translations are called Phu-
Yao-Ching (‘Samantaprabhava-sūtra’). The name of 1st translator (third centuryad)
is lost but the other was done jointly by Pao-yun and Chu-yen in the fifth century
(Ibid., 62–63).

Two extant Chinese translations of Lalitavistara are recorded in Nanjio’s Cata-
logue (Nos. 159 and 160). One of these, called Pou-yao-king (=Phu-Yao-Ching), was
made byChu-Fa-hu orDharmaraks.a (ad 305/308), and the other, calledFang-kwang-
ta, chwang (Vaipulya-mahāvyūha-sūtra), etc., by Śraman. a Divākara of Central India
about ad 685 (Vaidya, xi; Mukherjee, 9–10, 62–63).

The Sanskrit text of the Lalitavistara was edited by R. L. Mitra (Calcutta, 1877)
and then by S. Lefmann (Two Parts, Halle, 1902, 1908). These were used by
P. L. Vaidya for his recent edition (Darbhanga, 1958) which is used here. There
is a French translation by P. E. Foucaux (Paris, 1847–48; 1887–92) with the text
of the Tibetan translation of the ninth century scholars Jinamitra, Dānaśı̄la, Muni-
varma and Ye-śes-sde (Ibid.). Śāntibhiks.u Śāstrı̄ has translated the work into Hindi
(Lucknow, 1985). Dharmaraks.a’s translation is reported to have only 8 chapterswhile
present text has 27 chapters.

Some scientific ideas are found embedded in Buddhist views on evolution and
nature of theworld, life andmatter. Concepts of atomismwere developed byBuddhist
andmetrological systems formeasuring distance, capacity, weight and time are found
in their works. The microscopic linear system of units found in the Lalitavistara
(p. 104) is as follows:
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7 paramān. us 1 an. u
7 an. us 1 truti (trut.i)
7 trut.is 1 vātāyana-raja
7 vātāyana-rajas 1 śaśaraja
7 śaśarajas 1 ed. akaraja
7 ed. akarajas 1 goraja
7 gorajas 1 liks. ā
7 liks. ās 1 sars. apa
7 sars. apas 1 yava
7 yavas 1 aṅgulı̄-parva (aṅgula)

Thus one aṅgula (finger-breadth or digit) was subdivided into 710 paramān. us or
atomic-measures. The Chinese subunits are said to follow a decimal scheme in which
(Needham, 85; Mikami, 26).

1 Chhih (‘foot’) = 106 hu (‘diameter of silk string’.)
On the macroscopic side, the Lalitavistara (p. 103) contains a numeration system

in centesimal scale (beyond kot.i = 107) going up to very very large numbers. The
names of various denominations in the first series of counts are ayuta (= 109), niyuta
(= 1011), kaṅkara, vivara, aks. obhya, etc., up to tallaks. an. a (= 1053), the number of
terms after ayuta being 23. Beyond this Tallakas. an. a-gan. anā, the names of eight
more (similar) series of counts are mentioned starting with Dhvajāgravatı̄-Gan. anā.
Thus (as explained by Karl Menninger, p. 137) the last number in the last series of
count (called Agrasārā) will stand for

10(53+8×46) = 10421

a monstrous number.
The Lalitavistara terms, kot.i, ayuta and niyuta were transliterated phonetically

into Chinese as juzhi, ayuduo and nayouta, respectively (Martzloff, p. 97). The last
one seems directly from the Buddhist form Nayuta (pali, nahuta) of niyuta (Hayashi,
111).4 The Lalitavistara (p. 103) mentions that the Dhvajāgravatı̄ count of the above
numeration scale can be used to count even the number of sand particles of the
river Gaṅgā. Now if we use two series (each of 23 terms) of the above centesimal
numeration, we get

1099 when we start with usual kot.i =10
7

1097 when we start with Chinese kot.i =10
5 (Martzloff, 97)

1096 if we use the Chinese higher base wan =104.

And it is interesting to note that Chu (= Zhu Shijie) in his system of large numbers
calls 1096 as heng ho sha which literally means “sands of the River Ganges” (Lam,
pp. 8–9). Another expression used in the Lalitavistara (p. 104) in connection with
counting of very large numbers is trisāhasra mahāsāhasra lokadhātu (‘a major uni-
verse of 3000 great chiliocosms’) which is semantically or phonetically transliterated
in Chinese as dagian (‘great thousands’) in Shushu jiyi (Martzloff, 96).
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A more important work which was translated into Chinese is the
Śārdūlakarn. āvadāna (first century ad or earlier). Mukhopadhyaya (pp. xii–xiii)
mentions the following four translations of the work:

(i) Oldest Chinese translation is by the Parthian prince Ān Shi-kāo who, after
renouncing his kingdom, went to China in ad 148 and worked at the rendering till
ad 170 (Nanjio Catalogue, No. 643).

(ii) The most elaborate translation was done between ad 223 and 253 jointly by
Chu Lüh-yen (an Indian śraman. a) and Che K’ien (as Upāsaka or householder of
Tukhar).

(iii) An elaborate Chinese translation was made by Chu-Fā-hu (Dharmaraks.a)
between ad 266 and 317. He was a native of Tunhuang and, after being educated
in India (HCIP, II, 647), went to China in ad 266. According to Needham (p. 712),
the title of the Chinese translation was Shê-Thou-Chien Thai-Tzu Erh-shih-pa Hsiu
Ching.

(iv) Another translation was done under the Tsin or Chin Dynasty (between 265
and 420) but the name of the translator is not known.

The work was also translated into Tibetan by Ajitaśrı̄bhadra and Śākyaprabhā
about 864 ad.

The importance of Śārdūlakarn. avadāna (which is said to be a part of Divyadāna)
lies in the fact that through its various translations, Indian scientific ideas reached
China quite early. Following astronomical and mathematical features/data from the
work may be briefly mentioned.

(1)List of Indian Naks. atras (pp. 46–52):Needham (p. 712) has already pointed out
the transmission in this regard. The 28 naks. atras (hsiu) listed are the usual Sanskrit
names which are known in India since Vedic times. Here the list starts with Kr. ttikā,
Rohin. ı̄ and ends with Aśvinı̄, Bharan. ı̄. The number of stars in each naks. atra is also
given along with some other details.

(2) Names of Grahas (pp. 53 and 104): The text mentions only 7 grahas (planets
in ancient or astrological sense) in two places in two different orders, one of which
is Venus, Jupiter, Saturn, Mercury, Mars, Sun, Moon. The exclusion of Rāhu and
Ketu (of Indian Navagrahas) shows that these two were not accepted properly at that
remote time. Often these were added in the Chinese translations and manuscripts.

(3) Linear Units (p. 58): A table of microscopic measures from paramān. u to
aṅgula, similar to that of Lalitavistara (see above), is given herewith slight variations
in some names but with the omission of one subunit, namely trut.i (between an. u and
vātāyanaraja).

(4) Units of Time (pp. 54–57): For subdividing the muhūrta (= 1
30 of ahorātra or

day and night), two systems are mentioned. One of them is as follows:

1muhūr ta = 30 lavas

= 30 × 60 ks.an.as = 30 × 60 × 120 tatks.an.as.

It appears that in early ancient India, the semi-sexagesimal division played a role.
According to the Manusmr. ti, I, 64, a month of 30 days can be divided as5
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1 month = 30 days = 30 × 30 muhūr ta = 30 × 30 × 30 kalās

= 30 × 30 × 30 × 30 kās.t.hās

(5)Duration of Daylight (pp. 53, and 100–108): The longest and shortest durations
of the daylight are mentioned to be of 18 and 12 muhūrtas. This is exactly same as
in the Vedāṅga Jyotis. a. The months of Kārtika and Vaiśākha are said to be of equal
day and night (each = 15 muhūrtas).

(6) Shadows at various parts of a Day (pp. 54–55): After sunrise, the purus. ı̄
shadows are given to be of measure 96, 60, 12, 6, 5, 4 and 3 during the first seven
muhūrtas, while during the 8th muhūrta (middle of day), it is stated to be stationary
(constant). Since the duration of the day is given to be 15 muhūrtas, the data may
be taken to refer to an equinoctial day. Exactly same data is found in the Atharva
Vedāṅga Jyotis. a (verses 6–10) except for the change of measure unit from aṅgula to
purus. a here. S. S. Lishk and S. D. Sharma tried to establish the observational origin
or basis of the data but without success (IJHS, Vol. 15, pp. 193–200).

(7) Noon Shadows for the Whole Year (pp. 100–103): For a gnomon of height 16
aṅgulas, there is a table of 12 monthly shadows as follows:

1

2
, 2, 4, 6, 8, 10, 12, 10, 8, 6, 4, 2 aṅgulas.

The shortest shadow is for the month Śrāvan. a when the day is longest (of 18
muhūrtas), and the longest is forMāghamonthwhen day is shortest (of 12muhūrtas).

3 Other Transmissions to China Upto About 600 ad

Certain empirical rules used by Zhang Heng (c. 130 ad) imply the value π = √
10

which was used in India centuries earlier (Gupta 1992, pp. 2–3). Nāgārjuna, a
great dialectian (c. 200), propounded the Śūnyavāda philosophy. His main work,
the Mādhyamika-śāstra (Chun-lun in Chinese), displays a rare insight into the sci-
ence of logic. His other works were also translated into Chinese, and Kumārajı̄va
(fifth century) rendered his biography into it (Bapat, 194–195). Mou-tseu (third cen-
tury) tried to establish the superiority of Buddhism over local religions prevalent in
China (Ibid., 59).

Written expressions for very large numbers in different numeration system (in
powers often) are found the Shushu Jiyi (‘Memoir on Some Traditions of Mathemat-
ical Art’) attributed to Xu Hue (c. 200 ad) who is believed to be a pupil of the great
astronomer Liu Hung (Mikami, 44). The numeration systems indicate Indian influ-
ence especially of the Buddhist idea of infinite cycles of reincarnations (Ibid., 57–58;
Martzloff, 99 and 141), and of kalpas (Needham, 30 and 87). The influence was so
high that even the astronomer Han Chai (c. 220) and his contemporary mathemati-
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cian Wang Fan both became Buddhist (Mikami, 57) and possibly then the problem
of circle measurement in China was ‘transplanted from Indian soil.’

Dharmakāla (Than-mo-chiao-lo) of central India reached China in 222 and trans-
lated the Vinaya-Pit.aka which mentions three classes of Gan. ita, namely mudrā,
gan. anā and sam. khyāna (HHM, I, p. 7). According to Muroga and Unno (p. 56), the
Indian theory of dividing the world into four parts was introduced as early as the third
century ad. The date of Sun Tzu or Sunzi is controversial. He is now usually placed
in the fourth century (often between 280 and 473). His Sunzi Suanjing mentions a
Buddhist sūtra and employs word-numerals resembling Indian concept of bhūta-
sam. khyās (Martzloff, 136–138). The calendarist He Chengtian (370–447) tried to
find out about Indian astronomy from the famous monk Hui Yan (Ibid., p. 96). The
great Chinese scholar Tao-ngan (fourth century) wrote a book on India (HCIP, III,
p. 613).

TheAbhidharma-kośa of the celebrated teacher Vasubandhu (fourth century) is an
encyclopedic work which proved valuable for the propagation of Buddhism in Asia.
It was especially taught at the Nālandā University where of Chinese priest Tao-Lun
(or Śilaprabha as he was called in India) and Wou-Lung studied it (Mukherjee, 78–
79). Vasubandhu’s other works include his two treatises on logic, namely Tarkaśāstra
and Vādavidhi (Bapat, 197). He wrote his own bhās. ya on the Abhidharma-kośa. A
French translation of Abhidharma-kośa based on the Chinese and Tibetan versions
was published by Louis de la Vallé Poussin in 5 vols. (1923–1925). Here the recent
edition (with auto-commentary etc.) by D. Śāstrı̄ is used. The scientific contents from
the work of Vasubandhu and his commentary on it may be briefly mentioned now.

(1) The auto-commentary under III, 94 (p. 544) quotes the muktaka-sūtra (‘free
secular aphorism’).

fromwhich we know that 60 decuple terms in decimal counting scale were already in
use in India in those days. However, only 52 names are given, and for the remaining
ones the auto-commentary remarks that they are forgotten (vismr. tam)! The eight
names are lost from the middle (madhyāt) and the super-commentator Yaśomitra
advised to restore full table with suitable names. So the present author (R. C. Gupta)
reconstructed the table with the help of names found in Lalitavistara mostly (GB,
Vol. 23, p. 85). The reconstructed Buddhist set of 60 decuple terms is:

eka, daśa (daśaka), śata (100), sahasra (= 103), prameda, laks. a, atilaks. a, kot.i,
madhya, ayuta, mahā-yuta, (= 1010), kaṅkara, mahā . . . , balāksa (= 1057), mahā,
asam. khya (= 1059).

These large numbers are mentioned in connection with measures of kalpas in
relation to birth of various Buddhas. The same idea influenced Xu Hue of China
(c. 200) as mentioned above.

(2) The Abhidharma-kośa, III, 55–86 (p. 536) contains, like Lalitavistara, a table
of linear measures starting with paramān. u (‘atomic particle’) and ending with6

aṅgulı̄-parva (‘finger-breadth’), the increase each time being seven fold. But there
are some changes, and the table here may be summarized as follows:
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One aṅgula parva = 7yūka = 72liks.ā = 73chidrara ja

= 74 goraja = 75avira ja = 76śaśara ja = 77aparaja

= 78lohara ja = 79an.us = 710 paramān.us.

There is an interesting difference regarding higher units of length or distance. The
Lalitavistara (p. 104) and Śārdūla-karn. āvadāna (p. 58) both give

1 yojana = 4 krośa (māgadh − krośa)

= 4 × 1000 dhanus

But the Abhidharma-kośa (p. 536) (III, 87–88) gives

1 yojana = 8 krośa = 8 × 500 dhanus.

However, the units of time from this work tally with those in the Śārdūla-
karn. āvadāna (from tatks. an. a to year).

(3) Cosmography: Somewhat similar to other Indian schools, the Buddhist cos-
mography, as described in the Abhidharma-kośa (pp. 507–511), consists of the
Sumeru mountain in the centre surrounded alternately by seven annular seas and
seven annular mountains all concentric with the Sumeru (= Meru). The height of
Meru above water is 80,000 yojanas and that of the surrounding closest yugand-
hara mountain is 40,000 yojanas. The heights of the successive mountains from a
G. P. with common ratio 1

2 .
The 7th surroundingmountain Nimindhara (whose height is 625 yojanas ) is itself

surrounded by the annular salty large sea (Mahodadhi) of width 322000 yojanas.
In this large sea (or ocean) are situated four dvı̄pas (islands) in the four cardinal

directions. Their names, form and dimensions are as follows:
(i) Jambūdvı̄pa (yen-fu-t’i in Chinese) in the south in the form of a śakat.a or

isosceles (inverted) trapezium of sides 2000, 2000, 2000 and 3.5 yojanas (the last
dimension represents the short base of the inverted trapezium like the southern tip
of India). Some scholars have interpreted the relevant text (III, 53–54, pp. 511–512)
to take śakat.a as a triangle of sides 2000, 2000 and 3500 or 3050 (A. Jain, p. 20). In
the Kāla Cakra Tantrarāja I, 17 also the shape is a triangle.

(ii) Godānı̄ya Island in the west is in the form of a circle of perimeter 7500
yojanas and diameter 2500 yojanas (III, 54; p. 512.) implying the use of the simple
approximation π = 3.

(iii) Kuru Island in the north is in the form of a square of perimeter 8000 yojanas.
(iv) Videha Island in the East is said to be of the form like more or less the half-

moon (ardha-candra-vat) whose pārśva-trayam (“three sides”?) are like those (of
Jambūdvı̄pa) and one of length 350 yojanas (cf. A. Jain, p. 20 with text reference III,
54).

It may be mentioned that the measures of possible perimeters of the above four
Islands are given to be apparently as 7000, 8000, 9000 (Videha’s) and 10000 (Kuru’s)
yojanas in Lalitavistara (p. 104).
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(4) Value of π: We have already mentioned above a case in which π = 3 is used.
Abhidharma-kośa, III, 48 (p. 507) contains a sort of sūtra ‘samantatastu trigun. am’
which means, according to auto-commentary, that circumference is three times the
diameter. It is applied here to D=1203450 to get 3610350 = C (p. 507).

Named after the Indo-Greek king Menander (first century bc). The Pali book
Milinda-pañha (“Questions ofMilinda”)was translated intoChinese betweenad 317
and 420 under the title Nāgasena-sūtra (Bapat, 182). The book states that all vidyās
were taught in Jambūdvı̄pa and scientific subjects were discussed (A. Jain, 21).
In early days Jambūdvı̄pa was understood in China to be synonymous with India
(Muro andUnno, 51) likeVinayapit.aka (mentioned above). The three types of gan. ita,
namely mudrā, gan. anā and sam. khyāna are enumerated in the milinda-pañha (HHM,
I, 7).

Arithmetic (gan. anā or sam. khyāna) is regarded noblest of arts inMajjhima Nikāya
(Ibid., 4) whose Chinese translation by Dharmanandi (c. 390 ad) is lost but that by
Gautama Saṅghadeva (c. 400) was made from the Sanskrit version called Mad-
hyamāgama (Mukherjee, 13). The Dı̄ghanikāya is the 1st book of Sutta-pit.aka
(whose 2nd book is Majjhima-nikāya). Its Sanskrit version, the Dı̄rghāgama was
rendered into Chinese by the Indian monk Buddhayaśa with the help of Chu Fo-nien
in 412–413 (Ibid., 23). It enumerates the three types of gan. ita mentioned above. Like
Abhidharma-kośa, it explains the structure of the universe with Sumeru (Xumixan
in Chinese) at its centre (Unno, 1980a, 57–58).

Kumārajı̄va (Ciu-mo-lo-shi) is a great name in Chinese Buddhism. He was born
of an Indian father (Kumārāyana) and Jı̄vā of the royal family of Kuci (Eastern
Turkistan). He was educated in Kashmira under Ācārya Buddhadatta and, in ad 401,
went to China where he was greatly respected, although some controversy exists
about the status (Bapat, 211; Puri, 329). He had thoroughly studied Buddhist works
and was well-versed in Vedas, five sciences,7 astronomy (e.g. naks. atravidyā) and
Pyotis. a (Puri, 46 and 76). His Chinese translations of about a hundred Buddhist
works covered almost all branches of learning (Mukherjee, 17). He also revised the
earlier translations, and 50 extant translations are still ascribed to him (Ibid.).

One of the most important works translated by Kumārajı̄va was the Mahāprajñā-
pāramita Śāstra which is an encyclopedic commentary by Nāgārjuna (c. 100 ad) on
the Pañcavim. śati-śatasāhasrikā Prajña pāramitā, the Chinese version being called
Ta-ci-tu-lum (Nanjio No. 1169; Bapat, 115; Mukherjee, 22). A French translation
of the great commentary, after the Chinese version, with notes was published by
E. Lamotte in several volumes the first of which appeared in 1944 (Bapat, 356).

The astronomical parameters mentioned in the Mahāprajñā-pāramita Śāstra
translation are comparable to those given in the Vedāṅga Jyotis. a, e.g. solar month of
30 1

2 days (making year of 366 days) (Chin Keh-mu; 784, Gupta 1989, 40). The work
orChih-tu lun is said to state that “if a stone falls from the heaven called Rūpadhātu, it
takes 18383 years to reach the earth” (Bagchi, p. 1). The height of Heaven is given to
be 78940 li in the Shūgaishō (Unno 1980a, 69), and elsewhere Brahmaloka (Heaven)
is said to be at the height of 1465 × 104 yojanas (Hayashi, 549). Fall of a ball from8

Indraloka for 6 months defines Rajju (Jainendra-kośa). A model of mount Sumeru
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was constructed in China in ad 405 while in Japan it was built in 612 (Unno 1980a,
65).

Dharmaraks.a was a great Indian Translator of Buddhist works into Chinese dur-
ing early fifth century. He translated more than a score books which include the
Mahāvaipulya-Mahāsannipāta-sūtra (Mukherjee, 24). It containsmaterial on astron-
omy and calendrical science (Chin Keh-mu, 784; Needham, 716). At that time the
fame of Kashmir as a centre for learning was at zenith in the Buddhist world and
several of its scholars visited China. Gun. avardhana went to Java via Ceylon and from
there to China in a ship owned by an Indian, reaching Nankin in ad 431. He was
welcomed by the Chinese king himself (Puri, 330). Chinese mathematician Sunzi
(dated between 280 and 473 ad) has been mentioned above. A problem from his
Sunzi Suanjing (Master Sun’s Arithmetical Manual) reads thus (Mikami, 26)

There is a Buddhist work consisting of 29 stanzas, each of which contains 63 ideographs. It
is required to find how many ideographs will be contained in all?

The Hsiahou Yang Suan Ching of Hsiahou (= Xiahou) Yang has names for certain
fractions such as ‘average half’ or ‘dead on half’ ( 1

2 ), ‘lesser half’ (
1
3 ), ‘greater half’

( 2
3 ) and ‘weakhalf’ (

1
4 ).VanHée suspected Indian origin for these names (Needham,

34,Martzloff, 124, 193). In ad 472, Chi-Chia-yé and Than-Yao translated the history
of succession of 23 patriaches fromMahākāśyapa to Bhiks.u Sim. ha (Mukherjee, 39).

In the history of Buddhism in China there were two famous scholars of the name
Bodhiruci (‘chia-ai’ in Chinese). One of them belonged to the Northern Wei dynasty
period and the other to the Tang (Bapat, 219; Mukherjee, 38 and 68). Bodhiruci
I arrived in China in ad 508 from India. With the help of some Indian and Chi-
nese monks, he translated a few Indian astronomical books into Chinese and this
translation ran into more than 200 chapters (Mukherjee, p. 38, giving reference of
P. N. Bose’s Indian Teachers in China). Around 518 the agents of the Chinese dowa-
ger empress (Tai-Hau) procured about 200 volumes from India, all standard works
(Ibid.; and Beal, 55).

Chinese king Wu-ti of Liang Dynasty (502–557) embraced Buddhism, collected
5400 volumes of canonical books and himself wrote a book on Buddhist ritual
(Mukherjee, p. 31). A lost catalogue indicates that, between 67 and 518 ad, 1432
distinct works under 20 classes were translated from Sanskrit into Chinese (Ibid.,
31–32). Monk Hui-Chiao’s Kao Sêng Chuan (’Biographies of Outstanding Monks’)
compiled in the sixth century, covers learned scholars including Indians (Needham,
705). Around 520, the Chinese priest Sang Yien compiled Chu-San-tang-tsi or a
collection of the records of translations of the Tripit.akas (Mukherjee, p. 32).

Paramārtha (Po-lo-mo-tho) is a great name inChinese Buddhism.Known by some
other names (including Gun. aratna) also, he was born and educated in Ujjain, later
on went to Magadha and probably settled in Pāt.alı̄putra the capital of Gupta empire
(Bapat, 212). In response to a Chinese royal mission to Magadha, he was sent to
China where he arrived in 548 with a large number of Indian books.

During the next 20 years Paramārtha translated about 70 Indian works into Chi-
nese and died in 569 at the age of 71 (Ibid., 213). Among the works he translated are
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the Abhidharma-kośa-śāstra, the As. t.ādaśa-śūnyatā-śāstra and the Sāṅkhyakārikā
(of Iśvarakr.s.n. a), a non-Buddhist work (Bapat, 214; Mukherjee, 34). He also trans-
lated the Lokasthiti-abhidharma-śāstra in 558 under the Chinese title Li Shih
A-pi-Than-Lun (Philosophical Treatise on the preservation of the world) which is
astronomical in content (Needham, 707). The subject of the 1st chapter is the motion
of earth, and that of the 19th chapter is that of the sun and the moon (Mukherjee, 34).
The main scientific contents of the Abhidharma-kośa-vyākhyā-śāstra (O-phi-ta-mo-
ku-sho-shih-lun in Chinese, Nanjio No. 1269) have been already briefly mentioned
above, and “Paramārtha rendered a great service to China by translating it” (Ibid.,
and Bapat, 214).

An Indian system of numeration appeared in the Chinese work Ta Pao Chi Ching
(“Mahāratna-kūt.a-sūtra”) which was translated from Sanskrit by Upaśūnya (Yueh-
Po-Shu-Na in Chinese) of India in 541 (Needham, 88; Mukherjee, 36). Another
Chinese translation of Mahāratna-kūt.a-sūtra (Nanjio, No. 23) was made c. 700 by
Bodhiruci II (Bapat, 220; Mukherjee, 68). A parallel to the story of counting as told
in the legend of Nala and Rituparn. a in the great epic Mahābhārata (Vanaparva,
Chapter 72) is found in the story of Chhiwu Huai-Wen (flourished between 530 and
570) as found in his biography (Needham, 78). According to Chin Keh-mu (p. 783),
the Tang Dynasty Lives of Eminent Monks records that “between 566 and 571, an
Indian monk named Dharmaruci translated twenty books of Brahman astronomy.”
(Unfortunately, ‘all these are lost’, Chin adds). It may be relevant to point out here
that ‘Dharmaruci’ was also the earlier name of Bodhiruci II (571–727) who is said to
have a long life of 156 years (Bapat, 219). He was expert in sciences of astronomy,
medicine, geography and divinity. His work of translating Indian works into Chinese
is discussed in a subsequent section.

TheChinese astronomer andmathematician Chen (or Zhen) Luan (c. 570) became
aBuddhist. Hemade calendar for the Chou dynasty. Hewas profoundly read in books
on Buddhism and had expressly referred to Buddhist sūtras in Chinese translations
(Mikami, 30 and 58). He wrote several commentaries also, including those on the
Wujing suanshu and the Shushu Jiyi both of which deal with large numbers and have
Buddhist influence (Martzloff. 140–141). Mikami (p. 58) also suspects Indian origin
for some of his problems.

During the Northern Chhi Dynasty (550–557), Narendrayaśas and Dharmajñāna
(both from India) translated several Indian works into Chinese including Can-
draprabhā-vaipulya, Sumeru-garbha and Abhidharma-hr. daya-śāstra (Mukherjee,
41). In the various Indian schools (Brahmanic, Buddhist and Jaina), Sumeru is
the celestial axis around which sun and moon revolve, cosmographical structure
is erected, etc. Even the number 33 (= no. of Hindu gods) is frequently explained in
Buddhist works in astronomical terms (Beal, 81).

Jñānabhadra and Jinayaśa translated a work Pañcavidyā into Chinese but it was
lost by 750 ad (Mukherjee, 42). According to Chin Keh-mu (p. 787), pañcavidyā
(‘five sciences’) stood for grammar, medicine, technology, philosophy and logic.
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4 During and From the Records of the Sui Dynasty,
581–618 AD

There was a short setback in Indian activities in China when emperor Wu-Ti of the
Northern Chou Dynasty came to power in ad 557. He put a ban on Buddhism and
Taoism, and Narendrayaśas and other monks fled; but 5 years later Wu-Ti’s son
withdrew his father’s edict (Mukherjee, p. 42).

In ad 581, the Chou Dynasty’s rule came to an end and the Sui Dynasty began
to rule. Narendrayaśas (Na-Lien-Thi-Yeh-Shê in Chinese), the Indian Pan.d. ita, was
called back from exile in 582, and he resumed the translation work with the help
of others. Among the new works taken up were the Sūryagarbha, Śrı̄gupta and
Mañjuśrı̄-vikrı̄d. ita-sūtras (Ibid., 44). According to Needham (p. 716), he also trans-
lated the Mahāvaipulya-mahāsannipāta-sūtra (Ta Fang Têng Ta Chi Ching) from
Sanskrit into Chinese. It contains calendrical material, zodiacal cycle, association of
planets with hsiu (naks. atra), etc. (Ibid., Chin Keh-mu, 784). Of course, this work
had been already translated earlier by Dharmaraks.a (c. fifth century) as mentioned
above.

By special invitation, the Sui emperor also recalled Jinagupta from exile and
made him the President of the Board of Translation. About 40 works were translated
into Chinese between 585 and 592 (Mukherjee, 45). One of his assistant was Dhar-
magupta, an Indian who was educated at Kannauj (Puri, 332) and who also wrote a
book giving geographical description of his journey to China where he reached in
590 (Ibid.).

Chi-k’ai (died 597) founded the T’ien-t’ai Buddhist school in China (earlier he
followed the teachings of the school founded by Bodhidharma). Themain texts of the
new school included the famous Mahāprajñāpāramitā-sūtra (Nanjio, No. 1) whose
Chinese titles was Ta-pan-jo-po-lo-mi-to-cin (Bapat, 115 and 218) and which was
partly translated by Kumārajı̄va in the fifth century ad (Mukherjee, 53).

The Sui rulers of China were great patrons of Buddhist learning. The Sui Shu (‘Sui
History’) in its digest of books mentions 1950 distinct Buddhist works including the
Po-lo-mên-shu (or Poluomen Shu) or “Brahmanical Writings” on the Indian system
of writing with alphabetic symbols (Ibid., 43). The Chinese writing was based on
ideographs, and scientific alphabetic system of India was a welcome. Due to royal
encouragement, it made it possible to translate about 60 works into Chinese in a short
rule of 37 years of Sui Dynasty. Also several catalogues of Indian works translated
into Chinese were compiled during the Sui reign. (Mukherjee, 46–47): The first
catalogue, complied in 594 by Fa-Ching and others mentions 2257 distinct works in
5310 fasciculi. The next, Li-tai-san-pao-chi (“Record Concerning the Triratna under
Successive Dynasties”), complied by Fa-chan-fang in 597, has a list of 1076 works.
The third catalogue, Sui-chung-ching (603 ad) lists 2109 books. The 4th catalogue
compiled by Shaman Chi-kuo (during 605–616) was based on the imperial collection
in the palace premises. There was also a 5th catalogue in which 1962 works were
arranged in 77 classes. The last two catalogues (out of the five mentioned above)
seems to be lost.
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The Sui Shu (Records or official History of the Sui Dynasty) was written by Wei
Chih (also called Wei Chang or Cheng) in 636 or soon after that (Needham, 715;
Martzloff, 137). In it, the section on classical and other works mentions the following
Indian astronomical andmathematicalworks inChinese translation (Mikami, 58; Sen
1963, 22, and Gupta 1981, 270).

1. Po-lo-mên Thien Wên Ching (Brahmanical Astronomical Classic) in 21 books (or
volumes, juan).

2. Po-lo-mên Chieh-Chhieh Hsien-jen Thien Wen Shuo (Astronomical Theories of
Brāhman. a Chie-Chhieh Hsien-jen) in 30 books.

3. Po-lo-mên-Thien Ching (Brahmanical Heavenly Theory) in 1 book.
4. Mo-têng-Chia Ching Huang-Thu (Map of Heavens in the Mātaṅgı̄-sūtra) in 1

book.
5. Po-lo-mên Suan Ching (Brahmanical Arithmetical or Computational Classic) in

3 books or Juan.
6. Po-lo-mên Suan Fa (Brahmanical Arithmetical Rules or Methods) in 1 book or 3

juan (Martzloff, 96). According to Needham (p. 37) this work may be on jyotis. a
instead of mathematics.

7. Po-lo-mên Ying Yang Suna Ching (Brahmanical method of calculating time) in 1
book.

Most of theseworks are alsomentioned in theHsin Thang Shu (NewHistory of Thang
Dynasty) which was compiled by Ouyang Hsiu and Sung Chhi in 1061 (Cullen, 19;
and Needham, 703). Unfortunately all these translations are irremediably lost. But
they were also mentioned in Cheng Chhiao’s Thung Chih Lueh (Historical Collec-
tions) in which the catalogue was based on the imperial library collection (Needham,
207).

There had existed, no doubt, various other translations of similar works in China
(Mikami, 58). We cannot say whether these Indian works (which were translated
into Chinese) contained only the pre-siddhāntic astronomy of India or the Siddhāntic
astronomy as well which was definitely introduced in China during the seventh cen-
tury (see next section).

Nevertheless, the rendering of Indian books into Chinese shows that a knowledge
of Indian astronomy and mathematics was prevalent in China at that time. Also some
scientific knowledge must have been transmitted orally as a large number of Indian
scholars went and were there.

5 The Glorious Period of Tang Dynasty, 618–907

The fame of the Nālandā University (Mahāvihāra) was at its peak during the sev-
enth century ad as a full-fledged institutions and as an international centre of learn-
ing. The famous scholar Hiuen Tsang (also called Yuan Chwang) studied there from
about 635 to 640. He specialized in Vijñānavāda philosophy under the guidance of
Śı̄labhadra, the Head of the Mahāvihāra, and, later on, introduced that philosophy
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in China. Yuan Chwang has left a description (of Nālandā) which has been fur-
ther supplemented by his disciple and biographer, Hwui-Li. According to it, 10000
students studied the Mahāyāna and the works of 18 sects (Bapat, 165). Vedas and
books on hetuvidyā (logic), Śabdavidyā (Grammar etc.,) Cikitsāvidyā (medicine),
Sāṅkhya (philosophy), etc., were also studied (Ibid.,). Thus Buddhist, Brahmanical
and secular subjects (mathematics, astronomy, occult sciences, etc.) were all taught
there (Ibid., 239; HCIP, III, 618) Hiuen Tsang’s Si-yu-ki (“Buddhist Records of
the9 western world”) contains an account of Indian calendar and of the Sumeru, the
cosmographical axis (Mukherjee, 50–52).

Hiuen Tsang returned to China in 645 with a large number of Indian works (which
required 22 horses to carry them !). He opened a new era of translation in China
and himself translated 75 Indian Treatises in 1335 fasciculi before his death in 664
(Mukherjee, 53). Themost stupendouswork he tookwas theMahā-prajñā-pāramitā-
sūtra (Sanskrit text of 200,000 ślokas) and translated 120 volumes entire “in all their
wearisome re-iteration of metaphysical paradoxes” (Ibid.). A preface by the Chinese
priest (Hiuen Tson) was added to the translation of each of the 16 sūtras of the
above work (whose earlier translation by Paramārtha was partial). Yuan Chwang
also translated the Abhidharma-kośa of Vasubandhu and its auto-commentary into
Chinese, as well as some books on Indian logic which had great influence in China
(Ibid., 57–60).

Hiuen-Chiu (c. 638–665) had studied Sanskrit literature. He was a Chinese monk
and took the Indian name Prakāśamati. Crossing Tibet, he came to Magadha and
studied various books for 4 years. (Mukherjee, 75). Hwui-Lun (a native of Corea)
took the Indian name Prajñāvarman, visited holy places (including Nālandā) and
learnt Sanskrit language (Ibid., 76). Tao-Lun (or Śı̄labhadra) and Wou-Lung both
studied the famous Abhidharma-kośa at Nālandā where, according to Hwui-Lun,
there was a special arrangement for Chinese (Ibid., 76–77).

There was considerable flow of Indian arts and sciences into China in the sev-
enth century through the Buddhist Channels, and some Indian scientists were active
there. Wang Hsiao-Thung who wrote the Chhi Ku Suan Ching (“Continuation of
Ancient Mathematics”) or Jigu suanjing in the seventh century may have known
some of these scholars (Needham, 37). Close mutual contacts between India and
China are shown by the fact that in return to an envoy sent by Hars.avardhana to
China in 641, two missions came to India from there (Mukherjee, 48). In 648 monk
Hsüan Chuang wrote the Ta Thang Hsi Yü Chi or “Records of the Western Coun-
tries in the Time of Thang” (Needham, 716). Chinese translations were made of
Nyāyapraveśa-tarkaśāstra in 647 and Candra’s Daśapadārthaśāstra (in 648) which
is extant only in that translation now (HCIP, III, 390 and 301). About that time
the Chinese monk Hsuan-Chhao spent a few years in India to study Sanskrit and
Buddhism and helped in procuring Indian scientists for China (Sen 1963, 24).

In 664 Tao Suen complied the Ta-thang-mu-tien-lu or Catalogue of Buddhist
Books. It has biographical note on each author and the number of works covered is
2487 in 8476 fasciculi (Mukherjee, 72). In the same year TsingMai compiled another
catalogue of all translated works from the time of Kāśyapa Mātaṅga to that of Hiuen
Tsang (Ibid.). Next year Tao Suen (or Tao-süan) wrote Shih-chia-shih-pu in which
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he referred to the Yen-fu-t’u (literally, the map of Jambūdvı̄pa) (Muroga and Unno,
50). He had helped Hiuen Tsang in translating Indian works into Chinese (Ibid.)
About 666, the Buddhist monk Shou-Chen wrote the Thien Ti Jui Hsiang Chih or
“Record of Auspicious Phenomena in the Heavens and the Earth”. Two years later a
Buddhist encyclopaedia entitled Fayuan Chu Lin (“Forest Pearls in the Garden of the
Law”) was produced by Tao-Shih (Needham, 698). An Encyclopedia of Abhidharma
was edited critically by Kātyāyanı̄-putra. There were six supplements (called pādas)
which are said to have the same relation to the main work as Vedāṅgas have to the
Veda (Mukherjee, 54–55). The pādas were Saṅgı̄ti-paryāya (Chi-i-men-tsu-lun in
Chinese), Prakaran. a-pāda, Vijñāna-kāya-pāda, Dhātu-kāya, Dharma-skandha and
Prajñapti-pāda Śāstra, all of which were translated into Chinese, mostly by Hiuen
Tsang (Ibid., 56–61) who died in 664 (at the age of 64) “honoured by all andmourned
by all”.

I-tsing came to India by sea route via Śrı̄vijaya (now called Palembang) which
was then a great centre of Indian culture (Mukherjee, 66). He landed at Tāmralipti
(Sri Lanka) in 673 and then went to Nālandā where he spent 10 years (Bapat, 242).
After studying and touring in India for about 20 years, he returned to China in 695
taking about 400 Indians books with him. He translated 56 works including Vinaya
texts and Diṅnāga’s Nyāya-praveśa on Indian logic (Mukherjee, 66–67). He wrote
the book Ch’iu-fa-ko-sang-chuan which contains biographies of Chinese Buddhist
priests who visited India during the early T’ang (= Thang) period (Ibid., 74). His
Ta-t’ang-si-yii-ch’iu-fa-kao-sêng-ch’uan (which seems same as above) has details
about India which called Jambūdvı̄pa by Chinese commonly (Muroga and Unno,
51). His contribution to diffuse the knowledge about India and Indian literature is
significant. He died in 713 at the age of 78.

In 676 Śraman. a Divākara of central India went to China. His Chinese translation
of Lalitavistara has been already mentioned above (see Sect. 2). The Chinese title
literally means “Vaipulya-Mahāvyūha-sūtra” (Mukherjee, 62). He also translated
a few other works, and the Chinese Thang empress wrote preface to some of these
whose renderingwas accomplishedwith the help of Chinese assistants (Ibid.,). Under
the order of the empress,WuTso-thien (684–705), an official cataloguewas complied
by Ming-Chuen about 695 with the help of others. The total number of works listed
in it was 3616 (Ibid., 72).

Bodhiruci II was another Indian Śraman. a who worked in China. His original
name Dharmaruci (or Fa-hsi, i.e. ‘law-loving’ literally) and Ta-mo-liu-cim in Chi-
nese was changed to Bodhiruci (‘intelligence-loving’) and Ciaoai in Chinese, by
the empress Wu (Bapat, 219). He had knowledge of such sciences as astronomy,
medicine, geography, etc. (Ibid.). Between 693 and 713, he translated more than
50 works into Chinese but the most stupendous work was his Chinese edition of the
Mahāratnakūt.a-sūtra (Ta-pao-tsi-cin in Chinese) with an introduction by Su-no, and
a royal preface (Bapat, 220; Mukherjee, 68). Bodhiruci settled in China, and when
he died in 713 it was 156th year of his age !

The T’ang or Thang period was very favourable and fertile for the interaction
between India and China especially for transmission of Indian ideas to the Asian
neighbour. Many aspects of Chinese culture were profoundly influenced by India.
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According to Liang Chi’i-ch’ao, “the academies which flourished since the Tang
dynasty cannot be other than Buddhist in origin” (Mair, 65–66). Indian cultural
influence in arts (music, dance, drama, painting, sculpture, etc.) and architecture,
language and literature, religion and philosophy is there (Ibid., 78–79). In science and
technology, Needham’s Science and Civilization in China does deal with exchanges.

In the field of mathematical sciences of the heavens, the main subject of Chinese
astronomy throughout its history was calendrical computation. According to the Jiu
Tang shu (The Old History of Tang Dynasty), the royal observatory at that time
employed high officials and other astronomical workers in large number in its four
departments as follows:

1. Calendar making (63 persons)
2. Astronomical Observations (147 persons)
3. Time-keeping (90 persons)
4. Time-service or announcing time by bell and drum (200 persons) (Xi Zegong,

p. 38). Astronomical records were kept.

The great influence which the Indian astronomy had exercised in China during the
Tang period can be seen by the presence of Indian astronomers in the Chinese Capital
Chang-Nan which had a school where Indian Siddhāntas (mathematical astronomy)
were taught (Sen, 1963, 22). Actually, there were three clans of Indian astronomers
who were active there during the period (Needham, 202; Yano, 130).

1. Chiayeh (Jiyaye) or Kāśyapa.
2. Chhüthan (Qutan) or Gudon, i.e. Gotama or Gautama.
3. Chümole (Jumoluo) or Chü-mo-jo, i.e. Kumāra.

They were employed in the National Astronomical Bureau of China and collaborated
with the Chinese Imperial astronomers (Martzloff, 100).

Kāśyapa Hsiao-Wei (c. 650 ad) was occupied with the improvement of the Chi-
nese calendar and helped Li Shun-Fêng in the preparation of the Lin-Tê calendar of
664–665 (Needham, 202). His contribution is mentioned in the calendrical volume
(Li-chih) of Jiu Tang Shumentioned above (Yabuuti 1979, 8). The Tang shu (Records
or History of the Tang Dynasty) mentions four astronomers of the Gautama clan who
were officials in the Astronomical Board (Mikami, 58). The first was Gautama Lo
who was President of the Kuang-chai Calendar (Ibid., 59; Needham, 202).10 He was
director of the Royal observatory in 698 and compiled the Kuang-chai li by the order
of the emperor Kao-tasung. It is believed to be based on Indian astronomy (Yabuuti
1954, 586 and 1979, p. 8).

The greatest Indian calendar expert in China was Gautama Siddhārtha (Qutan
Xida) orGotamaSiddha (Hsita)whobecame thePresident of theAstronomicalBoard
andDirector of theRoyalObservatory (Yabuuti 1954, 586).As an ‘astronomer royal’,
he was asked to translate Indian astronomical work into Chinese. Adapting various
Indian works, he translated some astronomical material based on the navagraha
(‘nine planets’)-system under the Chinese title Chiu-chih li or Jiuzhi li (Navagraha
Calendar). In this ‘navagraha karan. a’, the 9 planets stand for the sun, moon, the
5 star-planets together with Lo-hou (Rāhu) and Chi-tu (Ketu) (Yabuuti 1979, p. 9).
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The Chinese translation was done in ad 718 under order from Hsüan-tsung (Yabuuti
1954, p. 586).

A few years later Gautama Siddhārtha complied theKhai-yüan chan Ching (Khai-
yuan Treatise on Astronomy and Astrology) in 120 volumes of which the 104th vol-
ume was the Chiu-chih li. The full work is the “greatest collection of ancient and
medieval Chinese fragments on the subject” (Needham, 707) compiled in Khai Yuan
period (713–741). Piety and some sort of secrecy seems to be attached to the work.11

The Chiu-chih li (Navagraha-karan. a) includes a section on Indian methods of
calculation based on nine numerals and a symbol for zero which in this work is thick
dot (•). Such a zero symbol had already appeared in India, say in the Bakhshālı̄
Manuscript (seventh century) and in the Cambodia inscriptions under Indian influ-
ence (Martzloff, 97 and 207; Bag, 250–251). In India, a small circle has been used,
since ancient times, as a symbol for zero. A common Sanskrit name for it is bindu
whose etymological meaning is ‘a drop’ (from root bhid) according to the Nirukta
(c. 500 bc); see L. Sarup’s edition of the text (p. 44) and translation (p. 21), Delhi,
1984. Interestingly, the written Chinese character ling, which is used for zero from
the Ming, also means ‘dewdrop’ (Martzloff, 208).12

The text of the Chinese Chiu-chih li was translated by Kiyosi Yabuuti in 1963 and
he revised this in 1979. In the original work, the methods are said to be originated by
Brahma. They were received and handed down by Wut’ung Hsienjen, “the excellent
scholar of full understanding of the five”; perhaps this refers to five Siddhāntas
summarised by Varāhamihira (c. 550 ad) in his Pañcasiddhāntikā or to the five
components of pañcāṅga, the Indian calendar and its science. In fact the Chiu-chih
li is taken to be based on the Pañcasiddhāntikā with which it has several parallel
passages. A dozen such passages have been listed in the Introduction (p. 16) of recent
edition of the latter (by Neugebauer and Pingree, 1970/1971) and reproduced by Sen
(1985, 99–100). However, the use of R = 3438 for sinus totus in connection with table
of 24 Sines (h = 225 minutes) shows that other Indian sources were also utilized by
Gautama Siddhārtha in preparing his Chinese work Chiu-chih li. The Sanskrit word
jı̄vā (or jyā) for sine was literally translated as ming in Chinese (Yabuuti 1979, 36).

M. Yano points out (Ibid., 10) that the main idea of the Chiu-chih li was the mid-
night reckoning system which was represented by Āryabhat.a’s lost work, Lāt.adeva’s
revision of Sūrya-siddhānta and Brahmagupta’s Khan. d. akhādyaka (ad 665). Close
relation of Chiu-chih li is found with the last work in matters of solar and lunar
equations for finding true longitudes of the sun and moon and daily motion of moon.
Further parallelismwithPañcasidhāntikā exists inmatters of latitude ofmoon, length
of daylight, and magnitude and duration of lunar eclipse, etc.

Gautama Chuan is another Indian astronomer mentioned in the Tang Shu, who
served the Chinese Astronomical Board (Ibid., 8). He belonged to the Khai Yuan
period (713–741) although Mikami (p. 59) placed him a century earlier in 618
(Needham, 203). Possibly, he composed a calendar (Sen 1970, 334). Other Indian
astronomers of the same clan were Gautama Chhien who served the Astronomical
Board during the first half of the eighth century, and possibly Gautama Yen who
seems to have contributed to the calendrical methods (Needham, 201).
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I-Hsing orYiXing (c. 682–727)was a greatChinese astronomer-mathematician of
Tang period. An account of his life is found inChêngChhu-Hui’sMing Huang Tsa Lu
(Miscellaneous Records of the Brightness of Imperial Court) of ad 855 (Needham,
38). Due to his outstanding contributions, the Chhou Jen Chuan (Biographies of
Mathematicians and Astronomers) of Juan Yuan (1799) devotes three full chapters
on him (Ibid., 37). Yi Xing was a Tantrik Buddhist monk versed in Sanskrit. He was
taught by an old monk and travelled widely to attend conglomerations of śraman. as
(Mikami, 60; Needham 38). Under a royal order, he investigated the chronological
and computational ideas introduced into China from India by Gautama Siddhārtha
(Sen 1963, 22).

Only a few of Yi Xing’s works are extant. The Buddhist Tripit.aka still contains
his Hsiu Yao I Kuei (The Tracks of the Hsiu and Planets) and the Pei Tou Chhi Hsing
Nein sung I Kuei (Mnemonic of Seven Stars of the Great Bear and Their Tracks)
(Needham, 202). The Chhi Yao Hsing Chhen Pieh (The Different Influences of the
Seven Luminaries and the Constellations) is ascribed to him and lists hsiu (naks. atras)
and their stars, etc. (Ibid., 696). Another work ascribed to him is the Fan Thien Huo-
Lo Chiu Yao (Horā of Brahmā and seven or nine Luminaries) but Needham (p. 698).
thinks it to be of later times (874).

Due to his Buddhist training I-Hsing (= Yi Xing) could easily handle large num-
bers, e.g. 3361 or 10172. He was expert in combinatory calculations and was capable
of enumerating all possible transformations occurring on go board or chess board
(Ibid., 139). He wasmuch influenced by Indian astronomy (Ibid., 202). His ‘thai yen’
method is quite comparable to that of Bhāskara I (c. 625) in solving astronomical
problems by using indeterminate analysis (Ibid., 119–120; and K. S. Shukla’s edition
of Āryabhat. ı̄ya with the commentary of Bhāskara I).

Under royal order and patronage, I-Hsing was asked to compose a calendrical
system in 721. He applied his contrived arithmetical method of ‘thai yen’ (based on
indeterminate analysis) and produced the system called Ta Yen Li (727). An Indian
astronomer of Chümolo (Kumāra) clan contributed a method of computation of solar
eclipse to the calendrical system. I-Hsing’s Ta Yen Li Shu (which contains the above
calendar) was edited by Chang Yueh and Chhen Hsuan-Ching shortly after his death.
Final draftwas promulgated officially in 729 (Cullen, 2). But four years laterGautama
Chuan and Chhen declared that the Ta Yen calendar was a plagiarism of theChiu-chih
li with added mistakes (Needham, 203). However, the charge was found untrue. In
fact, out of the 23 different systems of calendars of that time, the Ta Yen Li was most
accurate, stood the test of time and was used for long time (Mikami, 60).

Much influenced by Indian astronomy, I-Hsing made measurements in ecliptic
coordinates which played little role before (Needham, 202). He trained the officials
and observers for the great meridian survey which was conducted in 724 under
the direction of Nan-Kung Yueh, director of Astronomical Bureau (Beer et al., 14;
Cullen, 1). The observed data was also analysed by I-Hsing. Details of the survey
experiments are found Chinese sources (Cullen, p. 1 gives references).

The ten places of observations in the meridian survey extended from Lin-i or
Indrapura (latitude 17.4 tu, in Champa) to Thich-lo (latitude 52 tu). The old belief
was that the Sun’s shadow lengths change one Chinese inch (= 1

10 Chhih) over a
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distance of 1000 li in north–south direction on ground but the survey experiment’s
result was 4 inches per 1000 li (Beer et al., 14 and 25). I-Hsing established the
true relation between terrestrial distance and the change in polar altitude. His main
conclusion was (Ibid., 15).

1◦ = 351 li 80 pu, where 1 li = 300 pu

In arriving at the various result, his knowledge of Indian astronomical achievements
mayhavehelpedhim (Ibid.,25). Possibly, hewas taught (by an Indian astronomer) the
Hindu method (such as given in the Sūrya-siddhānta) for relating gnomon shadows
and solar altitude by means of sine table transmitted in Chiu-Chih li (Cullen, 32).
I-Hsing was fully capable of adapting calculations for different localities. Even Nan-
Kung Yueh knew that the mathematical techniques then used in China were derived
from India (Ibid.).

About 725 I-Hsing developed a table of functions equivalent to a tangent table.
According Cullen (p. 32) it was “clearly derived from Indian sine tables” although
Duan (p. 111) says that he made it by the Chinese method of differences. The table
gives the values of g tan θ where g = 8 Chhih (Chinese foot) and θ = 1–79 tu (Chi-
nese degree where 1 tu= 360

365.25◦ ). This table is the earliest of its kind in the world.
Cullen (pp. 8–10) has published it in modern form with translation of relevant part of
Ta Yen Li. I-Hsing used methods finite differences, fitting of polynomials and inter-
polations. Methods in these areas appear simultaneously (Martzloff, 339) in India,
e.g. in Brahmagupta (628/665) and China (HM, Vol. II, 1984, p. 45) in Liu Ch’uo
(c. 600) and Li Chiun-feng (665) (Gupta 1989, p. 49 and IJHS, Vol. 4, 1969, 86–98).

It is already mentioned (see Sect. 2) that the Chinese translation of the Mātaṅgı̄-
sūtra must, according to Needham (p. 710), belong to the eighth century ad. It has a
list of Indian naks. atras (hsiu, in Chinese) with their stars and other details. Needham
(p. 698) also mentions the Fo Shuo Pei Tou Chhi Hsing Yen Ming Ching (Sūtra
Spoken by a Bodhisattva on Delaying of Destiny according to the Seven Stars of the
Great Bear) belonging to the Tang period. It contains western zodiacal cycle but the
translator is not known. In 730, Chi-Shang compiled theKhai-Yuen Lu, a catalogue of
Chinese Tripit.akas (Mukherjee, 72). It lists 2278 works ascribed to 176, Indian and
Chinese translators and 741 books by unknown translators. According to a narration
of 749, there were three Brāhman. a-Vihāras in Canton (Puri, 337).

The antiquity of the Buddhist Tāntrika system is shown by the first century work
Mañjuśrı̄-mūlakalpawhich contains not only themantras and dhāran. ı̄s but numerous
man. d. alas or mystic diagrams, etc. (Bapat, 316). According to Tibetan chronicles,
the first Tantrik who went to China from India was Sthavira Śrı̄mitra (Mukherjee,
68) who translated Mahāyāna and other Dharan. ı̄s into Chinese during the period
307–312 ad.

In 719, Vajrabodhi, along with his disciple Amoghavajra, arrived in China (under
reign of Hsuan Tsung), instructed two Chinese monks in Tantric mysticism and
translated 11works (Mukherjee, 69). After the death of his guru in 732, Amoghavajra
(Pu-Khung) visited India in 741. Five years later he went back to China with a
large number of Indian texts and translated more than 70 works before his death
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in 774 (Ibid.). The Ming dynasty catalogue ascribed 108 works to him showing his
great contribution to Chinese literature (Ibid., 70). He was greatly honoured by Tang
emperors and, according to Tibetan sources, he performed the ‘VajrabodhaMan.d. ala’
ceremony for king’s benefit (Ibid., 69).

In 759, Amoghavajra wrote in Chinese (or translated from Sanskrit) a work on
Indian Jyotis. a whose full title can be rendered as “Sūtra on Auspicious and Inauspi-
cious Times and Days, and on the Good and Evil Naks.atras (Lunar Mansions) and
Planets Promulgated by BodhisattvaMañjuśrı̄ and other sages” (Needham, 720 gives
full Chinese title also). Mañjuśrı̄ is the legendary promulagator of the Tantric lore. A
shorter title of the work is Hsia Yao Ching (= HYC) or “Naks.atra and Planet Sūtra”.

According to Yano (p. 126), Amoghavajra’s original (or translation) work was
recorded by his Chinese pupil Shih-yao, but a revised translation was made in 764
by another Chinese scholar Yang Ching-fêng under direct supervision of Amoghava-
jra. Both these recensions are found in the Tripit.aka (whether Chinese, Korean, or
Japanese)HYC as contained inVol. 21 of theTaisho Tripit.aka of Japanwhich is based
on the Korean Tripit.aka along with the variant readings from the Chinese Tripit.aka
of Ming Dynasty (Ibid., 125). While preparing the revised version of HYC, Yang
made additions which include:

(i) A chapter on the method of computing the seven planetary days (i.e. weekdays)
fromChiu-chih lı̄ of Gautama Siddhānta (ad 718). Yang also changed the epoch
of ad 714–788 bc.

(ii) Amultilingual list of names of planetary weekdays (see below). This was added
by Shih-yao (Ibid., 131).

(iii) Perhaps the 28th naks. atra, Abhijit (Niu in Chinese) to the original list of 27 as
given by Amoghavajra.

Table 2 (Cf. Yano, p. 131)

Weekday Planet (Old) Lord (Sanskrit) Sogdian (Kang) Persian (Sambhih)

1 Sunday Sun Āditya myr ēw

2 Monday Moon Soma m’x dō

3 Tuesday Mars Aṅgāraka wnx’n sē

4 Wednesday Mercury Budha t.yr cahār

5 Thursday Jupiter Br.haspati wrmgt. panj̄

6 Friday Venus Śukra n’xys s̄as̄

7 Saturday Saturn Śanaiścara kyw’n haft

Further additions were made by monk Kakusho who published the ‘best’ text of
HYC in Japan (1736). Contents of HYC are briefly as follows (Yano, 129–132).

Chapter I is on classification of naks. atras and zodiacal signs. Equating the first
point of Aśvinı̄ to that of Mes. a (Aries), the distribution of the 27 naks. atras to the 12
rāśis (signs) is exactly same as in ancient texts on jyotis. a. The sizes of the 7 planets
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(named after weekdays), the topic being comparable to that in Abhidharmakośa III,
60 and its commentary, Vol. I, p. 518.

The configuration of each naks. atra and the number of stars comprising it are
described in Chapter II with some other details all of which are standard features
in Indian Jyotis. a subject. In his notes on Chapter III, Yang says that Indian method
was to be used for computing the positions of the 7 luminaries (tārāgrahas). He
mentions the Gautama, Kāśyapa and Kumāra clans of Indian astronomers who were
active in China during Tang period. He says that he himself used thework ofGautama
(Siddhārtha).

Chapter IV is “On the Rule of the Seven Luminaries.” These are said to govern
each day of theweek in turn. It is here that Shih-yao, pupil of the IndianAmoghavajra,
added the Sogdian and Persian names of the weekdays along with the Sanskrit names
(see the Table 2).13

Chapter V deals with miscellaneous matters. The next chapter is on the Indian
division of a lunar month into śukla-paks. a (‘po-pochha’) and kr. s. n. a-paks. a (hei-
pochha). The last chapter is not by Amoghavajra. It was added by Yang from, as
already mentioned above, Chiu-chih li whose epoch was also altered.

A work which was probably translated from the Sogdian (Needham, 715) by the
priest Ching-Ching (Adam, the Nestorian) is the Ssu Men Ching (Manual of the Four
Gates) of about 780. It deals with the distribution of the hsiu (naks. atras). It may
have Indian influence because Adam worked closely with the Indian scholar Prajñā
(c. 781) in preparing a translation of the S. at-Pāramitā-sūtra. However, the Chinese
emperor disapproved such collaboration saying that Adam should devote to doctrines
of Meshia leaving Buddhists to propgate the teachings of Buddha (Mukherjee, 70).

The Futian Calendar was compiled in China in the Jianzhong reign period (780–
783) and was taken to Japan in 957 by Buddhist monk (Nakayama, 135). It was
imported from Indian under Buddhist influence. According to Wang Yinglin, a Song
Dynasty Chinese scholar, it was “originally an Indian method of astronomical cal-
culation” taking its epoch like Chiu-chih li (Ibid.). It relates the equation of centre y
to mean solar anomaly x by

y = k P, k = 1

3300

where P represents the parabolic function

P = x(182 − x)

In India such techniques were already known to the early seventh century, e.g.
Bhāskara I’s formula approximates

sin A◦ = 4Q

(40500 − Q)

where Q = A(180 − A) is like P in form (Gupta 1967 and 1986).
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About ad 800, Chhü-Kung translated, from Sogdian, the Tu-Li-Yü-Sss-Ching, and
astronomical manual, and a few years later Chin Chü-chha wrote the Chhi Yao Jang
Tsai Chüeh which gives planetary ephemerides from ad 794, etc. (Needham, 696
and 719). The Chinese version of the Horā of Brahmā and the Nine Planets dated
874 by Needham (p. 698) has been already mentioned under I-Hsing to whom it is
usually ascribed.

The Tang Shu refers to various works called Rāśi-sūtras which are taken to be
mathematical in content because, according to Chin Keh-mu (p. 786), rāśi was an
ancient Indian word for mathematics. The Jaina canon Śthānāṅga-sūtra (c. 300 bc)
includes rāśi among topics of mathematics and rāśi is taken here in the context of
Rules ofThree trai-rāśika, Rule of five, etc., (HHM, I, 8 and 104) and even in the sense
of conglomeration, i.e. set theory! It may also be recalled that the ancient Indian sage
Nārada included rāśi-vidyā (arithmetic) and naks. atra-vidyā (astronomy) among the
scientific subjects he studied (Ibid., I, 4). Usually in Indian astronomy rāśi is zodiacal
sign and naks. atra is lunar mansion or lunar division of circle ( = 40

3 degree, just as
rāśi is also a measure of 30◦).

Whatever be that and other things, it has been made clear in this section that good
amount of Indian scientific and mathematical astronomy was definitely transmitted
to China before the end of the Tang period. Contemporary world tourists such as
Sulaiman al-Taji (ninth century) had recorded the impression that Indian astronomy
was more advanced than Chinese (Needham, 203).

A Buddhist monk named Shou-wen even devised an ‘alphabet’ of 36 letters at the
end of the Tang period, and although Sung (or Song, next dynasty) “phonologists
adopted its principles in their analyses, it is unfortunate that full-scale alphabetization
of Chinese languages failed to materialize” (Mair, 73). Some Chinese books of Sui
period had treated the mode of writing by alphabetic symbols of India. It is called
Si-yo-hu-shu or “Foreign Writing of the Western Conutries” and also Po-lo-men-shu
or “Brahmanical Writing” (Mukherjee, p. 43).

6 After the Tang (Thang) Period

Due to changed political conditions, resulting from the entry of the Arabs inWest and
Central Asia, the harmonious relations between Indian and China got a set back, and
mutual contacts starting fading away about ad 900. In 907, the Tang Dynasty, itself
collapsed and the brisk age-old Indo-Chinese cultural and scientific programmes got
a shock.During the trouble time of half a century, five short dynasties (including those
of Turkish race) rose and fell. An Indian monk Samant along with his companies
arrived in China in 951 (Mukherjee, 83).

Political stability was restored only when unification under the Sung Dynasty
(960–1279) was achieved and then some activities in Indo-Chinese cultural relation-
ship started. Taistu, who united the Chinese people, encouraged activities regarding
Buddhism, although he himself was not Buddhist (Ibid., 82). In 965, the Chinese
priest Tan-Yuen returned to China after collecting Sanskrit works from India (Ibid.,
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83). In 971, Taitsu ordered the Buddhist canon to be written in gold and silver paints
and next year the first printed edition (using wooden blocks) of the Tripit.aka was
published. Round about this time 44 Indian monks went to China (Puri, 338). Also
between 964 and 976, about 300 Chinese śraman. as travelled to India. Of these 157
came together in a batch and collected lot of Indian books (Mukherjee, 83–84).

Indian scholars also continued to visit China. In 973, Dharmadeva, who studied
at Nālandā, went there and was received royally. He did translation work, and in
982 he was honoured by the emperor, changing his name to Fa-Hsein. (Ibid., 84;
and Puri, 338). The Ming catalogue ascribes 118 works to Dharmadeva of which 78
were translations of new books, one of which was the Mañjuśrı̄-Bodhisattvaśrı̄gāthā
(Mukherjee, 87). According to Needham (710–711), the book Manual of the chih
Cycle spoken by Nan-Chi-shih-Lo-Thien was translated by him about 985 ad. He
died in China in 1001 (Puri, 338).

According to Chin-Keh-mu (p. 785), the Sung Dynasty History mentions a “Cal-
endar of SevenHeavenlyBodies” based on theWestern (i.e. Indian) astronomy. It also
speaks of Rāśi Rhyming Tables (Ibid. 786) which seems to contain material related
to scientific correlation. The Annals of Sung Period mentions a number of Indian
monks who went to China and Chinese monks who visited India (Mukherjee, 86).
This mutual link is also proved by several eleventh century Bodhgaya inscriptions,
one of which mentions the name Chi-i associated with distribution of 3000 books
in Charity (Mukherjee, 86). Puri (p. 338) also says that between 970 and 1026 ad,
there were large scale mutual visits of Indian and Chinese monks and that about 200
works were translated into Chinese by a Board of Translation which included three
Indians.

Among the values of π used by Chen Huo (died 1075) and other subsequent
Chinese mathematicians is

√
10 which is a well-known ancient Indian approxima-

tion of Jaina School (Gupta, 1992, 1–5). The Meng Chhi Pi Than or Menggi bitan
(c. 1086) of Shen Kua (=Gua) has the interesting title “Dream pool essays” and con-
tains notes on various scientific topics (Needham 38–39).14 His “notation is perhaps
of Indian origin” (Martzloff, 98). As late as in the twelfth century, it is stated by Shen
Tso-Che that even children learn mathematics in China from printed Buddhist text
books (Psu-Sa-Suan Fa) (Needham, 88). We have already noted above (see Sect. 4)
the half a dozen Indian books on astronomy and mathematics which are mentioned
in Cheng Chiao’s Historical Collection of about 1150 ad (Ibid., 206–207).

The thirteenth century ad is called the golden era of Chinese mathematics. In
1221, the work of I-Hsing’s survey was completed by the Taoist Chhiu-Chhung and
his party (Beer et al., p. 14). According toMartzloff (p. 105), “magic squares of order
greater than three are first found in China in the Yang Hui Suanfa (1275 ad),” and
that they were introduced from outside possibly. Camman (p. 188) suspected that
Yang Hui’s magic squares of orders 8 and 10 were probably borrowed from India.

Towards the end of the Sung period, the monk Chih-Phan wrote the Fo Tsu Thung
Chi or “Records of the Lineage of Buddha and the Patriarchs” (1270) (Needham,
698). It contains cosmographical ideas and descriptions as found in the Indian work
Abhidharma-kośa and its auto-commentary (Unno 1980a, 58–59). It also contains the
oldest map of India based on the Si-yü-ki of Hiuen Tsang (seventh century) (Muroga
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and Unno: 55) Chih-Phan states that India was claimed to be the centre of the world
in the Holy Buddhist Writings (Ibid).

Lists of mathematical terms borrowed from Sanskrit and denoting large numbers
and decimal fractions are found in China in Zhu-Shijie’s Suanxue qimeng (1299)
(Martzloff, 98), and 1096 is called heng ho sha (“Sands of the river Ganges”), and
10128 is called wu liang shu, i.e. asam. kheya (Lam, 8).15

During the Ming Dynasty (1368–1644), some Islamic works on astronomy and
astrology were translated into Chinese. One of them has the title Ming-i Tien-wen-
shu (Astronomical Book Translated During theMing Dynasty), the original of which
was written by K’uo-shih-ya-erh who has been identified with Kūshyār ibn Labbān
(Yabuuti 1987, pp. 551–552). It should be noted that Kūshyār is the tenth century
Islamic author of the famous on Principles of Hindu Reckoning.

Another work of Islamic astronomy translated into Chinese is the Ch’i-cheng-
t’ui-pu (1385) in which a lunar node is called chih-tu, and this is clearly derived from
Sanskrit word ketu, (Ibid., 557).

As a significant event of the Ming period, the manuscript of the Khai-yuan
Chan Ching (which was compiled by the Indian scholar Gautama Siddhārtha in
the eighth century China) was discovered by Chhêng Ming-shan (c. 1600) eventu-
ally in a Buddha statue (Yabuuti 1979, p. 9). It was then duly published in its 1st
104th Chapter on Chiu-chih-li (Navagraha Karan. a on Indian astronomy) was studied
by Ku-Kuan-Kuang (1799–1861), and by Haü Yu-jên (1800–1860).

In Jên-ch’ao’s Fa-chieh-an-li-t’u (1602), the Jambūdvı̄pa is represented as the
India centric continent (as was done in Holy Buddhist Writings) (Muroga and Unno,
p. 55). That very time Hsieh Chao-chih wrote his Wu tsa-tsu (Miscellanea in Five
Parts) (Mair, p. 79). The Suan-fa tangzong (1592) (General Source of Computa-
tional Methods) of Cheng Dawei (1533–1606) was a popular book (containing ver-
sified rules) which was published many times. It gives system of very large number
whose terminology was borrowed from Sanskrit similar to what is found in Suanxue
qimeng of 1299 (Martzloff, 98). The translation technique involved when Matteo
Ricci (1552–1610) translated Euclid’s Elements into Chinese is said to follow the
same method as was used earlier in translating the Buddhist texts (Martzloff, 21).
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translation, as Dharmaraks.a is given a rendering of Chu-fa-hu (Ibid., p. 10; also cf. F. W.
Thomas, 66).
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note) in each dynasty is given in Vanhee (1926 Isis article, pp. 104–105. Alternative names
of dynasties) in mostly current popular Pingyin system are given in the parentheses. Due to
consultation of a large number of sources (both old and new) uniformity was not possible.
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(Lam, 8–9).



Indian Influence on Early Arabic
and Persian Writers of Mathematical
Sciences

India has given to the world outstanding gifts in sacred spiritual as well as in secular
scientific fields. In spiritualism, India gave the great Buddhism through which all
the Asian countries during the first millennium of our era “formed one fountain-
head”. Then there is the gift of the supreme philosophy of Vedanta which through
the effective speeches of Swami Vivekananda, “invaded” America and Europe. The
Advaita Vedanta philosophy also deeply influenced the Sufi thought which is widely
and universally appreciated in the Islamic world of Middle East.

In the scientific field, the grand gifts from the simple but unique decimal place-
value system of numeration to the advance marvellous achievements of Srinivasa
Ramanujan inmodernmathematics are the distinctly shining examples. In the present
article, wewill highlight the diffusion and enrichment of Indianmathematics through
the Arabic and Persian works during ancient times. Several works based on or trans-
lated from Sanskrit sources will be mentioned with some details. The spread, pene-
tration and triumph of the Indian system of numerals will also find a sort of concise
documentation in the following pages.

Ali al-Masudi (died 956 ad), the encyclopaedist scholar of Baghdad who was in
India from 912 ad to 916 ad, wrote that a congress of sages at the command of the
Creator Brahma invented the “nine figures” (that is, the decimal place-value system
along with zero), astronomy and other sciences. Such a statement is not surprising
because in ancient India, all arts and sciences were assigned a divine origin. But,
it may very well contain factual information that the decimal place-value system
emerged out of a deliberate discussion in a conference of learned scholars. In this
connection, it should be noted that the Sanskrit alphabet which is so scientifically
designed may also have been the result of similar group discussion in a systematic
manner (cf. English, Greek, or Arabic alphabet). Any way, the positional decimal
system of numerals was already in use in India in the beginning of the present era.

Mathematics Teacher (India), 44(3–4), (2008), pp. 127–138; Presidential Address delivered by
Prof. R. C. Gupta, at the 42nd Annual Conference of AMTI held at Raman Educational Institutions,
Warangal, Andhra Pradesh during December 2007, pp. 28–30.
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According to Parsi tradition the Sasanian king Shapur I (241–272 ad), “caused
to be included, among the holy books, secular works on medicine, astronomy and
metaphysics found in India, Greece and other countries”. The ninth-century Pahlavi
(Middle Persian) Denkart informs us authoritatively that Ardashir (226–240 ad) and
he had Indian works translated into Pahlavi and that they were revised under the rule
of Khusru I Anushirvan (531–579 ad). Ibn al-Nadim (d.987 ad) quotes the Persian
scholar Abu Sahl ibn Naubakht (flourished in 800 ad) as saying that an Indian text
on Jyotisha (ascribed to Farmasb) was translated as well. Barzouhyeh, a subject of
Khusru I, visited India to acquire proficiency in Indian sciences.

“Strangely enough, although Ptolemy’s Almagest (famous Greek work on mathe-
matical astronomy) was known to the Sasanians, Indian doctrines seem to have been
preferred” (al-Abhath, vol. 23, p. 341). Thus, the Iranian official work Zij-I Shah
contained lot of Indian astronomy. The work was revised under Khuusru I during
whose rule the game of chesswas also imported from India. TheArabic–Persianword
shatoranj comes from the Sanskrit caturaṅga. The chess-related popular problem
about the series

1+ 2+ 4+ 8+−−−−+263

is also attributed to Indians by Masudi in his Meadows of Gold and Mines of Jewels.
Before the rise of Islam, no scientific literature existed in Arabia beyond a few

magical, meteorological and medicinal formulas. The famous flight of Prophet
Muhammad took place in 622 ad. With astounding rapidity, the sons of the Ara-
bian desert conquered most of the then civilized world in a century following the
death of their Prophet in 632 ad. On the Indian front Qandahar was reduced and the
statue of Lord Buddha found there was demolished. Still the Arabs had very little
science and philosophy of their own and they carried no scientific study.

In 762 ad, Caliph al-Mansur laid the foundation of his new capital at Baghdad.
Soon it grew into an international centre of trade, commerce and intellectual activities.
Many oriental ideas and thoughts flowed in and a new era of cultivation of science
and scholarly pursuits began. In the early stage the channel of inflow of scientific
knowledge was Persia.

Direct infusion of Indian material on mathematical sciences into Islam took place
when an embassy from Sind visited the court of Caliph al-Mansur in Baghdad in
Hijiri year 156 (i.e. 772/773 ad). This visit of Indian embassy is mentioned by
Muhammad ibn al-Adami in his Great Zij which is also called Threading the Pearl
Necklace (Nazm al-Iqd) and which was completed about 920 ad (posthumously) by
his pupil Qasim. The story is quoted by many other scholars.

Ibn al-Adami says that the embassy included an Indian Scholar who was an
expert in astronomy and had a work on the subject (Siddhānta) with him. The Caliph
ordered that the work be studied and an Arabic treatise be made out of it. The work
was translated into Arabic by al-Fazari (in collaboration with others)—The Arabic
version of the Sanskrit Siddhānta astronomy was called Zij al-Sindhind or Zij al-
Sindhind al-Kabir, i.e. The Grand Sindhind from which descended a long tradition
of other Arabic astronomical works.



Indian Influence on Early Arabic and Persian Writers of Mathematical Sciences 607

Although not explicitly mentioned, the main original Sanskrit work involved in
Arabic translation seems to be Brahmagupta’s Brāhmasphuta-siddhānta (628 ad).
This specification is supported by several ancient (e.g. al-Biruni) as well as modern
scholars. Following the tradition of the Sindhind, Yaqub ibn Tariq (d. about 796 ad)
who also worked under Caliph al-Mansur wrote his Zij Extracted from Sindhind
Degree by Degree. Yaqub also wrote another work called Sine Division of Kardajas
(the word kardaja is said to be from the Sanskrit kramajyā). Mention may also be
made of an Astronomical Table (Zij) “composed according to Indian sources” by
Siman ibn Sayyar of Kabul about the same time.

We might say that the visit of the Indian embassy (mentioned above) to Baghdad
court was the formal occasion when Indian decimal place-value system of numerals
was transmitted to the Arabs through official royal channel. Otherwise it is known
that Indian numerals have been already spread westward much earlier to Persia,
etc. and even to Alexandria which was a great international centre where not only
commercial products but scientific and philosophical ideas were exchanged.

The first definitely known evidence of the knowledge of Indian decimal place-
value system among the Arabs is provided by the praise it got from Severus Sebokht
(d. 667 ad), the Syrian scholar and Christian bishop in the convent of Kenneshre
on the bank of Euphrates. In his Syrian work Reasoning on Priority of Syrians over
Greeks inMathematics andAstronomy (662ad), he stated that the Indian place-value
arithmetic “surpasses description”. He refers to the Indian computation as carried out
by “nine figures” which along with zero formed the system (the Sanskrit word aṅka,
as a bhūta-sam. khyā, denotes 9.) the well-known Arabic alchemist Jabir (known in
Europe as “Geber”) also used the Indian decimal system with zero in his Book on
Poisons (eighth century) before the famous al-Khwārizmı̄ did so.

Of course, after the translation of some Indian astronomical works into Arabic
in the form of Sindhind, there developed a category of Arabic writings called “fi
al-hisab al-Hindi” (denumero lndorum in Latin). The Indian system of arithmetic
(based on decimal place-value notation of numerals with zero) was called “al-hisab
al-Hindi” and often also as “hisab al-takht” (cf. pāṫigan. ita) or as “hisb al-ghubar”,
etc. because it spread in Arabic world with dust board as tool.

The Indian numerals themselves were called as huruf al-Hind or huruf al-ghubar
(i.e. Hindu or dust letters) because Arabs then demoted numbers by letters (huruf is
plural of Arabic word harf “letter” or literae in Latin).

The known earliest text of the category (or genre) mentioned above is the Kitab
al-Hisab al-Hindi (Book on Hindu Reckoning) by the famous al-Khwārizmı̄ (c.780–
c.850) whose works pioneered the spread of Indian mathematical sciences among
Arabs and in Latin world. Unfortunately, the original Arabic work is not extant.
However, Latin translation made by Adelard of Bath (c. 1120) in Spain and some
other Latin versions are available. The Latin title is “Algoritmi de Numero Indorum”
as published by B. Boncompagni in 1857. Cambridge University Library Latin text
“Dixit Algorismi” of the work has been translated into English by P. J. Witz as part
of her M.A. 348 Project (1980).
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The Indian astronomical tradition of the Sindhind was especially used by
al-Khwārizmı̄ in his Zij al-Sindhind composed during the reign of Caliph al-Mamun
(813–833 ad). The Arabic original of this work is also not extant. But its tenth cen-
tury Spain revision by al-Majriti and lbn al-Saffar became quite popular and was
translated into Latin by Adelard in 1126 ad.

Al-Khwārizmı̄’s abbreviated Book on the Reckoning of Algebra and Almucabala
was the first book that included the term ‘algebra’. Chapter 15 of this book is on
mensuration of plane and solid figures and includes the Indian value of π , namely
62832
20000 (of Āryabhat.a). Interestingly the modern mathematical term ‘algorithm’ comes
from his medieval European name Algorismus or Algorithmus.

The name of the famous Indian scientist Āryabhat.a (born 476 ad) appears as
Arjabhar in Arabic sources. His Āryabhat.ı̄ya is said to be translated into Arabic
by Abu al-Hasan (or Husayn) al-Ahwazi who belonged to the ninth century or so.
To the same century belonged al-Quyrawani of Africa who wrote a Book of Indian
Calculation (seeHPM Newsletter No. 37). About the same time al-Battani dealt with
the novelties of trigonometry (based on the sine function introduced from India) in
his Arabic work which was translated into Latin as De Scientia Stellarum.

Yaqub al-Kindi (d. about 873ad) was a prolificwriter andwas known as “Philoso-
pher of Arabs” and “Alkindus” in Medieval Europe. His Treatise on the Use of
Hindu Arithmetic deals with Medieval Europe. His Treatise on the Use of Hindu
Arithmetic deals with integers which are called adad al-hindi. Another Arabic writer
was al-Dinawari (d. 895 ad) whose Book of Board on Hindu Reckoning had good
reputation. These two books are mentioned in Fihrist of al-Nadim but are not extant
now.

The earliest extant Arabic text on Indian arithmetic is the Book of Sections on
Hindu Arithmetic written by Ahmed al-Uqlidisi in Damuscus in Hijri year 341
(952/953 ad). A. S. Saidan has brought out a fine English translation of the work
(Dordrecht 1978) which includes good material on the history of arithmetic among
the Arabs.

Several other Arabic writers of the tenth century took keen interest in Indian
arithmetic Al-Karabisi wrote his Kitab al-hisab al-hindi while thework on the subject
by Sinan ibn al-Fath as well as by al-Kalwadhani had the same title namely Book
of Board on Hindu Arithmetic. On the other hand, the work of Ali al-Antaki (d. 987
ad) was titled Great Book of Board for Hindu Reckoning. This work also mentioned
by al-Nasawi, a pupil of Kushyar (see below). The famous Book of Bibliography of
Sciences (Fihrist in short) by Muhammad ibin al-Nadim contains good information
on Arabic authors of Indian arithmetic. Although Abu al-Wafa (d. 998 ad) in his
famous “A Book About What is Necessary for Scribes, Dealers and Others from the
Science of Arithmetic” avoided Hindu numerals, but he did include Indian schemes
of multiplication and division in the work.

The popular astronomer and mathematician Kushyar ibn Labban (971–1029 ad)
wrote two works related to Indian mathematics, namely “Principles of Hindu Arith-
metic” and the “Sources of the Principles in Hindu Arithmetic”. The Arabic text of
the first work along with English translation has been brought out by M. Levey and
M. Petruck (Madison 1965). A Persian appendix on Indian fractions was added in

http://dx.doi.org/10.1007/978-981-13-1229-8_15
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1283, and a Hebrew translation and commentary were written by Shalom ben Jeseph
Anabi who lived in Constatinople in the fifteenth century.

Quite a few significant works on new arithmetic were written by al-Karaj
(d. about 1025 ad) whose name is also written as al-Karkhi. One title is Book on
Hindu Arithmetic. In his important work Sufficient on the Science of Arithmetic, he
avoided Hindu numerals like Abu al-Wafa, “but even in their attempt to turn their
back on Hindu devices, they prove to have borrowed from them” (Saidam, p. 8).

The penetration and popularity of Indian arithmetic are interestingly illustrated
by a statement of the then contemporary writer. Referring to the Ismaili missionaries,
Ibn Sina (or ‘Avicenna’ of Medieval Age) (980–1037.ad) says:

Presently they began to invite me to join the movement, rolling in their thoungue talk about
philosophy, geometry, and Indian arithmetic; andmy father sentme to certain vegetable seller
who used Indian arithmetic so that I might learn from him. (Neugebauer, p. 24; Rahman,
p. viii).

Some astronomical works of the time related to Indian context include the Zij
according to the Indian Method by Asbagh al-Gharnati (d. 1035 ad), the concise
Zij according to the Model of Sindhind by Ahmad al-Ghafigi (d. 1035 ad), and the
Book on the Cause of Mediation of Equation of Sindhind by Abu Nasr (d. 1036 ad).
In book of completion on the science of Arithmetic Abd al-Qahir al-Baghdadi (d.
1038 ad), the first two chapters are devoted to ‘Hindu Arithmetic’ of integers and
fractions, respectively.

Muhammad al-Shanni (tenth–eleventh century) in his book on the Measurement
of a Triangle and of the Quadrangle Inscribed in a Circle gives a proof of the famous
Brahmagupta’s expression (s is semi-perimeter):

Area = √
(s − a)(s − b)(s − c)(s − d).

During the same period, Muhammad ibn al-Haytham wrote his Book on Hindu
Reckoning (Maqate fi al-Hisab al-Hindi) in Arabic, which he mentions in his autobi-
ography. The more famous al-Hasan (Alhazen of medieval Europe) ibn al-Haytham
(965–1041 ad) was a prolific writer. He wrote more than 50 books on mathematics
alone one of which is Book of Defects of Indian Arithmetic.

Abu al-Rayhan al-Biruni (973–1048 ad) is doubtlessly the most famous scientist
of Medieval Islam. He was a very prolific writer and encyclopaedist. He was in India
for a few years and wrote the famous book containing explanations of doctrines of
Indians, both acceptable by reason or rejectable (in Arabic). Titles of his works on
Indian sciences are:

(i) Memorandum on Arithmetic and Reckoning by Means of Hindu Figures.
(ii) Modes of Indian Records in Learning Arithmetic.
(iii) Book on Indian Rashikas. It deals with the Rule of Three (trairāśika) and other

higher rules.
(iv) Numerical Sankalitas. It deals with summation of series.
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(v) Translation of astronomical work based on (now lost) “Karan. atilaka” of
Vijayanandin. The Arabic title is “Ghurrat al-Zijat” (see English translation
by Rizvi).

(vi) Collection of Ideas of Indians on Astronomical Calculations.
(vii) Representation of Both Kinds of Eclipses by Indians.
(viii) Corrected and Revised Arabic translation of Brahmagupta’s Khan. d. akhādyaka

(see Sachau, Alberuni’s India, Vol. II, p. 339).
(ix) Answers to Questions Asked by Indian Astronomers.
(x) Answers to Ten Questions Asked by the people of Kashmir (Rosenfeld and

Ihsanoglu, p. 153).

Sachau (India, p. 303) states that al-Biruni was translating Brāhmasphuta-
siddhānta into Arabic about 1030 ad. It was doubtful whether he could complete
this tough task.

Ali al-Nasawi (d. about 1070 ad) was a pupil of Kushyar ibn Labban and wrote
the expository work Sufficient on Hindu Reckoning. It was first written in Persian
for Majd al-Dawla and later in Arabic for Mahmud Ghaznawi (c. 1030). The famous
Toledo Tables by al-Zarqal (d. 1099 ad) had followed the Sindhind tradition in
Spain through the Zij of al-Khwārizmı̄ mentioned above. The Mushkilat al-Hisale
(Problems of Arithmetic) by Umar Khayyam (d. 1131 ad) is described by the author
himself as “a treatise on the proof of Indian methods of extraction of square and cube
roots, etc.”

Some other works of the early twelfth century include the Book on Indian Multi-
plication by Ishaq al-Sardafi ( d. about 1105 ad) and the “Hisab al-Hindi” by Asad
al-Bayhaqi. The Book on Hindu Reckoning for a Qiwan al-Din was composed by
al-Samawal al-Andalusi (d. about 1175 ad). Sharaf al-Din al-Amuni ofMecca wrote
his “On Geometry and Indian Figures” in Arabic in 1172 ad.

Ibn al-Yasmin (d. 1204 ad) composed his work on Correction of Opinions on
the Science of Arithmetic by Means of Figures (al-ghubar) while Muhanumad al-
Hassar’s work on Indian arithmetic is entitled Book of al-Hassar on the Science of
Ghubar in which old and new techniques have been unified. Al-Hassar belonged to
the last part of the twelfth century. Of an unknown date is the work Comments on
an Indian Book on arithmetic by Isa ibn Ahmad ibn Yusuf in Arabic.

After the twelfth century, the use of Indian place-value systemof numerals became
more common and most of the arithmetical books used the decimal system with
positional numerals although other older systems also continued.
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Bhāratı̄, 2 (1980), 53–57.



References 611

5. R. C. Gupta: “Indian Astronomy in West Asia”, Vishveshvaranand lndological Journal, 20
(1982), 219–236.

6. R. C. Gupta: “Spread and Triumph of Indian Numerals”, Indian Journal of History of Science,
18 (1983), 23–38.

7. Philip K. Hitti: History of the Arabs, Macmillan, London, 10th edition, Ninth reprint, 1984.
8. E. S. Kennedy: “A Survey of Islamic Astronomical Tables (zijes)”, Transactions of the Amer-

ican Philosophical Society (N.S) 40, (1956), 123–77.
9. E. S. Kennedy: “The Arabic Heritage in Exact Sciences”, Al-Abhath, 23 (1970), 327–344.
10. E. S. Kennedy (translator): The Exhaustive Treatise on Shadows by al-Biruni, Univ. of Aleppo,

2 Vols. Aleppo, 1976.
11. Paul Kunitzsch: “The Transmission of Hindu-Arabic Numerals Reconsidered”, Pages 3–21 in

The Enterprise of Science in Islam, M.I.T. Press, Cambridge, Mass. 2003.
12. Martin Levey and M. Petruk (transl): Kushyar’s Principles of Hindu Reckoning. Univ. of

Wisconsin, Madison, 1965.
13. Otto Neugebauer: The Exact Sciences in Antiquity, Harper Torchbooks, New York, 1962.
14. David Pingree: “Astronomy and Astrology in India and Iran”, Isis, 54 (1963), 229–246.
15. D. Pingree: “Indian Influence on Early Sasanian and Arabic Astronomy”, J. Oriental Res.

Madras, 33 (1963–64), 1–8.
16. D. Pingree: “The Indian and Pseudo-Indian Passages in Greek and Latin Texts”, Viator. 7

(1976), 141–195.
17. Abdur Rahman et al: Science and Techology in Medieval India, A Bibliography of Source

Materials, INSA, New Delhi, 1982.
18. S. S. H. Rizvi: “AUnique and Unknown Book of al-Beruni: Ghurrat-uz-Zijat”, Islamic Culture

37, 38 and 39 (1963–65), various pages.
19. B. A. Rosenfeld and E. lhsanoglu: Mathematicians and Astronomers of Islamic Civilisation,

IRCICA, Istanbul, 2003.
20. E. C. Sachau (transl.): Alberuni’s India, Reprinted, New Delhi, 1964.
21. A. S. Saiden (transl.): The Arithmetic of Al-Uqlidisi, Reidel, Dordrecht and Boston, 1978.



A Bibliography of R. C. Gupta

K. Ramasubramanian

Being much impressed with the contributions of Professor R. C. Gupta, on the
occasion of his 60th birthday, in 1996, Professor Takao Hayashi brought out a bibli-
ography of his writings that was published in Historia Scientiarum. He also prepared
an updated version of it in 2011, perhaps to commemorate his 75th birthday, which
was published in Ganịta Bhāratī . The third edition of the bibliography that is being
presented to the readers, is an up-to-date version and covers his writings over a span
of 60 years (1958–2017). This has heavily borrowed on the earlier version prepared
by Hayashi and hence we are deeply indebted to him for his pioneering efforts in
this direction.

The rich variety of entries we find in the bibliography clearly mirrors the
passionate dedication of Professor Gupta to create pathways to approach the his-
tory of mathematics and astronomy of India at multiple levels. The author strives to
bring to light the achievements of Indian mathematicians both to the academic com-
munity and the generally informed lay person. He dedicates himself to painstakingly
collect theses from various universities of India and collate them, and puts it in the
form of short articles for his readers. He has also created bibliographies facilitating
the search for source material.

In his capacity as the editor of Ganịta Bhāratī he has been meticulously gathering
information regarding conferences, meetings, symposiums and seminars on topics
related to history of mathematics, held at different places in India (and abroad), in
order to help the fellow academicians to keep abreast of research done in this field.
Being well aware that this is a much neglected field, he strives hard to disseminate
this material to an international readership, byway of sending short reports to various
reputed journals of distinguished societies of history of mathematics and astronomy
in various parts of the world, and thereby to stimulate curiosity and interest in fellow
mathematicians towards promoting studies in history of mathematics.

While assiduously addressing the academicians he does not lose track of the
common reader in towns of India, such as Jhansi and Ranchi where he lived and
worked. Through his writings in the local newspapers about great Indian
mathematicians on their birth and death anniversaries, on science days, he makes
the common readers and students aware of India’s contribution to the world heritage
of science. His research is not confined to ancient mathematicians alone. The sev-
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eral bio-bibliographies of historians of mathematics and astronomy of recent times,
such as P. C. Sengupta, Sudhakara Dvivedi, etc., that Professor Gupta has brought
out reveal his admiration for his immediate predecessors as well as contemporary
historians.

A mention may be made here of this version of bibliography providing glimpses
of Professor Gupta’s work translated into Hindi, Gujarati, Kannada, Bangla, Tamil
andMalayalam, in a separate section.Whilemost of the articles in Hindi are authored
byGupta himself, all the Kannada ones have been prepared byVenugopal D. Heroor.
It is to the credit of Gupta that he draws the uninitiated readers into the folds of
scientific scholarship through encouraging translations of his own and other writings
in the regional languages of India. Towards the end of this bibliography we find a
list of all of his works that have been translated into other Indian languages. This is
followed by a list of articles that have been written about R. C. Gupta.

Besides articles meant for technical audience, the list presented in the bibliog-
raphy also includes his writings in the form of very short notes on ancient Indian
mathematicians for encyclopedias of science. It may also be noted that such notes as
well as a few of his articles have reappeared in different publications. Given the fact
that India’s contribution to science does not find its way to the informed academic
community in India as well as in other parts of the world due to a lack of awareness,
and also with the mission to disseminate knowledge, he has not shied away from
rewriting or translating into Hindi some of the articles that have already been pub-
lished elsewhere. In order to indicate readers, the equivalence of one article with the
other (in the case that they reappear elsewhere) is indicated at the end of those entries.
In doing so, we have essentially followed Hayashi’s style that was found novel and
useful. Professor Gupta has also been writing under his pen name ‘Ganitanand’ for
some time. Those publications which appeared with this name have been indicated
by including the word ‘Ganitanand’ in parentheses at the end of those entries.

Finally, it may be stated that this bibliography all in all has more than 500 entries.
This by no stretch of the imagination can be considered a small accomplishment,
particularly considering the fact that by profession Professor Gupta has been a
teacher of modern mathematics—which unfortunately has been completely severed
from the history of mathematics—all through this career (which in itself would have
been demanding a significant portion of his time) and also given the fact that all his
publications are single authored!

Note Apparently ‘missing’ items such as (1973c) and many more both detected
and undetected (eg. 1998b; 2000c, d, e) may be found in the section on various Indian
languages.
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pp. 67–69.
– (1980j). “Some important mathematical methods as conceived in ancient India”. In: Proceedings

of the First International Sanskrit Conference III.1, pp. 218–229.
– (1980k). “Square root of 164 in the Berlin Papyrus 11529”. In: Ganịta Bhāratī 2.1–2, pp. 29–31.
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ematical astronomy”. In: Ganịta Bhāratī 3.3–4, pp. 86–102.
– (1981b). “A new formula for finding the residue”. In: The Mathematics Education 15. A, p. 32.
– (1981c). “BookReview of Directory of Historians of Arabic-Islamic Science, by S.K.Hamarneh”.
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– (1985g). “Jinabhadra Ganị and segment of a circle between two parallel chords”. In: Ganịta
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15–40.
– (1987m). “Swami Vidyaranya (1888–1958) and the history and historiogrphy of mathematics in

India”. In: The Mathematics Student 55, pp. 117–22.
– (1987n). “The 1986 meetings of the British Society for History of Mathematics”. In: Ganịta
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pp. 108–12.

– (1990c). “Bangalore summer school on history and philosophy of science”. In: Ganịta Bhāratī
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Bhāratī 15.1–4, pp. 92–95.
– (1993g). “Clas-Olof Selenius (1922–1991), an expert in Indian cyclic method”. In: Ganịta
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17.1–4, pp. 92–94.

– (1995c). “Abraham’s table of arcs in a circle”. In: Ganịta Bhāratī 17.1–4, pp. 90–100.
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1985–94”. In: Ganịta Bhāratī 19.1–4, pp. 135–37.

– (1997g). “Book Review of The Bakhshālī Manuscript: An Ancient Indian Mathematical Treatise
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Vacana 14.2–3. (Hindi), pp. 101–02.
– (2002c). “Area of bow-figure in Jain mathematics”. In: Arhat Vacana 14.1, pp. 9–15.
– (2002d). “Book Review of 5000 Jahre Geomatrie: Geshichte, Kulturen, Menschen, by C. J.
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– (2003e). “Agni-kuñdạs-A neglected area of study in the history of ancient Indian mathematics”.

In: Indian Journal of History of Science 38.1, pp. 1–15.
– (2003f). “‘History of mathematics’ in mathematics teachers meet at Delhi, 2002: A Report”. In:
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Jaina”. In: Bhāva Vijñāna (Bhopal) 5.15, pp. 7–8. (Hindi tr. of (Gupta 2011f) by Komal Jain).

Gujarati

Gupta, R. C. (1973c). “Baudhāyana’s approximate value of √2”. In: Sugaṅitam 8.1, pp. 25–26.
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– (2014a). “Bhāskarācārya II”. In: Sugaṅitam 52.4, p. 120. Gujarati, (cf. = Gupta 1979c).

Kannada

Gupta, R. C. (2000c). “Bhārata Cīnā Bāndhavya mattu Cīnāda Prasiddha Bauddha Gani̇tajña Hāgū
Khagola Vijñāni I-Hsing (ad 683-727)”. In: Utthāna. (August), pp. 63–82. (Kannada tr. of
(Gupta 1989i) by V. D. Heroor).

– (2000d). “Bhāratīya Khagola Śāstra Prācīna Cīnādalli”. In: Aseema. (December), pp. 6–15.
(Kannada tr. of (Gupta 1981h = Gupta 1981i) by V. D. Heroor).

– (2001c). “Bahughātīya Samḳhye 𝑎𝑛 da Beleyannu Kanḋụhidịyuvudakkāgi Pinġalana Prācīna
Vidhāna”. In: Utthāna. (October), pp. 81–88. (Kannada tr. of (Gupta 1991b) by V. D. Heroor).
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राधाया रणा गु कुलजो वै र भः
छोटलेाल बनोबयी त महतोः जातो ह झा ीपुरे ।
े े ावणपूणच दवसे शाके समाहा के

सा व ीस हतो वराजत इह ाभारवे तषा ॥ १ ॥

आर ा तव जी वका ह ग णते ायो गके व तुे
प ादा तमै तहा सककृतेः संशोधनं जा टल ।
ा द कृते वमशमधमं ख ाय तु ं तुं

अ ा सा ह सर ती नर दश माग तु संशोधने ॥ २ ॥

ाता ‘गा णतभारती’ तु व ष मोदाय नेये तः
वो ायासमह नशं वर चता नैका ब ाव लः ।
अ ातं व दतं कृतं पिर तः संशी तभाव च
व ातेऽ प च र पूरणकृतौ ा ं भव ौशल ॥ ३ ॥

उ ाहं तव कमयोगमतुलं ा ा मुदाम तः
`के तेा' महोदयेन र चते वोढुं पदं वै के।
आयोगे ब रा के ग णतगे चै त संशोधके
ानं ा सुभारतीवरसुतो ददेी तेऽयं मुदा ॥ ४ ॥

ऐ त ं ग णत भारतभवं ा ं तदथ या
ादवे सद जता मभवा कोशा क या दुा ।

`नासी' ा दषु भूयसीषु ह न ध ाकृते ा पतः
सु ान ह चिर दीपन वधौ संपोषकः ेरकः ॥ ५ ॥

आचाय यभटा द- व कृ तभ संदशय स तं
ा ो ृ पद भारतसुतो व ानवृ ा धीः ।
`के ोम य' नामकेन पदकेनायं सुधीरा तो
गु ाचायवरो धया वल सतो व रे राजते ॥ ६ ॥

ल कैा म त ु म तवरो म ो महा ो नधौ
इ वंे ब धा व च समये संभोजय प त ।
सा व ी ह सती तु स मनुगा सा े च सं ेिरका
ागेनामृतता भवे द त दश षेा गुणै राजते ॥ ७ ॥

येनाचायवरेण ती म तना पीयूषधारा पता
व ान मह ष भ वर चत ै त व ापने ।
संनीता शरदामशी तगणना नी ा वनी ा युता
राराजेत स मागदशनसुधीः ा ा समान शत ॥ ८ ॥
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Translation of the Praśasti

1. Rādhācharanạ, effulgent by the gem of his scholarship, was born in Gupta lineage
in Jhansi to a noble couple, Chotelal and Binobai in the Śālivāhana Śaka year
1857 (समाहा ) on the beautiful Śrāvanạ-Pūrnịmā day. Accompanied by Sāvitrī,
he shines with the light (Jyoti) of the Sun (Ravi) of his own brilliant knowledge
(Ābhā).1

2. You started your (academic) career in the field of appliedmathematics. Later, you
were keen to do research on challenging topics about historical texts [of mathe-
matics]. [This choice was made] when you were pained by seeing the dismissive
review of the work of Datta [and Singh]. Then indeed the mother2 Sarasvatī
guided you [to tread] in the path of research.

3. In order to make the journal Ganịta Bhāratī a source of delight to scholars, you
wrote a number of articles by painstakingly working day and night. [Through
these articles,] unknown was made known, doubts were dispelled, and the gaps
wherever amongst the known things were filled. Your talents are indeed praise-
worthy.

4. Having recognized your unparalleled commitment to the work and your zeal,
Kenneth invited you to become a member in his International Commission on
History of Mathematics. Through the satisfaction derived by this recognition [as
first Indian], you, the excellent son of Mother Bhāratī (India) continued to glow
further.

5. In order to make the History of Indian mathematics knownwidely, with the sense
of great contentment you established several endowments for the conduct of the
lectures [annually] from your own meagre, hard and rightfully earned money,
in organizations like NASI.3 That [gesture] indeed is greatly encouraging and
supporting the cause of illuminating (recounting) the contributions of renowned
scholars [of history of science].

6. You, the son of India, are an eminent historian of science, who by continually
exploring the brilliance of the works of the savants like Āryabhatạ have gained
a great prominence [among historians of mathematics]. For this, [you] the great
Guptācārya, were honoured with the Kenneth O. May medal, and thereby you
shine [among the top historians] in the world.

7. Noticing that her own husband who is steadfast on the goal is completely im-
mersed in the ocean [of research], your wife Savitri multiply thinking (whether
to disturb or not to) has kindly been serving food to you at appropriate times.
This virtuous lady, by upholding the eternal principles (śraddhā and bhakti), has
been [greatly] assisting you in achieving the goals. Glowing with her [divine]
qualities, she demonstrates that immortality can be achieved through sacrifice.

1Pun is intended here, as Ravīndra, Ābhā and Jyoti are the names of his son and two daughters.
2Here too pun is intended as Sarasvatī is the name of the goddess of knowledge as well as his
doctoral thesis advisor.
3National Academy of Sciences, India, Allahabad.
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8. May the sharp-witted ācārya—by whom eighty years [of fruitful life] has been
led with morality and modesty, offering the nectar in the form of scientific expo-
sitions of the historical facts in the writings of the great seers—remain the torch
bearer crossing the milestone of hundred years!
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